Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * SMP support for ppc.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   5 * deal of code from the sparc and intel versions.
   6 *
   7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   8 *
   9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  11 *
  12 *      This program is free software; you can redistribute it and/or
  13 *      modify it under the terms of the GNU General Public License
  14 *      as published by the Free Software Foundation; either version
  15 *      2 of the License, or (at your option) any later version.
  16 */
  17
  18#undef DEBUG
  19
  20#include <linux/kernel.h>
  21#include <linux/export.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/topology.h>
  24#include <linux/smp.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/spinlock.h>
  29#include <linux/cache.h>
  30#include <linux/err.h>
  31#include <linux/device.h>
  32#include <linux/cpu.h>
  33#include <linux/notifier.h>
  34#include <linux/topology.h>
  35#include <linux/profile.h>
  36#include <linux/processor.h>
  37
  38#include <asm/ptrace.h>
  39#include <linux/atomic.h>
  40#include <asm/irq.h>
  41#include <asm/hw_irq.h>
  42#include <asm/kvm_ppc.h>
  43#include <asm/dbell.h>
  44#include <asm/page.h>
  45#include <asm/pgtable.h>
  46#include <asm/prom.h>
  47#include <asm/smp.h>
  48#include <asm/time.h>
  49#include <asm/machdep.h>
  50#include <asm/cputhreads.h>
  51#include <asm/cputable.h>
  52#include <asm/mpic.h>
  53#include <asm/vdso_datapage.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/paca.h>
  56#endif
  57#include <asm/vdso.h>
  58#include <asm/debug.h>
  59#include <asm/kexec.h>
  60#include <asm/asm-prototypes.h>
  61#include <asm/cpu_has_feature.h>
  62
  63#ifdef DEBUG
  64#include <asm/udbg.h>
  65#define DBG(fmt...) udbg_printf(fmt)
  66#else
  67#define DBG(fmt...)
  68#endif
  69
  70#ifdef CONFIG_HOTPLUG_CPU
  71/* State of each CPU during hotplug phases */
  72static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  73#endif
  74
  75struct thread_info *secondary_ti;
  76
  77DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  78DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  79DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  80
  81EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  82EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  83EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  84
  85/* SMP operations for this machine */
  86struct smp_ops_t *smp_ops;
  87
  88/* Can't be static due to PowerMac hackery */
  89volatile unsigned int cpu_callin_map[NR_CPUS];
  90
  91int smt_enabled_at_boot = 1;
  92
 
 
  93/*
  94 * Returns 1 if the specified cpu should be brought up during boot.
  95 * Used to inhibit booting threads if they've been disabled or
  96 * limited on the command line
  97 */
  98int smp_generic_cpu_bootable(unsigned int nr)
  99{
 100	/* Special case - we inhibit secondary thread startup
 101	 * during boot if the user requests it.
 102	 */
 103	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 104		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 105			return 0;
 106		if (smt_enabled_at_boot
 107		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 108			return 0;
 109	}
 110
 111	return 1;
 112}
 113
 114
 115#ifdef CONFIG_PPC64
 116int smp_generic_kick_cpu(int nr)
 117{
 118	if (nr < 0 || nr >= nr_cpu_ids)
 119		return -EINVAL;
 120
 121	/*
 122	 * The processor is currently spinning, waiting for the
 123	 * cpu_start field to become non-zero After we set cpu_start,
 124	 * the processor will continue on to secondary_start
 125	 */
 126	if (!paca_ptrs[nr]->cpu_start) {
 127		paca_ptrs[nr]->cpu_start = 1;
 128		smp_mb();
 129		return 0;
 130	}
 131
 132#ifdef CONFIG_HOTPLUG_CPU
 133	/*
 134	 * Ok it's not there, so it might be soft-unplugged, let's
 135	 * try to bring it back
 136	 */
 137	generic_set_cpu_up(nr);
 138	smp_wmb();
 139	smp_send_reschedule(nr);
 140#endif /* CONFIG_HOTPLUG_CPU */
 141
 142	return 0;
 143}
 144#endif /* CONFIG_PPC64 */
 145
 146static irqreturn_t call_function_action(int irq, void *data)
 147{
 148	generic_smp_call_function_interrupt();
 149	return IRQ_HANDLED;
 150}
 151
 152static irqreturn_t reschedule_action(int irq, void *data)
 153{
 154	scheduler_ipi();
 155	return IRQ_HANDLED;
 156}
 157
 158static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 159{
 160	tick_broadcast_ipi_handler();
 161	return IRQ_HANDLED;
 162}
 163
 164#ifdef CONFIG_NMI_IPI
 165static irqreturn_t nmi_ipi_action(int irq, void *data)
 166{
 167	smp_handle_nmi_ipi(get_irq_regs());
 
 
 
 
 
 
 
 
 168	return IRQ_HANDLED;
 169}
 170#endif
 171
 172static irq_handler_t smp_ipi_action[] = {
 173	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
 174	[PPC_MSG_RESCHEDULE] = reschedule_action,
 175	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 176#ifdef CONFIG_NMI_IPI
 177	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
 178#endif
 179};
 180
 181/*
 182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 183 * than going through the call function infrastructure, and strongly
 184 * serialized, so it is more appropriate for debugging.
 185 */
 186const char *smp_ipi_name[] = {
 187	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 188	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
 189	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 190	[PPC_MSG_NMI_IPI] = "nmi ipi",
 191};
 192
 193/* optional function to request ipi, for controllers with >= 4 ipis */
 194int smp_request_message_ipi(int virq, int msg)
 195{
 196	int err;
 197
 198	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 199		return -EINVAL;
 200#ifndef CONFIG_NMI_IPI
 201	if (msg == PPC_MSG_NMI_IPI)
 
 202		return 1;
 
 203#endif
 204
 205	err = request_irq(virq, smp_ipi_action[msg],
 206			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 207			  smp_ipi_name[msg], NULL);
 208	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 209		virq, smp_ipi_name[msg], err);
 210
 211	return err;
 212}
 213
 214#ifdef CONFIG_PPC_SMP_MUXED_IPI
 215struct cpu_messages {
 216	long messages;			/* current messages */
 
 217};
 218static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 219
 
 
 
 
 
 
 
 220void smp_muxed_ipi_set_message(int cpu, int msg)
 221{
 222	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 223	char *message = (char *)&info->messages;
 224
 225	/*
 226	 * Order previous accesses before accesses in the IPI handler.
 227	 */
 228	smp_mb();
 229	message[msg] = 1;
 230}
 231
 232void smp_muxed_ipi_message_pass(int cpu, int msg)
 233{
 234	smp_muxed_ipi_set_message(cpu, msg);
 235
 
 236	/*
 237	 * cause_ipi functions are required to include a full barrier
 238	 * before doing whatever causes the IPI.
 239	 */
 240	smp_ops->cause_ipi(cpu);
 241}
 242
 243#ifdef __BIG_ENDIAN__
 244#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 245#else
 246#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 247#endif
 248
 249irqreturn_t smp_ipi_demux(void)
 250{
 251	mb();	/* order any irq clear */
 252
 253	return smp_ipi_demux_relaxed();
 254}
 255
 256/* sync-free variant. Callers should ensure synchronization */
 257irqreturn_t smp_ipi_demux_relaxed(void)
 258{
 259	struct cpu_messages *info;
 260	unsigned long all;
 261
 262	info = this_cpu_ptr(&ipi_message);
 
 263	do {
 264		all = xchg(&info->messages, 0);
 265#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 266		/*
 267		 * Must check for PPC_MSG_RM_HOST_ACTION messages
 268		 * before PPC_MSG_CALL_FUNCTION messages because when
 269		 * a VM is destroyed, we call kick_all_cpus_sync()
 270		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 271		 * messages have completed before we free any VCPUs.
 272		 */
 273		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 274			kvmppc_xics_ipi_action();
 275#endif
 276		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 277			generic_smp_call_function_interrupt();
 278		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 279			scheduler_ipi();
 280		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 281			tick_broadcast_ipi_handler();
 282#ifdef CONFIG_NMI_IPI
 283		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 284			nmi_ipi_action(0, NULL);
 285#endif
 286	} while (info->messages);
 287
 288	return IRQ_HANDLED;
 289}
 290#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 291
 292static inline void do_message_pass(int cpu, int msg)
 293{
 294	if (smp_ops->message_pass)
 295		smp_ops->message_pass(cpu, msg);
 296#ifdef CONFIG_PPC_SMP_MUXED_IPI
 297	else
 298		smp_muxed_ipi_message_pass(cpu, msg);
 299#endif
 300}
 301
 302void smp_send_reschedule(int cpu)
 303{
 304	if (likely(smp_ops))
 305		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 306}
 307EXPORT_SYMBOL_GPL(smp_send_reschedule);
 308
 309void arch_send_call_function_single_ipi(int cpu)
 310{
 311	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 312}
 313
 314void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 315{
 316	unsigned int cpu;
 317
 318	for_each_cpu(cpu, mask)
 319		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 320}
 321
 322#ifdef CONFIG_NMI_IPI
 323
 324/*
 325 * "NMI IPI" system.
 326 *
 327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 328 * a running system. They can be used for crash, debug, halt/reboot, etc.
 329 *
 330 * NMI IPIs are globally single threaded. No more than one in progress at
 331 * any time.
 332 *
 333 * The IPI call waits with interrupts disabled until all targets enter the
 334 * NMI handler, then the call returns.
 335 *
 336 * No new NMI can be initiated until targets exit the handler.
 337 *
 338 * The IPI call may time out without all targets entering the NMI handler.
 339 * In that case, there is some logic to recover (and ignore subsequent
 340 * NMI interrupts that may eventually be raised), but the platform interrupt
 341 * handler may not be able to distinguish this from other exception causes,
 342 * which may cause a crash.
 343 */
 344
 345static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 346static struct cpumask nmi_ipi_pending_mask;
 347static int nmi_ipi_busy_count = 0;
 348static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 349
 350static void nmi_ipi_lock_start(unsigned long *flags)
 351{
 352	raw_local_irq_save(*flags);
 353	hard_irq_disable();
 354	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 355		raw_local_irq_restore(*flags);
 356		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 357		raw_local_irq_save(*flags);
 358		hard_irq_disable();
 359	}
 360}
 361
 362static void nmi_ipi_lock(void)
 363{
 364	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 365		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 366}
 367
 368static void nmi_ipi_unlock(void)
 369{
 370	smp_mb();
 371	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
 372	atomic_set(&__nmi_ipi_lock, 0);
 373}
 374
 375static void nmi_ipi_unlock_end(unsigned long *flags)
 376{
 377	nmi_ipi_unlock();
 378	raw_local_irq_restore(*flags);
 379}
 380
 381/*
 382 * Platform NMI handler calls this to ack
 383 */
 384int smp_handle_nmi_ipi(struct pt_regs *regs)
 385{
 386	void (*fn)(struct pt_regs *);
 387	unsigned long flags;
 388	int me = raw_smp_processor_id();
 389	int ret = 0;
 390
 391	/*
 392	 * Unexpected NMIs are possible here because the interrupt may not
 393	 * be able to distinguish NMI IPIs from other types of NMIs, or
 394	 * because the caller may have timed out.
 395	 */
 396	nmi_ipi_lock_start(&flags);
 397	if (!nmi_ipi_busy_count)
 398		goto out;
 399	if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
 400		goto out;
 401
 402	fn = nmi_ipi_function;
 403	if (!fn)
 404		goto out;
 405
 406	cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 407	nmi_ipi_busy_count++;
 408	nmi_ipi_unlock();
 409
 410	ret = 1;
 411
 412	fn(regs);
 413
 414	nmi_ipi_lock();
 415	nmi_ipi_busy_count--;
 416out:
 417	nmi_ipi_unlock_end(&flags);
 418
 419	return ret;
 420}
 421
 422static void do_smp_send_nmi_ipi(int cpu)
 423{
 424	if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 425		return;
 426
 427	if (cpu >= 0) {
 428		do_message_pass(cpu, PPC_MSG_NMI_IPI);
 429	} else {
 430		int c;
 431
 432		for_each_online_cpu(c) {
 433			if (c == raw_smp_processor_id())
 434				continue;
 435			do_message_pass(c, PPC_MSG_NMI_IPI);
 436		}
 437	}
 438}
 439
 440void smp_flush_nmi_ipi(u64 delay_us)
 441{
 442	unsigned long flags;
 443
 444	nmi_ipi_lock_start(&flags);
 445	while (nmi_ipi_busy_count) {
 446		nmi_ipi_unlock_end(&flags);
 447		udelay(1);
 448		if (delay_us) {
 449			delay_us--;
 450			if (!delay_us)
 451				return;
 452		}
 453		nmi_ipi_lock_start(&flags);
 454	}
 455	nmi_ipi_unlock_end(&flags);
 456}
 457
 458/*
 459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 460 * - fn is the target callback function.
 461 * - delay_us > 0 is the delay before giving up waiting for targets to
 462 *   enter the handler, == 0 specifies indefinite delay.
 463 */
 464int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 465{
 466	unsigned long flags;
 467	int me = raw_smp_processor_id();
 468	int ret = 1;
 469
 470	BUG_ON(cpu == me);
 471	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 472
 473	if (unlikely(!smp_ops))
 474		return 0;
 475
 476	/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
 477	nmi_ipi_lock_start(&flags);
 478	while (nmi_ipi_busy_count) {
 479		nmi_ipi_unlock_end(&flags);
 480		spin_until_cond(nmi_ipi_busy_count == 0);
 481		nmi_ipi_lock_start(&flags);
 482	}
 483
 484	nmi_ipi_function = fn;
 485
 486	if (cpu < 0) {
 487		/* ALL_OTHERS */
 488		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 489		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 490	} else {
 491		/* cpumask starts clear */
 492		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 493	}
 494	nmi_ipi_busy_count++;
 495	nmi_ipi_unlock();
 496
 497	do_smp_send_nmi_ipi(cpu);
 498
 499	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 500		udelay(1);
 501		if (delay_us) {
 502			delay_us--;
 503			if (!delay_us)
 504				break;
 505		}
 506	}
 507
 508	nmi_ipi_lock();
 509	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 510		/* Could not gather all CPUs */
 511		ret = 0;
 512		cpumask_clear(&nmi_ipi_pending_mask);
 513	}
 514	nmi_ipi_busy_count--;
 515	nmi_ipi_unlock_end(&flags);
 516
 517	return ret;
 518}
 519#endif /* CONFIG_NMI_IPI */
 520
 521#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 522void tick_broadcast(const struct cpumask *mask)
 523{
 524	unsigned int cpu;
 525
 526	for_each_cpu(cpu, mask)
 527		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 528}
 529#endif
 530
 531#ifdef CONFIG_DEBUGGER
 532void debugger_ipi_callback(struct pt_regs *regs)
 533{
 534	debugger_ipi(regs);
 535}
 536
 537void smp_send_debugger_break(void)
 538{
 539	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 
 
 
 
 
 
 
 
 540}
 541#endif
 542
 543#ifdef CONFIG_KEXEC_CORE
 544void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 545{
 546	int cpu;
 547
 548	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 549	if (kdump_in_progress() && crash_wake_offline) {
 550		for_each_present_cpu(cpu) {
 551			if (cpu_online(cpu))
 552				continue;
 553			/*
 554			 * crash_ipi_callback will wait for
 555			 * all cpus, including offline CPUs.
 556			 * We don't care about nmi_ipi_function.
 557			 * Offline cpus will jump straight into
 558			 * crash_ipi_callback, we can skip the
 559			 * entire NMI dance and waiting for
 560			 * cpus to clear pending mask, etc.
 561			 */
 562			do_smp_send_nmi_ipi(cpu);
 563		}
 564	}
 565}
 566#endif
 567
 568#ifdef CONFIG_NMI_IPI
 569static void nmi_stop_this_cpu(struct pt_regs *regs)
 570{
 571	/*
 572	 * This is a special case because it never returns, so the NMI IPI
 573	 * handling would never mark it as done, which makes any later
 574	 * smp_send_nmi_ipi() call spin forever. Mark it done now.
 575	 *
 576	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
 577	 */
 578	nmi_ipi_lock();
 579	nmi_ipi_busy_count--;
 580	nmi_ipi_unlock();
 581
 582	/* Remove this CPU */
 583	set_cpu_online(smp_processor_id(), false);
 584
 585	spin_begin();
 586	while (1)
 587		spin_cpu_relax();
 588}
 589
 590void smp_send_stop(void)
 591{
 592	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
 593}
 594
 595#else /* CONFIG_NMI_IPI */
 596
 597static void stop_this_cpu(void *dummy)
 598{
 599	/* Remove this CPU */
 600	set_cpu_online(smp_processor_id(), false);
 601
 602	hard_irq_disable();
 603	spin_begin();
 604	while (1)
 605		spin_cpu_relax();
 606}
 607
 608void smp_send_stop(void)
 609{
 610	static bool stopped = false;
 611
 612	/*
 613	 * Prevent waiting on csd lock from a previous smp_send_stop.
 614	 * This is racy, but in general callers try to do the right
 615	 * thing and only fire off one smp_send_stop (e.g., see
 616	 * kernel/panic.c)
 617	 */
 618	if (stopped)
 619		return;
 620
 621	stopped = true;
 622
 623	smp_call_function(stop_this_cpu, NULL, 0);
 624}
 625#endif /* CONFIG_NMI_IPI */
 626
 627struct thread_info *current_set[NR_CPUS];
 628
 629static void smp_store_cpu_info(int id)
 630{
 631	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 632#ifdef CONFIG_PPC_FSL_BOOK3E
 633	per_cpu(next_tlbcam_idx, id)
 634		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 635#endif
 636}
 637
 638/*
 639 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 640 * rather than just passing around the cpumask we pass around a function that
 641 * returns the that cpumask for the given CPU.
 642 */
 643static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 644{
 645	cpumask_set_cpu(i, get_cpumask(j));
 646	cpumask_set_cpu(j, get_cpumask(i));
 647}
 648
 649#ifdef CONFIG_HOTPLUG_CPU
 650static void set_cpus_unrelated(int i, int j,
 651		struct cpumask *(*get_cpumask)(int))
 652{
 653	cpumask_clear_cpu(i, get_cpumask(j));
 654	cpumask_clear_cpu(j, get_cpumask(i));
 655}
 656#endif
 657
 658void __init smp_prepare_cpus(unsigned int max_cpus)
 659{
 660	unsigned int cpu;
 661
 662	DBG("smp_prepare_cpus\n");
 663
 664	/* 
 665	 * setup_cpu may need to be called on the boot cpu. We havent
 666	 * spun any cpus up but lets be paranoid.
 667	 */
 668	BUG_ON(boot_cpuid != smp_processor_id());
 669
 670	/* Fixup boot cpu */
 671	smp_store_cpu_info(boot_cpuid);
 672	cpu_callin_map[boot_cpuid] = 1;
 673
 674	for_each_possible_cpu(cpu) {
 675		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
 676					GFP_KERNEL, cpu_to_node(cpu));
 677		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
 678					GFP_KERNEL, cpu_to_node(cpu));
 679		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
 680					GFP_KERNEL, cpu_to_node(cpu));
 681		/*
 682		 * numa_node_id() works after this.
 683		 */
 684		if (cpu_present(cpu)) {
 685			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
 686			set_cpu_numa_mem(cpu,
 687				local_memory_node(numa_cpu_lookup_table[cpu]));
 688		}
 689	}
 690
 691	/* Init the cpumasks so the boot CPU is related to itself */
 692	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 693	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
 694	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
 695
 696	if (smp_ops && smp_ops->probe)
 697		smp_ops->probe();
 698}
 699
 700void smp_prepare_boot_cpu(void)
 701{
 702	BUG_ON(smp_processor_id() != boot_cpuid);
 703#ifdef CONFIG_PPC64
 704	paca_ptrs[boot_cpuid]->__current = current;
 705#endif
 706	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
 707	current_set[boot_cpuid] = task_thread_info(current);
 708}
 709
 710#ifdef CONFIG_HOTPLUG_CPU
 711
 712int generic_cpu_disable(void)
 713{
 714	unsigned int cpu = smp_processor_id();
 715
 716	if (cpu == boot_cpuid)
 717		return -EBUSY;
 718
 719	set_cpu_online(cpu, false);
 720#ifdef CONFIG_PPC64
 721	vdso_data->processorCount--;
 722#endif
 723	/* Update affinity of all IRQs previously aimed at this CPU */
 724	irq_migrate_all_off_this_cpu();
 725
 726	/*
 727	 * Depending on the details of the interrupt controller, it's possible
 728	 * that one of the interrupts we just migrated away from this CPU is
 729	 * actually already pending on this CPU. If we leave it in that state
 730	 * the interrupt will never be EOI'ed, and will never fire again. So
 731	 * temporarily enable interrupts here, to allow any pending interrupt to
 732	 * be received (and EOI'ed), before we take this CPU offline.
 733	 */
 734	local_irq_enable();
 735	mdelay(1);
 736	local_irq_disable();
 737
 738	return 0;
 739}
 740
 741void generic_cpu_die(unsigned int cpu)
 742{
 743	int i;
 744
 745	for (i = 0; i < 100; i++) {
 746		smp_rmb();
 747		if (is_cpu_dead(cpu))
 748			return;
 749		msleep(100);
 750	}
 751	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
 752}
 753
 754void generic_set_cpu_dead(unsigned int cpu)
 755{
 756	per_cpu(cpu_state, cpu) = CPU_DEAD;
 757}
 758
 759/*
 760 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 761 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 762 * which makes the delay in generic_cpu_die() not happen.
 763 */
 764void generic_set_cpu_up(unsigned int cpu)
 765{
 766	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 767}
 768
 769int generic_check_cpu_restart(unsigned int cpu)
 770{
 771	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
 772}
 773
 774int is_cpu_dead(unsigned int cpu)
 775{
 776	return per_cpu(cpu_state, cpu) == CPU_DEAD;
 777}
 778
 779static bool secondaries_inhibited(void)
 780{
 781	return kvm_hv_mode_active();
 782}
 783
 784#else /* HOTPLUG_CPU */
 785
 786#define secondaries_inhibited()		0
 787
 788#endif
 789
 790static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
 791{
 792	struct thread_info *ti = task_thread_info(idle);
 793
 794#ifdef CONFIG_PPC64
 795	paca_ptrs[cpu]->__current = idle;
 796	paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
 797#endif
 798	ti->cpu = cpu;
 799	secondary_ti = current_set[cpu] = ti;
 800}
 801
 802int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 803{
 804	int rc, c;
 805
 806	/*
 807	 * Don't allow secondary threads to come online if inhibited
 808	 */
 809	if (threads_per_core > 1 && secondaries_inhibited() &&
 810	    cpu_thread_in_subcore(cpu))
 811		return -EBUSY;
 812
 813	if (smp_ops == NULL ||
 814	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
 815		return -EINVAL;
 816
 817	cpu_idle_thread_init(cpu, tidle);
 818
 819	/*
 820	 * The platform might need to allocate resources prior to bringing
 821	 * up the CPU
 822	 */
 823	if (smp_ops->prepare_cpu) {
 824		rc = smp_ops->prepare_cpu(cpu);
 825		if (rc)
 826			return rc;
 827	}
 828
 829	/* Make sure callin-map entry is 0 (can be leftover a CPU
 830	 * hotplug
 831	 */
 832	cpu_callin_map[cpu] = 0;
 833
 834	/* The information for processor bringup must
 835	 * be written out to main store before we release
 836	 * the processor.
 837	 */
 838	smp_mb();
 839
 840	/* wake up cpus */
 841	DBG("smp: kicking cpu %d\n", cpu);
 842	rc = smp_ops->kick_cpu(cpu);
 843	if (rc) {
 844		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
 845		return rc;
 846	}
 847
 848	/*
 849	 * wait to see if the cpu made a callin (is actually up).
 850	 * use this value that I found through experimentation.
 851	 * -- Cort
 852	 */
 853	if (system_state < SYSTEM_RUNNING)
 854		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
 855			udelay(100);
 856#ifdef CONFIG_HOTPLUG_CPU
 857	else
 858		/*
 859		 * CPUs can take much longer to come up in the
 860		 * hotplug case.  Wait five seconds.
 861		 */
 862		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
 863			msleep(1);
 864#endif
 865
 866	if (!cpu_callin_map[cpu]) {
 867		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
 868		return -ENOENT;
 869	}
 870
 871	DBG("Processor %u found.\n", cpu);
 872
 873	if (smp_ops->give_timebase)
 874		smp_ops->give_timebase();
 875
 876	/* Wait until cpu puts itself in the online & active maps */
 877	spin_until_cond(cpu_online(cpu));
 
 878
 879	return 0;
 880}
 881
 882/* Return the value of the reg property corresponding to the given
 883 * logical cpu.
 884 */
 885int cpu_to_core_id(int cpu)
 886{
 887	struct device_node *np;
 888	const __be32 *reg;
 889	int id = -1;
 890
 891	np = of_get_cpu_node(cpu, NULL);
 892	if (!np)
 893		goto out;
 894
 895	reg = of_get_property(np, "reg", NULL);
 896	if (!reg)
 897		goto out;
 898
 899	id = be32_to_cpup(reg);
 900out:
 901	of_node_put(np);
 902	return id;
 903}
 904EXPORT_SYMBOL_GPL(cpu_to_core_id);
 905
 906/* Helper routines for cpu to core mapping */
 907int cpu_core_index_of_thread(int cpu)
 908{
 909	return cpu >> threads_shift;
 910}
 911EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
 912
 913int cpu_first_thread_of_core(int core)
 914{
 915	return core << threads_shift;
 916}
 917EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919/* Must be called when no change can occur to cpu_present_mask,
 920 * i.e. during cpu online or offline.
 921 */
 922static struct device_node *cpu_to_l2cache(int cpu)
 923{
 924	struct device_node *np;
 925	struct device_node *cache;
 926
 927	if (!cpu_present(cpu))
 928		return NULL;
 929
 930	np = of_get_cpu_node(cpu, NULL);
 931	if (np == NULL)
 932		return NULL;
 933
 934	cache = of_find_next_cache_node(np);
 935
 936	of_node_put(np);
 937
 938	return cache;
 939}
 940
 941static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
 942{
 943	struct device_node *l2_cache, *np;
 944	int i;
 
 
 945
 946	l2_cache = cpu_to_l2cache(cpu);
 947	if (!l2_cache)
 948		return false;
 
 
 
 
 
 
 
 
 
 
 949
 950	for_each_cpu(i, cpu_online_mask) {
 951		/*
 952		 * when updating the marks the current CPU has not been marked
 953		 * online, but we need to update the cache masks
 954		 */
 955		np = cpu_to_l2cache(i);
 956		if (!np)
 957			continue;
 958
 959		if (np == l2_cache)
 960			set_cpus_related(cpu, i, mask_fn);
 961
 
 
 
 
 
 962		of_node_put(np);
 963	}
 964	of_node_put(l2_cache);
 965
 966	return true;
 967}
 968
 969#ifdef CONFIG_HOTPLUG_CPU
 970static void remove_cpu_from_masks(int cpu)
 971{
 972	int i;
 973
 974	/* NB: cpu_core_mask is a superset of the others */
 975	for_each_cpu(i, cpu_core_mask(cpu)) {
 976		set_cpus_unrelated(cpu, i, cpu_core_mask);
 977		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
 978		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
 979	}
 980}
 981#endif
 982
 983static void add_cpu_to_masks(int cpu)
 984{
 985	int first_thread = cpu_first_thread_sibling(cpu);
 986	int chipid = cpu_to_chip_id(cpu);
 987	int i;
 988
 989	/*
 990	 * This CPU will not be in the online mask yet so we need to manually
 991	 * add it to it's own thread sibling mask.
 992	 */
 993	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
 994
 995	for (i = first_thread; i < first_thread + threads_per_core; i++)
 996		if (cpu_online(i))
 997			set_cpus_related(i, cpu, cpu_sibling_mask);
 998
 999	/*
1000	 * Copy the thread sibling mask into the cache sibling mask
1001	 * and mark any CPUs that share an L2 with this CPU.
1002	 */
1003	for_each_cpu(i, cpu_sibling_mask(cpu))
1004		set_cpus_related(cpu, i, cpu_l2_cache_mask);
1005	update_mask_by_l2(cpu, cpu_l2_cache_mask);
1006
1007	/*
1008	 * Copy the cache sibling mask into core sibling mask and mark
1009	 * any CPUs on the same chip as this CPU.
1010	 */
1011	for_each_cpu(i, cpu_l2_cache_mask(cpu))
1012		set_cpus_related(cpu, i, cpu_core_mask);
1013
1014	if (chipid == -1)
1015		return;
1016
1017	for_each_cpu(i, cpu_online_mask)
1018		if (cpu_to_chip_id(i) == chipid)
1019			set_cpus_related(cpu, i, cpu_core_mask);
1020}
1021
1022static bool shared_caches;
1023
1024/* Activate a secondary processor. */
1025void start_secondary(void *unused)
1026{
1027	unsigned int cpu = smp_processor_id();
 
1028
1029	mmgrab(&init_mm);
1030	current->active_mm = &init_mm;
1031
1032	smp_store_cpu_info(cpu);
1033	set_dec(tb_ticks_per_jiffy);
1034	preempt_disable();
1035	cpu_callin_map[cpu] = 1;
1036
1037	if (smp_ops->setup_cpu)
1038		smp_ops->setup_cpu(cpu);
1039	if (smp_ops->take_timebase)
1040		smp_ops->take_timebase();
1041
1042	secondary_cpu_time_init();
1043
1044#ifdef CONFIG_PPC64
1045	if (system_state == SYSTEM_RUNNING)
1046		vdso_data->processorCount++;
1047
1048	vdso_getcpu_init();
1049#endif
1050	/* Update topology CPU masks */
1051	add_cpu_to_masks(cpu);
 
 
 
 
 
1052
1053	/*
1054	 * Check for any shared caches. Note that this must be done on a
1055	 * per-core basis because one core in the pair might be disabled.
1056	 */
1057	if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1058		shared_caches = true;
 
 
1059
1060	set_numa_node(numa_cpu_lookup_table[cpu]);
1061	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1062
1063	smp_wmb();
1064	notify_cpu_starting(cpu);
1065	set_cpu_online(cpu, true);
1066
1067	local_irq_enable();
1068
1069	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1070
1071	BUG();
1072}
1073
1074int setup_profiling_timer(unsigned int multiplier)
1075{
1076	return 0;
1077}
1078
1079#ifdef CONFIG_SCHED_SMT
1080/* cpumask of CPUs with asymetric SMT dependancy */
1081static int powerpc_smt_flags(void)
1082{
1083	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1084
1085	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1086		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1087		flags |= SD_ASYM_PACKING;
1088	}
1089	return flags;
1090}
1091#endif
1092
1093static struct sched_domain_topology_level powerpc_topology[] = {
1094#ifdef CONFIG_SCHED_SMT
1095	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1096#endif
1097	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1098	{ NULL, },
1099};
1100
1101/*
1102 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1103 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1104 * since the migrated task remains cache hot. We want to take advantage of this
1105 * at the scheduler level so an extra topology level is required.
1106 */
1107static int powerpc_shared_cache_flags(void)
1108{
1109	return SD_SHARE_PKG_RESOURCES;
1110}
1111
1112/*
1113 * We can't just pass cpu_l2_cache_mask() directly because
1114 * returns a non-const pointer and the compiler barfs on that.
1115 */
1116static const struct cpumask *shared_cache_mask(int cpu)
1117{
1118	return cpu_l2_cache_mask(cpu);
1119}
1120
1121static struct sched_domain_topology_level power9_topology[] = {
1122#ifdef CONFIG_SCHED_SMT
1123	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1124#endif
1125	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1126	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1127	{ NULL, },
1128};
1129
1130void __init smp_cpus_done(unsigned int max_cpus)
1131{
1132	/*
1133	 * We are running pinned to the boot CPU, see rest_init().
1134	 */
 
 
 
 
 
 
 
1135	if (smp_ops && smp_ops->setup_cpu)
1136		smp_ops->setup_cpu(boot_cpuid);
1137
 
 
 
 
1138	if (smp_ops && smp_ops->bringup_done)
1139		smp_ops->bringup_done();
1140
1141	dump_numa_cpu_topology();
1142
1143	/*
1144	 * If any CPU detects that it's sharing a cache with another CPU then
1145	 * use the deeper topology that is aware of this sharing.
1146	 */
1147	if (shared_caches) {
1148		pr_info("Using shared cache scheduler topology\n");
1149		set_sched_topology(power9_topology);
1150	} else {
1151		pr_info("Using standard scheduler topology\n");
1152		set_sched_topology(powerpc_topology);
1153	}
1154}
1155
1156#ifdef CONFIG_HOTPLUG_CPU
1157int __cpu_disable(void)
1158{
1159	int cpu = smp_processor_id();
 
1160	int err;
1161
1162	if (!smp_ops->cpu_disable)
1163		return -ENOSYS;
1164
1165	err = smp_ops->cpu_disable();
1166	if (err)
1167		return err;
1168
1169	/* Update sibling maps */
1170	remove_cpu_from_masks(cpu);
 
 
 
 
 
 
 
1171
1172	return 0;
1173}
1174
1175void __cpu_die(unsigned int cpu)
1176{
1177	if (smp_ops->cpu_die)
1178		smp_ops->cpu_die(cpu);
1179}
1180
1181void cpu_die(void)
1182{
1183	if (ppc_md.cpu_die)
1184		ppc_md.cpu_die();
1185
1186	/* If we return, we re-enter start_secondary */
1187	start_secondary_resume();
1188}
1189
1190#endif
v4.10.11
  1/*
  2 * SMP support for ppc.
  3 *
  4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
  5 * deal of code from the sparc and intel versions.
  6 *
  7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
  8 *
  9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
 10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 */
 17
 18#undef DEBUG
 19
 20#include <linux/kernel.h>
 21#include <linux/export.h>
 22#include <linux/sched.h>
 
 23#include <linux/smp.h>
 24#include <linux/interrupt.h>
 25#include <linux/delay.h>
 26#include <linux/init.h>
 27#include <linux/spinlock.h>
 28#include <linux/cache.h>
 29#include <linux/err.h>
 30#include <linux/device.h>
 31#include <linux/cpu.h>
 32#include <linux/notifier.h>
 33#include <linux/topology.h>
 34#include <linux/profile.h>
 
 35
 36#include <asm/ptrace.h>
 37#include <linux/atomic.h>
 38#include <asm/irq.h>
 39#include <asm/hw_irq.h>
 40#include <asm/kvm_ppc.h>
 
 41#include <asm/page.h>
 42#include <asm/pgtable.h>
 43#include <asm/prom.h>
 44#include <asm/smp.h>
 45#include <asm/time.h>
 46#include <asm/machdep.h>
 47#include <asm/cputhreads.h>
 48#include <asm/cputable.h>
 49#include <asm/mpic.h>
 50#include <asm/vdso_datapage.h>
 51#ifdef CONFIG_PPC64
 52#include <asm/paca.h>
 53#endif
 54#include <asm/vdso.h>
 55#include <asm/debug.h>
 56#include <asm/kexec.h>
 57#include <asm/asm-prototypes.h>
 58#include <asm/cpu_has_feature.h>
 59
 60#ifdef DEBUG
 61#include <asm/udbg.h>
 62#define DBG(fmt...) udbg_printf(fmt)
 63#else
 64#define DBG(fmt...)
 65#endif
 66
 67#ifdef CONFIG_HOTPLUG_CPU
 68/* State of each CPU during hotplug phases */
 69static DEFINE_PER_CPU(int, cpu_state) = { 0 };
 70#endif
 71
 72struct thread_info *secondary_ti;
 73
 74DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
 
 75DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
 76
 77EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 
 78EXPORT_PER_CPU_SYMBOL(cpu_core_map);
 79
 80/* SMP operations for this machine */
 81struct smp_ops_t *smp_ops;
 82
 83/* Can't be static due to PowerMac hackery */
 84volatile unsigned int cpu_callin_map[NR_CPUS];
 85
 86int smt_enabled_at_boot = 1;
 87
 88static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
 89
 90/*
 91 * Returns 1 if the specified cpu should be brought up during boot.
 92 * Used to inhibit booting threads if they've been disabled or
 93 * limited on the command line
 94 */
 95int smp_generic_cpu_bootable(unsigned int nr)
 96{
 97	/* Special case - we inhibit secondary thread startup
 98	 * during boot if the user requests it.
 99	 */
100	if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
101		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
102			return 0;
103		if (smt_enabled_at_boot
104		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
105			return 0;
106	}
107
108	return 1;
109}
110
111
112#ifdef CONFIG_PPC64
113int smp_generic_kick_cpu(int nr)
114{
115	BUG_ON(nr < 0 || nr >= NR_CPUS);
 
116
117	/*
118	 * The processor is currently spinning, waiting for the
119	 * cpu_start field to become non-zero After we set cpu_start,
120	 * the processor will continue on to secondary_start
121	 */
122	if (!paca[nr].cpu_start) {
123		paca[nr].cpu_start = 1;
124		smp_mb();
125		return 0;
126	}
127
128#ifdef CONFIG_HOTPLUG_CPU
129	/*
130	 * Ok it's not there, so it might be soft-unplugged, let's
131	 * try to bring it back
132	 */
133	generic_set_cpu_up(nr);
134	smp_wmb();
135	smp_send_reschedule(nr);
136#endif /* CONFIG_HOTPLUG_CPU */
137
138	return 0;
139}
140#endif /* CONFIG_PPC64 */
141
142static irqreturn_t call_function_action(int irq, void *data)
143{
144	generic_smp_call_function_interrupt();
145	return IRQ_HANDLED;
146}
147
148static irqreturn_t reschedule_action(int irq, void *data)
149{
150	scheduler_ipi();
151	return IRQ_HANDLED;
152}
153
154static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
155{
156	tick_broadcast_ipi_handler();
157	return IRQ_HANDLED;
158}
159
160static irqreturn_t debug_ipi_action(int irq, void *data)
 
161{
162	if (crash_ipi_function_ptr) {
163		crash_ipi_function_ptr(get_irq_regs());
164		return IRQ_HANDLED;
165	}
166
167#ifdef CONFIG_DEBUGGER
168	debugger_ipi(get_irq_regs());
169#endif /* CONFIG_DEBUGGER */
170
171	return IRQ_HANDLED;
172}
 
173
174static irq_handler_t smp_ipi_action[] = {
175	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
176	[PPC_MSG_RESCHEDULE] = reschedule_action,
177	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
178	[PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
 
 
179};
180
 
 
 
 
 
181const char *smp_ipi_name[] = {
182	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
183	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
184	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
185	[PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
186};
187
188/* optional function to request ipi, for controllers with >= 4 ipis */
189int smp_request_message_ipi(int virq, int msg)
190{
191	int err;
192
193	if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
194		return -EINVAL;
195	}
196#if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC_CORE)
197	if (msg == PPC_MSG_DEBUGGER_BREAK) {
198		return 1;
199	}
200#endif
 
201	err = request_irq(virq, smp_ipi_action[msg],
202			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
203			  smp_ipi_name[msg], NULL);
204	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
205		virq, smp_ipi_name[msg], err);
206
207	return err;
208}
209
210#ifdef CONFIG_PPC_SMP_MUXED_IPI
211struct cpu_messages {
212	long messages;			/* current messages */
213	unsigned long data;		/* data for cause ipi */
214};
215static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
216
217void smp_muxed_ipi_set_data(int cpu, unsigned long data)
218{
219	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
220
221	info->data = data;
222}
223
224void smp_muxed_ipi_set_message(int cpu, int msg)
225{
226	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
227	char *message = (char *)&info->messages;
228
229	/*
230	 * Order previous accesses before accesses in the IPI handler.
231	 */
232	smp_mb();
233	message[msg] = 1;
234}
235
236void smp_muxed_ipi_message_pass(int cpu, int msg)
237{
238	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
239
240	smp_muxed_ipi_set_message(cpu, msg);
241	/*
242	 * cause_ipi functions are required to include a full barrier
243	 * before doing whatever causes the IPI.
244	 */
245	smp_ops->cause_ipi(cpu, info->data);
246}
247
248#ifdef __BIG_ENDIAN__
249#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
250#else
251#define IPI_MESSAGE(A) (1uL << (8 * (A)))
252#endif
253
254irqreturn_t smp_ipi_demux(void)
255{
256	struct cpu_messages *info = this_cpu_ptr(&ipi_message);
 
 
 
 
 
 
 
 
257	unsigned long all;
258
259	mb();	/* order any irq clear */
260
261	do {
262		all = xchg(&info->messages, 0);
263#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
264		/*
265		 * Must check for PPC_MSG_RM_HOST_ACTION messages
266		 * before PPC_MSG_CALL_FUNCTION messages because when
267		 * a VM is destroyed, we call kick_all_cpus_sync()
268		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
269		 * messages have completed before we free any VCPUs.
270		 */
271		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
272			kvmppc_xics_ipi_action();
273#endif
274		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
275			generic_smp_call_function_interrupt();
276		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
277			scheduler_ipi();
278		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
279			tick_broadcast_ipi_handler();
280		if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK))
281			debug_ipi_action(0, NULL);
 
 
282	} while (info->messages);
283
284	return IRQ_HANDLED;
285}
286#endif /* CONFIG_PPC_SMP_MUXED_IPI */
287
288static inline void do_message_pass(int cpu, int msg)
289{
290	if (smp_ops->message_pass)
291		smp_ops->message_pass(cpu, msg);
292#ifdef CONFIG_PPC_SMP_MUXED_IPI
293	else
294		smp_muxed_ipi_message_pass(cpu, msg);
295#endif
296}
297
298void smp_send_reschedule(int cpu)
299{
300	if (likely(smp_ops))
301		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
302}
303EXPORT_SYMBOL_GPL(smp_send_reschedule);
304
305void arch_send_call_function_single_ipi(int cpu)
306{
307	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
308}
309
310void arch_send_call_function_ipi_mask(const struct cpumask *mask)
311{
312	unsigned int cpu;
313
314	for_each_cpu(cpu, mask)
315		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
316}
317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
319void tick_broadcast(const struct cpumask *mask)
320{
321	unsigned int cpu;
322
323	for_each_cpu(cpu, mask)
324		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
325}
326#endif
327
328#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
 
 
 
 
 
329void smp_send_debugger_break(void)
330{
331	int cpu;
332	int me = raw_smp_processor_id();
333
334	if (unlikely(!smp_ops))
335		return;
336
337	for_each_online_cpu(cpu)
338		if (cpu != me)
339			do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
340}
341#endif
342
343#ifdef CONFIG_KEXEC_CORE
344void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
345{
346	crash_ipi_function_ptr = crash_ipi_callback;
347	if (crash_ipi_callback) {
348		mb();
349		smp_send_debugger_break();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350	}
351}
352#endif
353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354static void stop_this_cpu(void *dummy)
355{
356	/* Remove this CPU */
357	set_cpu_online(smp_processor_id(), false);
358
359	local_irq_disable();
 
360	while (1)
361		;
362}
363
364void smp_send_stop(void)
365{
 
 
 
 
 
 
 
 
 
 
 
 
 
366	smp_call_function(stop_this_cpu, NULL, 0);
367}
 
368
369struct thread_info *current_set[NR_CPUS];
370
371static void smp_store_cpu_info(int id)
372{
373	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
374#ifdef CONFIG_PPC_FSL_BOOK3E
375	per_cpu(next_tlbcam_idx, id)
376		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
377#endif
378}
379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380void __init smp_prepare_cpus(unsigned int max_cpus)
381{
382	unsigned int cpu;
383
384	DBG("smp_prepare_cpus\n");
385
386	/* 
387	 * setup_cpu may need to be called on the boot cpu. We havent
388	 * spun any cpus up but lets be paranoid.
389	 */
390	BUG_ON(boot_cpuid != smp_processor_id());
391
392	/* Fixup boot cpu */
393	smp_store_cpu_info(boot_cpuid);
394	cpu_callin_map[boot_cpuid] = 1;
395
396	for_each_possible_cpu(cpu) {
397		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
398					GFP_KERNEL, cpu_to_node(cpu));
 
 
399		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
400					GFP_KERNEL, cpu_to_node(cpu));
401		/*
402		 * numa_node_id() works after this.
403		 */
404		if (cpu_present(cpu)) {
405			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
406			set_cpu_numa_mem(cpu,
407				local_memory_node(numa_cpu_lookup_table[cpu]));
408		}
409	}
410
 
411	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 
412	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
413
414	if (smp_ops && smp_ops->probe)
415		smp_ops->probe();
416}
417
418void smp_prepare_boot_cpu(void)
419{
420	BUG_ON(smp_processor_id() != boot_cpuid);
421#ifdef CONFIG_PPC64
422	paca[boot_cpuid].__current = current;
423#endif
424	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
425	current_set[boot_cpuid] = task_thread_info(current);
426}
427
428#ifdef CONFIG_HOTPLUG_CPU
429
430int generic_cpu_disable(void)
431{
432	unsigned int cpu = smp_processor_id();
433
434	if (cpu == boot_cpuid)
435		return -EBUSY;
436
437	set_cpu_online(cpu, false);
438#ifdef CONFIG_PPC64
439	vdso_data->processorCount--;
440#endif
441	migrate_irqs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442	return 0;
443}
444
445void generic_cpu_die(unsigned int cpu)
446{
447	int i;
448
449	for (i = 0; i < 100; i++) {
450		smp_rmb();
451		if (is_cpu_dead(cpu))
452			return;
453		msleep(100);
454	}
455	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
456}
457
458void generic_set_cpu_dead(unsigned int cpu)
459{
460	per_cpu(cpu_state, cpu) = CPU_DEAD;
461}
462
463/*
464 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
465 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
466 * which makes the delay in generic_cpu_die() not happen.
467 */
468void generic_set_cpu_up(unsigned int cpu)
469{
470	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
471}
472
473int generic_check_cpu_restart(unsigned int cpu)
474{
475	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
476}
477
478int is_cpu_dead(unsigned int cpu)
479{
480	return per_cpu(cpu_state, cpu) == CPU_DEAD;
481}
482
483static bool secondaries_inhibited(void)
484{
485	return kvm_hv_mode_active();
486}
487
488#else /* HOTPLUG_CPU */
489
490#define secondaries_inhibited()		0
491
492#endif
493
494static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
495{
496	struct thread_info *ti = task_thread_info(idle);
497
498#ifdef CONFIG_PPC64
499	paca[cpu].__current = idle;
500	paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
501#endif
502	ti->cpu = cpu;
503	secondary_ti = current_set[cpu] = ti;
504}
505
506int __cpu_up(unsigned int cpu, struct task_struct *tidle)
507{
508	int rc, c;
509
510	/*
511	 * Don't allow secondary threads to come online if inhibited
512	 */
513	if (threads_per_core > 1 && secondaries_inhibited() &&
514	    cpu_thread_in_subcore(cpu))
515		return -EBUSY;
516
517	if (smp_ops == NULL ||
518	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
519		return -EINVAL;
520
521	cpu_idle_thread_init(cpu, tidle);
522
 
 
 
 
 
 
 
 
 
 
523	/* Make sure callin-map entry is 0 (can be leftover a CPU
524	 * hotplug
525	 */
526	cpu_callin_map[cpu] = 0;
527
528	/* The information for processor bringup must
529	 * be written out to main store before we release
530	 * the processor.
531	 */
532	smp_mb();
533
534	/* wake up cpus */
535	DBG("smp: kicking cpu %d\n", cpu);
536	rc = smp_ops->kick_cpu(cpu);
537	if (rc) {
538		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
539		return rc;
540	}
541
542	/*
543	 * wait to see if the cpu made a callin (is actually up).
544	 * use this value that I found through experimentation.
545	 * -- Cort
546	 */
547	if (system_state < SYSTEM_RUNNING)
548		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
549			udelay(100);
550#ifdef CONFIG_HOTPLUG_CPU
551	else
552		/*
553		 * CPUs can take much longer to come up in the
554		 * hotplug case.  Wait five seconds.
555		 */
556		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
557			msleep(1);
558#endif
559
560	if (!cpu_callin_map[cpu]) {
561		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
562		return -ENOENT;
563	}
564
565	DBG("Processor %u found.\n", cpu);
566
567	if (smp_ops->give_timebase)
568		smp_ops->give_timebase();
569
570	/* Wait until cpu puts itself in the online & active maps */
571	while (!cpu_online(cpu))
572		cpu_relax();
573
574	return 0;
575}
576
577/* Return the value of the reg property corresponding to the given
578 * logical cpu.
579 */
580int cpu_to_core_id(int cpu)
581{
582	struct device_node *np;
583	const __be32 *reg;
584	int id = -1;
585
586	np = of_get_cpu_node(cpu, NULL);
587	if (!np)
588		goto out;
589
590	reg = of_get_property(np, "reg", NULL);
591	if (!reg)
592		goto out;
593
594	id = be32_to_cpup(reg);
595out:
596	of_node_put(np);
597	return id;
598}
599EXPORT_SYMBOL_GPL(cpu_to_core_id);
600
601/* Helper routines for cpu to core mapping */
602int cpu_core_index_of_thread(int cpu)
603{
604	return cpu >> threads_shift;
605}
606EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
607
608int cpu_first_thread_of_core(int core)
609{
610	return core << threads_shift;
611}
612EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
613
614static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
615{
616	const struct cpumask *mask;
617	struct device_node *np;
618	int i, plen;
619	const __be32 *prop;
620
621	mask = add ? cpu_online_mask : cpu_present_mask;
622	for_each_cpu(i, mask) {
623		np = of_get_cpu_node(i, NULL);
624		if (!np)
625			continue;
626		prop = of_get_property(np, "ibm,chip-id", &plen);
627		if (prop && plen == sizeof(int) &&
628		    of_read_number(prop, 1) == chipid) {
629			if (add) {
630				cpumask_set_cpu(cpu, cpu_core_mask(i));
631				cpumask_set_cpu(i, cpu_core_mask(cpu));
632			} else {
633				cpumask_clear_cpu(cpu, cpu_core_mask(i));
634				cpumask_clear_cpu(i, cpu_core_mask(cpu));
635			}
636		}
637		of_node_put(np);
638	}
639}
640
641/* Must be called when no change can occur to cpu_present_mask,
642 * i.e. during cpu online or offline.
643 */
644static struct device_node *cpu_to_l2cache(int cpu)
645{
646	struct device_node *np;
647	struct device_node *cache;
648
649	if (!cpu_present(cpu))
650		return NULL;
651
652	np = of_get_cpu_node(cpu, NULL);
653	if (np == NULL)
654		return NULL;
655
656	cache = of_find_next_cache_node(np);
657
658	of_node_put(np);
659
660	return cache;
661}
662
663static void traverse_core_siblings(int cpu, bool add)
664{
665	struct device_node *l2_cache, *np;
666	const struct cpumask *mask;
667	int i, chip, plen;
668	const __be32 *prop;
669
670	/* First see if we have ibm,chip-id properties in cpu nodes */
671	np = of_get_cpu_node(cpu, NULL);
672	if (np) {
673		chip = -1;
674		prop = of_get_property(np, "ibm,chip-id", &plen);
675		if (prop && plen == sizeof(int))
676			chip = of_read_number(prop, 1);
677		of_node_put(np);
678		if (chip >= 0) {
679			traverse_siblings_chip_id(cpu, add, chip);
680			return;
681		}
682	}
683
684	l2_cache = cpu_to_l2cache(cpu);
685	mask = add ? cpu_online_mask : cpu_present_mask;
686	for_each_cpu(i, mask) {
 
 
687		np = cpu_to_l2cache(i);
688		if (!np)
689			continue;
690		if (np == l2_cache) {
691			if (add) {
692				cpumask_set_cpu(cpu, cpu_core_mask(i));
693				cpumask_set_cpu(i, cpu_core_mask(cpu));
694			} else {
695				cpumask_clear_cpu(cpu, cpu_core_mask(i));
696				cpumask_clear_cpu(i, cpu_core_mask(cpu));
697			}
698		}
699		of_node_put(np);
700	}
701	of_node_put(l2_cache);
 
 
702}
703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704/* Activate a secondary processor. */
705void start_secondary(void *unused)
706{
707	unsigned int cpu = smp_processor_id();
708	int i, base;
709
710	atomic_inc(&init_mm.mm_count);
711	current->active_mm = &init_mm;
712
713	smp_store_cpu_info(cpu);
714	set_dec(tb_ticks_per_jiffy);
715	preempt_disable();
716	cpu_callin_map[cpu] = 1;
717
718	if (smp_ops->setup_cpu)
719		smp_ops->setup_cpu(cpu);
720	if (smp_ops->take_timebase)
721		smp_ops->take_timebase();
722
723	secondary_cpu_time_init();
724
725#ifdef CONFIG_PPC64
726	if (system_state == SYSTEM_RUNNING)
727		vdso_data->processorCount++;
728
729	vdso_getcpu_init();
730#endif
731	/* Update sibling maps */
732	base = cpu_first_thread_sibling(cpu);
733	for (i = 0; i < threads_per_core; i++) {
734		if (cpu_is_offline(base + i) && (cpu != base + i))
735			continue;
736		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
737		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
738
739		/* cpu_core_map should be a superset of
740		 * cpu_sibling_map even if we don't have cache
741		 * information, so update the former here, too.
742		 */
743		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
744		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
745	}
746	traverse_core_siblings(cpu, true);
747
748	set_numa_node(numa_cpu_lookup_table[cpu]);
749	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
750
751	smp_wmb();
752	notify_cpu_starting(cpu);
753	set_cpu_online(cpu, true);
754
755	local_irq_enable();
756
757	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
758
759	BUG();
760}
761
762int setup_profiling_timer(unsigned int multiplier)
763{
764	return 0;
765}
766
767#ifdef CONFIG_SCHED_SMT
768/* cpumask of CPUs with asymetric SMT dependancy */
769static int powerpc_smt_flags(void)
770{
771	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
772
773	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
774		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
775		flags |= SD_ASYM_PACKING;
776	}
777	return flags;
778}
779#endif
780
781static struct sched_domain_topology_level powerpc_topology[] = {
782#ifdef CONFIG_SCHED_SMT
783	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
784#endif
785	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
786	{ NULL, },
787};
788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789void __init smp_cpus_done(unsigned int max_cpus)
790{
791	cpumask_var_t old_mask;
792
793	/* We want the setup_cpu() here to be called from CPU 0, but our
794	 * init thread may have been "borrowed" by another CPU in the meantime
795	 * se we pin us down to CPU 0 for a short while
796	 */
797	alloc_cpumask_var(&old_mask, GFP_NOWAIT);
798	cpumask_copy(old_mask, tsk_cpus_allowed(current));
799	set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
800	
801	if (smp_ops && smp_ops->setup_cpu)
802		smp_ops->setup_cpu(boot_cpuid);
803
804	set_cpus_allowed_ptr(current, old_mask);
805
806	free_cpumask_var(old_mask);
807
808	if (smp_ops && smp_ops->bringup_done)
809		smp_ops->bringup_done();
810
811	dump_numa_cpu_topology();
812
813	set_sched_topology(powerpc_topology);
814
 
 
 
 
 
 
 
 
 
815}
816
817#ifdef CONFIG_HOTPLUG_CPU
818int __cpu_disable(void)
819{
820	int cpu = smp_processor_id();
821	int base, i;
822	int err;
823
824	if (!smp_ops->cpu_disable)
825		return -ENOSYS;
826
827	err = smp_ops->cpu_disable();
828	if (err)
829		return err;
830
831	/* Update sibling maps */
832	base = cpu_first_thread_sibling(cpu);
833	for (i = 0; i < threads_per_core && base + i < nr_cpu_ids; i++) {
834		cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
835		cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
836		cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
837		cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
838	}
839	traverse_core_siblings(cpu, false);
840
841	return 0;
842}
843
844void __cpu_die(unsigned int cpu)
845{
846	if (smp_ops->cpu_die)
847		smp_ops->cpu_die(cpu);
848}
849
850void cpu_die(void)
851{
852	if (ppc_md.cpu_die)
853		ppc_md.cpu_die();
854
855	/* If we return, we re-enter start_secondary */
856	start_secondary_resume();
857}
858
859#endif