Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 25#include <linux/export.h>
 26#include <linux/sched.h>
 27#include <linux/sched/debug.h>
 28#include <linux/sched/task.h>
 29#include <linux/sched/task_stack.h>
 30#include <linux/kernel.h>
 31#include <linux/mm.h>
 32#include <linux/stddef.h>
 33#include <linux/unistd.h>
 34#include <linux/user.h>
 35#include <linux/delay.h>
 36#include <linux/reboot.h>
 37#include <linux/interrupt.h>
 
 38#include <linux/init.h>
 39#include <linux/cpu.h>
 40#include <linux/elfcore.h>
 41#include <linux/pm.h>
 42#include <linux/tick.h>
 43#include <linux/utsname.h>
 44#include <linux/uaccess.h>
 45#include <linux/random.h>
 46#include <linux/hw_breakpoint.h>
 47#include <linux/personality.h>
 48#include <linux/notifier.h>
 49#include <trace/events/power.h>
 50#include <linux/percpu.h>
 51#include <linux/thread_info.h>
 52
 53#include <asm/alternative.h>
 54#include <asm/compat.h>
 55#include <asm/cacheflush.h>
 56#include <asm/exec.h>
 57#include <asm/fpsimd.h>
 58#include <asm/mmu_context.h>
 59#include <asm/processor.h>
 60#include <asm/stacktrace.h>
 61
 62#ifdef CONFIG_CC_STACKPROTECTOR
 63#include <linux/stackprotector.h>
 64unsigned long __stack_chk_guard __read_mostly;
 65EXPORT_SYMBOL(__stack_chk_guard);
 66#endif
 67
 68/*
 69 * Function pointers to optional machine specific functions
 70 */
 71void (*pm_power_off)(void);
 72EXPORT_SYMBOL_GPL(pm_power_off);
 73
 74void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 75
 76/*
 77 * This is our default idle handler.
 78 */
 79void arch_cpu_idle(void)
 80{
 81	/*
 82	 * This should do all the clock switching and wait for interrupt
 83	 * tricks
 84	 */
 85	trace_cpu_idle_rcuidle(1, smp_processor_id());
 86	cpu_do_idle();
 87	local_irq_enable();
 88	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 89}
 90
 91#ifdef CONFIG_HOTPLUG_CPU
 92void arch_cpu_idle_dead(void)
 93{
 94       cpu_die();
 95}
 96#endif
 97
 98/*
 99 * Called by kexec, immediately prior to machine_kexec().
100 *
101 * This must completely disable all secondary CPUs; simply causing those CPUs
102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103 * kexec'd kernel to use any and all RAM as it sees fit, without having to
104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105 * functionality embodied in disable_nonboot_cpus() to achieve this.
106 */
107void machine_shutdown(void)
108{
109	disable_nonboot_cpus();
110}
111
112/*
113 * Halting simply requires that the secondary CPUs stop performing any
114 * activity (executing tasks, handling interrupts). smp_send_stop()
115 * achieves this.
116 */
117void machine_halt(void)
118{
119	local_irq_disable();
120	smp_send_stop();
121	while (1);
122}
123
124/*
125 * Power-off simply requires that the secondary CPUs stop performing any
126 * activity (executing tasks, handling interrupts). smp_send_stop()
127 * achieves this. When the system power is turned off, it will take all CPUs
128 * with it.
129 */
130void machine_power_off(void)
131{
132	local_irq_disable();
133	smp_send_stop();
134	if (pm_power_off)
135		pm_power_off();
136}
137
138/*
139 * Restart requires that the secondary CPUs stop performing any activity
140 * while the primary CPU resets the system. Systems with multiple CPUs must
141 * provide a HW restart implementation, to ensure that all CPUs reset at once.
142 * This is required so that any code running after reset on the primary CPU
143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144 * executing pre-reset code, and using RAM that the primary CPU's code wishes
145 * to use. Implementing such co-ordination would be essentially impossible.
146 */
147void machine_restart(char *cmd)
148{
149	/* Disable interrupts first */
150	local_irq_disable();
151	smp_send_stop();
152
153	/*
154	 * UpdateCapsule() depends on the system being reset via
155	 * ResetSystem().
156	 */
157	if (efi_enabled(EFI_RUNTIME_SERVICES))
158		efi_reboot(reboot_mode, NULL);
159
160	/* Now call the architecture specific reboot code. */
161	if (arm_pm_restart)
162		arm_pm_restart(reboot_mode, cmd);
163	else
164		do_kernel_restart(cmd);
165
166	/*
167	 * Whoops - the architecture was unable to reboot.
168	 */
169	printk("Reboot failed -- System halted\n");
170	while (1);
171}
172
173static void print_pstate(struct pt_regs *regs)
174{
175	u64 pstate = regs->pstate;
176
177	if (compat_user_mode(regs)) {
178		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
179			pstate,
180			pstate & COMPAT_PSR_N_BIT ? 'N' : 'n',
181			pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z',
182			pstate & COMPAT_PSR_C_BIT ? 'C' : 'c',
183			pstate & COMPAT_PSR_V_BIT ? 'V' : 'v',
184			pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q',
185			pstate & COMPAT_PSR_T_BIT ? "T32" : "A32",
186			pstate & COMPAT_PSR_E_BIT ? "BE" : "LE",
187			pstate & COMPAT_PSR_A_BIT ? 'A' : 'a',
188			pstate & COMPAT_PSR_I_BIT ? 'I' : 'i',
189			pstate & COMPAT_PSR_F_BIT ? 'F' : 'f');
190	} else {
191		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
192			pstate,
193			pstate & PSR_N_BIT ? 'N' : 'n',
194			pstate & PSR_Z_BIT ? 'Z' : 'z',
195			pstate & PSR_C_BIT ? 'C' : 'c',
196			pstate & PSR_V_BIT ? 'V' : 'v',
197			pstate & PSR_D_BIT ? 'D' : 'd',
198			pstate & PSR_A_BIT ? 'A' : 'a',
199			pstate & PSR_I_BIT ? 'I' : 'i',
200			pstate & PSR_F_BIT ? 'F' : 'f',
201			pstate & PSR_PAN_BIT ? '+' : '-',
202			pstate & PSR_UAO_BIT ? '+' : '-');
203	}
204}
205
206void __show_regs(struct pt_regs *regs)
207{
208	int i, top_reg;
209	u64 lr, sp;
210
211	if (compat_user_mode(regs)) {
212		lr = regs->compat_lr;
213		sp = regs->compat_sp;
214		top_reg = 12;
215	} else {
216		lr = regs->regs[30];
217		sp = regs->sp;
218		top_reg = 29;
219	}
220
221	show_regs_print_info(KERN_DEFAULT);
222	print_pstate(regs);
223
224	if (!user_mode(regs)) {
225		printk("pc : %pS\n", (void *)regs->pc);
226		printk("lr : %pS\n", (void *)lr);
227	} else {
228		printk("pc : %016llx\n", regs->pc);
229		printk("lr : %016llx\n", lr);
230	}
231
232	printk("sp : %016llx\n", sp);
233
234	i = top_reg;
235
236	while (i >= 0) {
237		printk("x%-2d: %016llx ", i, regs->regs[i]);
238		i--;
239
240		if (i % 2 == 0) {
241			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
242			i--;
243		}
244
245		pr_cont("\n");
246	}
 
247}
248
249void show_regs(struct pt_regs * regs)
250{
 
251	__show_regs(regs);
252	dump_backtrace(regs, NULL);
253}
254
255static void tls_thread_flush(void)
256{
257	write_sysreg(0, tpidr_el0);
258
259	if (is_compat_task()) {
260		current->thread.uw.tp_value = 0;
261
262		/*
263		 * We need to ensure ordering between the shadow state and the
264		 * hardware state, so that we don't corrupt the hardware state
265		 * with a stale shadow state during context switch.
266		 */
267		barrier();
268		write_sysreg(0, tpidrro_el0);
269	}
270}
271
272void flush_thread(void)
273{
274	fpsimd_flush_thread();
275	tls_thread_flush();
276	flush_ptrace_hw_breakpoint(current);
277}
278
279void release_thread(struct task_struct *dead_task)
280{
281}
282
283void arch_release_task_struct(struct task_struct *tsk)
284{
285	fpsimd_release_task(tsk);
286}
287
288/*
289 * src and dst may temporarily have aliased sve_state after task_struct
290 * is copied.  We cannot fix this properly here, because src may have
291 * live SVE state and dst's thread_info may not exist yet, so tweaking
292 * either src's or dst's TIF_SVE is not safe.
293 *
294 * The unaliasing is done in copy_thread() instead.  This works because
295 * dst is not schedulable or traceable until both of these functions
296 * have been called.
297 */
298int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
299{
300	if (current->mm)
301		fpsimd_preserve_current_state();
302	*dst = *src;
303
304	return 0;
305}
306
307asmlinkage void ret_from_fork(void) asm("ret_from_fork");
308
309int copy_thread(unsigned long clone_flags, unsigned long stack_start,
310		unsigned long stk_sz, struct task_struct *p)
311{
312	struct pt_regs *childregs = task_pt_regs(p);
313
314	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
315
316	/*
317	 * Unalias p->thread.sve_state (if any) from the parent task
318	 * and disable discard SVE state for p:
319	 */
320	clear_tsk_thread_flag(p, TIF_SVE);
321	p->thread.sve_state = NULL;
322
323	/*
324	 * In case p was allocated the same task_struct pointer as some
325	 * other recently-exited task, make sure p is disassociated from
326	 * any cpu that may have run that now-exited task recently.
327	 * Otherwise we could erroneously skip reloading the FPSIMD
328	 * registers for p.
329	 */
330	fpsimd_flush_task_state(p);
331
332	if (likely(!(p->flags & PF_KTHREAD))) {
333		*childregs = *current_pt_regs();
334		childregs->regs[0] = 0;
335
336		/*
337		 * Read the current TLS pointer from tpidr_el0 as it may be
338		 * out-of-sync with the saved value.
339		 */
340		*task_user_tls(p) = read_sysreg(tpidr_el0);
341
342		if (stack_start) {
343			if (is_compat_thread(task_thread_info(p)))
344				childregs->compat_sp = stack_start;
345			else
346				childregs->sp = stack_start;
347		}
348
349		/*
350		 * If a TLS pointer was passed to clone (4th argument), use it
351		 * for the new thread.
352		 */
353		if (clone_flags & CLONE_SETTLS)
354			p->thread.uw.tp_value = childregs->regs[3];
355	} else {
356		memset(childregs, 0, sizeof(struct pt_regs));
357		childregs->pstate = PSR_MODE_EL1h;
358		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
359		    cpus_have_const_cap(ARM64_HAS_UAO))
360			childregs->pstate |= PSR_UAO_BIT;
361		p->thread.cpu_context.x19 = stack_start;
362		p->thread.cpu_context.x20 = stk_sz;
363	}
364	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
365	p->thread.cpu_context.sp = (unsigned long)childregs;
366
367	ptrace_hw_copy_thread(p);
368
369	return 0;
370}
371
372void tls_preserve_current_state(void)
373{
374	*task_user_tls(current) = read_sysreg(tpidr_el0);
375}
376
377static void tls_thread_switch(struct task_struct *next)
378{
379	tls_preserve_current_state();
380
381	if (is_compat_thread(task_thread_info(next)))
382		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
383	else if (!arm64_kernel_unmapped_at_el0())
384		write_sysreg(0, tpidrro_el0);
385
386	write_sysreg(*task_user_tls(next), tpidr_el0);
 
 
 
 
 
387}
388
389/* Restore the UAO state depending on next's addr_limit */
390void uao_thread_switch(struct task_struct *next)
391{
392	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
393		if (task_thread_info(next)->addr_limit == KERNEL_DS)
394			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
395		else
396			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
397	}
398}
399
400/*
401 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
402 * shadow copy so that we can restore this upon entry from userspace.
403 *
404 * This is *only* for exception entry from EL0, and is not valid until we
405 * __switch_to() a user task.
406 */
407DEFINE_PER_CPU(struct task_struct *, __entry_task);
408
409static void entry_task_switch(struct task_struct *next)
410{
411	__this_cpu_write(__entry_task, next);
412}
413
414/*
415 * Thread switching.
416 */
417__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
418				struct task_struct *next)
419{
420	struct task_struct *last;
421
422	fpsimd_thread_switch(next);
423	tls_thread_switch(next);
424	hw_breakpoint_thread_switch(next);
425	contextidr_thread_switch(next);
426	entry_task_switch(next);
427	uao_thread_switch(next);
428
429	/*
430	 * Complete any pending TLB or cache maintenance on this CPU in case
431	 * the thread migrates to a different CPU.
432	 * This full barrier is also required by the membarrier system
433	 * call.
434	 */
435	dsb(ish);
436
437	/* the actual thread switch */
438	last = cpu_switch_to(prev, next);
439
440	return last;
441}
442
443unsigned long get_wchan(struct task_struct *p)
444{
445	struct stackframe frame;
446	unsigned long stack_page, ret = 0;
447	int count = 0;
448	if (!p || p == current || p->state == TASK_RUNNING)
449		return 0;
450
451	stack_page = (unsigned long)try_get_task_stack(p);
452	if (!stack_page)
453		return 0;
454
455	frame.fp = thread_saved_fp(p);
 
456	frame.pc = thread_saved_pc(p);
457#ifdef CONFIG_FUNCTION_GRAPH_TRACER
458	frame.graph = p->curr_ret_stack;
459#endif
460	do {
461		if (unwind_frame(p, &frame))
 
 
462			goto out;
463		if (!in_sched_functions(frame.pc)) {
464			ret = frame.pc;
465			goto out;
466		}
467	} while (count ++ < 16);
468
469out:
470	put_task_stack(p);
471	return ret;
472}
473
474unsigned long arch_align_stack(unsigned long sp)
475{
476	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
477		sp -= get_random_int() & ~PAGE_MASK;
478	return sp & ~0xf;
479}
480
481unsigned long arch_randomize_brk(struct mm_struct *mm)
482{
483	if (is_compat_task())
484		return randomize_page(mm->brk, SZ_32M);
485	else
486		return randomize_page(mm->brk, SZ_1G);
487}
488
489/*
490 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
491 */
492void arch_setup_new_exec(void)
493{
494	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
495}
v4.10.11
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 25#include <linux/export.h>
 26#include <linux/sched.h>
 
 
 
 27#include <linux/kernel.h>
 28#include <linux/mm.h>
 29#include <linux/stddef.h>
 30#include <linux/unistd.h>
 31#include <linux/user.h>
 32#include <linux/delay.h>
 33#include <linux/reboot.h>
 34#include <linux/interrupt.h>
 35#include <linux/kallsyms.h>
 36#include <linux/init.h>
 37#include <linux/cpu.h>
 38#include <linux/elfcore.h>
 39#include <linux/pm.h>
 40#include <linux/tick.h>
 41#include <linux/utsname.h>
 42#include <linux/uaccess.h>
 43#include <linux/random.h>
 44#include <linux/hw_breakpoint.h>
 45#include <linux/personality.h>
 46#include <linux/notifier.h>
 47#include <trace/events/power.h>
 48#include <linux/percpu.h>
 
 49
 50#include <asm/alternative.h>
 51#include <asm/compat.h>
 52#include <asm/cacheflush.h>
 53#include <asm/exec.h>
 54#include <asm/fpsimd.h>
 55#include <asm/mmu_context.h>
 56#include <asm/processor.h>
 57#include <asm/stacktrace.h>
 58
 59#ifdef CONFIG_CC_STACKPROTECTOR
 60#include <linux/stackprotector.h>
 61unsigned long __stack_chk_guard __read_mostly;
 62EXPORT_SYMBOL(__stack_chk_guard);
 63#endif
 64
 65/*
 66 * Function pointers to optional machine specific functions
 67 */
 68void (*pm_power_off)(void);
 69EXPORT_SYMBOL_GPL(pm_power_off);
 70
 71void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 72
 73/*
 74 * This is our default idle handler.
 75 */
 76void arch_cpu_idle(void)
 77{
 78	/*
 79	 * This should do all the clock switching and wait for interrupt
 80	 * tricks
 81	 */
 82	trace_cpu_idle_rcuidle(1, smp_processor_id());
 83	cpu_do_idle();
 84	local_irq_enable();
 85	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 86}
 87
 88#ifdef CONFIG_HOTPLUG_CPU
 89void arch_cpu_idle_dead(void)
 90{
 91       cpu_die();
 92}
 93#endif
 94
 95/*
 96 * Called by kexec, immediately prior to machine_kexec().
 97 *
 98 * This must completely disable all secondary CPUs; simply causing those CPUs
 99 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
100 * kexec'd kernel to use any and all RAM as it sees fit, without having to
101 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
102 * functionality embodied in disable_nonboot_cpus() to achieve this.
103 */
104void machine_shutdown(void)
105{
106	disable_nonboot_cpus();
107}
108
109/*
110 * Halting simply requires that the secondary CPUs stop performing any
111 * activity (executing tasks, handling interrupts). smp_send_stop()
112 * achieves this.
113 */
114void machine_halt(void)
115{
116	local_irq_disable();
117	smp_send_stop();
118	while (1);
119}
120
121/*
122 * Power-off simply requires that the secondary CPUs stop performing any
123 * activity (executing tasks, handling interrupts). smp_send_stop()
124 * achieves this. When the system power is turned off, it will take all CPUs
125 * with it.
126 */
127void machine_power_off(void)
128{
129	local_irq_disable();
130	smp_send_stop();
131	if (pm_power_off)
132		pm_power_off();
133}
134
135/*
136 * Restart requires that the secondary CPUs stop performing any activity
137 * while the primary CPU resets the system. Systems with multiple CPUs must
138 * provide a HW restart implementation, to ensure that all CPUs reset at once.
139 * This is required so that any code running after reset on the primary CPU
140 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
141 * executing pre-reset code, and using RAM that the primary CPU's code wishes
142 * to use. Implementing such co-ordination would be essentially impossible.
143 */
144void machine_restart(char *cmd)
145{
146	/* Disable interrupts first */
147	local_irq_disable();
148	smp_send_stop();
149
150	/*
151	 * UpdateCapsule() depends on the system being reset via
152	 * ResetSystem().
153	 */
154	if (efi_enabled(EFI_RUNTIME_SERVICES))
155		efi_reboot(reboot_mode, NULL);
156
157	/* Now call the architecture specific reboot code. */
158	if (arm_pm_restart)
159		arm_pm_restart(reboot_mode, cmd);
160	else
161		do_kernel_restart(cmd);
162
163	/*
164	 * Whoops - the architecture was unable to reboot.
165	 */
166	printk("Reboot failed -- System halted\n");
167	while (1);
168}
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170void __show_regs(struct pt_regs *regs)
171{
172	int i, top_reg;
173	u64 lr, sp;
174
175	if (compat_user_mode(regs)) {
176		lr = regs->compat_lr;
177		sp = regs->compat_sp;
178		top_reg = 12;
179	} else {
180		lr = regs->regs[30];
181		sp = regs->sp;
182		top_reg = 29;
183	}
184
185	show_regs_print_info(KERN_DEFAULT);
186	print_symbol("PC is at %s\n", instruction_pointer(regs));
187	print_symbol("LR is at %s\n", lr);
188	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
189	       regs->pc, lr, regs->pstate);
 
 
 
 
 
 
190	printk("sp : %016llx\n", sp);
191
192	i = top_reg;
193
194	while (i >= 0) {
195		printk("x%-2d: %016llx ", i, regs->regs[i]);
196		i--;
197
198		if (i % 2 == 0) {
199			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
200			i--;
201		}
202
203		pr_cont("\n");
204	}
205	printk("\n");
206}
207
208void show_regs(struct pt_regs * regs)
209{
210	printk("\n");
211	__show_regs(regs);
 
212}
213
214static void tls_thread_flush(void)
215{
216	write_sysreg(0, tpidr_el0);
217
218	if (is_compat_task()) {
219		current->thread.tp_value = 0;
220
221		/*
222		 * We need to ensure ordering between the shadow state and the
223		 * hardware state, so that we don't corrupt the hardware state
224		 * with a stale shadow state during context switch.
225		 */
226		barrier();
227		write_sysreg(0, tpidrro_el0);
228	}
229}
230
231void flush_thread(void)
232{
233	fpsimd_flush_thread();
234	tls_thread_flush();
235	flush_ptrace_hw_breakpoint(current);
236}
237
238void release_thread(struct task_struct *dead_task)
239{
240}
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
243{
244	if (current->mm)
245		fpsimd_preserve_current_state();
246	*dst = *src;
 
247	return 0;
248}
249
250asmlinkage void ret_from_fork(void) asm("ret_from_fork");
251
252int copy_thread(unsigned long clone_flags, unsigned long stack_start,
253		unsigned long stk_sz, struct task_struct *p)
254{
255	struct pt_regs *childregs = task_pt_regs(p);
256
257	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259	if (likely(!(p->flags & PF_KTHREAD))) {
260		*childregs = *current_pt_regs();
261		childregs->regs[0] = 0;
262
263		/*
264		 * Read the current TLS pointer from tpidr_el0 as it may be
265		 * out-of-sync with the saved value.
266		 */
267		*task_user_tls(p) = read_sysreg(tpidr_el0);
268
269		if (stack_start) {
270			if (is_compat_thread(task_thread_info(p)))
271				childregs->compat_sp = stack_start;
272			else
273				childregs->sp = stack_start;
274		}
275
276		/*
277		 * If a TLS pointer was passed to clone (4th argument), use it
278		 * for the new thread.
279		 */
280		if (clone_flags & CLONE_SETTLS)
281			p->thread.tp_value = childregs->regs[3];
282	} else {
283		memset(childregs, 0, sizeof(struct pt_regs));
284		childregs->pstate = PSR_MODE_EL1h;
285		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
286		    cpus_have_const_cap(ARM64_HAS_UAO))
287			childregs->pstate |= PSR_UAO_BIT;
288		p->thread.cpu_context.x19 = stack_start;
289		p->thread.cpu_context.x20 = stk_sz;
290	}
291	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
292	p->thread.cpu_context.sp = (unsigned long)childregs;
293
294	ptrace_hw_copy_thread(p);
295
296	return 0;
297}
298
 
 
 
 
 
299static void tls_thread_switch(struct task_struct *next)
300{
301	unsigned long tpidr, tpidrro;
302
303	tpidr = read_sysreg(tpidr_el0);
304	*task_user_tls(current) = tpidr;
 
 
305
306	tpidr = *task_user_tls(next);
307	tpidrro = is_compat_thread(task_thread_info(next)) ?
308		  next->thread.tp_value : 0;
309
310	write_sysreg(tpidr, tpidr_el0);
311	write_sysreg(tpidrro, tpidrro_el0);
312}
313
314/* Restore the UAO state depending on next's addr_limit */
315void uao_thread_switch(struct task_struct *next)
316{
317	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
318		if (task_thread_info(next)->addr_limit == KERNEL_DS)
319			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
320		else
321			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
322	}
323}
324
325/*
326 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
327 * shadow copy so that we can restore this upon entry from userspace.
328 *
329 * This is *only* for exception entry from EL0, and is not valid until we
330 * __switch_to() a user task.
331 */
332DEFINE_PER_CPU(struct task_struct *, __entry_task);
333
334static void entry_task_switch(struct task_struct *next)
335{
336	__this_cpu_write(__entry_task, next);
337}
338
339/*
340 * Thread switching.
341 */
342struct task_struct *__switch_to(struct task_struct *prev,
343				struct task_struct *next)
344{
345	struct task_struct *last;
346
347	fpsimd_thread_switch(next);
348	tls_thread_switch(next);
349	hw_breakpoint_thread_switch(next);
350	contextidr_thread_switch(next);
351	entry_task_switch(next);
352	uao_thread_switch(next);
353
354	/*
355	 * Complete any pending TLB or cache maintenance on this CPU in case
356	 * the thread migrates to a different CPU.
 
 
357	 */
358	dsb(ish);
359
360	/* the actual thread switch */
361	last = cpu_switch_to(prev, next);
362
363	return last;
364}
365
366unsigned long get_wchan(struct task_struct *p)
367{
368	struct stackframe frame;
369	unsigned long stack_page, ret = 0;
370	int count = 0;
371	if (!p || p == current || p->state == TASK_RUNNING)
372		return 0;
373
374	stack_page = (unsigned long)try_get_task_stack(p);
375	if (!stack_page)
376		return 0;
377
378	frame.fp = thread_saved_fp(p);
379	frame.sp = thread_saved_sp(p);
380	frame.pc = thread_saved_pc(p);
381#ifdef CONFIG_FUNCTION_GRAPH_TRACER
382	frame.graph = p->curr_ret_stack;
383#endif
384	do {
385		if (frame.sp < stack_page ||
386		    frame.sp >= stack_page + THREAD_SIZE ||
387		    unwind_frame(p, &frame))
388			goto out;
389		if (!in_sched_functions(frame.pc)) {
390			ret = frame.pc;
391			goto out;
392		}
393	} while (count ++ < 16);
394
395out:
396	put_task_stack(p);
397	return ret;
398}
399
400unsigned long arch_align_stack(unsigned long sp)
401{
402	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
403		sp -= get_random_int() & ~PAGE_MASK;
404	return sp & ~0xf;
405}
406
407unsigned long arch_randomize_brk(struct mm_struct *mm)
408{
409	if (is_compat_task())
410		return randomize_page(mm->brk, 0x02000000);
411	else
412		return randomize_page(mm->brk, 0x40000000);
 
 
 
 
 
 
 
 
413}