Loading...
1/*
2 * OpenRISC Linux
3 *
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
7 *
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * DMA mapping callbacks...
18 * As alloc_coherent is the only DMA callback being used currently, that's
19 * the only thing implemented properly. The rest need looking into...
20 */
21
22#include <linux/dma-mapping.h>
23#include <linux/dma-debug.h>
24#include <linux/export.h>
25
26#include <asm/cpuinfo.h>
27#include <asm/spr_defs.h>
28#include <asm/tlbflush.h>
29
30static int
31page_set_nocache(pte_t *pte, unsigned long addr,
32 unsigned long next, struct mm_walk *walk)
33{
34 unsigned long cl;
35 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
36
37 pte_val(*pte) |= _PAGE_CI;
38
39 /*
40 * Flush the page out of the TLB so that the new page flags get
41 * picked up next time there's an access
42 */
43 flush_tlb_page(NULL, addr);
44
45 /* Flush page out of dcache */
46 for (cl = __pa(addr); cl < __pa(next); cl += cpuinfo->dcache_block_size)
47 mtspr(SPR_DCBFR, cl);
48
49 return 0;
50}
51
52static int
53page_clear_nocache(pte_t *pte, unsigned long addr,
54 unsigned long next, struct mm_walk *walk)
55{
56 pte_val(*pte) &= ~_PAGE_CI;
57
58 /*
59 * Flush the page out of the TLB so that the new page flags get
60 * picked up next time there's an access
61 */
62 flush_tlb_page(NULL, addr);
63
64 return 0;
65}
66
67/*
68 * Alloc "coherent" memory, which for OpenRISC means simply uncached.
69 *
70 * This function effectively just calls __get_free_pages, sets the
71 * cache-inhibit bit on those pages, and makes sure that the pages are
72 * flushed out of the cache before they are used.
73 *
74 * If the NON_CONSISTENT attribute is set, then this function just
75 * returns "normal", cachable memory.
76 *
77 * There are additional flags WEAK_ORDERING and WRITE_COMBINE to take
78 * into consideration here, too. All current known implementations of
79 * the OR1K support only strongly ordered memory accesses, so that flag
80 * is being ignored for now; uncached but write-combined memory is a
81 * missing feature of the OR1K.
82 */
83static void *
84or1k_dma_alloc(struct device *dev, size_t size,
85 dma_addr_t *dma_handle, gfp_t gfp,
86 unsigned long attrs)
87{
88 unsigned long va;
89 void *page;
90 struct mm_walk walk = {
91 .pte_entry = page_set_nocache,
92 .mm = &init_mm
93 };
94
95 page = alloc_pages_exact(size, gfp);
96 if (!page)
97 return NULL;
98
99 /* This gives us the real physical address of the first page. */
100 *dma_handle = __pa(page);
101
102 va = (unsigned long)page;
103
104 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
105 /*
106 * We need to iterate through the pages, clearing the dcache for
107 * them and setting the cache-inhibit bit.
108 */
109 if (walk_page_range(va, va + size, &walk)) {
110 free_pages_exact(page, size);
111 return NULL;
112 }
113 }
114
115 return (void *)va;
116}
117
118static void
119or1k_dma_free(struct device *dev, size_t size, void *vaddr,
120 dma_addr_t dma_handle, unsigned long attrs)
121{
122 unsigned long va = (unsigned long)vaddr;
123 struct mm_walk walk = {
124 .pte_entry = page_clear_nocache,
125 .mm = &init_mm
126 };
127
128 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
129 /* walk_page_range shouldn't be able to fail here */
130 WARN_ON(walk_page_range(va, va + size, &walk));
131 }
132
133 free_pages_exact(vaddr, size);
134}
135
136static dma_addr_t
137or1k_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size,
139 enum dma_data_direction dir,
140 unsigned long attrs)
141{
142 unsigned long cl;
143 dma_addr_t addr = page_to_phys(page) + offset;
144 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
145
146 if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
147 return addr;
148
149 switch (dir) {
150 case DMA_TO_DEVICE:
151 /* Flush the dcache for the requested range */
152 for (cl = addr; cl < addr + size;
153 cl += cpuinfo->dcache_block_size)
154 mtspr(SPR_DCBFR, cl);
155 break;
156 case DMA_FROM_DEVICE:
157 /* Invalidate the dcache for the requested range */
158 for (cl = addr; cl < addr + size;
159 cl += cpuinfo->dcache_block_size)
160 mtspr(SPR_DCBIR, cl);
161 break;
162 default:
163 /*
164 * NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to
165 * flush nor invalidate the cache here as the area will need
166 * to be manually synced anyway.
167 */
168 break;
169 }
170
171 return addr;
172}
173
174static void
175or1k_unmap_page(struct device *dev, dma_addr_t dma_handle,
176 size_t size, enum dma_data_direction dir,
177 unsigned long attrs)
178{
179 /* Nothing special to do here... */
180}
181
182static int
183or1k_map_sg(struct device *dev, struct scatterlist *sg,
184 int nents, enum dma_data_direction dir,
185 unsigned long attrs)
186{
187 struct scatterlist *s;
188 int i;
189
190 for_each_sg(sg, s, nents, i) {
191 s->dma_address = or1k_map_page(dev, sg_page(s), s->offset,
192 s->length, dir, 0);
193 }
194
195 return nents;
196}
197
198static void
199or1k_unmap_sg(struct device *dev, struct scatterlist *sg,
200 int nents, enum dma_data_direction dir,
201 unsigned long attrs)
202{
203 struct scatterlist *s;
204 int i;
205
206 for_each_sg(sg, s, nents, i) {
207 or1k_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, 0);
208 }
209}
210
211static void
212or1k_sync_single_for_cpu(struct device *dev,
213 dma_addr_t dma_handle, size_t size,
214 enum dma_data_direction dir)
215{
216 unsigned long cl;
217 dma_addr_t addr = dma_handle;
218 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
219
220 /* Invalidate the dcache for the requested range */
221 for (cl = addr; cl < addr + size; cl += cpuinfo->dcache_block_size)
222 mtspr(SPR_DCBIR, cl);
223}
224
225static void
226or1k_sync_single_for_device(struct device *dev,
227 dma_addr_t dma_handle, size_t size,
228 enum dma_data_direction dir)
229{
230 unsigned long cl;
231 dma_addr_t addr = dma_handle;
232 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
233
234 /* Flush the dcache for the requested range */
235 for (cl = addr; cl < addr + size; cl += cpuinfo->dcache_block_size)
236 mtspr(SPR_DCBFR, cl);
237}
238
239const struct dma_map_ops or1k_dma_map_ops = {
240 .alloc = or1k_dma_alloc,
241 .free = or1k_dma_free,
242 .map_page = or1k_map_page,
243 .unmap_page = or1k_unmap_page,
244 .map_sg = or1k_map_sg,
245 .unmap_sg = or1k_unmap_sg,
246 .sync_single_for_cpu = or1k_sync_single_for_cpu,
247 .sync_single_for_device = or1k_sync_single_for_device,
248};
249EXPORT_SYMBOL(or1k_dma_map_ops);
250
251/* Number of entries preallocated for DMA-API debugging */
252#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
253
254static int __init dma_init(void)
255{
256 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
257
258 return 0;
259}
260fs_initcall(dma_init);
1/*
2 * OpenRISC Linux
3 *
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
7 *
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * DMA mapping callbacks...
18 * As alloc_coherent is the only DMA callback being used currently, that's
19 * the only thing implemented properly. The rest need looking into...
20 */
21
22#include <linux/dma-mapping.h>
23#include <linux/dma-debug.h>
24#include <linux/export.h>
25
26#include <asm/cpuinfo.h>
27#include <asm/spr_defs.h>
28#include <asm/tlbflush.h>
29
30static int
31page_set_nocache(pte_t *pte, unsigned long addr,
32 unsigned long next, struct mm_walk *walk)
33{
34 unsigned long cl;
35
36 pte_val(*pte) |= _PAGE_CI;
37
38 /*
39 * Flush the page out of the TLB so that the new page flags get
40 * picked up next time there's an access
41 */
42 flush_tlb_page(NULL, addr);
43
44 /* Flush page out of dcache */
45 for (cl = __pa(addr); cl < __pa(next); cl += cpuinfo.dcache_block_size)
46 mtspr(SPR_DCBFR, cl);
47
48 return 0;
49}
50
51static int
52page_clear_nocache(pte_t *pte, unsigned long addr,
53 unsigned long next, struct mm_walk *walk)
54{
55 pte_val(*pte) &= ~_PAGE_CI;
56
57 /*
58 * Flush the page out of the TLB so that the new page flags get
59 * picked up next time there's an access
60 */
61 flush_tlb_page(NULL, addr);
62
63 return 0;
64}
65
66/*
67 * Alloc "coherent" memory, which for OpenRISC means simply uncached.
68 *
69 * This function effectively just calls __get_free_pages, sets the
70 * cache-inhibit bit on those pages, and makes sure that the pages are
71 * flushed out of the cache before they are used.
72 *
73 * If the NON_CONSISTENT attribute is set, then this function just
74 * returns "normal", cachable memory.
75 *
76 * There are additional flags WEAK_ORDERING and WRITE_COMBINE to take
77 * into consideration here, too. All current known implementations of
78 * the OR1K support only strongly ordered memory accesses, so that flag
79 * is being ignored for now; uncached but write-combined memory is a
80 * missing feature of the OR1K.
81 */
82static void *
83or1k_dma_alloc(struct device *dev, size_t size,
84 dma_addr_t *dma_handle, gfp_t gfp,
85 unsigned long attrs)
86{
87 unsigned long va;
88 void *page;
89 struct mm_walk walk = {
90 .pte_entry = page_set_nocache,
91 .mm = &init_mm
92 };
93
94 page = alloc_pages_exact(size, gfp);
95 if (!page)
96 return NULL;
97
98 /* This gives us the real physical address of the first page. */
99 *dma_handle = __pa(page);
100
101 va = (unsigned long)page;
102
103 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
104 /*
105 * We need to iterate through the pages, clearing the dcache for
106 * them and setting the cache-inhibit bit.
107 */
108 if (walk_page_range(va, va + size, &walk)) {
109 free_pages_exact(page, size);
110 return NULL;
111 }
112 }
113
114 return (void *)va;
115}
116
117static void
118or1k_dma_free(struct device *dev, size_t size, void *vaddr,
119 dma_addr_t dma_handle, unsigned long attrs)
120{
121 unsigned long va = (unsigned long)vaddr;
122 struct mm_walk walk = {
123 .pte_entry = page_clear_nocache,
124 .mm = &init_mm
125 };
126
127 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
128 /* walk_page_range shouldn't be able to fail here */
129 WARN_ON(walk_page_range(va, va + size, &walk));
130 }
131
132 free_pages_exact(vaddr, size);
133}
134
135static dma_addr_t
136or1k_map_page(struct device *dev, struct page *page,
137 unsigned long offset, size_t size,
138 enum dma_data_direction dir,
139 unsigned long attrs)
140{
141 unsigned long cl;
142 dma_addr_t addr = page_to_phys(page) + offset;
143
144 if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
145 return addr;
146
147 switch (dir) {
148 case DMA_TO_DEVICE:
149 /* Flush the dcache for the requested range */
150 for (cl = addr; cl < addr + size;
151 cl += cpuinfo.dcache_block_size)
152 mtspr(SPR_DCBFR, cl);
153 break;
154 case DMA_FROM_DEVICE:
155 /* Invalidate the dcache for the requested range */
156 for (cl = addr; cl < addr + size;
157 cl += cpuinfo.dcache_block_size)
158 mtspr(SPR_DCBIR, cl);
159 break;
160 default:
161 /*
162 * NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to
163 * flush nor invalidate the cache here as the area will need
164 * to be manually synced anyway.
165 */
166 break;
167 }
168
169 return addr;
170}
171
172static void
173or1k_unmap_page(struct device *dev, dma_addr_t dma_handle,
174 size_t size, enum dma_data_direction dir,
175 unsigned long attrs)
176{
177 /* Nothing special to do here... */
178}
179
180static int
181or1k_map_sg(struct device *dev, struct scatterlist *sg,
182 int nents, enum dma_data_direction dir,
183 unsigned long attrs)
184{
185 struct scatterlist *s;
186 int i;
187
188 for_each_sg(sg, s, nents, i) {
189 s->dma_address = or1k_map_page(dev, sg_page(s), s->offset,
190 s->length, dir, 0);
191 }
192
193 return nents;
194}
195
196static void
197or1k_unmap_sg(struct device *dev, struct scatterlist *sg,
198 int nents, enum dma_data_direction dir,
199 unsigned long attrs)
200{
201 struct scatterlist *s;
202 int i;
203
204 for_each_sg(sg, s, nents, i) {
205 or1k_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, 0);
206 }
207}
208
209static void
210or1k_sync_single_for_cpu(struct device *dev,
211 dma_addr_t dma_handle, size_t size,
212 enum dma_data_direction dir)
213{
214 unsigned long cl;
215 dma_addr_t addr = dma_handle;
216
217 /* Invalidate the dcache for the requested range */
218 for (cl = addr; cl < addr + size; cl += cpuinfo.dcache_block_size)
219 mtspr(SPR_DCBIR, cl);
220}
221
222static void
223or1k_sync_single_for_device(struct device *dev,
224 dma_addr_t dma_handle, size_t size,
225 enum dma_data_direction dir)
226{
227 unsigned long cl;
228 dma_addr_t addr = dma_handle;
229
230 /* Flush the dcache for the requested range */
231 for (cl = addr; cl < addr + size; cl += cpuinfo.dcache_block_size)
232 mtspr(SPR_DCBFR, cl);
233}
234
235struct dma_map_ops or1k_dma_map_ops = {
236 .alloc = or1k_dma_alloc,
237 .free = or1k_dma_free,
238 .map_page = or1k_map_page,
239 .unmap_page = or1k_unmap_page,
240 .map_sg = or1k_map_sg,
241 .unmap_sg = or1k_unmap_sg,
242 .sync_single_for_cpu = or1k_sync_single_for_cpu,
243 .sync_single_for_device = or1k_sync_single_for_device,
244};
245EXPORT_SYMBOL(or1k_dma_map_ops);
246
247/* Number of entries preallocated for DMA-API debugging */
248#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
249
250static int __init dma_init(void)
251{
252 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
253
254 return 0;
255}
256fs_initcall(dma_init);