Loading...
1/*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <linux/kernel.h>
21#include <linux/export.h>
22#include <linux/sched/mm.h>
23#include <linux/sched/topology.h>
24#include <linux/smp.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/init.h>
28#include <linux/spinlock.h>
29#include <linux/cache.h>
30#include <linux/err.h>
31#include <linux/device.h>
32#include <linux/cpu.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/profile.h>
36#include <linux/processor.h>
37
38#include <asm/ptrace.h>
39#include <linux/atomic.h>
40#include <asm/irq.h>
41#include <asm/hw_irq.h>
42#include <asm/kvm_ppc.h>
43#include <asm/dbell.h>
44#include <asm/page.h>
45#include <asm/pgtable.h>
46#include <asm/prom.h>
47#include <asm/smp.h>
48#include <asm/time.h>
49#include <asm/machdep.h>
50#include <asm/cputhreads.h>
51#include <asm/cputable.h>
52#include <asm/mpic.h>
53#include <asm/vdso_datapage.h>
54#ifdef CONFIG_PPC64
55#include <asm/paca.h>
56#endif
57#include <asm/vdso.h>
58#include <asm/debug.h>
59#include <asm/kexec.h>
60#include <asm/asm-prototypes.h>
61#include <asm/cpu_has_feature.h>
62
63#ifdef DEBUG
64#include <asm/udbg.h>
65#define DBG(fmt...) udbg_printf(fmt)
66#else
67#define DBG(fmt...)
68#endif
69
70#ifdef CONFIG_HOTPLUG_CPU
71/* State of each CPU during hotplug phases */
72static DEFINE_PER_CPU(int, cpu_state) = { 0 };
73#endif
74
75struct thread_info *secondary_ti;
76
77DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
78DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
79DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
80
81EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
82EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
83EXPORT_PER_CPU_SYMBOL(cpu_core_map);
84
85/* SMP operations for this machine */
86struct smp_ops_t *smp_ops;
87
88/* Can't be static due to PowerMac hackery */
89volatile unsigned int cpu_callin_map[NR_CPUS];
90
91int smt_enabled_at_boot = 1;
92
93/*
94 * Returns 1 if the specified cpu should be brought up during boot.
95 * Used to inhibit booting threads if they've been disabled or
96 * limited on the command line
97 */
98int smp_generic_cpu_bootable(unsigned int nr)
99{
100 /* Special case - we inhibit secondary thread startup
101 * during boot if the user requests it.
102 */
103 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
104 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
105 return 0;
106 if (smt_enabled_at_boot
107 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
108 return 0;
109 }
110
111 return 1;
112}
113
114
115#ifdef CONFIG_PPC64
116int smp_generic_kick_cpu(int nr)
117{
118 if (nr < 0 || nr >= nr_cpu_ids)
119 return -EINVAL;
120
121 /*
122 * The processor is currently spinning, waiting for the
123 * cpu_start field to become non-zero After we set cpu_start,
124 * the processor will continue on to secondary_start
125 */
126 if (!paca_ptrs[nr]->cpu_start) {
127 paca_ptrs[nr]->cpu_start = 1;
128 smp_mb();
129 return 0;
130 }
131
132#ifdef CONFIG_HOTPLUG_CPU
133 /*
134 * Ok it's not there, so it might be soft-unplugged, let's
135 * try to bring it back
136 */
137 generic_set_cpu_up(nr);
138 smp_wmb();
139 smp_send_reschedule(nr);
140#endif /* CONFIG_HOTPLUG_CPU */
141
142 return 0;
143}
144#endif /* CONFIG_PPC64 */
145
146static irqreturn_t call_function_action(int irq, void *data)
147{
148 generic_smp_call_function_interrupt();
149 return IRQ_HANDLED;
150}
151
152static irqreturn_t reschedule_action(int irq, void *data)
153{
154 scheduler_ipi();
155 return IRQ_HANDLED;
156}
157
158static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
159{
160 tick_broadcast_ipi_handler();
161 return IRQ_HANDLED;
162}
163
164#ifdef CONFIG_NMI_IPI
165static irqreturn_t nmi_ipi_action(int irq, void *data)
166{
167 smp_handle_nmi_ipi(get_irq_regs());
168 return IRQ_HANDLED;
169}
170#endif
171
172static irq_handler_t smp_ipi_action[] = {
173 [PPC_MSG_CALL_FUNCTION] = call_function_action,
174 [PPC_MSG_RESCHEDULE] = reschedule_action,
175 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
176#ifdef CONFIG_NMI_IPI
177 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
178#endif
179};
180
181/*
182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
183 * than going through the call function infrastructure, and strongly
184 * serialized, so it is more appropriate for debugging.
185 */
186const char *smp_ipi_name[] = {
187 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
188 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
189 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
190 [PPC_MSG_NMI_IPI] = "nmi ipi",
191};
192
193/* optional function to request ipi, for controllers with >= 4 ipis */
194int smp_request_message_ipi(int virq, int msg)
195{
196 int err;
197
198 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
199 return -EINVAL;
200#ifndef CONFIG_NMI_IPI
201 if (msg == PPC_MSG_NMI_IPI)
202 return 1;
203#endif
204
205 err = request_irq(virq, smp_ipi_action[msg],
206 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
207 smp_ipi_name[msg], NULL);
208 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
209 virq, smp_ipi_name[msg], err);
210
211 return err;
212}
213
214#ifdef CONFIG_PPC_SMP_MUXED_IPI
215struct cpu_messages {
216 long messages; /* current messages */
217};
218static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
219
220void smp_muxed_ipi_set_message(int cpu, int msg)
221{
222 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
223 char *message = (char *)&info->messages;
224
225 /*
226 * Order previous accesses before accesses in the IPI handler.
227 */
228 smp_mb();
229 message[msg] = 1;
230}
231
232void smp_muxed_ipi_message_pass(int cpu, int msg)
233{
234 smp_muxed_ipi_set_message(cpu, msg);
235
236 /*
237 * cause_ipi functions are required to include a full barrier
238 * before doing whatever causes the IPI.
239 */
240 smp_ops->cause_ipi(cpu);
241}
242
243#ifdef __BIG_ENDIAN__
244#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
245#else
246#define IPI_MESSAGE(A) (1uL << (8 * (A)))
247#endif
248
249irqreturn_t smp_ipi_demux(void)
250{
251 mb(); /* order any irq clear */
252
253 return smp_ipi_demux_relaxed();
254}
255
256/* sync-free variant. Callers should ensure synchronization */
257irqreturn_t smp_ipi_demux_relaxed(void)
258{
259 struct cpu_messages *info;
260 unsigned long all;
261
262 info = this_cpu_ptr(&ipi_message);
263 do {
264 all = xchg(&info->messages, 0);
265#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
266 /*
267 * Must check for PPC_MSG_RM_HOST_ACTION messages
268 * before PPC_MSG_CALL_FUNCTION messages because when
269 * a VM is destroyed, we call kick_all_cpus_sync()
270 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
271 * messages have completed before we free any VCPUs.
272 */
273 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
274 kvmppc_xics_ipi_action();
275#endif
276 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
277 generic_smp_call_function_interrupt();
278 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
279 scheduler_ipi();
280 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
281 tick_broadcast_ipi_handler();
282#ifdef CONFIG_NMI_IPI
283 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
284 nmi_ipi_action(0, NULL);
285#endif
286 } while (info->messages);
287
288 return IRQ_HANDLED;
289}
290#endif /* CONFIG_PPC_SMP_MUXED_IPI */
291
292static inline void do_message_pass(int cpu, int msg)
293{
294 if (smp_ops->message_pass)
295 smp_ops->message_pass(cpu, msg);
296#ifdef CONFIG_PPC_SMP_MUXED_IPI
297 else
298 smp_muxed_ipi_message_pass(cpu, msg);
299#endif
300}
301
302void smp_send_reschedule(int cpu)
303{
304 if (likely(smp_ops))
305 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
306}
307EXPORT_SYMBOL_GPL(smp_send_reschedule);
308
309void arch_send_call_function_single_ipi(int cpu)
310{
311 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
312}
313
314void arch_send_call_function_ipi_mask(const struct cpumask *mask)
315{
316 unsigned int cpu;
317
318 for_each_cpu(cpu, mask)
319 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
320}
321
322#ifdef CONFIG_NMI_IPI
323
324/*
325 * "NMI IPI" system.
326 *
327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
328 * a running system. They can be used for crash, debug, halt/reboot, etc.
329 *
330 * NMI IPIs are globally single threaded. No more than one in progress at
331 * any time.
332 *
333 * The IPI call waits with interrupts disabled until all targets enter the
334 * NMI handler, then the call returns.
335 *
336 * No new NMI can be initiated until targets exit the handler.
337 *
338 * The IPI call may time out without all targets entering the NMI handler.
339 * In that case, there is some logic to recover (and ignore subsequent
340 * NMI interrupts that may eventually be raised), but the platform interrupt
341 * handler may not be able to distinguish this from other exception causes,
342 * which may cause a crash.
343 */
344
345static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
346static struct cpumask nmi_ipi_pending_mask;
347static int nmi_ipi_busy_count = 0;
348static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
349
350static void nmi_ipi_lock_start(unsigned long *flags)
351{
352 raw_local_irq_save(*flags);
353 hard_irq_disable();
354 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
355 raw_local_irq_restore(*flags);
356 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
357 raw_local_irq_save(*flags);
358 hard_irq_disable();
359 }
360}
361
362static void nmi_ipi_lock(void)
363{
364 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
365 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
366}
367
368static void nmi_ipi_unlock(void)
369{
370 smp_mb();
371 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
372 atomic_set(&__nmi_ipi_lock, 0);
373}
374
375static void nmi_ipi_unlock_end(unsigned long *flags)
376{
377 nmi_ipi_unlock();
378 raw_local_irq_restore(*flags);
379}
380
381/*
382 * Platform NMI handler calls this to ack
383 */
384int smp_handle_nmi_ipi(struct pt_regs *regs)
385{
386 void (*fn)(struct pt_regs *);
387 unsigned long flags;
388 int me = raw_smp_processor_id();
389 int ret = 0;
390
391 /*
392 * Unexpected NMIs are possible here because the interrupt may not
393 * be able to distinguish NMI IPIs from other types of NMIs, or
394 * because the caller may have timed out.
395 */
396 nmi_ipi_lock_start(&flags);
397 if (!nmi_ipi_busy_count)
398 goto out;
399 if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
400 goto out;
401
402 fn = nmi_ipi_function;
403 if (!fn)
404 goto out;
405
406 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
407 nmi_ipi_busy_count++;
408 nmi_ipi_unlock();
409
410 ret = 1;
411
412 fn(regs);
413
414 nmi_ipi_lock();
415 nmi_ipi_busy_count--;
416out:
417 nmi_ipi_unlock_end(&flags);
418
419 return ret;
420}
421
422static void do_smp_send_nmi_ipi(int cpu)
423{
424 if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
425 return;
426
427 if (cpu >= 0) {
428 do_message_pass(cpu, PPC_MSG_NMI_IPI);
429 } else {
430 int c;
431
432 for_each_online_cpu(c) {
433 if (c == raw_smp_processor_id())
434 continue;
435 do_message_pass(c, PPC_MSG_NMI_IPI);
436 }
437 }
438}
439
440void smp_flush_nmi_ipi(u64 delay_us)
441{
442 unsigned long flags;
443
444 nmi_ipi_lock_start(&flags);
445 while (nmi_ipi_busy_count) {
446 nmi_ipi_unlock_end(&flags);
447 udelay(1);
448 if (delay_us) {
449 delay_us--;
450 if (!delay_us)
451 return;
452 }
453 nmi_ipi_lock_start(&flags);
454 }
455 nmi_ipi_unlock_end(&flags);
456}
457
458/*
459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
460 * - fn is the target callback function.
461 * - delay_us > 0 is the delay before giving up waiting for targets to
462 * enter the handler, == 0 specifies indefinite delay.
463 */
464int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
465{
466 unsigned long flags;
467 int me = raw_smp_processor_id();
468 int ret = 1;
469
470 BUG_ON(cpu == me);
471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
472
473 if (unlikely(!smp_ops))
474 return 0;
475
476 /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
477 nmi_ipi_lock_start(&flags);
478 while (nmi_ipi_busy_count) {
479 nmi_ipi_unlock_end(&flags);
480 spin_until_cond(nmi_ipi_busy_count == 0);
481 nmi_ipi_lock_start(&flags);
482 }
483
484 nmi_ipi_function = fn;
485
486 if (cpu < 0) {
487 /* ALL_OTHERS */
488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
490 } else {
491 /* cpumask starts clear */
492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
493 }
494 nmi_ipi_busy_count++;
495 nmi_ipi_unlock();
496
497 do_smp_send_nmi_ipi(cpu);
498
499 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
500 udelay(1);
501 if (delay_us) {
502 delay_us--;
503 if (!delay_us)
504 break;
505 }
506 }
507
508 nmi_ipi_lock();
509 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
510 /* Could not gather all CPUs */
511 ret = 0;
512 cpumask_clear(&nmi_ipi_pending_mask);
513 }
514 nmi_ipi_busy_count--;
515 nmi_ipi_unlock_end(&flags);
516
517 return ret;
518}
519#endif /* CONFIG_NMI_IPI */
520
521#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
522void tick_broadcast(const struct cpumask *mask)
523{
524 unsigned int cpu;
525
526 for_each_cpu(cpu, mask)
527 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
528}
529#endif
530
531#ifdef CONFIG_DEBUGGER
532void debugger_ipi_callback(struct pt_regs *regs)
533{
534 debugger_ipi(regs);
535}
536
537void smp_send_debugger_break(void)
538{
539 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
540}
541#endif
542
543#ifdef CONFIG_KEXEC_CORE
544void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
545{
546 int cpu;
547
548 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
549 if (kdump_in_progress() && crash_wake_offline) {
550 for_each_present_cpu(cpu) {
551 if (cpu_online(cpu))
552 continue;
553 /*
554 * crash_ipi_callback will wait for
555 * all cpus, including offline CPUs.
556 * We don't care about nmi_ipi_function.
557 * Offline cpus will jump straight into
558 * crash_ipi_callback, we can skip the
559 * entire NMI dance and waiting for
560 * cpus to clear pending mask, etc.
561 */
562 do_smp_send_nmi_ipi(cpu);
563 }
564 }
565}
566#endif
567
568#ifdef CONFIG_NMI_IPI
569static void nmi_stop_this_cpu(struct pt_regs *regs)
570{
571 /*
572 * This is a special case because it never returns, so the NMI IPI
573 * handling would never mark it as done, which makes any later
574 * smp_send_nmi_ipi() call spin forever. Mark it done now.
575 *
576 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
577 */
578 nmi_ipi_lock();
579 nmi_ipi_busy_count--;
580 nmi_ipi_unlock();
581
582 /* Remove this CPU */
583 set_cpu_online(smp_processor_id(), false);
584
585 spin_begin();
586 while (1)
587 spin_cpu_relax();
588}
589
590void smp_send_stop(void)
591{
592 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
593}
594
595#else /* CONFIG_NMI_IPI */
596
597static void stop_this_cpu(void *dummy)
598{
599 /* Remove this CPU */
600 set_cpu_online(smp_processor_id(), false);
601
602 hard_irq_disable();
603 spin_begin();
604 while (1)
605 spin_cpu_relax();
606}
607
608void smp_send_stop(void)
609{
610 static bool stopped = false;
611
612 /*
613 * Prevent waiting on csd lock from a previous smp_send_stop.
614 * This is racy, but in general callers try to do the right
615 * thing and only fire off one smp_send_stop (e.g., see
616 * kernel/panic.c)
617 */
618 if (stopped)
619 return;
620
621 stopped = true;
622
623 smp_call_function(stop_this_cpu, NULL, 0);
624}
625#endif /* CONFIG_NMI_IPI */
626
627struct thread_info *current_set[NR_CPUS];
628
629static void smp_store_cpu_info(int id)
630{
631 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
632#ifdef CONFIG_PPC_FSL_BOOK3E
633 per_cpu(next_tlbcam_idx, id)
634 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
635#endif
636}
637
638/*
639 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
640 * rather than just passing around the cpumask we pass around a function that
641 * returns the that cpumask for the given CPU.
642 */
643static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
644{
645 cpumask_set_cpu(i, get_cpumask(j));
646 cpumask_set_cpu(j, get_cpumask(i));
647}
648
649#ifdef CONFIG_HOTPLUG_CPU
650static void set_cpus_unrelated(int i, int j,
651 struct cpumask *(*get_cpumask)(int))
652{
653 cpumask_clear_cpu(i, get_cpumask(j));
654 cpumask_clear_cpu(j, get_cpumask(i));
655}
656#endif
657
658void __init smp_prepare_cpus(unsigned int max_cpus)
659{
660 unsigned int cpu;
661
662 DBG("smp_prepare_cpus\n");
663
664 /*
665 * setup_cpu may need to be called on the boot cpu. We havent
666 * spun any cpus up but lets be paranoid.
667 */
668 BUG_ON(boot_cpuid != smp_processor_id());
669
670 /* Fixup boot cpu */
671 smp_store_cpu_info(boot_cpuid);
672 cpu_callin_map[boot_cpuid] = 1;
673
674 for_each_possible_cpu(cpu) {
675 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
676 GFP_KERNEL, cpu_to_node(cpu));
677 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
678 GFP_KERNEL, cpu_to_node(cpu));
679 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
680 GFP_KERNEL, cpu_to_node(cpu));
681 /*
682 * numa_node_id() works after this.
683 */
684 if (cpu_present(cpu)) {
685 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
686 set_cpu_numa_mem(cpu,
687 local_memory_node(numa_cpu_lookup_table[cpu]));
688 }
689 }
690
691 /* Init the cpumasks so the boot CPU is related to itself */
692 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
693 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
694 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
695
696 if (smp_ops && smp_ops->probe)
697 smp_ops->probe();
698}
699
700void smp_prepare_boot_cpu(void)
701{
702 BUG_ON(smp_processor_id() != boot_cpuid);
703#ifdef CONFIG_PPC64
704 paca_ptrs[boot_cpuid]->__current = current;
705#endif
706 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
707 current_set[boot_cpuid] = task_thread_info(current);
708}
709
710#ifdef CONFIG_HOTPLUG_CPU
711
712int generic_cpu_disable(void)
713{
714 unsigned int cpu = smp_processor_id();
715
716 if (cpu == boot_cpuid)
717 return -EBUSY;
718
719 set_cpu_online(cpu, false);
720#ifdef CONFIG_PPC64
721 vdso_data->processorCount--;
722#endif
723 /* Update affinity of all IRQs previously aimed at this CPU */
724 irq_migrate_all_off_this_cpu();
725
726 /*
727 * Depending on the details of the interrupt controller, it's possible
728 * that one of the interrupts we just migrated away from this CPU is
729 * actually already pending on this CPU. If we leave it in that state
730 * the interrupt will never be EOI'ed, and will never fire again. So
731 * temporarily enable interrupts here, to allow any pending interrupt to
732 * be received (and EOI'ed), before we take this CPU offline.
733 */
734 local_irq_enable();
735 mdelay(1);
736 local_irq_disable();
737
738 return 0;
739}
740
741void generic_cpu_die(unsigned int cpu)
742{
743 int i;
744
745 for (i = 0; i < 100; i++) {
746 smp_rmb();
747 if (is_cpu_dead(cpu))
748 return;
749 msleep(100);
750 }
751 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
752}
753
754void generic_set_cpu_dead(unsigned int cpu)
755{
756 per_cpu(cpu_state, cpu) = CPU_DEAD;
757}
758
759/*
760 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
761 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
762 * which makes the delay in generic_cpu_die() not happen.
763 */
764void generic_set_cpu_up(unsigned int cpu)
765{
766 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
767}
768
769int generic_check_cpu_restart(unsigned int cpu)
770{
771 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
772}
773
774int is_cpu_dead(unsigned int cpu)
775{
776 return per_cpu(cpu_state, cpu) == CPU_DEAD;
777}
778
779static bool secondaries_inhibited(void)
780{
781 return kvm_hv_mode_active();
782}
783
784#else /* HOTPLUG_CPU */
785
786#define secondaries_inhibited() 0
787
788#endif
789
790static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
791{
792 struct thread_info *ti = task_thread_info(idle);
793
794#ifdef CONFIG_PPC64
795 paca_ptrs[cpu]->__current = idle;
796 paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
797#endif
798 ti->cpu = cpu;
799 secondary_ti = current_set[cpu] = ti;
800}
801
802int __cpu_up(unsigned int cpu, struct task_struct *tidle)
803{
804 int rc, c;
805
806 /*
807 * Don't allow secondary threads to come online if inhibited
808 */
809 if (threads_per_core > 1 && secondaries_inhibited() &&
810 cpu_thread_in_subcore(cpu))
811 return -EBUSY;
812
813 if (smp_ops == NULL ||
814 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
815 return -EINVAL;
816
817 cpu_idle_thread_init(cpu, tidle);
818
819 /*
820 * The platform might need to allocate resources prior to bringing
821 * up the CPU
822 */
823 if (smp_ops->prepare_cpu) {
824 rc = smp_ops->prepare_cpu(cpu);
825 if (rc)
826 return rc;
827 }
828
829 /* Make sure callin-map entry is 0 (can be leftover a CPU
830 * hotplug
831 */
832 cpu_callin_map[cpu] = 0;
833
834 /* The information for processor bringup must
835 * be written out to main store before we release
836 * the processor.
837 */
838 smp_mb();
839
840 /* wake up cpus */
841 DBG("smp: kicking cpu %d\n", cpu);
842 rc = smp_ops->kick_cpu(cpu);
843 if (rc) {
844 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
845 return rc;
846 }
847
848 /*
849 * wait to see if the cpu made a callin (is actually up).
850 * use this value that I found through experimentation.
851 * -- Cort
852 */
853 if (system_state < SYSTEM_RUNNING)
854 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
855 udelay(100);
856#ifdef CONFIG_HOTPLUG_CPU
857 else
858 /*
859 * CPUs can take much longer to come up in the
860 * hotplug case. Wait five seconds.
861 */
862 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
863 msleep(1);
864#endif
865
866 if (!cpu_callin_map[cpu]) {
867 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
868 return -ENOENT;
869 }
870
871 DBG("Processor %u found.\n", cpu);
872
873 if (smp_ops->give_timebase)
874 smp_ops->give_timebase();
875
876 /* Wait until cpu puts itself in the online & active maps */
877 spin_until_cond(cpu_online(cpu));
878
879 return 0;
880}
881
882/* Return the value of the reg property corresponding to the given
883 * logical cpu.
884 */
885int cpu_to_core_id(int cpu)
886{
887 struct device_node *np;
888 const __be32 *reg;
889 int id = -1;
890
891 np = of_get_cpu_node(cpu, NULL);
892 if (!np)
893 goto out;
894
895 reg = of_get_property(np, "reg", NULL);
896 if (!reg)
897 goto out;
898
899 id = be32_to_cpup(reg);
900out:
901 of_node_put(np);
902 return id;
903}
904EXPORT_SYMBOL_GPL(cpu_to_core_id);
905
906/* Helper routines for cpu to core mapping */
907int cpu_core_index_of_thread(int cpu)
908{
909 return cpu >> threads_shift;
910}
911EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
912
913int cpu_first_thread_of_core(int core)
914{
915 return core << threads_shift;
916}
917EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
918
919/* Must be called when no change can occur to cpu_present_mask,
920 * i.e. during cpu online or offline.
921 */
922static struct device_node *cpu_to_l2cache(int cpu)
923{
924 struct device_node *np;
925 struct device_node *cache;
926
927 if (!cpu_present(cpu))
928 return NULL;
929
930 np = of_get_cpu_node(cpu, NULL);
931 if (np == NULL)
932 return NULL;
933
934 cache = of_find_next_cache_node(np);
935
936 of_node_put(np);
937
938 return cache;
939}
940
941static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
942{
943 struct device_node *l2_cache, *np;
944 int i;
945
946 l2_cache = cpu_to_l2cache(cpu);
947 if (!l2_cache)
948 return false;
949
950 for_each_cpu(i, cpu_online_mask) {
951 /*
952 * when updating the marks the current CPU has not been marked
953 * online, but we need to update the cache masks
954 */
955 np = cpu_to_l2cache(i);
956 if (!np)
957 continue;
958
959 if (np == l2_cache)
960 set_cpus_related(cpu, i, mask_fn);
961
962 of_node_put(np);
963 }
964 of_node_put(l2_cache);
965
966 return true;
967}
968
969#ifdef CONFIG_HOTPLUG_CPU
970static void remove_cpu_from_masks(int cpu)
971{
972 int i;
973
974 /* NB: cpu_core_mask is a superset of the others */
975 for_each_cpu(i, cpu_core_mask(cpu)) {
976 set_cpus_unrelated(cpu, i, cpu_core_mask);
977 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
978 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
979 }
980}
981#endif
982
983static void add_cpu_to_masks(int cpu)
984{
985 int first_thread = cpu_first_thread_sibling(cpu);
986 int chipid = cpu_to_chip_id(cpu);
987 int i;
988
989 /*
990 * This CPU will not be in the online mask yet so we need to manually
991 * add it to it's own thread sibling mask.
992 */
993 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
994
995 for (i = first_thread; i < first_thread + threads_per_core; i++)
996 if (cpu_online(i))
997 set_cpus_related(i, cpu, cpu_sibling_mask);
998
999 /*
1000 * Copy the thread sibling mask into the cache sibling mask
1001 * and mark any CPUs that share an L2 with this CPU.
1002 */
1003 for_each_cpu(i, cpu_sibling_mask(cpu))
1004 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1005 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1006
1007 /*
1008 * Copy the cache sibling mask into core sibling mask and mark
1009 * any CPUs on the same chip as this CPU.
1010 */
1011 for_each_cpu(i, cpu_l2_cache_mask(cpu))
1012 set_cpus_related(cpu, i, cpu_core_mask);
1013
1014 if (chipid == -1)
1015 return;
1016
1017 for_each_cpu(i, cpu_online_mask)
1018 if (cpu_to_chip_id(i) == chipid)
1019 set_cpus_related(cpu, i, cpu_core_mask);
1020}
1021
1022static bool shared_caches;
1023
1024/* Activate a secondary processor. */
1025void start_secondary(void *unused)
1026{
1027 unsigned int cpu = smp_processor_id();
1028
1029 mmgrab(&init_mm);
1030 current->active_mm = &init_mm;
1031
1032 smp_store_cpu_info(cpu);
1033 set_dec(tb_ticks_per_jiffy);
1034 preempt_disable();
1035 cpu_callin_map[cpu] = 1;
1036
1037 if (smp_ops->setup_cpu)
1038 smp_ops->setup_cpu(cpu);
1039 if (smp_ops->take_timebase)
1040 smp_ops->take_timebase();
1041
1042 secondary_cpu_time_init();
1043
1044#ifdef CONFIG_PPC64
1045 if (system_state == SYSTEM_RUNNING)
1046 vdso_data->processorCount++;
1047
1048 vdso_getcpu_init();
1049#endif
1050 /* Update topology CPU masks */
1051 add_cpu_to_masks(cpu);
1052
1053 /*
1054 * Check for any shared caches. Note that this must be done on a
1055 * per-core basis because one core in the pair might be disabled.
1056 */
1057 if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1058 shared_caches = true;
1059
1060 set_numa_node(numa_cpu_lookup_table[cpu]);
1061 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1062
1063 smp_wmb();
1064 notify_cpu_starting(cpu);
1065 set_cpu_online(cpu, true);
1066
1067 local_irq_enable();
1068
1069 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1070
1071 BUG();
1072}
1073
1074int setup_profiling_timer(unsigned int multiplier)
1075{
1076 return 0;
1077}
1078
1079#ifdef CONFIG_SCHED_SMT
1080/* cpumask of CPUs with asymetric SMT dependancy */
1081static int powerpc_smt_flags(void)
1082{
1083 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1084
1085 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1086 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1087 flags |= SD_ASYM_PACKING;
1088 }
1089 return flags;
1090}
1091#endif
1092
1093static struct sched_domain_topology_level powerpc_topology[] = {
1094#ifdef CONFIG_SCHED_SMT
1095 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1096#endif
1097 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1098 { NULL, },
1099};
1100
1101/*
1102 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1103 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1104 * since the migrated task remains cache hot. We want to take advantage of this
1105 * at the scheduler level so an extra topology level is required.
1106 */
1107static int powerpc_shared_cache_flags(void)
1108{
1109 return SD_SHARE_PKG_RESOURCES;
1110}
1111
1112/*
1113 * We can't just pass cpu_l2_cache_mask() directly because
1114 * returns a non-const pointer and the compiler barfs on that.
1115 */
1116static const struct cpumask *shared_cache_mask(int cpu)
1117{
1118 return cpu_l2_cache_mask(cpu);
1119}
1120
1121static struct sched_domain_topology_level power9_topology[] = {
1122#ifdef CONFIG_SCHED_SMT
1123 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1124#endif
1125 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1126 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1127 { NULL, },
1128};
1129
1130void __init smp_cpus_done(unsigned int max_cpus)
1131{
1132 /*
1133 * We are running pinned to the boot CPU, see rest_init().
1134 */
1135 if (smp_ops && smp_ops->setup_cpu)
1136 smp_ops->setup_cpu(boot_cpuid);
1137
1138 if (smp_ops && smp_ops->bringup_done)
1139 smp_ops->bringup_done();
1140
1141 dump_numa_cpu_topology();
1142
1143 /*
1144 * If any CPU detects that it's sharing a cache with another CPU then
1145 * use the deeper topology that is aware of this sharing.
1146 */
1147 if (shared_caches) {
1148 pr_info("Using shared cache scheduler topology\n");
1149 set_sched_topology(power9_topology);
1150 } else {
1151 pr_info("Using standard scheduler topology\n");
1152 set_sched_topology(powerpc_topology);
1153 }
1154}
1155
1156#ifdef CONFIG_HOTPLUG_CPU
1157int __cpu_disable(void)
1158{
1159 int cpu = smp_processor_id();
1160 int err;
1161
1162 if (!smp_ops->cpu_disable)
1163 return -ENOSYS;
1164
1165 err = smp_ops->cpu_disable();
1166 if (err)
1167 return err;
1168
1169 /* Update sibling maps */
1170 remove_cpu_from_masks(cpu);
1171
1172 return 0;
1173}
1174
1175void __cpu_die(unsigned int cpu)
1176{
1177 if (smp_ops->cpu_die)
1178 smp_ops->cpu_die(cpu);
1179}
1180
1181void cpu_die(void)
1182{
1183 if (ppc_md.cpu_die)
1184 ppc_md.cpu_die();
1185
1186 /* If we return, we re-enter start_secondary */
1187 start_secondary_resume();
1188}
1189
1190#endif
1/*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <linux/kernel.h>
21#include <linux/export.h>
22#include <linux/sched.h>
23#include <linux/smp.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/init.h>
27#include <linux/spinlock.h>
28#include <linux/cache.h>
29#include <linux/err.h>
30#include <linux/device.h>
31#include <linux/cpu.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/profile.h>
35
36#include <asm/ptrace.h>
37#include <linux/atomic.h>
38#include <asm/irq.h>
39#include <asm/hw_irq.h>
40#include <asm/kvm_ppc.h>
41#include <asm/page.h>
42#include <asm/pgtable.h>
43#include <asm/prom.h>
44#include <asm/smp.h>
45#include <asm/time.h>
46#include <asm/machdep.h>
47#include <asm/cputhreads.h>
48#include <asm/cputable.h>
49#include <asm/mpic.h>
50#include <asm/vdso_datapage.h>
51#ifdef CONFIG_PPC64
52#include <asm/paca.h>
53#endif
54#include <asm/vdso.h>
55#include <asm/debug.h>
56#include <asm/kexec.h>
57#include <asm/asm-prototypes.h>
58#include <asm/cpu_has_feature.h>
59
60#ifdef DEBUG
61#include <asm/udbg.h>
62#define DBG(fmt...) udbg_printf(fmt)
63#else
64#define DBG(fmt...)
65#endif
66
67#ifdef CONFIG_HOTPLUG_CPU
68/* State of each CPU during hotplug phases */
69static DEFINE_PER_CPU(int, cpu_state) = { 0 };
70#endif
71
72struct thread_info *secondary_ti;
73
74DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
75DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
76
77EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
78EXPORT_PER_CPU_SYMBOL(cpu_core_map);
79
80/* SMP operations for this machine */
81struct smp_ops_t *smp_ops;
82
83/* Can't be static due to PowerMac hackery */
84volatile unsigned int cpu_callin_map[NR_CPUS];
85
86int smt_enabled_at_boot = 1;
87
88static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
89
90/*
91 * Returns 1 if the specified cpu should be brought up during boot.
92 * Used to inhibit booting threads if they've been disabled or
93 * limited on the command line
94 */
95int smp_generic_cpu_bootable(unsigned int nr)
96{
97 /* Special case - we inhibit secondary thread startup
98 * during boot if the user requests it.
99 */
100 if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
101 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
102 return 0;
103 if (smt_enabled_at_boot
104 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
105 return 0;
106 }
107
108 return 1;
109}
110
111
112#ifdef CONFIG_PPC64
113int smp_generic_kick_cpu(int nr)
114{
115 BUG_ON(nr < 0 || nr >= NR_CPUS);
116
117 /*
118 * The processor is currently spinning, waiting for the
119 * cpu_start field to become non-zero After we set cpu_start,
120 * the processor will continue on to secondary_start
121 */
122 if (!paca[nr].cpu_start) {
123 paca[nr].cpu_start = 1;
124 smp_mb();
125 return 0;
126 }
127
128#ifdef CONFIG_HOTPLUG_CPU
129 /*
130 * Ok it's not there, so it might be soft-unplugged, let's
131 * try to bring it back
132 */
133 generic_set_cpu_up(nr);
134 smp_wmb();
135 smp_send_reschedule(nr);
136#endif /* CONFIG_HOTPLUG_CPU */
137
138 return 0;
139}
140#endif /* CONFIG_PPC64 */
141
142static irqreturn_t call_function_action(int irq, void *data)
143{
144 generic_smp_call_function_interrupt();
145 return IRQ_HANDLED;
146}
147
148static irqreturn_t reschedule_action(int irq, void *data)
149{
150 scheduler_ipi();
151 return IRQ_HANDLED;
152}
153
154static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
155{
156 tick_broadcast_ipi_handler();
157 return IRQ_HANDLED;
158}
159
160static irqreturn_t debug_ipi_action(int irq, void *data)
161{
162 if (crash_ipi_function_ptr) {
163 crash_ipi_function_ptr(get_irq_regs());
164 return IRQ_HANDLED;
165 }
166
167#ifdef CONFIG_DEBUGGER
168 debugger_ipi(get_irq_regs());
169#endif /* CONFIG_DEBUGGER */
170
171 return IRQ_HANDLED;
172}
173
174static irq_handler_t smp_ipi_action[] = {
175 [PPC_MSG_CALL_FUNCTION] = call_function_action,
176 [PPC_MSG_RESCHEDULE] = reschedule_action,
177 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
178 [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
179};
180
181const char *smp_ipi_name[] = {
182 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
183 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
184 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
185 [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
186};
187
188/* optional function to request ipi, for controllers with >= 4 ipis */
189int smp_request_message_ipi(int virq, int msg)
190{
191 int err;
192
193 if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
194 return -EINVAL;
195 }
196#if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC_CORE)
197 if (msg == PPC_MSG_DEBUGGER_BREAK) {
198 return 1;
199 }
200#endif
201 err = request_irq(virq, smp_ipi_action[msg],
202 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
203 smp_ipi_name[msg], NULL);
204 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
205 virq, smp_ipi_name[msg], err);
206
207 return err;
208}
209
210#ifdef CONFIG_PPC_SMP_MUXED_IPI
211struct cpu_messages {
212 long messages; /* current messages */
213 unsigned long data; /* data for cause ipi */
214};
215static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
216
217void smp_muxed_ipi_set_data(int cpu, unsigned long data)
218{
219 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
220
221 info->data = data;
222}
223
224void smp_muxed_ipi_set_message(int cpu, int msg)
225{
226 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
227 char *message = (char *)&info->messages;
228
229 /*
230 * Order previous accesses before accesses in the IPI handler.
231 */
232 smp_mb();
233 message[msg] = 1;
234}
235
236void smp_muxed_ipi_message_pass(int cpu, int msg)
237{
238 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
239
240 smp_muxed_ipi_set_message(cpu, msg);
241 /*
242 * cause_ipi functions are required to include a full barrier
243 * before doing whatever causes the IPI.
244 */
245 smp_ops->cause_ipi(cpu, info->data);
246}
247
248#ifdef __BIG_ENDIAN__
249#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
250#else
251#define IPI_MESSAGE(A) (1uL << (8 * (A)))
252#endif
253
254irqreturn_t smp_ipi_demux(void)
255{
256 struct cpu_messages *info = this_cpu_ptr(&ipi_message);
257 unsigned long all;
258
259 mb(); /* order any irq clear */
260
261 do {
262 all = xchg(&info->messages, 0);
263#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
264 /*
265 * Must check for PPC_MSG_RM_HOST_ACTION messages
266 * before PPC_MSG_CALL_FUNCTION messages because when
267 * a VM is destroyed, we call kick_all_cpus_sync()
268 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
269 * messages have completed before we free any VCPUs.
270 */
271 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
272 kvmppc_xics_ipi_action();
273#endif
274 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
275 generic_smp_call_function_interrupt();
276 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
277 scheduler_ipi();
278 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
279 tick_broadcast_ipi_handler();
280 if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK))
281 debug_ipi_action(0, NULL);
282 } while (info->messages);
283
284 return IRQ_HANDLED;
285}
286#endif /* CONFIG_PPC_SMP_MUXED_IPI */
287
288static inline void do_message_pass(int cpu, int msg)
289{
290 if (smp_ops->message_pass)
291 smp_ops->message_pass(cpu, msg);
292#ifdef CONFIG_PPC_SMP_MUXED_IPI
293 else
294 smp_muxed_ipi_message_pass(cpu, msg);
295#endif
296}
297
298void smp_send_reschedule(int cpu)
299{
300 if (likely(smp_ops))
301 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
302}
303EXPORT_SYMBOL_GPL(smp_send_reschedule);
304
305void arch_send_call_function_single_ipi(int cpu)
306{
307 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
308}
309
310void arch_send_call_function_ipi_mask(const struct cpumask *mask)
311{
312 unsigned int cpu;
313
314 for_each_cpu(cpu, mask)
315 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
316}
317
318#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
319void tick_broadcast(const struct cpumask *mask)
320{
321 unsigned int cpu;
322
323 for_each_cpu(cpu, mask)
324 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
325}
326#endif
327
328#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
329void smp_send_debugger_break(void)
330{
331 int cpu;
332 int me = raw_smp_processor_id();
333
334 if (unlikely(!smp_ops))
335 return;
336
337 for_each_online_cpu(cpu)
338 if (cpu != me)
339 do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
340}
341#endif
342
343#ifdef CONFIG_KEXEC_CORE
344void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
345{
346 crash_ipi_function_ptr = crash_ipi_callback;
347 if (crash_ipi_callback) {
348 mb();
349 smp_send_debugger_break();
350 }
351}
352#endif
353
354static void stop_this_cpu(void *dummy)
355{
356 /* Remove this CPU */
357 set_cpu_online(smp_processor_id(), false);
358
359 local_irq_disable();
360 while (1)
361 ;
362}
363
364void smp_send_stop(void)
365{
366 smp_call_function(stop_this_cpu, NULL, 0);
367}
368
369struct thread_info *current_set[NR_CPUS];
370
371static void smp_store_cpu_info(int id)
372{
373 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
374#ifdef CONFIG_PPC_FSL_BOOK3E
375 per_cpu(next_tlbcam_idx, id)
376 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
377#endif
378}
379
380void __init smp_prepare_cpus(unsigned int max_cpus)
381{
382 unsigned int cpu;
383
384 DBG("smp_prepare_cpus\n");
385
386 /*
387 * setup_cpu may need to be called on the boot cpu. We havent
388 * spun any cpus up but lets be paranoid.
389 */
390 BUG_ON(boot_cpuid != smp_processor_id());
391
392 /* Fixup boot cpu */
393 smp_store_cpu_info(boot_cpuid);
394 cpu_callin_map[boot_cpuid] = 1;
395
396 for_each_possible_cpu(cpu) {
397 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
398 GFP_KERNEL, cpu_to_node(cpu));
399 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
400 GFP_KERNEL, cpu_to_node(cpu));
401 /*
402 * numa_node_id() works after this.
403 */
404 if (cpu_present(cpu)) {
405 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
406 set_cpu_numa_mem(cpu,
407 local_memory_node(numa_cpu_lookup_table[cpu]));
408 }
409 }
410
411 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
412 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
413
414 if (smp_ops && smp_ops->probe)
415 smp_ops->probe();
416}
417
418void smp_prepare_boot_cpu(void)
419{
420 BUG_ON(smp_processor_id() != boot_cpuid);
421#ifdef CONFIG_PPC64
422 paca[boot_cpuid].__current = current;
423#endif
424 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
425 current_set[boot_cpuid] = task_thread_info(current);
426}
427
428#ifdef CONFIG_HOTPLUG_CPU
429
430int generic_cpu_disable(void)
431{
432 unsigned int cpu = smp_processor_id();
433
434 if (cpu == boot_cpuid)
435 return -EBUSY;
436
437 set_cpu_online(cpu, false);
438#ifdef CONFIG_PPC64
439 vdso_data->processorCount--;
440#endif
441 migrate_irqs();
442 return 0;
443}
444
445void generic_cpu_die(unsigned int cpu)
446{
447 int i;
448
449 for (i = 0; i < 100; i++) {
450 smp_rmb();
451 if (is_cpu_dead(cpu))
452 return;
453 msleep(100);
454 }
455 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
456}
457
458void generic_set_cpu_dead(unsigned int cpu)
459{
460 per_cpu(cpu_state, cpu) = CPU_DEAD;
461}
462
463/*
464 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
465 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
466 * which makes the delay in generic_cpu_die() not happen.
467 */
468void generic_set_cpu_up(unsigned int cpu)
469{
470 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
471}
472
473int generic_check_cpu_restart(unsigned int cpu)
474{
475 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
476}
477
478int is_cpu_dead(unsigned int cpu)
479{
480 return per_cpu(cpu_state, cpu) == CPU_DEAD;
481}
482
483static bool secondaries_inhibited(void)
484{
485 return kvm_hv_mode_active();
486}
487
488#else /* HOTPLUG_CPU */
489
490#define secondaries_inhibited() 0
491
492#endif
493
494static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
495{
496 struct thread_info *ti = task_thread_info(idle);
497
498#ifdef CONFIG_PPC64
499 paca[cpu].__current = idle;
500 paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
501#endif
502 ti->cpu = cpu;
503 secondary_ti = current_set[cpu] = ti;
504}
505
506int __cpu_up(unsigned int cpu, struct task_struct *tidle)
507{
508 int rc, c;
509
510 /*
511 * Don't allow secondary threads to come online if inhibited
512 */
513 if (threads_per_core > 1 && secondaries_inhibited() &&
514 cpu_thread_in_subcore(cpu))
515 return -EBUSY;
516
517 if (smp_ops == NULL ||
518 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
519 return -EINVAL;
520
521 cpu_idle_thread_init(cpu, tidle);
522
523 /* Make sure callin-map entry is 0 (can be leftover a CPU
524 * hotplug
525 */
526 cpu_callin_map[cpu] = 0;
527
528 /* The information for processor bringup must
529 * be written out to main store before we release
530 * the processor.
531 */
532 smp_mb();
533
534 /* wake up cpus */
535 DBG("smp: kicking cpu %d\n", cpu);
536 rc = smp_ops->kick_cpu(cpu);
537 if (rc) {
538 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
539 return rc;
540 }
541
542 /*
543 * wait to see if the cpu made a callin (is actually up).
544 * use this value that I found through experimentation.
545 * -- Cort
546 */
547 if (system_state < SYSTEM_RUNNING)
548 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
549 udelay(100);
550#ifdef CONFIG_HOTPLUG_CPU
551 else
552 /*
553 * CPUs can take much longer to come up in the
554 * hotplug case. Wait five seconds.
555 */
556 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
557 msleep(1);
558#endif
559
560 if (!cpu_callin_map[cpu]) {
561 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
562 return -ENOENT;
563 }
564
565 DBG("Processor %u found.\n", cpu);
566
567 if (smp_ops->give_timebase)
568 smp_ops->give_timebase();
569
570 /* Wait until cpu puts itself in the online & active maps */
571 while (!cpu_online(cpu))
572 cpu_relax();
573
574 return 0;
575}
576
577/* Return the value of the reg property corresponding to the given
578 * logical cpu.
579 */
580int cpu_to_core_id(int cpu)
581{
582 struct device_node *np;
583 const __be32 *reg;
584 int id = -1;
585
586 np = of_get_cpu_node(cpu, NULL);
587 if (!np)
588 goto out;
589
590 reg = of_get_property(np, "reg", NULL);
591 if (!reg)
592 goto out;
593
594 id = be32_to_cpup(reg);
595out:
596 of_node_put(np);
597 return id;
598}
599EXPORT_SYMBOL_GPL(cpu_to_core_id);
600
601/* Helper routines for cpu to core mapping */
602int cpu_core_index_of_thread(int cpu)
603{
604 return cpu >> threads_shift;
605}
606EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
607
608int cpu_first_thread_of_core(int core)
609{
610 return core << threads_shift;
611}
612EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
613
614static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
615{
616 const struct cpumask *mask;
617 struct device_node *np;
618 int i, plen;
619 const __be32 *prop;
620
621 mask = add ? cpu_online_mask : cpu_present_mask;
622 for_each_cpu(i, mask) {
623 np = of_get_cpu_node(i, NULL);
624 if (!np)
625 continue;
626 prop = of_get_property(np, "ibm,chip-id", &plen);
627 if (prop && plen == sizeof(int) &&
628 of_read_number(prop, 1) == chipid) {
629 if (add) {
630 cpumask_set_cpu(cpu, cpu_core_mask(i));
631 cpumask_set_cpu(i, cpu_core_mask(cpu));
632 } else {
633 cpumask_clear_cpu(cpu, cpu_core_mask(i));
634 cpumask_clear_cpu(i, cpu_core_mask(cpu));
635 }
636 }
637 of_node_put(np);
638 }
639}
640
641/* Must be called when no change can occur to cpu_present_mask,
642 * i.e. during cpu online or offline.
643 */
644static struct device_node *cpu_to_l2cache(int cpu)
645{
646 struct device_node *np;
647 struct device_node *cache;
648
649 if (!cpu_present(cpu))
650 return NULL;
651
652 np = of_get_cpu_node(cpu, NULL);
653 if (np == NULL)
654 return NULL;
655
656 cache = of_find_next_cache_node(np);
657
658 of_node_put(np);
659
660 return cache;
661}
662
663static void traverse_core_siblings(int cpu, bool add)
664{
665 struct device_node *l2_cache, *np;
666 const struct cpumask *mask;
667 int i, chip, plen;
668 const __be32 *prop;
669
670 /* First see if we have ibm,chip-id properties in cpu nodes */
671 np = of_get_cpu_node(cpu, NULL);
672 if (np) {
673 chip = -1;
674 prop = of_get_property(np, "ibm,chip-id", &plen);
675 if (prop && plen == sizeof(int))
676 chip = of_read_number(prop, 1);
677 of_node_put(np);
678 if (chip >= 0) {
679 traverse_siblings_chip_id(cpu, add, chip);
680 return;
681 }
682 }
683
684 l2_cache = cpu_to_l2cache(cpu);
685 mask = add ? cpu_online_mask : cpu_present_mask;
686 for_each_cpu(i, mask) {
687 np = cpu_to_l2cache(i);
688 if (!np)
689 continue;
690 if (np == l2_cache) {
691 if (add) {
692 cpumask_set_cpu(cpu, cpu_core_mask(i));
693 cpumask_set_cpu(i, cpu_core_mask(cpu));
694 } else {
695 cpumask_clear_cpu(cpu, cpu_core_mask(i));
696 cpumask_clear_cpu(i, cpu_core_mask(cpu));
697 }
698 }
699 of_node_put(np);
700 }
701 of_node_put(l2_cache);
702}
703
704/* Activate a secondary processor. */
705void start_secondary(void *unused)
706{
707 unsigned int cpu = smp_processor_id();
708 int i, base;
709
710 atomic_inc(&init_mm.mm_count);
711 current->active_mm = &init_mm;
712
713 smp_store_cpu_info(cpu);
714 set_dec(tb_ticks_per_jiffy);
715 preempt_disable();
716 cpu_callin_map[cpu] = 1;
717
718 if (smp_ops->setup_cpu)
719 smp_ops->setup_cpu(cpu);
720 if (smp_ops->take_timebase)
721 smp_ops->take_timebase();
722
723 secondary_cpu_time_init();
724
725#ifdef CONFIG_PPC64
726 if (system_state == SYSTEM_RUNNING)
727 vdso_data->processorCount++;
728
729 vdso_getcpu_init();
730#endif
731 /* Update sibling maps */
732 base = cpu_first_thread_sibling(cpu);
733 for (i = 0; i < threads_per_core; i++) {
734 if (cpu_is_offline(base + i) && (cpu != base + i))
735 continue;
736 cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
737 cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
738
739 /* cpu_core_map should be a superset of
740 * cpu_sibling_map even if we don't have cache
741 * information, so update the former here, too.
742 */
743 cpumask_set_cpu(cpu, cpu_core_mask(base + i));
744 cpumask_set_cpu(base + i, cpu_core_mask(cpu));
745 }
746 traverse_core_siblings(cpu, true);
747
748 set_numa_node(numa_cpu_lookup_table[cpu]);
749 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
750
751 smp_wmb();
752 notify_cpu_starting(cpu);
753 set_cpu_online(cpu, true);
754
755 local_irq_enable();
756
757 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
758
759 BUG();
760}
761
762int setup_profiling_timer(unsigned int multiplier)
763{
764 return 0;
765}
766
767#ifdef CONFIG_SCHED_SMT
768/* cpumask of CPUs with asymetric SMT dependancy */
769static int powerpc_smt_flags(void)
770{
771 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
772
773 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
774 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
775 flags |= SD_ASYM_PACKING;
776 }
777 return flags;
778}
779#endif
780
781static struct sched_domain_topology_level powerpc_topology[] = {
782#ifdef CONFIG_SCHED_SMT
783 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
784#endif
785 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
786 { NULL, },
787};
788
789void __init smp_cpus_done(unsigned int max_cpus)
790{
791 cpumask_var_t old_mask;
792
793 /* We want the setup_cpu() here to be called from CPU 0, but our
794 * init thread may have been "borrowed" by another CPU in the meantime
795 * se we pin us down to CPU 0 for a short while
796 */
797 alloc_cpumask_var(&old_mask, GFP_NOWAIT);
798 cpumask_copy(old_mask, tsk_cpus_allowed(current));
799 set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
800
801 if (smp_ops && smp_ops->setup_cpu)
802 smp_ops->setup_cpu(boot_cpuid);
803
804 set_cpus_allowed_ptr(current, old_mask);
805
806 free_cpumask_var(old_mask);
807
808 if (smp_ops && smp_ops->bringup_done)
809 smp_ops->bringup_done();
810
811 dump_numa_cpu_topology();
812
813 set_sched_topology(powerpc_topology);
814
815}
816
817#ifdef CONFIG_HOTPLUG_CPU
818int __cpu_disable(void)
819{
820 int cpu = smp_processor_id();
821 int base, i;
822 int err;
823
824 if (!smp_ops->cpu_disable)
825 return -ENOSYS;
826
827 err = smp_ops->cpu_disable();
828 if (err)
829 return err;
830
831 /* Update sibling maps */
832 base = cpu_first_thread_sibling(cpu);
833 for (i = 0; i < threads_per_core && base + i < nr_cpu_ids; i++) {
834 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
835 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
836 cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
837 cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
838 }
839 traverse_core_siblings(cpu, false);
840
841 return 0;
842}
843
844void __cpu_die(unsigned int cpu)
845{
846 if (smp_ops->cpu_die)
847 smp_ops->cpu_die(cpu);
848}
849
850void cpu_die(void)
851{
852 if (ppc_md.cpu_die)
853 ppc_md.cpu_die();
854
855 /* If we return, we re-enter start_secondary */
856 start_secondary_resume();
857}
858
859#endif