Loading...
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/export.h>
14#include <linux/string.h>
15#include <linux/sched.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/reboot.h>
19#include <linux/delay.h>
20#include <linux/initrd.h>
21#include <linux/seq_file.h>
22#include <linux/ioport.h>
23#include <linux/console.h>
24#include <linux/utsname.h>
25#include <linux/tty.h>
26#include <linux/root_dev.h>
27#include <linux/notifier.h>
28#include <linux/cpu.h>
29#include <linux/unistd.h>
30#include <linux/serial.h>
31#include <linux/serial_8250.h>
32#include <linux/bootmem.h>
33#include <linux/pci.h>
34#include <linux/lockdep.h>
35#include <linux/memblock.h>
36#include <linux/memory.h>
37#include <linux/nmi.h>
38
39#include <asm/debugfs.h>
40#include <asm/io.h>
41#include <asm/kdump.h>
42#include <asm/prom.h>
43#include <asm/processor.h>
44#include <asm/pgtable.h>
45#include <asm/smp.h>
46#include <asm/elf.h>
47#include <asm/machdep.h>
48#include <asm/paca.h>
49#include <asm/time.h>
50#include <asm/cputable.h>
51#include <asm/dt_cpu_ftrs.h>
52#include <asm/sections.h>
53#include <asm/btext.h>
54#include <asm/nvram.h>
55#include <asm/setup.h>
56#include <asm/rtas.h>
57#include <asm/iommu.h>
58#include <asm/serial.h>
59#include <asm/cache.h>
60#include <asm/page.h>
61#include <asm/mmu.h>
62#include <asm/firmware.h>
63#include <asm/xmon.h>
64#include <asm/udbg.h>
65#include <asm/kexec.h>
66#include <asm/code-patching.h>
67#include <asm/livepatch.h>
68#include <asm/opal.h>
69#include <asm/cputhreads.h>
70#include <asm/hw_irq.h>
71
72#include "setup.h"
73
74#ifdef DEBUG
75#define DBG(fmt...) udbg_printf(fmt)
76#else
77#define DBG(fmt...)
78#endif
79
80int spinning_secondaries;
81u64 ppc64_pft_size;
82
83struct ppc64_caches ppc64_caches = {
84 .l1d = {
85 .block_size = 0x40,
86 .log_block_size = 6,
87 },
88 .l1i = {
89 .block_size = 0x40,
90 .log_block_size = 6
91 },
92};
93EXPORT_SYMBOL_GPL(ppc64_caches);
94
95#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96void __init setup_tlb_core_data(void)
97{
98 int cpu;
99
100 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
101
102 for_each_possible_cpu(cpu) {
103 int first = cpu_first_thread_sibling(cpu);
104
105 /*
106 * If we boot via kdump on a non-primary thread,
107 * make sure we point at the thread that actually
108 * set up this TLB.
109 */
110 if (cpu_first_thread_sibling(boot_cpuid) == first)
111 first = boot_cpuid;
112
113 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114
115 /*
116 * If we have threads, we need either tlbsrx.
117 * or e6500 tablewalk mode, or else TLB handlers
118 * will be racy and could produce duplicate entries.
119 * Should we panic instead?
120 */
121 WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 book3e_htw_mode != PPC_HTW_E6500,
124 "%s: unsupported MMU configuration\n", __func__);
125 }
126}
127#endif
128
129#ifdef CONFIG_SMP
130
131static char *smt_enabled_cmdline;
132
133/* Look for ibm,smt-enabled OF option */
134void __init check_smt_enabled(void)
135{
136 struct device_node *dn;
137 const char *smt_option;
138
139 /* Default to enabling all threads */
140 smt_enabled_at_boot = threads_per_core;
141
142 /* Allow the command line to overrule the OF option */
143 if (smt_enabled_cmdline) {
144 if (!strcmp(smt_enabled_cmdline, "on"))
145 smt_enabled_at_boot = threads_per_core;
146 else if (!strcmp(smt_enabled_cmdline, "off"))
147 smt_enabled_at_boot = 0;
148 else {
149 int smt;
150 int rc;
151
152 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 if (!rc)
154 smt_enabled_at_boot =
155 min(threads_per_core, smt);
156 }
157 } else {
158 dn = of_find_node_by_path("/options");
159 if (dn) {
160 smt_option = of_get_property(dn, "ibm,smt-enabled",
161 NULL);
162
163 if (smt_option) {
164 if (!strcmp(smt_option, "on"))
165 smt_enabled_at_boot = threads_per_core;
166 else if (!strcmp(smt_option, "off"))
167 smt_enabled_at_boot = 0;
168 }
169
170 of_node_put(dn);
171 }
172 }
173}
174
175/* Look for smt-enabled= cmdline option */
176static int __init early_smt_enabled(char *p)
177{
178 smt_enabled_cmdline = p;
179 return 0;
180}
181early_param("smt-enabled", early_smt_enabled);
182
183#endif /* CONFIG_SMP */
184
185/** Fix up paca fields required for the boot cpu */
186static void __init fixup_boot_paca(void)
187{
188 /* The boot cpu is started */
189 get_paca()->cpu_start = 1;
190 /* Allow percpu accesses to work until we setup percpu data */
191 get_paca()->data_offset = 0;
192 /* Mark interrupts disabled in PACA */
193 irq_soft_mask_set(IRQS_DISABLED);
194}
195
196static void __init configure_exceptions(void)
197{
198 /*
199 * Setup the trampolines from the lowmem exception vectors
200 * to the kdump kernel when not using a relocatable kernel.
201 */
202 setup_kdump_trampoline();
203
204 /* Under a PAPR hypervisor, we need hypercalls */
205 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 /* Enable AIL if possible */
207 pseries_enable_reloc_on_exc();
208
209 /*
210 * Tell the hypervisor that we want our exceptions to
211 * be taken in little endian mode.
212 *
213 * We don't call this for big endian as our calling convention
214 * makes us always enter in BE, and the call may fail under
215 * some circumstances with kdump.
216 */
217#ifdef __LITTLE_ENDIAN__
218 pseries_little_endian_exceptions();
219#endif
220 } else {
221 /* Set endian mode using OPAL */
222 if (firmware_has_feature(FW_FEATURE_OPAL))
223 opal_configure_cores();
224
225 /* AIL on native is done in cpu_ready_for_interrupts() */
226 }
227}
228
229static void cpu_ready_for_interrupts(void)
230{
231 /*
232 * Enable AIL if supported, and we are in hypervisor mode. This
233 * is called once for every processor.
234 *
235 * If we are not in hypervisor mode the job is done once for
236 * the whole partition in configure_exceptions().
237 */
238 if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 unsigned long lpcr = mfspr(SPRN_LPCR);
241 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
242 }
243
244 /*
245 * Fixup HFSCR:TM based on CPU features. The bit is set by our
246 * early asm init because at that point we haven't updated our
247 * CPU features from firmware and device-tree. Here we have,
248 * so let's do it.
249 */
250 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
252
253 /* Set IR and DR in PACA MSR */
254 get_paca()->kernel_msr = MSR_KERNEL;
255}
256
257unsigned long spr_default_dscr = 0;
258
259void __init record_spr_defaults(void)
260{
261 if (early_cpu_has_feature(CPU_FTR_DSCR))
262 spr_default_dscr = mfspr(SPRN_DSCR);
263}
264
265/*
266 * Early initialization entry point. This is called by head.S
267 * with MMU translation disabled. We rely on the "feature" of
268 * the CPU that ignores the top 2 bits of the address in real
269 * mode so we can access kernel globals normally provided we
270 * only toy with things in the RMO region. From here, we do
271 * some early parsing of the device-tree to setup out MEMBLOCK
272 * data structures, and allocate & initialize the hash table
273 * and segment tables so we can start running with translation
274 * enabled.
275 *
276 * It is this function which will call the probe() callback of
277 * the various platform types and copy the matching one to the
278 * global ppc_md structure. Your platform can eventually do
279 * some very early initializations from the probe() routine, but
280 * this is not recommended, be very careful as, for example, the
281 * device-tree is not accessible via normal means at this point.
282 */
283
284void __init early_setup(unsigned long dt_ptr)
285{
286 static __initdata struct paca_struct boot_paca;
287
288 /* -------- printk is _NOT_ safe to use here ! ------- */
289
290 /* Try new device tree based feature discovery ... */
291 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
292 /* Otherwise use the old style CPU table */
293 identify_cpu(0, mfspr(SPRN_PVR));
294
295 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
296 initialise_paca(&boot_paca, 0);
297 setup_paca(&boot_paca);
298 fixup_boot_paca();
299
300 /* -------- printk is now safe to use ------- */
301
302 /* Enable early debugging if any specified (see udbg.h) */
303 udbg_early_init();
304
305 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
306
307 /*
308 * Do early initialization using the flattened device
309 * tree, such as retrieving the physical memory map or
310 * calculating/retrieving the hash table size.
311 */
312 early_init_devtree(__va(dt_ptr));
313
314 /* Now we know the logical id of our boot cpu, setup the paca. */
315 if (boot_cpuid != 0) {
316 /* Poison paca_ptrs[0] again if it's not the boot cpu */
317 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
318 }
319 setup_paca(paca_ptrs[boot_cpuid]);
320 fixup_boot_paca();
321
322 /*
323 * Configure exception handlers. This include setting up trampolines
324 * if needed, setting exception endian mode, etc...
325 */
326 configure_exceptions();
327
328 /* Apply all the dynamic patching */
329 apply_feature_fixups();
330 setup_feature_keys();
331
332 /* Initialize the hash table or TLB handling */
333 early_init_mmu();
334
335 /*
336 * After firmware and early platform setup code has set things up,
337 * we note the SPR values for configurable control/performance
338 * registers, and use those as initial defaults.
339 */
340 record_spr_defaults();
341
342 /*
343 * At this point, we can let interrupts switch to virtual mode
344 * (the MMU has been setup), so adjust the MSR in the PACA to
345 * have IR and DR set and enable AIL if it exists
346 */
347 cpu_ready_for_interrupts();
348
349 DBG(" <- early_setup()\n");
350
351#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
352 /*
353 * This needs to be done *last* (after the above DBG() even)
354 *
355 * Right after we return from this function, we turn on the MMU
356 * which means the real-mode access trick that btext does will
357 * no longer work, it needs to switch to using a real MMU
358 * mapping. This call will ensure that it does
359 */
360 btext_map();
361#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
362}
363
364#ifdef CONFIG_SMP
365void early_setup_secondary(void)
366{
367 /* Mark interrupts disabled in PACA */
368 irq_soft_mask_set(IRQS_DISABLED);
369
370 /* Initialize the hash table or TLB handling */
371 early_init_mmu_secondary();
372
373 /*
374 * At this point, we can let interrupts switch to virtual mode
375 * (the MMU has been setup), so adjust the MSR in the PACA to
376 * have IR and DR set.
377 */
378 cpu_ready_for_interrupts();
379}
380
381#endif /* CONFIG_SMP */
382
383#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
384static bool use_spinloop(void)
385{
386 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
387 /*
388 * See comments in head_64.S -- not all platforms insert
389 * secondaries at __secondary_hold and wait at the spin
390 * loop.
391 */
392 if (firmware_has_feature(FW_FEATURE_OPAL))
393 return false;
394 return true;
395 }
396
397 /*
398 * When book3e boots from kexec, the ePAPR spin table does
399 * not get used.
400 */
401 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
402}
403
404void smp_release_cpus(void)
405{
406 unsigned long *ptr;
407 int i;
408
409 if (!use_spinloop())
410 return;
411
412 DBG(" -> smp_release_cpus()\n");
413
414 /* All secondary cpus are spinning on a common spinloop, release them
415 * all now so they can start to spin on their individual paca
416 * spinloops. For non SMP kernels, the secondary cpus never get out
417 * of the common spinloop.
418 */
419
420 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
421 - PHYSICAL_START);
422 *ptr = ppc_function_entry(generic_secondary_smp_init);
423
424 /* And wait a bit for them to catch up */
425 for (i = 0; i < 100000; i++) {
426 mb();
427 HMT_low();
428 if (spinning_secondaries == 0)
429 break;
430 udelay(1);
431 }
432 DBG("spinning_secondaries = %d\n", spinning_secondaries);
433
434 DBG(" <- smp_release_cpus()\n");
435}
436#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
437
438/*
439 * Initialize some remaining members of the ppc64_caches and systemcfg
440 * structures
441 * (at least until we get rid of them completely). This is mostly some
442 * cache informations about the CPU that will be used by cache flush
443 * routines and/or provided to userland
444 */
445
446static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
447 u32 bsize, u32 sets)
448{
449 info->size = size;
450 info->sets = sets;
451 info->line_size = lsize;
452 info->block_size = bsize;
453 info->log_block_size = __ilog2(bsize);
454 if (bsize)
455 info->blocks_per_page = PAGE_SIZE / bsize;
456 else
457 info->blocks_per_page = 0;
458
459 if (sets == 0)
460 info->assoc = 0xffff;
461 else
462 info->assoc = size / (sets * lsize);
463}
464
465static bool __init parse_cache_info(struct device_node *np,
466 bool icache,
467 struct ppc_cache_info *info)
468{
469 static const char *ipropnames[] __initdata = {
470 "i-cache-size",
471 "i-cache-sets",
472 "i-cache-block-size",
473 "i-cache-line-size",
474 };
475 static const char *dpropnames[] __initdata = {
476 "d-cache-size",
477 "d-cache-sets",
478 "d-cache-block-size",
479 "d-cache-line-size",
480 };
481 const char **propnames = icache ? ipropnames : dpropnames;
482 const __be32 *sizep, *lsizep, *bsizep, *setsp;
483 u32 size, lsize, bsize, sets;
484 bool success = true;
485
486 size = 0;
487 sets = -1u;
488 lsize = bsize = cur_cpu_spec->dcache_bsize;
489 sizep = of_get_property(np, propnames[0], NULL);
490 if (sizep != NULL)
491 size = be32_to_cpu(*sizep);
492 setsp = of_get_property(np, propnames[1], NULL);
493 if (setsp != NULL)
494 sets = be32_to_cpu(*setsp);
495 bsizep = of_get_property(np, propnames[2], NULL);
496 lsizep = of_get_property(np, propnames[3], NULL);
497 if (bsizep == NULL)
498 bsizep = lsizep;
499 if (lsizep != NULL)
500 lsize = be32_to_cpu(*lsizep);
501 if (bsizep != NULL)
502 bsize = be32_to_cpu(*bsizep);
503 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
504 success = false;
505
506 /*
507 * OF is weird .. it represents fully associative caches
508 * as "1 way" which doesn't make much sense and doesn't
509 * leave room for direct mapped. We'll assume that 0
510 * in OF means direct mapped for that reason.
511 */
512 if (sets == 1)
513 sets = 0;
514 else if (sets == 0)
515 sets = 1;
516
517 init_cache_info(info, size, lsize, bsize, sets);
518
519 return success;
520}
521
522void __init initialize_cache_info(void)
523{
524 struct device_node *cpu = NULL, *l2, *l3 = NULL;
525 u32 pvr;
526
527 DBG(" -> initialize_cache_info()\n");
528
529 /*
530 * All shipping POWER8 machines have a firmware bug that
531 * puts incorrect information in the device-tree. This will
532 * be (hopefully) fixed for future chips but for now hard
533 * code the values if we are running on one of these
534 */
535 pvr = PVR_VER(mfspr(SPRN_PVR));
536 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
537 pvr == PVR_POWER8NVL) {
538 /* size lsize blk sets */
539 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
540 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
541 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
542 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
543 } else
544 cpu = of_find_node_by_type(NULL, "cpu");
545
546 /*
547 * We're assuming *all* of the CPUs have the same
548 * d-cache and i-cache sizes... -Peter
549 */
550 if (cpu) {
551 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
552 DBG("Argh, can't find dcache properties !\n");
553
554 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
555 DBG("Argh, can't find icache properties !\n");
556
557 /*
558 * Try to find the L2 and L3 if any. Assume they are
559 * unified and use the D-side properties.
560 */
561 l2 = of_find_next_cache_node(cpu);
562 of_node_put(cpu);
563 if (l2) {
564 parse_cache_info(l2, false, &ppc64_caches.l2);
565 l3 = of_find_next_cache_node(l2);
566 of_node_put(l2);
567 }
568 if (l3) {
569 parse_cache_info(l3, false, &ppc64_caches.l3);
570 of_node_put(l3);
571 }
572 }
573
574 /* For use by binfmt_elf */
575 dcache_bsize = ppc64_caches.l1d.block_size;
576 icache_bsize = ppc64_caches.l1i.block_size;
577
578 cur_cpu_spec->dcache_bsize = dcache_bsize;
579 cur_cpu_spec->icache_bsize = icache_bsize;
580
581 DBG(" <- initialize_cache_info()\n");
582}
583
584/*
585 * This returns the limit below which memory accesses to the linear
586 * mapping are guarnateed not to cause an architectural exception (e.g.,
587 * TLB or SLB miss fault).
588 *
589 * This is used to allocate PACAs and various interrupt stacks that
590 * that are accessed early in interrupt handlers that must not cause
591 * re-entrant interrupts.
592 */
593__init u64 ppc64_bolted_size(void)
594{
595#ifdef CONFIG_PPC_BOOK3E
596 /* Freescale BookE bolts the entire linear mapping */
597 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
598 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
599 return linear_map_top;
600 /* Other BookE, we assume the first GB is bolted */
601 return 1ul << 30;
602#else
603 /* BookS radix, does not take faults on linear mapping */
604 if (early_radix_enabled())
605 return ULONG_MAX;
606
607 /* BookS hash, the first segment is bolted */
608 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
609 return 1UL << SID_SHIFT_1T;
610 return 1UL << SID_SHIFT;
611#endif
612}
613
614static void *__init alloc_stack(unsigned long limit, int cpu)
615{
616 unsigned long pa;
617
618 pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
619 early_cpu_to_node(cpu), MEMBLOCK_NONE);
620 if (!pa) {
621 pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
622 if (!pa)
623 panic("cannot allocate stacks");
624 }
625
626 return __va(pa);
627}
628
629void __init irqstack_early_init(void)
630{
631 u64 limit = ppc64_bolted_size();
632 unsigned int i;
633
634 /*
635 * Interrupt stacks must be in the first segment since we
636 * cannot afford to take SLB misses on them. They are not
637 * accessed in realmode.
638 */
639 for_each_possible_cpu(i) {
640 softirq_ctx[i] = alloc_stack(limit, i);
641 hardirq_ctx[i] = alloc_stack(limit, i);
642 }
643}
644
645#ifdef CONFIG_PPC_BOOK3E
646void __init exc_lvl_early_init(void)
647{
648 unsigned int i;
649
650 for_each_possible_cpu(i) {
651 void *sp;
652
653 sp = alloc_stack(ULONG_MAX, i);
654 critirq_ctx[i] = sp;
655 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
656
657 sp = alloc_stack(ULONG_MAX, i);
658 dbgirq_ctx[i] = sp;
659 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
660
661 sp = alloc_stack(ULONG_MAX, i);
662 mcheckirq_ctx[i] = sp;
663 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
664 }
665
666 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
667 patch_exception(0x040, exc_debug_debug_book3e);
668}
669#endif
670
671/*
672 * Emergency stacks are used for a range of things, from asynchronous
673 * NMIs (system reset, machine check) to synchronous, process context.
674 * We set preempt_count to zero, even though that isn't necessarily correct. To
675 * get the right value we'd need to copy it from the previous thread_info, but
676 * doing that might fault causing more problems.
677 * TODO: what to do with accounting?
678 */
679static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
680{
681 ti->task = NULL;
682 ti->cpu = cpu;
683 ti->preempt_count = 0;
684 ti->local_flags = 0;
685 ti->flags = 0;
686 klp_init_thread_info(ti);
687}
688
689/*
690 * Stack space used when we detect a bad kernel stack pointer, and
691 * early in SMP boots before relocation is enabled. Exclusive emergency
692 * stack for machine checks.
693 */
694void __init emergency_stack_init(void)
695{
696 u64 limit;
697 unsigned int i;
698
699 /*
700 * Emergency stacks must be under 256MB, we cannot afford to take
701 * SLB misses on them. The ABI also requires them to be 128-byte
702 * aligned.
703 *
704 * Since we use these as temporary stacks during secondary CPU
705 * bringup, machine check, system reset, and HMI, we need to get
706 * at them in real mode. This means they must also be within the RMO
707 * region.
708 *
709 * The IRQ stacks allocated elsewhere in this file are zeroed and
710 * initialized in kernel/irq.c. These are initialized here in order
711 * to have emergency stacks available as early as possible.
712 */
713 limit = min(ppc64_bolted_size(), ppc64_rma_size);
714
715 for_each_possible_cpu(i) {
716 struct thread_info *ti;
717
718 ti = alloc_stack(limit, i);
719 memset(ti, 0, THREAD_SIZE);
720 emerg_stack_init_thread_info(ti, i);
721 paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
722
723#ifdef CONFIG_PPC_BOOK3S_64
724 /* emergency stack for NMI exception handling. */
725 ti = alloc_stack(limit, i);
726 memset(ti, 0, THREAD_SIZE);
727 emerg_stack_init_thread_info(ti, i);
728 paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
729
730 /* emergency stack for machine check exception handling. */
731 ti = alloc_stack(limit, i);
732 memset(ti, 0, THREAD_SIZE);
733 emerg_stack_init_thread_info(ti, i);
734 paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
735#endif
736 }
737}
738
739#ifdef CONFIG_SMP
740#define PCPU_DYN_SIZE ()
741
742static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
743{
744 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
745 __pa(MAX_DMA_ADDRESS));
746}
747
748static void __init pcpu_fc_free(void *ptr, size_t size)
749{
750 free_bootmem(__pa(ptr), size);
751}
752
753static int pcpu_cpu_distance(unsigned int from, unsigned int to)
754{
755 if (early_cpu_to_node(from) == early_cpu_to_node(to))
756 return LOCAL_DISTANCE;
757 else
758 return REMOTE_DISTANCE;
759}
760
761unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
762EXPORT_SYMBOL(__per_cpu_offset);
763
764void __init setup_per_cpu_areas(void)
765{
766 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
767 size_t atom_size;
768 unsigned long delta;
769 unsigned int cpu;
770 int rc;
771
772 /*
773 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
774 * to group units. For larger mappings, use 1M atom which
775 * should be large enough to contain a number of units.
776 */
777 if (mmu_linear_psize == MMU_PAGE_4K)
778 atom_size = PAGE_SIZE;
779 else
780 atom_size = 1 << 20;
781
782 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
783 pcpu_fc_alloc, pcpu_fc_free);
784 if (rc < 0)
785 panic("cannot initialize percpu area (err=%d)", rc);
786
787 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
788 for_each_possible_cpu(cpu) {
789 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
790 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
791 }
792}
793#endif
794
795#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
796unsigned long memory_block_size_bytes(void)
797{
798 if (ppc_md.memory_block_size)
799 return ppc_md.memory_block_size();
800
801 return MIN_MEMORY_BLOCK_SIZE;
802}
803#endif
804
805#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
806struct ppc_pci_io ppc_pci_io;
807EXPORT_SYMBOL(ppc_pci_io);
808#endif
809
810#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
811u64 hw_nmi_get_sample_period(int watchdog_thresh)
812{
813 return ppc_proc_freq * watchdog_thresh;
814}
815#endif
816
817/*
818 * The perf based hardlockup detector breaks PMU event based branches, so
819 * disable it by default. Book3S has a soft-nmi hardlockup detector based
820 * on the decrementer interrupt, so it does not suffer from this problem.
821 *
822 * It is likely to get false positives in VM guests, so disable it there
823 * by default too.
824 */
825static int __init disable_hardlockup_detector(void)
826{
827#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
828 hardlockup_detector_disable();
829#else
830 if (firmware_has_feature(FW_FEATURE_LPAR))
831 hardlockup_detector_disable();
832#endif
833
834 return 0;
835}
836early_initcall(disable_hardlockup_detector);
837
838#ifdef CONFIG_PPC_BOOK3S_64
839static enum l1d_flush_type enabled_flush_types;
840static void *l1d_flush_fallback_area;
841static bool no_rfi_flush;
842bool rfi_flush;
843
844static int __init handle_no_rfi_flush(char *p)
845{
846 pr_info("rfi-flush: disabled on command line.");
847 no_rfi_flush = true;
848 return 0;
849}
850early_param("no_rfi_flush", handle_no_rfi_flush);
851
852/*
853 * The RFI flush is not KPTI, but because users will see doco that says to use
854 * nopti we hijack that option here to also disable the RFI flush.
855 */
856static int __init handle_no_pti(char *p)
857{
858 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
859 handle_no_rfi_flush(NULL);
860 return 0;
861}
862early_param("nopti", handle_no_pti);
863
864static void do_nothing(void *unused)
865{
866 /*
867 * We don't need to do the flush explicitly, just enter+exit kernel is
868 * sufficient, the RFI exit handlers will do the right thing.
869 */
870}
871
872void rfi_flush_enable(bool enable)
873{
874 if (enable) {
875 do_rfi_flush_fixups(enabled_flush_types);
876 on_each_cpu(do_nothing, NULL, 1);
877 } else
878 do_rfi_flush_fixups(L1D_FLUSH_NONE);
879
880 rfi_flush = enable;
881}
882
883static void __ref init_fallback_flush(void)
884{
885 u64 l1d_size, limit;
886 int cpu;
887
888 /* Only allocate the fallback flush area once (at boot time). */
889 if (l1d_flush_fallback_area)
890 return;
891
892 l1d_size = ppc64_caches.l1d.size;
893
894 /*
895 * If there is no d-cache-size property in the device tree, l1d_size
896 * could be zero. That leads to the loop in the asm wrapping around to
897 * 2^64-1, and then walking off the end of the fallback area and
898 * eventually causing a page fault which is fatal. Just default to
899 * something vaguely sane.
900 */
901 if (!l1d_size)
902 l1d_size = (64 * 1024);
903
904 limit = min(ppc64_bolted_size(), ppc64_rma_size);
905
906 /*
907 * Align to L1d size, and size it at 2x L1d size, to catch possible
908 * hardware prefetch runoff. We don't have a recipe for load patterns to
909 * reliably avoid the prefetcher.
910 */
911 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
912 memset(l1d_flush_fallback_area, 0, l1d_size * 2);
913
914 for_each_possible_cpu(cpu) {
915 struct paca_struct *paca = paca_ptrs[cpu];
916 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
917 paca->l1d_flush_size = l1d_size;
918 }
919}
920
921void setup_rfi_flush(enum l1d_flush_type types, bool enable)
922{
923 if (types & L1D_FLUSH_FALLBACK) {
924 pr_info("rfi-flush: fallback displacement flush available\n");
925 init_fallback_flush();
926 }
927
928 if (types & L1D_FLUSH_ORI)
929 pr_info("rfi-flush: ori type flush available\n");
930
931 if (types & L1D_FLUSH_MTTRIG)
932 pr_info("rfi-flush: mttrig type flush available\n");
933
934 enabled_flush_types = types;
935
936 if (!no_rfi_flush)
937 rfi_flush_enable(enable);
938}
939
940#ifdef CONFIG_DEBUG_FS
941static int rfi_flush_set(void *data, u64 val)
942{
943 bool enable;
944
945 if (val == 1)
946 enable = true;
947 else if (val == 0)
948 enable = false;
949 else
950 return -EINVAL;
951
952 /* Only do anything if we're changing state */
953 if (enable != rfi_flush)
954 rfi_flush_enable(enable);
955
956 return 0;
957}
958
959static int rfi_flush_get(void *data, u64 *val)
960{
961 *val = rfi_flush ? 1 : 0;
962 return 0;
963}
964
965DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
966
967static __init int rfi_flush_debugfs_init(void)
968{
969 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
970 return 0;
971}
972device_initcall(rfi_flush_debugfs_init);
973#endif
974#endif /* CONFIG_PPC_BOOK3S_64 */
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#define DEBUG
14
15#include <linux/export.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <linux/memory.h>
39#include <linux/nmi.h>
40
41#include <asm/io.h>
42#include <asm/kdump.h>
43#include <asm/prom.h>
44#include <asm/processor.h>
45#include <asm/pgtable.h>
46#include <asm/smp.h>
47#include <asm/elf.h>
48#include <asm/machdep.h>
49#include <asm/paca.h>
50#include <asm/time.h>
51#include <asm/cputable.h>
52#include <asm/sections.h>
53#include <asm/btext.h>
54#include <asm/nvram.h>
55#include <asm/setup.h>
56#include <asm/rtas.h>
57#include <asm/iommu.h>
58#include <asm/serial.h>
59#include <asm/cache.h>
60#include <asm/page.h>
61#include <asm/mmu.h>
62#include <asm/firmware.h>
63#include <asm/xmon.h>
64#include <asm/udbg.h>
65#include <asm/kexec.h>
66#include <asm/code-patching.h>
67#include <asm/livepatch.h>
68#include <asm/opal.h>
69#include <asm/cputhreads.h>
70
71#ifdef DEBUG
72#define DBG(fmt...) udbg_printf(fmt)
73#else
74#define DBG(fmt...)
75#endif
76
77int spinning_secondaries;
78u64 ppc64_pft_size;
79
80/* Pick defaults since we might want to patch instructions
81 * before we've read this from the device tree.
82 */
83struct ppc64_caches ppc64_caches = {
84 .dline_size = 0x40,
85 .log_dline_size = 6,
86 .iline_size = 0x40,
87 .log_iline_size = 6
88};
89EXPORT_SYMBOL_GPL(ppc64_caches);
90
91/*
92 * These are used in binfmt_elf.c to put aux entries on the stack
93 * for each elf executable being started.
94 */
95int dcache_bsize;
96int icache_bsize;
97int ucache_bsize;
98
99#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
100void __init setup_tlb_core_data(void)
101{
102 int cpu;
103
104 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
105
106 for_each_possible_cpu(cpu) {
107 int first = cpu_first_thread_sibling(cpu);
108
109 /*
110 * If we boot via kdump on a non-primary thread,
111 * make sure we point at the thread that actually
112 * set up this TLB.
113 */
114 if (cpu_first_thread_sibling(boot_cpuid) == first)
115 first = boot_cpuid;
116
117 paca[cpu].tcd_ptr = &paca[first].tcd;
118
119 /*
120 * If we have threads, we need either tlbsrx.
121 * or e6500 tablewalk mode, or else TLB handlers
122 * will be racy and could produce duplicate entries.
123 */
124 if (smt_enabled_at_boot >= 2 &&
125 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
126 book3e_htw_mode != PPC_HTW_E6500) {
127 /* Should we panic instead? */
128 WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
129 __func__);
130 }
131 }
132}
133#endif
134
135#ifdef CONFIG_SMP
136
137static char *smt_enabled_cmdline;
138
139/* Look for ibm,smt-enabled OF option */
140void __init check_smt_enabled(void)
141{
142 struct device_node *dn;
143 const char *smt_option;
144
145 /* Default to enabling all threads */
146 smt_enabled_at_boot = threads_per_core;
147
148 /* Allow the command line to overrule the OF option */
149 if (smt_enabled_cmdline) {
150 if (!strcmp(smt_enabled_cmdline, "on"))
151 smt_enabled_at_boot = threads_per_core;
152 else if (!strcmp(smt_enabled_cmdline, "off"))
153 smt_enabled_at_boot = 0;
154 else {
155 int smt;
156 int rc;
157
158 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
159 if (!rc)
160 smt_enabled_at_boot =
161 min(threads_per_core, smt);
162 }
163 } else {
164 dn = of_find_node_by_path("/options");
165 if (dn) {
166 smt_option = of_get_property(dn, "ibm,smt-enabled",
167 NULL);
168
169 if (smt_option) {
170 if (!strcmp(smt_option, "on"))
171 smt_enabled_at_boot = threads_per_core;
172 else if (!strcmp(smt_option, "off"))
173 smt_enabled_at_boot = 0;
174 }
175
176 of_node_put(dn);
177 }
178 }
179}
180
181/* Look for smt-enabled= cmdline option */
182static int __init early_smt_enabled(char *p)
183{
184 smt_enabled_cmdline = p;
185 return 0;
186}
187early_param("smt-enabled", early_smt_enabled);
188
189#endif /* CONFIG_SMP */
190
191/** Fix up paca fields required for the boot cpu */
192static void __init fixup_boot_paca(void)
193{
194 /* The boot cpu is started */
195 get_paca()->cpu_start = 1;
196 /* Allow percpu accesses to work until we setup percpu data */
197 get_paca()->data_offset = 0;
198}
199
200static void __init configure_exceptions(void)
201{
202 /*
203 * Setup the trampolines from the lowmem exception vectors
204 * to the kdump kernel when not using a relocatable kernel.
205 */
206 setup_kdump_trampoline();
207
208 /* Under a PAPR hypervisor, we need hypercalls */
209 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
210 /* Enable AIL if possible */
211 pseries_enable_reloc_on_exc();
212
213 /*
214 * Tell the hypervisor that we want our exceptions to
215 * be taken in little endian mode.
216 *
217 * We don't call this for big endian as our calling convention
218 * makes us always enter in BE, and the call may fail under
219 * some circumstances with kdump.
220 */
221#ifdef __LITTLE_ENDIAN__
222 pseries_little_endian_exceptions();
223#endif
224 } else {
225 /* Set endian mode using OPAL */
226 if (firmware_has_feature(FW_FEATURE_OPAL))
227 opal_configure_cores();
228
229 /* AIL on native is done in cpu_ready_for_interrupts() */
230 }
231}
232
233static void cpu_ready_for_interrupts(void)
234{
235 /*
236 * Enable AIL if supported, and we are in hypervisor mode. This
237 * is called once for every processor.
238 *
239 * If we are not in hypervisor mode the job is done once for
240 * the whole partition in configure_exceptions().
241 */
242 if (early_cpu_has_feature(CPU_FTR_HVMODE) &&
243 early_cpu_has_feature(CPU_FTR_ARCH_207S)) {
244 unsigned long lpcr = mfspr(SPRN_LPCR);
245 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
246 }
247
248 /*
249 * Fixup HFSCR:TM based on CPU features. The bit is set by our
250 * early asm init because at that point we haven't updated our
251 * CPU features from firmware and device-tree. Here we have,
252 * so let's do it.
253 */
254 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
255 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
256
257 /* Set IR and DR in PACA MSR */
258 get_paca()->kernel_msr = MSR_KERNEL;
259}
260
261/*
262 * Early initialization entry point. This is called by head.S
263 * with MMU translation disabled. We rely on the "feature" of
264 * the CPU that ignores the top 2 bits of the address in real
265 * mode so we can access kernel globals normally provided we
266 * only toy with things in the RMO region. From here, we do
267 * some early parsing of the device-tree to setup out MEMBLOCK
268 * data structures, and allocate & initialize the hash table
269 * and segment tables so we can start running with translation
270 * enabled.
271 *
272 * It is this function which will call the probe() callback of
273 * the various platform types and copy the matching one to the
274 * global ppc_md structure. Your platform can eventually do
275 * some very early initializations from the probe() routine, but
276 * this is not recommended, be very careful as, for example, the
277 * device-tree is not accessible via normal means at this point.
278 */
279
280void __init early_setup(unsigned long dt_ptr)
281{
282 static __initdata struct paca_struct boot_paca;
283
284 /* -------- printk is _NOT_ safe to use here ! ------- */
285
286 /* Identify CPU type */
287 identify_cpu(0, mfspr(SPRN_PVR));
288
289 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
290 initialise_paca(&boot_paca, 0);
291 setup_paca(&boot_paca);
292 fixup_boot_paca();
293
294 /* -------- printk is now safe to use ------- */
295
296 /* Enable early debugging if any specified (see udbg.h) */
297 udbg_early_init();
298
299 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
300
301 /*
302 * Do early initialization using the flattened device
303 * tree, such as retrieving the physical memory map or
304 * calculating/retrieving the hash table size.
305 */
306 early_init_devtree(__va(dt_ptr));
307
308 /* Now we know the logical id of our boot cpu, setup the paca. */
309 setup_paca(&paca[boot_cpuid]);
310 fixup_boot_paca();
311
312 /*
313 * Configure exception handlers. This include setting up trampolines
314 * if needed, setting exception endian mode, etc...
315 */
316 configure_exceptions();
317
318 /* Apply all the dynamic patching */
319 apply_feature_fixups();
320 setup_feature_keys();
321
322 /* Initialize the hash table or TLB handling */
323 early_init_mmu();
324
325 /*
326 * At this point, we can let interrupts switch to virtual mode
327 * (the MMU has been setup), so adjust the MSR in the PACA to
328 * have IR and DR set and enable AIL if it exists
329 */
330 cpu_ready_for_interrupts();
331
332 DBG(" <- early_setup()\n");
333
334#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
335 /*
336 * This needs to be done *last* (after the above DBG() even)
337 *
338 * Right after we return from this function, we turn on the MMU
339 * which means the real-mode access trick that btext does will
340 * no longer work, it needs to switch to using a real MMU
341 * mapping. This call will ensure that it does
342 */
343 btext_map();
344#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
345}
346
347#ifdef CONFIG_SMP
348void early_setup_secondary(void)
349{
350 /* Mark interrupts disabled in PACA */
351 get_paca()->soft_enabled = 0;
352
353 /* Initialize the hash table or TLB handling */
354 early_init_mmu_secondary();
355
356 /*
357 * At this point, we can let interrupts switch to virtual mode
358 * (the MMU has been setup), so adjust the MSR in the PACA to
359 * have IR and DR set.
360 */
361 cpu_ready_for_interrupts();
362}
363
364#endif /* CONFIG_SMP */
365
366#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
367static bool use_spinloop(void)
368{
369 if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
370 return true;
371
372 /*
373 * When book3e boots from kexec, the ePAPR spin table does
374 * not get used.
375 */
376 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
377}
378
379void smp_release_cpus(void)
380{
381 unsigned long *ptr;
382 int i;
383
384 if (!use_spinloop())
385 return;
386
387 DBG(" -> smp_release_cpus()\n");
388
389 /* All secondary cpus are spinning on a common spinloop, release them
390 * all now so they can start to spin on their individual paca
391 * spinloops. For non SMP kernels, the secondary cpus never get out
392 * of the common spinloop.
393 */
394
395 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
396 - PHYSICAL_START);
397 *ptr = ppc_function_entry(generic_secondary_smp_init);
398
399 /* And wait a bit for them to catch up */
400 for (i = 0; i < 100000; i++) {
401 mb();
402 HMT_low();
403 if (spinning_secondaries == 0)
404 break;
405 udelay(1);
406 }
407 DBG("spinning_secondaries = %d\n", spinning_secondaries);
408
409 DBG(" <- smp_release_cpus()\n");
410}
411#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
412
413/*
414 * Initialize some remaining members of the ppc64_caches and systemcfg
415 * structures
416 * (at least until we get rid of them completely). This is mostly some
417 * cache informations about the CPU that will be used by cache flush
418 * routines and/or provided to userland
419 */
420void __init initialize_cache_info(void)
421{
422 struct device_node *np;
423 unsigned long num_cpus = 0;
424
425 DBG(" -> initialize_cache_info()\n");
426
427 for_each_node_by_type(np, "cpu") {
428 num_cpus += 1;
429
430 /*
431 * We're assuming *all* of the CPUs have the same
432 * d-cache and i-cache sizes... -Peter
433 */
434 if (num_cpus == 1) {
435 const __be32 *sizep, *lsizep;
436 u32 size, lsize;
437
438 size = 0;
439 lsize = cur_cpu_spec->dcache_bsize;
440 sizep = of_get_property(np, "d-cache-size", NULL);
441 if (sizep != NULL)
442 size = be32_to_cpu(*sizep);
443 lsizep = of_get_property(np, "d-cache-block-size",
444 NULL);
445 /* fallback if block size missing */
446 if (lsizep == NULL)
447 lsizep = of_get_property(np,
448 "d-cache-line-size",
449 NULL);
450 if (lsizep != NULL)
451 lsize = be32_to_cpu(*lsizep);
452 if (sizep == NULL || lsizep == NULL)
453 DBG("Argh, can't find dcache properties ! "
454 "sizep: %p, lsizep: %p\n", sizep, lsizep);
455
456 ppc64_caches.dsize = size;
457 ppc64_caches.dline_size = lsize;
458 ppc64_caches.log_dline_size = __ilog2(lsize);
459 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
460
461 size = 0;
462 lsize = cur_cpu_spec->icache_bsize;
463 sizep = of_get_property(np, "i-cache-size", NULL);
464 if (sizep != NULL)
465 size = be32_to_cpu(*sizep);
466 lsizep = of_get_property(np, "i-cache-block-size",
467 NULL);
468 if (lsizep == NULL)
469 lsizep = of_get_property(np,
470 "i-cache-line-size",
471 NULL);
472 if (lsizep != NULL)
473 lsize = be32_to_cpu(*lsizep);
474 if (sizep == NULL || lsizep == NULL)
475 DBG("Argh, can't find icache properties ! "
476 "sizep: %p, lsizep: %p\n", sizep, lsizep);
477
478 ppc64_caches.isize = size;
479 ppc64_caches.iline_size = lsize;
480 ppc64_caches.log_iline_size = __ilog2(lsize);
481 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
482 }
483 }
484
485 /* For use by binfmt_elf */
486 dcache_bsize = ppc64_caches.dline_size;
487 icache_bsize = ppc64_caches.iline_size;
488
489 DBG(" <- initialize_cache_info()\n");
490}
491
492/* This returns the limit below which memory accesses to the linear
493 * mapping are guarnateed not to cause a TLB or SLB miss. This is
494 * used to allocate interrupt or emergency stacks for which our
495 * exception entry path doesn't deal with being interrupted.
496 */
497static __init u64 safe_stack_limit(void)
498{
499#ifdef CONFIG_PPC_BOOK3E
500 /* Freescale BookE bolts the entire linear mapping */
501 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
502 return linear_map_top;
503 /* Other BookE, we assume the first GB is bolted */
504 return 1ul << 30;
505#else
506 /* BookS, the first segment is bolted */
507 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
508 return 1UL << SID_SHIFT_1T;
509 return 1UL << SID_SHIFT;
510#endif
511}
512
513void __init irqstack_early_init(void)
514{
515 u64 limit = safe_stack_limit();
516 unsigned int i;
517
518 /*
519 * Interrupt stacks must be in the first segment since we
520 * cannot afford to take SLB misses on them.
521 */
522 for_each_possible_cpu(i) {
523 softirq_ctx[i] = (struct thread_info *)
524 __va(memblock_alloc_base(THREAD_SIZE,
525 THREAD_SIZE, limit));
526 hardirq_ctx[i] = (struct thread_info *)
527 __va(memblock_alloc_base(THREAD_SIZE,
528 THREAD_SIZE, limit));
529 }
530}
531
532#ifdef CONFIG_PPC_BOOK3E
533void __init exc_lvl_early_init(void)
534{
535 unsigned int i;
536 unsigned long sp;
537
538 for_each_possible_cpu(i) {
539 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
540 critirq_ctx[i] = (struct thread_info *)__va(sp);
541 paca[i].crit_kstack = __va(sp + THREAD_SIZE);
542
543 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
544 dbgirq_ctx[i] = (struct thread_info *)__va(sp);
545 paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
546
547 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
548 mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
549 paca[i].mc_kstack = __va(sp + THREAD_SIZE);
550 }
551
552 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
553 patch_exception(0x040, exc_debug_debug_book3e);
554}
555#endif
556
557/*
558 * Stack space used when we detect a bad kernel stack pointer, and
559 * early in SMP boots before relocation is enabled. Exclusive emergency
560 * stack for machine checks.
561 */
562void __init emergency_stack_init(void)
563{
564 u64 limit;
565 unsigned int i;
566
567 /*
568 * Emergency stacks must be under 256MB, we cannot afford to take
569 * SLB misses on them. The ABI also requires them to be 128-byte
570 * aligned.
571 *
572 * Since we use these as temporary stacks during secondary CPU
573 * bringup, we need to get at them in real mode. This means they
574 * must also be within the RMO region.
575 */
576 limit = min(safe_stack_limit(), ppc64_rma_size);
577
578 for_each_possible_cpu(i) {
579 struct thread_info *ti;
580 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
581 klp_init_thread_info(ti);
582 paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
583
584#ifdef CONFIG_PPC_BOOK3S_64
585 /* emergency stack for machine check exception handling. */
586 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
587 klp_init_thread_info(ti);
588 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
589#endif
590 }
591}
592
593#ifdef CONFIG_SMP
594#define PCPU_DYN_SIZE ()
595
596static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
597{
598 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
599 __pa(MAX_DMA_ADDRESS));
600}
601
602static void __init pcpu_fc_free(void *ptr, size_t size)
603{
604 free_bootmem(__pa(ptr), size);
605}
606
607static int pcpu_cpu_distance(unsigned int from, unsigned int to)
608{
609 if (cpu_to_node(from) == cpu_to_node(to))
610 return LOCAL_DISTANCE;
611 else
612 return REMOTE_DISTANCE;
613}
614
615unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
616EXPORT_SYMBOL(__per_cpu_offset);
617
618void __init setup_per_cpu_areas(void)
619{
620 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
621 size_t atom_size;
622 unsigned long delta;
623 unsigned int cpu;
624 int rc;
625
626 /*
627 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
628 * to group units. For larger mappings, use 1M atom which
629 * should be large enough to contain a number of units.
630 */
631 if (mmu_linear_psize == MMU_PAGE_4K)
632 atom_size = PAGE_SIZE;
633 else
634 atom_size = 1 << 20;
635
636 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
637 pcpu_fc_alloc, pcpu_fc_free);
638 if (rc < 0)
639 panic("cannot initialize percpu area (err=%d)", rc);
640
641 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
642 for_each_possible_cpu(cpu) {
643 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
644 paca[cpu].data_offset = __per_cpu_offset[cpu];
645 }
646}
647#endif
648
649#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
650unsigned long memory_block_size_bytes(void)
651{
652 if (ppc_md.memory_block_size)
653 return ppc_md.memory_block_size();
654
655 return MIN_MEMORY_BLOCK_SIZE;
656}
657#endif
658
659#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
660struct ppc_pci_io ppc_pci_io;
661EXPORT_SYMBOL(ppc_pci_io);
662#endif
663
664#ifdef CONFIG_HARDLOCKUP_DETECTOR
665u64 hw_nmi_get_sample_period(int watchdog_thresh)
666{
667 return ppc_proc_freq * watchdog_thresh;
668}
669
670/*
671 * The hardlockup detector breaks PMU event based branches and is likely
672 * to get false positives in KVM guests, so disable it by default.
673 */
674static int __init disable_hardlockup_detector(void)
675{
676 hardlockup_detector_disable();
677
678 return 0;
679}
680early_initcall(disable_hardlockup_detector);
681#endif