Loading...
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <crypto/hash.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/wait.h>
59#include <linux/time.h>
60#include <linux/sched/signal.h>
61#include <linux/ip.h>
62#include <linux/capability.h>
63#include <linux/fcntl.h>
64#include <linux/poll.h>
65#include <linux/init.h>
66#include <linux/slab.h>
67#include <linux/file.h>
68#include <linux/compat.h>
69
70#include <net/ip.h>
71#include <net/icmp.h>
72#include <net/route.h>
73#include <net/ipv6.h>
74#include <net/inet_common.h>
75#include <net/busy_poll.h>
76
77#include <linux/socket.h> /* for sa_family_t */
78#include <linux/export.h>
79#include <net/sock.h>
80#include <net/sctp/sctp.h>
81#include <net/sctp/sm.h>
82#include <net/sctp/stream_sched.h>
83
84/* Forward declarations for internal helper functions. */
85static int sctp_writeable(struct sock *sk);
86static void sctp_wfree(struct sk_buff *skb);
87static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
88 size_t msg_len);
89static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
90static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
91static int sctp_wait_for_accept(struct sock *sk, long timeo);
92static void sctp_wait_for_close(struct sock *sk, long timeo);
93static void sctp_destruct_sock(struct sock *sk);
94static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
95 union sctp_addr *addr, int len);
96static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
97static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
98static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
99static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
100static int sctp_send_asconf(struct sctp_association *asoc,
101 struct sctp_chunk *chunk);
102static int sctp_do_bind(struct sock *, union sctp_addr *, int);
103static int sctp_autobind(struct sock *sk);
104static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
105 struct sctp_association *assoc,
106 enum sctp_socket_type type);
107
108static unsigned long sctp_memory_pressure;
109static atomic_long_t sctp_memory_allocated;
110struct percpu_counter sctp_sockets_allocated;
111
112static void sctp_enter_memory_pressure(struct sock *sk)
113{
114 sctp_memory_pressure = 1;
115}
116
117
118/* Get the sndbuf space available at the time on the association. */
119static inline int sctp_wspace(struct sctp_association *asoc)
120{
121 int amt;
122
123 if (asoc->ep->sndbuf_policy)
124 amt = asoc->sndbuf_used;
125 else
126 amt = sk_wmem_alloc_get(asoc->base.sk);
127
128 if (amt >= asoc->base.sk->sk_sndbuf) {
129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
130 amt = 0;
131 else {
132 amt = sk_stream_wspace(asoc->base.sk);
133 if (amt < 0)
134 amt = 0;
135 }
136 } else {
137 amt = asoc->base.sk->sk_sndbuf - amt;
138 }
139 return amt;
140}
141
142/* Increment the used sndbuf space count of the corresponding association by
143 * the size of the outgoing data chunk.
144 * Also, set the skb destructor for sndbuf accounting later.
145 *
146 * Since it is always 1-1 between chunk and skb, and also a new skb is always
147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
148 * destructor in the data chunk skb for the purpose of the sndbuf space
149 * tracking.
150 */
151static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
152{
153 struct sctp_association *asoc = chunk->asoc;
154 struct sock *sk = asoc->base.sk;
155
156 /* The sndbuf space is tracked per association. */
157 sctp_association_hold(asoc);
158
159 if (chunk->shkey)
160 sctp_auth_shkey_hold(chunk->shkey);
161
162 skb_set_owner_w(chunk->skb, sk);
163
164 chunk->skb->destructor = sctp_wfree;
165 /* Save the chunk pointer in skb for sctp_wfree to use later. */
166 skb_shinfo(chunk->skb)->destructor_arg = chunk;
167
168 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
169 sizeof(struct sk_buff) +
170 sizeof(struct sctp_chunk);
171
172 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
173 sk->sk_wmem_queued += chunk->skb->truesize;
174 sk_mem_charge(sk, chunk->skb->truesize);
175}
176
177static void sctp_clear_owner_w(struct sctp_chunk *chunk)
178{
179 skb_orphan(chunk->skb);
180}
181
182static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
183 void (*cb)(struct sctp_chunk *))
184
185{
186 struct sctp_outq *q = &asoc->outqueue;
187 struct sctp_transport *t;
188 struct sctp_chunk *chunk;
189
190 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
191 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
192 cb(chunk);
193
194 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
195 cb(chunk);
196
197 list_for_each_entry(chunk, &q->sacked, transmitted_list)
198 cb(chunk);
199
200 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
201 cb(chunk);
202
203 list_for_each_entry(chunk, &q->out_chunk_list, list)
204 cb(chunk);
205}
206
207static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
208 void (*cb)(struct sk_buff *, struct sock *))
209
210{
211 struct sk_buff *skb, *tmp;
212
213 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
214 cb(skb, sk);
215
216 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
217 cb(skb, sk);
218
219 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
220 cb(skb, sk);
221}
222
223/* Verify that this is a valid address. */
224static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
225 int len)
226{
227 struct sctp_af *af;
228
229 /* Verify basic sockaddr. */
230 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
231 if (!af)
232 return -EINVAL;
233
234 /* Is this a valid SCTP address? */
235 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
236 return -EINVAL;
237
238 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
239 return -EINVAL;
240
241 return 0;
242}
243
244/* Look up the association by its id. If this is not a UDP-style
245 * socket, the ID field is always ignored.
246 */
247struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
248{
249 struct sctp_association *asoc = NULL;
250
251 /* If this is not a UDP-style socket, assoc id should be ignored. */
252 if (!sctp_style(sk, UDP)) {
253 /* Return NULL if the socket state is not ESTABLISHED. It
254 * could be a TCP-style listening socket or a socket which
255 * hasn't yet called connect() to establish an association.
256 */
257 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
258 return NULL;
259
260 /* Get the first and the only association from the list. */
261 if (!list_empty(&sctp_sk(sk)->ep->asocs))
262 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
263 struct sctp_association, asocs);
264 return asoc;
265 }
266
267 /* Otherwise this is a UDP-style socket. */
268 if (!id || (id == (sctp_assoc_t)-1))
269 return NULL;
270
271 spin_lock_bh(&sctp_assocs_id_lock);
272 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
273 spin_unlock_bh(&sctp_assocs_id_lock);
274
275 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
276 return NULL;
277
278 return asoc;
279}
280
281/* Look up the transport from an address and an assoc id. If both address and
282 * id are specified, the associations matching the address and the id should be
283 * the same.
284 */
285static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
286 struct sockaddr_storage *addr,
287 sctp_assoc_t id)
288{
289 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
290 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
291 union sctp_addr *laddr = (union sctp_addr *)addr;
292 struct sctp_transport *transport;
293
294 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
295 return NULL;
296
297 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
298 laddr,
299 &transport);
300
301 if (!addr_asoc)
302 return NULL;
303
304 id_asoc = sctp_id2assoc(sk, id);
305 if (id_asoc && (id_asoc != addr_asoc))
306 return NULL;
307
308 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
309 (union sctp_addr *)addr);
310
311 return transport;
312}
313
314/* API 3.1.2 bind() - UDP Style Syntax
315 * The syntax of bind() is,
316 *
317 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
318 *
319 * sd - the socket descriptor returned by socket().
320 * addr - the address structure (struct sockaddr_in or struct
321 * sockaddr_in6 [RFC 2553]),
322 * addr_len - the size of the address structure.
323 */
324static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
325{
326 int retval = 0;
327
328 lock_sock(sk);
329
330 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
331 addr, addr_len);
332
333 /* Disallow binding twice. */
334 if (!sctp_sk(sk)->ep->base.bind_addr.port)
335 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
336 addr_len);
337 else
338 retval = -EINVAL;
339
340 release_sock(sk);
341
342 return retval;
343}
344
345static long sctp_get_port_local(struct sock *, union sctp_addr *);
346
347/* Verify this is a valid sockaddr. */
348static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
349 union sctp_addr *addr, int len)
350{
351 struct sctp_af *af;
352
353 /* Check minimum size. */
354 if (len < sizeof (struct sockaddr))
355 return NULL;
356
357 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
358 return NULL;
359
360 if (addr->sa.sa_family == AF_INET6) {
361 if (len < SIN6_LEN_RFC2133)
362 return NULL;
363 /* V4 mapped address are really of AF_INET family */
364 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
365 !opt->pf->af_supported(AF_INET, opt))
366 return NULL;
367 }
368
369 /* If we get this far, af is valid. */
370 af = sctp_get_af_specific(addr->sa.sa_family);
371
372 if (len < af->sockaddr_len)
373 return NULL;
374
375 return af;
376}
377
378/* Bind a local address either to an endpoint or to an association. */
379static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
380{
381 struct net *net = sock_net(sk);
382 struct sctp_sock *sp = sctp_sk(sk);
383 struct sctp_endpoint *ep = sp->ep;
384 struct sctp_bind_addr *bp = &ep->base.bind_addr;
385 struct sctp_af *af;
386 unsigned short snum;
387 int ret = 0;
388
389 /* Common sockaddr verification. */
390 af = sctp_sockaddr_af(sp, addr, len);
391 if (!af) {
392 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
393 __func__, sk, addr, len);
394 return -EINVAL;
395 }
396
397 snum = ntohs(addr->v4.sin_port);
398
399 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
400 __func__, sk, &addr->sa, bp->port, snum, len);
401
402 /* PF specific bind() address verification. */
403 if (!sp->pf->bind_verify(sp, addr))
404 return -EADDRNOTAVAIL;
405
406 /* We must either be unbound, or bind to the same port.
407 * It's OK to allow 0 ports if we are already bound.
408 * We'll just inhert an already bound port in this case
409 */
410 if (bp->port) {
411 if (!snum)
412 snum = bp->port;
413 else if (snum != bp->port) {
414 pr_debug("%s: new port %d doesn't match existing port "
415 "%d\n", __func__, snum, bp->port);
416 return -EINVAL;
417 }
418 }
419
420 if (snum && snum < inet_prot_sock(net) &&
421 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
422 return -EACCES;
423
424 /* See if the address matches any of the addresses we may have
425 * already bound before checking against other endpoints.
426 */
427 if (sctp_bind_addr_match(bp, addr, sp))
428 return -EINVAL;
429
430 /* Make sure we are allowed to bind here.
431 * The function sctp_get_port_local() does duplicate address
432 * detection.
433 */
434 addr->v4.sin_port = htons(snum);
435 if ((ret = sctp_get_port_local(sk, addr))) {
436 return -EADDRINUSE;
437 }
438
439 /* Refresh ephemeral port. */
440 if (!bp->port)
441 bp->port = inet_sk(sk)->inet_num;
442
443 /* Add the address to the bind address list.
444 * Use GFP_ATOMIC since BHs will be disabled.
445 */
446 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
447 SCTP_ADDR_SRC, GFP_ATOMIC);
448
449 /* Copy back into socket for getsockname() use. */
450 if (!ret) {
451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
452 sp->pf->to_sk_saddr(addr, sk);
453 }
454
455 return ret;
456}
457
458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
459 *
460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
461 * at any one time. If a sender, after sending an ASCONF chunk, decides
462 * it needs to transfer another ASCONF Chunk, it MUST wait until the
463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
464 * subsequent ASCONF. Note this restriction binds each side, so at any
465 * time two ASCONF may be in-transit on any given association (one sent
466 * from each endpoint).
467 */
468static int sctp_send_asconf(struct sctp_association *asoc,
469 struct sctp_chunk *chunk)
470{
471 struct net *net = sock_net(asoc->base.sk);
472 int retval = 0;
473
474 /* If there is an outstanding ASCONF chunk, queue it for later
475 * transmission.
476 */
477 if (asoc->addip_last_asconf) {
478 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
479 goto out;
480 }
481
482 /* Hold the chunk until an ASCONF_ACK is received. */
483 sctp_chunk_hold(chunk);
484 retval = sctp_primitive_ASCONF(net, asoc, chunk);
485 if (retval)
486 sctp_chunk_free(chunk);
487 else
488 asoc->addip_last_asconf = chunk;
489
490out:
491 return retval;
492}
493
494/* Add a list of addresses as bind addresses to local endpoint or
495 * association.
496 *
497 * Basically run through each address specified in the addrs/addrcnt
498 * array/length pair, determine if it is IPv6 or IPv4 and call
499 * sctp_do_bind() on it.
500 *
501 * If any of them fails, then the operation will be reversed and the
502 * ones that were added will be removed.
503 *
504 * Only sctp_setsockopt_bindx() is supposed to call this function.
505 */
506static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
507{
508 int cnt;
509 int retval = 0;
510 void *addr_buf;
511 struct sockaddr *sa_addr;
512 struct sctp_af *af;
513
514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
515 addrs, addrcnt);
516
517 addr_buf = addrs;
518 for (cnt = 0; cnt < addrcnt; cnt++) {
519 /* The list may contain either IPv4 or IPv6 address;
520 * determine the address length for walking thru the list.
521 */
522 sa_addr = addr_buf;
523 af = sctp_get_af_specific(sa_addr->sa_family);
524 if (!af) {
525 retval = -EINVAL;
526 goto err_bindx_add;
527 }
528
529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
530 af->sockaddr_len);
531
532 addr_buf += af->sockaddr_len;
533
534err_bindx_add:
535 if (retval < 0) {
536 /* Failed. Cleanup the ones that have been added */
537 if (cnt > 0)
538 sctp_bindx_rem(sk, addrs, cnt);
539 return retval;
540 }
541 }
542
543 return retval;
544}
545
546/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
547 * associations that are part of the endpoint indicating that a list of local
548 * addresses are added to the endpoint.
549 *
550 * If any of the addresses is already in the bind address list of the
551 * association, we do not send the chunk for that association. But it will not
552 * affect other associations.
553 *
554 * Only sctp_setsockopt_bindx() is supposed to call this function.
555 */
556static int sctp_send_asconf_add_ip(struct sock *sk,
557 struct sockaddr *addrs,
558 int addrcnt)
559{
560 struct net *net = sock_net(sk);
561 struct sctp_sock *sp;
562 struct sctp_endpoint *ep;
563 struct sctp_association *asoc;
564 struct sctp_bind_addr *bp;
565 struct sctp_chunk *chunk;
566 struct sctp_sockaddr_entry *laddr;
567 union sctp_addr *addr;
568 union sctp_addr saveaddr;
569 void *addr_buf;
570 struct sctp_af *af;
571 struct list_head *p;
572 int i;
573 int retval = 0;
574
575 if (!net->sctp.addip_enable)
576 return retval;
577
578 sp = sctp_sk(sk);
579 ep = sp->ep;
580
581 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
582 __func__, sk, addrs, addrcnt);
583
584 list_for_each_entry(asoc, &ep->asocs, asocs) {
585 if (!asoc->peer.asconf_capable)
586 continue;
587
588 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
589 continue;
590
591 if (!sctp_state(asoc, ESTABLISHED))
592 continue;
593
594 /* Check if any address in the packed array of addresses is
595 * in the bind address list of the association. If so,
596 * do not send the asconf chunk to its peer, but continue with
597 * other associations.
598 */
599 addr_buf = addrs;
600 for (i = 0; i < addrcnt; i++) {
601 addr = addr_buf;
602 af = sctp_get_af_specific(addr->v4.sin_family);
603 if (!af) {
604 retval = -EINVAL;
605 goto out;
606 }
607
608 if (sctp_assoc_lookup_laddr(asoc, addr))
609 break;
610
611 addr_buf += af->sockaddr_len;
612 }
613 if (i < addrcnt)
614 continue;
615
616 /* Use the first valid address in bind addr list of
617 * association as Address Parameter of ASCONF CHUNK.
618 */
619 bp = &asoc->base.bind_addr;
620 p = bp->address_list.next;
621 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
622 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
623 addrcnt, SCTP_PARAM_ADD_IP);
624 if (!chunk) {
625 retval = -ENOMEM;
626 goto out;
627 }
628
629 /* Add the new addresses to the bind address list with
630 * use_as_src set to 0.
631 */
632 addr_buf = addrs;
633 for (i = 0; i < addrcnt; i++) {
634 addr = addr_buf;
635 af = sctp_get_af_specific(addr->v4.sin_family);
636 memcpy(&saveaddr, addr, af->sockaddr_len);
637 retval = sctp_add_bind_addr(bp, &saveaddr,
638 sizeof(saveaddr),
639 SCTP_ADDR_NEW, GFP_ATOMIC);
640 addr_buf += af->sockaddr_len;
641 }
642 if (asoc->src_out_of_asoc_ok) {
643 struct sctp_transport *trans;
644
645 list_for_each_entry(trans,
646 &asoc->peer.transport_addr_list, transports) {
647 /* Clear the source and route cache */
648 sctp_transport_dst_release(trans);
649 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
650 2*asoc->pathmtu, 4380));
651 trans->ssthresh = asoc->peer.i.a_rwnd;
652 trans->rto = asoc->rto_initial;
653 sctp_max_rto(asoc, trans);
654 trans->rtt = trans->srtt = trans->rttvar = 0;
655 sctp_transport_route(trans, NULL,
656 sctp_sk(asoc->base.sk));
657 }
658 }
659 retval = sctp_send_asconf(asoc, chunk);
660 }
661
662out:
663 return retval;
664}
665
666/* Remove a list of addresses from bind addresses list. Do not remove the
667 * last address.
668 *
669 * Basically run through each address specified in the addrs/addrcnt
670 * array/length pair, determine if it is IPv6 or IPv4 and call
671 * sctp_del_bind() on it.
672 *
673 * If any of them fails, then the operation will be reversed and the
674 * ones that were removed will be added back.
675 *
676 * At least one address has to be left; if only one address is
677 * available, the operation will return -EBUSY.
678 *
679 * Only sctp_setsockopt_bindx() is supposed to call this function.
680 */
681static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
682{
683 struct sctp_sock *sp = sctp_sk(sk);
684 struct sctp_endpoint *ep = sp->ep;
685 int cnt;
686 struct sctp_bind_addr *bp = &ep->base.bind_addr;
687 int retval = 0;
688 void *addr_buf;
689 union sctp_addr *sa_addr;
690 struct sctp_af *af;
691
692 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
693 __func__, sk, addrs, addrcnt);
694
695 addr_buf = addrs;
696 for (cnt = 0; cnt < addrcnt; cnt++) {
697 /* If the bind address list is empty or if there is only one
698 * bind address, there is nothing more to be removed (we need
699 * at least one address here).
700 */
701 if (list_empty(&bp->address_list) ||
702 (sctp_list_single_entry(&bp->address_list))) {
703 retval = -EBUSY;
704 goto err_bindx_rem;
705 }
706
707 sa_addr = addr_buf;
708 af = sctp_get_af_specific(sa_addr->sa.sa_family);
709 if (!af) {
710 retval = -EINVAL;
711 goto err_bindx_rem;
712 }
713
714 if (!af->addr_valid(sa_addr, sp, NULL)) {
715 retval = -EADDRNOTAVAIL;
716 goto err_bindx_rem;
717 }
718
719 if (sa_addr->v4.sin_port &&
720 sa_addr->v4.sin_port != htons(bp->port)) {
721 retval = -EINVAL;
722 goto err_bindx_rem;
723 }
724
725 if (!sa_addr->v4.sin_port)
726 sa_addr->v4.sin_port = htons(bp->port);
727
728 /* FIXME - There is probably a need to check if sk->sk_saddr and
729 * sk->sk_rcv_addr are currently set to one of the addresses to
730 * be removed. This is something which needs to be looked into
731 * when we are fixing the outstanding issues with multi-homing
732 * socket routing and failover schemes. Refer to comments in
733 * sctp_do_bind(). -daisy
734 */
735 retval = sctp_del_bind_addr(bp, sa_addr);
736
737 addr_buf += af->sockaddr_len;
738err_bindx_rem:
739 if (retval < 0) {
740 /* Failed. Add the ones that has been removed back */
741 if (cnt > 0)
742 sctp_bindx_add(sk, addrs, cnt);
743 return retval;
744 }
745 }
746
747 return retval;
748}
749
750/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
751 * the associations that are part of the endpoint indicating that a list of
752 * local addresses are removed from the endpoint.
753 *
754 * If any of the addresses is already in the bind address list of the
755 * association, we do not send the chunk for that association. But it will not
756 * affect other associations.
757 *
758 * Only sctp_setsockopt_bindx() is supposed to call this function.
759 */
760static int sctp_send_asconf_del_ip(struct sock *sk,
761 struct sockaddr *addrs,
762 int addrcnt)
763{
764 struct net *net = sock_net(sk);
765 struct sctp_sock *sp;
766 struct sctp_endpoint *ep;
767 struct sctp_association *asoc;
768 struct sctp_transport *transport;
769 struct sctp_bind_addr *bp;
770 struct sctp_chunk *chunk;
771 union sctp_addr *laddr;
772 void *addr_buf;
773 struct sctp_af *af;
774 struct sctp_sockaddr_entry *saddr;
775 int i;
776 int retval = 0;
777 int stored = 0;
778
779 chunk = NULL;
780 if (!net->sctp.addip_enable)
781 return retval;
782
783 sp = sctp_sk(sk);
784 ep = sp->ep;
785
786 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
787 __func__, sk, addrs, addrcnt);
788
789 list_for_each_entry(asoc, &ep->asocs, asocs) {
790
791 if (!asoc->peer.asconf_capable)
792 continue;
793
794 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
795 continue;
796
797 if (!sctp_state(asoc, ESTABLISHED))
798 continue;
799
800 /* Check if any address in the packed array of addresses is
801 * not present in the bind address list of the association.
802 * If so, do not send the asconf chunk to its peer, but
803 * continue with other associations.
804 */
805 addr_buf = addrs;
806 for (i = 0; i < addrcnt; i++) {
807 laddr = addr_buf;
808 af = sctp_get_af_specific(laddr->v4.sin_family);
809 if (!af) {
810 retval = -EINVAL;
811 goto out;
812 }
813
814 if (!sctp_assoc_lookup_laddr(asoc, laddr))
815 break;
816
817 addr_buf += af->sockaddr_len;
818 }
819 if (i < addrcnt)
820 continue;
821
822 /* Find one address in the association's bind address list
823 * that is not in the packed array of addresses. This is to
824 * make sure that we do not delete all the addresses in the
825 * association.
826 */
827 bp = &asoc->base.bind_addr;
828 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
829 addrcnt, sp);
830 if ((laddr == NULL) && (addrcnt == 1)) {
831 if (asoc->asconf_addr_del_pending)
832 continue;
833 asoc->asconf_addr_del_pending =
834 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
835 if (asoc->asconf_addr_del_pending == NULL) {
836 retval = -ENOMEM;
837 goto out;
838 }
839 asoc->asconf_addr_del_pending->sa.sa_family =
840 addrs->sa_family;
841 asoc->asconf_addr_del_pending->v4.sin_port =
842 htons(bp->port);
843 if (addrs->sa_family == AF_INET) {
844 struct sockaddr_in *sin;
845
846 sin = (struct sockaddr_in *)addrs;
847 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
848 } else if (addrs->sa_family == AF_INET6) {
849 struct sockaddr_in6 *sin6;
850
851 sin6 = (struct sockaddr_in6 *)addrs;
852 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
853 }
854
855 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
856 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
857 asoc->asconf_addr_del_pending);
858
859 asoc->src_out_of_asoc_ok = 1;
860 stored = 1;
861 goto skip_mkasconf;
862 }
863
864 if (laddr == NULL)
865 return -EINVAL;
866
867 /* We do not need RCU protection throughout this loop
868 * because this is done under a socket lock from the
869 * setsockopt call.
870 */
871 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
872 SCTP_PARAM_DEL_IP);
873 if (!chunk) {
874 retval = -ENOMEM;
875 goto out;
876 }
877
878skip_mkasconf:
879 /* Reset use_as_src flag for the addresses in the bind address
880 * list that are to be deleted.
881 */
882 addr_buf = addrs;
883 for (i = 0; i < addrcnt; i++) {
884 laddr = addr_buf;
885 af = sctp_get_af_specific(laddr->v4.sin_family);
886 list_for_each_entry(saddr, &bp->address_list, list) {
887 if (sctp_cmp_addr_exact(&saddr->a, laddr))
888 saddr->state = SCTP_ADDR_DEL;
889 }
890 addr_buf += af->sockaddr_len;
891 }
892
893 /* Update the route and saddr entries for all the transports
894 * as some of the addresses in the bind address list are
895 * about to be deleted and cannot be used as source addresses.
896 */
897 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
898 transports) {
899 sctp_transport_dst_release(transport);
900 sctp_transport_route(transport, NULL,
901 sctp_sk(asoc->base.sk));
902 }
903
904 if (stored)
905 /* We don't need to transmit ASCONF */
906 continue;
907 retval = sctp_send_asconf(asoc, chunk);
908 }
909out:
910 return retval;
911}
912
913/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
914int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
915{
916 struct sock *sk = sctp_opt2sk(sp);
917 union sctp_addr *addr;
918 struct sctp_af *af;
919
920 /* It is safe to write port space in caller. */
921 addr = &addrw->a;
922 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
923 af = sctp_get_af_specific(addr->sa.sa_family);
924 if (!af)
925 return -EINVAL;
926 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
927 return -EINVAL;
928
929 if (addrw->state == SCTP_ADDR_NEW)
930 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
931 else
932 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
933}
934
935/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
936 *
937 * API 8.1
938 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
939 * int flags);
940 *
941 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
942 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
943 * or IPv6 addresses.
944 *
945 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
946 * Section 3.1.2 for this usage.
947 *
948 * addrs is a pointer to an array of one or more socket addresses. Each
949 * address is contained in its appropriate structure (i.e. struct
950 * sockaddr_in or struct sockaddr_in6) the family of the address type
951 * must be used to distinguish the address length (note that this
952 * representation is termed a "packed array" of addresses). The caller
953 * specifies the number of addresses in the array with addrcnt.
954 *
955 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
956 * -1, and sets errno to the appropriate error code.
957 *
958 * For SCTP, the port given in each socket address must be the same, or
959 * sctp_bindx() will fail, setting errno to EINVAL.
960 *
961 * The flags parameter is formed from the bitwise OR of zero or more of
962 * the following currently defined flags:
963 *
964 * SCTP_BINDX_ADD_ADDR
965 *
966 * SCTP_BINDX_REM_ADDR
967 *
968 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
969 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
970 * addresses from the association. The two flags are mutually exclusive;
971 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
972 * not remove all addresses from an association; sctp_bindx() will
973 * reject such an attempt with EINVAL.
974 *
975 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
976 * additional addresses with an endpoint after calling bind(). Or use
977 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
978 * socket is associated with so that no new association accepted will be
979 * associated with those addresses. If the endpoint supports dynamic
980 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
981 * endpoint to send the appropriate message to the peer to change the
982 * peers address lists.
983 *
984 * Adding and removing addresses from a connected association is
985 * optional functionality. Implementations that do not support this
986 * functionality should return EOPNOTSUPP.
987 *
988 * Basically do nothing but copying the addresses from user to kernel
989 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
990 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
991 * from userspace.
992 *
993 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
994 * it.
995 *
996 * sk The sk of the socket
997 * addrs The pointer to the addresses in user land
998 * addrssize Size of the addrs buffer
999 * op Operation to perform (add or remove, see the flags of
1000 * sctp_bindx)
1001 *
1002 * Returns 0 if ok, <0 errno code on error.
1003 */
1004static int sctp_setsockopt_bindx(struct sock *sk,
1005 struct sockaddr __user *addrs,
1006 int addrs_size, int op)
1007{
1008 struct sockaddr *kaddrs;
1009 int err;
1010 int addrcnt = 0;
1011 int walk_size = 0;
1012 struct sockaddr *sa_addr;
1013 void *addr_buf;
1014 struct sctp_af *af;
1015
1016 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1017 __func__, sk, addrs, addrs_size, op);
1018
1019 if (unlikely(addrs_size <= 0))
1020 return -EINVAL;
1021
1022 kaddrs = vmemdup_user(addrs, addrs_size);
1023 if (unlikely(IS_ERR(kaddrs)))
1024 return PTR_ERR(kaddrs);
1025
1026 /* Walk through the addrs buffer and count the number of addresses. */
1027 addr_buf = kaddrs;
1028 while (walk_size < addrs_size) {
1029 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1030 kvfree(kaddrs);
1031 return -EINVAL;
1032 }
1033
1034 sa_addr = addr_buf;
1035 af = sctp_get_af_specific(sa_addr->sa_family);
1036
1037 /* If the address family is not supported or if this address
1038 * causes the address buffer to overflow return EINVAL.
1039 */
1040 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1041 kvfree(kaddrs);
1042 return -EINVAL;
1043 }
1044 addrcnt++;
1045 addr_buf += af->sockaddr_len;
1046 walk_size += af->sockaddr_len;
1047 }
1048
1049 /* Do the work. */
1050 switch (op) {
1051 case SCTP_BINDX_ADD_ADDR:
1052 /* Allow security module to validate bindx addresses. */
1053 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1054 (struct sockaddr *)kaddrs,
1055 addrs_size);
1056 if (err)
1057 goto out;
1058 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1059 if (err)
1060 goto out;
1061 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1062 break;
1063
1064 case SCTP_BINDX_REM_ADDR:
1065 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1066 if (err)
1067 goto out;
1068 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1069 break;
1070
1071 default:
1072 err = -EINVAL;
1073 break;
1074 }
1075
1076out:
1077 kvfree(kaddrs);
1078
1079 return err;
1080}
1081
1082/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1083 *
1084 * Common routine for handling connect() and sctp_connectx().
1085 * Connect will come in with just a single address.
1086 */
1087static int __sctp_connect(struct sock *sk,
1088 struct sockaddr *kaddrs,
1089 int addrs_size, int flags,
1090 sctp_assoc_t *assoc_id)
1091{
1092 struct net *net = sock_net(sk);
1093 struct sctp_sock *sp;
1094 struct sctp_endpoint *ep;
1095 struct sctp_association *asoc = NULL;
1096 struct sctp_association *asoc2;
1097 struct sctp_transport *transport;
1098 union sctp_addr to;
1099 enum sctp_scope scope;
1100 long timeo;
1101 int err = 0;
1102 int addrcnt = 0;
1103 int walk_size = 0;
1104 union sctp_addr *sa_addr = NULL;
1105 void *addr_buf;
1106 unsigned short port;
1107
1108 sp = sctp_sk(sk);
1109 ep = sp->ep;
1110
1111 /* connect() cannot be done on a socket that is already in ESTABLISHED
1112 * state - UDP-style peeled off socket or a TCP-style socket that
1113 * is already connected.
1114 * It cannot be done even on a TCP-style listening socket.
1115 */
1116 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1117 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1118 err = -EISCONN;
1119 goto out_free;
1120 }
1121
1122 /* Walk through the addrs buffer and count the number of addresses. */
1123 addr_buf = kaddrs;
1124 while (walk_size < addrs_size) {
1125 struct sctp_af *af;
1126
1127 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1128 err = -EINVAL;
1129 goto out_free;
1130 }
1131
1132 sa_addr = addr_buf;
1133 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1134
1135 /* If the address family is not supported or if this address
1136 * causes the address buffer to overflow return EINVAL.
1137 */
1138 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1139 err = -EINVAL;
1140 goto out_free;
1141 }
1142
1143 port = ntohs(sa_addr->v4.sin_port);
1144
1145 /* Save current address so we can work with it */
1146 memcpy(&to, sa_addr, af->sockaddr_len);
1147
1148 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1149 if (err)
1150 goto out_free;
1151
1152 /* Make sure the destination port is correctly set
1153 * in all addresses.
1154 */
1155 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1156 err = -EINVAL;
1157 goto out_free;
1158 }
1159
1160 /* Check if there already is a matching association on the
1161 * endpoint (other than the one created here).
1162 */
1163 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1164 if (asoc2 && asoc2 != asoc) {
1165 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1166 err = -EISCONN;
1167 else
1168 err = -EALREADY;
1169 goto out_free;
1170 }
1171
1172 /* If we could not find a matching association on the endpoint,
1173 * make sure that there is no peeled-off association matching
1174 * the peer address even on another socket.
1175 */
1176 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1177 err = -EADDRNOTAVAIL;
1178 goto out_free;
1179 }
1180
1181 if (!asoc) {
1182 /* If a bind() or sctp_bindx() is not called prior to
1183 * an sctp_connectx() call, the system picks an
1184 * ephemeral port and will choose an address set
1185 * equivalent to binding with a wildcard address.
1186 */
1187 if (!ep->base.bind_addr.port) {
1188 if (sctp_autobind(sk)) {
1189 err = -EAGAIN;
1190 goto out_free;
1191 }
1192 } else {
1193 /*
1194 * If an unprivileged user inherits a 1-many
1195 * style socket with open associations on a
1196 * privileged port, it MAY be permitted to
1197 * accept new associations, but it SHOULD NOT
1198 * be permitted to open new associations.
1199 */
1200 if (ep->base.bind_addr.port <
1201 inet_prot_sock(net) &&
1202 !ns_capable(net->user_ns,
1203 CAP_NET_BIND_SERVICE)) {
1204 err = -EACCES;
1205 goto out_free;
1206 }
1207 }
1208
1209 scope = sctp_scope(&to);
1210 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1211 if (!asoc) {
1212 err = -ENOMEM;
1213 goto out_free;
1214 }
1215
1216 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1217 GFP_KERNEL);
1218 if (err < 0) {
1219 goto out_free;
1220 }
1221
1222 }
1223
1224 /* Prime the peer's transport structures. */
1225 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1226 SCTP_UNKNOWN);
1227 if (!transport) {
1228 err = -ENOMEM;
1229 goto out_free;
1230 }
1231
1232 addrcnt++;
1233 addr_buf += af->sockaddr_len;
1234 walk_size += af->sockaddr_len;
1235 }
1236
1237 /* In case the user of sctp_connectx() wants an association
1238 * id back, assign one now.
1239 */
1240 if (assoc_id) {
1241 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1242 if (err < 0)
1243 goto out_free;
1244 }
1245
1246 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1247 if (err < 0) {
1248 goto out_free;
1249 }
1250
1251 /* Initialize sk's dport and daddr for getpeername() */
1252 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1253 sp->pf->to_sk_daddr(sa_addr, sk);
1254 sk->sk_err = 0;
1255
1256 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1257
1258 if (assoc_id)
1259 *assoc_id = asoc->assoc_id;
1260
1261 err = sctp_wait_for_connect(asoc, &timeo);
1262 /* Note: the asoc may be freed after the return of
1263 * sctp_wait_for_connect.
1264 */
1265
1266 /* Don't free association on exit. */
1267 asoc = NULL;
1268
1269out_free:
1270 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1271 __func__, asoc, kaddrs, err);
1272
1273 if (asoc) {
1274 /* sctp_primitive_ASSOCIATE may have added this association
1275 * To the hash table, try to unhash it, just in case, its a noop
1276 * if it wasn't hashed so we're safe
1277 */
1278 sctp_association_free(asoc);
1279 }
1280 return err;
1281}
1282
1283/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1284 *
1285 * API 8.9
1286 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1287 * sctp_assoc_t *asoc);
1288 *
1289 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1290 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1291 * or IPv6 addresses.
1292 *
1293 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1294 * Section 3.1.2 for this usage.
1295 *
1296 * addrs is a pointer to an array of one or more socket addresses. Each
1297 * address is contained in its appropriate structure (i.e. struct
1298 * sockaddr_in or struct sockaddr_in6) the family of the address type
1299 * must be used to distengish the address length (note that this
1300 * representation is termed a "packed array" of addresses). The caller
1301 * specifies the number of addresses in the array with addrcnt.
1302 *
1303 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1304 * the association id of the new association. On failure, sctp_connectx()
1305 * returns -1, and sets errno to the appropriate error code. The assoc_id
1306 * is not touched by the kernel.
1307 *
1308 * For SCTP, the port given in each socket address must be the same, or
1309 * sctp_connectx() will fail, setting errno to EINVAL.
1310 *
1311 * An application can use sctp_connectx to initiate an association with
1312 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1313 * allows a caller to specify multiple addresses at which a peer can be
1314 * reached. The way the SCTP stack uses the list of addresses to set up
1315 * the association is implementation dependent. This function only
1316 * specifies that the stack will try to make use of all the addresses in
1317 * the list when needed.
1318 *
1319 * Note that the list of addresses passed in is only used for setting up
1320 * the association. It does not necessarily equal the set of addresses
1321 * the peer uses for the resulting association. If the caller wants to
1322 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1323 * retrieve them after the association has been set up.
1324 *
1325 * Basically do nothing but copying the addresses from user to kernel
1326 * land and invoking either sctp_connectx(). This is used for tunneling
1327 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1328 *
1329 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1330 * it.
1331 *
1332 * sk The sk of the socket
1333 * addrs The pointer to the addresses in user land
1334 * addrssize Size of the addrs buffer
1335 *
1336 * Returns >=0 if ok, <0 errno code on error.
1337 */
1338static int __sctp_setsockopt_connectx(struct sock *sk,
1339 struct sockaddr __user *addrs,
1340 int addrs_size,
1341 sctp_assoc_t *assoc_id)
1342{
1343 struct sockaddr *kaddrs;
1344 int err = 0, flags = 0;
1345
1346 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1347 __func__, sk, addrs, addrs_size);
1348
1349 if (unlikely(addrs_size <= 0))
1350 return -EINVAL;
1351
1352 kaddrs = vmemdup_user(addrs, addrs_size);
1353 if (unlikely(IS_ERR(kaddrs)))
1354 return PTR_ERR(kaddrs);
1355
1356 /* Allow security module to validate connectx addresses. */
1357 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1358 (struct sockaddr *)kaddrs,
1359 addrs_size);
1360 if (err)
1361 goto out_free;
1362
1363 /* in-kernel sockets don't generally have a file allocated to them
1364 * if all they do is call sock_create_kern().
1365 */
1366 if (sk->sk_socket->file)
1367 flags = sk->sk_socket->file->f_flags;
1368
1369 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1370
1371out_free:
1372 kvfree(kaddrs);
1373
1374 return err;
1375}
1376
1377/*
1378 * This is an older interface. It's kept for backward compatibility
1379 * to the option that doesn't provide association id.
1380 */
1381static int sctp_setsockopt_connectx_old(struct sock *sk,
1382 struct sockaddr __user *addrs,
1383 int addrs_size)
1384{
1385 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1386}
1387
1388/*
1389 * New interface for the API. The since the API is done with a socket
1390 * option, to make it simple we feed back the association id is as a return
1391 * indication to the call. Error is always negative and association id is
1392 * always positive.
1393 */
1394static int sctp_setsockopt_connectx(struct sock *sk,
1395 struct sockaddr __user *addrs,
1396 int addrs_size)
1397{
1398 sctp_assoc_t assoc_id = 0;
1399 int err = 0;
1400
1401 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1402
1403 if (err)
1404 return err;
1405 else
1406 return assoc_id;
1407}
1408
1409/*
1410 * New (hopefully final) interface for the API.
1411 * We use the sctp_getaddrs_old structure so that use-space library
1412 * can avoid any unnecessary allocations. The only different part
1413 * is that we store the actual length of the address buffer into the
1414 * addrs_num structure member. That way we can re-use the existing
1415 * code.
1416 */
1417#ifdef CONFIG_COMPAT
1418struct compat_sctp_getaddrs_old {
1419 sctp_assoc_t assoc_id;
1420 s32 addr_num;
1421 compat_uptr_t addrs; /* struct sockaddr * */
1422};
1423#endif
1424
1425static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1426 char __user *optval,
1427 int __user *optlen)
1428{
1429 struct sctp_getaddrs_old param;
1430 sctp_assoc_t assoc_id = 0;
1431 int err = 0;
1432
1433#ifdef CONFIG_COMPAT
1434 if (in_compat_syscall()) {
1435 struct compat_sctp_getaddrs_old param32;
1436
1437 if (len < sizeof(param32))
1438 return -EINVAL;
1439 if (copy_from_user(¶m32, optval, sizeof(param32)))
1440 return -EFAULT;
1441
1442 param.assoc_id = param32.assoc_id;
1443 param.addr_num = param32.addr_num;
1444 param.addrs = compat_ptr(param32.addrs);
1445 } else
1446#endif
1447 {
1448 if (len < sizeof(param))
1449 return -EINVAL;
1450 if (copy_from_user(¶m, optval, sizeof(param)))
1451 return -EFAULT;
1452 }
1453
1454 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1455 param.addrs, param.addr_num,
1456 &assoc_id);
1457 if (err == 0 || err == -EINPROGRESS) {
1458 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1459 return -EFAULT;
1460 if (put_user(sizeof(assoc_id), optlen))
1461 return -EFAULT;
1462 }
1463
1464 return err;
1465}
1466
1467/* API 3.1.4 close() - UDP Style Syntax
1468 * Applications use close() to perform graceful shutdown (as described in
1469 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1470 * by a UDP-style socket.
1471 *
1472 * The syntax is
1473 *
1474 * ret = close(int sd);
1475 *
1476 * sd - the socket descriptor of the associations to be closed.
1477 *
1478 * To gracefully shutdown a specific association represented by the
1479 * UDP-style socket, an application should use the sendmsg() call,
1480 * passing no user data, but including the appropriate flag in the
1481 * ancillary data (see Section xxxx).
1482 *
1483 * If sd in the close() call is a branched-off socket representing only
1484 * one association, the shutdown is performed on that association only.
1485 *
1486 * 4.1.6 close() - TCP Style Syntax
1487 *
1488 * Applications use close() to gracefully close down an association.
1489 *
1490 * The syntax is:
1491 *
1492 * int close(int sd);
1493 *
1494 * sd - the socket descriptor of the association to be closed.
1495 *
1496 * After an application calls close() on a socket descriptor, no further
1497 * socket operations will succeed on that descriptor.
1498 *
1499 * API 7.1.4 SO_LINGER
1500 *
1501 * An application using the TCP-style socket can use this option to
1502 * perform the SCTP ABORT primitive. The linger option structure is:
1503 *
1504 * struct linger {
1505 * int l_onoff; // option on/off
1506 * int l_linger; // linger time
1507 * };
1508 *
1509 * To enable the option, set l_onoff to 1. If the l_linger value is set
1510 * to 0, calling close() is the same as the ABORT primitive. If the
1511 * value is set to a negative value, the setsockopt() call will return
1512 * an error. If the value is set to a positive value linger_time, the
1513 * close() can be blocked for at most linger_time ms. If the graceful
1514 * shutdown phase does not finish during this period, close() will
1515 * return but the graceful shutdown phase continues in the system.
1516 */
1517static void sctp_close(struct sock *sk, long timeout)
1518{
1519 struct net *net = sock_net(sk);
1520 struct sctp_endpoint *ep;
1521 struct sctp_association *asoc;
1522 struct list_head *pos, *temp;
1523 unsigned int data_was_unread;
1524
1525 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1526
1527 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1528 sk->sk_shutdown = SHUTDOWN_MASK;
1529 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1530
1531 ep = sctp_sk(sk)->ep;
1532
1533 /* Clean up any skbs sitting on the receive queue. */
1534 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1535 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1536
1537 /* Walk all associations on an endpoint. */
1538 list_for_each_safe(pos, temp, &ep->asocs) {
1539 asoc = list_entry(pos, struct sctp_association, asocs);
1540
1541 if (sctp_style(sk, TCP)) {
1542 /* A closed association can still be in the list if
1543 * it belongs to a TCP-style listening socket that is
1544 * not yet accepted. If so, free it. If not, send an
1545 * ABORT or SHUTDOWN based on the linger options.
1546 */
1547 if (sctp_state(asoc, CLOSED)) {
1548 sctp_association_free(asoc);
1549 continue;
1550 }
1551 }
1552
1553 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1554 !skb_queue_empty(&asoc->ulpq.reasm) ||
1555 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1556 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1557 struct sctp_chunk *chunk;
1558
1559 chunk = sctp_make_abort_user(asoc, NULL, 0);
1560 sctp_primitive_ABORT(net, asoc, chunk);
1561 } else
1562 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1563 }
1564
1565 /* On a TCP-style socket, block for at most linger_time if set. */
1566 if (sctp_style(sk, TCP) && timeout)
1567 sctp_wait_for_close(sk, timeout);
1568
1569 /* This will run the backlog queue. */
1570 release_sock(sk);
1571
1572 /* Supposedly, no process has access to the socket, but
1573 * the net layers still may.
1574 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1575 * held and that should be grabbed before socket lock.
1576 */
1577 spin_lock_bh(&net->sctp.addr_wq_lock);
1578 bh_lock_sock_nested(sk);
1579
1580 /* Hold the sock, since sk_common_release() will put sock_put()
1581 * and we have just a little more cleanup.
1582 */
1583 sock_hold(sk);
1584 sk_common_release(sk);
1585
1586 bh_unlock_sock(sk);
1587 spin_unlock_bh(&net->sctp.addr_wq_lock);
1588
1589 sock_put(sk);
1590
1591 SCTP_DBG_OBJCNT_DEC(sock);
1592}
1593
1594/* Handle EPIPE error. */
1595static int sctp_error(struct sock *sk, int flags, int err)
1596{
1597 if (err == -EPIPE)
1598 err = sock_error(sk) ? : -EPIPE;
1599 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1600 send_sig(SIGPIPE, current, 0);
1601 return err;
1602}
1603
1604/* API 3.1.3 sendmsg() - UDP Style Syntax
1605 *
1606 * An application uses sendmsg() and recvmsg() calls to transmit data to
1607 * and receive data from its peer.
1608 *
1609 * ssize_t sendmsg(int socket, const struct msghdr *message,
1610 * int flags);
1611 *
1612 * socket - the socket descriptor of the endpoint.
1613 * message - pointer to the msghdr structure which contains a single
1614 * user message and possibly some ancillary data.
1615 *
1616 * See Section 5 for complete description of the data
1617 * structures.
1618 *
1619 * flags - flags sent or received with the user message, see Section
1620 * 5 for complete description of the flags.
1621 *
1622 * Note: This function could use a rewrite especially when explicit
1623 * connect support comes in.
1624 */
1625/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1626
1627static int sctp_msghdr_parse(const struct msghdr *msg,
1628 struct sctp_cmsgs *cmsgs);
1629
1630static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1631 struct sctp_sndrcvinfo *srinfo,
1632 const struct msghdr *msg, size_t msg_len)
1633{
1634 __u16 sflags;
1635 int err;
1636
1637 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1638 return -EPIPE;
1639
1640 if (msg_len > sk->sk_sndbuf)
1641 return -EMSGSIZE;
1642
1643 memset(cmsgs, 0, sizeof(*cmsgs));
1644 err = sctp_msghdr_parse(msg, cmsgs);
1645 if (err) {
1646 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1647 return err;
1648 }
1649
1650 memset(srinfo, 0, sizeof(*srinfo));
1651 if (cmsgs->srinfo) {
1652 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1653 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1654 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1655 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1656 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1657 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1658 }
1659
1660 if (cmsgs->sinfo) {
1661 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1662 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1663 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1664 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1665 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1666 }
1667
1668 if (cmsgs->prinfo) {
1669 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1670 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1671 cmsgs->prinfo->pr_policy);
1672 }
1673
1674 sflags = srinfo->sinfo_flags;
1675 if (!sflags && msg_len)
1676 return 0;
1677
1678 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1679 return -EINVAL;
1680
1681 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1682 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1683 return -EINVAL;
1684
1685 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1686 return -EINVAL;
1687
1688 return 0;
1689}
1690
1691static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1692 struct sctp_cmsgs *cmsgs,
1693 union sctp_addr *daddr,
1694 struct sctp_transport **tp)
1695{
1696 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1697 struct net *net = sock_net(sk);
1698 struct sctp_association *asoc;
1699 enum sctp_scope scope;
1700 struct cmsghdr *cmsg;
1701 struct sctp_af *af;
1702 int err;
1703
1704 *tp = NULL;
1705
1706 if (sflags & (SCTP_EOF | SCTP_ABORT))
1707 return -EINVAL;
1708
1709 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1710 sctp_sstate(sk, CLOSING)))
1711 return -EADDRNOTAVAIL;
1712
1713 if (sctp_endpoint_is_peeled_off(ep, daddr))
1714 return -EADDRNOTAVAIL;
1715
1716 if (!ep->base.bind_addr.port) {
1717 if (sctp_autobind(sk))
1718 return -EAGAIN;
1719 } else {
1720 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1721 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1722 return -EACCES;
1723 }
1724
1725 scope = sctp_scope(daddr);
1726
1727 /* Label connection socket for first association 1-to-many
1728 * style for client sequence socket()->sendmsg(). This
1729 * needs to be done before sctp_assoc_add_peer() as that will
1730 * set up the initial packet that needs to account for any
1731 * security ip options (CIPSO/CALIPSO) added to the packet.
1732 */
1733 af = sctp_get_af_specific(daddr->sa.sa_family);
1734 if (!af)
1735 return -EINVAL;
1736 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1737 (struct sockaddr *)daddr,
1738 af->sockaddr_len);
1739 if (err < 0)
1740 return err;
1741
1742 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1743 if (!asoc)
1744 return -ENOMEM;
1745
1746 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1747 err = -ENOMEM;
1748 goto free;
1749 }
1750
1751 if (cmsgs->init) {
1752 struct sctp_initmsg *init = cmsgs->init;
1753
1754 if (init->sinit_num_ostreams) {
1755 __u16 outcnt = init->sinit_num_ostreams;
1756
1757 asoc->c.sinit_num_ostreams = outcnt;
1758 /* outcnt has been changed, need to re-init stream */
1759 err = sctp_stream_init(&asoc->stream, outcnt, 0,
1760 GFP_KERNEL);
1761 if (err)
1762 goto free;
1763 }
1764
1765 if (init->sinit_max_instreams)
1766 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1767
1768 if (init->sinit_max_attempts)
1769 asoc->max_init_attempts = init->sinit_max_attempts;
1770
1771 if (init->sinit_max_init_timeo)
1772 asoc->max_init_timeo =
1773 msecs_to_jiffies(init->sinit_max_init_timeo);
1774 }
1775
1776 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1777 if (!*tp) {
1778 err = -ENOMEM;
1779 goto free;
1780 }
1781
1782 if (!cmsgs->addrs_msg)
1783 return 0;
1784
1785 /* sendv addr list parse */
1786 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1787 struct sctp_transport *transport;
1788 struct sctp_association *old;
1789 union sctp_addr _daddr;
1790 int dlen;
1791
1792 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1793 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1794 cmsg->cmsg_type != SCTP_DSTADDRV6))
1795 continue;
1796
1797 daddr = &_daddr;
1798 memset(daddr, 0, sizeof(*daddr));
1799 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1800 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1801 if (dlen < sizeof(struct in_addr)) {
1802 err = -EINVAL;
1803 goto free;
1804 }
1805
1806 dlen = sizeof(struct in_addr);
1807 daddr->v4.sin_family = AF_INET;
1808 daddr->v4.sin_port = htons(asoc->peer.port);
1809 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1810 } else {
1811 if (dlen < sizeof(struct in6_addr)) {
1812 err = -EINVAL;
1813 goto free;
1814 }
1815
1816 dlen = sizeof(struct in6_addr);
1817 daddr->v6.sin6_family = AF_INET6;
1818 daddr->v6.sin6_port = htons(asoc->peer.port);
1819 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1820 }
1821 err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1822 if (err)
1823 goto free;
1824
1825 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1826 if (old && old != asoc) {
1827 if (old->state >= SCTP_STATE_ESTABLISHED)
1828 err = -EISCONN;
1829 else
1830 err = -EALREADY;
1831 goto free;
1832 }
1833
1834 if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1835 err = -EADDRNOTAVAIL;
1836 goto free;
1837 }
1838
1839 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1840 SCTP_UNKNOWN);
1841 if (!transport) {
1842 err = -ENOMEM;
1843 goto free;
1844 }
1845 }
1846
1847 return 0;
1848
1849free:
1850 sctp_association_free(asoc);
1851 return err;
1852}
1853
1854static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1855 __u16 sflags, struct msghdr *msg,
1856 size_t msg_len)
1857{
1858 struct sock *sk = asoc->base.sk;
1859 struct net *net = sock_net(sk);
1860
1861 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1862 return -EPIPE;
1863
1864 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1865 !sctp_state(asoc, ESTABLISHED))
1866 return 0;
1867
1868 if (sflags & SCTP_EOF) {
1869 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1870 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1871
1872 return 0;
1873 }
1874
1875 if (sflags & SCTP_ABORT) {
1876 struct sctp_chunk *chunk;
1877
1878 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1879 if (!chunk)
1880 return -ENOMEM;
1881
1882 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1883 sctp_primitive_ABORT(net, asoc, chunk);
1884
1885 return 0;
1886 }
1887
1888 return 1;
1889}
1890
1891static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1892 struct msghdr *msg, size_t msg_len,
1893 struct sctp_transport *transport,
1894 struct sctp_sndrcvinfo *sinfo)
1895{
1896 struct sock *sk = asoc->base.sk;
1897 struct net *net = sock_net(sk);
1898 struct sctp_datamsg *datamsg;
1899 bool wait_connect = false;
1900 struct sctp_chunk *chunk;
1901 long timeo;
1902 int err;
1903
1904 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1905 err = -EINVAL;
1906 goto err;
1907 }
1908
1909 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) {
1910 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1911 if (err)
1912 goto err;
1913 }
1914
1915 if (sctp_sk(sk)->disable_fragments && msg_len > asoc->frag_point) {
1916 err = -EMSGSIZE;
1917 goto err;
1918 }
1919
1920 if (asoc->pmtu_pending)
1921 sctp_assoc_pending_pmtu(asoc);
1922
1923 if (sctp_wspace(asoc) < msg_len)
1924 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1925
1926 if (!sctp_wspace(asoc)) {
1927 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1928 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1929 if (err)
1930 goto err;
1931 }
1932
1933 if (sctp_state(asoc, CLOSED)) {
1934 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1935 if (err)
1936 goto err;
1937
1938 if (sctp_sk(sk)->strm_interleave) {
1939 timeo = sock_sndtimeo(sk, 0);
1940 err = sctp_wait_for_connect(asoc, &timeo);
1941 if (err)
1942 goto err;
1943 } else {
1944 wait_connect = true;
1945 }
1946
1947 pr_debug("%s: we associated primitively\n", __func__);
1948 }
1949
1950 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1951 if (IS_ERR(datamsg)) {
1952 err = PTR_ERR(datamsg);
1953 goto err;
1954 }
1955
1956 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1957
1958 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1959 sctp_chunk_hold(chunk);
1960 sctp_set_owner_w(chunk);
1961 chunk->transport = transport;
1962 }
1963
1964 err = sctp_primitive_SEND(net, asoc, datamsg);
1965 if (err) {
1966 sctp_datamsg_free(datamsg);
1967 goto err;
1968 }
1969
1970 pr_debug("%s: we sent primitively\n", __func__);
1971
1972 sctp_datamsg_put(datamsg);
1973
1974 if (unlikely(wait_connect)) {
1975 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1976 sctp_wait_for_connect(asoc, &timeo);
1977 }
1978
1979 err = msg_len;
1980
1981err:
1982 return err;
1983}
1984
1985static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1986 const struct msghdr *msg,
1987 struct sctp_cmsgs *cmsgs)
1988{
1989 union sctp_addr *daddr = NULL;
1990 int err;
1991
1992 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1993 int len = msg->msg_namelen;
1994
1995 if (len > sizeof(*daddr))
1996 len = sizeof(*daddr);
1997
1998 daddr = (union sctp_addr *)msg->msg_name;
1999
2000 err = sctp_verify_addr(sk, daddr, len);
2001 if (err)
2002 return ERR_PTR(err);
2003 }
2004
2005 return daddr;
2006}
2007
2008static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2009 struct sctp_sndrcvinfo *sinfo,
2010 struct sctp_cmsgs *cmsgs)
2011{
2012 if (!cmsgs->srinfo && !cmsgs->sinfo) {
2013 sinfo->sinfo_stream = asoc->default_stream;
2014 sinfo->sinfo_ppid = asoc->default_ppid;
2015 sinfo->sinfo_context = asoc->default_context;
2016 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2017
2018 if (!cmsgs->prinfo)
2019 sinfo->sinfo_flags = asoc->default_flags;
2020 }
2021
2022 if (!cmsgs->srinfo && !cmsgs->prinfo)
2023 sinfo->sinfo_timetolive = asoc->default_timetolive;
2024
2025 if (cmsgs->authinfo) {
2026 /* Reuse sinfo_tsn to indicate that authinfo was set and
2027 * sinfo_ssn to save the keyid on tx path.
2028 */
2029 sinfo->sinfo_tsn = 1;
2030 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2031 }
2032}
2033
2034static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2035{
2036 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2037 struct sctp_transport *transport = NULL;
2038 struct sctp_sndrcvinfo _sinfo, *sinfo;
2039 struct sctp_association *asoc;
2040 struct sctp_cmsgs cmsgs;
2041 union sctp_addr *daddr;
2042 bool new = false;
2043 __u16 sflags;
2044 int err;
2045
2046 /* Parse and get snd_info */
2047 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2048 if (err)
2049 goto out;
2050
2051 sinfo = &_sinfo;
2052 sflags = sinfo->sinfo_flags;
2053
2054 /* Get daddr from msg */
2055 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2056 if (IS_ERR(daddr)) {
2057 err = PTR_ERR(daddr);
2058 goto out;
2059 }
2060
2061 lock_sock(sk);
2062
2063 /* SCTP_SENDALL process */
2064 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2065 list_for_each_entry(asoc, &ep->asocs, asocs) {
2066 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2067 msg_len);
2068 if (err == 0)
2069 continue;
2070 if (err < 0)
2071 goto out_unlock;
2072
2073 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2074
2075 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2076 NULL, sinfo);
2077 if (err < 0)
2078 goto out_unlock;
2079
2080 iov_iter_revert(&msg->msg_iter, err);
2081 }
2082
2083 goto out_unlock;
2084 }
2085
2086 /* Get and check or create asoc */
2087 if (daddr) {
2088 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2089 if (asoc) {
2090 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2091 msg_len);
2092 if (err <= 0)
2093 goto out_unlock;
2094 } else {
2095 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2096 &transport);
2097 if (err)
2098 goto out_unlock;
2099
2100 asoc = transport->asoc;
2101 new = true;
2102 }
2103
2104 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2105 transport = NULL;
2106 } else {
2107 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2108 if (!asoc) {
2109 err = -EPIPE;
2110 goto out_unlock;
2111 }
2112
2113 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2114 if (err <= 0)
2115 goto out_unlock;
2116 }
2117
2118 /* Update snd_info with the asoc */
2119 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2120
2121 /* Send msg to the asoc */
2122 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2123 if (err < 0 && err != -ESRCH && new)
2124 sctp_association_free(asoc);
2125
2126out_unlock:
2127 release_sock(sk);
2128out:
2129 return sctp_error(sk, msg->msg_flags, err);
2130}
2131
2132/* This is an extended version of skb_pull() that removes the data from the
2133 * start of a skb even when data is spread across the list of skb's in the
2134 * frag_list. len specifies the total amount of data that needs to be removed.
2135 * when 'len' bytes could be removed from the skb, it returns 0.
2136 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2137 * could not be removed.
2138 */
2139static int sctp_skb_pull(struct sk_buff *skb, int len)
2140{
2141 struct sk_buff *list;
2142 int skb_len = skb_headlen(skb);
2143 int rlen;
2144
2145 if (len <= skb_len) {
2146 __skb_pull(skb, len);
2147 return 0;
2148 }
2149 len -= skb_len;
2150 __skb_pull(skb, skb_len);
2151
2152 skb_walk_frags(skb, list) {
2153 rlen = sctp_skb_pull(list, len);
2154 skb->len -= (len-rlen);
2155 skb->data_len -= (len-rlen);
2156
2157 if (!rlen)
2158 return 0;
2159
2160 len = rlen;
2161 }
2162
2163 return len;
2164}
2165
2166/* API 3.1.3 recvmsg() - UDP Style Syntax
2167 *
2168 * ssize_t recvmsg(int socket, struct msghdr *message,
2169 * int flags);
2170 *
2171 * socket - the socket descriptor of the endpoint.
2172 * message - pointer to the msghdr structure which contains a single
2173 * user message and possibly some ancillary data.
2174 *
2175 * See Section 5 for complete description of the data
2176 * structures.
2177 *
2178 * flags - flags sent or received with the user message, see Section
2179 * 5 for complete description of the flags.
2180 */
2181static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2182 int noblock, int flags, int *addr_len)
2183{
2184 struct sctp_ulpevent *event = NULL;
2185 struct sctp_sock *sp = sctp_sk(sk);
2186 struct sk_buff *skb, *head_skb;
2187 int copied;
2188 int err = 0;
2189 int skb_len;
2190
2191 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2192 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2193 addr_len);
2194
2195 lock_sock(sk);
2196
2197 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2198 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2199 err = -ENOTCONN;
2200 goto out;
2201 }
2202
2203 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2204 if (!skb)
2205 goto out;
2206
2207 /* Get the total length of the skb including any skb's in the
2208 * frag_list.
2209 */
2210 skb_len = skb->len;
2211
2212 copied = skb_len;
2213 if (copied > len)
2214 copied = len;
2215
2216 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2217
2218 event = sctp_skb2event(skb);
2219
2220 if (err)
2221 goto out_free;
2222
2223 if (event->chunk && event->chunk->head_skb)
2224 head_skb = event->chunk->head_skb;
2225 else
2226 head_skb = skb;
2227 sock_recv_ts_and_drops(msg, sk, head_skb);
2228 if (sctp_ulpevent_is_notification(event)) {
2229 msg->msg_flags |= MSG_NOTIFICATION;
2230 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2231 } else {
2232 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2233 }
2234
2235 /* Check if we allow SCTP_NXTINFO. */
2236 if (sp->recvnxtinfo)
2237 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2238 /* Check if we allow SCTP_RCVINFO. */
2239 if (sp->recvrcvinfo)
2240 sctp_ulpevent_read_rcvinfo(event, msg);
2241 /* Check if we allow SCTP_SNDRCVINFO. */
2242 if (sp->subscribe.sctp_data_io_event)
2243 sctp_ulpevent_read_sndrcvinfo(event, msg);
2244
2245 err = copied;
2246
2247 /* If skb's length exceeds the user's buffer, update the skb and
2248 * push it back to the receive_queue so that the next call to
2249 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2250 */
2251 if (skb_len > copied) {
2252 msg->msg_flags &= ~MSG_EOR;
2253 if (flags & MSG_PEEK)
2254 goto out_free;
2255 sctp_skb_pull(skb, copied);
2256 skb_queue_head(&sk->sk_receive_queue, skb);
2257
2258 /* When only partial message is copied to the user, increase
2259 * rwnd by that amount. If all the data in the skb is read,
2260 * rwnd is updated when the event is freed.
2261 */
2262 if (!sctp_ulpevent_is_notification(event))
2263 sctp_assoc_rwnd_increase(event->asoc, copied);
2264 goto out;
2265 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2266 (event->msg_flags & MSG_EOR))
2267 msg->msg_flags |= MSG_EOR;
2268 else
2269 msg->msg_flags &= ~MSG_EOR;
2270
2271out_free:
2272 if (flags & MSG_PEEK) {
2273 /* Release the skb reference acquired after peeking the skb in
2274 * sctp_skb_recv_datagram().
2275 */
2276 kfree_skb(skb);
2277 } else {
2278 /* Free the event which includes releasing the reference to
2279 * the owner of the skb, freeing the skb and updating the
2280 * rwnd.
2281 */
2282 sctp_ulpevent_free(event);
2283 }
2284out:
2285 release_sock(sk);
2286 return err;
2287}
2288
2289/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2290 *
2291 * This option is a on/off flag. If enabled no SCTP message
2292 * fragmentation will be performed. Instead if a message being sent
2293 * exceeds the current PMTU size, the message will NOT be sent and
2294 * instead a error will be indicated to the user.
2295 */
2296static int sctp_setsockopt_disable_fragments(struct sock *sk,
2297 char __user *optval,
2298 unsigned int optlen)
2299{
2300 int val;
2301
2302 if (optlen < sizeof(int))
2303 return -EINVAL;
2304
2305 if (get_user(val, (int __user *)optval))
2306 return -EFAULT;
2307
2308 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2309
2310 return 0;
2311}
2312
2313static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2314 unsigned int optlen)
2315{
2316 struct sctp_association *asoc;
2317 struct sctp_ulpevent *event;
2318
2319 if (optlen > sizeof(struct sctp_event_subscribe))
2320 return -EINVAL;
2321 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2322 return -EFAULT;
2323
2324 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2325 * if there is no data to be sent or retransmit, the stack will
2326 * immediately send up this notification.
2327 */
2328 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2329 &sctp_sk(sk)->subscribe)) {
2330 asoc = sctp_id2assoc(sk, 0);
2331
2332 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2333 event = sctp_ulpevent_make_sender_dry_event(asoc,
2334 GFP_USER | __GFP_NOWARN);
2335 if (!event)
2336 return -ENOMEM;
2337
2338 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2339 }
2340 }
2341
2342 return 0;
2343}
2344
2345/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2346 *
2347 * This socket option is applicable to the UDP-style socket only. When
2348 * set it will cause associations that are idle for more than the
2349 * specified number of seconds to automatically close. An association
2350 * being idle is defined an association that has NOT sent or received
2351 * user data. The special value of '0' indicates that no automatic
2352 * close of any associations should be performed. The option expects an
2353 * integer defining the number of seconds of idle time before an
2354 * association is closed.
2355 */
2356static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2357 unsigned int optlen)
2358{
2359 struct sctp_sock *sp = sctp_sk(sk);
2360 struct net *net = sock_net(sk);
2361
2362 /* Applicable to UDP-style socket only */
2363 if (sctp_style(sk, TCP))
2364 return -EOPNOTSUPP;
2365 if (optlen != sizeof(int))
2366 return -EINVAL;
2367 if (copy_from_user(&sp->autoclose, optval, optlen))
2368 return -EFAULT;
2369
2370 if (sp->autoclose > net->sctp.max_autoclose)
2371 sp->autoclose = net->sctp.max_autoclose;
2372
2373 return 0;
2374}
2375
2376/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2377 *
2378 * Applications can enable or disable heartbeats for any peer address of
2379 * an association, modify an address's heartbeat interval, force a
2380 * heartbeat to be sent immediately, and adjust the address's maximum
2381 * number of retransmissions sent before an address is considered
2382 * unreachable. The following structure is used to access and modify an
2383 * address's parameters:
2384 *
2385 * struct sctp_paddrparams {
2386 * sctp_assoc_t spp_assoc_id;
2387 * struct sockaddr_storage spp_address;
2388 * uint32_t spp_hbinterval;
2389 * uint16_t spp_pathmaxrxt;
2390 * uint32_t spp_pathmtu;
2391 * uint32_t spp_sackdelay;
2392 * uint32_t spp_flags;
2393 * };
2394 *
2395 * spp_assoc_id - (one-to-many style socket) This is filled in the
2396 * application, and identifies the association for
2397 * this query.
2398 * spp_address - This specifies which address is of interest.
2399 * spp_hbinterval - This contains the value of the heartbeat interval,
2400 * in milliseconds. If a value of zero
2401 * is present in this field then no changes are to
2402 * be made to this parameter.
2403 * spp_pathmaxrxt - This contains the maximum number of
2404 * retransmissions before this address shall be
2405 * considered unreachable. If a value of zero
2406 * is present in this field then no changes are to
2407 * be made to this parameter.
2408 * spp_pathmtu - When Path MTU discovery is disabled the value
2409 * specified here will be the "fixed" path mtu.
2410 * Note that if the spp_address field is empty
2411 * then all associations on this address will
2412 * have this fixed path mtu set upon them.
2413 *
2414 * spp_sackdelay - When delayed sack is enabled, this value specifies
2415 * the number of milliseconds that sacks will be delayed
2416 * for. This value will apply to all addresses of an
2417 * association if the spp_address field is empty. Note
2418 * also, that if delayed sack is enabled and this
2419 * value is set to 0, no change is made to the last
2420 * recorded delayed sack timer value.
2421 *
2422 * spp_flags - These flags are used to control various features
2423 * on an association. The flag field may contain
2424 * zero or more of the following options.
2425 *
2426 * SPP_HB_ENABLE - Enable heartbeats on the
2427 * specified address. Note that if the address
2428 * field is empty all addresses for the association
2429 * have heartbeats enabled upon them.
2430 *
2431 * SPP_HB_DISABLE - Disable heartbeats on the
2432 * speicifed address. Note that if the address
2433 * field is empty all addresses for the association
2434 * will have their heartbeats disabled. Note also
2435 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2436 * mutually exclusive, only one of these two should
2437 * be specified. Enabling both fields will have
2438 * undetermined results.
2439 *
2440 * SPP_HB_DEMAND - Request a user initiated heartbeat
2441 * to be made immediately.
2442 *
2443 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2444 * heartbeat delayis to be set to the value of 0
2445 * milliseconds.
2446 *
2447 * SPP_PMTUD_ENABLE - This field will enable PMTU
2448 * discovery upon the specified address. Note that
2449 * if the address feild is empty then all addresses
2450 * on the association are effected.
2451 *
2452 * SPP_PMTUD_DISABLE - This field will disable PMTU
2453 * discovery upon the specified address. Note that
2454 * if the address feild is empty then all addresses
2455 * on the association are effected. Not also that
2456 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2457 * exclusive. Enabling both will have undetermined
2458 * results.
2459 *
2460 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2461 * on delayed sack. The time specified in spp_sackdelay
2462 * is used to specify the sack delay for this address. Note
2463 * that if spp_address is empty then all addresses will
2464 * enable delayed sack and take on the sack delay
2465 * value specified in spp_sackdelay.
2466 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2467 * off delayed sack. If the spp_address field is blank then
2468 * delayed sack is disabled for the entire association. Note
2469 * also that this field is mutually exclusive to
2470 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2471 * results.
2472 */
2473static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2474 struct sctp_transport *trans,
2475 struct sctp_association *asoc,
2476 struct sctp_sock *sp,
2477 int hb_change,
2478 int pmtud_change,
2479 int sackdelay_change)
2480{
2481 int error;
2482
2483 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2484 struct net *net = sock_net(trans->asoc->base.sk);
2485
2486 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2487 if (error)
2488 return error;
2489 }
2490
2491 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2492 * this field is ignored. Note also that a value of zero indicates
2493 * the current setting should be left unchanged.
2494 */
2495 if (params->spp_flags & SPP_HB_ENABLE) {
2496
2497 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2498 * set. This lets us use 0 value when this flag
2499 * is set.
2500 */
2501 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2502 params->spp_hbinterval = 0;
2503
2504 if (params->spp_hbinterval ||
2505 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2506 if (trans) {
2507 trans->hbinterval =
2508 msecs_to_jiffies(params->spp_hbinterval);
2509 } else if (asoc) {
2510 asoc->hbinterval =
2511 msecs_to_jiffies(params->spp_hbinterval);
2512 } else {
2513 sp->hbinterval = params->spp_hbinterval;
2514 }
2515 }
2516 }
2517
2518 if (hb_change) {
2519 if (trans) {
2520 trans->param_flags =
2521 (trans->param_flags & ~SPP_HB) | hb_change;
2522 } else if (asoc) {
2523 asoc->param_flags =
2524 (asoc->param_flags & ~SPP_HB) | hb_change;
2525 } else {
2526 sp->param_flags =
2527 (sp->param_flags & ~SPP_HB) | hb_change;
2528 }
2529 }
2530
2531 /* When Path MTU discovery is disabled the value specified here will
2532 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2533 * include the flag SPP_PMTUD_DISABLE for this field to have any
2534 * effect).
2535 */
2536 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2537 if (trans) {
2538 trans->pathmtu = params->spp_pathmtu;
2539 sctp_assoc_sync_pmtu(asoc);
2540 } else if (asoc) {
2541 asoc->pathmtu = params->spp_pathmtu;
2542 } else {
2543 sp->pathmtu = params->spp_pathmtu;
2544 }
2545 }
2546
2547 if (pmtud_change) {
2548 if (trans) {
2549 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2550 (params->spp_flags & SPP_PMTUD_ENABLE);
2551 trans->param_flags =
2552 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2553 if (update) {
2554 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2555 sctp_assoc_sync_pmtu(asoc);
2556 }
2557 } else if (asoc) {
2558 asoc->param_flags =
2559 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2560 } else {
2561 sp->param_flags =
2562 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2563 }
2564 }
2565
2566 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2567 * value of this field is ignored. Note also that a value of zero
2568 * indicates the current setting should be left unchanged.
2569 */
2570 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2571 if (trans) {
2572 trans->sackdelay =
2573 msecs_to_jiffies(params->spp_sackdelay);
2574 } else if (asoc) {
2575 asoc->sackdelay =
2576 msecs_to_jiffies(params->spp_sackdelay);
2577 } else {
2578 sp->sackdelay = params->spp_sackdelay;
2579 }
2580 }
2581
2582 if (sackdelay_change) {
2583 if (trans) {
2584 trans->param_flags =
2585 (trans->param_flags & ~SPP_SACKDELAY) |
2586 sackdelay_change;
2587 } else if (asoc) {
2588 asoc->param_flags =
2589 (asoc->param_flags & ~SPP_SACKDELAY) |
2590 sackdelay_change;
2591 } else {
2592 sp->param_flags =
2593 (sp->param_flags & ~SPP_SACKDELAY) |
2594 sackdelay_change;
2595 }
2596 }
2597
2598 /* Note that a value of zero indicates the current setting should be
2599 left unchanged.
2600 */
2601 if (params->spp_pathmaxrxt) {
2602 if (trans) {
2603 trans->pathmaxrxt = params->spp_pathmaxrxt;
2604 } else if (asoc) {
2605 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2606 } else {
2607 sp->pathmaxrxt = params->spp_pathmaxrxt;
2608 }
2609 }
2610
2611 return 0;
2612}
2613
2614static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2615 char __user *optval,
2616 unsigned int optlen)
2617{
2618 struct sctp_paddrparams params;
2619 struct sctp_transport *trans = NULL;
2620 struct sctp_association *asoc = NULL;
2621 struct sctp_sock *sp = sctp_sk(sk);
2622 int error;
2623 int hb_change, pmtud_change, sackdelay_change;
2624
2625 if (optlen != sizeof(struct sctp_paddrparams))
2626 return -EINVAL;
2627
2628 if (copy_from_user(¶ms, optval, optlen))
2629 return -EFAULT;
2630
2631 /* Validate flags and value parameters. */
2632 hb_change = params.spp_flags & SPP_HB;
2633 pmtud_change = params.spp_flags & SPP_PMTUD;
2634 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2635
2636 if (hb_change == SPP_HB ||
2637 pmtud_change == SPP_PMTUD ||
2638 sackdelay_change == SPP_SACKDELAY ||
2639 params.spp_sackdelay > 500 ||
2640 (params.spp_pathmtu &&
2641 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2642 return -EINVAL;
2643
2644 /* If an address other than INADDR_ANY is specified, and
2645 * no transport is found, then the request is invalid.
2646 */
2647 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2648 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2649 params.spp_assoc_id);
2650 if (!trans)
2651 return -EINVAL;
2652 }
2653
2654 /* Get association, if assoc_id != 0 and the socket is a one
2655 * to many style socket, and an association was not found, then
2656 * the id was invalid.
2657 */
2658 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2659 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2660 return -EINVAL;
2661
2662 /* Heartbeat demand can only be sent on a transport or
2663 * association, but not a socket.
2664 */
2665 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2666 return -EINVAL;
2667
2668 /* Process parameters. */
2669 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2670 hb_change, pmtud_change,
2671 sackdelay_change);
2672
2673 if (error)
2674 return error;
2675
2676 /* If changes are for association, also apply parameters to each
2677 * transport.
2678 */
2679 if (!trans && asoc) {
2680 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2681 transports) {
2682 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2683 hb_change, pmtud_change,
2684 sackdelay_change);
2685 }
2686 }
2687
2688 return 0;
2689}
2690
2691static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2692{
2693 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2694}
2695
2696static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2697{
2698 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2699}
2700
2701/*
2702 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2703 *
2704 * This option will effect the way delayed acks are performed. This
2705 * option allows you to get or set the delayed ack time, in
2706 * milliseconds. It also allows changing the delayed ack frequency.
2707 * Changing the frequency to 1 disables the delayed sack algorithm. If
2708 * the assoc_id is 0, then this sets or gets the endpoints default
2709 * values. If the assoc_id field is non-zero, then the set or get
2710 * effects the specified association for the one to many model (the
2711 * assoc_id field is ignored by the one to one model). Note that if
2712 * sack_delay or sack_freq are 0 when setting this option, then the
2713 * current values will remain unchanged.
2714 *
2715 * struct sctp_sack_info {
2716 * sctp_assoc_t sack_assoc_id;
2717 * uint32_t sack_delay;
2718 * uint32_t sack_freq;
2719 * };
2720 *
2721 * sack_assoc_id - This parameter, indicates which association the user
2722 * is performing an action upon. Note that if this field's value is
2723 * zero then the endpoints default value is changed (effecting future
2724 * associations only).
2725 *
2726 * sack_delay - This parameter contains the number of milliseconds that
2727 * the user is requesting the delayed ACK timer be set to. Note that
2728 * this value is defined in the standard to be between 200 and 500
2729 * milliseconds.
2730 *
2731 * sack_freq - This parameter contains the number of packets that must
2732 * be received before a sack is sent without waiting for the delay
2733 * timer to expire. The default value for this is 2, setting this
2734 * value to 1 will disable the delayed sack algorithm.
2735 */
2736
2737static int sctp_setsockopt_delayed_ack(struct sock *sk,
2738 char __user *optval, unsigned int optlen)
2739{
2740 struct sctp_sack_info params;
2741 struct sctp_transport *trans = NULL;
2742 struct sctp_association *asoc = NULL;
2743 struct sctp_sock *sp = sctp_sk(sk);
2744
2745 if (optlen == sizeof(struct sctp_sack_info)) {
2746 if (copy_from_user(¶ms, optval, optlen))
2747 return -EFAULT;
2748
2749 if (params.sack_delay == 0 && params.sack_freq == 0)
2750 return 0;
2751 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2752 pr_warn_ratelimited(DEPRECATED
2753 "%s (pid %d) "
2754 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2755 "Use struct sctp_sack_info instead\n",
2756 current->comm, task_pid_nr(current));
2757 if (copy_from_user(¶ms, optval, optlen))
2758 return -EFAULT;
2759
2760 if (params.sack_delay == 0)
2761 params.sack_freq = 1;
2762 else
2763 params.sack_freq = 0;
2764 } else
2765 return -EINVAL;
2766
2767 /* Validate value parameter. */
2768 if (params.sack_delay > 500)
2769 return -EINVAL;
2770
2771 /* Get association, if sack_assoc_id != 0 and the socket is a one
2772 * to many style socket, and an association was not found, then
2773 * the id was invalid.
2774 */
2775 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2776 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2777 return -EINVAL;
2778
2779 if (params.sack_delay) {
2780 if (asoc) {
2781 asoc->sackdelay =
2782 msecs_to_jiffies(params.sack_delay);
2783 asoc->param_flags =
2784 sctp_spp_sackdelay_enable(asoc->param_flags);
2785 } else {
2786 sp->sackdelay = params.sack_delay;
2787 sp->param_flags =
2788 sctp_spp_sackdelay_enable(sp->param_flags);
2789 }
2790 }
2791
2792 if (params.sack_freq == 1) {
2793 if (asoc) {
2794 asoc->param_flags =
2795 sctp_spp_sackdelay_disable(asoc->param_flags);
2796 } else {
2797 sp->param_flags =
2798 sctp_spp_sackdelay_disable(sp->param_flags);
2799 }
2800 } else if (params.sack_freq > 1) {
2801 if (asoc) {
2802 asoc->sackfreq = params.sack_freq;
2803 asoc->param_flags =
2804 sctp_spp_sackdelay_enable(asoc->param_flags);
2805 } else {
2806 sp->sackfreq = params.sack_freq;
2807 sp->param_flags =
2808 sctp_spp_sackdelay_enable(sp->param_flags);
2809 }
2810 }
2811
2812 /* If change is for association, also apply to each transport. */
2813 if (asoc) {
2814 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2815 transports) {
2816 if (params.sack_delay) {
2817 trans->sackdelay =
2818 msecs_to_jiffies(params.sack_delay);
2819 trans->param_flags =
2820 sctp_spp_sackdelay_enable(trans->param_flags);
2821 }
2822 if (params.sack_freq == 1) {
2823 trans->param_flags =
2824 sctp_spp_sackdelay_disable(trans->param_flags);
2825 } else if (params.sack_freq > 1) {
2826 trans->sackfreq = params.sack_freq;
2827 trans->param_flags =
2828 sctp_spp_sackdelay_enable(trans->param_flags);
2829 }
2830 }
2831 }
2832
2833 return 0;
2834}
2835
2836/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2837 *
2838 * Applications can specify protocol parameters for the default association
2839 * initialization. The option name argument to setsockopt() and getsockopt()
2840 * is SCTP_INITMSG.
2841 *
2842 * Setting initialization parameters is effective only on an unconnected
2843 * socket (for UDP-style sockets only future associations are effected
2844 * by the change). With TCP-style sockets, this option is inherited by
2845 * sockets derived from a listener socket.
2846 */
2847static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2848{
2849 struct sctp_initmsg sinit;
2850 struct sctp_sock *sp = sctp_sk(sk);
2851
2852 if (optlen != sizeof(struct sctp_initmsg))
2853 return -EINVAL;
2854 if (copy_from_user(&sinit, optval, optlen))
2855 return -EFAULT;
2856
2857 if (sinit.sinit_num_ostreams)
2858 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2859 if (sinit.sinit_max_instreams)
2860 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2861 if (sinit.sinit_max_attempts)
2862 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2863 if (sinit.sinit_max_init_timeo)
2864 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2865
2866 return 0;
2867}
2868
2869/*
2870 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2871 *
2872 * Applications that wish to use the sendto() system call may wish to
2873 * specify a default set of parameters that would normally be supplied
2874 * through the inclusion of ancillary data. This socket option allows
2875 * such an application to set the default sctp_sndrcvinfo structure.
2876 * The application that wishes to use this socket option simply passes
2877 * in to this call the sctp_sndrcvinfo structure defined in Section
2878 * 5.2.2) The input parameters accepted by this call include
2879 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2880 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2881 * to this call if the caller is using the UDP model.
2882 */
2883static int sctp_setsockopt_default_send_param(struct sock *sk,
2884 char __user *optval,
2885 unsigned int optlen)
2886{
2887 struct sctp_sock *sp = sctp_sk(sk);
2888 struct sctp_association *asoc;
2889 struct sctp_sndrcvinfo info;
2890
2891 if (optlen != sizeof(info))
2892 return -EINVAL;
2893 if (copy_from_user(&info, optval, optlen))
2894 return -EFAULT;
2895 if (info.sinfo_flags &
2896 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2897 SCTP_ABORT | SCTP_EOF))
2898 return -EINVAL;
2899
2900 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2901 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2902 return -EINVAL;
2903 if (asoc) {
2904 asoc->default_stream = info.sinfo_stream;
2905 asoc->default_flags = info.sinfo_flags;
2906 asoc->default_ppid = info.sinfo_ppid;
2907 asoc->default_context = info.sinfo_context;
2908 asoc->default_timetolive = info.sinfo_timetolive;
2909 } else {
2910 sp->default_stream = info.sinfo_stream;
2911 sp->default_flags = info.sinfo_flags;
2912 sp->default_ppid = info.sinfo_ppid;
2913 sp->default_context = info.sinfo_context;
2914 sp->default_timetolive = info.sinfo_timetolive;
2915 }
2916
2917 return 0;
2918}
2919
2920/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2921 * (SCTP_DEFAULT_SNDINFO)
2922 */
2923static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2924 char __user *optval,
2925 unsigned int optlen)
2926{
2927 struct sctp_sock *sp = sctp_sk(sk);
2928 struct sctp_association *asoc;
2929 struct sctp_sndinfo info;
2930
2931 if (optlen != sizeof(info))
2932 return -EINVAL;
2933 if (copy_from_user(&info, optval, optlen))
2934 return -EFAULT;
2935 if (info.snd_flags &
2936 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2937 SCTP_ABORT | SCTP_EOF))
2938 return -EINVAL;
2939
2940 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2941 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2942 return -EINVAL;
2943 if (asoc) {
2944 asoc->default_stream = info.snd_sid;
2945 asoc->default_flags = info.snd_flags;
2946 asoc->default_ppid = info.snd_ppid;
2947 asoc->default_context = info.snd_context;
2948 } else {
2949 sp->default_stream = info.snd_sid;
2950 sp->default_flags = info.snd_flags;
2951 sp->default_ppid = info.snd_ppid;
2952 sp->default_context = info.snd_context;
2953 }
2954
2955 return 0;
2956}
2957
2958/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2959 *
2960 * Requests that the local SCTP stack use the enclosed peer address as
2961 * the association primary. The enclosed address must be one of the
2962 * association peer's addresses.
2963 */
2964static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2965 unsigned int optlen)
2966{
2967 struct sctp_prim prim;
2968 struct sctp_transport *trans;
2969 struct sctp_af *af;
2970 int err;
2971
2972 if (optlen != sizeof(struct sctp_prim))
2973 return -EINVAL;
2974
2975 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2976 return -EFAULT;
2977
2978 /* Allow security module to validate address but need address len. */
2979 af = sctp_get_af_specific(prim.ssp_addr.ss_family);
2980 if (!af)
2981 return -EINVAL;
2982
2983 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
2984 (struct sockaddr *)&prim.ssp_addr,
2985 af->sockaddr_len);
2986 if (err)
2987 return err;
2988
2989 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2990 if (!trans)
2991 return -EINVAL;
2992
2993 sctp_assoc_set_primary(trans->asoc, trans);
2994
2995 return 0;
2996}
2997
2998/*
2999 * 7.1.5 SCTP_NODELAY
3000 *
3001 * Turn on/off any Nagle-like algorithm. This means that packets are
3002 * generally sent as soon as possible and no unnecessary delays are
3003 * introduced, at the cost of more packets in the network. Expects an
3004 * integer boolean flag.
3005 */
3006static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3007 unsigned int optlen)
3008{
3009 int val;
3010
3011 if (optlen < sizeof(int))
3012 return -EINVAL;
3013 if (get_user(val, (int __user *)optval))
3014 return -EFAULT;
3015
3016 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3017 return 0;
3018}
3019
3020/*
3021 *
3022 * 7.1.1 SCTP_RTOINFO
3023 *
3024 * The protocol parameters used to initialize and bound retransmission
3025 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3026 * and modify these parameters.
3027 * All parameters are time values, in milliseconds. A value of 0, when
3028 * modifying the parameters, indicates that the current value should not
3029 * be changed.
3030 *
3031 */
3032static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3033{
3034 struct sctp_rtoinfo rtoinfo;
3035 struct sctp_association *asoc;
3036 unsigned long rto_min, rto_max;
3037 struct sctp_sock *sp = sctp_sk(sk);
3038
3039 if (optlen != sizeof (struct sctp_rtoinfo))
3040 return -EINVAL;
3041
3042 if (copy_from_user(&rtoinfo, optval, optlen))
3043 return -EFAULT;
3044
3045 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3046
3047 /* Set the values to the specific association */
3048 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3049 return -EINVAL;
3050
3051 rto_max = rtoinfo.srto_max;
3052 rto_min = rtoinfo.srto_min;
3053
3054 if (rto_max)
3055 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3056 else
3057 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3058
3059 if (rto_min)
3060 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3061 else
3062 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3063
3064 if (rto_min > rto_max)
3065 return -EINVAL;
3066
3067 if (asoc) {
3068 if (rtoinfo.srto_initial != 0)
3069 asoc->rto_initial =
3070 msecs_to_jiffies(rtoinfo.srto_initial);
3071 asoc->rto_max = rto_max;
3072 asoc->rto_min = rto_min;
3073 } else {
3074 /* If there is no association or the association-id = 0
3075 * set the values to the endpoint.
3076 */
3077 if (rtoinfo.srto_initial != 0)
3078 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3079 sp->rtoinfo.srto_max = rto_max;
3080 sp->rtoinfo.srto_min = rto_min;
3081 }
3082
3083 return 0;
3084}
3085
3086/*
3087 *
3088 * 7.1.2 SCTP_ASSOCINFO
3089 *
3090 * This option is used to tune the maximum retransmission attempts
3091 * of the association.
3092 * Returns an error if the new association retransmission value is
3093 * greater than the sum of the retransmission value of the peer.
3094 * See [SCTP] for more information.
3095 *
3096 */
3097static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3098{
3099
3100 struct sctp_assocparams assocparams;
3101 struct sctp_association *asoc;
3102
3103 if (optlen != sizeof(struct sctp_assocparams))
3104 return -EINVAL;
3105 if (copy_from_user(&assocparams, optval, optlen))
3106 return -EFAULT;
3107
3108 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3109
3110 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3111 return -EINVAL;
3112
3113 /* Set the values to the specific association */
3114 if (asoc) {
3115 if (assocparams.sasoc_asocmaxrxt != 0) {
3116 __u32 path_sum = 0;
3117 int paths = 0;
3118 struct sctp_transport *peer_addr;
3119
3120 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3121 transports) {
3122 path_sum += peer_addr->pathmaxrxt;
3123 paths++;
3124 }
3125
3126 /* Only validate asocmaxrxt if we have more than
3127 * one path/transport. We do this because path
3128 * retransmissions are only counted when we have more
3129 * then one path.
3130 */
3131 if (paths > 1 &&
3132 assocparams.sasoc_asocmaxrxt > path_sum)
3133 return -EINVAL;
3134
3135 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3136 }
3137
3138 if (assocparams.sasoc_cookie_life != 0)
3139 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3140 } else {
3141 /* Set the values to the endpoint */
3142 struct sctp_sock *sp = sctp_sk(sk);
3143
3144 if (assocparams.sasoc_asocmaxrxt != 0)
3145 sp->assocparams.sasoc_asocmaxrxt =
3146 assocparams.sasoc_asocmaxrxt;
3147 if (assocparams.sasoc_cookie_life != 0)
3148 sp->assocparams.sasoc_cookie_life =
3149 assocparams.sasoc_cookie_life;
3150 }
3151 return 0;
3152}
3153
3154/*
3155 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3156 *
3157 * This socket option is a boolean flag which turns on or off mapped V4
3158 * addresses. If this option is turned on and the socket is type
3159 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3160 * If this option is turned off, then no mapping will be done of V4
3161 * addresses and a user will receive both PF_INET6 and PF_INET type
3162 * addresses on the socket.
3163 */
3164static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3165{
3166 int val;
3167 struct sctp_sock *sp = sctp_sk(sk);
3168
3169 if (optlen < sizeof(int))
3170 return -EINVAL;
3171 if (get_user(val, (int __user *)optval))
3172 return -EFAULT;
3173 if (val)
3174 sp->v4mapped = 1;
3175 else
3176 sp->v4mapped = 0;
3177
3178 return 0;
3179}
3180
3181/*
3182 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3183 * This option will get or set the maximum size to put in any outgoing
3184 * SCTP DATA chunk. If a message is larger than this size it will be
3185 * fragmented by SCTP into the specified size. Note that the underlying
3186 * SCTP implementation may fragment into smaller sized chunks when the
3187 * PMTU of the underlying association is smaller than the value set by
3188 * the user. The default value for this option is '0' which indicates
3189 * the user is NOT limiting fragmentation and only the PMTU will effect
3190 * SCTP's choice of DATA chunk size. Note also that values set larger
3191 * than the maximum size of an IP datagram will effectively let SCTP
3192 * control fragmentation (i.e. the same as setting this option to 0).
3193 *
3194 * The following structure is used to access and modify this parameter:
3195 *
3196 * struct sctp_assoc_value {
3197 * sctp_assoc_t assoc_id;
3198 * uint32_t assoc_value;
3199 * };
3200 *
3201 * assoc_id: This parameter is ignored for one-to-one style sockets.
3202 * For one-to-many style sockets this parameter indicates which
3203 * association the user is performing an action upon. Note that if
3204 * this field's value is zero then the endpoints default value is
3205 * changed (effecting future associations only).
3206 * assoc_value: This parameter specifies the maximum size in bytes.
3207 */
3208static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3209{
3210 struct sctp_sock *sp = sctp_sk(sk);
3211 struct sctp_af *af = sp->pf->af;
3212 struct sctp_assoc_value params;
3213 struct sctp_association *asoc;
3214 int val;
3215
3216 if (optlen == sizeof(int)) {
3217 pr_warn_ratelimited(DEPRECATED
3218 "%s (pid %d) "
3219 "Use of int in maxseg socket option.\n"
3220 "Use struct sctp_assoc_value instead\n",
3221 current->comm, task_pid_nr(current));
3222 if (copy_from_user(&val, optval, optlen))
3223 return -EFAULT;
3224 params.assoc_id = 0;
3225 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3226 if (copy_from_user(¶ms, optval, optlen))
3227 return -EFAULT;
3228 val = params.assoc_value;
3229 } else {
3230 return -EINVAL;
3231 }
3232
3233 if (val) {
3234 int min_len, max_len;
3235
3236 min_len = SCTP_DEFAULT_MINSEGMENT - af->net_header_len;
3237 min_len -= af->ip_options_len(sk);
3238 min_len -= sizeof(struct sctphdr) +
3239 sizeof(struct sctp_data_chunk);
3240
3241 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk);
3242
3243 if (val < min_len || val > max_len)
3244 return -EINVAL;
3245 }
3246
3247 asoc = sctp_id2assoc(sk, params.assoc_id);
3248 if (asoc) {
3249 if (val == 0) {
3250 val = asoc->pathmtu - af->net_header_len;
3251 val -= af->ip_options_len(sk);
3252 val -= sizeof(struct sctphdr) +
3253 sctp_datachk_len(&asoc->stream);
3254 }
3255 asoc->user_frag = val;
3256 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3257 } else {
3258 if (params.assoc_id && sctp_style(sk, UDP))
3259 return -EINVAL;
3260 sp->user_frag = val;
3261 }
3262
3263 return 0;
3264}
3265
3266
3267/*
3268 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3269 *
3270 * Requests that the peer mark the enclosed address as the association
3271 * primary. The enclosed address must be one of the association's
3272 * locally bound addresses. The following structure is used to make a
3273 * set primary request:
3274 */
3275static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3276 unsigned int optlen)
3277{
3278 struct net *net = sock_net(sk);
3279 struct sctp_sock *sp;
3280 struct sctp_association *asoc = NULL;
3281 struct sctp_setpeerprim prim;
3282 struct sctp_chunk *chunk;
3283 struct sctp_af *af;
3284 int err;
3285
3286 sp = sctp_sk(sk);
3287
3288 if (!net->sctp.addip_enable)
3289 return -EPERM;
3290
3291 if (optlen != sizeof(struct sctp_setpeerprim))
3292 return -EINVAL;
3293
3294 if (copy_from_user(&prim, optval, optlen))
3295 return -EFAULT;
3296
3297 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3298 if (!asoc)
3299 return -EINVAL;
3300
3301 if (!asoc->peer.asconf_capable)
3302 return -EPERM;
3303
3304 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3305 return -EPERM;
3306
3307 if (!sctp_state(asoc, ESTABLISHED))
3308 return -ENOTCONN;
3309
3310 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3311 if (!af)
3312 return -EINVAL;
3313
3314 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3315 return -EADDRNOTAVAIL;
3316
3317 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3318 return -EADDRNOTAVAIL;
3319
3320 /* Allow security module to validate address. */
3321 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3322 (struct sockaddr *)&prim.sspp_addr,
3323 af->sockaddr_len);
3324 if (err)
3325 return err;
3326
3327 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3328 chunk = sctp_make_asconf_set_prim(asoc,
3329 (union sctp_addr *)&prim.sspp_addr);
3330 if (!chunk)
3331 return -ENOMEM;
3332
3333 err = sctp_send_asconf(asoc, chunk);
3334
3335 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3336
3337 return err;
3338}
3339
3340static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3341 unsigned int optlen)
3342{
3343 struct sctp_setadaptation adaptation;
3344
3345 if (optlen != sizeof(struct sctp_setadaptation))
3346 return -EINVAL;
3347 if (copy_from_user(&adaptation, optval, optlen))
3348 return -EFAULT;
3349
3350 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3351
3352 return 0;
3353}
3354
3355/*
3356 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3357 *
3358 * The context field in the sctp_sndrcvinfo structure is normally only
3359 * used when a failed message is retrieved holding the value that was
3360 * sent down on the actual send call. This option allows the setting of
3361 * a default context on an association basis that will be received on
3362 * reading messages from the peer. This is especially helpful in the
3363 * one-2-many model for an application to keep some reference to an
3364 * internal state machine that is processing messages on the
3365 * association. Note that the setting of this value only effects
3366 * received messages from the peer and does not effect the value that is
3367 * saved with outbound messages.
3368 */
3369static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3370 unsigned int optlen)
3371{
3372 struct sctp_assoc_value params;
3373 struct sctp_sock *sp;
3374 struct sctp_association *asoc;
3375
3376 if (optlen != sizeof(struct sctp_assoc_value))
3377 return -EINVAL;
3378 if (copy_from_user(¶ms, optval, optlen))
3379 return -EFAULT;
3380
3381 sp = sctp_sk(sk);
3382
3383 if (params.assoc_id != 0) {
3384 asoc = sctp_id2assoc(sk, params.assoc_id);
3385 if (!asoc)
3386 return -EINVAL;
3387 asoc->default_rcv_context = params.assoc_value;
3388 } else {
3389 sp->default_rcv_context = params.assoc_value;
3390 }
3391
3392 return 0;
3393}
3394
3395/*
3396 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3397 *
3398 * This options will at a minimum specify if the implementation is doing
3399 * fragmented interleave. Fragmented interleave, for a one to many
3400 * socket, is when subsequent calls to receive a message may return
3401 * parts of messages from different associations. Some implementations
3402 * may allow you to turn this value on or off. If so, when turned off,
3403 * no fragment interleave will occur (which will cause a head of line
3404 * blocking amongst multiple associations sharing the same one to many
3405 * socket). When this option is turned on, then each receive call may
3406 * come from a different association (thus the user must receive data
3407 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3408 * association each receive belongs to.
3409 *
3410 * This option takes a boolean value. A non-zero value indicates that
3411 * fragmented interleave is on. A value of zero indicates that
3412 * fragmented interleave is off.
3413 *
3414 * Note that it is important that an implementation that allows this
3415 * option to be turned on, have it off by default. Otherwise an unaware
3416 * application using the one to many model may become confused and act
3417 * incorrectly.
3418 */
3419static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3420 char __user *optval,
3421 unsigned int optlen)
3422{
3423 int val;
3424
3425 if (optlen != sizeof(int))
3426 return -EINVAL;
3427 if (get_user(val, (int __user *)optval))
3428 return -EFAULT;
3429
3430 sctp_sk(sk)->frag_interleave = !!val;
3431
3432 if (!sctp_sk(sk)->frag_interleave)
3433 sctp_sk(sk)->strm_interleave = 0;
3434
3435 return 0;
3436}
3437
3438/*
3439 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3440 * (SCTP_PARTIAL_DELIVERY_POINT)
3441 *
3442 * This option will set or get the SCTP partial delivery point. This
3443 * point is the size of a message where the partial delivery API will be
3444 * invoked to help free up rwnd space for the peer. Setting this to a
3445 * lower value will cause partial deliveries to happen more often. The
3446 * calls argument is an integer that sets or gets the partial delivery
3447 * point. Note also that the call will fail if the user attempts to set
3448 * this value larger than the socket receive buffer size.
3449 *
3450 * Note that any single message having a length smaller than or equal to
3451 * the SCTP partial delivery point will be delivered in one single read
3452 * call as long as the user provided buffer is large enough to hold the
3453 * message.
3454 */
3455static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3456 char __user *optval,
3457 unsigned int optlen)
3458{
3459 u32 val;
3460
3461 if (optlen != sizeof(u32))
3462 return -EINVAL;
3463 if (get_user(val, (int __user *)optval))
3464 return -EFAULT;
3465
3466 /* Note: We double the receive buffer from what the user sets
3467 * it to be, also initial rwnd is based on rcvbuf/2.
3468 */
3469 if (val > (sk->sk_rcvbuf >> 1))
3470 return -EINVAL;
3471
3472 sctp_sk(sk)->pd_point = val;
3473
3474 return 0; /* is this the right error code? */
3475}
3476
3477/*
3478 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3479 *
3480 * This option will allow a user to change the maximum burst of packets
3481 * that can be emitted by this association. Note that the default value
3482 * is 4, and some implementations may restrict this setting so that it
3483 * can only be lowered.
3484 *
3485 * NOTE: This text doesn't seem right. Do this on a socket basis with
3486 * future associations inheriting the socket value.
3487 */
3488static int sctp_setsockopt_maxburst(struct sock *sk,
3489 char __user *optval,
3490 unsigned int optlen)
3491{
3492 struct sctp_assoc_value params;
3493 struct sctp_sock *sp;
3494 struct sctp_association *asoc;
3495 int val;
3496 int assoc_id = 0;
3497
3498 if (optlen == sizeof(int)) {
3499 pr_warn_ratelimited(DEPRECATED
3500 "%s (pid %d) "
3501 "Use of int in max_burst socket option deprecated.\n"
3502 "Use struct sctp_assoc_value instead\n",
3503 current->comm, task_pid_nr(current));
3504 if (copy_from_user(&val, optval, optlen))
3505 return -EFAULT;
3506 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3507 if (copy_from_user(¶ms, optval, optlen))
3508 return -EFAULT;
3509 val = params.assoc_value;
3510 assoc_id = params.assoc_id;
3511 } else
3512 return -EINVAL;
3513
3514 sp = sctp_sk(sk);
3515
3516 if (assoc_id != 0) {
3517 asoc = sctp_id2assoc(sk, assoc_id);
3518 if (!asoc)
3519 return -EINVAL;
3520 asoc->max_burst = val;
3521 } else
3522 sp->max_burst = val;
3523
3524 return 0;
3525}
3526
3527/*
3528 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3529 *
3530 * This set option adds a chunk type that the user is requesting to be
3531 * received only in an authenticated way. Changes to the list of chunks
3532 * will only effect future associations on the socket.
3533 */
3534static int sctp_setsockopt_auth_chunk(struct sock *sk,
3535 char __user *optval,
3536 unsigned int optlen)
3537{
3538 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3539 struct sctp_authchunk val;
3540
3541 if (!ep->auth_enable)
3542 return -EACCES;
3543
3544 if (optlen != sizeof(struct sctp_authchunk))
3545 return -EINVAL;
3546 if (copy_from_user(&val, optval, optlen))
3547 return -EFAULT;
3548
3549 switch (val.sauth_chunk) {
3550 case SCTP_CID_INIT:
3551 case SCTP_CID_INIT_ACK:
3552 case SCTP_CID_SHUTDOWN_COMPLETE:
3553 case SCTP_CID_AUTH:
3554 return -EINVAL;
3555 }
3556
3557 /* add this chunk id to the endpoint */
3558 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3559}
3560
3561/*
3562 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3563 *
3564 * This option gets or sets the list of HMAC algorithms that the local
3565 * endpoint requires the peer to use.
3566 */
3567static int sctp_setsockopt_hmac_ident(struct sock *sk,
3568 char __user *optval,
3569 unsigned int optlen)
3570{
3571 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3572 struct sctp_hmacalgo *hmacs;
3573 u32 idents;
3574 int err;
3575
3576 if (!ep->auth_enable)
3577 return -EACCES;
3578
3579 if (optlen < sizeof(struct sctp_hmacalgo))
3580 return -EINVAL;
3581 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3582 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3583
3584 hmacs = memdup_user(optval, optlen);
3585 if (IS_ERR(hmacs))
3586 return PTR_ERR(hmacs);
3587
3588 idents = hmacs->shmac_num_idents;
3589 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3590 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3591 err = -EINVAL;
3592 goto out;
3593 }
3594
3595 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3596out:
3597 kfree(hmacs);
3598 return err;
3599}
3600
3601/*
3602 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3603 *
3604 * This option will set a shared secret key which is used to build an
3605 * association shared key.
3606 */
3607static int sctp_setsockopt_auth_key(struct sock *sk,
3608 char __user *optval,
3609 unsigned int optlen)
3610{
3611 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3612 struct sctp_authkey *authkey;
3613 struct sctp_association *asoc;
3614 int ret;
3615
3616 if (!ep->auth_enable)
3617 return -EACCES;
3618
3619 if (optlen <= sizeof(struct sctp_authkey))
3620 return -EINVAL;
3621 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3622 * this.
3623 */
3624 optlen = min_t(unsigned int, optlen, USHRT_MAX +
3625 sizeof(struct sctp_authkey));
3626
3627 authkey = memdup_user(optval, optlen);
3628 if (IS_ERR(authkey))
3629 return PTR_ERR(authkey);
3630
3631 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3632 ret = -EINVAL;
3633 goto out;
3634 }
3635
3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3637 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3638 ret = -EINVAL;
3639 goto out;
3640 }
3641
3642 ret = sctp_auth_set_key(ep, asoc, authkey);
3643out:
3644 kzfree(authkey);
3645 return ret;
3646}
3647
3648/*
3649 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3650 *
3651 * This option will get or set the active shared key to be used to build
3652 * the association shared key.
3653 */
3654static int sctp_setsockopt_active_key(struct sock *sk,
3655 char __user *optval,
3656 unsigned int optlen)
3657{
3658 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3659 struct sctp_authkeyid val;
3660 struct sctp_association *asoc;
3661
3662 if (!ep->auth_enable)
3663 return -EACCES;
3664
3665 if (optlen != sizeof(struct sctp_authkeyid))
3666 return -EINVAL;
3667 if (copy_from_user(&val, optval, optlen))
3668 return -EFAULT;
3669
3670 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3671 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3672 return -EINVAL;
3673
3674 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3675}
3676
3677/*
3678 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3679 *
3680 * This set option will delete a shared secret key from use.
3681 */
3682static int sctp_setsockopt_del_key(struct sock *sk,
3683 char __user *optval,
3684 unsigned int optlen)
3685{
3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3687 struct sctp_authkeyid val;
3688 struct sctp_association *asoc;
3689
3690 if (!ep->auth_enable)
3691 return -EACCES;
3692
3693 if (optlen != sizeof(struct sctp_authkeyid))
3694 return -EINVAL;
3695 if (copy_from_user(&val, optval, optlen))
3696 return -EFAULT;
3697
3698 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3699 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3700 return -EINVAL;
3701
3702 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3703
3704}
3705
3706/*
3707 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3708 *
3709 * This set option will deactivate a shared secret key.
3710 */
3711static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3712 unsigned int optlen)
3713{
3714 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3715 struct sctp_authkeyid val;
3716 struct sctp_association *asoc;
3717
3718 if (!ep->auth_enable)
3719 return -EACCES;
3720
3721 if (optlen != sizeof(struct sctp_authkeyid))
3722 return -EINVAL;
3723 if (copy_from_user(&val, optval, optlen))
3724 return -EFAULT;
3725
3726 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3727 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3728 return -EINVAL;
3729
3730 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3731}
3732
3733/*
3734 * 8.1.23 SCTP_AUTO_ASCONF
3735 *
3736 * This option will enable or disable the use of the automatic generation of
3737 * ASCONF chunks to add and delete addresses to an existing association. Note
3738 * that this option has two caveats namely: a) it only affects sockets that
3739 * are bound to all addresses available to the SCTP stack, and b) the system
3740 * administrator may have an overriding control that turns the ASCONF feature
3741 * off no matter what setting the socket option may have.
3742 * This option expects an integer boolean flag, where a non-zero value turns on
3743 * the option, and a zero value turns off the option.
3744 * Note. In this implementation, socket operation overrides default parameter
3745 * being set by sysctl as well as FreeBSD implementation
3746 */
3747static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3748 unsigned int optlen)
3749{
3750 int val;
3751 struct sctp_sock *sp = sctp_sk(sk);
3752
3753 if (optlen < sizeof(int))
3754 return -EINVAL;
3755 if (get_user(val, (int __user *)optval))
3756 return -EFAULT;
3757 if (!sctp_is_ep_boundall(sk) && val)
3758 return -EINVAL;
3759 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3760 return 0;
3761
3762 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3763 if (val == 0 && sp->do_auto_asconf) {
3764 list_del(&sp->auto_asconf_list);
3765 sp->do_auto_asconf = 0;
3766 } else if (val && !sp->do_auto_asconf) {
3767 list_add_tail(&sp->auto_asconf_list,
3768 &sock_net(sk)->sctp.auto_asconf_splist);
3769 sp->do_auto_asconf = 1;
3770 }
3771 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3772 return 0;
3773}
3774
3775/*
3776 * SCTP_PEER_ADDR_THLDS
3777 *
3778 * This option allows us to alter the partially failed threshold for one or all
3779 * transports in an association. See Section 6.1 of:
3780 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3781 */
3782static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3783 char __user *optval,
3784 unsigned int optlen)
3785{
3786 struct sctp_paddrthlds val;
3787 struct sctp_transport *trans;
3788 struct sctp_association *asoc;
3789
3790 if (optlen < sizeof(struct sctp_paddrthlds))
3791 return -EINVAL;
3792 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3793 sizeof(struct sctp_paddrthlds)))
3794 return -EFAULT;
3795
3796
3797 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3798 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3799 if (!asoc)
3800 return -ENOENT;
3801 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3802 transports) {
3803 if (val.spt_pathmaxrxt)
3804 trans->pathmaxrxt = val.spt_pathmaxrxt;
3805 trans->pf_retrans = val.spt_pathpfthld;
3806 }
3807
3808 if (val.spt_pathmaxrxt)
3809 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3810 asoc->pf_retrans = val.spt_pathpfthld;
3811 } else {
3812 trans = sctp_addr_id2transport(sk, &val.spt_address,
3813 val.spt_assoc_id);
3814 if (!trans)
3815 return -ENOENT;
3816
3817 if (val.spt_pathmaxrxt)
3818 trans->pathmaxrxt = val.spt_pathmaxrxt;
3819 trans->pf_retrans = val.spt_pathpfthld;
3820 }
3821
3822 return 0;
3823}
3824
3825static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3826 char __user *optval,
3827 unsigned int optlen)
3828{
3829 int val;
3830
3831 if (optlen < sizeof(int))
3832 return -EINVAL;
3833 if (get_user(val, (int __user *) optval))
3834 return -EFAULT;
3835
3836 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3837
3838 return 0;
3839}
3840
3841static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3842 char __user *optval,
3843 unsigned int optlen)
3844{
3845 int val;
3846
3847 if (optlen < sizeof(int))
3848 return -EINVAL;
3849 if (get_user(val, (int __user *) optval))
3850 return -EFAULT;
3851
3852 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3853
3854 return 0;
3855}
3856
3857static int sctp_setsockopt_pr_supported(struct sock *sk,
3858 char __user *optval,
3859 unsigned int optlen)
3860{
3861 struct sctp_assoc_value params;
3862 struct sctp_association *asoc;
3863 int retval = -EINVAL;
3864
3865 if (optlen != sizeof(params))
3866 goto out;
3867
3868 if (copy_from_user(¶ms, optval, optlen)) {
3869 retval = -EFAULT;
3870 goto out;
3871 }
3872
3873 asoc = sctp_id2assoc(sk, params.assoc_id);
3874 if (asoc) {
3875 asoc->prsctp_enable = !!params.assoc_value;
3876 } else if (!params.assoc_id) {
3877 struct sctp_sock *sp = sctp_sk(sk);
3878
3879 sp->ep->prsctp_enable = !!params.assoc_value;
3880 } else {
3881 goto out;
3882 }
3883
3884 retval = 0;
3885
3886out:
3887 return retval;
3888}
3889
3890static int sctp_setsockopt_default_prinfo(struct sock *sk,
3891 char __user *optval,
3892 unsigned int optlen)
3893{
3894 struct sctp_default_prinfo info;
3895 struct sctp_association *asoc;
3896 int retval = -EINVAL;
3897
3898 if (optlen != sizeof(info))
3899 goto out;
3900
3901 if (copy_from_user(&info, optval, sizeof(info))) {
3902 retval = -EFAULT;
3903 goto out;
3904 }
3905
3906 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3907 goto out;
3908
3909 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3910 info.pr_value = 0;
3911
3912 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3913 if (asoc) {
3914 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3915 asoc->default_timetolive = info.pr_value;
3916 } else if (!info.pr_assoc_id) {
3917 struct sctp_sock *sp = sctp_sk(sk);
3918
3919 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3920 sp->default_timetolive = info.pr_value;
3921 } else {
3922 goto out;
3923 }
3924
3925 retval = 0;
3926
3927out:
3928 return retval;
3929}
3930
3931static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3932 char __user *optval,
3933 unsigned int optlen)
3934{
3935 struct sctp_assoc_value params;
3936 struct sctp_association *asoc;
3937 int retval = -EINVAL;
3938
3939 if (optlen != sizeof(params))
3940 goto out;
3941
3942 if (copy_from_user(¶ms, optval, optlen)) {
3943 retval = -EFAULT;
3944 goto out;
3945 }
3946
3947 asoc = sctp_id2assoc(sk, params.assoc_id);
3948 if (asoc) {
3949 asoc->reconf_enable = !!params.assoc_value;
3950 } else if (!params.assoc_id) {
3951 struct sctp_sock *sp = sctp_sk(sk);
3952
3953 sp->ep->reconf_enable = !!params.assoc_value;
3954 } else {
3955 goto out;
3956 }
3957
3958 retval = 0;
3959
3960out:
3961 return retval;
3962}
3963
3964static int sctp_setsockopt_enable_strreset(struct sock *sk,
3965 char __user *optval,
3966 unsigned int optlen)
3967{
3968 struct sctp_assoc_value params;
3969 struct sctp_association *asoc;
3970 int retval = -EINVAL;
3971
3972 if (optlen != sizeof(params))
3973 goto out;
3974
3975 if (copy_from_user(¶ms, optval, optlen)) {
3976 retval = -EFAULT;
3977 goto out;
3978 }
3979
3980 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3981 goto out;
3982
3983 asoc = sctp_id2assoc(sk, params.assoc_id);
3984 if (asoc) {
3985 asoc->strreset_enable = params.assoc_value;
3986 } else if (!params.assoc_id) {
3987 struct sctp_sock *sp = sctp_sk(sk);
3988
3989 sp->ep->strreset_enable = params.assoc_value;
3990 } else {
3991 goto out;
3992 }
3993
3994 retval = 0;
3995
3996out:
3997 return retval;
3998}
3999
4000static int sctp_setsockopt_reset_streams(struct sock *sk,
4001 char __user *optval,
4002 unsigned int optlen)
4003{
4004 struct sctp_reset_streams *params;
4005 struct sctp_association *asoc;
4006 int retval = -EINVAL;
4007
4008 if (optlen < sizeof(*params))
4009 return -EINVAL;
4010 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4011 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4012 sizeof(__u16) * sizeof(*params));
4013
4014 params = memdup_user(optval, optlen);
4015 if (IS_ERR(params))
4016 return PTR_ERR(params);
4017
4018 if (params->srs_number_streams * sizeof(__u16) >
4019 optlen - sizeof(*params))
4020 goto out;
4021
4022 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4023 if (!asoc)
4024 goto out;
4025
4026 retval = sctp_send_reset_streams(asoc, params);
4027
4028out:
4029 kfree(params);
4030 return retval;
4031}
4032
4033static int sctp_setsockopt_reset_assoc(struct sock *sk,
4034 char __user *optval,
4035 unsigned int optlen)
4036{
4037 struct sctp_association *asoc;
4038 sctp_assoc_t associd;
4039 int retval = -EINVAL;
4040
4041 if (optlen != sizeof(associd))
4042 goto out;
4043
4044 if (copy_from_user(&associd, optval, optlen)) {
4045 retval = -EFAULT;
4046 goto out;
4047 }
4048
4049 asoc = sctp_id2assoc(sk, associd);
4050 if (!asoc)
4051 goto out;
4052
4053 retval = sctp_send_reset_assoc(asoc);
4054
4055out:
4056 return retval;
4057}
4058
4059static int sctp_setsockopt_add_streams(struct sock *sk,
4060 char __user *optval,
4061 unsigned int optlen)
4062{
4063 struct sctp_association *asoc;
4064 struct sctp_add_streams params;
4065 int retval = -EINVAL;
4066
4067 if (optlen != sizeof(params))
4068 goto out;
4069
4070 if (copy_from_user(¶ms, optval, optlen)) {
4071 retval = -EFAULT;
4072 goto out;
4073 }
4074
4075 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4076 if (!asoc)
4077 goto out;
4078
4079 retval = sctp_send_add_streams(asoc, ¶ms);
4080
4081out:
4082 return retval;
4083}
4084
4085static int sctp_setsockopt_scheduler(struct sock *sk,
4086 char __user *optval,
4087 unsigned int optlen)
4088{
4089 struct sctp_association *asoc;
4090 struct sctp_assoc_value params;
4091 int retval = -EINVAL;
4092
4093 if (optlen < sizeof(params))
4094 goto out;
4095
4096 optlen = sizeof(params);
4097 if (copy_from_user(¶ms, optval, optlen)) {
4098 retval = -EFAULT;
4099 goto out;
4100 }
4101
4102 if (params.assoc_value > SCTP_SS_MAX)
4103 goto out;
4104
4105 asoc = sctp_id2assoc(sk, params.assoc_id);
4106 if (!asoc)
4107 goto out;
4108
4109 retval = sctp_sched_set_sched(asoc, params.assoc_value);
4110
4111out:
4112 return retval;
4113}
4114
4115static int sctp_setsockopt_scheduler_value(struct sock *sk,
4116 char __user *optval,
4117 unsigned int optlen)
4118{
4119 struct sctp_association *asoc;
4120 struct sctp_stream_value params;
4121 int retval = -EINVAL;
4122
4123 if (optlen < sizeof(params))
4124 goto out;
4125
4126 optlen = sizeof(params);
4127 if (copy_from_user(¶ms, optval, optlen)) {
4128 retval = -EFAULT;
4129 goto out;
4130 }
4131
4132 asoc = sctp_id2assoc(sk, params.assoc_id);
4133 if (!asoc)
4134 goto out;
4135
4136 retval = sctp_sched_set_value(asoc, params.stream_id,
4137 params.stream_value, GFP_KERNEL);
4138
4139out:
4140 return retval;
4141}
4142
4143static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4144 char __user *optval,
4145 unsigned int optlen)
4146{
4147 struct sctp_sock *sp = sctp_sk(sk);
4148 struct net *net = sock_net(sk);
4149 struct sctp_assoc_value params;
4150 int retval = -EINVAL;
4151
4152 if (optlen < sizeof(params))
4153 goto out;
4154
4155 optlen = sizeof(params);
4156 if (copy_from_user(¶ms, optval, optlen)) {
4157 retval = -EFAULT;
4158 goto out;
4159 }
4160
4161 if (params.assoc_id)
4162 goto out;
4163
4164 if (!net->sctp.intl_enable || !sp->frag_interleave) {
4165 retval = -EPERM;
4166 goto out;
4167 }
4168
4169 sp->strm_interleave = !!params.assoc_value;
4170
4171 retval = 0;
4172
4173out:
4174 return retval;
4175}
4176
4177/* API 6.2 setsockopt(), getsockopt()
4178 *
4179 * Applications use setsockopt() and getsockopt() to set or retrieve
4180 * socket options. Socket options are used to change the default
4181 * behavior of sockets calls. They are described in Section 7.
4182 *
4183 * The syntax is:
4184 *
4185 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4186 * int __user *optlen);
4187 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4188 * int optlen);
4189 *
4190 * sd - the socket descript.
4191 * level - set to IPPROTO_SCTP for all SCTP options.
4192 * optname - the option name.
4193 * optval - the buffer to store the value of the option.
4194 * optlen - the size of the buffer.
4195 */
4196static int sctp_setsockopt(struct sock *sk, int level, int optname,
4197 char __user *optval, unsigned int optlen)
4198{
4199 int retval = 0;
4200
4201 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4202
4203 /* I can hardly begin to describe how wrong this is. This is
4204 * so broken as to be worse than useless. The API draft
4205 * REALLY is NOT helpful here... I am not convinced that the
4206 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4207 * are at all well-founded.
4208 */
4209 if (level != SOL_SCTP) {
4210 struct sctp_af *af = sctp_sk(sk)->pf->af;
4211 retval = af->setsockopt(sk, level, optname, optval, optlen);
4212 goto out_nounlock;
4213 }
4214
4215 lock_sock(sk);
4216
4217 switch (optname) {
4218 case SCTP_SOCKOPT_BINDX_ADD:
4219 /* 'optlen' is the size of the addresses buffer. */
4220 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4221 optlen, SCTP_BINDX_ADD_ADDR);
4222 break;
4223
4224 case SCTP_SOCKOPT_BINDX_REM:
4225 /* 'optlen' is the size of the addresses buffer. */
4226 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4227 optlen, SCTP_BINDX_REM_ADDR);
4228 break;
4229
4230 case SCTP_SOCKOPT_CONNECTX_OLD:
4231 /* 'optlen' is the size of the addresses buffer. */
4232 retval = sctp_setsockopt_connectx_old(sk,
4233 (struct sockaddr __user *)optval,
4234 optlen);
4235 break;
4236
4237 case SCTP_SOCKOPT_CONNECTX:
4238 /* 'optlen' is the size of the addresses buffer. */
4239 retval = sctp_setsockopt_connectx(sk,
4240 (struct sockaddr __user *)optval,
4241 optlen);
4242 break;
4243
4244 case SCTP_DISABLE_FRAGMENTS:
4245 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4246 break;
4247
4248 case SCTP_EVENTS:
4249 retval = sctp_setsockopt_events(sk, optval, optlen);
4250 break;
4251
4252 case SCTP_AUTOCLOSE:
4253 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4254 break;
4255
4256 case SCTP_PEER_ADDR_PARAMS:
4257 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4258 break;
4259
4260 case SCTP_DELAYED_SACK:
4261 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4262 break;
4263 case SCTP_PARTIAL_DELIVERY_POINT:
4264 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4265 break;
4266
4267 case SCTP_INITMSG:
4268 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4269 break;
4270 case SCTP_DEFAULT_SEND_PARAM:
4271 retval = sctp_setsockopt_default_send_param(sk, optval,
4272 optlen);
4273 break;
4274 case SCTP_DEFAULT_SNDINFO:
4275 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4276 break;
4277 case SCTP_PRIMARY_ADDR:
4278 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4279 break;
4280 case SCTP_SET_PEER_PRIMARY_ADDR:
4281 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4282 break;
4283 case SCTP_NODELAY:
4284 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4285 break;
4286 case SCTP_RTOINFO:
4287 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4288 break;
4289 case SCTP_ASSOCINFO:
4290 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4291 break;
4292 case SCTP_I_WANT_MAPPED_V4_ADDR:
4293 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4294 break;
4295 case SCTP_MAXSEG:
4296 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4297 break;
4298 case SCTP_ADAPTATION_LAYER:
4299 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4300 break;
4301 case SCTP_CONTEXT:
4302 retval = sctp_setsockopt_context(sk, optval, optlen);
4303 break;
4304 case SCTP_FRAGMENT_INTERLEAVE:
4305 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4306 break;
4307 case SCTP_MAX_BURST:
4308 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4309 break;
4310 case SCTP_AUTH_CHUNK:
4311 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4312 break;
4313 case SCTP_HMAC_IDENT:
4314 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4315 break;
4316 case SCTP_AUTH_KEY:
4317 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4318 break;
4319 case SCTP_AUTH_ACTIVE_KEY:
4320 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4321 break;
4322 case SCTP_AUTH_DELETE_KEY:
4323 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4324 break;
4325 case SCTP_AUTH_DEACTIVATE_KEY:
4326 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4327 break;
4328 case SCTP_AUTO_ASCONF:
4329 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4330 break;
4331 case SCTP_PEER_ADDR_THLDS:
4332 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4333 break;
4334 case SCTP_RECVRCVINFO:
4335 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4336 break;
4337 case SCTP_RECVNXTINFO:
4338 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4339 break;
4340 case SCTP_PR_SUPPORTED:
4341 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4342 break;
4343 case SCTP_DEFAULT_PRINFO:
4344 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4345 break;
4346 case SCTP_RECONFIG_SUPPORTED:
4347 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4348 break;
4349 case SCTP_ENABLE_STREAM_RESET:
4350 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4351 break;
4352 case SCTP_RESET_STREAMS:
4353 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4354 break;
4355 case SCTP_RESET_ASSOC:
4356 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4357 break;
4358 case SCTP_ADD_STREAMS:
4359 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4360 break;
4361 case SCTP_STREAM_SCHEDULER:
4362 retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4363 break;
4364 case SCTP_STREAM_SCHEDULER_VALUE:
4365 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4366 break;
4367 case SCTP_INTERLEAVING_SUPPORTED:
4368 retval = sctp_setsockopt_interleaving_supported(sk, optval,
4369 optlen);
4370 break;
4371 default:
4372 retval = -ENOPROTOOPT;
4373 break;
4374 }
4375
4376 release_sock(sk);
4377
4378out_nounlock:
4379 return retval;
4380}
4381
4382/* API 3.1.6 connect() - UDP Style Syntax
4383 *
4384 * An application may use the connect() call in the UDP model to initiate an
4385 * association without sending data.
4386 *
4387 * The syntax is:
4388 *
4389 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4390 *
4391 * sd: the socket descriptor to have a new association added to.
4392 *
4393 * nam: the address structure (either struct sockaddr_in or struct
4394 * sockaddr_in6 defined in RFC2553 [7]).
4395 *
4396 * len: the size of the address.
4397 */
4398static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4399 int addr_len, int flags)
4400{
4401 struct inet_sock *inet = inet_sk(sk);
4402 struct sctp_af *af;
4403 int err = 0;
4404
4405 lock_sock(sk);
4406
4407 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4408 addr, addr_len);
4409
4410 /* We may need to bind the socket. */
4411 if (!inet->inet_num) {
4412 if (sk->sk_prot->get_port(sk, 0)) {
4413 release_sock(sk);
4414 return -EAGAIN;
4415 }
4416 inet->inet_sport = htons(inet->inet_num);
4417 }
4418
4419 /* Validate addr_len before calling common connect/connectx routine. */
4420 af = sctp_get_af_specific(addr->sa_family);
4421 if (!af || addr_len < af->sockaddr_len) {
4422 err = -EINVAL;
4423 } else {
4424 /* Pass correct addr len to common routine (so it knows there
4425 * is only one address being passed.
4426 */
4427 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4428 }
4429
4430 release_sock(sk);
4431 return err;
4432}
4433
4434int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4435 int addr_len, int flags)
4436{
4437 if (addr_len < sizeof(uaddr->sa_family))
4438 return -EINVAL;
4439
4440 if (uaddr->sa_family == AF_UNSPEC)
4441 return -EOPNOTSUPP;
4442
4443 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4444}
4445
4446/* FIXME: Write comments. */
4447static int sctp_disconnect(struct sock *sk, int flags)
4448{
4449 return -EOPNOTSUPP; /* STUB */
4450}
4451
4452/* 4.1.4 accept() - TCP Style Syntax
4453 *
4454 * Applications use accept() call to remove an established SCTP
4455 * association from the accept queue of the endpoint. A new socket
4456 * descriptor will be returned from accept() to represent the newly
4457 * formed association.
4458 */
4459static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4460{
4461 struct sctp_sock *sp;
4462 struct sctp_endpoint *ep;
4463 struct sock *newsk = NULL;
4464 struct sctp_association *asoc;
4465 long timeo;
4466 int error = 0;
4467
4468 lock_sock(sk);
4469
4470 sp = sctp_sk(sk);
4471 ep = sp->ep;
4472
4473 if (!sctp_style(sk, TCP)) {
4474 error = -EOPNOTSUPP;
4475 goto out;
4476 }
4477
4478 if (!sctp_sstate(sk, LISTENING)) {
4479 error = -EINVAL;
4480 goto out;
4481 }
4482
4483 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4484
4485 error = sctp_wait_for_accept(sk, timeo);
4486 if (error)
4487 goto out;
4488
4489 /* We treat the list of associations on the endpoint as the accept
4490 * queue and pick the first association on the list.
4491 */
4492 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4493
4494 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4495 if (!newsk) {
4496 error = -ENOMEM;
4497 goto out;
4498 }
4499
4500 /* Populate the fields of the newsk from the oldsk and migrate the
4501 * asoc to the newsk.
4502 */
4503 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4504
4505out:
4506 release_sock(sk);
4507 *err = error;
4508 return newsk;
4509}
4510
4511/* The SCTP ioctl handler. */
4512static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4513{
4514 int rc = -ENOTCONN;
4515
4516 lock_sock(sk);
4517
4518 /*
4519 * SEQPACKET-style sockets in LISTENING state are valid, for
4520 * SCTP, so only discard TCP-style sockets in LISTENING state.
4521 */
4522 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4523 goto out;
4524
4525 switch (cmd) {
4526 case SIOCINQ: {
4527 struct sk_buff *skb;
4528 unsigned int amount = 0;
4529
4530 skb = skb_peek(&sk->sk_receive_queue);
4531 if (skb != NULL) {
4532 /*
4533 * We will only return the amount of this packet since
4534 * that is all that will be read.
4535 */
4536 amount = skb->len;
4537 }
4538 rc = put_user(amount, (int __user *)arg);
4539 break;
4540 }
4541 default:
4542 rc = -ENOIOCTLCMD;
4543 break;
4544 }
4545out:
4546 release_sock(sk);
4547 return rc;
4548}
4549
4550/* This is the function which gets called during socket creation to
4551 * initialized the SCTP-specific portion of the sock.
4552 * The sock structure should already be zero-filled memory.
4553 */
4554static int sctp_init_sock(struct sock *sk)
4555{
4556 struct net *net = sock_net(sk);
4557 struct sctp_sock *sp;
4558
4559 pr_debug("%s: sk:%p\n", __func__, sk);
4560
4561 sp = sctp_sk(sk);
4562
4563 /* Initialize the SCTP per socket area. */
4564 switch (sk->sk_type) {
4565 case SOCK_SEQPACKET:
4566 sp->type = SCTP_SOCKET_UDP;
4567 break;
4568 case SOCK_STREAM:
4569 sp->type = SCTP_SOCKET_TCP;
4570 break;
4571 default:
4572 return -ESOCKTNOSUPPORT;
4573 }
4574
4575 sk->sk_gso_type = SKB_GSO_SCTP;
4576
4577 /* Initialize default send parameters. These parameters can be
4578 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4579 */
4580 sp->default_stream = 0;
4581 sp->default_ppid = 0;
4582 sp->default_flags = 0;
4583 sp->default_context = 0;
4584 sp->default_timetolive = 0;
4585
4586 sp->default_rcv_context = 0;
4587 sp->max_burst = net->sctp.max_burst;
4588
4589 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4590
4591 /* Initialize default setup parameters. These parameters
4592 * can be modified with the SCTP_INITMSG socket option or
4593 * overridden by the SCTP_INIT CMSG.
4594 */
4595 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4596 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4597 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4598 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4599
4600 /* Initialize default RTO related parameters. These parameters can
4601 * be modified for with the SCTP_RTOINFO socket option.
4602 */
4603 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4604 sp->rtoinfo.srto_max = net->sctp.rto_max;
4605 sp->rtoinfo.srto_min = net->sctp.rto_min;
4606
4607 /* Initialize default association related parameters. These parameters
4608 * can be modified with the SCTP_ASSOCINFO socket option.
4609 */
4610 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4611 sp->assocparams.sasoc_number_peer_destinations = 0;
4612 sp->assocparams.sasoc_peer_rwnd = 0;
4613 sp->assocparams.sasoc_local_rwnd = 0;
4614 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4615
4616 /* Initialize default event subscriptions. By default, all the
4617 * options are off.
4618 */
4619 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4620
4621 /* Default Peer Address Parameters. These defaults can
4622 * be modified via SCTP_PEER_ADDR_PARAMS
4623 */
4624 sp->hbinterval = net->sctp.hb_interval;
4625 sp->pathmaxrxt = net->sctp.max_retrans_path;
4626 sp->pathmtu = 0; /* allow default discovery */
4627 sp->sackdelay = net->sctp.sack_timeout;
4628 sp->sackfreq = 2;
4629 sp->param_flags = SPP_HB_ENABLE |
4630 SPP_PMTUD_ENABLE |
4631 SPP_SACKDELAY_ENABLE;
4632
4633 /* If enabled no SCTP message fragmentation will be performed.
4634 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4635 */
4636 sp->disable_fragments = 0;
4637
4638 /* Enable Nagle algorithm by default. */
4639 sp->nodelay = 0;
4640
4641 sp->recvrcvinfo = 0;
4642 sp->recvnxtinfo = 0;
4643
4644 /* Enable by default. */
4645 sp->v4mapped = 1;
4646
4647 /* Auto-close idle associations after the configured
4648 * number of seconds. A value of 0 disables this
4649 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4650 * for UDP-style sockets only.
4651 */
4652 sp->autoclose = 0;
4653
4654 /* User specified fragmentation limit. */
4655 sp->user_frag = 0;
4656
4657 sp->adaptation_ind = 0;
4658
4659 sp->pf = sctp_get_pf_specific(sk->sk_family);
4660
4661 /* Control variables for partial data delivery. */
4662 atomic_set(&sp->pd_mode, 0);
4663 skb_queue_head_init(&sp->pd_lobby);
4664 sp->frag_interleave = 0;
4665
4666 /* Create a per socket endpoint structure. Even if we
4667 * change the data structure relationships, this may still
4668 * be useful for storing pre-connect address information.
4669 */
4670 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4671 if (!sp->ep)
4672 return -ENOMEM;
4673
4674 sp->hmac = NULL;
4675
4676 sk->sk_destruct = sctp_destruct_sock;
4677
4678 SCTP_DBG_OBJCNT_INC(sock);
4679
4680 local_bh_disable();
4681 sk_sockets_allocated_inc(sk);
4682 sock_prot_inuse_add(net, sk->sk_prot, 1);
4683
4684 /* Nothing can fail after this block, otherwise
4685 * sctp_destroy_sock() will be called without addr_wq_lock held
4686 */
4687 if (net->sctp.default_auto_asconf) {
4688 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4689 list_add_tail(&sp->auto_asconf_list,
4690 &net->sctp.auto_asconf_splist);
4691 sp->do_auto_asconf = 1;
4692 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4693 } else {
4694 sp->do_auto_asconf = 0;
4695 }
4696
4697 local_bh_enable();
4698
4699 return 0;
4700}
4701
4702/* Cleanup any SCTP per socket resources. Must be called with
4703 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4704 */
4705static void sctp_destroy_sock(struct sock *sk)
4706{
4707 struct sctp_sock *sp;
4708
4709 pr_debug("%s: sk:%p\n", __func__, sk);
4710
4711 /* Release our hold on the endpoint. */
4712 sp = sctp_sk(sk);
4713 /* This could happen during socket init, thus we bail out
4714 * early, since the rest of the below is not setup either.
4715 */
4716 if (sp->ep == NULL)
4717 return;
4718
4719 if (sp->do_auto_asconf) {
4720 sp->do_auto_asconf = 0;
4721 list_del(&sp->auto_asconf_list);
4722 }
4723 sctp_endpoint_free(sp->ep);
4724 local_bh_disable();
4725 sk_sockets_allocated_dec(sk);
4726 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4727 local_bh_enable();
4728}
4729
4730/* Triggered when there are no references on the socket anymore */
4731static void sctp_destruct_sock(struct sock *sk)
4732{
4733 struct sctp_sock *sp = sctp_sk(sk);
4734
4735 /* Free up the HMAC transform. */
4736 crypto_free_shash(sp->hmac);
4737
4738 inet_sock_destruct(sk);
4739}
4740
4741/* API 4.1.7 shutdown() - TCP Style Syntax
4742 * int shutdown(int socket, int how);
4743 *
4744 * sd - the socket descriptor of the association to be closed.
4745 * how - Specifies the type of shutdown. The values are
4746 * as follows:
4747 * SHUT_RD
4748 * Disables further receive operations. No SCTP
4749 * protocol action is taken.
4750 * SHUT_WR
4751 * Disables further send operations, and initiates
4752 * the SCTP shutdown sequence.
4753 * SHUT_RDWR
4754 * Disables further send and receive operations
4755 * and initiates the SCTP shutdown sequence.
4756 */
4757static void sctp_shutdown(struct sock *sk, int how)
4758{
4759 struct net *net = sock_net(sk);
4760 struct sctp_endpoint *ep;
4761
4762 if (!sctp_style(sk, TCP))
4763 return;
4764
4765 ep = sctp_sk(sk)->ep;
4766 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4767 struct sctp_association *asoc;
4768
4769 inet_sk_set_state(sk, SCTP_SS_CLOSING);
4770 asoc = list_entry(ep->asocs.next,
4771 struct sctp_association, asocs);
4772 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4773 }
4774}
4775
4776int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4777 struct sctp_info *info)
4778{
4779 struct sctp_transport *prim;
4780 struct list_head *pos;
4781 int mask;
4782
4783 memset(info, 0, sizeof(*info));
4784 if (!asoc) {
4785 struct sctp_sock *sp = sctp_sk(sk);
4786
4787 info->sctpi_s_autoclose = sp->autoclose;
4788 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4789 info->sctpi_s_pd_point = sp->pd_point;
4790 info->sctpi_s_nodelay = sp->nodelay;
4791 info->sctpi_s_disable_fragments = sp->disable_fragments;
4792 info->sctpi_s_v4mapped = sp->v4mapped;
4793 info->sctpi_s_frag_interleave = sp->frag_interleave;
4794 info->sctpi_s_type = sp->type;
4795
4796 return 0;
4797 }
4798
4799 info->sctpi_tag = asoc->c.my_vtag;
4800 info->sctpi_state = asoc->state;
4801 info->sctpi_rwnd = asoc->a_rwnd;
4802 info->sctpi_unackdata = asoc->unack_data;
4803 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4804 info->sctpi_instrms = asoc->stream.incnt;
4805 info->sctpi_outstrms = asoc->stream.outcnt;
4806 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4807 info->sctpi_inqueue++;
4808 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4809 info->sctpi_outqueue++;
4810 info->sctpi_overall_error = asoc->overall_error_count;
4811 info->sctpi_max_burst = asoc->max_burst;
4812 info->sctpi_maxseg = asoc->frag_point;
4813 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4814 info->sctpi_peer_tag = asoc->c.peer_vtag;
4815
4816 mask = asoc->peer.ecn_capable << 1;
4817 mask = (mask | asoc->peer.ipv4_address) << 1;
4818 mask = (mask | asoc->peer.ipv6_address) << 1;
4819 mask = (mask | asoc->peer.hostname_address) << 1;
4820 mask = (mask | asoc->peer.asconf_capable) << 1;
4821 mask = (mask | asoc->peer.prsctp_capable) << 1;
4822 mask = (mask | asoc->peer.auth_capable);
4823 info->sctpi_peer_capable = mask;
4824 mask = asoc->peer.sack_needed << 1;
4825 mask = (mask | asoc->peer.sack_generation) << 1;
4826 mask = (mask | asoc->peer.zero_window_announced);
4827 info->sctpi_peer_sack = mask;
4828
4829 info->sctpi_isacks = asoc->stats.isacks;
4830 info->sctpi_osacks = asoc->stats.osacks;
4831 info->sctpi_opackets = asoc->stats.opackets;
4832 info->sctpi_ipackets = asoc->stats.ipackets;
4833 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4834 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4835 info->sctpi_idupchunks = asoc->stats.idupchunks;
4836 info->sctpi_gapcnt = asoc->stats.gapcnt;
4837 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4838 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4839 info->sctpi_oodchunks = asoc->stats.oodchunks;
4840 info->sctpi_iodchunks = asoc->stats.iodchunks;
4841 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4842 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4843
4844 prim = asoc->peer.primary_path;
4845 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4846 info->sctpi_p_state = prim->state;
4847 info->sctpi_p_cwnd = prim->cwnd;
4848 info->sctpi_p_srtt = prim->srtt;
4849 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4850 info->sctpi_p_hbinterval = prim->hbinterval;
4851 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4852 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4853 info->sctpi_p_ssthresh = prim->ssthresh;
4854 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4855 info->sctpi_p_flight_size = prim->flight_size;
4856 info->sctpi_p_error = prim->error_count;
4857
4858 return 0;
4859}
4860EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4861
4862/* use callback to avoid exporting the core structure */
4863void sctp_transport_walk_start(struct rhashtable_iter *iter)
4864{
4865 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4866
4867 rhashtable_walk_start(iter);
4868}
4869
4870void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4871{
4872 rhashtable_walk_stop(iter);
4873 rhashtable_walk_exit(iter);
4874}
4875
4876struct sctp_transport *sctp_transport_get_next(struct net *net,
4877 struct rhashtable_iter *iter)
4878{
4879 struct sctp_transport *t;
4880
4881 t = rhashtable_walk_next(iter);
4882 for (; t; t = rhashtable_walk_next(iter)) {
4883 if (IS_ERR(t)) {
4884 if (PTR_ERR(t) == -EAGAIN)
4885 continue;
4886 break;
4887 }
4888
4889 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4890 t->asoc->peer.primary_path == t)
4891 break;
4892 }
4893
4894 return t;
4895}
4896
4897struct sctp_transport *sctp_transport_get_idx(struct net *net,
4898 struct rhashtable_iter *iter,
4899 int pos)
4900{
4901 void *obj = SEQ_START_TOKEN;
4902
4903 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4904 !IS_ERR(obj))
4905 pos--;
4906
4907 return obj;
4908}
4909
4910int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4911 void *p) {
4912 int err = 0;
4913 int hash = 0;
4914 struct sctp_ep_common *epb;
4915 struct sctp_hashbucket *head;
4916
4917 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4918 hash++, head++) {
4919 read_lock_bh(&head->lock);
4920 sctp_for_each_hentry(epb, &head->chain) {
4921 err = cb(sctp_ep(epb), p);
4922 if (err)
4923 break;
4924 }
4925 read_unlock_bh(&head->lock);
4926 }
4927
4928 return err;
4929}
4930EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4931
4932int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4933 struct net *net,
4934 const union sctp_addr *laddr,
4935 const union sctp_addr *paddr, void *p)
4936{
4937 struct sctp_transport *transport;
4938 int err;
4939
4940 rcu_read_lock();
4941 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4942 rcu_read_unlock();
4943 if (!transport)
4944 return -ENOENT;
4945
4946 err = cb(transport, p);
4947 sctp_transport_put(transport);
4948
4949 return err;
4950}
4951EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4952
4953int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4954 int (*cb_done)(struct sctp_transport *, void *),
4955 struct net *net, int *pos, void *p) {
4956 struct rhashtable_iter hti;
4957 struct sctp_transport *tsp;
4958 int ret;
4959
4960again:
4961 ret = 0;
4962 sctp_transport_walk_start(&hti);
4963
4964 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
4965 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
4966 if (!sctp_transport_hold(tsp))
4967 continue;
4968 ret = cb(tsp, p);
4969 if (ret)
4970 break;
4971 (*pos)++;
4972 sctp_transport_put(tsp);
4973 }
4974 sctp_transport_walk_stop(&hti);
4975
4976 if (ret) {
4977 if (cb_done && !cb_done(tsp, p)) {
4978 (*pos)++;
4979 sctp_transport_put(tsp);
4980 goto again;
4981 }
4982 sctp_transport_put(tsp);
4983 }
4984
4985 return ret;
4986}
4987EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4988
4989/* 7.2.1 Association Status (SCTP_STATUS)
4990
4991 * Applications can retrieve current status information about an
4992 * association, including association state, peer receiver window size,
4993 * number of unacked data chunks, and number of data chunks pending
4994 * receipt. This information is read-only.
4995 */
4996static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4997 char __user *optval,
4998 int __user *optlen)
4999{
5000 struct sctp_status status;
5001 struct sctp_association *asoc = NULL;
5002 struct sctp_transport *transport;
5003 sctp_assoc_t associd;
5004 int retval = 0;
5005
5006 if (len < sizeof(status)) {
5007 retval = -EINVAL;
5008 goto out;
5009 }
5010
5011 len = sizeof(status);
5012 if (copy_from_user(&status, optval, len)) {
5013 retval = -EFAULT;
5014 goto out;
5015 }
5016
5017 associd = status.sstat_assoc_id;
5018 asoc = sctp_id2assoc(sk, associd);
5019 if (!asoc) {
5020 retval = -EINVAL;
5021 goto out;
5022 }
5023
5024 transport = asoc->peer.primary_path;
5025
5026 status.sstat_assoc_id = sctp_assoc2id(asoc);
5027 status.sstat_state = sctp_assoc_to_state(asoc);
5028 status.sstat_rwnd = asoc->peer.rwnd;
5029 status.sstat_unackdata = asoc->unack_data;
5030
5031 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5032 status.sstat_instrms = asoc->stream.incnt;
5033 status.sstat_outstrms = asoc->stream.outcnt;
5034 status.sstat_fragmentation_point = asoc->frag_point;
5035 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5036 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5037 transport->af_specific->sockaddr_len);
5038 /* Map ipv4 address into v4-mapped-on-v6 address. */
5039 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5040 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5041 status.sstat_primary.spinfo_state = transport->state;
5042 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5043 status.sstat_primary.spinfo_srtt = transport->srtt;
5044 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5045 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5046
5047 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5048 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5049
5050 if (put_user(len, optlen)) {
5051 retval = -EFAULT;
5052 goto out;
5053 }
5054
5055 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5056 __func__, len, status.sstat_state, status.sstat_rwnd,
5057 status.sstat_assoc_id);
5058
5059 if (copy_to_user(optval, &status, len)) {
5060 retval = -EFAULT;
5061 goto out;
5062 }
5063
5064out:
5065 return retval;
5066}
5067
5068
5069/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5070 *
5071 * Applications can retrieve information about a specific peer address
5072 * of an association, including its reachability state, congestion
5073 * window, and retransmission timer values. This information is
5074 * read-only.
5075 */
5076static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5077 char __user *optval,
5078 int __user *optlen)
5079{
5080 struct sctp_paddrinfo pinfo;
5081 struct sctp_transport *transport;
5082 int retval = 0;
5083
5084 if (len < sizeof(pinfo)) {
5085 retval = -EINVAL;
5086 goto out;
5087 }
5088
5089 len = sizeof(pinfo);
5090 if (copy_from_user(&pinfo, optval, len)) {
5091 retval = -EFAULT;
5092 goto out;
5093 }
5094
5095 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5096 pinfo.spinfo_assoc_id);
5097 if (!transport)
5098 return -EINVAL;
5099
5100 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5101 pinfo.spinfo_state = transport->state;
5102 pinfo.spinfo_cwnd = transport->cwnd;
5103 pinfo.spinfo_srtt = transport->srtt;
5104 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5105 pinfo.spinfo_mtu = transport->pathmtu;
5106
5107 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5108 pinfo.spinfo_state = SCTP_ACTIVE;
5109
5110 if (put_user(len, optlen)) {
5111 retval = -EFAULT;
5112 goto out;
5113 }
5114
5115 if (copy_to_user(optval, &pinfo, len)) {
5116 retval = -EFAULT;
5117 goto out;
5118 }
5119
5120out:
5121 return retval;
5122}
5123
5124/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5125 *
5126 * This option is a on/off flag. If enabled no SCTP message
5127 * fragmentation will be performed. Instead if a message being sent
5128 * exceeds the current PMTU size, the message will NOT be sent and
5129 * instead a error will be indicated to the user.
5130 */
5131static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5132 char __user *optval, int __user *optlen)
5133{
5134 int val;
5135
5136 if (len < sizeof(int))
5137 return -EINVAL;
5138
5139 len = sizeof(int);
5140 val = (sctp_sk(sk)->disable_fragments == 1);
5141 if (put_user(len, optlen))
5142 return -EFAULT;
5143 if (copy_to_user(optval, &val, len))
5144 return -EFAULT;
5145 return 0;
5146}
5147
5148/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5149 *
5150 * This socket option is used to specify various notifications and
5151 * ancillary data the user wishes to receive.
5152 */
5153static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5154 int __user *optlen)
5155{
5156 if (len == 0)
5157 return -EINVAL;
5158 if (len > sizeof(struct sctp_event_subscribe))
5159 len = sizeof(struct sctp_event_subscribe);
5160 if (put_user(len, optlen))
5161 return -EFAULT;
5162 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
5163 return -EFAULT;
5164 return 0;
5165}
5166
5167/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5168 *
5169 * This socket option is applicable to the UDP-style socket only. When
5170 * set it will cause associations that are idle for more than the
5171 * specified number of seconds to automatically close. An association
5172 * being idle is defined an association that has NOT sent or received
5173 * user data. The special value of '0' indicates that no automatic
5174 * close of any associations should be performed. The option expects an
5175 * integer defining the number of seconds of idle time before an
5176 * association is closed.
5177 */
5178static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5179{
5180 /* Applicable to UDP-style socket only */
5181 if (sctp_style(sk, TCP))
5182 return -EOPNOTSUPP;
5183 if (len < sizeof(int))
5184 return -EINVAL;
5185 len = sizeof(int);
5186 if (put_user(len, optlen))
5187 return -EFAULT;
5188 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5189 return -EFAULT;
5190 return 0;
5191}
5192
5193/* Helper routine to branch off an association to a new socket. */
5194int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5195{
5196 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5197 struct sctp_sock *sp = sctp_sk(sk);
5198 struct socket *sock;
5199 int err = 0;
5200
5201 /* Do not peel off from one netns to another one. */
5202 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5203 return -EINVAL;
5204
5205 if (!asoc)
5206 return -EINVAL;
5207
5208 /* An association cannot be branched off from an already peeled-off
5209 * socket, nor is this supported for tcp style sockets.
5210 */
5211 if (!sctp_style(sk, UDP))
5212 return -EINVAL;
5213
5214 /* Create a new socket. */
5215 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5216 if (err < 0)
5217 return err;
5218
5219 sctp_copy_sock(sock->sk, sk, asoc);
5220
5221 /* Make peeled-off sockets more like 1-1 accepted sockets.
5222 * Set the daddr and initialize id to something more random and also
5223 * copy over any ip options.
5224 */
5225 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5226 sp->pf->copy_ip_options(sk, sock->sk);
5227
5228 /* Populate the fields of the newsk from the oldsk and migrate the
5229 * asoc to the newsk.
5230 */
5231 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5232
5233 *sockp = sock;
5234
5235 return err;
5236}
5237EXPORT_SYMBOL(sctp_do_peeloff);
5238
5239static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5240 struct file **newfile, unsigned flags)
5241{
5242 struct socket *newsock;
5243 int retval;
5244
5245 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5246 if (retval < 0)
5247 goto out;
5248
5249 /* Map the socket to an unused fd that can be returned to the user. */
5250 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5251 if (retval < 0) {
5252 sock_release(newsock);
5253 goto out;
5254 }
5255
5256 *newfile = sock_alloc_file(newsock, 0, NULL);
5257 if (IS_ERR(*newfile)) {
5258 put_unused_fd(retval);
5259 retval = PTR_ERR(*newfile);
5260 *newfile = NULL;
5261 return retval;
5262 }
5263
5264 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5265 retval);
5266
5267 peeloff->sd = retval;
5268
5269 if (flags & SOCK_NONBLOCK)
5270 (*newfile)->f_flags |= O_NONBLOCK;
5271out:
5272 return retval;
5273}
5274
5275static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5276{
5277 sctp_peeloff_arg_t peeloff;
5278 struct file *newfile = NULL;
5279 int retval = 0;
5280
5281 if (len < sizeof(sctp_peeloff_arg_t))
5282 return -EINVAL;
5283 len = sizeof(sctp_peeloff_arg_t);
5284 if (copy_from_user(&peeloff, optval, len))
5285 return -EFAULT;
5286
5287 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5288 if (retval < 0)
5289 goto out;
5290
5291 /* Return the fd mapped to the new socket. */
5292 if (put_user(len, optlen)) {
5293 fput(newfile);
5294 put_unused_fd(retval);
5295 return -EFAULT;
5296 }
5297
5298 if (copy_to_user(optval, &peeloff, len)) {
5299 fput(newfile);
5300 put_unused_fd(retval);
5301 return -EFAULT;
5302 }
5303 fd_install(retval, newfile);
5304out:
5305 return retval;
5306}
5307
5308static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5309 char __user *optval, int __user *optlen)
5310{
5311 sctp_peeloff_flags_arg_t peeloff;
5312 struct file *newfile = NULL;
5313 int retval = 0;
5314
5315 if (len < sizeof(sctp_peeloff_flags_arg_t))
5316 return -EINVAL;
5317 len = sizeof(sctp_peeloff_flags_arg_t);
5318 if (copy_from_user(&peeloff, optval, len))
5319 return -EFAULT;
5320
5321 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5322 &newfile, peeloff.flags);
5323 if (retval < 0)
5324 goto out;
5325
5326 /* Return the fd mapped to the new socket. */
5327 if (put_user(len, optlen)) {
5328 fput(newfile);
5329 put_unused_fd(retval);
5330 return -EFAULT;
5331 }
5332
5333 if (copy_to_user(optval, &peeloff, len)) {
5334 fput(newfile);
5335 put_unused_fd(retval);
5336 return -EFAULT;
5337 }
5338 fd_install(retval, newfile);
5339out:
5340 return retval;
5341}
5342
5343/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5344 *
5345 * Applications can enable or disable heartbeats for any peer address of
5346 * an association, modify an address's heartbeat interval, force a
5347 * heartbeat to be sent immediately, and adjust the address's maximum
5348 * number of retransmissions sent before an address is considered
5349 * unreachable. The following structure is used to access and modify an
5350 * address's parameters:
5351 *
5352 * struct sctp_paddrparams {
5353 * sctp_assoc_t spp_assoc_id;
5354 * struct sockaddr_storage spp_address;
5355 * uint32_t spp_hbinterval;
5356 * uint16_t spp_pathmaxrxt;
5357 * uint32_t spp_pathmtu;
5358 * uint32_t spp_sackdelay;
5359 * uint32_t spp_flags;
5360 * };
5361 *
5362 * spp_assoc_id - (one-to-many style socket) This is filled in the
5363 * application, and identifies the association for
5364 * this query.
5365 * spp_address - This specifies which address is of interest.
5366 * spp_hbinterval - This contains the value of the heartbeat interval,
5367 * in milliseconds. If a value of zero
5368 * is present in this field then no changes are to
5369 * be made to this parameter.
5370 * spp_pathmaxrxt - This contains the maximum number of
5371 * retransmissions before this address shall be
5372 * considered unreachable. If a value of zero
5373 * is present in this field then no changes are to
5374 * be made to this parameter.
5375 * spp_pathmtu - When Path MTU discovery is disabled the value
5376 * specified here will be the "fixed" path mtu.
5377 * Note that if the spp_address field is empty
5378 * then all associations on this address will
5379 * have this fixed path mtu set upon them.
5380 *
5381 * spp_sackdelay - When delayed sack is enabled, this value specifies
5382 * the number of milliseconds that sacks will be delayed
5383 * for. This value will apply to all addresses of an
5384 * association if the spp_address field is empty. Note
5385 * also, that if delayed sack is enabled and this
5386 * value is set to 0, no change is made to the last
5387 * recorded delayed sack timer value.
5388 *
5389 * spp_flags - These flags are used to control various features
5390 * on an association. The flag field may contain
5391 * zero or more of the following options.
5392 *
5393 * SPP_HB_ENABLE - Enable heartbeats on the
5394 * specified address. Note that if the address
5395 * field is empty all addresses for the association
5396 * have heartbeats enabled upon them.
5397 *
5398 * SPP_HB_DISABLE - Disable heartbeats on the
5399 * speicifed address. Note that if the address
5400 * field is empty all addresses for the association
5401 * will have their heartbeats disabled. Note also
5402 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5403 * mutually exclusive, only one of these two should
5404 * be specified. Enabling both fields will have
5405 * undetermined results.
5406 *
5407 * SPP_HB_DEMAND - Request a user initiated heartbeat
5408 * to be made immediately.
5409 *
5410 * SPP_PMTUD_ENABLE - This field will enable PMTU
5411 * discovery upon the specified address. Note that
5412 * if the address feild is empty then all addresses
5413 * on the association are effected.
5414 *
5415 * SPP_PMTUD_DISABLE - This field will disable PMTU
5416 * discovery upon the specified address. Note that
5417 * if the address feild is empty then all addresses
5418 * on the association are effected. Not also that
5419 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5420 * exclusive. Enabling both will have undetermined
5421 * results.
5422 *
5423 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5424 * on delayed sack. The time specified in spp_sackdelay
5425 * is used to specify the sack delay for this address. Note
5426 * that if spp_address is empty then all addresses will
5427 * enable delayed sack and take on the sack delay
5428 * value specified in spp_sackdelay.
5429 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5430 * off delayed sack. If the spp_address field is blank then
5431 * delayed sack is disabled for the entire association. Note
5432 * also that this field is mutually exclusive to
5433 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5434 * results.
5435 */
5436static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5437 char __user *optval, int __user *optlen)
5438{
5439 struct sctp_paddrparams params;
5440 struct sctp_transport *trans = NULL;
5441 struct sctp_association *asoc = NULL;
5442 struct sctp_sock *sp = sctp_sk(sk);
5443
5444 if (len < sizeof(struct sctp_paddrparams))
5445 return -EINVAL;
5446 len = sizeof(struct sctp_paddrparams);
5447 if (copy_from_user(¶ms, optval, len))
5448 return -EFAULT;
5449
5450 /* If an address other than INADDR_ANY is specified, and
5451 * no transport is found, then the request is invalid.
5452 */
5453 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5454 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5455 params.spp_assoc_id);
5456 if (!trans) {
5457 pr_debug("%s: failed no transport\n", __func__);
5458 return -EINVAL;
5459 }
5460 }
5461
5462 /* Get association, if assoc_id != 0 and the socket is a one
5463 * to many style socket, and an association was not found, then
5464 * the id was invalid.
5465 */
5466 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5467 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5468 pr_debug("%s: failed no association\n", __func__);
5469 return -EINVAL;
5470 }
5471
5472 if (trans) {
5473 /* Fetch transport values. */
5474 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5475 params.spp_pathmtu = trans->pathmtu;
5476 params.spp_pathmaxrxt = trans->pathmaxrxt;
5477 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5478
5479 /*draft-11 doesn't say what to return in spp_flags*/
5480 params.spp_flags = trans->param_flags;
5481 } else if (asoc) {
5482 /* Fetch association values. */
5483 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5484 params.spp_pathmtu = asoc->pathmtu;
5485 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5486 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5487
5488 /*draft-11 doesn't say what to return in spp_flags*/
5489 params.spp_flags = asoc->param_flags;
5490 } else {
5491 /* Fetch socket values. */
5492 params.spp_hbinterval = sp->hbinterval;
5493 params.spp_pathmtu = sp->pathmtu;
5494 params.spp_sackdelay = sp->sackdelay;
5495 params.spp_pathmaxrxt = sp->pathmaxrxt;
5496
5497 /*draft-11 doesn't say what to return in spp_flags*/
5498 params.spp_flags = sp->param_flags;
5499 }
5500
5501 if (copy_to_user(optval, ¶ms, len))
5502 return -EFAULT;
5503
5504 if (put_user(len, optlen))
5505 return -EFAULT;
5506
5507 return 0;
5508}
5509
5510/*
5511 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5512 *
5513 * This option will effect the way delayed acks are performed. This
5514 * option allows you to get or set the delayed ack time, in
5515 * milliseconds. It also allows changing the delayed ack frequency.
5516 * Changing the frequency to 1 disables the delayed sack algorithm. If
5517 * the assoc_id is 0, then this sets or gets the endpoints default
5518 * values. If the assoc_id field is non-zero, then the set or get
5519 * effects the specified association for the one to many model (the
5520 * assoc_id field is ignored by the one to one model). Note that if
5521 * sack_delay or sack_freq are 0 when setting this option, then the
5522 * current values will remain unchanged.
5523 *
5524 * struct sctp_sack_info {
5525 * sctp_assoc_t sack_assoc_id;
5526 * uint32_t sack_delay;
5527 * uint32_t sack_freq;
5528 * };
5529 *
5530 * sack_assoc_id - This parameter, indicates which association the user
5531 * is performing an action upon. Note that if this field's value is
5532 * zero then the endpoints default value is changed (effecting future
5533 * associations only).
5534 *
5535 * sack_delay - This parameter contains the number of milliseconds that
5536 * the user is requesting the delayed ACK timer be set to. Note that
5537 * this value is defined in the standard to be between 200 and 500
5538 * milliseconds.
5539 *
5540 * sack_freq - This parameter contains the number of packets that must
5541 * be received before a sack is sent without waiting for the delay
5542 * timer to expire. The default value for this is 2, setting this
5543 * value to 1 will disable the delayed sack algorithm.
5544 */
5545static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5546 char __user *optval,
5547 int __user *optlen)
5548{
5549 struct sctp_sack_info params;
5550 struct sctp_association *asoc = NULL;
5551 struct sctp_sock *sp = sctp_sk(sk);
5552
5553 if (len >= sizeof(struct sctp_sack_info)) {
5554 len = sizeof(struct sctp_sack_info);
5555
5556 if (copy_from_user(¶ms, optval, len))
5557 return -EFAULT;
5558 } else if (len == sizeof(struct sctp_assoc_value)) {
5559 pr_warn_ratelimited(DEPRECATED
5560 "%s (pid %d) "
5561 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5562 "Use struct sctp_sack_info instead\n",
5563 current->comm, task_pid_nr(current));
5564 if (copy_from_user(¶ms, optval, len))
5565 return -EFAULT;
5566 } else
5567 return -EINVAL;
5568
5569 /* Get association, if sack_assoc_id != 0 and the socket is a one
5570 * to many style socket, and an association was not found, then
5571 * the id was invalid.
5572 */
5573 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5574 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5575 return -EINVAL;
5576
5577 if (asoc) {
5578 /* Fetch association values. */
5579 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5580 params.sack_delay = jiffies_to_msecs(
5581 asoc->sackdelay);
5582 params.sack_freq = asoc->sackfreq;
5583
5584 } else {
5585 params.sack_delay = 0;
5586 params.sack_freq = 1;
5587 }
5588 } else {
5589 /* Fetch socket values. */
5590 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5591 params.sack_delay = sp->sackdelay;
5592 params.sack_freq = sp->sackfreq;
5593 } else {
5594 params.sack_delay = 0;
5595 params.sack_freq = 1;
5596 }
5597 }
5598
5599 if (copy_to_user(optval, ¶ms, len))
5600 return -EFAULT;
5601
5602 if (put_user(len, optlen))
5603 return -EFAULT;
5604
5605 return 0;
5606}
5607
5608/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5609 *
5610 * Applications can specify protocol parameters for the default association
5611 * initialization. The option name argument to setsockopt() and getsockopt()
5612 * is SCTP_INITMSG.
5613 *
5614 * Setting initialization parameters is effective only on an unconnected
5615 * socket (for UDP-style sockets only future associations are effected
5616 * by the change). With TCP-style sockets, this option is inherited by
5617 * sockets derived from a listener socket.
5618 */
5619static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5620{
5621 if (len < sizeof(struct sctp_initmsg))
5622 return -EINVAL;
5623 len = sizeof(struct sctp_initmsg);
5624 if (put_user(len, optlen))
5625 return -EFAULT;
5626 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5627 return -EFAULT;
5628 return 0;
5629}
5630
5631
5632static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5633 char __user *optval, int __user *optlen)
5634{
5635 struct sctp_association *asoc;
5636 int cnt = 0;
5637 struct sctp_getaddrs getaddrs;
5638 struct sctp_transport *from;
5639 void __user *to;
5640 union sctp_addr temp;
5641 struct sctp_sock *sp = sctp_sk(sk);
5642 int addrlen;
5643 size_t space_left;
5644 int bytes_copied;
5645
5646 if (len < sizeof(struct sctp_getaddrs))
5647 return -EINVAL;
5648
5649 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5650 return -EFAULT;
5651
5652 /* For UDP-style sockets, id specifies the association to query. */
5653 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5654 if (!asoc)
5655 return -EINVAL;
5656
5657 to = optval + offsetof(struct sctp_getaddrs, addrs);
5658 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5659
5660 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5661 transports) {
5662 memcpy(&temp, &from->ipaddr, sizeof(temp));
5663 addrlen = sctp_get_pf_specific(sk->sk_family)
5664 ->addr_to_user(sp, &temp);
5665 if (space_left < addrlen)
5666 return -ENOMEM;
5667 if (copy_to_user(to, &temp, addrlen))
5668 return -EFAULT;
5669 to += addrlen;
5670 cnt++;
5671 space_left -= addrlen;
5672 }
5673
5674 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5675 return -EFAULT;
5676 bytes_copied = ((char __user *)to) - optval;
5677 if (put_user(bytes_copied, optlen))
5678 return -EFAULT;
5679
5680 return 0;
5681}
5682
5683static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5684 size_t space_left, int *bytes_copied)
5685{
5686 struct sctp_sockaddr_entry *addr;
5687 union sctp_addr temp;
5688 int cnt = 0;
5689 int addrlen;
5690 struct net *net = sock_net(sk);
5691
5692 rcu_read_lock();
5693 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5694 if (!addr->valid)
5695 continue;
5696
5697 if ((PF_INET == sk->sk_family) &&
5698 (AF_INET6 == addr->a.sa.sa_family))
5699 continue;
5700 if ((PF_INET6 == sk->sk_family) &&
5701 inet_v6_ipv6only(sk) &&
5702 (AF_INET == addr->a.sa.sa_family))
5703 continue;
5704 memcpy(&temp, &addr->a, sizeof(temp));
5705 if (!temp.v4.sin_port)
5706 temp.v4.sin_port = htons(port);
5707
5708 addrlen = sctp_get_pf_specific(sk->sk_family)
5709 ->addr_to_user(sctp_sk(sk), &temp);
5710
5711 if (space_left < addrlen) {
5712 cnt = -ENOMEM;
5713 break;
5714 }
5715 memcpy(to, &temp, addrlen);
5716
5717 to += addrlen;
5718 cnt++;
5719 space_left -= addrlen;
5720 *bytes_copied += addrlen;
5721 }
5722 rcu_read_unlock();
5723
5724 return cnt;
5725}
5726
5727
5728static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5729 char __user *optval, int __user *optlen)
5730{
5731 struct sctp_bind_addr *bp;
5732 struct sctp_association *asoc;
5733 int cnt = 0;
5734 struct sctp_getaddrs getaddrs;
5735 struct sctp_sockaddr_entry *addr;
5736 void __user *to;
5737 union sctp_addr temp;
5738 struct sctp_sock *sp = sctp_sk(sk);
5739 int addrlen;
5740 int err = 0;
5741 size_t space_left;
5742 int bytes_copied = 0;
5743 void *addrs;
5744 void *buf;
5745
5746 if (len < sizeof(struct sctp_getaddrs))
5747 return -EINVAL;
5748
5749 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5750 return -EFAULT;
5751
5752 /*
5753 * For UDP-style sockets, id specifies the association to query.
5754 * If the id field is set to the value '0' then the locally bound
5755 * addresses are returned without regard to any particular
5756 * association.
5757 */
5758 if (0 == getaddrs.assoc_id) {
5759 bp = &sctp_sk(sk)->ep->base.bind_addr;
5760 } else {
5761 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5762 if (!asoc)
5763 return -EINVAL;
5764 bp = &asoc->base.bind_addr;
5765 }
5766
5767 to = optval + offsetof(struct sctp_getaddrs, addrs);
5768 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5769
5770 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5771 if (!addrs)
5772 return -ENOMEM;
5773
5774 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5775 * addresses from the global local address list.
5776 */
5777 if (sctp_list_single_entry(&bp->address_list)) {
5778 addr = list_entry(bp->address_list.next,
5779 struct sctp_sockaddr_entry, list);
5780 if (sctp_is_any(sk, &addr->a)) {
5781 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5782 space_left, &bytes_copied);
5783 if (cnt < 0) {
5784 err = cnt;
5785 goto out;
5786 }
5787 goto copy_getaddrs;
5788 }
5789 }
5790
5791 buf = addrs;
5792 /* Protection on the bound address list is not needed since
5793 * in the socket option context we hold a socket lock and
5794 * thus the bound address list can't change.
5795 */
5796 list_for_each_entry(addr, &bp->address_list, list) {
5797 memcpy(&temp, &addr->a, sizeof(temp));
5798 addrlen = sctp_get_pf_specific(sk->sk_family)
5799 ->addr_to_user(sp, &temp);
5800 if (space_left < addrlen) {
5801 err = -ENOMEM; /*fixme: right error?*/
5802 goto out;
5803 }
5804 memcpy(buf, &temp, addrlen);
5805 buf += addrlen;
5806 bytes_copied += addrlen;
5807 cnt++;
5808 space_left -= addrlen;
5809 }
5810
5811copy_getaddrs:
5812 if (copy_to_user(to, addrs, bytes_copied)) {
5813 err = -EFAULT;
5814 goto out;
5815 }
5816 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5817 err = -EFAULT;
5818 goto out;
5819 }
5820 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
5821 * but we can't change it anymore.
5822 */
5823 if (put_user(bytes_copied, optlen))
5824 err = -EFAULT;
5825out:
5826 kfree(addrs);
5827 return err;
5828}
5829
5830/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5831 *
5832 * Requests that the local SCTP stack use the enclosed peer address as
5833 * the association primary. The enclosed address must be one of the
5834 * association peer's addresses.
5835 */
5836static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5837 char __user *optval, int __user *optlen)
5838{
5839 struct sctp_prim prim;
5840 struct sctp_association *asoc;
5841 struct sctp_sock *sp = sctp_sk(sk);
5842
5843 if (len < sizeof(struct sctp_prim))
5844 return -EINVAL;
5845
5846 len = sizeof(struct sctp_prim);
5847
5848 if (copy_from_user(&prim, optval, len))
5849 return -EFAULT;
5850
5851 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5852 if (!asoc)
5853 return -EINVAL;
5854
5855 if (!asoc->peer.primary_path)
5856 return -ENOTCONN;
5857
5858 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5859 asoc->peer.primary_path->af_specific->sockaddr_len);
5860
5861 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5862 (union sctp_addr *)&prim.ssp_addr);
5863
5864 if (put_user(len, optlen))
5865 return -EFAULT;
5866 if (copy_to_user(optval, &prim, len))
5867 return -EFAULT;
5868
5869 return 0;
5870}
5871
5872/*
5873 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5874 *
5875 * Requests that the local endpoint set the specified Adaptation Layer
5876 * Indication parameter for all future INIT and INIT-ACK exchanges.
5877 */
5878static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5879 char __user *optval, int __user *optlen)
5880{
5881 struct sctp_setadaptation adaptation;
5882
5883 if (len < sizeof(struct sctp_setadaptation))
5884 return -EINVAL;
5885
5886 len = sizeof(struct sctp_setadaptation);
5887
5888 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5889
5890 if (put_user(len, optlen))
5891 return -EFAULT;
5892 if (copy_to_user(optval, &adaptation, len))
5893 return -EFAULT;
5894
5895 return 0;
5896}
5897
5898/*
5899 *
5900 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5901 *
5902 * Applications that wish to use the sendto() system call may wish to
5903 * specify a default set of parameters that would normally be supplied
5904 * through the inclusion of ancillary data. This socket option allows
5905 * such an application to set the default sctp_sndrcvinfo structure.
5906
5907
5908 * The application that wishes to use this socket option simply passes
5909 * in to this call the sctp_sndrcvinfo structure defined in Section
5910 * 5.2.2) The input parameters accepted by this call include
5911 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5912 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5913 * to this call if the caller is using the UDP model.
5914 *
5915 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5916 */
5917static int sctp_getsockopt_default_send_param(struct sock *sk,
5918 int len, char __user *optval,
5919 int __user *optlen)
5920{
5921 struct sctp_sock *sp = sctp_sk(sk);
5922 struct sctp_association *asoc;
5923 struct sctp_sndrcvinfo info;
5924
5925 if (len < sizeof(info))
5926 return -EINVAL;
5927
5928 len = sizeof(info);
5929
5930 if (copy_from_user(&info, optval, len))
5931 return -EFAULT;
5932
5933 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5934 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5935 return -EINVAL;
5936 if (asoc) {
5937 info.sinfo_stream = asoc->default_stream;
5938 info.sinfo_flags = asoc->default_flags;
5939 info.sinfo_ppid = asoc->default_ppid;
5940 info.sinfo_context = asoc->default_context;
5941 info.sinfo_timetolive = asoc->default_timetolive;
5942 } else {
5943 info.sinfo_stream = sp->default_stream;
5944 info.sinfo_flags = sp->default_flags;
5945 info.sinfo_ppid = sp->default_ppid;
5946 info.sinfo_context = sp->default_context;
5947 info.sinfo_timetolive = sp->default_timetolive;
5948 }
5949
5950 if (put_user(len, optlen))
5951 return -EFAULT;
5952 if (copy_to_user(optval, &info, len))
5953 return -EFAULT;
5954
5955 return 0;
5956}
5957
5958/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5959 * (SCTP_DEFAULT_SNDINFO)
5960 */
5961static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5962 char __user *optval,
5963 int __user *optlen)
5964{
5965 struct sctp_sock *sp = sctp_sk(sk);
5966 struct sctp_association *asoc;
5967 struct sctp_sndinfo info;
5968
5969 if (len < sizeof(info))
5970 return -EINVAL;
5971
5972 len = sizeof(info);
5973
5974 if (copy_from_user(&info, optval, len))
5975 return -EFAULT;
5976
5977 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5978 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5979 return -EINVAL;
5980 if (asoc) {
5981 info.snd_sid = asoc->default_stream;
5982 info.snd_flags = asoc->default_flags;
5983 info.snd_ppid = asoc->default_ppid;
5984 info.snd_context = asoc->default_context;
5985 } else {
5986 info.snd_sid = sp->default_stream;
5987 info.snd_flags = sp->default_flags;
5988 info.snd_ppid = sp->default_ppid;
5989 info.snd_context = sp->default_context;
5990 }
5991
5992 if (put_user(len, optlen))
5993 return -EFAULT;
5994 if (copy_to_user(optval, &info, len))
5995 return -EFAULT;
5996
5997 return 0;
5998}
5999
6000/*
6001 *
6002 * 7.1.5 SCTP_NODELAY
6003 *
6004 * Turn on/off any Nagle-like algorithm. This means that packets are
6005 * generally sent as soon as possible and no unnecessary delays are
6006 * introduced, at the cost of more packets in the network. Expects an
6007 * integer boolean flag.
6008 */
6009
6010static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6011 char __user *optval, int __user *optlen)
6012{
6013 int val;
6014
6015 if (len < sizeof(int))
6016 return -EINVAL;
6017
6018 len = sizeof(int);
6019 val = (sctp_sk(sk)->nodelay == 1);
6020 if (put_user(len, optlen))
6021 return -EFAULT;
6022 if (copy_to_user(optval, &val, len))
6023 return -EFAULT;
6024 return 0;
6025}
6026
6027/*
6028 *
6029 * 7.1.1 SCTP_RTOINFO
6030 *
6031 * The protocol parameters used to initialize and bound retransmission
6032 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6033 * and modify these parameters.
6034 * All parameters are time values, in milliseconds. A value of 0, when
6035 * modifying the parameters, indicates that the current value should not
6036 * be changed.
6037 *
6038 */
6039static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6040 char __user *optval,
6041 int __user *optlen) {
6042 struct sctp_rtoinfo rtoinfo;
6043 struct sctp_association *asoc;
6044
6045 if (len < sizeof (struct sctp_rtoinfo))
6046 return -EINVAL;
6047
6048 len = sizeof(struct sctp_rtoinfo);
6049
6050 if (copy_from_user(&rtoinfo, optval, len))
6051 return -EFAULT;
6052
6053 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6054
6055 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6056 return -EINVAL;
6057
6058 /* Values corresponding to the specific association. */
6059 if (asoc) {
6060 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6061 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6062 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6063 } else {
6064 /* Values corresponding to the endpoint. */
6065 struct sctp_sock *sp = sctp_sk(sk);
6066
6067 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6068 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6069 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6070 }
6071
6072 if (put_user(len, optlen))
6073 return -EFAULT;
6074
6075 if (copy_to_user(optval, &rtoinfo, len))
6076 return -EFAULT;
6077
6078 return 0;
6079}
6080
6081/*
6082 *
6083 * 7.1.2 SCTP_ASSOCINFO
6084 *
6085 * This option is used to tune the maximum retransmission attempts
6086 * of the association.
6087 * Returns an error if the new association retransmission value is
6088 * greater than the sum of the retransmission value of the peer.
6089 * See [SCTP] for more information.
6090 *
6091 */
6092static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6093 char __user *optval,
6094 int __user *optlen)
6095{
6096
6097 struct sctp_assocparams assocparams;
6098 struct sctp_association *asoc;
6099 struct list_head *pos;
6100 int cnt = 0;
6101
6102 if (len < sizeof (struct sctp_assocparams))
6103 return -EINVAL;
6104
6105 len = sizeof(struct sctp_assocparams);
6106
6107 if (copy_from_user(&assocparams, optval, len))
6108 return -EFAULT;
6109
6110 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6111
6112 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6113 return -EINVAL;
6114
6115 /* Values correspoinding to the specific association */
6116 if (asoc) {
6117 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6118 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6119 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6120 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6121
6122 list_for_each(pos, &asoc->peer.transport_addr_list) {
6123 cnt++;
6124 }
6125
6126 assocparams.sasoc_number_peer_destinations = cnt;
6127 } else {
6128 /* Values corresponding to the endpoint */
6129 struct sctp_sock *sp = sctp_sk(sk);
6130
6131 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6132 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6133 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6134 assocparams.sasoc_cookie_life =
6135 sp->assocparams.sasoc_cookie_life;
6136 assocparams.sasoc_number_peer_destinations =
6137 sp->assocparams.
6138 sasoc_number_peer_destinations;
6139 }
6140
6141 if (put_user(len, optlen))
6142 return -EFAULT;
6143
6144 if (copy_to_user(optval, &assocparams, len))
6145 return -EFAULT;
6146
6147 return 0;
6148}
6149
6150/*
6151 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6152 *
6153 * This socket option is a boolean flag which turns on or off mapped V4
6154 * addresses. If this option is turned on and the socket is type
6155 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6156 * If this option is turned off, then no mapping will be done of V4
6157 * addresses and a user will receive both PF_INET6 and PF_INET type
6158 * addresses on the socket.
6159 */
6160static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6161 char __user *optval, int __user *optlen)
6162{
6163 int val;
6164 struct sctp_sock *sp = sctp_sk(sk);
6165
6166 if (len < sizeof(int))
6167 return -EINVAL;
6168
6169 len = sizeof(int);
6170 val = sp->v4mapped;
6171 if (put_user(len, optlen))
6172 return -EFAULT;
6173 if (copy_to_user(optval, &val, len))
6174 return -EFAULT;
6175
6176 return 0;
6177}
6178
6179/*
6180 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6181 * (chapter and verse is quoted at sctp_setsockopt_context())
6182 */
6183static int sctp_getsockopt_context(struct sock *sk, int len,
6184 char __user *optval, int __user *optlen)
6185{
6186 struct sctp_assoc_value params;
6187 struct sctp_sock *sp;
6188 struct sctp_association *asoc;
6189
6190 if (len < sizeof(struct sctp_assoc_value))
6191 return -EINVAL;
6192
6193 len = sizeof(struct sctp_assoc_value);
6194
6195 if (copy_from_user(¶ms, optval, len))
6196 return -EFAULT;
6197
6198 sp = sctp_sk(sk);
6199
6200 if (params.assoc_id != 0) {
6201 asoc = sctp_id2assoc(sk, params.assoc_id);
6202 if (!asoc)
6203 return -EINVAL;
6204 params.assoc_value = asoc->default_rcv_context;
6205 } else {
6206 params.assoc_value = sp->default_rcv_context;
6207 }
6208
6209 if (put_user(len, optlen))
6210 return -EFAULT;
6211 if (copy_to_user(optval, ¶ms, len))
6212 return -EFAULT;
6213
6214 return 0;
6215}
6216
6217/*
6218 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6219 * This option will get or set the maximum size to put in any outgoing
6220 * SCTP DATA chunk. If a message is larger than this size it will be
6221 * fragmented by SCTP into the specified size. Note that the underlying
6222 * SCTP implementation may fragment into smaller sized chunks when the
6223 * PMTU of the underlying association is smaller than the value set by
6224 * the user. The default value for this option is '0' which indicates
6225 * the user is NOT limiting fragmentation and only the PMTU will effect
6226 * SCTP's choice of DATA chunk size. Note also that values set larger
6227 * than the maximum size of an IP datagram will effectively let SCTP
6228 * control fragmentation (i.e. the same as setting this option to 0).
6229 *
6230 * The following structure is used to access and modify this parameter:
6231 *
6232 * struct sctp_assoc_value {
6233 * sctp_assoc_t assoc_id;
6234 * uint32_t assoc_value;
6235 * };
6236 *
6237 * assoc_id: This parameter is ignored for one-to-one style sockets.
6238 * For one-to-many style sockets this parameter indicates which
6239 * association the user is performing an action upon. Note that if
6240 * this field's value is zero then the endpoints default value is
6241 * changed (effecting future associations only).
6242 * assoc_value: This parameter specifies the maximum size in bytes.
6243 */
6244static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6245 char __user *optval, int __user *optlen)
6246{
6247 struct sctp_assoc_value params;
6248 struct sctp_association *asoc;
6249
6250 if (len == sizeof(int)) {
6251 pr_warn_ratelimited(DEPRECATED
6252 "%s (pid %d) "
6253 "Use of int in maxseg socket option.\n"
6254 "Use struct sctp_assoc_value instead\n",
6255 current->comm, task_pid_nr(current));
6256 params.assoc_id = 0;
6257 } else if (len >= sizeof(struct sctp_assoc_value)) {
6258 len = sizeof(struct sctp_assoc_value);
6259 if (copy_from_user(¶ms, optval, len))
6260 return -EFAULT;
6261 } else
6262 return -EINVAL;
6263
6264 asoc = sctp_id2assoc(sk, params.assoc_id);
6265 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6266 return -EINVAL;
6267
6268 if (asoc)
6269 params.assoc_value = asoc->frag_point;
6270 else
6271 params.assoc_value = sctp_sk(sk)->user_frag;
6272
6273 if (put_user(len, optlen))
6274 return -EFAULT;
6275 if (len == sizeof(int)) {
6276 if (copy_to_user(optval, ¶ms.assoc_value, len))
6277 return -EFAULT;
6278 } else {
6279 if (copy_to_user(optval, ¶ms, len))
6280 return -EFAULT;
6281 }
6282
6283 return 0;
6284}
6285
6286/*
6287 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6288 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6289 */
6290static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6291 char __user *optval, int __user *optlen)
6292{
6293 int val;
6294
6295 if (len < sizeof(int))
6296 return -EINVAL;
6297
6298 len = sizeof(int);
6299
6300 val = sctp_sk(sk)->frag_interleave;
6301 if (put_user(len, optlen))
6302 return -EFAULT;
6303 if (copy_to_user(optval, &val, len))
6304 return -EFAULT;
6305
6306 return 0;
6307}
6308
6309/*
6310 * 7.1.25. Set or Get the sctp partial delivery point
6311 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6312 */
6313static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6314 char __user *optval,
6315 int __user *optlen)
6316{
6317 u32 val;
6318
6319 if (len < sizeof(u32))
6320 return -EINVAL;
6321
6322 len = sizeof(u32);
6323
6324 val = sctp_sk(sk)->pd_point;
6325 if (put_user(len, optlen))
6326 return -EFAULT;
6327 if (copy_to_user(optval, &val, len))
6328 return -EFAULT;
6329
6330 return 0;
6331}
6332
6333/*
6334 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6335 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6336 */
6337static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6338 char __user *optval,
6339 int __user *optlen)
6340{
6341 struct sctp_assoc_value params;
6342 struct sctp_sock *sp;
6343 struct sctp_association *asoc;
6344
6345 if (len == sizeof(int)) {
6346 pr_warn_ratelimited(DEPRECATED
6347 "%s (pid %d) "
6348 "Use of int in max_burst socket option.\n"
6349 "Use struct sctp_assoc_value instead\n",
6350 current->comm, task_pid_nr(current));
6351 params.assoc_id = 0;
6352 } else if (len >= sizeof(struct sctp_assoc_value)) {
6353 len = sizeof(struct sctp_assoc_value);
6354 if (copy_from_user(¶ms, optval, len))
6355 return -EFAULT;
6356 } else
6357 return -EINVAL;
6358
6359 sp = sctp_sk(sk);
6360
6361 if (params.assoc_id != 0) {
6362 asoc = sctp_id2assoc(sk, params.assoc_id);
6363 if (!asoc)
6364 return -EINVAL;
6365 params.assoc_value = asoc->max_burst;
6366 } else
6367 params.assoc_value = sp->max_burst;
6368
6369 if (len == sizeof(int)) {
6370 if (copy_to_user(optval, ¶ms.assoc_value, len))
6371 return -EFAULT;
6372 } else {
6373 if (copy_to_user(optval, ¶ms, len))
6374 return -EFAULT;
6375 }
6376
6377 return 0;
6378
6379}
6380
6381static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6382 char __user *optval, int __user *optlen)
6383{
6384 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6385 struct sctp_hmacalgo __user *p = (void __user *)optval;
6386 struct sctp_hmac_algo_param *hmacs;
6387 __u16 data_len = 0;
6388 u32 num_idents;
6389 int i;
6390
6391 if (!ep->auth_enable)
6392 return -EACCES;
6393
6394 hmacs = ep->auth_hmacs_list;
6395 data_len = ntohs(hmacs->param_hdr.length) -
6396 sizeof(struct sctp_paramhdr);
6397
6398 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6399 return -EINVAL;
6400
6401 len = sizeof(struct sctp_hmacalgo) + data_len;
6402 num_idents = data_len / sizeof(u16);
6403
6404 if (put_user(len, optlen))
6405 return -EFAULT;
6406 if (put_user(num_idents, &p->shmac_num_idents))
6407 return -EFAULT;
6408 for (i = 0; i < num_idents; i++) {
6409 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6410
6411 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6412 return -EFAULT;
6413 }
6414 return 0;
6415}
6416
6417static int sctp_getsockopt_active_key(struct sock *sk, int len,
6418 char __user *optval, int __user *optlen)
6419{
6420 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6421 struct sctp_authkeyid val;
6422 struct sctp_association *asoc;
6423
6424 if (!ep->auth_enable)
6425 return -EACCES;
6426
6427 if (len < sizeof(struct sctp_authkeyid))
6428 return -EINVAL;
6429
6430 len = sizeof(struct sctp_authkeyid);
6431 if (copy_from_user(&val, optval, len))
6432 return -EFAULT;
6433
6434 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6435 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6436 return -EINVAL;
6437
6438 if (asoc)
6439 val.scact_keynumber = asoc->active_key_id;
6440 else
6441 val.scact_keynumber = ep->active_key_id;
6442
6443 if (put_user(len, optlen))
6444 return -EFAULT;
6445 if (copy_to_user(optval, &val, len))
6446 return -EFAULT;
6447
6448 return 0;
6449}
6450
6451static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6452 char __user *optval, int __user *optlen)
6453{
6454 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6455 struct sctp_authchunks __user *p = (void __user *)optval;
6456 struct sctp_authchunks val;
6457 struct sctp_association *asoc;
6458 struct sctp_chunks_param *ch;
6459 u32 num_chunks = 0;
6460 char __user *to;
6461
6462 if (!ep->auth_enable)
6463 return -EACCES;
6464
6465 if (len < sizeof(struct sctp_authchunks))
6466 return -EINVAL;
6467
6468 if (copy_from_user(&val, optval, sizeof(val)))
6469 return -EFAULT;
6470
6471 to = p->gauth_chunks;
6472 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6473 if (!asoc)
6474 return -EINVAL;
6475
6476 ch = asoc->peer.peer_chunks;
6477 if (!ch)
6478 goto num;
6479
6480 /* See if the user provided enough room for all the data */
6481 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6482 if (len < num_chunks)
6483 return -EINVAL;
6484
6485 if (copy_to_user(to, ch->chunks, num_chunks))
6486 return -EFAULT;
6487num:
6488 len = sizeof(struct sctp_authchunks) + num_chunks;
6489 if (put_user(len, optlen))
6490 return -EFAULT;
6491 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6492 return -EFAULT;
6493 return 0;
6494}
6495
6496static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6497 char __user *optval, int __user *optlen)
6498{
6499 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6500 struct sctp_authchunks __user *p = (void __user *)optval;
6501 struct sctp_authchunks val;
6502 struct sctp_association *asoc;
6503 struct sctp_chunks_param *ch;
6504 u32 num_chunks = 0;
6505 char __user *to;
6506
6507 if (!ep->auth_enable)
6508 return -EACCES;
6509
6510 if (len < sizeof(struct sctp_authchunks))
6511 return -EINVAL;
6512
6513 if (copy_from_user(&val, optval, sizeof(val)))
6514 return -EFAULT;
6515
6516 to = p->gauth_chunks;
6517 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6518 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6519 return -EINVAL;
6520
6521 if (asoc)
6522 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6523 else
6524 ch = ep->auth_chunk_list;
6525
6526 if (!ch)
6527 goto num;
6528
6529 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6530 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6531 return -EINVAL;
6532
6533 if (copy_to_user(to, ch->chunks, num_chunks))
6534 return -EFAULT;
6535num:
6536 len = sizeof(struct sctp_authchunks) + num_chunks;
6537 if (put_user(len, optlen))
6538 return -EFAULT;
6539 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6540 return -EFAULT;
6541
6542 return 0;
6543}
6544
6545/*
6546 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6547 * This option gets the current number of associations that are attached
6548 * to a one-to-many style socket. The option value is an uint32_t.
6549 */
6550static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6551 char __user *optval, int __user *optlen)
6552{
6553 struct sctp_sock *sp = sctp_sk(sk);
6554 struct sctp_association *asoc;
6555 u32 val = 0;
6556
6557 if (sctp_style(sk, TCP))
6558 return -EOPNOTSUPP;
6559
6560 if (len < sizeof(u32))
6561 return -EINVAL;
6562
6563 len = sizeof(u32);
6564
6565 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6566 val++;
6567 }
6568
6569 if (put_user(len, optlen))
6570 return -EFAULT;
6571 if (copy_to_user(optval, &val, len))
6572 return -EFAULT;
6573
6574 return 0;
6575}
6576
6577/*
6578 * 8.1.23 SCTP_AUTO_ASCONF
6579 * See the corresponding setsockopt entry as description
6580 */
6581static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6582 char __user *optval, int __user *optlen)
6583{
6584 int val = 0;
6585
6586 if (len < sizeof(int))
6587 return -EINVAL;
6588
6589 len = sizeof(int);
6590 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6591 val = 1;
6592 if (put_user(len, optlen))
6593 return -EFAULT;
6594 if (copy_to_user(optval, &val, len))
6595 return -EFAULT;
6596 return 0;
6597}
6598
6599/*
6600 * 8.2.6. Get the Current Identifiers of Associations
6601 * (SCTP_GET_ASSOC_ID_LIST)
6602 *
6603 * This option gets the current list of SCTP association identifiers of
6604 * the SCTP associations handled by a one-to-many style socket.
6605 */
6606static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6607 char __user *optval, int __user *optlen)
6608{
6609 struct sctp_sock *sp = sctp_sk(sk);
6610 struct sctp_association *asoc;
6611 struct sctp_assoc_ids *ids;
6612 u32 num = 0;
6613
6614 if (sctp_style(sk, TCP))
6615 return -EOPNOTSUPP;
6616
6617 if (len < sizeof(struct sctp_assoc_ids))
6618 return -EINVAL;
6619
6620 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6621 num++;
6622 }
6623
6624 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6625 return -EINVAL;
6626
6627 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6628
6629 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6630 if (unlikely(!ids))
6631 return -ENOMEM;
6632
6633 ids->gaids_number_of_ids = num;
6634 num = 0;
6635 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6636 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6637 }
6638
6639 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6640 kfree(ids);
6641 return -EFAULT;
6642 }
6643
6644 kfree(ids);
6645 return 0;
6646}
6647
6648/*
6649 * SCTP_PEER_ADDR_THLDS
6650 *
6651 * This option allows us to fetch the partially failed threshold for one or all
6652 * transports in an association. See Section 6.1 of:
6653 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6654 */
6655static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6656 char __user *optval,
6657 int len,
6658 int __user *optlen)
6659{
6660 struct sctp_paddrthlds val;
6661 struct sctp_transport *trans;
6662 struct sctp_association *asoc;
6663
6664 if (len < sizeof(struct sctp_paddrthlds))
6665 return -EINVAL;
6666 len = sizeof(struct sctp_paddrthlds);
6667 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6668 return -EFAULT;
6669
6670 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6671 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6672 if (!asoc)
6673 return -ENOENT;
6674
6675 val.spt_pathpfthld = asoc->pf_retrans;
6676 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6677 } else {
6678 trans = sctp_addr_id2transport(sk, &val.spt_address,
6679 val.spt_assoc_id);
6680 if (!trans)
6681 return -ENOENT;
6682
6683 val.spt_pathmaxrxt = trans->pathmaxrxt;
6684 val.spt_pathpfthld = trans->pf_retrans;
6685 }
6686
6687 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6688 return -EFAULT;
6689
6690 return 0;
6691}
6692
6693/*
6694 * SCTP_GET_ASSOC_STATS
6695 *
6696 * This option retrieves local per endpoint statistics. It is modeled
6697 * after OpenSolaris' implementation
6698 */
6699static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6700 char __user *optval,
6701 int __user *optlen)
6702{
6703 struct sctp_assoc_stats sas;
6704 struct sctp_association *asoc = NULL;
6705
6706 /* User must provide at least the assoc id */
6707 if (len < sizeof(sctp_assoc_t))
6708 return -EINVAL;
6709
6710 /* Allow the struct to grow and fill in as much as possible */
6711 len = min_t(size_t, len, sizeof(sas));
6712
6713 if (copy_from_user(&sas, optval, len))
6714 return -EFAULT;
6715
6716 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6717 if (!asoc)
6718 return -EINVAL;
6719
6720 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6721 sas.sas_gapcnt = asoc->stats.gapcnt;
6722 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6723 sas.sas_osacks = asoc->stats.osacks;
6724 sas.sas_isacks = asoc->stats.isacks;
6725 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6726 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6727 sas.sas_oodchunks = asoc->stats.oodchunks;
6728 sas.sas_iodchunks = asoc->stats.iodchunks;
6729 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6730 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6731 sas.sas_idupchunks = asoc->stats.idupchunks;
6732 sas.sas_opackets = asoc->stats.opackets;
6733 sas.sas_ipackets = asoc->stats.ipackets;
6734
6735 /* New high max rto observed, will return 0 if not a single
6736 * RTO update took place. obs_rto_ipaddr will be bogus
6737 * in such a case
6738 */
6739 sas.sas_maxrto = asoc->stats.max_obs_rto;
6740 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6741 sizeof(struct sockaddr_storage));
6742
6743 /* Mark beginning of a new observation period */
6744 asoc->stats.max_obs_rto = asoc->rto_min;
6745
6746 if (put_user(len, optlen))
6747 return -EFAULT;
6748
6749 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6750
6751 if (copy_to_user(optval, &sas, len))
6752 return -EFAULT;
6753
6754 return 0;
6755}
6756
6757static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6758 char __user *optval,
6759 int __user *optlen)
6760{
6761 int val = 0;
6762
6763 if (len < sizeof(int))
6764 return -EINVAL;
6765
6766 len = sizeof(int);
6767 if (sctp_sk(sk)->recvrcvinfo)
6768 val = 1;
6769 if (put_user(len, optlen))
6770 return -EFAULT;
6771 if (copy_to_user(optval, &val, len))
6772 return -EFAULT;
6773
6774 return 0;
6775}
6776
6777static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6778 char __user *optval,
6779 int __user *optlen)
6780{
6781 int val = 0;
6782
6783 if (len < sizeof(int))
6784 return -EINVAL;
6785
6786 len = sizeof(int);
6787 if (sctp_sk(sk)->recvnxtinfo)
6788 val = 1;
6789 if (put_user(len, optlen))
6790 return -EFAULT;
6791 if (copy_to_user(optval, &val, len))
6792 return -EFAULT;
6793
6794 return 0;
6795}
6796
6797static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6798 char __user *optval,
6799 int __user *optlen)
6800{
6801 struct sctp_assoc_value params;
6802 struct sctp_association *asoc;
6803 int retval = -EFAULT;
6804
6805 if (len < sizeof(params)) {
6806 retval = -EINVAL;
6807 goto out;
6808 }
6809
6810 len = sizeof(params);
6811 if (copy_from_user(¶ms, optval, len))
6812 goto out;
6813
6814 asoc = sctp_id2assoc(sk, params.assoc_id);
6815 if (asoc) {
6816 params.assoc_value = asoc->prsctp_enable;
6817 } else if (!params.assoc_id) {
6818 struct sctp_sock *sp = sctp_sk(sk);
6819
6820 params.assoc_value = sp->ep->prsctp_enable;
6821 } else {
6822 retval = -EINVAL;
6823 goto out;
6824 }
6825
6826 if (put_user(len, optlen))
6827 goto out;
6828
6829 if (copy_to_user(optval, ¶ms, len))
6830 goto out;
6831
6832 retval = 0;
6833
6834out:
6835 return retval;
6836}
6837
6838static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6839 char __user *optval,
6840 int __user *optlen)
6841{
6842 struct sctp_default_prinfo info;
6843 struct sctp_association *asoc;
6844 int retval = -EFAULT;
6845
6846 if (len < sizeof(info)) {
6847 retval = -EINVAL;
6848 goto out;
6849 }
6850
6851 len = sizeof(info);
6852 if (copy_from_user(&info, optval, len))
6853 goto out;
6854
6855 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6856 if (asoc) {
6857 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6858 info.pr_value = asoc->default_timetolive;
6859 } else if (!info.pr_assoc_id) {
6860 struct sctp_sock *sp = sctp_sk(sk);
6861
6862 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6863 info.pr_value = sp->default_timetolive;
6864 } else {
6865 retval = -EINVAL;
6866 goto out;
6867 }
6868
6869 if (put_user(len, optlen))
6870 goto out;
6871
6872 if (copy_to_user(optval, &info, len))
6873 goto out;
6874
6875 retval = 0;
6876
6877out:
6878 return retval;
6879}
6880
6881static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6882 char __user *optval,
6883 int __user *optlen)
6884{
6885 struct sctp_prstatus params;
6886 struct sctp_association *asoc;
6887 int policy;
6888 int retval = -EINVAL;
6889
6890 if (len < sizeof(params))
6891 goto out;
6892
6893 len = sizeof(params);
6894 if (copy_from_user(¶ms, optval, len)) {
6895 retval = -EFAULT;
6896 goto out;
6897 }
6898
6899 policy = params.sprstat_policy;
6900 if (policy & ~SCTP_PR_SCTP_MASK)
6901 goto out;
6902
6903 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6904 if (!asoc)
6905 goto out;
6906
6907 if (policy == SCTP_PR_SCTP_NONE) {
6908 params.sprstat_abandoned_unsent = 0;
6909 params.sprstat_abandoned_sent = 0;
6910 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6911 params.sprstat_abandoned_unsent +=
6912 asoc->abandoned_unsent[policy];
6913 params.sprstat_abandoned_sent +=
6914 asoc->abandoned_sent[policy];
6915 }
6916 } else {
6917 params.sprstat_abandoned_unsent =
6918 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6919 params.sprstat_abandoned_sent =
6920 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6921 }
6922
6923 if (put_user(len, optlen)) {
6924 retval = -EFAULT;
6925 goto out;
6926 }
6927
6928 if (copy_to_user(optval, ¶ms, len)) {
6929 retval = -EFAULT;
6930 goto out;
6931 }
6932
6933 retval = 0;
6934
6935out:
6936 return retval;
6937}
6938
6939static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
6940 char __user *optval,
6941 int __user *optlen)
6942{
6943 struct sctp_stream_out_ext *streamoute;
6944 struct sctp_association *asoc;
6945 struct sctp_prstatus params;
6946 int retval = -EINVAL;
6947 int policy;
6948
6949 if (len < sizeof(params))
6950 goto out;
6951
6952 len = sizeof(params);
6953 if (copy_from_user(¶ms, optval, len)) {
6954 retval = -EFAULT;
6955 goto out;
6956 }
6957
6958 policy = params.sprstat_policy;
6959 if (policy & ~SCTP_PR_SCTP_MASK)
6960 goto out;
6961
6962 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6963 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
6964 goto out;
6965
6966 streamoute = asoc->stream.out[params.sprstat_sid].ext;
6967 if (!streamoute) {
6968 /* Not allocated yet, means all stats are 0 */
6969 params.sprstat_abandoned_unsent = 0;
6970 params.sprstat_abandoned_sent = 0;
6971 retval = 0;
6972 goto out;
6973 }
6974
6975 if (policy == SCTP_PR_SCTP_NONE) {
6976 params.sprstat_abandoned_unsent = 0;
6977 params.sprstat_abandoned_sent = 0;
6978 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6979 params.sprstat_abandoned_unsent +=
6980 streamoute->abandoned_unsent[policy];
6981 params.sprstat_abandoned_sent +=
6982 streamoute->abandoned_sent[policy];
6983 }
6984 } else {
6985 params.sprstat_abandoned_unsent =
6986 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6987 params.sprstat_abandoned_sent =
6988 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
6989 }
6990
6991 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
6992 retval = -EFAULT;
6993 goto out;
6994 }
6995
6996 retval = 0;
6997
6998out:
6999 return retval;
7000}
7001
7002static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7003 char __user *optval,
7004 int __user *optlen)
7005{
7006 struct sctp_assoc_value params;
7007 struct sctp_association *asoc;
7008 int retval = -EFAULT;
7009
7010 if (len < sizeof(params)) {
7011 retval = -EINVAL;
7012 goto out;
7013 }
7014
7015 len = sizeof(params);
7016 if (copy_from_user(¶ms, optval, len))
7017 goto out;
7018
7019 asoc = sctp_id2assoc(sk, params.assoc_id);
7020 if (asoc) {
7021 params.assoc_value = asoc->reconf_enable;
7022 } else if (!params.assoc_id) {
7023 struct sctp_sock *sp = sctp_sk(sk);
7024
7025 params.assoc_value = sp->ep->reconf_enable;
7026 } else {
7027 retval = -EINVAL;
7028 goto out;
7029 }
7030
7031 if (put_user(len, optlen))
7032 goto out;
7033
7034 if (copy_to_user(optval, ¶ms, len))
7035 goto out;
7036
7037 retval = 0;
7038
7039out:
7040 return retval;
7041}
7042
7043static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7044 char __user *optval,
7045 int __user *optlen)
7046{
7047 struct sctp_assoc_value params;
7048 struct sctp_association *asoc;
7049 int retval = -EFAULT;
7050
7051 if (len < sizeof(params)) {
7052 retval = -EINVAL;
7053 goto out;
7054 }
7055
7056 len = sizeof(params);
7057 if (copy_from_user(¶ms, optval, len))
7058 goto out;
7059
7060 asoc = sctp_id2assoc(sk, params.assoc_id);
7061 if (asoc) {
7062 params.assoc_value = asoc->strreset_enable;
7063 } else if (!params.assoc_id) {
7064 struct sctp_sock *sp = sctp_sk(sk);
7065
7066 params.assoc_value = sp->ep->strreset_enable;
7067 } else {
7068 retval = -EINVAL;
7069 goto out;
7070 }
7071
7072 if (put_user(len, optlen))
7073 goto out;
7074
7075 if (copy_to_user(optval, ¶ms, len))
7076 goto out;
7077
7078 retval = 0;
7079
7080out:
7081 return retval;
7082}
7083
7084static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7085 char __user *optval,
7086 int __user *optlen)
7087{
7088 struct sctp_assoc_value params;
7089 struct sctp_association *asoc;
7090 int retval = -EFAULT;
7091
7092 if (len < sizeof(params)) {
7093 retval = -EINVAL;
7094 goto out;
7095 }
7096
7097 len = sizeof(params);
7098 if (copy_from_user(¶ms, optval, len))
7099 goto out;
7100
7101 asoc = sctp_id2assoc(sk, params.assoc_id);
7102 if (!asoc) {
7103 retval = -EINVAL;
7104 goto out;
7105 }
7106
7107 params.assoc_value = sctp_sched_get_sched(asoc);
7108
7109 if (put_user(len, optlen))
7110 goto out;
7111
7112 if (copy_to_user(optval, ¶ms, len))
7113 goto out;
7114
7115 retval = 0;
7116
7117out:
7118 return retval;
7119}
7120
7121static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7122 char __user *optval,
7123 int __user *optlen)
7124{
7125 struct sctp_stream_value params;
7126 struct sctp_association *asoc;
7127 int retval = -EFAULT;
7128
7129 if (len < sizeof(params)) {
7130 retval = -EINVAL;
7131 goto out;
7132 }
7133
7134 len = sizeof(params);
7135 if (copy_from_user(¶ms, optval, len))
7136 goto out;
7137
7138 asoc = sctp_id2assoc(sk, params.assoc_id);
7139 if (!asoc) {
7140 retval = -EINVAL;
7141 goto out;
7142 }
7143
7144 retval = sctp_sched_get_value(asoc, params.stream_id,
7145 ¶ms.stream_value);
7146 if (retval)
7147 goto out;
7148
7149 if (put_user(len, optlen)) {
7150 retval = -EFAULT;
7151 goto out;
7152 }
7153
7154 if (copy_to_user(optval, ¶ms, len)) {
7155 retval = -EFAULT;
7156 goto out;
7157 }
7158
7159out:
7160 return retval;
7161}
7162
7163static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7164 char __user *optval,
7165 int __user *optlen)
7166{
7167 struct sctp_assoc_value params;
7168 struct sctp_association *asoc;
7169 int retval = -EFAULT;
7170
7171 if (len < sizeof(params)) {
7172 retval = -EINVAL;
7173 goto out;
7174 }
7175
7176 len = sizeof(params);
7177 if (copy_from_user(¶ms, optval, len))
7178 goto out;
7179
7180 asoc = sctp_id2assoc(sk, params.assoc_id);
7181 if (asoc) {
7182 params.assoc_value = asoc->intl_enable;
7183 } else if (!params.assoc_id) {
7184 struct sctp_sock *sp = sctp_sk(sk);
7185
7186 params.assoc_value = sp->strm_interleave;
7187 } else {
7188 retval = -EINVAL;
7189 goto out;
7190 }
7191
7192 if (put_user(len, optlen))
7193 goto out;
7194
7195 if (copy_to_user(optval, ¶ms, len))
7196 goto out;
7197
7198 retval = 0;
7199
7200out:
7201 return retval;
7202}
7203
7204static int sctp_getsockopt(struct sock *sk, int level, int optname,
7205 char __user *optval, int __user *optlen)
7206{
7207 int retval = 0;
7208 int len;
7209
7210 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7211
7212 /* I can hardly begin to describe how wrong this is. This is
7213 * so broken as to be worse than useless. The API draft
7214 * REALLY is NOT helpful here... I am not convinced that the
7215 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7216 * are at all well-founded.
7217 */
7218 if (level != SOL_SCTP) {
7219 struct sctp_af *af = sctp_sk(sk)->pf->af;
7220
7221 retval = af->getsockopt(sk, level, optname, optval, optlen);
7222 return retval;
7223 }
7224
7225 if (get_user(len, optlen))
7226 return -EFAULT;
7227
7228 if (len < 0)
7229 return -EINVAL;
7230
7231 lock_sock(sk);
7232
7233 switch (optname) {
7234 case SCTP_STATUS:
7235 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7236 break;
7237 case SCTP_DISABLE_FRAGMENTS:
7238 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7239 optlen);
7240 break;
7241 case SCTP_EVENTS:
7242 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7243 break;
7244 case SCTP_AUTOCLOSE:
7245 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7246 break;
7247 case SCTP_SOCKOPT_PEELOFF:
7248 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7249 break;
7250 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7251 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7252 break;
7253 case SCTP_PEER_ADDR_PARAMS:
7254 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7255 optlen);
7256 break;
7257 case SCTP_DELAYED_SACK:
7258 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7259 optlen);
7260 break;
7261 case SCTP_INITMSG:
7262 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7263 break;
7264 case SCTP_GET_PEER_ADDRS:
7265 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7266 optlen);
7267 break;
7268 case SCTP_GET_LOCAL_ADDRS:
7269 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7270 optlen);
7271 break;
7272 case SCTP_SOCKOPT_CONNECTX3:
7273 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7274 break;
7275 case SCTP_DEFAULT_SEND_PARAM:
7276 retval = sctp_getsockopt_default_send_param(sk, len,
7277 optval, optlen);
7278 break;
7279 case SCTP_DEFAULT_SNDINFO:
7280 retval = sctp_getsockopt_default_sndinfo(sk, len,
7281 optval, optlen);
7282 break;
7283 case SCTP_PRIMARY_ADDR:
7284 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7285 break;
7286 case SCTP_NODELAY:
7287 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7288 break;
7289 case SCTP_RTOINFO:
7290 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7291 break;
7292 case SCTP_ASSOCINFO:
7293 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7294 break;
7295 case SCTP_I_WANT_MAPPED_V4_ADDR:
7296 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7297 break;
7298 case SCTP_MAXSEG:
7299 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7300 break;
7301 case SCTP_GET_PEER_ADDR_INFO:
7302 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7303 optlen);
7304 break;
7305 case SCTP_ADAPTATION_LAYER:
7306 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7307 optlen);
7308 break;
7309 case SCTP_CONTEXT:
7310 retval = sctp_getsockopt_context(sk, len, optval, optlen);
7311 break;
7312 case SCTP_FRAGMENT_INTERLEAVE:
7313 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7314 optlen);
7315 break;
7316 case SCTP_PARTIAL_DELIVERY_POINT:
7317 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7318 optlen);
7319 break;
7320 case SCTP_MAX_BURST:
7321 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7322 break;
7323 case SCTP_AUTH_KEY:
7324 case SCTP_AUTH_CHUNK:
7325 case SCTP_AUTH_DELETE_KEY:
7326 case SCTP_AUTH_DEACTIVATE_KEY:
7327 retval = -EOPNOTSUPP;
7328 break;
7329 case SCTP_HMAC_IDENT:
7330 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7331 break;
7332 case SCTP_AUTH_ACTIVE_KEY:
7333 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7334 break;
7335 case SCTP_PEER_AUTH_CHUNKS:
7336 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7337 optlen);
7338 break;
7339 case SCTP_LOCAL_AUTH_CHUNKS:
7340 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7341 optlen);
7342 break;
7343 case SCTP_GET_ASSOC_NUMBER:
7344 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7345 break;
7346 case SCTP_GET_ASSOC_ID_LIST:
7347 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7348 break;
7349 case SCTP_AUTO_ASCONF:
7350 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7351 break;
7352 case SCTP_PEER_ADDR_THLDS:
7353 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7354 break;
7355 case SCTP_GET_ASSOC_STATS:
7356 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7357 break;
7358 case SCTP_RECVRCVINFO:
7359 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7360 break;
7361 case SCTP_RECVNXTINFO:
7362 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7363 break;
7364 case SCTP_PR_SUPPORTED:
7365 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7366 break;
7367 case SCTP_DEFAULT_PRINFO:
7368 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7369 optlen);
7370 break;
7371 case SCTP_PR_ASSOC_STATUS:
7372 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7373 optlen);
7374 break;
7375 case SCTP_PR_STREAM_STATUS:
7376 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7377 optlen);
7378 break;
7379 case SCTP_RECONFIG_SUPPORTED:
7380 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7381 optlen);
7382 break;
7383 case SCTP_ENABLE_STREAM_RESET:
7384 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7385 optlen);
7386 break;
7387 case SCTP_STREAM_SCHEDULER:
7388 retval = sctp_getsockopt_scheduler(sk, len, optval,
7389 optlen);
7390 break;
7391 case SCTP_STREAM_SCHEDULER_VALUE:
7392 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7393 optlen);
7394 break;
7395 case SCTP_INTERLEAVING_SUPPORTED:
7396 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7397 optlen);
7398 break;
7399 default:
7400 retval = -ENOPROTOOPT;
7401 break;
7402 }
7403
7404 release_sock(sk);
7405 return retval;
7406}
7407
7408static int sctp_hash(struct sock *sk)
7409{
7410 /* STUB */
7411 return 0;
7412}
7413
7414static void sctp_unhash(struct sock *sk)
7415{
7416 /* STUB */
7417}
7418
7419/* Check if port is acceptable. Possibly find first available port.
7420 *
7421 * The port hash table (contained in the 'global' SCTP protocol storage
7422 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7423 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7424 * list (the list number is the port number hashed out, so as you
7425 * would expect from a hash function, all the ports in a given list have
7426 * such a number that hashes out to the same list number; you were
7427 * expecting that, right?); so each list has a set of ports, with a
7428 * link to the socket (struct sock) that uses it, the port number and
7429 * a fastreuse flag (FIXME: NPI ipg).
7430 */
7431static struct sctp_bind_bucket *sctp_bucket_create(
7432 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7433
7434static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7435{
7436 struct sctp_bind_hashbucket *head; /* hash list */
7437 struct sctp_bind_bucket *pp;
7438 unsigned short snum;
7439 int ret;
7440
7441 snum = ntohs(addr->v4.sin_port);
7442
7443 pr_debug("%s: begins, snum:%d\n", __func__, snum);
7444
7445 local_bh_disable();
7446
7447 if (snum == 0) {
7448 /* Search for an available port. */
7449 int low, high, remaining, index;
7450 unsigned int rover;
7451 struct net *net = sock_net(sk);
7452
7453 inet_get_local_port_range(net, &low, &high);
7454 remaining = (high - low) + 1;
7455 rover = prandom_u32() % remaining + low;
7456
7457 do {
7458 rover++;
7459 if ((rover < low) || (rover > high))
7460 rover = low;
7461 if (inet_is_local_reserved_port(net, rover))
7462 continue;
7463 index = sctp_phashfn(sock_net(sk), rover);
7464 head = &sctp_port_hashtable[index];
7465 spin_lock(&head->lock);
7466 sctp_for_each_hentry(pp, &head->chain)
7467 if ((pp->port == rover) &&
7468 net_eq(sock_net(sk), pp->net))
7469 goto next;
7470 break;
7471 next:
7472 spin_unlock(&head->lock);
7473 } while (--remaining > 0);
7474
7475 /* Exhausted local port range during search? */
7476 ret = 1;
7477 if (remaining <= 0)
7478 goto fail;
7479
7480 /* OK, here is the one we will use. HEAD (the port
7481 * hash table list entry) is non-NULL and we hold it's
7482 * mutex.
7483 */
7484 snum = rover;
7485 } else {
7486 /* We are given an specific port number; we verify
7487 * that it is not being used. If it is used, we will
7488 * exahust the search in the hash list corresponding
7489 * to the port number (snum) - we detect that with the
7490 * port iterator, pp being NULL.
7491 */
7492 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7493 spin_lock(&head->lock);
7494 sctp_for_each_hentry(pp, &head->chain) {
7495 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7496 goto pp_found;
7497 }
7498 }
7499 pp = NULL;
7500 goto pp_not_found;
7501pp_found:
7502 if (!hlist_empty(&pp->owner)) {
7503 /* We had a port hash table hit - there is an
7504 * available port (pp != NULL) and it is being
7505 * used by other socket (pp->owner not empty); that other
7506 * socket is going to be sk2.
7507 */
7508 int reuse = sk->sk_reuse;
7509 struct sock *sk2;
7510
7511 pr_debug("%s: found a possible match\n", __func__);
7512
7513 if (pp->fastreuse && sk->sk_reuse &&
7514 sk->sk_state != SCTP_SS_LISTENING)
7515 goto success;
7516
7517 /* Run through the list of sockets bound to the port
7518 * (pp->port) [via the pointers bind_next and
7519 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7520 * we get the endpoint they describe and run through
7521 * the endpoint's list of IP (v4 or v6) addresses,
7522 * comparing each of the addresses with the address of
7523 * the socket sk. If we find a match, then that means
7524 * that this port/socket (sk) combination are already
7525 * in an endpoint.
7526 */
7527 sk_for_each_bound(sk2, &pp->owner) {
7528 struct sctp_endpoint *ep2;
7529 ep2 = sctp_sk(sk2)->ep;
7530
7531 if (sk == sk2 ||
7532 (reuse && sk2->sk_reuse &&
7533 sk2->sk_state != SCTP_SS_LISTENING))
7534 continue;
7535
7536 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7537 sctp_sk(sk2), sctp_sk(sk))) {
7538 ret = (long)sk2;
7539 goto fail_unlock;
7540 }
7541 }
7542
7543 pr_debug("%s: found a match\n", __func__);
7544 }
7545pp_not_found:
7546 /* If there was a hash table miss, create a new port. */
7547 ret = 1;
7548 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7549 goto fail_unlock;
7550
7551 /* In either case (hit or miss), make sure fastreuse is 1 only
7552 * if sk->sk_reuse is too (that is, if the caller requested
7553 * SO_REUSEADDR on this socket -sk-).
7554 */
7555 if (hlist_empty(&pp->owner)) {
7556 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
7557 pp->fastreuse = 1;
7558 else
7559 pp->fastreuse = 0;
7560 } else if (pp->fastreuse &&
7561 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
7562 pp->fastreuse = 0;
7563
7564 /* We are set, so fill up all the data in the hash table
7565 * entry, tie the socket list information with the rest of the
7566 * sockets FIXME: Blurry, NPI (ipg).
7567 */
7568success:
7569 if (!sctp_sk(sk)->bind_hash) {
7570 inet_sk(sk)->inet_num = snum;
7571 sk_add_bind_node(sk, &pp->owner);
7572 sctp_sk(sk)->bind_hash = pp;
7573 }
7574 ret = 0;
7575
7576fail_unlock:
7577 spin_unlock(&head->lock);
7578
7579fail:
7580 local_bh_enable();
7581 return ret;
7582}
7583
7584/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
7585 * port is requested.
7586 */
7587static int sctp_get_port(struct sock *sk, unsigned short snum)
7588{
7589 union sctp_addr addr;
7590 struct sctp_af *af = sctp_sk(sk)->pf->af;
7591
7592 /* Set up a dummy address struct from the sk. */
7593 af->from_sk(&addr, sk);
7594 addr.v4.sin_port = htons(snum);
7595
7596 /* Note: sk->sk_num gets filled in if ephemeral port request. */
7597 return !!sctp_get_port_local(sk, &addr);
7598}
7599
7600/*
7601 * Move a socket to LISTENING state.
7602 */
7603static int sctp_listen_start(struct sock *sk, int backlog)
7604{
7605 struct sctp_sock *sp = sctp_sk(sk);
7606 struct sctp_endpoint *ep = sp->ep;
7607 struct crypto_shash *tfm = NULL;
7608 char alg[32];
7609
7610 /* Allocate HMAC for generating cookie. */
7611 if (!sp->hmac && sp->sctp_hmac_alg) {
7612 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7613 tfm = crypto_alloc_shash(alg, 0, 0);
7614 if (IS_ERR(tfm)) {
7615 net_info_ratelimited("failed to load transform for %s: %ld\n",
7616 sp->sctp_hmac_alg, PTR_ERR(tfm));
7617 return -ENOSYS;
7618 }
7619 sctp_sk(sk)->hmac = tfm;
7620 }
7621
7622 /*
7623 * If a bind() or sctp_bindx() is not called prior to a listen()
7624 * call that allows new associations to be accepted, the system
7625 * picks an ephemeral port and will choose an address set equivalent
7626 * to binding with a wildcard address.
7627 *
7628 * This is not currently spelled out in the SCTP sockets
7629 * extensions draft, but follows the practice as seen in TCP
7630 * sockets.
7631 *
7632 */
7633 inet_sk_set_state(sk, SCTP_SS_LISTENING);
7634 if (!ep->base.bind_addr.port) {
7635 if (sctp_autobind(sk))
7636 return -EAGAIN;
7637 } else {
7638 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7639 inet_sk_set_state(sk, SCTP_SS_CLOSED);
7640 return -EADDRINUSE;
7641 }
7642 }
7643
7644 sk->sk_max_ack_backlog = backlog;
7645 sctp_hash_endpoint(ep);
7646 return 0;
7647}
7648
7649/*
7650 * 4.1.3 / 5.1.3 listen()
7651 *
7652 * By default, new associations are not accepted for UDP style sockets.
7653 * An application uses listen() to mark a socket as being able to
7654 * accept new associations.
7655 *
7656 * On TCP style sockets, applications use listen() to ready the SCTP
7657 * endpoint for accepting inbound associations.
7658 *
7659 * On both types of endpoints a backlog of '0' disables listening.
7660 *
7661 * Move a socket to LISTENING state.
7662 */
7663int sctp_inet_listen(struct socket *sock, int backlog)
7664{
7665 struct sock *sk = sock->sk;
7666 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7667 int err = -EINVAL;
7668
7669 if (unlikely(backlog < 0))
7670 return err;
7671
7672 lock_sock(sk);
7673
7674 /* Peeled-off sockets are not allowed to listen(). */
7675 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7676 goto out;
7677
7678 if (sock->state != SS_UNCONNECTED)
7679 goto out;
7680
7681 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7682 goto out;
7683
7684 /* If backlog is zero, disable listening. */
7685 if (!backlog) {
7686 if (sctp_sstate(sk, CLOSED))
7687 goto out;
7688
7689 err = 0;
7690 sctp_unhash_endpoint(ep);
7691 sk->sk_state = SCTP_SS_CLOSED;
7692 if (sk->sk_reuse)
7693 sctp_sk(sk)->bind_hash->fastreuse = 1;
7694 goto out;
7695 }
7696
7697 /* If we are already listening, just update the backlog */
7698 if (sctp_sstate(sk, LISTENING))
7699 sk->sk_max_ack_backlog = backlog;
7700 else {
7701 err = sctp_listen_start(sk, backlog);
7702 if (err)
7703 goto out;
7704 }
7705
7706 err = 0;
7707out:
7708 release_sock(sk);
7709 return err;
7710}
7711
7712/*
7713 * This function is done by modeling the current datagram_poll() and the
7714 * tcp_poll(). Note that, based on these implementations, we don't
7715 * lock the socket in this function, even though it seems that,
7716 * ideally, locking or some other mechanisms can be used to ensure
7717 * the integrity of the counters (sndbuf and wmem_alloc) used
7718 * in this place. We assume that we don't need locks either until proven
7719 * otherwise.
7720 *
7721 * Another thing to note is that we include the Async I/O support
7722 * here, again, by modeling the current TCP/UDP code. We don't have
7723 * a good way to test with it yet.
7724 */
7725__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7726{
7727 struct sock *sk = sock->sk;
7728 struct sctp_sock *sp = sctp_sk(sk);
7729 __poll_t mask;
7730
7731 poll_wait(file, sk_sleep(sk), wait);
7732
7733 sock_rps_record_flow(sk);
7734
7735 /* A TCP-style listening socket becomes readable when the accept queue
7736 * is not empty.
7737 */
7738 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7739 return (!list_empty(&sp->ep->asocs)) ?
7740 (EPOLLIN | EPOLLRDNORM) : 0;
7741
7742 mask = 0;
7743
7744 /* Is there any exceptional events? */
7745 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7746 mask |= EPOLLERR |
7747 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
7748 if (sk->sk_shutdown & RCV_SHUTDOWN)
7749 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
7750 if (sk->sk_shutdown == SHUTDOWN_MASK)
7751 mask |= EPOLLHUP;
7752
7753 /* Is it readable? Reconsider this code with TCP-style support. */
7754 if (!skb_queue_empty(&sk->sk_receive_queue))
7755 mask |= EPOLLIN | EPOLLRDNORM;
7756
7757 /* The association is either gone or not ready. */
7758 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7759 return mask;
7760
7761 /* Is it writable? */
7762 if (sctp_writeable(sk)) {
7763 mask |= EPOLLOUT | EPOLLWRNORM;
7764 } else {
7765 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7766 /*
7767 * Since the socket is not locked, the buffer
7768 * might be made available after the writeable check and
7769 * before the bit is set. This could cause a lost I/O
7770 * signal. tcp_poll() has a race breaker for this race
7771 * condition. Based on their implementation, we put
7772 * in the following code to cover it as well.
7773 */
7774 if (sctp_writeable(sk))
7775 mask |= EPOLLOUT | EPOLLWRNORM;
7776 }
7777 return mask;
7778}
7779
7780/********************************************************************
7781 * 2nd Level Abstractions
7782 ********************************************************************/
7783
7784static struct sctp_bind_bucket *sctp_bucket_create(
7785 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7786{
7787 struct sctp_bind_bucket *pp;
7788
7789 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7790 if (pp) {
7791 SCTP_DBG_OBJCNT_INC(bind_bucket);
7792 pp->port = snum;
7793 pp->fastreuse = 0;
7794 INIT_HLIST_HEAD(&pp->owner);
7795 pp->net = net;
7796 hlist_add_head(&pp->node, &head->chain);
7797 }
7798 return pp;
7799}
7800
7801/* Caller must hold hashbucket lock for this tb with local BH disabled */
7802static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7803{
7804 if (pp && hlist_empty(&pp->owner)) {
7805 __hlist_del(&pp->node);
7806 kmem_cache_free(sctp_bucket_cachep, pp);
7807 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7808 }
7809}
7810
7811/* Release this socket's reference to a local port. */
7812static inline void __sctp_put_port(struct sock *sk)
7813{
7814 struct sctp_bind_hashbucket *head =
7815 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7816 inet_sk(sk)->inet_num)];
7817 struct sctp_bind_bucket *pp;
7818
7819 spin_lock(&head->lock);
7820 pp = sctp_sk(sk)->bind_hash;
7821 __sk_del_bind_node(sk);
7822 sctp_sk(sk)->bind_hash = NULL;
7823 inet_sk(sk)->inet_num = 0;
7824 sctp_bucket_destroy(pp);
7825 spin_unlock(&head->lock);
7826}
7827
7828void sctp_put_port(struct sock *sk)
7829{
7830 local_bh_disable();
7831 __sctp_put_port(sk);
7832 local_bh_enable();
7833}
7834
7835/*
7836 * The system picks an ephemeral port and choose an address set equivalent
7837 * to binding with a wildcard address.
7838 * One of those addresses will be the primary address for the association.
7839 * This automatically enables the multihoming capability of SCTP.
7840 */
7841static int sctp_autobind(struct sock *sk)
7842{
7843 union sctp_addr autoaddr;
7844 struct sctp_af *af;
7845 __be16 port;
7846
7847 /* Initialize a local sockaddr structure to INADDR_ANY. */
7848 af = sctp_sk(sk)->pf->af;
7849
7850 port = htons(inet_sk(sk)->inet_num);
7851 af->inaddr_any(&autoaddr, port);
7852
7853 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7854}
7855
7856/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7857 *
7858 * From RFC 2292
7859 * 4.2 The cmsghdr Structure *
7860 *
7861 * When ancillary data is sent or received, any number of ancillary data
7862 * objects can be specified by the msg_control and msg_controllen members of
7863 * the msghdr structure, because each object is preceded by
7864 * a cmsghdr structure defining the object's length (the cmsg_len member).
7865 * Historically Berkeley-derived implementations have passed only one object
7866 * at a time, but this API allows multiple objects to be
7867 * passed in a single call to sendmsg() or recvmsg(). The following example
7868 * shows two ancillary data objects in a control buffer.
7869 *
7870 * |<--------------------------- msg_controllen -------------------------->|
7871 * | |
7872 *
7873 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7874 *
7875 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7876 * | | |
7877 *
7878 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7879 *
7880 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7881 * | | | | |
7882 *
7883 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7884 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7885 *
7886 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7887 *
7888 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7889 * ^
7890 * |
7891 *
7892 * msg_control
7893 * points here
7894 */
7895static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
7896{
7897 struct msghdr *my_msg = (struct msghdr *)msg;
7898 struct cmsghdr *cmsg;
7899
7900 for_each_cmsghdr(cmsg, my_msg) {
7901 if (!CMSG_OK(my_msg, cmsg))
7902 return -EINVAL;
7903
7904 /* Should we parse this header or ignore? */
7905 if (cmsg->cmsg_level != IPPROTO_SCTP)
7906 continue;
7907
7908 /* Strictly check lengths following example in SCM code. */
7909 switch (cmsg->cmsg_type) {
7910 case SCTP_INIT:
7911 /* SCTP Socket API Extension
7912 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7913 *
7914 * This cmsghdr structure provides information for
7915 * initializing new SCTP associations with sendmsg().
7916 * The SCTP_INITMSG socket option uses this same data
7917 * structure. This structure is not used for
7918 * recvmsg().
7919 *
7920 * cmsg_level cmsg_type cmsg_data[]
7921 * ------------ ------------ ----------------------
7922 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7923 */
7924 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7925 return -EINVAL;
7926
7927 cmsgs->init = CMSG_DATA(cmsg);
7928 break;
7929
7930 case SCTP_SNDRCV:
7931 /* SCTP Socket API Extension
7932 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7933 *
7934 * This cmsghdr structure specifies SCTP options for
7935 * sendmsg() and describes SCTP header information
7936 * about a received message through recvmsg().
7937 *
7938 * cmsg_level cmsg_type cmsg_data[]
7939 * ------------ ------------ ----------------------
7940 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7941 */
7942 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7943 return -EINVAL;
7944
7945 cmsgs->srinfo = CMSG_DATA(cmsg);
7946
7947 if (cmsgs->srinfo->sinfo_flags &
7948 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7949 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
7950 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
7951 return -EINVAL;
7952 break;
7953
7954 case SCTP_SNDINFO:
7955 /* SCTP Socket API Extension
7956 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7957 *
7958 * This cmsghdr structure specifies SCTP options for
7959 * sendmsg(). This structure and SCTP_RCVINFO replaces
7960 * SCTP_SNDRCV which has been deprecated.
7961 *
7962 * cmsg_level cmsg_type cmsg_data[]
7963 * ------------ ------------ ---------------------
7964 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7965 */
7966 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7967 return -EINVAL;
7968
7969 cmsgs->sinfo = CMSG_DATA(cmsg);
7970
7971 if (cmsgs->sinfo->snd_flags &
7972 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7973 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
7974 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
7975 return -EINVAL;
7976 break;
7977 case SCTP_PRINFO:
7978 /* SCTP Socket API Extension
7979 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
7980 *
7981 * This cmsghdr structure specifies SCTP options for sendmsg().
7982 *
7983 * cmsg_level cmsg_type cmsg_data[]
7984 * ------------ ------------ ---------------------
7985 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
7986 */
7987 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
7988 return -EINVAL;
7989
7990 cmsgs->prinfo = CMSG_DATA(cmsg);
7991 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
7992 return -EINVAL;
7993
7994 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
7995 cmsgs->prinfo->pr_value = 0;
7996 break;
7997 case SCTP_AUTHINFO:
7998 /* SCTP Socket API Extension
7999 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8000 *
8001 * This cmsghdr structure specifies SCTP options for sendmsg().
8002 *
8003 * cmsg_level cmsg_type cmsg_data[]
8004 * ------------ ------------ ---------------------
8005 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8006 */
8007 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8008 return -EINVAL;
8009
8010 cmsgs->authinfo = CMSG_DATA(cmsg);
8011 break;
8012 case SCTP_DSTADDRV4:
8013 case SCTP_DSTADDRV6:
8014 /* SCTP Socket API Extension
8015 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8016 *
8017 * This cmsghdr structure specifies SCTP options for sendmsg().
8018 *
8019 * cmsg_level cmsg_type cmsg_data[]
8020 * ------------ ------------ ---------------------
8021 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8022 * ------------ ------------ ---------------------
8023 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8024 */
8025 cmsgs->addrs_msg = my_msg;
8026 break;
8027 default:
8028 return -EINVAL;
8029 }
8030 }
8031
8032 return 0;
8033}
8034
8035/*
8036 * Wait for a packet..
8037 * Note: This function is the same function as in core/datagram.c
8038 * with a few modifications to make lksctp work.
8039 */
8040static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8041{
8042 int error;
8043 DEFINE_WAIT(wait);
8044
8045 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8046
8047 /* Socket errors? */
8048 error = sock_error(sk);
8049 if (error)
8050 goto out;
8051
8052 if (!skb_queue_empty(&sk->sk_receive_queue))
8053 goto ready;
8054
8055 /* Socket shut down? */
8056 if (sk->sk_shutdown & RCV_SHUTDOWN)
8057 goto out;
8058
8059 /* Sequenced packets can come disconnected. If so we report the
8060 * problem.
8061 */
8062 error = -ENOTCONN;
8063
8064 /* Is there a good reason to think that we may receive some data? */
8065 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8066 goto out;
8067
8068 /* Handle signals. */
8069 if (signal_pending(current))
8070 goto interrupted;
8071
8072 /* Let another process have a go. Since we are going to sleep
8073 * anyway. Note: This may cause odd behaviors if the message
8074 * does not fit in the user's buffer, but this seems to be the
8075 * only way to honor MSG_DONTWAIT realistically.
8076 */
8077 release_sock(sk);
8078 *timeo_p = schedule_timeout(*timeo_p);
8079 lock_sock(sk);
8080
8081ready:
8082 finish_wait(sk_sleep(sk), &wait);
8083 return 0;
8084
8085interrupted:
8086 error = sock_intr_errno(*timeo_p);
8087
8088out:
8089 finish_wait(sk_sleep(sk), &wait);
8090 *err = error;
8091 return error;
8092}
8093
8094/* Receive a datagram.
8095 * Note: This is pretty much the same routine as in core/datagram.c
8096 * with a few changes to make lksctp work.
8097 */
8098struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8099 int noblock, int *err)
8100{
8101 int error;
8102 struct sk_buff *skb;
8103 long timeo;
8104
8105 timeo = sock_rcvtimeo(sk, noblock);
8106
8107 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8108 MAX_SCHEDULE_TIMEOUT);
8109
8110 do {
8111 /* Again only user level code calls this function,
8112 * so nothing interrupt level
8113 * will suddenly eat the receive_queue.
8114 *
8115 * Look at current nfs client by the way...
8116 * However, this function was correct in any case. 8)
8117 */
8118 if (flags & MSG_PEEK) {
8119 skb = skb_peek(&sk->sk_receive_queue);
8120 if (skb)
8121 refcount_inc(&skb->users);
8122 } else {
8123 skb = __skb_dequeue(&sk->sk_receive_queue);
8124 }
8125
8126 if (skb)
8127 return skb;
8128
8129 /* Caller is allowed not to check sk->sk_err before calling. */
8130 error = sock_error(sk);
8131 if (error)
8132 goto no_packet;
8133
8134 if (sk->sk_shutdown & RCV_SHUTDOWN)
8135 break;
8136
8137 if (sk_can_busy_loop(sk)) {
8138 sk_busy_loop(sk, noblock);
8139
8140 if (!skb_queue_empty(&sk->sk_receive_queue))
8141 continue;
8142 }
8143
8144 /* User doesn't want to wait. */
8145 error = -EAGAIN;
8146 if (!timeo)
8147 goto no_packet;
8148 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8149
8150 return NULL;
8151
8152no_packet:
8153 *err = error;
8154 return NULL;
8155}
8156
8157/* If sndbuf has changed, wake up per association sndbuf waiters. */
8158static void __sctp_write_space(struct sctp_association *asoc)
8159{
8160 struct sock *sk = asoc->base.sk;
8161
8162 if (sctp_wspace(asoc) <= 0)
8163 return;
8164
8165 if (waitqueue_active(&asoc->wait))
8166 wake_up_interruptible(&asoc->wait);
8167
8168 if (sctp_writeable(sk)) {
8169 struct socket_wq *wq;
8170
8171 rcu_read_lock();
8172 wq = rcu_dereference(sk->sk_wq);
8173 if (wq) {
8174 if (waitqueue_active(&wq->wait))
8175 wake_up_interruptible(&wq->wait);
8176
8177 /* Note that we try to include the Async I/O support
8178 * here by modeling from the current TCP/UDP code.
8179 * We have not tested with it yet.
8180 */
8181 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8182 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8183 }
8184 rcu_read_unlock();
8185 }
8186}
8187
8188static void sctp_wake_up_waiters(struct sock *sk,
8189 struct sctp_association *asoc)
8190{
8191 struct sctp_association *tmp = asoc;
8192
8193 /* We do accounting for the sndbuf space per association,
8194 * so we only need to wake our own association.
8195 */
8196 if (asoc->ep->sndbuf_policy)
8197 return __sctp_write_space(asoc);
8198
8199 /* If association goes down and is just flushing its
8200 * outq, then just normally notify others.
8201 */
8202 if (asoc->base.dead)
8203 return sctp_write_space(sk);
8204
8205 /* Accounting for the sndbuf space is per socket, so we
8206 * need to wake up others, try to be fair and in case of
8207 * other associations, let them have a go first instead
8208 * of just doing a sctp_write_space() call.
8209 *
8210 * Note that we reach sctp_wake_up_waiters() only when
8211 * associations free up queued chunks, thus we are under
8212 * lock and the list of associations on a socket is
8213 * guaranteed not to change.
8214 */
8215 for (tmp = list_next_entry(tmp, asocs); 1;
8216 tmp = list_next_entry(tmp, asocs)) {
8217 /* Manually skip the head element. */
8218 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8219 continue;
8220 /* Wake up association. */
8221 __sctp_write_space(tmp);
8222 /* We've reached the end. */
8223 if (tmp == asoc)
8224 break;
8225 }
8226}
8227
8228/* Do accounting for the sndbuf space.
8229 * Decrement the used sndbuf space of the corresponding association by the
8230 * data size which was just transmitted(freed).
8231 */
8232static void sctp_wfree(struct sk_buff *skb)
8233{
8234 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8235 struct sctp_association *asoc = chunk->asoc;
8236 struct sock *sk = asoc->base.sk;
8237
8238 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
8239 sizeof(struct sk_buff) +
8240 sizeof(struct sctp_chunk);
8241
8242 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
8243
8244 /*
8245 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
8246 */
8247 sk->sk_wmem_queued -= skb->truesize;
8248 sk_mem_uncharge(sk, skb->truesize);
8249
8250 if (chunk->shkey) {
8251 struct sctp_shared_key *shkey = chunk->shkey;
8252
8253 /* refcnt == 2 and !list_empty mean after this release, it's
8254 * not being used anywhere, and it's time to notify userland
8255 * that this shkey can be freed if it's been deactivated.
8256 */
8257 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8258 refcount_read(&shkey->refcnt) == 2) {
8259 struct sctp_ulpevent *ev;
8260
8261 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8262 SCTP_AUTH_FREE_KEY,
8263 GFP_KERNEL);
8264 if (ev)
8265 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8266 }
8267 sctp_auth_shkey_release(chunk->shkey);
8268 }
8269
8270 sock_wfree(skb);
8271 sctp_wake_up_waiters(sk, asoc);
8272
8273 sctp_association_put(asoc);
8274}
8275
8276/* Do accounting for the receive space on the socket.
8277 * Accounting for the association is done in ulpevent.c
8278 * We set this as a destructor for the cloned data skbs so that
8279 * accounting is done at the correct time.
8280 */
8281void sctp_sock_rfree(struct sk_buff *skb)
8282{
8283 struct sock *sk = skb->sk;
8284 struct sctp_ulpevent *event = sctp_skb2event(skb);
8285
8286 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8287
8288 /*
8289 * Mimic the behavior of sock_rfree
8290 */
8291 sk_mem_uncharge(sk, event->rmem_len);
8292}
8293
8294
8295/* Helper function to wait for space in the sndbuf. */
8296static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8297 size_t msg_len)
8298{
8299 struct sock *sk = asoc->base.sk;
8300 long current_timeo = *timeo_p;
8301 DEFINE_WAIT(wait);
8302 int err = 0;
8303
8304 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8305 *timeo_p, msg_len);
8306
8307 /* Increment the association's refcnt. */
8308 sctp_association_hold(asoc);
8309
8310 /* Wait on the association specific sndbuf space. */
8311 for (;;) {
8312 prepare_to_wait_exclusive(&asoc->wait, &wait,
8313 TASK_INTERRUPTIBLE);
8314 if (asoc->base.dead)
8315 goto do_dead;
8316 if (!*timeo_p)
8317 goto do_nonblock;
8318 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8319 goto do_error;
8320 if (signal_pending(current))
8321 goto do_interrupted;
8322 if (msg_len <= sctp_wspace(asoc))
8323 break;
8324
8325 /* Let another process have a go. Since we are going
8326 * to sleep anyway.
8327 */
8328 release_sock(sk);
8329 current_timeo = schedule_timeout(current_timeo);
8330 lock_sock(sk);
8331 if (sk != asoc->base.sk)
8332 goto do_error;
8333
8334 *timeo_p = current_timeo;
8335 }
8336
8337out:
8338 finish_wait(&asoc->wait, &wait);
8339
8340 /* Release the association's refcnt. */
8341 sctp_association_put(asoc);
8342
8343 return err;
8344
8345do_dead:
8346 err = -ESRCH;
8347 goto out;
8348
8349do_error:
8350 err = -EPIPE;
8351 goto out;
8352
8353do_interrupted:
8354 err = sock_intr_errno(*timeo_p);
8355 goto out;
8356
8357do_nonblock:
8358 err = -EAGAIN;
8359 goto out;
8360}
8361
8362void sctp_data_ready(struct sock *sk)
8363{
8364 struct socket_wq *wq;
8365
8366 rcu_read_lock();
8367 wq = rcu_dereference(sk->sk_wq);
8368 if (skwq_has_sleeper(wq))
8369 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8370 EPOLLRDNORM | EPOLLRDBAND);
8371 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8372 rcu_read_unlock();
8373}
8374
8375/* If socket sndbuf has changed, wake up all per association waiters. */
8376void sctp_write_space(struct sock *sk)
8377{
8378 struct sctp_association *asoc;
8379
8380 /* Wake up the tasks in each wait queue. */
8381 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8382 __sctp_write_space(asoc);
8383 }
8384}
8385
8386/* Is there any sndbuf space available on the socket?
8387 *
8388 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8389 * associations on the same socket. For a UDP-style socket with
8390 * multiple associations, it is possible for it to be "unwriteable"
8391 * prematurely. I assume that this is acceptable because
8392 * a premature "unwriteable" is better than an accidental "writeable" which
8393 * would cause an unwanted block under certain circumstances. For the 1-1
8394 * UDP-style sockets or TCP-style sockets, this code should work.
8395 * - Daisy
8396 */
8397static int sctp_writeable(struct sock *sk)
8398{
8399 int amt = 0;
8400
8401 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
8402 if (amt < 0)
8403 amt = 0;
8404 return amt;
8405}
8406
8407/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8408 * returns immediately with EINPROGRESS.
8409 */
8410static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8411{
8412 struct sock *sk = asoc->base.sk;
8413 int err = 0;
8414 long current_timeo = *timeo_p;
8415 DEFINE_WAIT(wait);
8416
8417 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8418
8419 /* Increment the association's refcnt. */
8420 sctp_association_hold(asoc);
8421
8422 for (;;) {
8423 prepare_to_wait_exclusive(&asoc->wait, &wait,
8424 TASK_INTERRUPTIBLE);
8425 if (!*timeo_p)
8426 goto do_nonblock;
8427 if (sk->sk_shutdown & RCV_SHUTDOWN)
8428 break;
8429 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8430 asoc->base.dead)
8431 goto do_error;
8432 if (signal_pending(current))
8433 goto do_interrupted;
8434
8435 if (sctp_state(asoc, ESTABLISHED))
8436 break;
8437
8438 /* Let another process have a go. Since we are going
8439 * to sleep anyway.
8440 */
8441 release_sock(sk);
8442 current_timeo = schedule_timeout(current_timeo);
8443 lock_sock(sk);
8444
8445 *timeo_p = current_timeo;
8446 }
8447
8448out:
8449 finish_wait(&asoc->wait, &wait);
8450
8451 /* Release the association's refcnt. */
8452 sctp_association_put(asoc);
8453
8454 return err;
8455
8456do_error:
8457 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8458 err = -ETIMEDOUT;
8459 else
8460 err = -ECONNREFUSED;
8461 goto out;
8462
8463do_interrupted:
8464 err = sock_intr_errno(*timeo_p);
8465 goto out;
8466
8467do_nonblock:
8468 err = -EINPROGRESS;
8469 goto out;
8470}
8471
8472static int sctp_wait_for_accept(struct sock *sk, long timeo)
8473{
8474 struct sctp_endpoint *ep;
8475 int err = 0;
8476 DEFINE_WAIT(wait);
8477
8478 ep = sctp_sk(sk)->ep;
8479
8480
8481 for (;;) {
8482 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8483 TASK_INTERRUPTIBLE);
8484
8485 if (list_empty(&ep->asocs)) {
8486 release_sock(sk);
8487 timeo = schedule_timeout(timeo);
8488 lock_sock(sk);
8489 }
8490
8491 err = -EINVAL;
8492 if (!sctp_sstate(sk, LISTENING))
8493 break;
8494
8495 err = 0;
8496 if (!list_empty(&ep->asocs))
8497 break;
8498
8499 err = sock_intr_errno(timeo);
8500 if (signal_pending(current))
8501 break;
8502
8503 err = -EAGAIN;
8504 if (!timeo)
8505 break;
8506 }
8507
8508 finish_wait(sk_sleep(sk), &wait);
8509
8510 return err;
8511}
8512
8513static void sctp_wait_for_close(struct sock *sk, long timeout)
8514{
8515 DEFINE_WAIT(wait);
8516
8517 do {
8518 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8519 if (list_empty(&sctp_sk(sk)->ep->asocs))
8520 break;
8521 release_sock(sk);
8522 timeout = schedule_timeout(timeout);
8523 lock_sock(sk);
8524 } while (!signal_pending(current) && timeout);
8525
8526 finish_wait(sk_sleep(sk), &wait);
8527}
8528
8529static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8530{
8531 struct sk_buff *frag;
8532
8533 if (!skb->data_len)
8534 goto done;
8535
8536 /* Don't forget the fragments. */
8537 skb_walk_frags(skb, frag)
8538 sctp_skb_set_owner_r_frag(frag, sk);
8539
8540done:
8541 sctp_skb_set_owner_r(skb, sk);
8542}
8543
8544void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8545 struct sctp_association *asoc)
8546{
8547 struct inet_sock *inet = inet_sk(sk);
8548 struct inet_sock *newinet;
8549 struct sctp_sock *sp = sctp_sk(sk);
8550 struct sctp_endpoint *ep = sp->ep;
8551
8552 newsk->sk_type = sk->sk_type;
8553 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8554 newsk->sk_flags = sk->sk_flags;
8555 newsk->sk_tsflags = sk->sk_tsflags;
8556 newsk->sk_no_check_tx = sk->sk_no_check_tx;
8557 newsk->sk_no_check_rx = sk->sk_no_check_rx;
8558 newsk->sk_reuse = sk->sk_reuse;
8559
8560 newsk->sk_shutdown = sk->sk_shutdown;
8561 newsk->sk_destruct = sctp_destruct_sock;
8562 newsk->sk_family = sk->sk_family;
8563 newsk->sk_protocol = IPPROTO_SCTP;
8564 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8565 newsk->sk_sndbuf = sk->sk_sndbuf;
8566 newsk->sk_rcvbuf = sk->sk_rcvbuf;
8567 newsk->sk_lingertime = sk->sk_lingertime;
8568 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8569 newsk->sk_sndtimeo = sk->sk_sndtimeo;
8570 newsk->sk_rxhash = sk->sk_rxhash;
8571
8572 newinet = inet_sk(newsk);
8573
8574 /* Initialize sk's sport, dport, rcv_saddr and daddr for
8575 * getsockname() and getpeername()
8576 */
8577 newinet->inet_sport = inet->inet_sport;
8578 newinet->inet_saddr = inet->inet_saddr;
8579 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8580 newinet->inet_dport = htons(asoc->peer.port);
8581 newinet->pmtudisc = inet->pmtudisc;
8582 newinet->inet_id = asoc->next_tsn ^ jiffies;
8583
8584 newinet->uc_ttl = inet->uc_ttl;
8585 newinet->mc_loop = 1;
8586 newinet->mc_ttl = 1;
8587 newinet->mc_index = 0;
8588 newinet->mc_list = NULL;
8589
8590 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8591 net_enable_timestamp();
8592
8593 /* Set newsk security attributes from orginal sk and connection
8594 * security attribute from ep.
8595 */
8596 security_sctp_sk_clone(ep, sk, newsk);
8597}
8598
8599static inline void sctp_copy_descendant(struct sock *sk_to,
8600 const struct sock *sk_from)
8601{
8602 int ancestor_size = sizeof(struct inet_sock) +
8603 sizeof(struct sctp_sock) -
8604 offsetof(struct sctp_sock, auto_asconf_list);
8605
8606 if (sk_from->sk_family == PF_INET6)
8607 ancestor_size += sizeof(struct ipv6_pinfo);
8608
8609 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8610}
8611
8612/* Populate the fields of the newsk from the oldsk and migrate the assoc
8613 * and its messages to the newsk.
8614 */
8615static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8616 struct sctp_association *assoc,
8617 enum sctp_socket_type type)
8618{
8619 struct sctp_sock *oldsp = sctp_sk(oldsk);
8620 struct sctp_sock *newsp = sctp_sk(newsk);
8621 struct sctp_bind_bucket *pp; /* hash list port iterator */
8622 struct sctp_endpoint *newep = newsp->ep;
8623 struct sk_buff *skb, *tmp;
8624 struct sctp_ulpevent *event;
8625 struct sctp_bind_hashbucket *head;
8626
8627 /* Migrate socket buffer sizes and all the socket level options to the
8628 * new socket.
8629 */
8630 newsk->sk_sndbuf = oldsk->sk_sndbuf;
8631 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8632 /* Brute force copy old sctp opt. */
8633 sctp_copy_descendant(newsk, oldsk);
8634
8635 /* Restore the ep value that was overwritten with the above structure
8636 * copy.
8637 */
8638 newsp->ep = newep;
8639 newsp->hmac = NULL;
8640
8641 /* Hook this new socket in to the bind_hash list. */
8642 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8643 inet_sk(oldsk)->inet_num)];
8644 spin_lock_bh(&head->lock);
8645 pp = sctp_sk(oldsk)->bind_hash;
8646 sk_add_bind_node(newsk, &pp->owner);
8647 sctp_sk(newsk)->bind_hash = pp;
8648 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8649 spin_unlock_bh(&head->lock);
8650
8651 /* Copy the bind_addr list from the original endpoint to the new
8652 * endpoint so that we can handle restarts properly
8653 */
8654 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8655 &oldsp->ep->base.bind_addr, GFP_KERNEL);
8656
8657 /* Move any messages in the old socket's receive queue that are for the
8658 * peeled off association to the new socket's receive queue.
8659 */
8660 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8661 event = sctp_skb2event(skb);
8662 if (event->asoc == assoc) {
8663 __skb_unlink(skb, &oldsk->sk_receive_queue);
8664 __skb_queue_tail(&newsk->sk_receive_queue, skb);
8665 sctp_skb_set_owner_r_frag(skb, newsk);
8666 }
8667 }
8668
8669 /* Clean up any messages pending delivery due to partial
8670 * delivery. Three cases:
8671 * 1) No partial deliver; no work.
8672 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8673 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8674 */
8675 skb_queue_head_init(&newsp->pd_lobby);
8676 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8677
8678 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8679 struct sk_buff_head *queue;
8680
8681 /* Decide which queue to move pd_lobby skbs to. */
8682 if (assoc->ulpq.pd_mode) {
8683 queue = &newsp->pd_lobby;
8684 } else
8685 queue = &newsk->sk_receive_queue;
8686
8687 /* Walk through the pd_lobby, looking for skbs that
8688 * need moved to the new socket.
8689 */
8690 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8691 event = sctp_skb2event(skb);
8692 if (event->asoc == assoc) {
8693 __skb_unlink(skb, &oldsp->pd_lobby);
8694 __skb_queue_tail(queue, skb);
8695 sctp_skb_set_owner_r_frag(skb, newsk);
8696 }
8697 }
8698
8699 /* Clear up any skbs waiting for the partial
8700 * delivery to finish.
8701 */
8702 if (assoc->ulpq.pd_mode)
8703 sctp_clear_pd(oldsk, NULL);
8704
8705 }
8706
8707 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
8708
8709 /* Set the type of socket to indicate that it is peeled off from the
8710 * original UDP-style socket or created with the accept() call on a
8711 * TCP-style socket..
8712 */
8713 newsp->type = type;
8714
8715 /* Mark the new socket "in-use" by the user so that any packets
8716 * that may arrive on the association after we've moved it are
8717 * queued to the backlog. This prevents a potential race between
8718 * backlog processing on the old socket and new-packet processing
8719 * on the new socket.
8720 *
8721 * The caller has just allocated newsk so we can guarantee that other
8722 * paths won't try to lock it and then oldsk.
8723 */
8724 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8725 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8726 sctp_assoc_migrate(assoc, newsk);
8727 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8728
8729 /* If the association on the newsk is already closed before accept()
8730 * is called, set RCV_SHUTDOWN flag.
8731 */
8732 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8733 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
8734 newsk->sk_shutdown |= RCV_SHUTDOWN;
8735 } else {
8736 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
8737 }
8738
8739 release_sock(newsk);
8740}
8741
8742
8743/* This proto struct describes the ULP interface for SCTP. */
8744struct proto sctp_prot = {
8745 .name = "SCTP",
8746 .owner = THIS_MODULE,
8747 .close = sctp_close,
8748 .disconnect = sctp_disconnect,
8749 .accept = sctp_accept,
8750 .ioctl = sctp_ioctl,
8751 .init = sctp_init_sock,
8752 .destroy = sctp_destroy_sock,
8753 .shutdown = sctp_shutdown,
8754 .setsockopt = sctp_setsockopt,
8755 .getsockopt = sctp_getsockopt,
8756 .sendmsg = sctp_sendmsg,
8757 .recvmsg = sctp_recvmsg,
8758 .bind = sctp_bind,
8759 .backlog_rcv = sctp_backlog_rcv,
8760 .hash = sctp_hash,
8761 .unhash = sctp_unhash,
8762 .get_port = sctp_get_port,
8763 .obj_size = sizeof(struct sctp_sock),
8764 .useroffset = offsetof(struct sctp_sock, subscribe),
8765 .usersize = offsetof(struct sctp_sock, initmsg) -
8766 offsetof(struct sctp_sock, subscribe) +
8767 sizeof_field(struct sctp_sock, initmsg),
8768 .sysctl_mem = sysctl_sctp_mem,
8769 .sysctl_rmem = sysctl_sctp_rmem,
8770 .sysctl_wmem = sysctl_sctp_wmem,
8771 .memory_pressure = &sctp_memory_pressure,
8772 .enter_memory_pressure = sctp_enter_memory_pressure,
8773 .memory_allocated = &sctp_memory_allocated,
8774 .sockets_allocated = &sctp_sockets_allocated,
8775};
8776
8777#if IS_ENABLED(CONFIG_IPV6)
8778
8779#include <net/transp_v6.h>
8780static void sctp_v6_destroy_sock(struct sock *sk)
8781{
8782 sctp_destroy_sock(sk);
8783 inet6_destroy_sock(sk);
8784}
8785
8786struct proto sctpv6_prot = {
8787 .name = "SCTPv6",
8788 .owner = THIS_MODULE,
8789 .close = sctp_close,
8790 .disconnect = sctp_disconnect,
8791 .accept = sctp_accept,
8792 .ioctl = sctp_ioctl,
8793 .init = sctp_init_sock,
8794 .destroy = sctp_v6_destroy_sock,
8795 .shutdown = sctp_shutdown,
8796 .setsockopt = sctp_setsockopt,
8797 .getsockopt = sctp_getsockopt,
8798 .sendmsg = sctp_sendmsg,
8799 .recvmsg = sctp_recvmsg,
8800 .bind = sctp_bind,
8801 .backlog_rcv = sctp_backlog_rcv,
8802 .hash = sctp_hash,
8803 .unhash = sctp_unhash,
8804 .get_port = sctp_get_port,
8805 .obj_size = sizeof(struct sctp6_sock),
8806 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
8807 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
8808 offsetof(struct sctp6_sock, sctp.subscribe) +
8809 sizeof_field(struct sctp6_sock, sctp.initmsg),
8810 .sysctl_mem = sysctl_sctp_mem,
8811 .sysctl_rmem = sysctl_sctp_rmem,
8812 .sysctl_wmem = sysctl_sctp_wmem,
8813 .memory_pressure = &sctp_memory_pressure,
8814 .enter_memory_pressure = sctp_enter_memory_pressure,
8815 .memory_allocated = &sctp_memory_allocated,
8816 .sockets_allocated = &sctp_sockets_allocated,
8817};
8818#endif /* IS_ENABLED(CONFIG_IPV6) */
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <crypto/hash.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/wait.h>
59#include <linux/time.h>
60#include <linux/ip.h>
61#include <linux/capability.h>
62#include <linux/fcntl.h>
63#include <linux/poll.h>
64#include <linux/init.h>
65#include <linux/slab.h>
66#include <linux/file.h>
67#include <linux/compat.h>
68
69#include <net/ip.h>
70#include <net/icmp.h>
71#include <net/route.h>
72#include <net/ipv6.h>
73#include <net/inet_common.h>
74#include <net/busy_poll.h>
75
76#include <linux/socket.h> /* for sa_family_t */
77#include <linux/export.h>
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* Forward declarations for internal helper functions. */
83static int sctp_writeable(struct sock *sk);
84static void sctp_wfree(struct sk_buff *skb);
85static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89static int sctp_wait_for_accept(struct sock *sk, long timeo);
90static void sctp_wait_for_close(struct sock *sk, long timeo);
91static void sctp_destruct_sock(struct sock *sk);
92static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101static int sctp_autobind(struct sock *sk);
102static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105static int sctp_memory_pressure;
106static atomic_long_t sctp_memory_allocated;
107struct percpu_counter sctp_sockets_allocated;
108
109static void sctp_enter_memory_pressure(struct sock *sk)
110{
111 sctp_memory_pressure = 1;
112}
113
114
115/* Get the sndbuf space available at the time on the association. */
116static inline int sctp_wspace(struct sctp_association *asoc)
117{
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137}
138
139/* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149{
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169}
170
171/* Verify that this is a valid address. */
172static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174{
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190}
191
192/* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196{
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227}
228
229/* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236{
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240 struct sctp_transport *transport;
241
242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
243 return NULL;
244
245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 laddr,
247 &transport);
248
249 if (!addr_asoc)
250 return NULL;
251
252 id_asoc = sctp_id2assoc(sk, id);
253 if (id_asoc && (id_asoc != addr_asoc))
254 return NULL;
255
256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
257 (union sctp_addr *)addr);
258
259 return transport;
260}
261
262/* API 3.1.2 bind() - UDP Style Syntax
263 * The syntax of bind() is,
264 *
265 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
266 *
267 * sd - the socket descriptor returned by socket().
268 * addr - the address structure (struct sockaddr_in or struct
269 * sockaddr_in6 [RFC 2553]),
270 * addr_len - the size of the address structure.
271 */
272static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273{
274 int retval = 0;
275
276 lock_sock(sk);
277
278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 addr, addr_len);
280
281 /* Disallow binding twice. */
282 if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 addr_len);
285 else
286 retval = -EINVAL;
287
288 release_sock(sk);
289
290 return retval;
291}
292
293static long sctp_get_port_local(struct sock *, union sctp_addr *);
294
295/* Verify this is a valid sockaddr. */
296static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 union sctp_addr *addr, int len)
298{
299 struct sctp_af *af;
300
301 /* Check minimum size. */
302 if (len < sizeof (struct sockaddr))
303 return NULL;
304
305 /* V4 mapped address are really of AF_INET family */
306 if (addr->sa.sa_family == AF_INET6 &&
307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 if (!opt->pf->af_supported(AF_INET, opt))
309 return NULL;
310 } else {
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314 }
315
316 /* If we get this far, af is valid. */
317 af = sctp_get_af_specific(addr->sa.sa_family);
318
319 if (len < af->sockaddr_len)
320 return NULL;
321
322 return af;
323}
324
325/* Bind a local address either to an endpoint or to an association. */
326static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327{
328 struct net *net = sock_net(sk);
329 struct sctp_sock *sp = sctp_sk(sk);
330 struct sctp_endpoint *ep = sp->ep;
331 struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 struct sctp_af *af;
333 unsigned short snum;
334 int ret = 0;
335
336 /* Common sockaddr verification. */
337 af = sctp_sockaddr_af(sp, addr, len);
338 if (!af) {
339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 __func__, sk, addr, len);
341 return -EINVAL;
342 }
343
344 snum = ntohs(addr->v4.sin_port);
345
346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 __func__, sk, &addr->sa, bp->port, snum, len);
348
349 /* PF specific bind() address verification. */
350 if (!sp->pf->bind_verify(sp, addr))
351 return -EADDRNOTAVAIL;
352
353 /* We must either be unbound, or bind to the same port.
354 * It's OK to allow 0 ports if we are already bound.
355 * We'll just inhert an already bound port in this case
356 */
357 if (bp->port) {
358 if (!snum)
359 snum = bp->port;
360 else if (snum != bp->port) {
361 pr_debug("%s: new port %d doesn't match existing port "
362 "%d\n", __func__, snum, bp->port);
363 return -EINVAL;
364 }
365 }
366
367 if (snum && snum < PROT_SOCK &&
368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 return -EACCES;
370
371 /* See if the address matches any of the addresses we may have
372 * already bound before checking against other endpoints.
373 */
374 if (sctp_bind_addr_match(bp, addr, sp))
375 return -EINVAL;
376
377 /* Make sure we are allowed to bind here.
378 * The function sctp_get_port_local() does duplicate address
379 * detection.
380 */
381 addr->v4.sin_port = htons(snum);
382 if ((ret = sctp_get_port_local(sk, addr))) {
383 return -EADDRINUSE;
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->inet_num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
394 SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 sp->pf->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403}
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417{
418 struct net *net = sock_net(asoc->base.sk);
419 int retval = 0;
420
421 /* If there is an outstanding ASCONF chunk, queue it for later
422 * transmission.
423 */
424 if (asoc->addip_last_asconf) {
425 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 goto out;
427 }
428
429 /* Hold the chunk until an ASCONF_ACK is received. */
430 sctp_chunk_hold(chunk);
431 retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 if (retval)
433 sctp_chunk_free(chunk);
434 else
435 asoc->addip_last_asconf = chunk;
436
437out:
438 return retval;
439}
440
441/* Add a list of addresses as bind addresses to local endpoint or
442 * association.
443 *
444 * Basically run through each address specified in the addrs/addrcnt
445 * array/length pair, determine if it is IPv6 or IPv4 and call
446 * sctp_do_bind() on it.
447 *
448 * If any of them fails, then the operation will be reversed and the
449 * ones that were added will be removed.
450 *
451 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 */
453static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454{
455 int cnt;
456 int retval = 0;
457 void *addr_buf;
458 struct sockaddr *sa_addr;
459 struct sctp_af *af;
460
461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 addrs, addrcnt);
463
464 addr_buf = addrs;
465 for (cnt = 0; cnt < addrcnt; cnt++) {
466 /* The list may contain either IPv4 or IPv6 address;
467 * determine the address length for walking thru the list.
468 */
469 sa_addr = addr_buf;
470 af = sctp_get_af_specific(sa_addr->sa_family);
471 if (!af) {
472 retval = -EINVAL;
473 goto err_bindx_add;
474 }
475
476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 af->sockaddr_len);
478
479 addr_buf += af->sockaddr_len;
480
481err_bindx_add:
482 if (retval < 0) {
483 /* Failed. Cleanup the ones that have been added */
484 if (cnt > 0)
485 sctp_bindx_rem(sk, addrs, cnt);
486 return retval;
487 }
488 }
489
490 return retval;
491}
492
493/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494 * associations that are part of the endpoint indicating that a list of local
495 * addresses are added to the endpoint.
496 *
497 * If any of the addresses is already in the bind address list of the
498 * association, we do not send the chunk for that association. But it will not
499 * affect other associations.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503static int sctp_send_asconf_add_ip(struct sock *sk,
504 struct sockaddr *addrs,
505 int addrcnt)
506{
507 struct net *net = sock_net(sk);
508 struct sctp_sock *sp;
509 struct sctp_endpoint *ep;
510 struct sctp_association *asoc;
511 struct sctp_bind_addr *bp;
512 struct sctp_chunk *chunk;
513 struct sctp_sockaddr_entry *laddr;
514 union sctp_addr *addr;
515 union sctp_addr saveaddr;
516 void *addr_buf;
517 struct sctp_af *af;
518 struct list_head *p;
519 int i;
520 int retval = 0;
521
522 if (!net->sctp.addip_enable)
523 return retval;
524
525 sp = sctp_sk(sk);
526 ep = sp->ep;
527
528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 __func__, sk, addrs, addrcnt);
530
531 list_for_each_entry(asoc, &ep->asocs, asocs) {
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 /* Add the new addresses to the bind address list with
577 * use_as_src set to 0.
578 */
579 addr_buf = addrs;
580 for (i = 0; i < addrcnt; i++) {
581 addr = addr_buf;
582 af = sctp_get_af_specific(addr->v4.sin_family);
583 memcpy(&saveaddr, addr, af->sockaddr_len);
584 retval = sctp_add_bind_addr(bp, &saveaddr,
585 sizeof(saveaddr),
586 SCTP_ADDR_NEW, GFP_ATOMIC);
587 addr_buf += af->sockaddr_len;
588 }
589 if (asoc->src_out_of_asoc_ok) {
590 struct sctp_transport *trans;
591
592 list_for_each_entry(trans,
593 &asoc->peer.transport_addr_list, transports) {
594 /* Clear the source and route cache */
595 dst_release(trans->dst);
596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
597 2*asoc->pathmtu, 4380));
598 trans->ssthresh = asoc->peer.i.a_rwnd;
599 trans->rto = asoc->rto_initial;
600 sctp_max_rto(asoc, trans);
601 trans->rtt = trans->srtt = trans->rttvar = 0;
602 sctp_transport_route(trans, NULL,
603 sctp_sk(asoc->base.sk));
604 }
605 }
606 retval = sctp_send_asconf(asoc, chunk);
607 }
608
609out:
610 return retval;
611}
612
613/* Remove a list of addresses from bind addresses list. Do not remove the
614 * last address.
615 *
616 * Basically run through each address specified in the addrs/addrcnt
617 * array/length pair, determine if it is IPv6 or IPv4 and call
618 * sctp_del_bind() on it.
619 *
620 * If any of them fails, then the operation will be reversed and the
621 * ones that were removed will be added back.
622 *
623 * At least one address has to be left; if only one address is
624 * available, the operation will return -EBUSY.
625 *
626 * Only sctp_setsockopt_bindx() is supposed to call this function.
627 */
628static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
629{
630 struct sctp_sock *sp = sctp_sk(sk);
631 struct sctp_endpoint *ep = sp->ep;
632 int cnt;
633 struct sctp_bind_addr *bp = &ep->base.bind_addr;
634 int retval = 0;
635 void *addr_buf;
636 union sctp_addr *sa_addr;
637 struct sctp_af *af;
638
639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
640 __func__, sk, addrs, addrcnt);
641
642 addr_buf = addrs;
643 for (cnt = 0; cnt < addrcnt; cnt++) {
644 /* If the bind address list is empty or if there is only one
645 * bind address, there is nothing more to be removed (we need
646 * at least one address here).
647 */
648 if (list_empty(&bp->address_list) ||
649 (sctp_list_single_entry(&bp->address_list))) {
650 retval = -EBUSY;
651 goto err_bindx_rem;
652 }
653
654 sa_addr = addr_buf;
655 af = sctp_get_af_specific(sa_addr->sa.sa_family);
656 if (!af) {
657 retval = -EINVAL;
658 goto err_bindx_rem;
659 }
660
661 if (!af->addr_valid(sa_addr, sp, NULL)) {
662 retval = -EADDRNOTAVAIL;
663 goto err_bindx_rem;
664 }
665
666 if (sa_addr->v4.sin_port &&
667 sa_addr->v4.sin_port != htons(bp->port)) {
668 retval = -EINVAL;
669 goto err_bindx_rem;
670 }
671
672 if (!sa_addr->v4.sin_port)
673 sa_addr->v4.sin_port = htons(bp->port);
674
675 /* FIXME - There is probably a need to check if sk->sk_saddr and
676 * sk->sk_rcv_addr are currently set to one of the addresses to
677 * be removed. This is something which needs to be looked into
678 * when we are fixing the outstanding issues with multi-homing
679 * socket routing and failover schemes. Refer to comments in
680 * sctp_do_bind(). -daisy
681 */
682 retval = sctp_del_bind_addr(bp, sa_addr);
683
684 addr_buf += af->sockaddr_len;
685err_bindx_rem:
686 if (retval < 0) {
687 /* Failed. Add the ones that has been removed back */
688 if (cnt > 0)
689 sctp_bindx_add(sk, addrs, cnt);
690 return retval;
691 }
692 }
693
694 return retval;
695}
696
697/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
698 * the associations that are part of the endpoint indicating that a list of
699 * local addresses are removed from the endpoint.
700 *
701 * If any of the addresses is already in the bind address list of the
702 * association, we do not send the chunk for that association. But it will not
703 * affect other associations.
704 *
705 * Only sctp_setsockopt_bindx() is supposed to call this function.
706 */
707static int sctp_send_asconf_del_ip(struct sock *sk,
708 struct sockaddr *addrs,
709 int addrcnt)
710{
711 struct net *net = sock_net(sk);
712 struct sctp_sock *sp;
713 struct sctp_endpoint *ep;
714 struct sctp_association *asoc;
715 struct sctp_transport *transport;
716 struct sctp_bind_addr *bp;
717 struct sctp_chunk *chunk;
718 union sctp_addr *laddr;
719 void *addr_buf;
720 struct sctp_af *af;
721 struct sctp_sockaddr_entry *saddr;
722 int i;
723 int retval = 0;
724 int stored = 0;
725
726 chunk = NULL;
727 if (!net->sctp.addip_enable)
728 return retval;
729
730 sp = sctp_sk(sk);
731 ep = sp->ep;
732
733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
734 __func__, sk, addrs, addrcnt);
735
736 list_for_each_entry(asoc, &ep->asocs, asocs) {
737
738 if (!asoc->peer.asconf_capable)
739 continue;
740
741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
742 continue;
743
744 if (!sctp_state(asoc, ESTABLISHED))
745 continue;
746
747 /* Check if any address in the packed array of addresses is
748 * not present in the bind address list of the association.
749 * If so, do not send the asconf chunk to its peer, but
750 * continue with other associations.
751 */
752 addr_buf = addrs;
753 for (i = 0; i < addrcnt; i++) {
754 laddr = addr_buf;
755 af = sctp_get_af_specific(laddr->v4.sin_family);
756 if (!af) {
757 retval = -EINVAL;
758 goto out;
759 }
760
761 if (!sctp_assoc_lookup_laddr(asoc, laddr))
762 break;
763
764 addr_buf += af->sockaddr_len;
765 }
766 if (i < addrcnt)
767 continue;
768
769 /* Find one address in the association's bind address list
770 * that is not in the packed array of addresses. This is to
771 * make sure that we do not delete all the addresses in the
772 * association.
773 */
774 bp = &asoc->base.bind_addr;
775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
776 addrcnt, sp);
777 if ((laddr == NULL) && (addrcnt == 1)) {
778 if (asoc->asconf_addr_del_pending)
779 continue;
780 asoc->asconf_addr_del_pending =
781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
782 if (asoc->asconf_addr_del_pending == NULL) {
783 retval = -ENOMEM;
784 goto out;
785 }
786 asoc->asconf_addr_del_pending->sa.sa_family =
787 addrs->sa_family;
788 asoc->asconf_addr_del_pending->v4.sin_port =
789 htons(bp->port);
790 if (addrs->sa_family == AF_INET) {
791 struct sockaddr_in *sin;
792
793 sin = (struct sockaddr_in *)addrs;
794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
795 } else if (addrs->sa_family == AF_INET6) {
796 struct sockaddr_in6 *sin6;
797
798 sin6 = (struct sockaddr_in6 *)addrs;
799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
800 }
801
802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
803 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
804 asoc->asconf_addr_del_pending);
805
806 asoc->src_out_of_asoc_ok = 1;
807 stored = 1;
808 goto skip_mkasconf;
809 }
810
811 if (laddr == NULL)
812 return -EINVAL;
813
814 /* We do not need RCU protection throughout this loop
815 * because this is done under a socket lock from the
816 * setsockopt call.
817 */
818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
819 SCTP_PARAM_DEL_IP);
820 if (!chunk) {
821 retval = -ENOMEM;
822 goto out;
823 }
824
825skip_mkasconf:
826 /* Reset use_as_src flag for the addresses in the bind address
827 * list that are to be deleted.
828 */
829 addr_buf = addrs;
830 for (i = 0; i < addrcnt; i++) {
831 laddr = addr_buf;
832 af = sctp_get_af_specific(laddr->v4.sin_family);
833 list_for_each_entry(saddr, &bp->address_list, list) {
834 if (sctp_cmp_addr_exact(&saddr->a, laddr))
835 saddr->state = SCTP_ADDR_DEL;
836 }
837 addr_buf += af->sockaddr_len;
838 }
839
840 /* Update the route and saddr entries for all the transports
841 * as some of the addresses in the bind address list are
842 * about to be deleted and cannot be used as source addresses.
843 */
844 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
845 transports) {
846 dst_release(transport->dst);
847 sctp_transport_route(transport, NULL,
848 sctp_sk(asoc->base.sk));
849 }
850
851 if (stored)
852 /* We don't need to transmit ASCONF */
853 continue;
854 retval = sctp_send_asconf(asoc, chunk);
855 }
856out:
857 return retval;
858}
859
860/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
861int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
862{
863 struct sock *sk = sctp_opt2sk(sp);
864 union sctp_addr *addr;
865 struct sctp_af *af;
866
867 /* It is safe to write port space in caller. */
868 addr = &addrw->a;
869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
870 af = sctp_get_af_specific(addr->sa.sa_family);
871 if (!af)
872 return -EINVAL;
873 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
874 return -EINVAL;
875
876 if (addrw->state == SCTP_ADDR_NEW)
877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
878 else
879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
880}
881
882/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
883 *
884 * API 8.1
885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
886 * int flags);
887 *
888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
890 * or IPv6 addresses.
891 *
892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
893 * Section 3.1.2 for this usage.
894 *
895 * addrs is a pointer to an array of one or more socket addresses. Each
896 * address is contained in its appropriate structure (i.e. struct
897 * sockaddr_in or struct sockaddr_in6) the family of the address type
898 * must be used to distinguish the address length (note that this
899 * representation is termed a "packed array" of addresses). The caller
900 * specifies the number of addresses in the array with addrcnt.
901 *
902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
903 * -1, and sets errno to the appropriate error code.
904 *
905 * For SCTP, the port given in each socket address must be the same, or
906 * sctp_bindx() will fail, setting errno to EINVAL.
907 *
908 * The flags parameter is formed from the bitwise OR of zero or more of
909 * the following currently defined flags:
910 *
911 * SCTP_BINDX_ADD_ADDR
912 *
913 * SCTP_BINDX_REM_ADDR
914 *
915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
917 * addresses from the association. The two flags are mutually exclusive;
918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
919 * not remove all addresses from an association; sctp_bindx() will
920 * reject such an attempt with EINVAL.
921 *
922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
923 * additional addresses with an endpoint after calling bind(). Or use
924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
925 * socket is associated with so that no new association accepted will be
926 * associated with those addresses. If the endpoint supports dynamic
927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
928 * endpoint to send the appropriate message to the peer to change the
929 * peers address lists.
930 *
931 * Adding and removing addresses from a connected association is
932 * optional functionality. Implementations that do not support this
933 * functionality should return EOPNOTSUPP.
934 *
935 * Basically do nothing but copying the addresses from user to kernel
936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
938 * from userspace.
939 *
940 * We don't use copy_from_user() for optimization: we first do the
941 * sanity checks (buffer size -fast- and access check-healthy
942 * pointer); if all of those succeed, then we can alloc the memory
943 * (expensive operation) needed to copy the data to kernel. Then we do
944 * the copying without checking the user space area
945 * (__copy_from_user()).
946 *
947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
948 * it.
949 *
950 * sk The sk of the socket
951 * addrs The pointer to the addresses in user land
952 * addrssize Size of the addrs buffer
953 * op Operation to perform (add or remove, see the flags of
954 * sctp_bindx)
955 *
956 * Returns 0 if ok, <0 errno code on error.
957 */
958static int sctp_setsockopt_bindx(struct sock *sk,
959 struct sockaddr __user *addrs,
960 int addrs_size, int op)
961{
962 struct sockaddr *kaddrs;
963 int err;
964 int addrcnt = 0;
965 int walk_size = 0;
966 struct sockaddr *sa_addr;
967 void *addr_buf;
968 struct sctp_af *af;
969
970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
971 __func__, sk, addrs, addrs_size, op);
972
973 if (unlikely(addrs_size <= 0))
974 return -EINVAL;
975
976 /* Check the user passed a healthy pointer. */
977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
978 return -EFAULT;
979
980 /* Alloc space for the address array in kernel memory. */
981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
982 if (unlikely(!kaddrs))
983 return -ENOMEM;
984
985 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
986 kfree(kaddrs);
987 return -EFAULT;
988 }
989
990 /* Walk through the addrs buffer and count the number of addresses. */
991 addr_buf = kaddrs;
992 while (walk_size < addrs_size) {
993 if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 kfree(kaddrs);
995 return -EINVAL;
996 }
997
998 sa_addr = addr_buf;
999 af = sctp_get_af_specific(sa_addr->sa_family);
1000
1001 /* If the address family is not supported or if this address
1002 * causes the address buffer to overflow return EINVAL.
1003 */
1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 kfree(kaddrs);
1006 return -EINVAL;
1007 }
1008 addrcnt++;
1009 addr_buf += af->sockaddr_len;
1010 walk_size += af->sockaddr_len;
1011 }
1012
1013 /* Do the work. */
1014 switch (op) {
1015 case SCTP_BINDX_ADD_ADDR:
1016 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1017 if (err)
1018 goto out;
1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1020 break;
1021
1022 case SCTP_BINDX_REM_ADDR:
1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1024 if (err)
1025 goto out;
1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1027 break;
1028
1029 default:
1030 err = -EINVAL;
1031 break;
1032 }
1033
1034out:
1035 kfree(kaddrs);
1036
1037 return err;
1038}
1039
1040/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1041 *
1042 * Common routine for handling connect() and sctp_connectx().
1043 * Connect will come in with just a single address.
1044 */
1045static int __sctp_connect(struct sock *sk,
1046 struct sockaddr *kaddrs,
1047 int addrs_size,
1048 sctp_assoc_t *assoc_id)
1049{
1050 struct net *net = sock_net(sk);
1051 struct sctp_sock *sp;
1052 struct sctp_endpoint *ep;
1053 struct sctp_association *asoc = NULL;
1054 struct sctp_association *asoc2;
1055 struct sctp_transport *transport;
1056 union sctp_addr to;
1057 sctp_scope_t scope;
1058 long timeo;
1059 int err = 0;
1060 int addrcnt = 0;
1061 int walk_size = 0;
1062 union sctp_addr *sa_addr = NULL;
1063 void *addr_buf;
1064 unsigned short port;
1065 unsigned int f_flags = 0;
1066
1067 sp = sctp_sk(sk);
1068 ep = sp->ep;
1069
1070 /* connect() cannot be done on a socket that is already in ESTABLISHED
1071 * state - UDP-style peeled off socket or a TCP-style socket that
1072 * is already connected.
1073 * It cannot be done even on a TCP-style listening socket.
1074 */
1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 err = -EISCONN;
1078 goto out_free;
1079 }
1080
1081 /* Walk through the addrs buffer and count the number of addresses. */
1082 addr_buf = kaddrs;
1083 while (walk_size < addrs_size) {
1084 struct sctp_af *af;
1085
1086 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 err = -EINVAL;
1088 goto out_free;
1089 }
1090
1091 sa_addr = addr_buf;
1092 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094 /* If the address family is not supported or if this address
1095 * causes the address buffer to overflow return EINVAL.
1096 */
1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 err = -EINVAL;
1099 goto out_free;
1100 }
1101
1102 port = ntohs(sa_addr->v4.sin_port);
1103
1104 /* Save current address so we can work with it */
1105 memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 if (err)
1109 goto out_free;
1110
1111 /* Make sure the destination port is correctly set
1112 * in all addresses.
1113 */
1114 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 err = -EINVAL;
1116 goto out_free;
1117 }
1118
1119 /* Check if there already is a matching association on the
1120 * endpoint (other than the one created here).
1121 */
1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 if (asoc2 && asoc2 != asoc) {
1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 err = -EISCONN;
1126 else
1127 err = -EALREADY;
1128 goto out_free;
1129 }
1130
1131 /* If we could not find a matching association on the endpoint,
1132 * make sure that there is no peeled-off association matching
1133 * the peer address even on another socket.
1134 */
1135 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 err = -EADDRNOTAVAIL;
1137 goto out_free;
1138 }
1139
1140 if (!asoc) {
1141 /* If a bind() or sctp_bindx() is not called prior to
1142 * an sctp_connectx() call, the system picks an
1143 * ephemeral port and will choose an address set
1144 * equivalent to binding with a wildcard address.
1145 */
1146 if (!ep->base.bind_addr.port) {
1147 if (sctp_autobind(sk)) {
1148 err = -EAGAIN;
1149 goto out_free;
1150 }
1151 } else {
1152 /*
1153 * If an unprivileged user inherits a 1-many
1154 * style socket with open associations on a
1155 * privileged port, it MAY be permitted to
1156 * accept new associations, but it SHOULD NOT
1157 * be permitted to open new associations.
1158 */
1159 if (ep->base.bind_addr.port < PROT_SOCK &&
1160 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1161 err = -EACCES;
1162 goto out_free;
1163 }
1164 }
1165
1166 scope = sctp_scope(&to);
1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 if (!asoc) {
1169 err = -ENOMEM;
1170 goto out_free;
1171 }
1172
1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 GFP_KERNEL);
1175 if (err < 0) {
1176 goto out_free;
1177 }
1178
1179 }
1180
1181 /* Prime the peer's transport structures. */
1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 SCTP_UNKNOWN);
1184 if (!transport) {
1185 err = -ENOMEM;
1186 goto out_free;
1187 }
1188
1189 addrcnt++;
1190 addr_buf += af->sockaddr_len;
1191 walk_size += af->sockaddr_len;
1192 }
1193
1194 /* In case the user of sctp_connectx() wants an association
1195 * id back, assign one now.
1196 */
1197 if (assoc_id) {
1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 if (err < 0)
1200 goto out_free;
1201 }
1202
1203 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1204 if (err < 0) {
1205 goto out_free;
1206 }
1207
1208 /* Initialize sk's dport and daddr for getpeername() */
1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 sp->pf->to_sk_daddr(sa_addr, sk);
1211 sk->sk_err = 0;
1212
1213 /* in-kernel sockets don't generally have a file allocated to them
1214 * if all they do is call sock_create_kern().
1215 */
1216 if (sk->sk_socket->file)
1217 f_flags = sk->sk_socket->file->f_flags;
1218
1219 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220
1221 if (assoc_id)
1222 *assoc_id = asoc->assoc_id;
1223 err = sctp_wait_for_connect(asoc, &timeo);
1224 /* Note: the asoc may be freed after the return of
1225 * sctp_wait_for_connect.
1226 */
1227
1228 /* Don't free association on exit. */
1229 asoc = NULL;
1230
1231out_free:
1232 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1233 __func__, asoc, kaddrs, err);
1234
1235 if (asoc) {
1236 /* sctp_primitive_ASSOCIATE may have added this association
1237 * To the hash table, try to unhash it, just in case, its a noop
1238 * if it wasn't hashed so we're safe
1239 */
1240 sctp_association_free(asoc);
1241 }
1242 return err;
1243}
1244
1245/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246 *
1247 * API 8.9
1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249 * sctp_assoc_t *asoc);
1250 *
1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253 * or IPv6 addresses.
1254 *
1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256 * Section 3.1.2 for this usage.
1257 *
1258 * addrs is a pointer to an array of one or more socket addresses. Each
1259 * address is contained in its appropriate structure (i.e. struct
1260 * sockaddr_in or struct sockaddr_in6) the family of the address type
1261 * must be used to distengish the address length (note that this
1262 * representation is termed a "packed array" of addresses). The caller
1263 * specifies the number of addresses in the array with addrcnt.
1264 *
1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266 * the association id of the new association. On failure, sctp_connectx()
1267 * returns -1, and sets errno to the appropriate error code. The assoc_id
1268 * is not touched by the kernel.
1269 *
1270 * For SCTP, the port given in each socket address must be the same, or
1271 * sctp_connectx() will fail, setting errno to EINVAL.
1272 *
1273 * An application can use sctp_connectx to initiate an association with
1274 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1275 * allows a caller to specify multiple addresses at which a peer can be
1276 * reached. The way the SCTP stack uses the list of addresses to set up
1277 * the association is implementation dependent. This function only
1278 * specifies that the stack will try to make use of all the addresses in
1279 * the list when needed.
1280 *
1281 * Note that the list of addresses passed in is only used for setting up
1282 * the association. It does not necessarily equal the set of addresses
1283 * the peer uses for the resulting association. If the caller wants to
1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285 * retrieve them after the association has been set up.
1286 *
1287 * Basically do nothing but copying the addresses from user to kernel
1288 * land and invoking either sctp_connectx(). This is used for tunneling
1289 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290 *
1291 * We don't use copy_from_user() for optimization: we first do the
1292 * sanity checks (buffer size -fast- and access check-healthy
1293 * pointer); if all of those succeed, then we can alloc the memory
1294 * (expensive operation) needed to copy the data to kernel. Then we do
1295 * the copying without checking the user space area
1296 * (__copy_from_user()).
1297 *
1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299 * it.
1300 *
1301 * sk The sk of the socket
1302 * addrs The pointer to the addresses in user land
1303 * addrssize Size of the addrs buffer
1304 *
1305 * Returns >=0 if ok, <0 errno code on error.
1306 */
1307static int __sctp_setsockopt_connectx(struct sock *sk,
1308 struct sockaddr __user *addrs,
1309 int addrs_size,
1310 sctp_assoc_t *assoc_id)
1311{
1312 struct sockaddr *kaddrs;
1313 gfp_t gfp = GFP_KERNEL;
1314 int err = 0;
1315
1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1317 __func__, sk, addrs, addrs_size);
1318
1319 if (unlikely(addrs_size <= 0))
1320 return -EINVAL;
1321
1322 /* Check the user passed a healthy pointer. */
1323 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1324 return -EFAULT;
1325
1326 /* Alloc space for the address array in kernel memory. */
1327 if (sk->sk_socket->file)
1328 gfp = GFP_USER | __GFP_NOWARN;
1329 kaddrs = kmalloc(addrs_size, gfp);
1330 if (unlikely(!kaddrs))
1331 return -ENOMEM;
1332
1333 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1334 err = -EFAULT;
1335 } else {
1336 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1337 }
1338
1339 kfree(kaddrs);
1340
1341 return err;
1342}
1343
1344/*
1345 * This is an older interface. It's kept for backward compatibility
1346 * to the option that doesn't provide association id.
1347 */
1348static int sctp_setsockopt_connectx_old(struct sock *sk,
1349 struct sockaddr __user *addrs,
1350 int addrs_size)
1351{
1352 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1353}
1354
1355/*
1356 * New interface for the API. The since the API is done with a socket
1357 * option, to make it simple we feed back the association id is as a return
1358 * indication to the call. Error is always negative and association id is
1359 * always positive.
1360 */
1361static int sctp_setsockopt_connectx(struct sock *sk,
1362 struct sockaddr __user *addrs,
1363 int addrs_size)
1364{
1365 sctp_assoc_t assoc_id = 0;
1366 int err = 0;
1367
1368 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1369
1370 if (err)
1371 return err;
1372 else
1373 return assoc_id;
1374}
1375
1376/*
1377 * New (hopefully final) interface for the API.
1378 * We use the sctp_getaddrs_old structure so that use-space library
1379 * can avoid any unnecessary allocations. The only different part
1380 * is that we store the actual length of the address buffer into the
1381 * addrs_num structure member. That way we can re-use the existing
1382 * code.
1383 */
1384#ifdef CONFIG_COMPAT
1385struct compat_sctp_getaddrs_old {
1386 sctp_assoc_t assoc_id;
1387 s32 addr_num;
1388 compat_uptr_t addrs; /* struct sockaddr * */
1389};
1390#endif
1391
1392static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1393 char __user *optval,
1394 int __user *optlen)
1395{
1396 struct sctp_getaddrs_old param;
1397 sctp_assoc_t assoc_id = 0;
1398 int err = 0;
1399
1400#ifdef CONFIG_COMPAT
1401 if (in_compat_syscall()) {
1402 struct compat_sctp_getaddrs_old param32;
1403
1404 if (len < sizeof(param32))
1405 return -EINVAL;
1406 if (copy_from_user(¶m32, optval, sizeof(param32)))
1407 return -EFAULT;
1408
1409 param.assoc_id = param32.assoc_id;
1410 param.addr_num = param32.addr_num;
1411 param.addrs = compat_ptr(param32.addrs);
1412 } else
1413#endif
1414 {
1415 if (len < sizeof(param))
1416 return -EINVAL;
1417 if (copy_from_user(¶m, optval, sizeof(param)))
1418 return -EFAULT;
1419 }
1420
1421 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1422 param.addrs, param.addr_num,
1423 &assoc_id);
1424 if (err == 0 || err == -EINPROGRESS) {
1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1426 return -EFAULT;
1427 if (put_user(sizeof(assoc_id), optlen))
1428 return -EFAULT;
1429 }
1430
1431 return err;
1432}
1433
1434/* API 3.1.4 close() - UDP Style Syntax
1435 * Applications use close() to perform graceful shutdown (as described in
1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1437 * by a UDP-style socket.
1438 *
1439 * The syntax is
1440 *
1441 * ret = close(int sd);
1442 *
1443 * sd - the socket descriptor of the associations to be closed.
1444 *
1445 * To gracefully shutdown a specific association represented by the
1446 * UDP-style socket, an application should use the sendmsg() call,
1447 * passing no user data, but including the appropriate flag in the
1448 * ancillary data (see Section xxxx).
1449 *
1450 * If sd in the close() call is a branched-off socket representing only
1451 * one association, the shutdown is performed on that association only.
1452 *
1453 * 4.1.6 close() - TCP Style Syntax
1454 *
1455 * Applications use close() to gracefully close down an association.
1456 *
1457 * The syntax is:
1458 *
1459 * int close(int sd);
1460 *
1461 * sd - the socket descriptor of the association to be closed.
1462 *
1463 * After an application calls close() on a socket descriptor, no further
1464 * socket operations will succeed on that descriptor.
1465 *
1466 * API 7.1.4 SO_LINGER
1467 *
1468 * An application using the TCP-style socket can use this option to
1469 * perform the SCTP ABORT primitive. The linger option structure is:
1470 *
1471 * struct linger {
1472 * int l_onoff; // option on/off
1473 * int l_linger; // linger time
1474 * };
1475 *
1476 * To enable the option, set l_onoff to 1. If the l_linger value is set
1477 * to 0, calling close() is the same as the ABORT primitive. If the
1478 * value is set to a negative value, the setsockopt() call will return
1479 * an error. If the value is set to a positive value linger_time, the
1480 * close() can be blocked for at most linger_time ms. If the graceful
1481 * shutdown phase does not finish during this period, close() will
1482 * return but the graceful shutdown phase continues in the system.
1483 */
1484static void sctp_close(struct sock *sk, long timeout)
1485{
1486 struct net *net = sock_net(sk);
1487 struct sctp_endpoint *ep;
1488 struct sctp_association *asoc;
1489 struct list_head *pos, *temp;
1490 unsigned int data_was_unread;
1491
1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1493
1494 lock_sock(sk);
1495 sk->sk_shutdown = SHUTDOWN_MASK;
1496 sk->sk_state = SCTP_SS_CLOSING;
1497
1498 ep = sctp_sk(sk)->ep;
1499
1500 /* Clean up any skbs sitting on the receive queue. */
1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1503
1504 /* Walk all associations on an endpoint. */
1505 list_for_each_safe(pos, temp, &ep->asocs) {
1506 asoc = list_entry(pos, struct sctp_association, asocs);
1507
1508 if (sctp_style(sk, TCP)) {
1509 /* A closed association can still be in the list if
1510 * it belongs to a TCP-style listening socket that is
1511 * not yet accepted. If so, free it. If not, send an
1512 * ABORT or SHUTDOWN based on the linger options.
1513 */
1514 if (sctp_state(asoc, CLOSED)) {
1515 sctp_association_free(asoc);
1516 continue;
1517 }
1518 }
1519
1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1521 !skb_queue_empty(&asoc->ulpq.reasm) ||
1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1523 struct sctp_chunk *chunk;
1524
1525 chunk = sctp_make_abort_user(asoc, NULL, 0);
1526 sctp_primitive_ABORT(net, asoc, chunk);
1527 } else
1528 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1529 }
1530
1531 /* On a TCP-style socket, block for at most linger_time if set. */
1532 if (sctp_style(sk, TCP) && timeout)
1533 sctp_wait_for_close(sk, timeout);
1534
1535 /* This will run the backlog queue. */
1536 release_sock(sk);
1537
1538 /* Supposedly, no process has access to the socket, but
1539 * the net layers still may.
1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1541 * held and that should be grabbed before socket lock.
1542 */
1543 spin_lock_bh(&net->sctp.addr_wq_lock);
1544 bh_lock_sock(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 bh_unlock_sock(sk);
1553 spin_unlock_bh(&net->sctp.addr_wq_lock);
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558}
1559
1560/* Handle EPIPE error. */
1561static int sctp_error(struct sock *sk, int flags, int err)
1562{
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568}
1569
1570/* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1594
1595static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1596{
1597 struct net *net = sock_net(sk);
1598 struct sctp_sock *sp;
1599 struct sctp_endpoint *ep;
1600 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1601 struct sctp_transport *transport, *chunk_tp;
1602 struct sctp_chunk *chunk;
1603 union sctp_addr to;
1604 struct sockaddr *msg_name = NULL;
1605 struct sctp_sndrcvinfo default_sinfo;
1606 struct sctp_sndrcvinfo *sinfo;
1607 struct sctp_initmsg *sinit;
1608 sctp_assoc_t associd = 0;
1609 sctp_cmsgs_t cmsgs = { NULL };
1610 sctp_scope_t scope;
1611 bool fill_sinfo_ttl = false, wait_connect = false;
1612 struct sctp_datamsg *datamsg;
1613 int msg_flags = msg->msg_flags;
1614 __u16 sinfo_flags = 0;
1615 long timeo;
1616 int err;
1617
1618 err = 0;
1619 sp = sctp_sk(sk);
1620 ep = sp->ep;
1621
1622 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1623 msg, msg_len, ep);
1624
1625 /* We cannot send a message over a TCP-style listening socket. */
1626 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1627 err = -EPIPE;
1628 goto out_nounlock;
1629 }
1630
1631 /* Parse out the SCTP CMSGs. */
1632 err = sctp_msghdr_parse(msg, &cmsgs);
1633 if (err) {
1634 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1635 goto out_nounlock;
1636 }
1637
1638 /* Fetch the destination address for this packet. This
1639 * address only selects the association--it is not necessarily
1640 * the address we will send to.
1641 * For a peeled-off socket, msg_name is ignored.
1642 */
1643 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1644 int msg_namelen = msg->msg_namelen;
1645
1646 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1647 msg_namelen);
1648 if (err)
1649 return err;
1650
1651 if (msg_namelen > sizeof(to))
1652 msg_namelen = sizeof(to);
1653 memcpy(&to, msg->msg_name, msg_namelen);
1654 msg_name = msg->msg_name;
1655 }
1656
1657 sinit = cmsgs.init;
1658 if (cmsgs.sinfo != NULL) {
1659 memset(&default_sinfo, 0, sizeof(default_sinfo));
1660 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1661 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1662 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1663 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1664 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1665
1666 sinfo = &default_sinfo;
1667 fill_sinfo_ttl = true;
1668 } else {
1669 sinfo = cmsgs.srinfo;
1670 }
1671 /* Did the user specify SNDINFO/SNDRCVINFO? */
1672 if (sinfo) {
1673 sinfo_flags = sinfo->sinfo_flags;
1674 associd = sinfo->sinfo_assoc_id;
1675 }
1676
1677 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1678 msg_len, sinfo_flags);
1679
1680 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1681 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1682 err = -EINVAL;
1683 goto out_nounlock;
1684 }
1685
1686 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1687 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1688 * If SCTP_ABORT is set, the message length could be non zero with
1689 * the msg_iov set to the user abort reason.
1690 */
1691 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1692 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1693 err = -EINVAL;
1694 goto out_nounlock;
1695 }
1696
1697 /* If SCTP_ADDR_OVER is set, there must be an address
1698 * specified in msg_name.
1699 */
1700 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1701 err = -EINVAL;
1702 goto out_nounlock;
1703 }
1704
1705 transport = NULL;
1706
1707 pr_debug("%s: about to look up association\n", __func__);
1708
1709 lock_sock(sk);
1710
1711 /* If a msg_name has been specified, assume this is to be used. */
1712 if (msg_name) {
1713 /* Look for a matching association on the endpoint. */
1714 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1715
1716 /* If we could not find a matching association on the
1717 * endpoint, make sure that it is not a TCP-style
1718 * socket that already has an association or there is
1719 * no peeled-off association on another socket.
1720 */
1721 if (!asoc &&
1722 ((sctp_style(sk, TCP) &&
1723 (sctp_sstate(sk, ESTABLISHED) ||
1724 sctp_sstate(sk, CLOSING))) ||
1725 sctp_endpoint_is_peeled_off(ep, &to))) {
1726 err = -EADDRNOTAVAIL;
1727 goto out_unlock;
1728 }
1729 } else {
1730 asoc = sctp_id2assoc(sk, associd);
1731 if (!asoc) {
1732 err = -EPIPE;
1733 goto out_unlock;
1734 }
1735 }
1736
1737 if (asoc) {
1738 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1739
1740 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1741 * socket that has an association in CLOSED state. This can
1742 * happen when an accepted socket has an association that is
1743 * already CLOSED.
1744 */
1745 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1746 err = -EPIPE;
1747 goto out_unlock;
1748 }
1749
1750 if (sinfo_flags & SCTP_EOF) {
1751 pr_debug("%s: shutting down association:%p\n",
1752 __func__, asoc);
1753
1754 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1755 err = 0;
1756 goto out_unlock;
1757 }
1758 if (sinfo_flags & SCTP_ABORT) {
1759
1760 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1761 if (!chunk) {
1762 err = -ENOMEM;
1763 goto out_unlock;
1764 }
1765
1766 pr_debug("%s: aborting association:%p\n",
1767 __func__, asoc);
1768
1769 sctp_primitive_ABORT(net, asoc, chunk);
1770 err = 0;
1771 goto out_unlock;
1772 }
1773 }
1774
1775 /* Do we need to create the association? */
1776 if (!asoc) {
1777 pr_debug("%s: there is no association yet\n", __func__);
1778
1779 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1780 err = -EINVAL;
1781 goto out_unlock;
1782 }
1783
1784 /* Check for invalid stream against the stream counts,
1785 * either the default or the user specified stream counts.
1786 */
1787 if (sinfo) {
1788 if (!sinit || !sinit->sinit_num_ostreams) {
1789 /* Check against the defaults. */
1790 if (sinfo->sinfo_stream >=
1791 sp->initmsg.sinit_num_ostreams) {
1792 err = -EINVAL;
1793 goto out_unlock;
1794 }
1795 } else {
1796 /* Check against the requested. */
1797 if (sinfo->sinfo_stream >=
1798 sinit->sinit_num_ostreams) {
1799 err = -EINVAL;
1800 goto out_unlock;
1801 }
1802 }
1803 }
1804
1805 /*
1806 * API 3.1.2 bind() - UDP Style Syntax
1807 * If a bind() or sctp_bindx() is not called prior to a
1808 * sendmsg() call that initiates a new association, the
1809 * system picks an ephemeral port and will choose an address
1810 * set equivalent to binding with a wildcard address.
1811 */
1812 if (!ep->base.bind_addr.port) {
1813 if (sctp_autobind(sk)) {
1814 err = -EAGAIN;
1815 goto out_unlock;
1816 }
1817 } else {
1818 /*
1819 * If an unprivileged user inherits a one-to-many
1820 * style socket with open associations on a privileged
1821 * port, it MAY be permitted to accept new associations,
1822 * but it SHOULD NOT be permitted to open new
1823 * associations.
1824 */
1825 if (ep->base.bind_addr.port < PROT_SOCK &&
1826 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1827 err = -EACCES;
1828 goto out_unlock;
1829 }
1830 }
1831
1832 scope = sctp_scope(&to);
1833 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1834 if (!new_asoc) {
1835 err = -ENOMEM;
1836 goto out_unlock;
1837 }
1838 asoc = new_asoc;
1839 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1840 if (err < 0) {
1841 err = -ENOMEM;
1842 goto out_free;
1843 }
1844
1845 /* If the SCTP_INIT ancillary data is specified, set all
1846 * the association init values accordingly.
1847 */
1848 if (sinit) {
1849 if (sinit->sinit_num_ostreams) {
1850 asoc->c.sinit_num_ostreams =
1851 sinit->sinit_num_ostreams;
1852 }
1853 if (sinit->sinit_max_instreams) {
1854 asoc->c.sinit_max_instreams =
1855 sinit->sinit_max_instreams;
1856 }
1857 if (sinit->sinit_max_attempts) {
1858 asoc->max_init_attempts
1859 = sinit->sinit_max_attempts;
1860 }
1861 if (sinit->sinit_max_init_timeo) {
1862 asoc->max_init_timeo =
1863 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1864 }
1865 }
1866
1867 /* Prime the peer's transport structures. */
1868 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1869 if (!transport) {
1870 err = -ENOMEM;
1871 goto out_free;
1872 }
1873 }
1874
1875 /* ASSERT: we have a valid association at this point. */
1876 pr_debug("%s: we have a valid association\n", __func__);
1877
1878 if (!sinfo) {
1879 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1880 * one with some defaults.
1881 */
1882 memset(&default_sinfo, 0, sizeof(default_sinfo));
1883 default_sinfo.sinfo_stream = asoc->default_stream;
1884 default_sinfo.sinfo_flags = asoc->default_flags;
1885 default_sinfo.sinfo_ppid = asoc->default_ppid;
1886 default_sinfo.sinfo_context = asoc->default_context;
1887 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1888 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1889
1890 sinfo = &default_sinfo;
1891 } else if (fill_sinfo_ttl) {
1892 /* In case SNDINFO was specified, we still need to fill
1893 * it with a default ttl from the assoc here.
1894 */
1895 sinfo->sinfo_timetolive = asoc->default_timetolive;
1896 }
1897
1898 /* API 7.1.7, the sndbuf size per association bounds the
1899 * maximum size of data that can be sent in a single send call.
1900 */
1901 if (msg_len > sk->sk_sndbuf) {
1902 err = -EMSGSIZE;
1903 goto out_free;
1904 }
1905
1906 if (asoc->pmtu_pending)
1907 sctp_assoc_pending_pmtu(sk, asoc);
1908
1909 /* If fragmentation is disabled and the message length exceeds the
1910 * association fragmentation point, return EMSGSIZE. The I-D
1911 * does not specify what this error is, but this looks like
1912 * a great fit.
1913 */
1914 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1915 err = -EMSGSIZE;
1916 goto out_free;
1917 }
1918
1919 /* Check for invalid stream. */
1920 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1921 err = -EINVAL;
1922 goto out_free;
1923 }
1924
1925 if (sctp_wspace(asoc) < msg_len)
1926 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1927
1928 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1929 if (!sctp_wspace(asoc)) {
1930 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1931 if (err)
1932 goto out_free;
1933 }
1934
1935 /* If an address is passed with the sendto/sendmsg call, it is used
1936 * to override the primary destination address in the TCP model, or
1937 * when SCTP_ADDR_OVER flag is set in the UDP model.
1938 */
1939 if ((sctp_style(sk, TCP) && msg_name) ||
1940 (sinfo_flags & SCTP_ADDR_OVER)) {
1941 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1942 if (!chunk_tp) {
1943 err = -EINVAL;
1944 goto out_free;
1945 }
1946 } else
1947 chunk_tp = NULL;
1948
1949 /* Auto-connect, if we aren't connected already. */
1950 if (sctp_state(asoc, CLOSED)) {
1951 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1952 if (err < 0)
1953 goto out_free;
1954
1955 wait_connect = true;
1956 pr_debug("%s: we associated primitively\n", __func__);
1957 }
1958
1959 /* Break the message into multiple chunks of maximum size. */
1960 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1961 if (IS_ERR(datamsg)) {
1962 err = PTR_ERR(datamsg);
1963 goto out_free;
1964 }
1965
1966 /* Now send the (possibly) fragmented message. */
1967 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1968 sctp_chunk_hold(chunk);
1969
1970 /* Do accounting for the write space. */
1971 sctp_set_owner_w(chunk);
1972
1973 chunk->transport = chunk_tp;
1974 }
1975
1976 /* Send it to the lower layers. Note: all chunks
1977 * must either fail or succeed. The lower layer
1978 * works that way today. Keep it that way or this
1979 * breaks.
1980 */
1981 err = sctp_primitive_SEND(net, asoc, datamsg);
1982 /* Did the lower layer accept the chunk? */
1983 if (err) {
1984 sctp_datamsg_free(datamsg);
1985 goto out_free;
1986 }
1987
1988 pr_debug("%s: we sent primitively\n", __func__);
1989
1990 sctp_datamsg_put(datamsg);
1991 err = msg_len;
1992
1993 if (unlikely(wait_connect)) {
1994 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1995 sctp_wait_for_connect(asoc, &timeo);
1996 }
1997
1998 /* If we are already past ASSOCIATE, the lower
1999 * layers are responsible for association cleanup.
2000 */
2001 goto out_unlock;
2002
2003out_free:
2004 if (new_asoc)
2005 sctp_association_free(asoc);
2006out_unlock:
2007 release_sock(sk);
2008
2009out_nounlock:
2010 return sctp_error(sk, msg_flags, err);
2011
2012#if 0
2013do_sock_err:
2014 if (msg_len)
2015 err = msg_len;
2016 else
2017 err = sock_error(sk);
2018 goto out;
2019
2020do_interrupted:
2021 if (msg_len)
2022 err = msg_len;
2023 goto out;
2024#endif /* 0 */
2025}
2026
2027/* This is an extended version of skb_pull() that removes the data from the
2028 * start of a skb even when data is spread across the list of skb's in the
2029 * frag_list. len specifies the total amount of data that needs to be removed.
2030 * when 'len' bytes could be removed from the skb, it returns 0.
2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2032 * could not be removed.
2033 */
2034static int sctp_skb_pull(struct sk_buff *skb, int len)
2035{
2036 struct sk_buff *list;
2037 int skb_len = skb_headlen(skb);
2038 int rlen;
2039
2040 if (len <= skb_len) {
2041 __skb_pull(skb, len);
2042 return 0;
2043 }
2044 len -= skb_len;
2045 __skb_pull(skb, skb_len);
2046
2047 skb_walk_frags(skb, list) {
2048 rlen = sctp_skb_pull(list, len);
2049 skb->len -= (len-rlen);
2050 skb->data_len -= (len-rlen);
2051
2052 if (!rlen)
2053 return 0;
2054
2055 len = rlen;
2056 }
2057
2058 return len;
2059}
2060
2061/* API 3.1.3 recvmsg() - UDP Style Syntax
2062 *
2063 * ssize_t recvmsg(int socket, struct msghdr *message,
2064 * int flags);
2065 *
2066 * socket - the socket descriptor of the endpoint.
2067 * message - pointer to the msghdr structure which contains a single
2068 * user message and possibly some ancillary data.
2069 *
2070 * See Section 5 for complete description of the data
2071 * structures.
2072 *
2073 * flags - flags sent or received with the user message, see Section
2074 * 5 for complete description of the flags.
2075 */
2076static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2077 int noblock, int flags, int *addr_len)
2078{
2079 struct sctp_ulpevent *event = NULL;
2080 struct sctp_sock *sp = sctp_sk(sk);
2081 struct sk_buff *skb, *head_skb;
2082 int copied;
2083 int err = 0;
2084 int skb_len;
2085
2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2088 addr_len);
2089
2090 lock_sock(sk);
2091
2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2094 err = -ENOTCONN;
2095 goto out;
2096 }
2097
2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2099 if (!skb)
2100 goto out;
2101
2102 /* Get the total length of the skb including any skb's in the
2103 * frag_list.
2104 */
2105 skb_len = skb->len;
2106
2107 copied = skb_len;
2108 if (copied > len)
2109 copied = len;
2110
2111 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2112
2113 event = sctp_skb2event(skb);
2114
2115 if (err)
2116 goto out_free;
2117
2118 if (event->chunk && event->chunk->head_skb)
2119 head_skb = event->chunk->head_skb;
2120 else
2121 head_skb = skb;
2122 sock_recv_ts_and_drops(msg, sk, head_skb);
2123 if (sctp_ulpevent_is_notification(event)) {
2124 msg->msg_flags |= MSG_NOTIFICATION;
2125 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2126 } else {
2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2128 }
2129
2130 /* Check if we allow SCTP_NXTINFO. */
2131 if (sp->recvnxtinfo)
2132 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2133 /* Check if we allow SCTP_RCVINFO. */
2134 if (sp->recvrcvinfo)
2135 sctp_ulpevent_read_rcvinfo(event, msg);
2136 /* Check if we allow SCTP_SNDRCVINFO. */
2137 if (sp->subscribe.sctp_data_io_event)
2138 sctp_ulpevent_read_sndrcvinfo(event, msg);
2139
2140 err = copied;
2141
2142 /* If skb's length exceeds the user's buffer, update the skb and
2143 * push it back to the receive_queue so that the next call to
2144 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2145 */
2146 if (skb_len > copied) {
2147 msg->msg_flags &= ~MSG_EOR;
2148 if (flags & MSG_PEEK)
2149 goto out_free;
2150 sctp_skb_pull(skb, copied);
2151 skb_queue_head(&sk->sk_receive_queue, skb);
2152
2153 /* When only partial message is copied to the user, increase
2154 * rwnd by that amount. If all the data in the skb is read,
2155 * rwnd is updated when the event is freed.
2156 */
2157 if (!sctp_ulpevent_is_notification(event))
2158 sctp_assoc_rwnd_increase(event->asoc, copied);
2159 goto out;
2160 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2161 (event->msg_flags & MSG_EOR))
2162 msg->msg_flags |= MSG_EOR;
2163 else
2164 msg->msg_flags &= ~MSG_EOR;
2165
2166out_free:
2167 if (flags & MSG_PEEK) {
2168 /* Release the skb reference acquired after peeking the skb in
2169 * sctp_skb_recv_datagram().
2170 */
2171 kfree_skb(skb);
2172 } else {
2173 /* Free the event which includes releasing the reference to
2174 * the owner of the skb, freeing the skb and updating the
2175 * rwnd.
2176 */
2177 sctp_ulpevent_free(event);
2178 }
2179out:
2180 release_sock(sk);
2181 return err;
2182}
2183
2184/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2185 *
2186 * This option is a on/off flag. If enabled no SCTP message
2187 * fragmentation will be performed. Instead if a message being sent
2188 * exceeds the current PMTU size, the message will NOT be sent and
2189 * instead a error will be indicated to the user.
2190 */
2191static int sctp_setsockopt_disable_fragments(struct sock *sk,
2192 char __user *optval,
2193 unsigned int optlen)
2194{
2195 int val;
2196
2197 if (optlen < sizeof(int))
2198 return -EINVAL;
2199
2200 if (get_user(val, (int __user *)optval))
2201 return -EFAULT;
2202
2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2204
2205 return 0;
2206}
2207
2208static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2209 unsigned int optlen)
2210{
2211 struct sctp_association *asoc;
2212 struct sctp_ulpevent *event;
2213
2214 if (optlen > sizeof(struct sctp_event_subscribe))
2215 return -EINVAL;
2216 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2217 return -EFAULT;
2218
2219 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2220 * if there is no data to be sent or retransmit, the stack will
2221 * immediately send up this notification.
2222 */
2223 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2224 &sctp_sk(sk)->subscribe)) {
2225 asoc = sctp_id2assoc(sk, 0);
2226
2227 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2228 event = sctp_ulpevent_make_sender_dry_event(asoc,
2229 GFP_ATOMIC);
2230 if (!event)
2231 return -ENOMEM;
2232
2233 sctp_ulpq_tail_event(&asoc->ulpq, event);
2234 }
2235 }
2236
2237 return 0;
2238}
2239
2240/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2241 *
2242 * This socket option is applicable to the UDP-style socket only. When
2243 * set it will cause associations that are idle for more than the
2244 * specified number of seconds to automatically close. An association
2245 * being idle is defined an association that has NOT sent or received
2246 * user data. The special value of '0' indicates that no automatic
2247 * close of any associations should be performed. The option expects an
2248 * integer defining the number of seconds of idle time before an
2249 * association is closed.
2250 */
2251static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2252 unsigned int optlen)
2253{
2254 struct sctp_sock *sp = sctp_sk(sk);
2255 struct net *net = sock_net(sk);
2256
2257 /* Applicable to UDP-style socket only */
2258 if (sctp_style(sk, TCP))
2259 return -EOPNOTSUPP;
2260 if (optlen != sizeof(int))
2261 return -EINVAL;
2262 if (copy_from_user(&sp->autoclose, optval, optlen))
2263 return -EFAULT;
2264
2265 if (sp->autoclose > net->sctp.max_autoclose)
2266 sp->autoclose = net->sctp.max_autoclose;
2267
2268 return 0;
2269}
2270
2271/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2272 *
2273 * Applications can enable or disable heartbeats for any peer address of
2274 * an association, modify an address's heartbeat interval, force a
2275 * heartbeat to be sent immediately, and adjust the address's maximum
2276 * number of retransmissions sent before an address is considered
2277 * unreachable. The following structure is used to access and modify an
2278 * address's parameters:
2279 *
2280 * struct sctp_paddrparams {
2281 * sctp_assoc_t spp_assoc_id;
2282 * struct sockaddr_storage spp_address;
2283 * uint32_t spp_hbinterval;
2284 * uint16_t spp_pathmaxrxt;
2285 * uint32_t spp_pathmtu;
2286 * uint32_t spp_sackdelay;
2287 * uint32_t spp_flags;
2288 * };
2289 *
2290 * spp_assoc_id - (one-to-many style socket) This is filled in the
2291 * application, and identifies the association for
2292 * this query.
2293 * spp_address - This specifies which address is of interest.
2294 * spp_hbinterval - This contains the value of the heartbeat interval,
2295 * in milliseconds. If a value of zero
2296 * is present in this field then no changes are to
2297 * be made to this parameter.
2298 * spp_pathmaxrxt - This contains the maximum number of
2299 * retransmissions before this address shall be
2300 * considered unreachable. If a value of zero
2301 * is present in this field then no changes are to
2302 * be made to this parameter.
2303 * spp_pathmtu - When Path MTU discovery is disabled the value
2304 * specified here will be the "fixed" path mtu.
2305 * Note that if the spp_address field is empty
2306 * then all associations on this address will
2307 * have this fixed path mtu set upon them.
2308 *
2309 * spp_sackdelay - When delayed sack is enabled, this value specifies
2310 * the number of milliseconds that sacks will be delayed
2311 * for. This value will apply to all addresses of an
2312 * association if the spp_address field is empty. Note
2313 * also, that if delayed sack is enabled and this
2314 * value is set to 0, no change is made to the last
2315 * recorded delayed sack timer value.
2316 *
2317 * spp_flags - These flags are used to control various features
2318 * on an association. The flag field may contain
2319 * zero or more of the following options.
2320 *
2321 * SPP_HB_ENABLE - Enable heartbeats on the
2322 * specified address. Note that if the address
2323 * field is empty all addresses for the association
2324 * have heartbeats enabled upon them.
2325 *
2326 * SPP_HB_DISABLE - Disable heartbeats on the
2327 * speicifed address. Note that if the address
2328 * field is empty all addresses for the association
2329 * will have their heartbeats disabled. Note also
2330 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2331 * mutually exclusive, only one of these two should
2332 * be specified. Enabling both fields will have
2333 * undetermined results.
2334 *
2335 * SPP_HB_DEMAND - Request a user initiated heartbeat
2336 * to be made immediately.
2337 *
2338 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2339 * heartbeat delayis to be set to the value of 0
2340 * milliseconds.
2341 *
2342 * SPP_PMTUD_ENABLE - This field will enable PMTU
2343 * discovery upon the specified address. Note that
2344 * if the address feild is empty then all addresses
2345 * on the association are effected.
2346 *
2347 * SPP_PMTUD_DISABLE - This field will disable PMTU
2348 * discovery upon the specified address. Note that
2349 * if the address feild is empty then all addresses
2350 * on the association are effected. Not also that
2351 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2352 * exclusive. Enabling both will have undetermined
2353 * results.
2354 *
2355 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2356 * on delayed sack. The time specified in spp_sackdelay
2357 * is used to specify the sack delay for this address. Note
2358 * that if spp_address is empty then all addresses will
2359 * enable delayed sack and take on the sack delay
2360 * value specified in spp_sackdelay.
2361 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2362 * off delayed sack. If the spp_address field is blank then
2363 * delayed sack is disabled for the entire association. Note
2364 * also that this field is mutually exclusive to
2365 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2366 * results.
2367 */
2368static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2369 struct sctp_transport *trans,
2370 struct sctp_association *asoc,
2371 struct sctp_sock *sp,
2372 int hb_change,
2373 int pmtud_change,
2374 int sackdelay_change)
2375{
2376 int error;
2377
2378 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2379 struct net *net = sock_net(trans->asoc->base.sk);
2380
2381 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2382 if (error)
2383 return error;
2384 }
2385
2386 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2387 * this field is ignored. Note also that a value of zero indicates
2388 * the current setting should be left unchanged.
2389 */
2390 if (params->spp_flags & SPP_HB_ENABLE) {
2391
2392 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2393 * set. This lets us use 0 value when this flag
2394 * is set.
2395 */
2396 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2397 params->spp_hbinterval = 0;
2398
2399 if (params->spp_hbinterval ||
2400 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2401 if (trans) {
2402 trans->hbinterval =
2403 msecs_to_jiffies(params->spp_hbinterval);
2404 } else if (asoc) {
2405 asoc->hbinterval =
2406 msecs_to_jiffies(params->spp_hbinterval);
2407 } else {
2408 sp->hbinterval = params->spp_hbinterval;
2409 }
2410 }
2411 }
2412
2413 if (hb_change) {
2414 if (trans) {
2415 trans->param_flags =
2416 (trans->param_flags & ~SPP_HB) | hb_change;
2417 } else if (asoc) {
2418 asoc->param_flags =
2419 (asoc->param_flags & ~SPP_HB) | hb_change;
2420 } else {
2421 sp->param_flags =
2422 (sp->param_flags & ~SPP_HB) | hb_change;
2423 }
2424 }
2425
2426 /* When Path MTU discovery is disabled the value specified here will
2427 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2428 * include the flag SPP_PMTUD_DISABLE for this field to have any
2429 * effect).
2430 */
2431 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2432 if (trans) {
2433 trans->pathmtu = params->spp_pathmtu;
2434 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2435 } else if (asoc) {
2436 asoc->pathmtu = params->spp_pathmtu;
2437 sctp_frag_point(asoc, params->spp_pathmtu);
2438 } else {
2439 sp->pathmtu = params->spp_pathmtu;
2440 }
2441 }
2442
2443 if (pmtud_change) {
2444 if (trans) {
2445 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2446 (params->spp_flags & SPP_PMTUD_ENABLE);
2447 trans->param_flags =
2448 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2449 if (update) {
2450 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2451 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2452 }
2453 } else if (asoc) {
2454 asoc->param_flags =
2455 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2456 } else {
2457 sp->param_flags =
2458 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2459 }
2460 }
2461
2462 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2463 * value of this field is ignored. Note also that a value of zero
2464 * indicates the current setting should be left unchanged.
2465 */
2466 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2467 if (trans) {
2468 trans->sackdelay =
2469 msecs_to_jiffies(params->spp_sackdelay);
2470 } else if (asoc) {
2471 asoc->sackdelay =
2472 msecs_to_jiffies(params->spp_sackdelay);
2473 } else {
2474 sp->sackdelay = params->spp_sackdelay;
2475 }
2476 }
2477
2478 if (sackdelay_change) {
2479 if (trans) {
2480 trans->param_flags =
2481 (trans->param_flags & ~SPP_SACKDELAY) |
2482 sackdelay_change;
2483 } else if (asoc) {
2484 asoc->param_flags =
2485 (asoc->param_flags & ~SPP_SACKDELAY) |
2486 sackdelay_change;
2487 } else {
2488 sp->param_flags =
2489 (sp->param_flags & ~SPP_SACKDELAY) |
2490 sackdelay_change;
2491 }
2492 }
2493
2494 /* Note that a value of zero indicates the current setting should be
2495 left unchanged.
2496 */
2497 if (params->spp_pathmaxrxt) {
2498 if (trans) {
2499 trans->pathmaxrxt = params->spp_pathmaxrxt;
2500 } else if (asoc) {
2501 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2502 } else {
2503 sp->pathmaxrxt = params->spp_pathmaxrxt;
2504 }
2505 }
2506
2507 return 0;
2508}
2509
2510static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2511 char __user *optval,
2512 unsigned int optlen)
2513{
2514 struct sctp_paddrparams params;
2515 struct sctp_transport *trans = NULL;
2516 struct sctp_association *asoc = NULL;
2517 struct sctp_sock *sp = sctp_sk(sk);
2518 int error;
2519 int hb_change, pmtud_change, sackdelay_change;
2520
2521 if (optlen != sizeof(struct sctp_paddrparams))
2522 return -EINVAL;
2523
2524 if (copy_from_user(¶ms, optval, optlen))
2525 return -EFAULT;
2526
2527 /* Validate flags and value parameters. */
2528 hb_change = params.spp_flags & SPP_HB;
2529 pmtud_change = params.spp_flags & SPP_PMTUD;
2530 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2531
2532 if (hb_change == SPP_HB ||
2533 pmtud_change == SPP_PMTUD ||
2534 sackdelay_change == SPP_SACKDELAY ||
2535 params.spp_sackdelay > 500 ||
2536 (params.spp_pathmtu &&
2537 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2538 return -EINVAL;
2539
2540 /* If an address other than INADDR_ANY is specified, and
2541 * no transport is found, then the request is invalid.
2542 */
2543 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2544 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2545 params.spp_assoc_id);
2546 if (!trans)
2547 return -EINVAL;
2548 }
2549
2550 /* Get association, if assoc_id != 0 and the socket is a one
2551 * to many style socket, and an association was not found, then
2552 * the id was invalid.
2553 */
2554 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2555 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2556 return -EINVAL;
2557
2558 /* Heartbeat demand can only be sent on a transport or
2559 * association, but not a socket.
2560 */
2561 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2562 return -EINVAL;
2563
2564 /* Process parameters. */
2565 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2566 hb_change, pmtud_change,
2567 sackdelay_change);
2568
2569 if (error)
2570 return error;
2571
2572 /* If changes are for association, also apply parameters to each
2573 * transport.
2574 */
2575 if (!trans && asoc) {
2576 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2577 transports) {
2578 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2579 hb_change, pmtud_change,
2580 sackdelay_change);
2581 }
2582 }
2583
2584 return 0;
2585}
2586
2587static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2588{
2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2590}
2591
2592static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2593{
2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2595}
2596
2597/*
2598 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2599 *
2600 * This option will effect the way delayed acks are performed. This
2601 * option allows you to get or set the delayed ack time, in
2602 * milliseconds. It also allows changing the delayed ack frequency.
2603 * Changing the frequency to 1 disables the delayed sack algorithm. If
2604 * the assoc_id is 0, then this sets or gets the endpoints default
2605 * values. If the assoc_id field is non-zero, then the set or get
2606 * effects the specified association for the one to many model (the
2607 * assoc_id field is ignored by the one to one model). Note that if
2608 * sack_delay or sack_freq are 0 when setting this option, then the
2609 * current values will remain unchanged.
2610 *
2611 * struct sctp_sack_info {
2612 * sctp_assoc_t sack_assoc_id;
2613 * uint32_t sack_delay;
2614 * uint32_t sack_freq;
2615 * };
2616 *
2617 * sack_assoc_id - This parameter, indicates which association the user
2618 * is performing an action upon. Note that if this field's value is
2619 * zero then the endpoints default value is changed (effecting future
2620 * associations only).
2621 *
2622 * sack_delay - This parameter contains the number of milliseconds that
2623 * the user is requesting the delayed ACK timer be set to. Note that
2624 * this value is defined in the standard to be between 200 and 500
2625 * milliseconds.
2626 *
2627 * sack_freq - This parameter contains the number of packets that must
2628 * be received before a sack is sent without waiting for the delay
2629 * timer to expire. The default value for this is 2, setting this
2630 * value to 1 will disable the delayed sack algorithm.
2631 */
2632
2633static int sctp_setsockopt_delayed_ack(struct sock *sk,
2634 char __user *optval, unsigned int optlen)
2635{
2636 struct sctp_sack_info params;
2637 struct sctp_transport *trans = NULL;
2638 struct sctp_association *asoc = NULL;
2639 struct sctp_sock *sp = sctp_sk(sk);
2640
2641 if (optlen == sizeof(struct sctp_sack_info)) {
2642 if (copy_from_user(¶ms, optval, optlen))
2643 return -EFAULT;
2644
2645 if (params.sack_delay == 0 && params.sack_freq == 0)
2646 return 0;
2647 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2648 pr_warn_ratelimited(DEPRECATED
2649 "%s (pid %d) "
2650 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2651 "Use struct sctp_sack_info instead\n",
2652 current->comm, task_pid_nr(current));
2653 if (copy_from_user(¶ms, optval, optlen))
2654 return -EFAULT;
2655
2656 if (params.sack_delay == 0)
2657 params.sack_freq = 1;
2658 else
2659 params.sack_freq = 0;
2660 } else
2661 return -EINVAL;
2662
2663 /* Validate value parameter. */
2664 if (params.sack_delay > 500)
2665 return -EINVAL;
2666
2667 /* Get association, if sack_assoc_id != 0 and the socket is a one
2668 * to many style socket, and an association was not found, then
2669 * the id was invalid.
2670 */
2671 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2672 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2673 return -EINVAL;
2674
2675 if (params.sack_delay) {
2676 if (asoc) {
2677 asoc->sackdelay =
2678 msecs_to_jiffies(params.sack_delay);
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackdelay = params.sack_delay;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 if (params.sack_freq == 1) {
2689 if (asoc) {
2690 asoc->param_flags =
2691 sctp_spp_sackdelay_disable(asoc->param_flags);
2692 } else {
2693 sp->param_flags =
2694 sctp_spp_sackdelay_disable(sp->param_flags);
2695 }
2696 } else if (params.sack_freq > 1) {
2697 if (asoc) {
2698 asoc->sackfreq = params.sack_freq;
2699 asoc->param_flags =
2700 sctp_spp_sackdelay_enable(asoc->param_flags);
2701 } else {
2702 sp->sackfreq = params.sack_freq;
2703 sp->param_flags =
2704 sctp_spp_sackdelay_enable(sp->param_flags);
2705 }
2706 }
2707
2708 /* If change is for association, also apply to each transport. */
2709 if (asoc) {
2710 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2711 transports) {
2712 if (params.sack_delay) {
2713 trans->sackdelay =
2714 msecs_to_jiffies(params.sack_delay);
2715 trans->param_flags =
2716 sctp_spp_sackdelay_enable(trans->param_flags);
2717 }
2718 if (params.sack_freq == 1) {
2719 trans->param_flags =
2720 sctp_spp_sackdelay_disable(trans->param_flags);
2721 } else if (params.sack_freq > 1) {
2722 trans->sackfreq = params.sack_freq;
2723 trans->param_flags =
2724 sctp_spp_sackdelay_enable(trans->param_flags);
2725 }
2726 }
2727 }
2728
2729 return 0;
2730}
2731
2732/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2733 *
2734 * Applications can specify protocol parameters for the default association
2735 * initialization. The option name argument to setsockopt() and getsockopt()
2736 * is SCTP_INITMSG.
2737 *
2738 * Setting initialization parameters is effective only on an unconnected
2739 * socket (for UDP-style sockets only future associations are effected
2740 * by the change). With TCP-style sockets, this option is inherited by
2741 * sockets derived from a listener socket.
2742 */
2743static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2744{
2745 struct sctp_initmsg sinit;
2746 struct sctp_sock *sp = sctp_sk(sk);
2747
2748 if (optlen != sizeof(struct sctp_initmsg))
2749 return -EINVAL;
2750 if (copy_from_user(&sinit, optval, optlen))
2751 return -EFAULT;
2752
2753 if (sinit.sinit_num_ostreams)
2754 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2755 if (sinit.sinit_max_instreams)
2756 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2757 if (sinit.sinit_max_attempts)
2758 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2759 if (sinit.sinit_max_init_timeo)
2760 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2761
2762 return 0;
2763}
2764
2765/*
2766 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2767 *
2768 * Applications that wish to use the sendto() system call may wish to
2769 * specify a default set of parameters that would normally be supplied
2770 * through the inclusion of ancillary data. This socket option allows
2771 * such an application to set the default sctp_sndrcvinfo structure.
2772 * The application that wishes to use this socket option simply passes
2773 * in to this call the sctp_sndrcvinfo structure defined in Section
2774 * 5.2.2) The input parameters accepted by this call include
2775 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2776 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2777 * to this call if the caller is using the UDP model.
2778 */
2779static int sctp_setsockopt_default_send_param(struct sock *sk,
2780 char __user *optval,
2781 unsigned int optlen)
2782{
2783 struct sctp_sock *sp = sctp_sk(sk);
2784 struct sctp_association *asoc;
2785 struct sctp_sndrcvinfo info;
2786
2787 if (optlen != sizeof(info))
2788 return -EINVAL;
2789 if (copy_from_user(&info, optval, optlen))
2790 return -EFAULT;
2791 if (info.sinfo_flags &
2792 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2793 SCTP_ABORT | SCTP_EOF))
2794 return -EINVAL;
2795
2796 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2797 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2798 return -EINVAL;
2799 if (asoc) {
2800 asoc->default_stream = info.sinfo_stream;
2801 asoc->default_flags = info.sinfo_flags;
2802 asoc->default_ppid = info.sinfo_ppid;
2803 asoc->default_context = info.sinfo_context;
2804 asoc->default_timetolive = info.sinfo_timetolive;
2805 } else {
2806 sp->default_stream = info.sinfo_stream;
2807 sp->default_flags = info.sinfo_flags;
2808 sp->default_ppid = info.sinfo_ppid;
2809 sp->default_context = info.sinfo_context;
2810 sp->default_timetolive = info.sinfo_timetolive;
2811 }
2812
2813 return 0;
2814}
2815
2816/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2817 * (SCTP_DEFAULT_SNDINFO)
2818 */
2819static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2820 char __user *optval,
2821 unsigned int optlen)
2822{
2823 struct sctp_sock *sp = sctp_sk(sk);
2824 struct sctp_association *asoc;
2825 struct sctp_sndinfo info;
2826
2827 if (optlen != sizeof(info))
2828 return -EINVAL;
2829 if (copy_from_user(&info, optval, optlen))
2830 return -EFAULT;
2831 if (info.snd_flags &
2832 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2833 SCTP_ABORT | SCTP_EOF))
2834 return -EINVAL;
2835
2836 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2837 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2838 return -EINVAL;
2839 if (asoc) {
2840 asoc->default_stream = info.snd_sid;
2841 asoc->default_flags = info.snd_flags;
2842 asoc->default_ppid = info.snd_ppid;
2843 asoc->default_context = info.snd_context;
2844 } else {
2845 sp->default_stream = info.snd_sid;
2846 sp->default_flags = info.snd_flags;
2847 sp->default_ppid = info.snd_ppid;
2848 sp->default_context = info.snd_context;
2849 }
2850
2851 return 0;
2852}
2853
2854/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2855 *
2856 * Requests that the local SCTP stack use the enclosed peer address as
2857 * the association primary. The enclosed address must be one of the
2858 * association peer's addresses.
2859 */
2860static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2861 unsigned int optlen)
2862{
2863 struct sctp_prim prim;
2864 struct sctp_transport *trans;
2865
2866 if (optlen != sizeof(struct sctp_prim))
2867 return -EINVAL;
2868
2869 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2870 return -EFAULT;
2871
2872 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2873 if (!trans)
2874 return -EINVAL;
2875
2876 sctp_assoc_set_primary(trans->asoc, trans);
2877
2878 return 0;
2879}
2880
2881/*
2882 * 7.1.5 SCTP_NODELAY
2883 *
2884 * Turn on/off any Nagle-like algorithm. This means that packets are
2885 * generally sent as soon as possible and no unnecessary delays are
2886 * introduced, at the cost of more packets in the network. Expects an
2887 * integer boolean flag.
2888 */
2889static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2890 unsigned int optlen)
2891{
2892 int val;
2893
2894 if (optlen < sizeof(int))
2895 return -EINVAL;
2896 if (get_user(val, (int __user *)optval))
2897 return -EFAULT;
2898
2899 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2900 return 0;
2901}
2902
2903/*
2904 *
2905 * 7.1.1 SCTP_RTOINFO
2906 *
2907 * The protocol parameters used to initialize and bound retransmission
2908 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2909 * and modify these parameters.
2910 * All parameters are time values, in milliseconds. A value of 0, when
2911 * modifying the parameters, indicates that the current value should not
2912 * be changed.
2913 *
2914 */
2915static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2916{
2917 struct sctp_rtoinfo rtoinfo;
2918 struct sctp_association *asoc;
2919 unsigned long rto_min, rto_max;
2920 struct sctp_sock *sp = sctp_sk(sk);
2921
2922 if (optlen != sizeof (struct sctp_rtoinfo))
2923 return -EINVAL;
2924
2925 if (copy_from_user(&rtoinfo, optval, optlen))
2926 return -EFAULT;
2927
2928 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2929
2930 /* Set the values to the specific association */
2931 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2932 return -EINVAL;
2933
2934 rto_max = rtoinfo.srto_max;
2935 rto_min = rtoinfo.srto_min;
2936
2937 if (rto_max)
2938 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2939 else
2940 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2941
2942 if (rto_min)
2943 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2944 else
2945 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2946
2947 if (rto_min > rto_max)
2948 return -EINVAL;
2949
2950 if (asoc) {
2951 if (rtoinfo.srto_initial != 0)
2952 asoc->rto_initial =
2953 msecs_to_jiffies(rtoinfo.srto_initial);
2954 asoc->rto_max = rto_max;
2955 asoc->rto_min = rto_min;
2956 } else {
2957 /* If there is no association or the association-id = 0
2958 * set the values to the endpoint.
2959 */
2960 if (rtoinfo.srto_initial != 0)
2961 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2962 sp->rtoinfo.srto_max = rto_max;
2963 sp->rtoinfo.srto_min = rto_min;
2964 }
2965
2966 return 0;
2967}
2968
2969/*
2970 *
2971 * 7.1.2 SCTP_ASSOCINFO
2972 *
2973 * This option is used to tune the maximum retransmission attempts
2974 * of the association.
2975 * Returns an error if the new association retransmission value is
2976 * greater than the sum of the retransmission value of the peer.
2977 * See [SCTP] for more information.
2978 *
2979 */
2980static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2981{
2982
2983 struct sctp_assocparams assocparams;
2984 struct sctp_association *asoc;
2985
2986 if (optlen != sizeof(struct sctp_assocparams))
2987 return -EINVAL;
2988 if (copy_from_user(&assocparams, optval, optlen))
2989 return -EFAULT;
2990
2991 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2992
2993 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2994 return -EINVAL;
2995
2996 /* Set the values to the specific association */
2997 if (asoc) {
2998 if (assocparams.sasoc_asocmaxrxt != 0) {
2999 __u32 path_sum = 0;
3000 int paths = 0;
3001 struct sctp_transport *peer_addr;
3002
3003 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3004 transports) {
3005 path_sum += peer_addr->pathmaxrxt;
3006 paths++;
3007 }
3008
3009 /* Only validate asocmaxrxt if we have more than
3010 * one path/transport. We do this because path
3011 * retransmissions are only counted when we have more
3012 * then one path.
3013 */
3014 if (paths > 1 &&
3015 assocparams.sasoc_asocmaxrxt > path_sum)
3016 return -EINVAL;
3017
3018 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3019 }
3020
3021 if (assocparams.sasoc_cookie_life != 0)
3022 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3023 } else {
3024 /* Set the values to the endpoint */
3025 struct sctp_sock *sp = sctp_sk(sk);
3026
3027 if (assocparams.sasoc_asocmaxrxt != 0)
3028 sp->assocparams.sasoc_asocmaxrxt =
3029 assocparams.sasoc_asocmaxrxt;
3030 if (assocparams.sasoc_cookie_life != 0)
3031 sp->assocparams.sasoc_cookie_life =
3032 assocparams.sasoc_cookie_life;
3033 }
3034 return 0;
3035}
3036
3037/*
3038 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3039 *
3040 * This socket option is a boolean flag which turns on or off mapped V4
3041 * addresses. If this option is turned on and the socket is type
3042 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3043 * If this option is turned off, then no mapping will be done of V4
3044 * addresses and a user will receive both PF_INET6 and PF_INET type
3045 * addresses on the socket.
3046 */
3047static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3048{
3049 int val;
3050 struct sctp_sock *sp = sctp_sk(sk);
3051
3052 if (optlen < sizeof(int))
3053 return -EINVAL;
3054 if (get_user(val, (int __user *)optval))
3055 return -EFAULT;
3056 if (val)
3057 sp->v4mapped = 1;
3058 else
3059 sp->v4mapped = 0;
3060
3061 return 0;
3062}
3063
3064/*
3065 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3066 * This option will get or set the maximum size to put in any outgoing
3067 * SCTP DATA chunk. If a message is larger than this size it will be
3068 * fragmented by SCTP into the specified size. Note that the underlying
3069 * SCTP implementation may fragment into smaller sized chunks when the
3070 * PMTU of the underlying association is smaller than the value set by
3071 * the user. The default value for this option is '0' which indicates
3072 * the user is NOT limiting fragmentation and only the PMTU will effect
3073 * SCTP's choice of DATA chunk size. Note also that values set larger
3074 * than the maximum size of an IP datagram will effectively let SCTP
3075 * control fragmentation (i.e. the same as setting this option to 0).
3076 *
3077 * The following structure is used to access and modify this parameter:
3078 *
3079 * struct sctp_assoc_value {
3080 * sctp_assoc_t assoc_id;
3081 * uint32_t assoc_value;
3082 * };
3083 *
3084 * assoc_id: This parameter is ignored for one-to-one style sockets.
3085 * For one-to-many style sockets this parameter indicates which
3086 * association the user is performing an action upon. Note that if
3087 * this field's value is zero then the endpoints default value is
3088 * changed (effecting future associations only).
3089 * assoc_value: This parameter specifies the maximum size in bytes.
3090 */
3091static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3092{
3093 struct sctp_assoc_value params;
3094 struct sctp_association *asoc;
3095 struct sctp_sock *sp = sctp_sk(sk);
3096 int val;
3097
3098 if (optlen == sizeof(int)) {
3099 pr_warn_ratelimited(DEPRECATED
3100 "%s (pid %d) "
3101 "Use of int in maxseg socket option.\n"
3102 "Use struct sctp_assoc_value instead\n",
3103 current->comm, task_pid_nr(current));
3104 if (copy_from_user(&val, optval, optlen))
3105 return -EFAULT;
3106 params.assoc_id = 0;
3107 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3108 if (copy_from_user(¶ms, optval, optlen))
3109 return -EFAULT;
3110 val = params.assoc_value;
3111 } else
3112 return -EINVAL;
3113
3114 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3115 return -EINVAL;
3116
3117 asoc = sctp_id2assoc(sk, params.assoc_id);
3118 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3119 return -EINVAL;
3120
3121 if (asoc) {
3122 if (val == 0) {
3123 val = asoc->pathmtu;
3124 val -= sp->pf->af->net_header_len;
3125 val -= sizeof(struct sctphdr) +
3126 sizeof(struct sctp_data_chunk);
3127 }
3128 asoc->user_frag = val;
3129 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3130 } else {
3131 sp->user_frag = val;
3132 }
3133
3134 return 0;
3135}
3136
3137
3138/*
3139 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3140 *
3141 * Requests that the peer mark the enclosed address as the association
3142 * primary. The enclosed address must be one of the association's
3143 * locally bound addresses. The following structure is used to make a
3144 * set primary request:
3145 */
3146static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3147 unsigned int optlen)
3148{
3149 struct net *net = sock_net(sk);
3150 struct sctp_sock *sp;
3151 struct sctp_association *asoc = NULL;
3152 struct sctp_setpeerprim prim;
3153 struct sctp_chunk *chunk;
3154 struct sctp_af *af;
3155 int err;
3156
3157 sp = sctp_sk(sk);
3158
3159 if (!net->sctp.addip_enable)
3160 return -EPERM;
3161
3162 if (optlen != sizeof(struct sctp_setpeerprim))
3163 return -EINVAL;
3164
3165 if (copy_from_user(&prim, optval, optlen))
3166 return -EFAULT;
3167
3168 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3169 if (!asoc)
3170 return -EINVAL;
3171
3172 if (!asoc->peer.asconf_capable)
3173 return -EPERM;
3174
3175 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3176 return -EPERM;
3177
3178 if (!sctp_state(asoc, ESTABLISHED))
3179 return -ENOTCONN;
3180
3181 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3182 if (!af)
3183 return -EINVAL;
3184
3185 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3186 return -EADDRNOTAVAIL;
3187
3188 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3189 return -EADDRNOTAVAIL;
3190
3191 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3192 chunk = sctp_make_asconf_set_prim(asoc,
3193 (union sctp_addr *)&prim.sspp_addr);
3194 if (!chunk)
3195 return -ENOMEM;
3196
3197 err = sctp_send_asconf(asoc, chunk);
3198
3199 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3200
3201 return err;
3202}
3203
3204static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3205 unsigned int optlen)
3206{
3207 struct sctp_setadaptation adaptation;
3208
3209 if (optlen != sizeof(struct sctp_setadaptation))
3210 return -EINVAL;
3211 if (copy_from_user(&adaptation, optval, optlen))
3212 return -EFAULT;
3213
3214 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3215
3216 return 0;
3217}
3218
3219/*
3220 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3221 *
3222 * The context field in the sctp_sndrcvinfo structure is normally only
3223 * used when a failed message is retrieved holding the value that was
3224 * sent down on the actual send call. This option allows the setting of
3225 * a default context on an association basis that will be received on
3226 * reading messages from the peer. This is especially helpful in the
3227 * one-2-many model for an application to keep some reference to an
3228 * internal state machine that is processing messages on the
3229 * association. Note that the setting of this value only effects
3230 * received messages from the peer and does not effect the value that is
3231 * saved with outbound messages.
3232 */
3233static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3234 unsigned int optlen)
3235{
3236 struct sctp_assoc_value params;
3237 struct sctp_sock *sp;
3238 struct sctp_association *asoc;
3239
3240 if (optlen != sizeof(struct sctp_assoc_value))
3241 return -EINVAL;
3242 if (copy_from_user(¶ms, optval, optlen))
3243 return -EFAULT;
3244
3245 sp = sctp_sk(sk);
3246
3247 if (params.assoc_id != 0) {
3248 asoc = sctp_id2assoc(sk, params.assoc_id);
3249 if (!asoc)
3250 return -EINVAL;
3251 asoc->default_rcv_context = params.assoc_value;
3252 } else {
3253 sp->default_rcv_context = params.assoc_value;
3254 }
3255
3256 return 0;
3257}
3258
3259/*
3260 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3261 *
3262 * This options will at a minimum specify if the implementation is doing
3263 * fragmented interleave. Fragmented interleave, for a one to many
3264 * socket, is when subsequent calls to receive a message may return
3265 * parts of messages from different associations. Some implementations
3266 * may allow you to turn this value on or off. If so, when turned off,
3267 * no fragment interleave will occur (which will cause a head of line
3268 * blocking amongst multiple associations sharing the same one to many
3269 * socket). When this option is turned on, then each receive call may
3270 * come from a different association (thus the user must receive data
3271 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3272 * association each receive belongs to.
3273 *
3274 * This option takes a boolean value. A non-zero value indicates that
3275 * fragmented interleave is on. A value of zero indicates that
3276 * fragmented interleave is off.
3277 *
3278 * Note that it is important that an implementation that allows this
3279 * option to be turned on, have it off by default. Otherwise an unaware
3280 * application using the one to many model may become confused and act
3281 * incorrectly.
3282 */
3283static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3284 char __user *optval,
3285 unsigned int optlen)
3286{
3287 int val;
3288
3289 if (optlen != sizeof(int))
3290 return -EINVAL;
3291 if (get_user(val, (int __user *)optval))
3292 return -EFAULT;
3293
3294 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3295
3296 return 0;
3297}
3298
3299/*
3300 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3301 * (SCTP_PARTIAL_DELIVERY_POINT)
3302 *
3303 * This option will set or get the SCTP partial delivery point. This
3304 * point is the size of a message where the partial delivery API will be
3305 * invoked to help free up rwnd space for the peer. Setting this to a
3306 * lower value will cause partial deliveries to happen more often. The
3307 * calls argument is an integer that sets or gets the partial delivery
3308 * point. Note also that the call will fail if the user attempts to set
3309 * this value larger than the socket receive buffer size.
3310 *
3311 * Note that any single message having a length smaller than or equal to
3312 * the SCTP partial delivery point will be delivered in one single read
3313 * call as long as the user provided buffer is large enough to hold the
3314 * message.
3315 */
3316static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3317 char __user *optval,
3318 unsigned int optlen)
3319{
3320 u32 val;
3321
3322 if (optlen != sizeof(u32))
3323 return -EINVAL;
3324 if (get_user(val, (int __user *)optval))
3325 return -EFAULT;
3326
3327 /* Note: We double the receive buffer from what the user sets
3328 * it to be, also initial rwnd is based on rcvbuf/2.
3329 */
3330 if (val > (sk->sk_rcvbuf >> 1))
3331 return -EINVAL;
3332
3333 sctp_sk(sk)->pd_point = val;
3334
3335 return 0; /* is this the right error code? */
3336}
3337
3338/*
3339 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3340 *
3341 * This option will allow a user to change the maximum burst of packets
3342 * that can be emitted by this association. Note that the default value
3343 * is 4, and some implementations may restrict this setting so that it
3344 * can only be lowered.
3345 *
3346 * NOTE: This text doesn't seem right. Do this on a socket basis with
3347 * future associations inheriting the socket value.
3348 */
3349static int sctp_setsockopt_maxburst(struct sock *sk,
3350 char __user *optval,
3351 unsigned int optlen)
3352{
3353 struct sctp_assoc_value params;
3354 struct sctp_sock *sp;
3355 struct sctp_association *asoc;
3356 int val;
3357 int assoc_id = 0;
3358
3359 if (optlen == sizeof(int)) {
3360 pr_warn_ratelimited(DEPRECATED
3361 "%s (pid %d) "
3362 "Use of int in max_burst socket option deprecated.\n"
3363 "Use struct sctp_assoc_value instead\n",
3364 current->comm, task_pid_nr(current));
3365 if (copy_from_user(&val, optval, optlen))
3366 return -EFAULT;
3367 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3368 if (copy_from_user(¶ms, optval, optlen))
3369 return -EFAULT;
3370 val = params.assoc_value;
3371 assoc_id = params.assoc_id;
3372 } else
3373 return -EINVAL;
3374
3375 sp = sctp_sk(sk);
3376
3377 if (assoc_id != 0) {
3378 asoc = sctp_id2assoc(sk, assoc_id);
3379 if (!asoc)
3380 return -EINVAL;
3381 asoc->max_burst = val;
3382 } else
3383 sp->max_burst = val;
3384
3385 return 0;
3386}
3387
3388/*
3389 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3390 *
3391 * This set option adds a chunk type that the user is requesting to be
3392 * received only in an authenticated way. Changes to the list of chunks
3393 * will only effect future associations on the socket.
3394 */
3395static int sctp_setsockopt_auth_chunk(struct sock *sk,
3396 char __user *optval,
3397 unsigned int optlen)
3398{
3399 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3400 struct sctp_authchunk val;
3401
3402 if (!ep->auth_enable)
3403 return -EACCES;
3404
3405 if (optlen != sizeof(struct sctp_authchunk))
3406 return -EINVAL;
3407 if (copy_from_user(&val, optval, optlen))
3408 return -EFAULT;
3409
3410 switch (val.sauth_chunk) {
3411 case SCTP_CID_INIT:
3412 case SCTP_CID_INIT_ACK:
3413 case SCTP_CID_SHUTDOWN_COMPLETE:
3414 case SCTP_CID_AUTH:
3415 return -EINVAL;
3416 }
3417
3418 /* add this chunk id to the endpoint */
3419 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3420}
3421
3422/*
3423 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3424 *
3425 * This option gets or sets the list of HMAC algorithms that the local
3426 * endpoint requires the peer to use.
3427 */
3428static int sctp_setsockopt_hmac_ident(struct sock *sk,
3429 char __user *optval,
3430 unsigned int optlen)
3431{
3432 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3433 struct sctp_hmacalgo *hmacs;
3434 u32 idents;
3435 int err;
3436
3437 if (!ep->auth_enable)
3438 return -EACCES;
3439
3440 if (optlen < sizeof(struct sctp_hmacalgo))
3441 return -EINVAL;
3442
3443 hmacs = memdup_user(optval, optlen);
3444 if (IS_ERR(hmacs))
3445 return PTR_ERR(hmacs);
3446
3447 idents = hmacs->shmac_num_idents;
3448 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3449 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3450 err = -EINVAL;
3451 goto out;
3452 }
3453
3454 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3455out:
3456 kfree(hmacs);
3457 return err;
3458}
3459
3460/*
3461 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3462 *
3463 * This option will set a shared secret key which is used to build an
3464 * association shared key.
3465 */
3466static int sctp_setsockopt_auth_key(struct sock *sk,
3467 char __user *optval,
3468 unsigned int optlen)
3469{
3470 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3471 struct sctp_authkey *authkey;
3472 struct sctp_association *asoc;
3473 int ret;
3474
3475 if (!ep->auth_enable)
3476 return -EACCES;
3477
3478 if (optlen <= sizeof(struct sctp_authkey))
3479 return -EINVAL;
3480
3481 authkey = memdup_user(optval, optlen);
3482 if (IS_ERR(authkey))
3483 return PTR_ERR(authkey);
3484
3485 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3486 ret = -EINVAL;
3487 goto out;
3488 }
3489
3490 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3491 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3492 ret = -EINVAL;
3493 goto out;
3494 }
3495
3496 ret = sctp_auth_set_key(ep, asoc, authkey);
3497out:
3498 kzfree(authkey);
3499 return ret;
3500}
3501
3502/*
3503 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3504 *
3505 * This option will get or set the active shared key to be used to build
3506 * the association shared key.
3507 */
3508static int sctp_setsockopt_active_key(struct sock *sk,
3509 char __user *optval,
3510 unsigned int optlen)
3511{
3512 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3513 struct sctp_authkeyid val;
3514 struct sctp_association *asoc;
3515
3516 if (!ep->auth_enable)
3517 return -EACCES;
3518
3519 if (optlen != sizeof(struct sctp_authkeyid))
3520 return -EINVAL;
3521 if (copy_from_user(&val, optval, optlen))
3522 return -EFAULT;
3523
3524 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3525 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3526 return -EINVAL;
3527
3528 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3529}
3530
3531/*
3532 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3533 *
3534 * This set option will delete a shared secret key from use.
3535 */
3536static int sctp_setsockopt_del_key(struct sock *sk,
3537 char __user *optval,
3538 unsigned int optlen)
3539{
3540 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3541 struct sctp_authkeyid val;
3542 struct sctp_association *asoc;
3543
3544 if (!ep->auth_enable)
3545 return -EACCES;
3546
3547 if (optlen != sizeof(struct sctp_authkeyid))
3548 return -EINVAL;
3549 if (copy_from_user(&val, optval, optlen))
3550 return -EFAULT;
3551
3552 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3553 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3554 return -EINVAL;
3555
3556 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3557
3558}
3559
3560/*
3561 * 8.1.23 SCTP_AUTO_ASCONF
3562 *
3563 * This option will enable or disable the use of the automatic generation of
3564 * ASCONF chunks to add and delete addresses to an existing association. Note
3565 * that this option has two caveats namely: a) it only affects sockets that
3566 * are bound to all addresses available to the SCTP stack, and b) the system
3567 * administrator may have an overriding control that turns the ASCONF feature
3568 * off no matter what setting the socket option may have.
3569 * This option expects an integer boolean flag, where a non-zero value turns on
3570 * the option, and a zero value turns off the option.
3571 * Note. In this implementation, socket operation overrides default parameter
3572 * being set by sysctl as well as FreeBSD implementation
3573 */
3574static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3575 unsigned int optlen)
3576{
3577 int val;
3578 struct sctp_sock *sp = sctp_sk(sk);
3579
3580 if (optlen < sizeof(int))
3581 return -EINVAL;
3582 if (get_user(val, (int __user *)optval))
3583 return -EFAULT;
3584 if (!sctp_is_ep_boundall(sk) && val)
3585 return -EINVAL;
3586 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3587 return 0;
3588
3589 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3590 if (val == 0 && sp->do_auto_asconf) {
3591 list_del(&sp->auto_asconf_list);
3592 sp->do_auto_asconf = 0;
3593 } else if (val && !sp->do_auto_asconf) {
3594 list_add_tail(&sp->auto_asconf_list,
3595 &sock_net(sk)->sctp.auto_asconf_splist);
3596 sp->do_auto_asconf = 1;
3597 }
3598 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3599 return 0;
3600}
3601
3602/*
3603 * SCTP_PEER_ADDR_THLDS
3604 *
3605 * This option allows us to alter the partially failed threshold for one or all
3606 * transports in an association. See Section 6.1 of:
3607 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3608 */
3609static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3610 char __user *optval,
3611 unsigned int optlen)
3612{
3613 struct sctp_paddrthlds val;
3614 struct sctp_transport *trans;
3615 struct sctp_association *asoc;
3616
3617 if (optlen < sizeof(struct sctp_paddrthlds))
3618 return -EINVAL;
3619 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3620 sizeof(struct sctp_paddrthlds)))
3621 return -EFAULT;
3622
3623
3624 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3625 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3626 if (!asoc)
3627 return -ENOENT;
3628 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3629 transports) {
3630 if (val.spt_pathmaxrxt)
3631 trans->pathmaxrxt = val.spt_pathmaxrxt;
3632 trans->pf_retrans = val.spt_pathpfthld;
3633 }
3634
3635 if (val.spt_pathmaxrxt)
3636 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3637 asoc->pf_retrans = val.spt_pathpfthld;
3638 } else {
3639 trans = sctp_addr_id2transport(sk, &val.spt_address,
3640 val.spt_assoc_id);
3641 if (!trans)
3642 return -ENOENT;
3643
3644 if (val.spt_pathmaxrxt)
3645 trans->pathmaxrxt = val.spt_pathmaxrxt;
3646 trans->pf_retrans = val.spt_pathpfthld;
3647 }
3648
3649 return 0;
3650}
3651
3652static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3653 char __user *optval,
3654 unsigned int optlen)
3655{
3656 int val;
3657
3658 if (optlen < sizeof(int))
3659 return -EINVAL;
3660 if (get_user(val, (int __user *) optval))
3661 return -EFAULT;
3662
3663 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3664
3665 return 0;
3666}
3667
3668static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3669 char __user *optval,
3670 unsigned int optlen)
3671{
3672 int val;
3673
3674 if (optlen < sizeof(int))
3675 return -EINVAL;
3676 if (get_user(val, (int __user *) optval))
3677 return -EFAULT;
3678
3679 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3680
3681 return 0;
3682}
3683
3684static int sctp_setsockopt_pr_supported(struct sock *sk,
3685 char __user *optval,
3686 unsigned int optlen)
3687{
3688 struct sctp_assoc_value params;
3689 struct sctp_association *asoc;
3690 int retval = -EINVAL;
3691
3692 if (optlen != sizeof(params))
3693 goto out;
3694
3695 if (copy_from_user(¶ms, optval, optlen)) {
3696 retval = -EFAULT;
3697 goto out;
3698 }
3699
3700 asoc = sctp_id2assoc(sk, params.assoc_id);
3701 if (asoc) {
3702 asoc->prsctp_enable = !!params.assoc_value;
3703 } else if (!params.assoc_id) {
3704 struct sctp_sock *sp = sctp_sk(sk);
3705
3706 sp->ep->prsctp_enable = !!params.assoc_value;
3707 } else {
3708 goto out;
3709 }
3710
3711 retval = 0;
3712
3713out:
3714 return retval;
3715}
3716
3717static int sctp_setsockopt_default_prinfo(struct sock *sk,
3718 char __user *optval,
3719 unsigned int optlen)
3720{
3721 struct sctp_default_prinfo info;
3722 struct sctp_association *asoc;
3723 int retval = -EINVAL;
3724
3725 if (optlen != sizeof(info))
3726 goto out;
3727
3728 if (copy_from_user(&info, optval, sizeof(info))) {
3729 retval = -EFAULT;
3730 goto out;
3731 }
3732
3733 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3734 goto out;
3735
3736 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3737 info.pr_value = 0;
3738
3739 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3740 if (asoc) {
3741 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3742 asoc->default_timetolive = info.pr_value;
3743 } else if (!info.pr_assoc_id) {
3744 struct sctp_sock *sp = sctp_sk(sk);
3745
3746 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3747 sp->default_timetolive = info.pr_value;
3748 } else {
3749 goto out;
3750 }
3751
3752 retval = 0;
3753
3754out:
3755 return retval;
3756}
3757
3758/* API 6.2 setsockopt(), getsockopt()
3759 *
3760 * Applications use setsockopt() and getsockopt() to set or retrieve
3761 * socket options. Socket options are used to change the default
3762 * behavior of sockets calls. They are described in Section 7.
3763 *
3764 * The syntax is:
3765 *
3766 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3767 * int __user *optlen);
3768 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3769 * int optlen);
3770 *
3771 * sd - the socket descript.
3772 * level - set to IPPROTO_SCTP for all SCTP options.
3773 * optname - the option name.
3774 * optval - the buffer to store the value of the option.
3775 * optlen - the size of the buffer.
3776 */
3777static int sctp_setsockopt(struct sock *sk, int level, int optname,
3778 char __user *optval, unsigned int optlen)
3779{
3780 int retval = 0;
3781
3782 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3783
3784 /* I can hardly begin to describe how wrong this is. This is
3785 * so broken as to be worse than useless. The API draft
3786 * REALLY is NOT helpful here... I am not convinced that the
3787 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3788 * are at all well-founded.
3789 */
3790 if (level != SOL_SCTP) {
3791 struct sctp_af *af = sctp_sk(sk)->pf->af;
3792 retval = af->setsockopt(sk, level, optname, optval, optlen);
3793 goto out_nounlock;
3794 }
3795
3796 lock_sock(sk);
3797
3798 switch (optname) {
3799 case SCTP_SOCKOPT_BINDX_ADD:
3800 /* 'optlen' is the size of the addresses buffer. */
3801 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3802 optlen, SCTP_BINDX_ADD_ADDR);
3803 break;
3804
3805 case SCTP_SOCKOPT_BINDX_REM:
3806 /* 'optlen' is the size of the addresses buffer. */
3807 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3808 optlen, SCTP_BINDX_REM_ADDR);
3809 break;
3810
3811 case SCTP_SOCKOPT_CONNECTX_OLD:
3812 /* 'optlen' is the size of the addresses buffer. */
3813 retval = sctp_setsockopt_connectx_old(sk,
3814 (struct sockaddr __user *)optval,
3815 optlen);
3816 break;
3817
3818 case SCTP_SOCKOPT_CONNECTX:
3819 /* 'optlen' is the size of the addresses buffer. */
3820 retval = sctp_setsockopt_connectx(sk,
3821 (struct sockaddr __user *)optval,
3822 optlen);
3823 break;
3824
3825 case SCTP_DISABLE_FRAGMENTS:
3826 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3827 break;
3828
3829 case SCTP_EVENTS:
3830 retval = sctp_setsockopt_events(sk, optval, optlen);
3831 break;
3832
3833 case SCTP_AUTOCLOSE:
3834 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3835 break;
3836
3837 case SCTP_PEER_ADDR_PARAMS:
3838 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3839 break;
3840
3841 case SCTP_DELAYED_SACK:
3842 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3843 break;
3844 case SCTP_PARTIAL_DELIVERY_POINT:
3845 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3846 break;
3847
3848 case SCTP_INITMSG:
3849 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3850 break;
3851 case SCTP_DEFAULT_SEND_PARAM:
3852 retval = sctp_setsockopt_default_send_param(sk, optval,
3853 optlen);
3854 break;
3855 case SCTP_DEFAULT_SNDINFO:
3856 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3857 break;
3858 case SCTP_PRIMARY_ADDR:
3859 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3860 break;
3861 case SCTP_SET_PEER_PRIMARY_ADDR:
3862 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3863 break;
3864 case SCTP_NODELAY:
3865 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3866 break;
3867 case SCTP_RTOINFO:
3868 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3869 break;
3870 case SCTP_ASSOCINFO:
3871 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3872 break;
3873 case SCTP_I_WANT_MAPPED_V4_ADDR:
3874 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3875 break;
3876 case SCTP_MAXSEG:
3877 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3878 break;
3879 case SCTP_ADAPTATION_LAYER:
3880 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3881 break;
3882 case SCTP_CONTEXT:
3883 retval = sctp_setsockopt_context(sk, optval, optlen);
3884 break;
3885 case SCTP_FRAGMENT_INTERLEAVE:
3886 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3887 break;
3888 case SCTP_MAX_BURST:
3889 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3890 break;
3891 case SCTP_AUTH_CHUNK:
3892 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3893 break;
3894 case SCTP_HMAC_IDENT:
3895 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3896 break;
3897 case SCTP_AUTH_KEY:
3898 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3899 break;
3900 case SCTP_AUTH_ACTIVE_KEY:
3901 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3902 break;
3903 case SCTP_AUTH_DELETE_KEY:
3904 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3905 break;
3906 case SCTP_AUTO_ASCONF:
3907 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3908 break;
3909 case SCTP_PEER_ADDR_THLDS:
3910 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3911 break;
3912 case SCTP_RECVRCVINFO:
3913 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3914 break;
3915 case SCTP_RECVNXTINFO:
3916 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3917 break;
3918 case SCTP_PR_SUPPORTED:
3919 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3920 break;
3921 case SCTP_DEFAULT_PRINFO:
3922 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3923 break;
3924 default:
3925 retval = -ENOPROTOOPT;
3926 break;
3927 }
3928
3929 release_sock(sk);
3930
3931out_nounlock:
3932 return retval;
3933}
3934
3935/* API 3.1.6 connect() - UDP Style Syntax
3936 *
3937 * An application may use the connect() call in the UDP model to initiate an
3938 * association without sending data.
3939 *
3940 * The syntax is:
3941 *
3942 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3943 *
3944 * sd: the socket descriptor to have a new association added to.
3945 *
3946 * nam: the address structure (either struct sockaddr_in or struct
3947 * sockaddr_in6 defined in RFC2553 [7]).
3948 *
3949 * len: the size of the address.
3950 */
3951static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3952 int addr_len)
3953{
3954 int err = 0;
3955 struct sctp_af *af;
3956
3957 lock_sock(sk);
3958
3959 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3960 addr, addr_len);
3961
3962 /* Validate addr_len before calling common connect/connectx routine. */
3963 af = sctp_get_af_specific(addr->sa_family);
3964 if (!af || addr_len < af->sockaddr_len) {
3965 err = -EINVAL;
3966 } else {
3967 /* Pass correct addr len to common routine (so it knows there
3968 * is only one address being passed.
3969 */
3970 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3971 }
3972
3973 release_sock(sk);
3974 return err;
3975}
3976
3977/* FIXME: Write comments. */
3978static int sctp_disconnect(struct sock *sk, int flags)
3979{
3980 return -EOPNOTSUPP; /* STUB */
3981}
3982
3983/* 4.1.4 accept() - TCP Style Syntax
3984 *
3985 * Applications use accept() call to remove an established SCTP
3986 * association from the accept queue of the endpoint. A new socket
3987 * descriptor will be returned from accept() to represent the newly
3988 * formed association.
3989 */
3990static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3991{
3992 struct sctp_sock *sp;
3993 struct sctp_endpoint *ep;
3994 struct sock *newsk = NULL;
3995 struct sctp_association *asoc;
3996 long timeo;
3997 int error = 0;
3998
3999 lock_sock(sk);
4000
4001 sp = sctp_sk(sk);
4002 ep = sp->ep;
4003
4004 if (!sctp_style(sk, TCP)) {
4005 error = -EOPNOTSUPP;
4006 goto out;
4007 }
4008
4009 if (!sctp_sstate(sk, LISTENING)) {
4010 error = -EINVAL;
4011 goto out;
4012 }
4013
4014 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4015
4016 error = sctp_wait_for_accept(sk, timeo);
4017 if (error)
4018 goto out;
4019
4020 /* We treat the list of associations on the endpoint as the accept
4021 * queue and pick the first association on the list.
4022 */
4023 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4024
4025 newsk = sp->pf->create_accept_sk(sk, asoc);
4026 if (!newsk) {
4027 error = -ENOMEM;
4028 goto out;
4029 }
4030
4031 /* Populate the fields of the newsk from the oldsk and migrate the
4032 * asoc to the newsk.
4033 */
4034 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4035
4036out:
4037 release_sock(sk);
4038 *err = error;
4039 return newsk;
4040}
4041
4042/* The SCTP ioctl handler. */
4043static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4044{
4045 int rc = -ENOTCONN;
4046
4047 lock_sock(sk);
4048
4049 /*
4050 * SEQPACKET-style sockets in LISTENING state are valid, for
4051 * SCTP, so only discard TCP-style sockets in LISTENING state.
4052 */
4053 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4054 goto out;
4055
4056 switch (cmd) {
4057 case SIOCINQ: {
4058 struct sk_buff *skb;
4059 unsigned int amount = 0;
4060
4061 skb = skb_peek(&sk->sk_receive_queue);
4062 if (skb != NULL) {
4063 /*
4064 * We will only return the amount of this packet since
4065 * that is all that will be read.
4066 */
4067 amount = skb->len;
4068 }
4069 rc = put_user(amount, (int __user *)arg);
4070 break;
4071 }
4072 default:
4073 rc = -ENOIOCTLCMD;
4074 break;
4075 }
4076out:
4077 release_sock(sk);
4078 return rc;
4079}
4080
4081/* This is the function which gets called during socket creation to
4082 * initialized the SCTP-specific portion of the sock.
4083 * The sock structure should already be zero-filled memory.
4084 */
4085static int sctp_init_sock(struct sock *sk)
4086{
4087 struct net *net = sock_net(sk);
4088 struct sctp_sock *sp;
4089
4090 pr_debug("%s: sk:%p\n", __func__, sk);
4091
4092 sp = sctp_sk(sk);
4093
4094 /* Initialize the SCTP per socket area. */
4095 switch (sk->sk_type) {
4096 case SOCK_SEQPACKET:
4097 sp->type = SCTP_SOCKET_UDP;
4098 break;
4099 case SOCK_STREAM:
4100 sp->type = SCTP_SOCKET_TCP;
4101 break;
4102 default:
4103 return -ESOCKTNOSUPPORT;
4104 }
4105
4106 sk->sk_gso_type = SKB_GSO_SCTP;
4107
4108 /* Initialize default send parameters. These parameters can be
4109 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4110 */
4111 sp->default_stream = 0;
4112 sp->default_ppid = 0;
4113 sp->default_flags = 0;
4114 sp->default_context = 0;
4115 sp->default_timetolive = 0;
4116
4117 sp->default_rcv_context = 0;
4118 sp->max_burst = net->sctp.max_burst;
4119
4120 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4121
4122 /* Initialize default setup parameters. These parameters
4123 * can be modified with the SCTP_INITMSG socket option or
4124 * overridden by the SCTP_INIT CMSG.
4125 */
4126 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4127 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4128 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4129 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4130
4131 /* Initialize default RTO related parameters. These parameters can
4132 * be modified for with the SCTP_RTOINFO socket option.
4133 */
4134 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4135 sp->rtoinfo.srto_max = net->sctp.rto_max;
4136 sp->rtoinfo.srto_min = net->sctp.rto_min;
4137
4138 /* Initialize default association related parameters. These parameters
4139 * can be modified with the SCTP_ASSOCINFO socket option.
4140 */
4141 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4142 sp->assocparams.sasoc_number_peer_destinations = 0;
4143 sp->assocparams.sasoc_peer_rwnd = 0;
4144 sp->assocparams.sasoc_local_rwnd = 0;
4145 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4146
4147 /* Initialize default event subscriptions. By default, all the
4148 * options are off.
4149 */
4150 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4151
4152 /* Default Peer Address Parameters. These defaults can
4153 * be modified via SCTP_PEER_ADDR_PARAMS
4154 */
4155 sp->hbinterval = net->sctp.hb_interval;
4156 sp->pathmaxrxt = net->sctp.max_retrans_path;
4157 sp->pathmtu = 0; /* allow default discovery */
4158 sp->sackdelay = net->sctp.sack_timeout;
4159 sp->sackfreq = 2;
4160 sp->param_flags = SPP_HB_ENABLE |
4161 SPP_PMTUD_ENABLE |
4162 SPP_SACKDELAY_ENABLE;
4163
4164 /* If enabled no SCTP message fragmentation will be performed.
4165 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4166 */
4167 sp->disable_fragments = 0;
4168
4169 /* Enable Nagle algorithm by default. */
4170 sp->nodelay = 0;
4171
4172 sp->recvrcvinfo = 0;
4173 sp->recvnxtinfo = 0;
4174
4175 /* Enable by default. */
4176 sp->v4mapped = 1;
4177
4178 /* Auto-close idle associations after the configured
4179 * number of seconds. A value of 0 disables this
4180 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4181 * for UDP-style sockets only.
4182 */
4183 sp->autoclose = 0;
4184
4185 /* User specified fragmentation limit. */
4186 sp->user_frag = 0;
4187
4188 sp->adaptation_ind = 0;
4189
4190 sp->pf = sctp_get_pf_specific(sk->sk_family);
4191
4192 /* Control variables for partial data delivery. */
4193 atomic_set(&sp->pd_mode, 0);
4194 skb_queue_head_init(&sp->pd_lobby);
4195 sp->frag_interleave = 0;
4196
4197 /* Create a per socket endpoint structure. Even if we
4198 * change the data structure relationships, this may still
4199 * be useful for storing pre-connect address information.
4200 */
4201 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4202 if (!sp->ep)
4203 return -ENOMEM;
4204
4205 sp->hmac = NULL;
4206
4207 sk->sk_destruct = sctp_destruct_sock;
4208
4209 SCTP_DBG_OBJCNT_INC(sock);
4210
4211 local_bh_disable();
4212 percpu_counter_inc(&sctp_sockets_allocated);
4213 sock_prot_inuse_add(net, sk->sk_prot, 1);
4214
4215 /* Nothing can fail after this block, otherwise
4216 * sctp_destroy_sock() will be called without addr_wq_lock held
4217 */
4218 if (net->sctp.default_auto_asconf) {
4219 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4220 list_add_tail(&sp->auto_asconf_list,
4221 &net->sctp.auto_asconf_splist);
4222 sp->do_auto_asconf = 1;
4223 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4224 } else {
4225 sp->do_auto_asconf = 0;
4226 }
4227
4228 local_bh_enable();
4229
4230 return 0;
4231}
4232
4233/* Cleanup any SCTP per socket resources. Must be called with
4234 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4235 */
4236static void sctp_destroy_sock(struct sock *sk)
4237{
4238 struct sctp_sock *sp;
4239
4240 pr_debug("%s: sk:%p\n", __func__, sk);
4241
4242 /* Release our hold on the endpoint. */
4243 sp = sctp_sk(sk);
4244 /* This could happen during socket init, thus we bail out
4245 * early, since the rest of the below is not setup either.
4246 */
4247 if (sp->ep == NULL)
4248 return;
4249
4250 if (sp->do_auto_asconf) {
4251 sp->do_auto_asconf = 0;
4252 list_del(&sp->auto_asconf_list);
4253 }
4254 sctp_endpoint_free(sp->ep);
4255 local_bh_disable();
4256 percpu_counter_dec(&sctp_sockets_allocated);
4257 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4258 local_bh_enable();
4259}
4260
4261/* Triggered when there are no references on the socket anymore */
4262static void sctp_destruct_sock(struct sock *sk)
4263{
4264 struct sctp_sock *sp = sctp_sk(sk);
4265
4266 /* Free up the HMAC transform. */
4267 crypto_free_shash(sp->hmac);
4268
4269 inet_sock_destruct(sk);
4270}
4271
4272/* API 4.1.7 shutdown() - TCP Style Syntax
4273 * int shutdown(int socket, int how);
4274 *
4275 * sd - the socket descriptor of the association to be closed.
4276 * how - Specifies the type of shutdown. The values are
4277 * as follows:
4278 * SHUT_RD
4279 * Disables further receive operations. No SCTP
4280 * protocol action is taken.
4281 * SHUT_WR
4282 * Disables further send operations, and initiates
4283 * the SCTP shutdown sequence.
4284 * SHUT_RDWR
4285 * Disables further send and receive operations
4286 * and initiates the SCTP shutdown sequence.
4287 */
4288static void sctp_shutdown(struct sock *sk, int how)
4289{
4290 struct net *net = sock_net(sk);
4291 struct sctp_endpoint *ep;
4292
4293 if (!sctp_style(sk, TCP))
4294 return;
4295
4296 ep = sctp_sk(sk)->ep;
4297 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4298 struct sctp_association *asoc;
4299
4300 sk->sk_state = SCTP_SS_CLOSING;
4301 asoc = list_entry(ep->asocs.next,
4302 struct sctp_association, asocs);
4303 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4304 }
4305}
4306
4307int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4308 struct sctp_info *info)
4309{
4310 struct sctp_transport *prim;
4311 struct list_head *pos;
4312 int mask;
4313
4314 memset(info, 0, sizeof(*info));
4315 if (!asoc) {
4316 struct sctp_sock *sp = sctp_sk(sk);
4317
4318 info->sctpi_s_autoclose = sp->autoclose;
4319 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4320 info->sctpi_s_pd_point = sp->pd_point;
4321 info->sctpi_s_nodelay = sp->nodelay;
4322 info->sctpi_s_disable_fragments = sp->disable_fragments;
4323 info->sctpi_s_v4mapped = sp->v4mapped;
4324 info->sctpi_s_frag_interleave = sp->frag_interleave;
4325 info->sctpi_s_type = sp->type;
4326
4327 return 0;
4328 }
4329
4330 info->sctpi_tag = asoc->c.my_vtag;
4331 info->sctpi_state = asoc->state;
4332 info->sctpi_rwnd = asoc->a_rwnd;
4333 info->sctpi_unackdata = asoc->unack_data;
4334 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4335 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4336 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4337 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4338 info->sctpi_inqueue++;
4339 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4340 info->sctpi_outqueue++;
4341 info->sctpi_overall_error = asoc->overall_error_count;
4342 info->sctpi_max_burst = asoc->max_burst;
4343 info->sctpi_maxseg = asoc->frag_point;
4344 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4345 info->sctpi_peer_tag = asoc->c.peer_vtag;
4346
4347 mask = asoc->peer.ecn_capable << 1;
4348 mask = (mask | asoc->peer.ipv4_address) << 1;
4349 mask = (mask | asoc->peer.ipv6_address) << 1;
4350 mask = (mask | asoc->peer.hostname_address) << 1;
4351 mask = (mask | asoc->peer.asconf_capable) << 1;
4352 mask = (mask | asoc->peer.prsctp_capable) << 1;
4353 mask = (mask | asoc->peer.auth_capable);
4354 info->sctpi_peer_capable = mask;
4355 mask = asoc->peer.sack_needed << 1;
4356 mask = (mask | asoc->peer.sack_generation) << 1;
4357 mask = (mask | asoc->peer.zero_window_announced);
4358 info->sctpi_peer_sack = mask;
4359
4360 info->sctpi_isacks = asoc->stats.isacks;
4361 info->sctpi_osacks = asoc->stats.osacks;
4362 info->sctpi_opackets = asoc->stats.opackets;
4363 info->sctpi_ipackets = asoc->stats.ipackets;
4364 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4365 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4366 info->sctpi_idupchunks = asoc->stats.idupchunks;
4367 info->sctpi_gapcnt = asoc->stats.gapcnt;
4368 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4369 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4370 info->sctpi_oodchunks = asoc->stats.oodchunks;
4371 info->sctpi_iodchunks = asoc->stats.iodchunks;
4372 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4373 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4374
4375 prim = asoc->peer.primary_path;
4376 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4377 sizeof(struct sockaddr_storage));
4378 info->sctpi_p_state = prim->state;
4379 info->sctpi_p_cwnd = prim->cwnd;
4380 info->sctpi_p_srtt = prim->srtt;
4381 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4382 info->sctpi_p_hbinterval = prim->hbinterval;
4383 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4384 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4385 info->sctpi_p_ssthresh = prim->ssthresh;
4386 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4387 info->sctpi_p_flight_size = prim->flight_size;
4388 info->sctpi_p_error = prim->error_count;
4389
4390 return 0;
4391}
4392EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4393
4394/* use callback to avoid exporting the core structure */
4395int sctp_transport_walk_start(struct rhashtable_iter *iter)
4396{
4397 int err;
4398
4399 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4400
4401 err = rhashtable_walk_start(iter);
4402 if (err && err != -EAGAIN) {
4403 rhashtable_walk_stop(iter);
4404 rhashtable_walk_exit(iter);
4405 return err;
4406 }
4407
4408 return 0;
4409}
4410
4411void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4412{
4413 rhashtable_walk_stop(iter);
4414 rhashtable_walk_exit(iter);
4415}
4416
4417struct sctp_transport *sctp_transport_get_next(struct net *net,
4418 struct rhashtable_iter *iter)
4419{
4420 struct sctp_transport *t;
4421
4422 t = rhashtable_walk_next(iter);
4423 for (; t; t = rhashtable_walk_next(iter)) {
4424 if (IS_ERR(t)) {
4425 if (PTR_ERR(t) == -EAGAIN)
4426 continue;
4427 break;
4428 }
4429
4430 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4431 t->asoc->peer.primary_path == t)
4432 break;
4433 }
4434
4435 return t;
4436}
4437
4438struct sctp_transport *sctp_transport_get_idx(struct net *net,
4439 struct rhashtable_iter *iter,
4440 int pos)
4441{
4442 void *obj = SEQ_START_TOKEN;
4443
4444 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4445 !IS_ERR(obj))
4446 pos--;
4447
4448 return obj;
4449}
4450
4451int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4452 void *p) {
4453 int err = 0;
4454 int hash = 0;
4455 struct sctp_ep_common *epb;
4456 struct sctp_hashbucket *head;
4457
4458 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4459 hash++, head++) {
4460 read_lock(&head->lock);
4461 sctp_for_each_hentry(epb, &head->chain) {
4462 err = cb(sctp_ep(epb), p);
4463 if (err)
4464 break;
4465 }
4466 read_unlock(&head->lock);
4467 }
4468
4469 return err;
4470}
4471EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4472
4473int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4474 struct net *net,
4475 const union sctp_addr *laddr,
4476 const union sctp_addr *paddr, void *p)
4477{
4478 struct sctp_transport *transport;
4479 int err;
4480
4481 rcu_read_lock();
4482 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4483 rcu_read_unlock();
4484 if (!transport)
4485 return -ENOENT;
4486
4487 err = cb(transport, p);
4488 sctp_transport_put(transport);
4489
4490 return err;
4491}
4492EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4493
4494int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4495 struct net *net, int pos, void *p) {
4496 struct rhashtable_iter hti;
4497 void *obj;
4498 int err;
4499
4500 err = sctp_transport_walk_start(&hti);
4501 if (err)
4502 return err;
4503
4504 sctp_transport_get_idx(net, &hti, pos);
4505 obj = sctp_transport_get_next(net, &hti);
4506 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4507 struct sctp_transport *transport = obj;
4508
4509 if (!sctp_transport_hold(transport))
4510 continue;
4511 err = cb(transport, p);
4512 sctp_transport_put(transport);
4513 if (err)
4514 break;
4515 }
4516 sctp_transport_walk_stop(&hti);
4517
4518 return err;
4519}
4520EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4521
4522/* 7.2.1 Association Status (SCTP_STATUS)
4523
4524 * Applications can retrieve current status information about an
4525 * association, including association state, peer receiver window size,
4526 * number of unacked data chunks, and number of data chunks pending
4527 * receipt. This information is read-only.
4528 */
4529static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4530 char __user *optval,
4531 int __user *optlen)
4532{
4533 struct sctp_status status;
4534 struct sctp_association *asoc = NULL;
4535 struct sctp_transport *transport;
4536 sctp_assoc_t associd;
4537 int retval = 0;
4538
4539 if (len < sizeof(status)) {
4540 retval = -EINVAL;
4541 goto out;
4542 }
4543
4544 len = sizeof(status);
4545 if (copy_from_user(&status, optval, len)) {
4546 retval = -EFAULT;
4547 goto out;
4548 }
4549
4550 associd = status.sstat_assoc_id;
4551 asoc = sctp_id2assoc(sk, associd);
4552 if (!asoc) {
4553 retval = -EINVAL;
4554 goto out;
4555 }
4556
4557 transport = asoc->peer.primary_path;
4558
4559 status.sstat_assoc_id = sctp_assoc2id(asoc);
4560 status.sstat_state = sctp_assoc_to_state(asoc);
4561 status.sstat_rwnd = asoc->peer.rwnd;
4562 status.sstat_unackdata = asoc->unack_data;
4563
4564 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4565 status.sstat_instrms = asoc->c.sinit_max_instreams;
4566 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4567 status.sstat_fragmentation_point = asoc->frag_point;
4568 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4569 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4570 transport->af_specific->sockaddr_len);
4571 /* Map ipv4 address into v4-mapped-on-v6 address. */
4572 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4573 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4574 status.sstat_primary.spinfo_state = transport->state;
4575 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4576 status.sstat_primary.spinfo_srtt = transport->srtt;
4577 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4578 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4579
4580 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4581 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4582
4583 if (put_user(len, optlen)) {
4584 retval = -EFAULT;
4585 goto out;
4586 }
4587
4588 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4589 __func__, len, status.sstat_state, status.sstat_rwnd,
4590 status.sstat_assoc_id);
4591
4592 if (copy_to_user(optval, &status, len)) {
4593 retval = -EFAULT;
4594 goto out;
4595 }
4596
4597out:
4598 return retval;
4599}
4600
4601
4602/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4603 *
4604 * Applications can retrieve information about a specific peer address
4605 * of an association, including its reachability state, congestion
4606 * window, and retransmission timer values. This information is
4607 * read-only.
4608 */
4609static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4610 char __user *optval,
4611 int __user *optlen)
4612{
4613 struct sctp_paddrinfo pinfo;
4614 struct sctp_transport *transport;
4615 int retval = 0;
4616
4617 if (len < sizeof(pinfo)) {
4618 retval = -EINVAL;
4619 goto out;
4620 }
4621
4622 len = sizeof(pinfo);
4623 if (copy_from_user(&pinfo, optval, len)) {
4624 retval = -EFAULT;
4625 goto out;
4626 }
4627
4628 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4629 pinfo.spinfo_assoc_id);
4630 if (!transport)
4631 return -EINVAL;
4632
4633 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4634 pinfo.spinfo_state = transport->state;
4635 pinfo.spinfo_cwnd = transport->cwnd;
4636 pinfo.spinfo_srtt = transport->srtt;
4637 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4638 pinfo.spinfo_mtu = transport->pathmtu;
4639
4640 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4641 pinfo.spinfo_state = SCTP_ACTIVE;
4642
4643 if (put_user(len, optlen)) {
4644 retval = -EFAULT;
4645 goto out;
4646 }
4647
4648 if (copy_to_user(optval, &pinfo, len)) {
4649 retval = -EFAULT;
4650 goto out;
4651 }
4652
4653out:
4654 return retval;
4655}
4656
4657/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4658 *
4659 * This option is a on/off flag. If enabled no SCTP message
4660 * fragmentation will be performed. Instead if a message being sent
4661 * exceeds the current PMTU size, the message will NOT be sent and
4662 * instead a error will be indicated to the user.
4663 */
4664static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4665 char __user *optval, int __user *optlen)
4666{
4667 int val;
4668
4669 if (len < sizeof(int))
4670 return -EINVAL;
4671
4672 len = sizeof(int);
4673 val = (sctp_sk(sk)->disable_fragments == 1);
4674 if (put_user(len, optlen))
4675 return -EFAULT;
4676 if (copy_to_user(optval, &val, len))
4677 return -EFAULT;
4678 return 0;
4679}
4680
4681/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4682 *
4683 * This socket option is used to specify various notifications and
4684 * ancillary data the user wishes to receive.
4685 */
4686static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4687 int __user *optlen)
4688{
4689 if (len == 0)
4690 return -EINVAL;
4691 if (len > sizeof(struct sctp_event_subscribe))
4692 len = sizeof(struct sctp_event_subscribe);
4693 if (put_user(len, optlen))
4694 return -EFAULT;
4695 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4696 return -EFAULT;
4697 return 0;
4698}
4699
4700/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4701 *
4702 * This socket option is applicable to the UDP-style socket only. When
4703 * set it will cause associations that are idle for more than the
4704 * specified number of seconds to automatically close. An association
4705 * being idle is defined an association that has NOT sent or received
4706 * user data. The special value of '0' indicates that no automatic
4707 * close of any associations should be performed. The option expects an
4708 * integer defining the number of seconds of idle time before an
4709 * association is closed.
4710 */
4711static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4712{
4713 /* Applicable to UDP-style socket only */
4714 if (sctp_style(sk, TCP))
4715 return -EOPNOTSUPP;
4716 if (len < sizeof(int))
4717 return -EINVAL;
4718 len = sizeof(int);
4719 if (put_user(len, optlen))
4720 return -EFAULT;
4721 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4722 return -EFAULT;
4723 return 0;
4724}
4725
4726/* Helper routine to branch off an association to a new socket. */
4727int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4728{
4729 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4730 struct sctp_sock *sp = sctp_sk(sk);
4731 struct socket *sock;
4732 int err = 0;
4733
4734 if (!asoc)
4735 return -EINVAL;
4736
4737 /* If there is a thread waiting on more sndbuf space for
4738 * sending on this asoc, it cannot be peeled.
4739 */
4740 if (waitqueue_active(&asoc->wait))
4741 return -EBUSY;
4742
4743 /* An association cannot be branched off from an already peeled-off
4744 * socket, nor is this supported for tcp style sockets.
4745 */
4746 if (!sctp_style(sk, UDP))
4747 return -EINVAL;
4748
4749 /* Create a new socket. */
4750 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4751 if (err < 0)
4752 return err;
4753
4754 sctp_copy_sock(sock->sk, sk, asoc);
4755
4756 /* Make peeled-off sockets more like 1-1 accepted sockets.
4757 * Set the daddr and initialize id to something more random
4758 */
4759 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4760
4761 /* Populate the fields of the newsk from the oldsk and migrate the
4762 * asoc to the newsk.
4763 */
4764 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4765
4766 *sockp = sock;
4767
4768 return err;
4769}
4770EXPORT_SYMBOL(sctp_do_peeloff);
4771
4772static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4773{
4774 sctp_peeloff_arg_t peeloff;
4775 struct socket *newsock;
4776 struct file *newfile;
4777 int retval = 0;
4778
4779 if (len < sizeof(sctp_peeloff_arg_t))
4780 return -EINVAL;
4781 len = sizeof(sctp_peeloff_arg_t);
4782 if (copy_from_user(&peeloff, optval, len))
4783 return -EFAULT;
4784
4785 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4786 if (retval < 0)
4787 goto out;
4788
4789 /* Map the socket to an unused fd that can be returned to the user. */
4790 retval = get_unused_fd_flags(0);
4791 if (retval < 0) {
4792 sock_release(newsock);
4793 goto out;
4794 }
4795
4796 newfile = sock_alloc_file(newsock, 0, NULL);
4797 if (IS_ERR(newfile)) {
4798 put_unused_fd(retval);
4799 sock_release(newsock);
4800 return PTR_ERR(newfile);
4801 }
4802
4803 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4804 retval);
4805
4806 /* Return the fd mapped to the new socket. */
4807 if (put_user(len, optlen)) {
4808 fput(newfile);
4809 put_unused_fd(retval);
4810 return -EFAULT;
4811 }
4812 peeloff.sd = retval;
4813 if (copy_to_user(optval, &peeloff, len)) {
4814 fput(newfile);
4815 put_unused_fd(retval);
4816 return -EFAULT;
4817 }
4818 fd_install(retval, newfile);
4819out:
4820 return retval;
4821}
4822
4823/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4824 *
4825 * Applications can enable or disable heartbeats for any peer address of
4826 * an association, modify an address's heartbeat interval, force a
4827 * heartbeat to be sent immediately, and adjust the address's maximum
4828 * number of retransmissions sent before an address is considered
4829 * unreachable. The following structure is used to access and modify an
4830 * address's parameters:
4831 *
4832 * struct sctp_paddrparams {
4833 * sctp_assoc_t spp_assoc_id;
4834 * struct sockaddr_storage spp_address;
4835 * uint32_t spp_hbinterval;
4836 * uint16_t spp_pathmaxrxt;
4837 * uint32_t spp_pathmtu;
4838 * uint32_t spp_sackdelay;
4839 * uint32_t spp_flags;
4840 * };
4841 *
4842 * spp_assoc_id - (one-to-many style socket) This is filled in the
4843 * application, and identifies the association for
4844 * this query.
4845 * spp_address - This specifies which address is of interest.
4846 * spp_hbinterval - This contains the value of the heartbeat interval,
4847 * in milliseconds. If a value of zero
4848 * is present in this field then no changes are to
4849 * be made to this parameter.
4850 * spp_pathmaxrxt - This contains the maximum number of
4851 * retransmissions before this address shall be
4852 * considered unreachable. If a value of zero
4853 * is present in this field then no changes are to
4854 * be made to this parameter.
4855 * spp_pathmtu - When Path MTU discovery is disabled the value
4856 * specified here will be the "fixed" path mtu.
4857 * Note that if the spp_address field is empty
4858 * then all associations on this address will
4859 * have this fixed path mtu set upon them.
4860 *
4861 * spp_sackdelay - When delayed sack is enabled, this value specifies
4862 * the number of milliseconds that sacks will be delayed
4863 * for. This value will apply to all addresses of an
4864 * association if the spp_address field is empty. Note
4865 * also, that if delayed sack is enabled and this
4866 * value is set to 0, no change is made to the last
4867 * recorded delayed sack timer value.
4868 *
4869 * spp_flags - These flags are used to control various features
4870 * on an association. The flag field may contain
4871 * zero or more of the following options.
4872 *
4873 * SPP_HB_ENABLE - Enable heartbeats on the
4874 * specified address. Note that if the address
4875 * field is empty all addresses for the association
4876 * have heartbeats enabled upon them.
4877 *
4878 * SPP_HB_DISABLE - Disable heartbeats on the
4879 * speicifed address. Note that if the address
4880 * field is empty all addresses for the association
4881 * will have their heartbeats disabled. Note also
4882 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4883 * mutually exclusive, only one of these two should
4884 * be specified. Enabling both fields will have
4885 * undetermined results.
4886 *
4887 * SPP_HB_DEMAND - Request a user initiated heartbeat
4888 * to be made immediately.
4889 *
4890 * SPP_PMTUD_ENABLE - This field will enable PMTU
4891 * discovery upon the specified address. Note that
4892 * if the address feild is empty then all addresses
4893 * on the association are effected.
4894 *
4895 * SPP_PMTUD_DISABLE - This field will disable PMTU
4896 * discovery upon the specified address. Note that
4897 * if the address feild is empty then all addresses
4898 * on the association are effected. Not also that
4899 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4900 * exclusive. Enabling both will have undetermined
4901 * results.
4902 *
4903 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4904 * on delayed sack. The time specified in spp_sackdelay
4905 * is used to specify the sack delay for this address. Note
4906 * that if spp_address is empty then all addresses will
4907 * enable delayed sack and take on the sack delay
4908 * value specified in spp_sackdelay.
4909 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4910 * off delayed sack. If the spp_address field is blank then
4911 * delayed sack is disabled for the entire association. Note
4912 * also that this field is mutually exclusive to
4913 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4914 * results.
4915 */
4916static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4917 char __user *optval, int __user *optlen)
4918{
4919 struct sctp_paddrparams params;
4920 struct sctp_transport *trans = NULL;
4921 struct sctp_association *asoc = NULL;
4922 struct sctp_sock *sp = sctp_sk(sk);
4923
4924 if (len < sizeof(struct sctp_paddrparams))
4925 return -EINVAL;
4926 len = sizeof(struct sctp_paddrparams);
4927 if (copy_from_user(¶ms, optval, len))
4928 return -EFAULT;
4929
4930 /* If an address other than INADDR_ANY is specified, and
4931 * no transport is found, then the request is invalid.
4932 */
4933 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
4934 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4935 params.spp_assoc_id);
4936 if (!trans) {
4937 pr_debug("%s: failed no transport\n", __func__);
4938 return -EINVAL;
4939 }
4940 }
4941
4942 /* Get association, if assoc_id != 0 and the socket is a one
4943 * to many style socket, and an association was not found, then
4944 * the id was invalid.
4945 */
4946 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4947 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4948 pr_debug("%s: failed no association\n", __func__);
4949 return -EINVAL;
4950 }
4951
4952 if (trans) {
4953 /* Fetch transport values. */
4954 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4955 params.spp_pathmtu = trans->pathmtu;
4956 params.spp_pathmaxrxt = trans->pathmaxrxt;
4957 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4958
4959 /*draft-11 doesn't say what to return in spp_flags*/
4960 params.spp_flags = trans->param_flags;
4961 } else if (asoc) {
4962 /* Fetch association values. */
4963 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4964 params.spp_pathmtu = asoc->pathmtu;
4965 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4966 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4967
4968 /*draft-11 doesn't say what to return in spp_flags*/
4969 params.spp_flags = asoc->param_flags;
4970 } else {
4971 /* Fetch socket values. */
4972 params.spp_hbinterval = sp->hbinterval;
4973 params.spp_pathmtu = sp->pathmtu;
4974 params.spp_sackdelay = sp->sackdelay;
4975 params.spp_pathmaxrxt = sp->pathmaxrxt;
4976
4977 /*draft-11 doesn't say what to return in spp_flags*/
4978 params.spp_flags = sp->param_flags;
4979 }
4980
4981 if (copy_to_user(optval, ¶ms, len))
4982 return -EFAULT;
4983
4984 if (put_user(len, optlen))
4985 return -EFAULT;
4986
4987 return 0;
4988}
4989
4990/*
4991 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4992 *
4993 * This option will effect the way delayed acks are performed. This
4994 * option allows you to get or set the delayed ack time, in
4995 * milliseconds. It also allows changing the delayed ack frequency.
4996 * Changing the frequency to 1 disables the delayed sack algorithm. If
4997 * the assoc_id is 0, then this sets or gets the endpoints default
4998 * values. If the assoc_id field is non-zero, then the set or get
4999 * effects the specified association for the one to many model (the
5000 * assoc_id field is ignored by the one to one model). Note that if
5001 * sack_delay or sack_freq are 0 when setting this option, then the
5002 * current values will remain unchanged.
5003 *
5004 * struct sctp_sack_info {
5005 * sctp_assoc_t sack_assoc_id;
5006 * uint32_t sack_delay;
5007 * uint32_t sack_freq;
5008 * };
5009 *
5010 * sack_assoc_id - This parameter, indicates which association the user
5011 * is performing an action upon. Note that if this field's value is
5012 * zero then the endpoints default value is changed (effecting future
5013 * associations only).
5014 *
5015 * sack_delay - This parameter contains the number of milliseconds that
5016 * the user is requesting the delayed ACK timer be set to. Note that
5017 * this value is defined in the standard to be between 200 and 500
5018 * milliseconds.
5019 *
5020 * sack_freq - This parameter contains the number of packets that must
5021 * be received before a sack is sent without waiting for the delay
5022 * timer to expire. The default value for this is 2, setting this
5023 * value to 1 will disable the delayed sack algorithm.
5024 */
5025static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5026 char __user *optval,
5027 int __user *optlen)
5028{
5029 struct sctp_sack_info params;
5030 struct sctp_association *asoc = NULL;
5031 struct sctp_sock *sp = sctp_sk(sk);
5032
5033 if (len >= sizeof(struct sctp_sack_info)) {
5034 len = sizeof(struct sctp_sack_info);
5035
5036 if (copy_from_user(¶ms, optval, len))
5037 return -EFAULT;
5038 } else if (len == sizeof(struct sctp_assoc_value)) {
5039 pr_warn_ratelimited(DEPRECATED
5040 "%s (pid %d) "
5041 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5042 "Use struct sctp_sack_info instead\n",
5043 current->comm, task_pid_nr(current));
5044 if (copy_from_user(¶ms, optval, len))
5045 return -EFAULT;
5046 } else
5047 return -EINVAL;
5048
5049 /* Get association, if sack_assoc_id != 0 and the socket is a one
5050 * to many style socket, and an association was not found, then
5051 * the id was invalid.
5052 */
5053 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5054 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5055 return -EINVAL;
5056
5057 if (asoc) {
5058 /* Fetch association values. */
5059 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5060 params.sack_delay = jiffies_to_msecs(
5061 asoc->sackdelay);
5062 params.sack_freq = asoc->sackfreq;
5063
5064 } else {
5065 params.sack_delay = 0;
5066 params.sack_freq = 1;
5067 }
5068 } else {
5069 /* Fetch socket values. */
5070 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5071 params.sack_delay = sp->sackdelay;
5072 params.sack_freq = sp->sackfreq;
5073 } else {
5074 params.sack_delay = 0;
5075 params.sack_freq = 1;
5076 }
5077 }
5078
5079 if (copy_to_user(optval, ¶ms, len))
5080 return -EFAULT;
5081
5082 if (put_user(len, optlen))
5083 return -EFAULT;
5084
5085 return 0;
5086}
5087
5088/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5089 *
5090 * Applications can specify protocol parameters for the default association
5091 * initialization. The option name argument to setsockopt() and getsockopt()
5092 * is SCTP_INITMSG.
5093 *
5094 * Setting initialization parameters is effective only on an unconnected
5095 * socket (for UDP-style sockets only future associations are effected
5096 * by the change). With TCP-style sockets, this option is inherited by
5097 * sockets derived from a listener socket.
5098 */
5099static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5100{
5101 if (len < sizeof(struct sctp_initmsg))
5102 return -EINVAL;
5103 len = sizeof(struct sctp_initmsg);
5104 if (put_user(len, optlen))
5105 return -EFAULT;
5106 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5107 return -EFAULT;
5108 return 0;
5109}
5110
5111
5112static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5113 char __user *optval, int __user *optlen)
5114{
5115 struct sctp_association *asoc;
5116 int cnt = 0;
5117 struct sctp_getaddrs getaddrs;
5118 struct sctp_transport *from;
5119 void __user *to;
5120 union sctp_addr temp;
5121 struct sctp_sock *sp = sctp_sk(sk);
5122 int addrlen;
5123 size_t space_left;
5124 int bytes_copied;
5125
5126 if (len < sizeof(struct sctp_getaddrs))
5127 return -EINVAL;
5128
5129 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5130 return -EFAULT;
5131
5132 /* For UDP-style sockets, id specifies the association to query. */
5133 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5134 if (!asoc)
5135 return -EINVAL;
5136
5137 to = optval + offsetof(struct sctp_getaddrs, addrs);
5138 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5139
5140 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5141 transports) {
5142 memcpy(&temp, &from->ipaddr, sizeof(temp));
5143 addrlen = sctp_get_pf_specific(sk->sk_family)
5144 ->addr_to_user(sp, &temp);
5145 if (space_left < addrlen)
5146 return -ENOMEM;
5147 if (copy_to_user(to, &temp, addrlen))
5148 return -EFAULT;
5149 to += addrlen;
5150 cnt++;
5151 space_left -= addrlen;
5152 }
5153
5154 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5155 return -EFAULT;
5156 bytes_copied = ((char __user *)to) - optval;
5157 if (put_user(bytes_copied, optlen))
5158 return -EFAULT;
5159
5160 return 0;
5161}
5162
5163static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5164 size_t space_left, int *bytes_copied)
5165{
5166 struct sctp_sockaddr_entry *addr;
5167 union sctp_addr temp;
5168 int cnt = 0;
5169 int addrlen;
5170 struct net *net = sock_net(sk);
5171
5172 rcu_read_lock();
5173 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5174 if (!addr->valid)
5175 continue;
5176
5177 if ((PF_INET == sk->sk_family) &&
5178 (AF_INET6 == addr->a.sa.sa_family))
5179 continue;
5180 if ((PF_INET6 == sk->sk_family) &&
5181 inet_v6_ipv6only(sk) &&
5182 (AF_INET == addr->a.sa.sa_family))
5183 continue;
5184 memcpy(&temp, &addr->a, sizeof(temp));
5185 if (!temp.v4.sin_port)
5186 temp.v4.sin_port = htons(port);
5187
5188 addrlen = sctp_get_pf_specific(sk->sk_family)
5189 ->addr_to_user(sctp_sk(sk), &temp);
5190
5191 if (space_left < addrlen) {
5192 cnt = -ENOMEM;
5193 break;
5194 }
5195 memcpy(to, &temp, addrlen);
5196
5197 to += addrlen;
5198 cnt++;
5199 space_left -= addrlen;
5200 *bytes_copied += addrlen;
5201 }
5202 rcu_read_unlock();
5203
5204 return cnt;
5205}
5206
5207
5208static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5209 char __user *optval, int __user *optlen)
5210{
5211 struct sctp_bind_addr *bp;
5212 struct sctp_association *asoc;
5213 int cnt = 0;
5214 struct sctp_getaddrs getaddrs;
5215 struct sctp_sockaddr_entry *addr;
5216 void __user *to;
5217 union sctp_addr temp;
5218 struct sctp_sock *sp = sctp_sk(sk);
5219 int addrlen;
5220 int err = 0;
5221 size_t space_left;
5222 int bytes_copied = 0;
5223 void *addrs;
5224 void *buf;
5225
5226 if (len < sizeof(struct sctp_getaddrs))
5227 return -EINVAL;
5228
5229 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5230 return -EFAULT;
5231
5232 /*
5233 * For UDP-style sockets, id specifies the association to query.
5234 * If the id field is set to the value '0' then the locally bound
5235 * addresses are returned without regard to any particular
5236 * association.
5237 */
5238 if (0 == getaddrs.assoc_id) {
5239 bp = &sctp_sk(sk)->ep->base.bind_addr;
5240 } else {
5241 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5242 if (!asoc)
5243 return -EINVAL;
5244 bp = &asoc->base.bind_addr;
5245 }
5246
5247 to = optval + offsetof(struct sctp_getaddrs, addrs);
5248 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5249
5250 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5251 if (!addrs)
5252 return -ENOMEM;
5253
5254 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5255 * addresses from the global local address list.
5256 */
5257 if (sctp_list_single_entry(&bp->address_list)) {
5258 addr = list_entry(bp->address_list.next,
5259 struct sctp_sockaddr_entry, list);
5260 if (sctp_is_any(sk, &addr->a)) {
5261 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5262 space_left, &bytes_copied);
5263 if (cnt < 0) {
5264 err = cnt;
5265 goto out;
5266 }
5267 goto copy_getaddrs;
5268 }
5269 }
5270
5271 buf = addrs;
5272 /* Protection on the bound address list is not needed since
5273 * in the socket option context we hold a socket lock and
5274 * thus the bound address list can't change.
5275 */
5276 list_for_each_entry(addr, &bp->address_list, list) {
5277 memcpy(&temp, &addr->a, sizeof(temp));
5278 addrlen = sctp_get_pf_specific(sk->sk_family)
5279 ->addr_to_user(sp, &temp);
5280 if (space_left < addrlen) {
5281 err = -ENOMEM; /*fixme: right error?*/
5282 goto out;
5283 }
5284 memcpy(buf, &temp, addrlen);
5285 buf += addrlen;
5286 bytes_copied += addrlen;
5287 cnt++;
5288 space_left -= addrlen;
5289 }
5290
5291copy_getaddrs:
5292 if (copy_to_user(to, addrs, bytes_copied)) {
5293 err = -EFAULT;
5294 goto out;
5295 }
5296 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5297 err = -EFAULT;
5298 goto out;
5299 }
5300 if (put_user(bytes_copied, optlen))
5301 err = -EFAULT;
5302out:
5303 kfree(addrs);
5304 return err;
5305}
5306
5307/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5308 *
5309 * Requests that the local SCTP stack use the enclosed peer address as
5310 * the association primary. The enclosed address must be one of the
5311 * association peer's addresses.
5312 */
5313static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5314 char __user *optval, int __user *optlen)
5315{
5316 struct sctp_prim prim;
5317 struct sctp_association *asoc;
5318 struct sctp_sock *sp = sctp_sk(sk);
5319
5320 if (len < sizeof(struct sctp_prim))
5321 return -EINVAL;
5322
5323 len = sizeof(struct sctp_prim);
5324
5325 if (copy_from_user(&prim, optval, len))
5326 return -EFAULT;
5327
5328 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5329 if (!asoc)
5330 return -EINVAL;
5331
5332 if (!asoc->peer.primary_path)
5333 return -ENOTCONN;
5334
5335 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5336 asoc->peer.primary_path->af_specific->sockaddr_len);
5337
5338 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5339 (union sctp_addr *)&prim.ssp_addr);
5340
5341 if (put_user(len, optlen))
5342 return -EFAULT;
5343 if (copy_to_user(optval, &prim, len))
5344 return -EFAULT;
5345
5346 return 0;
5347}
5348
5349/*
5350 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5351 *
5352 * Requests that the local endpoint set the specified Adaptation Layer
5353 * Indication parameter for all future INIT and INIT-ACK exchanges.
5354 */
5355static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5356 char __user *optval, int __user *optlen)
5357{
5358 struct sctp_setadaptation adaptation;
5359
5360 if (len < sizeof(struct sctp_setadaptation))
5361 return -EINVAL;
5362
5363 len = sizeof(struct sctp_setadaptation);
5364
5365 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5366
5367 if (put_user(len, optlen))
5368 return -EFAULT;
5369 if (copy_to_user(optval, &adaptation, len))
5370 return -EFAULT;
5371
5372 return 0;
5373}
5374
5375/*
5376 *
5377 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5378 *
5379 * Applications that wish to use the sendto() system call may wish to
5380 * specify a default set of parameters that would normally be supplied
5381 * through the inclusion of ancillary data. This socket option allows
5382 * such an application to set the default sctp_sndrcvinfo structure.
5383
5384
5385 * The application that wishes to use this socket option simply passes
5386 * in to this call the sctp_sndrcvinfo structure defined in Section
5387 * 5.2.2) The input parameters accepted by this call include
5388 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5389 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5390 * to this call if the caller is using the UDP model.
5391 *
5392 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5393 */
5394static int sctp_getsockopt_default_send_param(struct sock *sk,
5395 int len, char __user *optval,
5396 int __user *optlen)
5397{
5398 struct sctp_sock *sp = sctp_sk(sk);
5399 struct sctp_association *asoc;
5400 struct sctp_sndrcvinfo info;
5401
5402 if (len < sizeof(info))
5403 return -EINVAL;
5404
5405 len = sizeof(info);
5406
5407 if (copy_from_user(&info, optval, len))
5408 return -EFAULT;
5409
5410 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5411 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5412 return -EINVAL;
5413 if (asoc) {
5414 info.sinfo_stream = asoc->default_stream;
5415 info.sinfo_flags = asoc->default_flags;
5416 info.sinfo_ppid = asoc->default_ppid;
5417 info.sinfo_context = asoc->default_context;
5418 info.sinfo_timetolive = asoc->default_timetolive;
5419 } else {
5420 info.sinfo_stream = sp->default_stream;
5421 info.sinfo_flags = sp->default_flags;
5422 info.sinfo_ppid = sp->default_ppid;
5423 info.sinfo_context = sp->default_context;
5424 info.sinfo_timetolive = sp->default_timetolive;
5425 }
5426
5427 if (put_user(len, optlen))
5428 return -EFAULT;
5429 if (copy_to_user(optval, &info, len))
5430 return -EFAULT;
5431
5432 return 0;
5433}
5434
5435/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5436 * (SCTP_DEFAULT_SNDINFO)
5437 */
5438static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5439 char __user *optval,
5440 int __user *optlen)
5441{
5442 struct sctp_sock *sp = sctp_sk(sk);
5443 struct sctp_association *asoc;
5444 struct sctp_sndinfo info;
5445
5446 if (len < sizeof(info))
5447 return -EINVAL;
5448
5449 len = sizeof(info);
5450
5451 if (copy_from_user(&info, optval, len))
5452 return -EFAULT;
5453
5454 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5455 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5456 return -EINVAL;
5457 if (asoc) {
5458 info.snd_sid = asoc->default_stream;
5459 info.snd_flags = asoc->default_flags;
5460 info.snd_ppid = asoc->default_ppid;
5461 info.snd_context = asoc->default_context;
5462 } else {
5463 info.snd_sid = sp->default_stream;
5464 info.snd_flags = sp->default_flags;
5465 info.snd_ppid = sp->default_ppid;
5466 info.snd_context = sp->default_context;
5467 }
5468
5469 if (put_user(len, optlen))
5470 return -EFAULT;
5471 if (copy_to_user(optval, &info, len))
5472 return -EFAULT;
5473
5474 return 0;
5475}
5476
5477/*
5478 *
5479 * 7.1.5 SCTP_NODELAY
5480 *
5481 * Turn on/off any Nagle-like algorithm. This means that packets are
5482 * generally sent as soon as possible and no unnecessary delays are
5483 * introduced, at the cost of more packets in the network. Expects an
5484 * integer boolean flag.
5485 */
5486
5487static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5488 char __user *optval, int __user *optlen)
5489{
5490 int val;
5491
5492 if (len < sizeof(int))
5493 return -EINVAL;
5494
5495 len = sizeof(int);
5496 val = (sctp_sk(sk)->nodelay == 1);
5497 if (put_user(len, optlen))
5498 return -EFAULT;
5499 if (copy_to_user(optval, &val, len))
5500 return -EFAULT;
5501 return 0;
5502}
5503
5504/*
5505 *
5506 * 7.1.1 SCTP_RTOINFO
5507 *
5508 * The protocol parameters used to initialize and bound retransmission
5509 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5510 * and modify these parameters.
5511 * All parameters are time values, in milliseconds. A value of 0, when
5512 * modifying the parameters, indicates that the current value should not
5513 * be changed.
5514 *
5515 */
5516static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5517 char __user *optval,
5518 int __user *optlen) {
5519 struct sctp_rtoinfo rtoinfo;
5520 struct sctp_association *asoc;
5521
5522 if (len < sizeof (struct sctp_rtoinfo))
5523 return -EINVAL;
5524
5525 len = sizeof(struct sctp_rtoinfo);
5526
5527 if (copy_from_user(&rtoinfo, optval, len))
5528 return -EFAULT;
5529
5530 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5531
5532 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5533 return -EINVAL;
5534
5535 /* Values corresponding to the specific association. */
5536 if (asoc) {
5537 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5538 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5539 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5540 } else {
5541 /* Values corresponding to the endpoint. */
5542 struct sctp_sock *sp = sctp_sk(sk);
5543
5544 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5545 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5546 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5547 }
5548
5549 if (put_user(len, optlen))
5550 return -EFAULT;
5551
5552 if (copy_to_user(optval, &rtoinfo, len))
5553 return -EFAULT;
5554
5555 return 0;
5556}
5557
5558/*
5559 *
5560 * 7.1.2 SCTP_ASSOCINFO
5561 *
5562 * This option is used to tune the maximum retransmission attempts
5563 * of the association.
5564 * Returns an error if the new association retransmission value is
5565 * greater than the sum of the retransmission value of the peer.
5566 * See [SCTP] for more information.
5567 *
5568 */
5569static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5570 char __user *optval,
5571 int __user *optlen)
5572{
5573
5574 struct sctp_assocparams assocparams;
5575 struct sctp_association *asoc;
5576 struct list_head *pos;
5577 int cnt = 0;
5578
5579 if (len < sizeof (struct sctp_assocparams))
5580 return -EINVAL;
5581
5582 len = sizeof(struct sctp_assocparams);
5583
5584 if (copy_from_user(&assocparams, optval, len))
5585 return -EFAULT;
5586
5587 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5588
5589 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5590 return -EINVAL;
5591
5592 /* Values correspoinding to the specific association */
5593 if (asoc) {
5594 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5595 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5596 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5597 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5598
5599 list_for_each(pos, &asoc->peer.transport_addr_list) {
5600 cnt++;
5601 }
5602
5603 assocparams.sasoc_number_peer_destinations = cnt;
5604 } else {
5605 /* Values corresponding to the endpoint */
5606 struct sctp_sock *sp = sctp_sk(sk);
5607
5608 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5609 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5610 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5611 assocparams.sasoc_cookie_life =
5612 sp->assocparams.sasoc_cookie_life;
5613 assocparams.sasoc_number_peer_destinations =
5614 sp->assocparams.
5615 sasoc_number_peer_destinations;
5616 }
5617
5618 if (put_user(len, optlen))
5619 return -EFAULT;
5620
5621 if (copy_to_user(optval, &assocparams, len))
5622 return -EFAULT;
5623
5624 return 0;
5625}
5626
5627/*
5628 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5629 *
5630 * This socket option is a boolean flag which turns on or off mapped V4
5631 * addresses. If this option is turned on and the socket is type
5632 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5633 * If this option is turned off, then no mapping will be done of V4
5634 * addresses and a user will receive both PF_INET6 and PF_INET type
5635 * addresses on the socket.
5636 */
5637static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5638 char __user *optval, int __user *optlen)
5639{
5640 int val;
5641 struct sctp_sock *sp = sctp_sk(sk);
5642
5643 if (len < sizeof(int))
5644 return -EINVAL;
5645
5646 len = sizeof(int);
5647 val = sp->v4mapped;
5648 if (put_user(len, optlen))
5649 return -EFAULT;
5650 if (copy_to_user(optval, &val, len))
5651 return -EFAULT;
5652
5653 return 0;
5654}
5655
5656/*
5657 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5658 * (chapter and verse is quoted at sctp_setsockopt_context())
5659 */
5660static int sctp_getsockopt_context(struct sock *sk, int len,
5661 char __user *optval, int __user *optlen)
5662{
5663 struct sctp_assoc_value params;
5664 struct sctp_sock *sp;
5665 struct sctp_association *asoc;
5666
5667 if (len < sizeof(struct sctp_assoc_value))
5668 return -EINVAL;
5669
5670 len = sizeof(struct sctp_assoc_value);
5671
5672 if (copy_from_user(¶ms, optval, len))
5673 return -EFAULT;
5674
5675 sp = sctp_sk(sk);
5676
5677 if (params.assoc_id != 0) {
5678 asoc = sctp_id2assoc(sk, params.assoc_id);
5679 if (!asoc)
5680 return -EINVAL;
5681 params.assoc_value = asoc->default_rcv_context;
5682 } else {
5683 params.assoc_value = sp->default_rcv_context;
5684 }
5685
5686 if (put_user(len, optlen))
5687 return -EFAULT;
5688 if (copy_to_user(optval, ¶ms, len))
5689 return -EFAULT;
5690
5691 return 0;
5692}
5693
5694/*
5695 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5696 * This option will get or set the maximum size to put in any outgoing
5697 * SCTP DATA chunk. If a message is larger than this size it will be
5698 * fragmented by SCTP into the specified size. Note that the underlying
5699 * SCTP implementation may fragment into smaller sized chunks when the
5700 * PMTU of the underlying association is smaller than the value set by
5701 * the user. The default value for this option is '0' which indicates
5702 * the user is NOT limiting fragmentation and only the PMTU will effect
5703 * SCTP's choice of DATA chunk size. Note also that values set larger
5704 * than the maximum size of an IP datagram will effectively let SCTP
5705 * control fragmentation (i.e. the same as setting this option to 0).
5706 *
5707 * The following structure is used to access and modify this parameter:
5708 *
5709 * struct sctp_assoc_value {
5710 * sctp_assoc_t assoc_id;
5711 * uint32_t assoc_value;
5712 * };
5713 *
5714 * assoc_id: This parameter is ignored for one-to-one style sockets.
5715 * For one-to-many style sockets this parameter indicates which
5716 * association the user is performing an action upon. Note that if
5717 * this field's value is zero then the endpoints default value is
5718 * changed (effecting future associations only).
5719 * assoc_value: This parameter specifies the maximum size in bytes.
5720 */
5721static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5722 char __user *optval, int __user *optlen)
5723{
5724 struct sctp_assoc_value params;
5725 struct sctp_association *asoc;
5726
5727 if (len == sizeof(int)) {
5728 pr_warn_ratelimited(DEPRECATED
5729 "%s (pid %d) "
5730 "Use of int in maxseg socket option.\n"
5731 "Use struct sctp_assoc_value instead\n",
5732 current->comm, task_pid_nr(current));
5733 params.assoc_id = 0;
5734 } else if (len >= sizeof(struct sctp_assoc_value)) {
5735 len = sizeof(struct sctp_assoc_value);
5736 if (copy_from_user(¶ms, optval, sizeof(params)))
5737 return -EFAULT;
5738 } else
5739 return -EINVAL;
5740
5741 asoc = sctp_id2assoc(sk, params.assoc_id);
5742 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5743 return -EINVAL;
5744
5745 if (asoc)
5746 params.assoc_value = asoc->frag_point;
5747 else
5748 params.assoc_value = sctp_sk(sk)->user_frag;
5749
5750 if (put_user(len, optlen))
5751 return -EFAULT;
5752 if (len == sizeof(int)) {
5753 if (copy_to_user(optval, ¶ms.assoc_value, len))
5754 return -EFAULT;
5755 } else {
5756 if (copy_to_user(optval, ¶ms, len))
5757 return -EFAULT;
5758 }
5759
5760 return 0;
5761}
5762
5763/*
5764 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5765 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5766 */
5767static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5768 char __user *optval, int __user *optlen)
5769{
5770 int val;
5771
5772 if (len < sizeof(int))
5773 return -EINVAL;
5774
5775 len = sizeof(int);
5776
5777 val = sctp_sk(sk)->frag_interleave;
5778 if (put_user(len, optlen))
5779 return -EFAULT;
5780 if (copy_to_user(optval, &val, len))
5781 return -EFAULT;
5782
5783 return 0;
5784}
5785
5786/*
5787 * 7.1.25. Set or Get the sctp partial delivery point
5788 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5789 */
5790static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5791 char __user *optval,
5792 int __user *optlen)
5793{
5794 u32 val;
5795
5796 if (len < sizeof(u32))
5797 return -EINVAL;
5798
5799 len = sizeof(u32);
5800
5801 val = sctp_sk(sk)->pd_point;
5802 if (put_user(len, optlen))
5803 return -EFAULT;
5804 if (copy_to_user(optval, &val, len))
5805 return -EFAULT;
5806
5807 return 0;
5808}
5809
5810/*
5811 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5812 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5813 */
5814static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5815 char __user *optval,
5816 int __user *optlen)
5817{
5818 struct sctp_assoc_value params;
5819 struct sctp_sock *sp;
5820 struct sctp_association *asoc;
5821
5822 if (len == sizeof(int)) {
5823 pr_warn_ratelimited(DEPRECATED
5824 "%s (pid %d) "
5825 "Use of int in max_burst socket option.\n"
5826 "Use struct sctp_assoc_value instead\n",
5827 current->comm, task_pid_nr(current));
5828 params.assoc_id = 0;
5829 } else if (len >= sizeof(struct sctp_assoc_value)) {
5830 len = sizeof(struct sctp_assoc_value);
5831 if (copy_from_user(¶ms, optval, len))
5832 return -EFAULT;
5833 } else
5834 return -EINVAL;
5835
5836 sp = sctp_sk(sk);
5837
5838 if (params.assoc_id != 0) {
5839 asoc = sctp_id2assoc(sk, params.assoc_id);
5840 if (!asoc)
5841 return -EINVAL;
5842 params.assoc_value = asoc->max_burst;
5843 } else
5844 params.assoc_value = sp->max_burst;
5845
5846 if (len == sizeof(int)) {
5847 if (copy_to_user(optval, ¶ms.assoc_value, len))
5848 return -EFAULT;
5849 } else {
5850 if (copy_to_user(optval, ¶ms, len))
5851 return -EFAULT;
5852 }
5853
5854 return 0;
5855
5856}
5857
5858static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5859 char __user *optval, int __user *optlen)
5860{
5861 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5862 struct sctp_hmacalgo __user *p = (void __user *)optval;
5863 struct sctp_hmac_algo_param *hmacs;
5864 __u16 data_len = 0;
5865 u32 num_idents;
5866 int i;
5867
5868 if (!ep->auth_enable)
5869 return -EACCES;
5870
5871 hmacs = ep->auth_hmacs_list;
5872 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5873
5874 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5875 return -EINVAL;
5876
5877 len = sizeof(struct sctp_hmacalgo) + data_len;
5878 num_idents = data_len / sizeof(u16);
5879
5880 if (put_user(len, optlen))
5881 return -EFAULT;
5882 if (put_user(num_idents, &p->shmac_num_idents))
5883 return -EFAULT;
5884 for (i = 0; i < num_idents; i++) {
5885 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5886
5887 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5888 return -EFAULT;
5889 }
5890 return 0;
5891}
5892
5893static int sctp_getsockopt_active_key(struct sock *sk, int len,
5894 char __user *optval, int __user *optlen)
5895{
5896 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5897 struct sctp_authkeyid val;
5898 struct sctp_association *asoc;
5899
5900 if (!ep->auth_enable)
5901 return -EACCES;
5902
5903 if (len < sizeof(struct sctp_authkeyid))
5904 return -EINVAL;
5905 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5906 return -EFAULT;
5907
5908 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5909 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5910 return -EINVAL;
5911
5912 if (asoc)
5913 val.scact_keynumber = asoc->active_key_id;
5914 else
5915 val.scact_keynumber = ep->active_key_id;
5916
5917 len = sizeof(struct sctp_authkeyid);
5918 if (put_user(len, optlen))
5919 return -EFAULT;
5920 if (copy_to_user(optval, &val, len))
5921 return -EFAULT;
5922
5923 return 0;
5924}
5925
5926static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5927 char __user *optval, int __user *optlen)
5928{
5929 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5930 struct sctp_authchunks __user *p = (void __user *)optval;
5931 struct sctp_authchunks val;
5932 struct sctp_association *asoc;
5933 struct sctp_chunks_param *ch;
5934 u32 num_chunks = 0;
5935 char __user *to;
5936
5937 if (!ep->auth_enable)
5938 return -EACCES;
5939
5940 if (len < sizeof(struct sctp_authchunks))
5941 return -EINVAL;
5942
5943 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5944 return -EFAULT;
5945
5946 to = p->gauth_chunks;
5947 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5948 if (!asoc)
5949 return -EINVAL;
5950
5951 ch = asoc->peer.peer_chunks;
5952 if (!ch)
5953 goto num;
5954
5955 /* See if the user provided enough room for all the data */
5956 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5957 if (len < num_chunks)
5958 return -EINVAL;
5959
5960 if (copy_to_user(to, ch->chunks, num_chunks))
5961 return -EFAULT;
5962num:
5963 len = sizeof(struct sctp_authchunks) + num_chunks;
5964 if (put_user(len, optlen))
5965 return -EFAULT;
5966 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5967 return -EFAULT;
5968 return 0;
5969}
5970
5971static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5972 char __user *optval, int __user *optlen)
5973{
5974 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5975 struct sctp_authchunks __user *p = (void __user *)optval;
5976 struct sctp_authchunks val;
5977 struct sctp_association *asoc;
5978 struct sctp_chunks_param *ch;
5979 u32 num_chunks = 0;
5980 char __user *to;
5981
5982 if (!ep->auth_enable)
5983 return -EACCES;
5984
5985 if (len < sizeof(struct sctp_authchunks))
5986 return -EINVAL;
5987
5988 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5989 return -EFAULT;
5990
5991 to = p->gauth_chunks;
5992 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5993 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5994 return -EINVAL;
5995
5996 if (asoc)
5997 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5998 else
5999 ch = ep->auth_chunk_list;
6000
6001 if (!ch)
6002 goto num;
6003
6004 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6005 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6006 return -EINVAL;
6007
6008 if (copy_to_user(to, ch->chunks, num_chunks))
6009 return -EFAULT;
6010num:
6011 len = sizeof(struct sctp_authchunks) + num_chunks;
6012 if (put_user(len, optlen))
6013 return -EFAULT;
6014 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6015 return -EFAULT;
6016
6017 return 0;
6018}
6019
6020/*
6021 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6022 * This option gets the current number of associations that are attached
6023 * to a one-to-many style socket. The option value is an uint32_t.
6024 */
6025static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6026 char __user *optval, int __user *optlen)
6027{
6028 struct sctp_sock *sp = sctp_sk(sk);
6029 struct sctp_association *asoc;
6030 u32 val = 0;
6031
6032 if (sctp_style(sk, TCP))
6033 return -EOPNOTSUPP;
6034
6035 if (len < sizeof(u32))
6036 return -EINVAL;
6037
6038 len = sizeof(u32);
6039
6040 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6041 val++;
6042 }
6043
6044 if (put_user(len, optlen))
6045 return -EFAULT;
6046 if (copy_to_user(optval, &val, len))
6047 return -EFAULT;
6048
6049 return 0;
6050}
6051
6052/*
6053 * 8.1.23 SCTP_AUTO_ASCONF
6054 * See the corresponding setsockopt entry as description
6055 */
6056static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6057 char __user *optval, int __user *optlen)
6058{
6059 int val = 0;
6060
6061 if (len < sizeof(int))
6062 return -EINVAL;
6063
6064 len = sizeof(int);
6065 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6066 val = 1;
6067 if (put_user(len, optlen))
6068 return -EFAULT;
6069 if (copy_to_user(optval, &val, len))
6070 return -EFAULT;
6071 return 0;
6072}
6073
6074/*
6075 * 8.2.6. Get the Current Identifiers of Associations
6076 * (SCTP_GET_ASSOC_ID_LIST)
6077 *
6078 * This option gets the current list of SCTP association identifiers of
6079 * the SCTP associations handled by a one-to-many style socket.
6080 */
6081static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6082 char __user *optval, int __user *optlen)
6083{
6084 struct sctp_sock *sp = sctp_sk(sk);
6085 struct sctp_association *asoc;
6086 struct sctp_assoc_ids *ids;
6087 u32 num = 0;
6088
6089 if (sctp_style(sk, TCP))
6090 return -EOPNOTSUPP;
6091
6092 if (len < sizeof(struct sctp_assoc_ids))
6093 return -EINVAL;
6094
6095 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6096 num++;
6097 }
6098
6099 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6100 return -EINVAL;
6101
6102 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6103
6104 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6105 if (unlikely(!ids))
6106 return -ENOMEM;
6107
6108 ids->gaids_number_of_ids = num;
6109 num = 0;
6110 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6111 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6112 }
6113
6114 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6115 kfree(ids);
6116 return -EFAULT;
6117 }
6118
6119 kfree(ids);
6120 return 0;
6121}
6122
6123/*
6124 * SCTP_PEER_ADDR_THLDS
6125 *
6126 * This option allows us to fetch the partially failed threshold for one or all
6127 * transports in an association. See Section 6.1 of:
6128 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6129 */
6130static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6131 char __user *optval,
6132 int len,
6133 int __user *optlen)
6134{
6135 struct sctp_paddrthlds val;
6136 struct sctp_transport *trans;
6137 struct sctp_association *asoc;
6138
6139 if (len < sizeof(struct sctp_paddrthlds))
6140 return -EINVAL;
6141 len = sizeof(struct sctp_paddrthlds);
6142 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6143 return -EFAULT;
6144
6145 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6146 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6147 if (!asoc)
6148 return -ENOENT;
6149
6150 val.spt_pathpfthld = asoc->pf_retrans;
6151 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6152 } else {
6153 trans = sctp_addr_id2transport(sk, &val.spt_address,
6154 val.spt_assoc_id);
6155 if (!trans)
6156 return -ENOENT;
6157
6158 val.spt_pathmaxrxt = trans->pathmaxrxt;
6159 val.spt_pathpfthld = trans->pf_retrans;
6160 }
6161
6162 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6163 return -EFAULT;
6164
6165 return 0;
6166}
6167
6168/*
6169 * SCTP_GET_ASSOC_STATS
6170 *
6171 * This option retrieves local per endpoint statistics. It is modeled
6172 * after OpenSolaris' implementation
6173 */
6174static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6175 char __user *optval,
6176 int __user *optlen)
6177{
6178 struct sctp_assoc_stats sas;
6179 struct sctp_association *asoc = NULL;
6180
6181 /* User must provide at least the assoc id */
6182 if (len < sizeof(sctp_assoc_t))
6183 return -EINVAL;
6184
6185 /* Allow the struct to grow and fill in as much as possible */
6186 len = min_t(size_t, len, sizeof(sas));
6187
6188 if (copy_from_user(&sas, optval, len))
6189 return -EFAULT;
6190
6191 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6192 if (!asoc)
6193 return -EINVAL;
6194
6195 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6196 sas.sas_gapcnt = asoc->stats.gapcnt;
6197 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6198 sas.sas_osacks = asoc->stats.osacks;
6199 sas.sas_isacks = asoc->stats.isacks;
6200 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6201 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6202 sas.sas_oodchunks = asoc->stats.oodchunks;
6203 sas.sas_iodchunks = asoc->stats.iodchunks;
6204 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6205 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6206 sas.sas_idupchunks = asoc->stats.idupchunks;
6207 sas.sas_opackets = asoc->stats.opackets;
6208 sas.sas_ipackets = asoc->stats.ipackets;
6209
6210 /* New high max rto observed, will return 0 if not a single
6211 * RTO update took place. obs_rto_ipaddr will be bogus
6212 * in such a case
6213 */
6214 sas.sas_maxrto = asoc->stats.max_obs_rto;
6215 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6216 sizeof(struct sockaddr_storage));
6217
6218 /* Mark beginning of a new observation period */
6219 asoc->stats.max_obs_rto = asoc->rto_min;
6220
6221 if (put_user(len, optlen))
6222 return -EFAULT;
6223
6224 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6225
6226 if (copy_to_user(optval, &sas, len))
6227 return -EFAULT;
6228
6229 return 0;
6230}
6231
6232static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6233 char __user *optval,
6234 int __user *optlen)
6235{
6236 int val = 0;
6237
6238 if (len < sizeof(int))
6239 return -EINVAL;
6240
6241 len = sizeof(int);
6242 if (sctp_sk(sk)->recvrcvinfo)
6243 val = 1;
6244 if (put_user(len, optlen))
6245 return -EFAULT;
6246 if (copy_to_user(optval, &val, len))
6247 return -EFAULT;
6248
6249 return 0;
6250}
6251
6252static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6253 char __user *optval,
6254 int __user *optlen)
6255{
6256 int val = 0;
6257
6258 if (len < sizeof(int))
6259 return -EINVAL;
6260
6261 len = sizeof(int);
6262 if (sctp_sk(sk)->recvnxtinfo)
6263 val = 1;
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &val, len))
6267 return -EFAULT;
6268
6269 return 0;
6270}
6271
6272static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6273 char __user *optval,
6274 int __user *optlen)
6275{
6276 struct sctp_assoc_value params;
6277 struct sctp_association *asoc;
6278 int retval = -EFAULT;
6279
6280 if (len < sizeof(params)) {
6281 retval = -EINVAL;
6282 goto out;
6283 }
6284
6285 len = sizeof(params);
6286 if (copy_from_user(¶ms, optval, len))
6287 goto out;
6288
6289 asoc = sctp_id2assoc(sk, params.assoc_id);
6290 if (asoc) {
6291 params.assoc_value = asoc->prsctp_enable;
6292 } else if (!params.assoc_id) {
6293 struct sctp_sock *sp = sctp_sk(sk);
6294
6295 params.assoc_value = sp->ep->prsctp_enable;
6296 } else {
6297 retval = -EINVAL;
6298 goto out;
6299 }
6300
6301 if (put_user(len, optlen))
6302 goto out;
6303
6304 if (copy_to_user(optval, ¶ms, len))
6305 goto out;
6306
6307 retval = 0;
6308
6309out:
6310 return retval;
6311}
6312
6313static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6314 char __user *optval,
6315 int __user *optlen)
6316{
6317 struct sctp_default_prinfo info;
6318 struct sctp_association *asoc;
6319 int retval = -EFAULT;
6320
6321 if (len < sizeof(info)) {
6322 retval = -EINVAL;
6323 goto out;
6324 }
6325
6326 len = sizeof(info);
6327 if (copy_from_user(&info, optval, len))
6328 goto out;
6329
6330 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6331 if (asoc) {
6332 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6333 info.pr_value = asoc->default_timetolive;
6334 } else if (!info.pr_assoc_id) {
6335 struct sctp_sock *sp = sctp_sk(sk);
6336
6337 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6338 info.pr_value = sp->default_timetolive;
6339 } else {
6340 retval = -EINVAL;
6341 goto out;
6342 }
6343
6344 if (put_user(len, optlen))
6345 goto out;
6346
6347 if (copy_to_user(optval, &info, len))
6348 goto out;
6349
6350 retval = 0;
6351
6352out:
6353 return retval;
6354}
6355
6356static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6357 char __user *optval,
6358 int __user *optlen)
6359{
6360 struct sctp_prstatus params;
6361 struct sctp_association *asoc;
6362 int policy;
6363 int retval = -EINVAL;
6364
6365 if (len < sizeof(params))
6366 goto out;
6367
6368 len = sizeof(params);
6369 if (copy_from_user(¶ms, optval, len)) {
6370 retval = -EFAULT;
6371 goto out;
6372 }
6373
6374 policy = params.sprstat_policy;
6375 if (policy & ~SCTP_PR_SCTP_MASK)
6376 goto out;
6377
6378 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6379 if (!asoc)
6380 goto out;
6381
6382 if (policy == SCTP_PR_SCTP_NONE) {
6383 params.sprstat_abandoned_unsent = 0;
6384 params.sprstat_abandoned_sent = 0;
6385 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6386 params.sprstat_abandoned_unsent +=
6387 asoc->abandoned_unsent[policy];
6388 params.sprstat_abandoned_sent +=
6389 asoc->abandoned_sent[policy];
6390 }
6391 } else {
6392 params.sprstat_abandoned_unsent =
6393 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6394 params.sprstat_abandoned_sent =
6395 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6396 }
6397
6398 if (put_user(len, optlen)) {
6399 retval = -EFAULT;
6400 goto out;
6401 }
6402
6403 if (copy_to_user(optval, ¶ms, len)) {
6404 retval = -EFAULT;
6405 goto out;
6406 }
6407
6408 retval = 0;
6409
6410out:
6411 return retval;
6412}
6413
6414static int sctp_getsockopt(struct sock *sk, int level, int optname,
6415 char __user *optval, int __user *optlen)
6416{
6417 int retval = 0;
6418 int len;
6419
6420 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6421
6422 /* I can hardly begin to describe how wrong this is. This is
6423 * so broken as to be worse than useless. The API draft
6424 * REALLY is NOT helpful here... I am not convinced that the
6425 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6426 * are at all well-founded.
6427 */
6428 if (level != SOL_SCTP) {
6429 struct sctp_af *af = sctp_sk(sk)->pf->af;
6430
6431 retval = af->getsockopt(sk, level, optname, optval, optlen);
6432 return retval;
6433 }
6434
6435 if (get_user(len, optlen))
6436 return -EFAULT;
6437
6438 if (len < 0)
6439 return -EINVAL;
6440
6441 lock_sock(sk);
6442
6443 switch (optname) {
6444 case SCTP_STATUS:
6445 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6446 break;
6447 case SCTP_DISABLE_FRAGMENTS:
6448 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6449 optlen);
6450 break;
6451 case SCTP_EVENTS:
6452 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6453 break;
6454 case SCTP_AUTOCLOSE:
6455 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6456 break;
6457 case SCTP_SOCKOPT_PEELOFF:
6458 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6459 break;
6460 case SCTP_PEER_ADDR_PARAMS:
6461 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6462 optlen);
6463 break;
6464 case SCTP_DELAYED_SACK:
6465 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6466 optlen);
6467 break;
6468 case SCTP_INITMSG:
6469 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6470 break;
6471 case SCTP_GET_PEER_ADDRS:
6472 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6473 optlen);
6474 break;
6475 case SCTP_GET_LOCAL_ADDRS:
6476 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6477 optlen);
6478 break;
6479 case SCTP_SOCKOPT_CONNECTX3:
6480 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6481 break;
6482 case SCTP_DEFAULT_SEND_PARAM:
6483 retval = sctp_getsockopt_default_send_param(sk, len,
6484 optval, optlen);
6485 break;
6486 case SCTP_DEFAULT_SNDINFO:
6487 retval = sctp_getsockopt_default_sndinfo(sk, len,
6488 optval, optlen);
6489 break;
6490 case SCTP_PRIMARY_ADDR:
6491 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6492 break;
6493 case SCTP_NODELAY:
6494 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6495 break;
6496 case SCTP_RTOINFO:
6497 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6498 break;
6499 case SCTP_ASSOCINFO:
6500 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6501 break;
6502 case SCTP_I_WANT_MAPPED_V4_ADDR:
6503 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6504 break;
6505 case SCTP_MAXSEG:
6506 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6507 break;
6508 case SCTP_GET_PEER_ADDR_INFO:
6509 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6510 optlen);
6511 break;
6512 case SCTP_ADAPTATION_LAYER:
6513 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6514 optlen);
6515 break;
6516 case SCTP_CONTEXT:
6517 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6518 break;
6519 case SCTP_FRAGMENT_INTERLEAVE:
6520 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6521 optlen);
6522 break;
6523 case SCTP_PARTIAL_DELIVERY_POINT:
6524 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6525 optlen);
6526 break;
6527 case SCTP_MAX_BURST:
6528 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6529 break;
6530 case SCTP_AUTH_KEY:
6531 case SCTP_AUTH_CHUNK:
6532 case SCTP_AUTH_DELETE_KEY:
6533 retval = -EOPNOTSUPP;
6534 break;
6535 case SCTP_HMAC_IDENT:
6536 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6537 break;
6538 case SCTP_AUTH_ACTIVE_KEY:
6539 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6540 break;
6541 case SCTP_PEER_AUTH_CHUNKS:
6542 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6543 optlen);
6544 break;
6545 case SCTP_LOCAL_AUTH_CHUNKS:
6546 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6547 optlen);
6548 break;
6549 case SCTP_GET_ASSOC_NUMBER:
6550 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6551 break;
6552 case SCTP_GET_ASSOC_ID_LIST:
6553 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6554 break;
6555 case SCTP_AUTO_ASCONF:
6556 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6557 break;
6558 case SCTP_PEER_ADDR_THLDS:
6559 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6560 break;
6561 case SCTP_GET_ASSOC_STATS:
6562 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6563 break;
6564 case SCTP_RECVRCVINFO:
6565 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6566 break;
6567 case SCTP_RECVNXTINFO:
6568 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6569 break;
6570 case SCTP_PR_SUPPORTED:
6571 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6572 break;
6573 case SCTP_DEFAULT_PRINFO:
6574 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6575 optlen);
6576 break;
6577 case SCTP_PR_ASSOC_STATUS:
6578 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6579 optlen);
6580 break;
6581 default:
6582 retval = -ENOPROTOOPT;
6583 break;
6584 }
6585
6586 release_sock(sk);
6587 return retval;
6588}
6589
6590static int sctp_hash(struct sock *sk)
6591{
6592 /* STUB */
6593 return 0;
6594}
6595
6596static void sctp_unhash(struct sock *sk)
6597{
6598 /* STUB */
6599}
6600
6601/* Check if port is acceptable. Possibly find first available port.
6602 *
6603 * The port hash table (contained in the 'global' SCTP protocol storage
6604 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6605 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6606 * list (the list number is the port number hashed out, so as you
6607 * would expect from a hash function, all the ports in a given list have
6608 * such a number that hashes out to the same list number; you were
6609 * expecting that, right?); so each list has a set of ports, with a
6610 * link to the socket (struct sock) that uses it, the port number and
6611 * a fastreuse flag (FIXME: NPI ipg).
6612 */
6613static struct sctp_bind_bucket *sctp_bucket_create(
6614 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6615
6616static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6617{
6618 struct sctp_bind_hashbucket *head; /* hash list */
6619 struct sctp_bind_bucket *pp;
6620 unsigned short snum;
6621 int ret;
6622
6623 snum = ntohs(addr->v4.sin_port);
6624
6625 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6626
6627 local_bh_disable();
6628
6629 if (snum == 0) {
6630 /* Search for an available port. */
6631 int low, high, remaining, index;
6632 unsigned int rover;
6633 struct net *net = sock_net(sk);
6634
6635 inet_get_local_port_range(net, &low, &high);
6636 remaining = (high - low) + 1;
6637 rover = prandom_u32() % remaining + low;
6638
6639 do {
6640 rover++;
6641 if ((rover < low) || (rover > high))
6642 rover = low;
6643 if (inet_is_local_reserved_port(net, rover))
6644 continue;
6645 index = sctp_phashfn(sock_net(sk), rover);
6646 head = &sctp_port_hashtable[index];
6647 spin_lock(&head->lock);
6648 sctp_for_each_hentry(pp, &head->chain)
6649 if ((pp->port == rover) &&
6650 net_eq(sock_net(sk), pp->net))
6651 goto next;
6652 break;
6653 next:
6654 spin_unlock(&head->lock);
6655 } while (--remaining > 0);
6656
6657 /* Exhausted local port range during search? */
6658 ret = 1;
6659 if (remaining <= 0)
6660 goto fail;
6661
6662 /* OK, here is the one we will use. HEAD (the port
6663 * hash table list entry) is non-NULL and we hold it's
6664 * mutex.
6665 */
6666 snum = rover;
6667 } else {
6668 /* We are given an specific port number; we verify
6669 * that it is not being used. If it is used, we will
6670 * exahust the search in the hash list corresponding
6671 * to the port number (snum) - we detect that with the
6672 * port iterator, pp being NULL.
6673 */
6674 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6675 spin_lock(&head->lock);
6676 sctp_for_each_hentry(pp, &head->chain) {
6677 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6678 goto pp_found;
6679 }
6680 }
6681 pp = NULL;
6682 goto pp_not_found;
6683pp_found:
6684 if (!hlist_empty(&pp->owner)) {
6685 /* We had a port hash table hit - there is an
6686 * available port (pp != NULL) and it is being
6687 * used by other socket (pp->owner not empty); that other
6688 * socket is going to be sk2.
6689 */
6690 int reuse = sk->sk_reuse;
6691 struct sock *sk2;
6692
6693 pr_debug("%s: found a possible match\n", __func__);
6694
6695 if (pp->fastreuse && sk->sk_reuse &&
6696 sk->sk_state != SCTP_SS_LISTENING)
6697 goto success;
6698
6699 /* Run through the list of sockets bound to the port
6700 * (pp->port) [via the pointers bind_next and
6701 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6702 * we get the endpoint they describe and run through
6703 * the endpoint's list of IP (v4 or v6) addresses,
6704 * comparing each of the addresses with the address of
6705 * the socket sk. If we find a match, then that means
6706 * that this port/socket (sk) combination are already
6707 * in an endpoint.
6708 */
6709 sk_for_each_bound(sk2, &pp->owner) {
6710 struct sctp_endpoint *ep2;
6711 ep2 = sctp_sk(sk2)->ep;
6712
6713 if (sk == sk2 ||
6714 (reuse && sk2->sk_reuse &&
6715 sk2->sk_state != SCTP_SS_LISTENING))
6716 continue;
6717
6718 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6719 sctp_sk(sk2), sctp_sk(sk))) {
6720 ret = (long)sk2;
6721 goto fail_unlock;
6722 }
6723 }
6724
6725 pr_debug("%s: found a match\n", __func__);
6726 }
6727pp_not_found:
6728 /* If there was a hash table miss, create a new port. */
6729 ret = 1;
6730 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6731 goto fail_unlock;
6732
6733 /* In either case (hit or miss), make sure fastreuse is 1 only
6734 * if sk->sk_reuse is too (that is, if the caller requested
6735 * SO_REUSEADDR on this socket -sk-).
6736 */
6737 if (hlist_empty(&pp->owner)) {
6738 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6739 pp->fastreuse = 1;
6740 else
6741 pp->fastreuse = 0;
6742 } else if (pp->fastreuse &&
6743 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6744 pp->fastreuse = 0;
6745
6746 /* We are set, so fill up all the data in the hash table
6747 * entry, tie the socket list information with the rest of the
6748 * sockets FIXME: Blurry, NPI (ipg).
6749 */
6750success:
6751 if (!sctp_sk(sk)->bind_hash) {
6752 inet_sk(sk)->inet_num = snum;
6753 sk_add_bind_node(sk, &pp->owner);
6754 sctp_sk(sk)->bind_hash = pp;
6755 }
6756 ret = 0;
6757
6758fail_unlock:
6759 spin_unlock(&head->lock);
6760
6761fail:
6762 local_bh_enable();
6763 return ret;
6764}
6765
6766/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6767 * port is requested.
6768 */
6769static int sctp_get_port(struct sock *sk, unsigned short snum)
6770{
6771 union sctp_addr addr;
6772 struct sctp_af *af = sctp_sk(sk)->pf->af;
6773
6774 /* Set up a dummy address struct from the sk. */
6775 af->from_sk(&addr, sk);
6776 addr.v4.sin_port = htons(snum);
6777
6778 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6779 return !!sctp_get_port_local(sk, &addr);
6780}
6781
6782/*
6783 * Move a socket to LISTENING state.
6784 */
6785static int sctp_listen_start(struct sock *sk, int backlog)
6786{
6787 struct sctp_sock *sp = sctp_sk(sk);
6788 struct sctp_endpoint *ep = sp->ep;
6789 struct crypto_shash *tfm = NULL;
6790 char alg[32];
6791
6792 /* Allocate HMAC for generating cookie. */
6793 if (!sp->hmac && sp->sctp_hmac_alg) {
6794 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6795 tfm = crypto_alloc_shash(alg, 0, 0);
6796 if (IS_ERR(tfm)) {
6797 net_info_ratelimited("failed to load transform for %s: %ld\n",
6798 sp->sctp_hmac_alg, PTR_ERR(tfm));
6799 return -ENOSYS;
6800 }
6801 sctp_sk(sk)->hmac = tfm;
6802 }
6803
6804 /*
6805 * If a bind() or sctp_bindx() is not called prior to a listen()
6806 * call that allows new associations to be accepted, the system
6807 * picks an ephemeral port and will choose an address set equivalent
6808 * to binding with a wildcard address.
6809 *
6810 * This is not currently spelled out in the SCTP sockets
6811 * extensions draft, but follows the practice as seen in TCP
6812 * sockets.
6813 *
6814 */
6815 sk->sk_state = SCTP_SS_LISTENING;
6816 if (!ep->base.bind_addr.port) {
6817 if (sctp_autobind(sk))
6818 return -EAGAIN;
6819 } else {
6820 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6821 sk->sk_state = SCTP_SS_CLOSED;
6822 return -EADDRINUSE;
6823 }
6824 }
6825
6826 sk->sk_max_ack_backlog = backlog;
6827 sctp_hash_endpoint(ep);
6828 return 0;
6829}
6830
6831/*
6832 * 4.1.3 / 5.1.3 listen()
6833 *
6834 * By default, new associations are not accepted for UDP style sockets.
6835 * An application uses listen() to mark a socket as being able to
6836 * accept new associations.
6837 *
6838 * On TCP style sockets, applications use listen() to ready the SCTP
6839 * endpoint for accepting inbound associations.
6840 *
6841 * On both types of endpoints a backlog of '0' disables listening.
6842 *
6843 * Move a socket to LISTENING state.
6844 */
6845int sctp_inet_listen(struct socket *sock, int backlog)
6846{
6847 struct sock *sk = sock->sk;
6848 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6849 int err = -EINVAL;
6850
6851 if (unlikely(backlog < 0))
6852 return err;
6853
6854 lock_sock(sk);
6855
6856 /* Peeled-off sockets are not allowed to listen(). */
6857 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6858 goto out;
6859
6860 if (sock->state != SS_UNCONNECTED)
6861 goto out;
6862
6863 /* If backlog is zero, disable listening. */
6864 if (!backlog) {
6865 if (sctp_sstate(sk, CLOSED))
6866 goto out;
6867
6868 err = 0;
6869 sctp_unhash_endpoint(ep);
6870 sk->sk_state = SCTP_SS_CLOSED;
6871 if (sk->sk_reuse)
6872 sctp_sk(sk)->bind_hash->fastreuse = 1;
6873 goto out;
6874 }
6875
6876 /* If we are already listening, just update the backlog */
6877 if (sctp_sstate(sk, LISTENING))
6878 sk->sk_max_ack_backlog = backlog;
6879 else {
6880 err = sctp_listen_start(sk, backlog);
6881 if (err)
6882 goto out;
6883 }
6884
6885 err = 0;
6886out:
6887 release_sock(sk);
6888 return err;
6889}
6890
6891/*
6892 * This function is done by modeling the current datagram_poll() and the
6893 * tcp_poll(). Note that, based on these implementations, we don't
6894 * lock the socket in this function, even though it seems that,
6895 * ideally, locking or some other mechanisms can be used to ensure
6896 * the integrity of the counters (sndbuf and wmem_alloc) used
6897 * in this place. We assume that we don't need locks either until proven
6898 * otherwise.
6899 *
6900 * Another thing to note is that we include the Async I/O support
6901 * here, again, by modeling the current TCP/UDP code. We don't have
6902 * a good way to test with it yet.
6903 */
6904unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6905{
6906 struct sock *sk = sock->sk;
6907 struct sctp_sock *sp = sctp_sk(sk);
6908 unsigned int mask;
6909
6910 poll_wait(file, sk_sleep(sk), wait);
6911
6912 sock_rps_record_flow(sk);
6913
6914 /* A TCP-style listening socket becomes readable when the accept queue
6915 * is not empty.
6916 */
6917 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6918 return (!list_empty(&sp->ep->asocs)) ?
6919 (POLLIN | POLLRDNORM) : 0;
6920
6921 mask = 0;
6922
6923 /* Is there any exceptional events? */
6924 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6925 mask |= POLLERR |
6926 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6927 if (sk->sk_shutdown & RCV_SHUTDOWN)
6928 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6929 if (sk->sk_shutdown == SHUTDOWN_MASK)
6930 mask |= POLLHUP;
6931
6932 /* Is it readable? Reconsider this code with TCP-style support. */
6933 if (!skb_queue_empty(&sk->sk_receive_queue))
6934 mask |= POLLIN | POLLRDNORM;
6935
6936 /* The association is either gone or not ready. */
6937 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6938 return mask;
6939
6940 /* Is it writable? */
6941 if (sctp_writeable(sk)) {
6942 mask |= POLLOUT | POLLWRNORM;
6943 } else {
6944 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6945 /*
6946 * Since the socket is not locked, the buffer
6947 * might be made available after the writeable check and
6948 * before the bit is set. This could cause a lost I/O
6949 * signal. tcp_poll() has a race breaker for this race
6950 * condition. Based on their implementation, we put
6951 * in the following code to cover it as well.
6952 */
6953 if (sctp_writeable(sk))
6954 mask |= POLLOUT | POLLWRNORM;
6955 }
6956 return mask;
6957}
6958
6959/********************************************************************
6960 * 2nd Level Abstractions
6961 ********************************************************************/
6962
6963static struct sctp_bind_bucket *sctp_bucket_create(
6964 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6965{
6966 struct sctp_bind_bucket *pp;
6967
6968 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6969 if (pp) {
6970 SCTP_DBG_OBJCNT_INC(bind_bucket);
6971 pp->port = snum;
6972 pp->fastreuse = 0;
6973 INIT_HLIST_HEAD(&pp->owner);
6974 pp->net = net;
6975 hlist_add_head(&pp->node, &head->chain);
6976 }
6977 return pp;
6978}
6979
6980/* Caller must hold hashbucket lock for this tb with local BH disabled */
6981static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6982{
6983 if (pp && hlist_empty(&pp->owner)) {
6984 __hlist_del(&pp->node);
6985 kmem_cache_free(sctp_bucket_cachep, pp);
6986 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6987 }
6988}
6989
6990/* Release this socket's reference to a local port. */
6991static inline void __sctp_put_port(struct sock *sk)
6992{
6993 struct sctp_bind_hashbucket *head =
6994 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6995 inet_sk(sk)->inet_num)];
6996 struct sctp_bind_bucket *pp;
6997
6998 spin_lock(&head->lock);
6999 pp = sctp_sk(sk)->bind_hash;
7000 __sk_del_bind_node(sk);
7001 sctp_sk(sk)->bind_hash = NULL;
7002 inet_sk(sk)->inet_num = 0;
7003 sctp_bucket_destroy(pp);
7004 spin_unlock(&head->lock);
7005}
7006
7007void sctp_put_port(struct sock *sk)
7008{
7009 local_bh_disable();
7010 __sctp_put_port(sk);
7011 local_bh_enable();
7012}
7013
7014/*
7015 * The system picks an ephemeral port and choose an address set equivalent
7016 * to binding with a wildcard address.
7017 * One of those addresses will be the primary address for the association.
7018 * This automatically enables the multihoming capability of SCTP.
7019 */
7020static int sctp_autobind(struct sock *sk)
7021{
7022 union sctp_addr autoaddr;
7023 struct sctp_af *af;
7024 __be16 port;
7025
7026 /* Initialize a local sockaddr structure to INADDR_ANY. */
7027 af = sctp_sk(sk)->pf->af;
7028
7029 port = htons(inet_sk(sk)->inet_num);
7030 af->inaddr_any(&autoaddr, port);
7031
7032 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7033}
7034
7035/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7036 *
7037 * From RFC 2292
7038 * 4.2 The cmsghdr Structure *
7039 *
7040 * When ancillary data is sent or received, any number of ancillary data
7041 * objects can be specified by the msg_control and msg_controllen members of
7042 * the msghdr structure, because each object is preceded by
7043 * a cmsghdr structure defining the object's length (the cmsg_len member).
7044 * Historically Berkeley-derived implementations have passed only one object
7045 * at a time, but this API allows multiple objects to be
7046 * passed in a single call to sendmsg() or recvmsg(). The following example
7047 * shows two ancillary data objects in a control buffer.
7048 *
7049 * |<--------------------------- msg_controllen -------------------------->|
7050 * | |
7051 *
7052 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7053 *
7054 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7055 * | | |
7056 *
7057 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7058 *
7059 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7060 * | | | | |
7061 *
7062 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7063 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7064 *
7065 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7066 *
7067 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7068 * ^
7069 * |
7070 *
7071 * msg_control
7072 * points here
7073 */
7074static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7075{
7076 struct cmsghdr *cmsg;
7077 struct msghdr *my_msg = (struct msghdr *)msg;
7078
7079 for_each_cmsghdr(cmsg, my_msg) {
7080 if (!CMSG_OK(my_msg, cmsg))
7081 return -EINVAL;
7082
7083 /* Should we parse this header or ignore? */
7084 if (cmsg->cmsg_level != IPPROTO_SCTP)
7085 continue;
7086
7087 /* Strictly check lengths following example in SCM code. */
7088 switch (cmsg->cmsg_type) {
7089 case SCTP_INIT:
7090 /* SCTP Socket API Extension
7091 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7092 *
7093 * This cmsghdr structure provides information for
7094 * initializing new SCTP associations with sendmsg().
7095 * The SCTP_INITMSG socket option uses this same data
7096 * structure. This structure is not used for
7097 * recvmsg().
7098 *
7099 * cmsg_level cmsg_type cmsg_data[]
7100 * ------------ ------------ ----------------------
7101 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7102 */
7103 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7104 return -EINVAL;
7105
7106 cmsgs->init = CMSG_DATA(cmsg);
7107 break;
7108
7109 case SCTP_SNDRCV:
7110 /* SCTP Socket API Extension
7111 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7112 *
7113 * This cmsghdr structure specifies SCTP options for
7114 * sendmsg() and describes SCTP header information
7115 * about a received message through recvmsg().
7116 *
7117 * cmsg_level cmsg_type cmsg_data[]
7118 * ------------ ------------ ----------------------
7119 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7120 */
7121 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7122 return -EINVAL;
7123
7124 cmsgs->srinfo = CMSG_DATA(cmsg);
7125
7126 if (cmsgs->srinfo->sinfo_flags &
7127 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7128 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7129 SCTP_ABORT | SCTP_EOF))
7130 return -EINVAL;
7131 break;
7132
7133 case SCTP_SNDINFO:
7134 /* SCTP Socket API Extension
7135 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7136 *
7137 * This cmsghdr structure specifies SCTP options for
7138 * sendmsg(). This structure and SCTP_RCVINFO replaces
7139 * SCTP_SNDRCV which has been deprecated.
7140 *
7141 * cmsg_level cmsg_type cmsg_data[]
7142 * ------------ ------------ ---------------------
7143 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7144 */
7145 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7146 return -EINVAL;
7147
7148 cmsgs->sinfo = CMSG_DATA(cmsg);
7149
7150 if (cmsgs->sinfo->snd_flags &
7151 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7152 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7153 SCTP_ABORT | SCTP_EOF))
7154 return -EINVAL;
7155 break;
7156 default:
7157 return -EINVAL;
7158 }
7159 }
7160
7161 return 0;
7162}
7163
7164/*
7165 * Wait for a packet..
7166 * Note: This function is the same function as in core/datagram.c
7167 * with a few modifications to make lksctp work.
7168 */
7169static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7170{
7171 int error;
7172 DEFINE_WAIT(wait);
7173
7174 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7175
7176 /* Socket errors? */
7177 error = sock_error(sk);
7178 if (error)
7179 goto out;
7180
7181 if (!skb_queue_empty(&sk->sk_receive_queue))
7182 goto ready;
7183
7184 /* Socket shut down? */
7185 if (sk->sk_shutdown & RCV_SHUTDOWN)
7186 goto out;
7187
7188 /* Sequenced packets can come disconnected. If so we report the
7189 * problem.
7190 */
7191 error = -ENOTCONN;
7192
7193 /* Is there a good reason to think that we may receive some data? */
7194 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7195 goto out;
7196
7197 /* Handle signals. */
7198 if (signal_pending(current))
7199 goto interrupted;
7200
7201 /* Let another process have a go. Since we are going to sleep
7202 * anyway. Note: This may cause odd behaviors if the message
7203 * does not fit in the user's buffer, but this seems to be the
7204 * only way to honor MSG_DONTWAIT realistically.
7205 */
7206 release_sock(sk);
7207 *timeo_p = schedule_timeout(*timeo_p);
7208 lock_sock(sk);
7209
7210ready:
7211 finish_wait(sk_sleep(sk), &wait);
7212 return 0;
7213
7214interrupted:
7215 error = sock_intr_errno(*timeo_p);
7216
7217out:
7218 finish_wait(sk_sleep(sk), &wait);
7219 *err = error;
7220 return error;
7221}
7222
7223/* Receive a datagram.
7224 * Note: This is pretty much the same routine as in core/datagram.c
7225 * with a few changes to make lksctp work.
7226 */
7227struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7228 int noblock, int *err)
7229{
7230 int error;
7231 struct sk_buff *skb;
7232 long timeo;
7233
7234 timeo = sock_rcvtimeo(sk, noblock);
7235
7236 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7237 MAX_SCHEDULE_TIMEOUT);
7238
7239 do {
7240 /* Again only user level code calls this function,
7241 * so nothing interrupt level
7242 * will suddenly eat the receive_queue.
7243 *
7244 * Look at current nfs client by the way...
7245 * However, this function was correct in any case. 8)
7246 */
7247 if (flags & MSG_PEEK) {
7248 skb = skb_peek(&sk->sk_receive_queue);
7249 if (skb)
7250 atomic_inc(&skb->users);
7251 } else {
7252 skb = __skb_dequeue(&sk->sk_receive_queue);
7253 }
7254
7255 if (skb)
7256 return skb;
7257
7258 /* Caller is allowed not to check sk->sk_err before calling. */
7259 error = sock_error(sk);
7260 if (error)
7261 goto no_packet;
7262
7263 if (sk->sk_shutdown & RCV_SHUTDOWN)
7264 break;
7265
7266 if (sk_can_busy_loop(sk) &&
7267 sk_busy_loop(sk, noblock))
7268 continue;
7269
7270 /* User doesn't want to wait. */
7271 error = -EAGAIN;
7272 if (!timeo)
7273 goto no_packet;
7274 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7275
7276 return NULL;
7277
7278no_packet:
7279 *err = error;
7280 return NULL;
7281}
7282
7283/* If sndbuf has changed, wake up per association sndbuf waiters. */
7284static void __sctp_write_space(struct sctp_association *asoc)
7285{
7286 struct sock *sk = asoc->base.sk;
7287
7288 if (sctp_wspace(asoc) <= 0)
7289 return;
7290
7291 if (waitqueue_active(&asoc->wait))
7292 wake_up_interruptible(&asoc->wait);
7293
7294 if (sctp_writeable(sk)) {
7295 struct socket_wq *wq;
7296
7297 rcu_read_lock();
7298 wq = rcu_dereference(sk->sk_wq);
7299 if (wq) {
7300 if (waitqueue_active(&wq->wait))
7301 wake_up_interruptible(&wq->wait);
7302
7303 /* Note that we try to include the Async I/O support
7304 * here by modeling from the current TCP/UDP code.
7305 * We have not tested with it yet.
7306 */
7307 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7308 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7309 }
7310 rcu_read_unlock();
7311 }
7312}
7313
7314static void sctp_wake_up_waiters(struct sock *sk,
7315 struct sctp_association *asoc)
7316{
7317 struct sctp_association *tmp = asoc;
7318
7319 /* We do accounting for the sndbuf space per association,
7320 * so we only need to wake our own association.
7321 */
7322 if (asoc->ep->sndbuf_policy)
7323 return __sctp_write_space(asoc);
7324
7325 /* If association goes down and is just flushing its
7326 * outq, then just normally notify others.
7327 */
7328 if (asoc->base.dead)
7329 return sctp_write_space(sk);
7330
7331 /* Accounting for the sndbuf space is per socket, so we
7332 * need to wake up others, try to be fair and in case of
7333 * other associations, let them have a go first instead
7334 * of just doing a sctp_write_space() call.
7335 *
7336 * Note that we reach sctp_wake_up_waiters() only when
7337 * associations free up queued chunks, thus we are under
7338 * lock and the list of associations on a socket is
7339 * guaranteed not to change.
7340 */
7341 for (tmp = list_next_entry(tmp, asocs); 1;
7342 tmp = list_next_entry(tmp, asocs)) {
7343 /* Manually skip the head element. */
7344 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7345 continue;
7346 /* Wake up association. */
7347 __sctp_write_space(tmp);
7348 /* We've reached the end. */
7349 if (tmp == asoc)
7350 break;
7351 }
7352}
7353
7354/* Do accounting for the sndbuf space.
7355 * Decrement the used sndbuf space of the corresponding association by the
7356 * data size which was just transmitted(freed).
7357 */
7358static void sctp_wfree(struct sk_buff *skb)
7359{
7360 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7361 struct sctp_association *asoc = chunk->asoc;
7362 struct sock *sk = asoc->base.sk;
7363
7364 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7365 sizeof(struct sk_buff) +
7366 sizeof(struct sctp_chunk);
7367
7368 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7369
7370 /*
7371 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7372 */
7373 sk->sk_wmem_queued -= skb->truesize;
7374 sk_mem_uncharge(sk, skb->truesize);
7375
7376 sock_wfree(skb);
7377 sctp_wake_up_waiters(sk, asoc);
7378
7379 sctp_association_put(asoc);
7380}
7381
7382/* Do accounting for the receive space on the socket.
7383 * Accounting for the association is done in ulpevent.c
7384 * We set this as a destructor for the cloned data skbs so that
7385 * accounting is done at the correct time.
7386 */
7387void sctp_sock_rfree(struct sk_buff *skb)
7388{
7389 struct sock *sk = skb->sk;
7390 struct sctp_ulpevent *event = sctp_skb2event(skb);
7391
7392 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7393
7394 /*
7395 * Mimic the behavior of sock_rfree
7396 */
7397 sk_mem_uncharge(sk, event->rmem_len);
7398}
7399
7400
7401/* Helper function to wait for space in the sndbuf. */
7402static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7403 size_t msg_len)
7404{
7405 struct sock *sk = asoc->base.sk;
7406 int err = 0;
7407 long current_timeo = *timeo_p;
7408 DEFINE_WAIT(wait);
7409
7410 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7411 *timeo_p, msg_len);
7412
7413 /* Increment the association's refcnt. */
7414 sctp_association_hold(asoc);
7415
7416 /* Wait on the association specific sndbuf space. */
7417 for (;;) {
7418 prepare_to_wait_exclusive(&asoc->wait, &wait,
7419 TASK_INTERRUPTIBLE);
7420 if (!*timeo_p)
7421 goto do_nonblock;
7422 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7423 asoc->base.dead)
7424 goto do_error;
7425 if (signal_pending(current))
7426 goto do_interrupted;
7427 if (msg_len <= sctp_wspace(asoc))
7428 break;
7429
7430 /* Let another process have a go. Since we are going
7431 * to sleep anyway.
7432 */
7433 release_sock(sk);
7434 current_timeo = schedule_timeout(current_timeo);
7435 lock_sock(sk);
7436
7437 *timeo_p = current_timeo;
7438 }
7439
7440out:
7441 finish_wait(&asoc->wait, &wait);
7442
7443 /* Release the association's refcnt. */
7444 sctp_association_put(asoc);
7445
7446 return err;
7447
7448do_error:
7449 err = -EPIPE;
7450 goto out;
7451
7452do_interrupted:
7453 err = sock_intr_errno(*timeo_p);
7454 goto out;
7455
7456do_nonblock:
7457 err = -EAGAIN;
7458 goto out;
7459}
7460
7461void sctp_data_ready(struct sock *sk)
7462{
7463 struct socket_wq *wq;
7464
7465 rcu_read_lock();
7466 wq = rcu_dereference(sk->sk_wq);
7467 if (skwq_has_sleeper(wq))
7468 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7469 POLLRDNORM | POLLRDBAND);
7470 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7471 rcu_read_unlock();
7472}
7473
7474/* If socket sndbuf has changed, wake up all per association waiters. */
7475void sctp_write_space(struct sock *sk)
7476{
7477 struct sctp_association *asoc;
7478
7479 /* Wake up the tasks in each wait queue. */
7480 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7481 __sctp_write_space(asoc);
7482 }
7483}
7484
7485/* Is there any sndbuf space available on the socket?
7486 *
7487 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7488 * associations on the same socket. For a UDP-style socket with
7489 * multiple associations, it is possible for it to be "unwriteable"
7490 * prematurely. I assume that this is acceptable because
7491 * a premature "unwriteable" is better than an accidental "writeable" which
7492 * would cause an unwanted block under certain circumstances. For the 1-1
7493 * UDP-style sockets or TCP-style sockets, this code should work.
7494 * - Daisy
7495 */
7496static int sctp_writeable(struct sock *sk)
7497{
7498 int amt = 0;
7499
7500 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7501 if (amt < 0)
7502 amt = 0;
7503 return amt;
7504}
7505
7506/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7507 * returns immediately with EINPROGRESS.
7508 */
7509static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7510{
7511 struct sock *sk = asoc->base.sk;
7512 int err = 0;
7513 long current_timeo = *timeo_p;
7514 DEFINE_WAIT(wait);
7515
7516 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7517
7518 /* Increment the association's refcnt. */
7519 sctp_association_hold(asoc);
7520
7521 for (;;) {
7522 prepare_to_wait_exclusive(&asoc->wait, &wait,
7523 TASK_INTERRUPTIBLE);
7524 if (!*timeo_p)
7525 goto do_nonblock;
7526 if (sk->sk_shutdown & RCV_SHUTDOWN)
7527 break;
7528 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7529 asoc->base.dead)
7530 goto do_error;
7531 if (signal_pending(current))
7532 goto do_interrupted;
7533
7534 if (sctp_state(asoc, ESTABLISHED))
7535 break;
7536
7537 /* Let another process have a go. Since we are going
7538 * to sleep anyway.
7539 */
7540 release_sock(sk);
7541 current_timeo = schedule_timeout(current_timeo);
7542 lock_sock(sk);
7543
7544 *timeo_p = current_timeo;
7545 }
7546
7547out:
7548 finish_wait(&asoc->wait, &wait);
7549
7550 /* Release the association's refcnt. */
7551 sctp_association_put(asoc);
7552
7553 return err;
7554
7555do_error:
7556 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7557 err = -ETIMEDOUT;
7558 else
7559 err = -ECONNREFUSED;
7560 goto out;
7561
7562do_interrupted:
7563 err = sock_intr_errno(*timeo_p);
7564 goto out;
7565
7566do_nonblock:
7567 err = -EINPROGRESS;
7568 goto out;
7569}
7570
7571static int sctp_wait_for_accept(struct sock *sk, long timeo)
7572{
7573 struct sctp_endpoint *ep;
7574 int err = 0;
7575 DEFINE_WAIT(wait);
7576
7577 ep = sctp_sk(sk)->ep;
7578
7579
7580 for (;;) {
7581 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7582 TASK_INTERRUPTIBLE);
7583
7584 if (list_empty(&ep->asocs)) {
7585 release_sock(sk);
7586 timeo = schedule_timeout(timeo);
7587 lock_sock(sk);
7588 }
7589
7590 err = -EINVAL;
7591 if (!sctp_sstate(sk, LISTENING))
7592 break;
7593
7594 err = 0;
7595 if (!list_empty(&ep->asocs))
7596 break;
7597
7598 err = sock_intr_errno(timeo);
7599 if (signal_pending(current))
7600 break;
7601
7602 err = -EAGAIN;
7603 if (!timeo)
7604 break;
7605 }
7606
7607 finish_wait(sk_sleep(sk), &wait);
7608
7609 return err;
7610}
7611
7612static void sctp_wait_for_close(struct sock *sk, long timeout)
7613{
7614 DEFINE_WAIT(wait);
7615
7616 do {
7617 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7618 if (list_empty(&sctp_sk(sk)->ep->asocs))
7619 break;
7620 release_sock(sk);
7621 timeout = schedule_timeout(timeout);
7622 lock_sock(sk);
7623 } while (!signal_pending(current) && timeout);
7624
7625 finish_wait(sk_sleep(sk), &wait);
7626}
7627
7628static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7629{
7630 struct sk_buff *frag;
7631
7632 if (!skb->data_len)
7633 goto done;
7634
7635 /* Don't forget the fragments. */
7636 skb_walk_frags(skb, frag)
7637 sctp_skb_set_owner_r_frag(frag, sk);
7638
7639done:
7640 sctp_skb_set_owner_r(skb, sk);
7641}
7642
7643void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7644 struct sctp_association *asoc)
7645{
7646 struct inet_sock *inet = inet_sk(sk);
7647 struct inet_sock *newinet;
7648
7649 newsk->sk_type = sk->sk_type;
7650 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7651 newsk->sk_flags = sk->sk_flags;
7652 newsk->sk_tsflags = sk->sk_tsflags;
7653 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7654 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7655 newsk->sk_reuse = sk->sk_reuse;
7656
7657 newsk->sk_shutdown = sk->sk_shutdown;
7658 newsk->sk_destruct = sctp_destruct_sock;
7659 newsk->sk_family = sk->sk_family;
7660 newsk->sk_protocol = IPPROTO_SCTP;
7661 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7662 newsk->sk_sndbuf = sk->sk_sndbuf;
7663 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7664 newsk->sk_lingertime = sk->sk_lingertime;
7665 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7666 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7667 newsk->sk_rxhash = sk->sk_rxhash;
7668
7669 newinet = inet_sk(newsk);
7670
7671 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7672 * getsockname() and getpeername()
7673 */
7674 newinet->inet_sport = inet->inet_sport;
7675 newinet->inet_saddr = inet->inet_saddr;
7676 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7677 newinet->inet_dport = htons(asoc->peer.port);
7678 newinet->pmtudisc = inet->pmtudisc;
7679 newinet->inet_id = asoc->next_tsn ^ jiffies;
7680
7681 newinet->uc_ttl = inet->uc_ttl;
7682 newinet->mc_loop = 1;
7683 newinet->mc_ttl = 1;
7684 newinet->mc_index = 0;
7685 newinet->mc_list = NULL;
7686
7687 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7688 net_enable_timestamp();
7689
7690 security_sk_clone(sk, newsk);
7691}
7692
7693static inline void sctp_copy_descendant(struct sock *sk_to,
7694 const struct sock *sk_from)
7695{
7696 int ancestor_size = sizeof(struct inet_sock) +
7697 sizeof(struct sctp_sock) -
7698 offsetof(struct sctp_sock, auto_asconf_list);
7699
7700 if (sk_from->sk_family == PF_INET6)
7701 ancestor_size += sizeof(struct ipv6_pinfo);
7702
7703 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7704}
7705
7706/* Populate the fields of the newsk from the oldsk and migrate the assoc
7707 * and its messages to the newsk.
7708 */
7709static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7710 struct sctp_association *assoc,
7711 sctp_socket_type_t type)
7712{
7713 struct sctp_sock *oldsp = sctp_sk(oldsk);
7714 struct sctp_sock *newsp = sctp_sk(newsk);
7715 struct sctp_bind_bucket *pp; /* hash list port iterator */
7716 struct sctp_endpoint *newep = newsp->ep;
7717 struct sk_buff *skb, *tmp;
7718 struct sctp_ulpevent *event;
7719 struct sctp_bind_hashbucket *head;
7720
7721 /* Migrate socket buffer sizes and all the socket level options to the
7722 * new socket.
7723 */
7724 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7725 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7726 /* Brute force copy old sctp opt. */
7727 sctp_copy_descendant(newsk, oldsk);
7728
7729 /* Restore the ep value that was overwritten with the above structure
7730 * copy.
7731 */
7732 newsp->ep = newep;
7733 newsp->hmac = NULL;
7734
7735 /* Hook this new socket in to the bind_hash list. */
7736 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7737 inet_sk(oldsk)->inet_num)];
7738 spin_lock_bh(&head->lock);
7739 pp = sctp_sk(oldsk)->bind_hash;
7740 sk_add_bind_node(newsk, &pp->owner);
7741 sctp_sk(newsk)->bind_hash = pp;
7742 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7743 spin_unlock_bh(&head->lock);
7744
7745 /* Copy the bind_addr list from the original endpoint to the new
7746 * endpoint so that we can handle restarts properly
7747 */
7748 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7749 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7750
7751 /* Move any messages in the old socket's receive queue that are for the
7752 * peeled off association to the new socket's receive queue.
7753 */
7754 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7755 event = sctp_skb2event(skb);
7756 if (event->asoc == assoc) {
7757 __skb_unlink(skb, &oldsk->sk_receive_queue);
7758 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7759 sctp_skb_set_owner_r_frag(skb, newsk);
7760 }
7761 }
7762
7763 /* Clean up any messages pending delivery due to partial
7764 * delivery. Three cases:
7765 * 1) No partial deliver; no work.
7766 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7767 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7768 */
7769 skb_queue_head_init(&newsp->pd_lobby);
7770 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7771
7772 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7773 struct sk_buff_head *queue;
7774
7775 /* Decide which queue to move pd_lobby skbs to. */
7776 if (assoc->ulpq.pd_mode) {
7777 queue = &newsp->pd_lobby;
7778 } else
7779 queue = &newsk->sk_receive_queue;
7780
7781 /* Walk through the pd_lobby, looking for skbs that
7782 * need moved to the new socket.
7783 */
7784 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7785 event = sctp_skb2event(skb);
7786 if (event->asoc == assoc) {
7787 __skb_unlink(skb, &oldsp->pd_lobby);
7788 __skb_queue_tail(queue, skb);
7789 sctp_skb_set_owner_r_frag(skb, newsk);
7790 }
7791 }
7792
7793 /* Clear up any skbs waiting for the partial
7794 * delivery to finish.
7795 */
7796 if (assoc->ulpq.pd_mode)
7797 sctp_clear_pd(oldsk, NULL);
7798
7799 }
7800
7801 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7802 sctp_skb_set_owner_r_frag(skb, newsk);
7803
7804 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7805 sctp_skb_set_owner_r_frag(skb, newsk);
7806
7807 /* Set the type of socket to indicate that it is peeled off from the
7808 * original UDP-style socket or created with the accept() call on a
7809 * TCP-style socket..
7810 */
7811 newsp->type = type;
7812
7813 /* Mark the new socket "in-use" by the user so that any packets
7814 * that may arrive on the association after we've moved it are
7815 * queued to the backlog. This prevents a potential race between
7816 * backlog processing on the old socket and new-packet processing
7817 * on the new socket.
7818 *
7819 * The caller has just allocated newsk so we can guarantee that other
7820 * paths won't try to lock it and then oldsk.
7821 */
7822 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7823 sctp_assoc_migrate(assoc, newsk);
7824
7825 /* If the association on the newsk is already closed before accept()
7826 * is called, set RCV_SHUTDOWN flag.
7827 */
7828 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7829 newsk->sk_state = SCTP_SS_CLOSED;
7830 newsk->sk_shutdown |= RCV_SHUTDOWN;
7831 } else {
7832 newsk->sk_state = SCTP_SS_ESTABLISHED;
7833 }
7834
7835 release_sock(newsk);
7836}
7837
7838
7839/* This proto struct describes the ULP interface for SCTP. */
7840struct proto sctp_prot = {
7841 .name = "SCTP",
7842 .owner = THIS_MODULE,
7843 .close = sctp_close,
7844 .connect = sctp_connect,
7845 .disconnect = sctp_disconnect,
7846 .accept = sctp_accept,
7847 .ioctl = sctp_ioctl,
7848 .init = sctp_init_sock,
7849 .destroy = sctp_destroy_sock,
7850 .shutdown = sctp_shutdown,
7851 .setsockopt = sctp_setsockopt,
7852 .getsockopt = sctp_getsockopt,
7853 .sendmsg = sctp_sendmsg,
7854 .recvmsg = sctp_recvmsg,
7855 .bind = sctp_bind,
7856 .backlog_rcv = sctp_backlog_rcv,
7857 .hash = sctp_hash,
7858 .unhash = sctp_unhash,
7859 .get_port = sctp_get_port,
7860 .obj_size = sizeof(struct sctp_sock),
7861 .sysctl_mem = sysctl_sctp_mem,
7862 .sysctl_rmem = sysctl_sctp_rmem,
7863 .sysctl_wmem = sysctl_sctp_wmem,
7864 .memory_pressure = &sctp_memory_pressure,
7865 .enter_memory_pressure = sctp_enter_memory_pressure,
7866 .memory_allocated = &sctp_memory_allocated,
7867 .sockets_allocated = &sctp_sockets_allocated,
7868};
7869
7870#if IS_ENABLED(CONFIG_IPV6)
7871
7872#include <net/transp_v6.h>
7873static void sctp_v6_destroy_sock(struct sock *sk)
7874{
7875 sctp_destroy_sock(sk);
7876 inet6_destroy_sock(sk);
7877}
7878
7879struct proto sctpv6_prot = {
7880 .name = "SCTPv6",
7881 .owner = THIS_MODULE,
7882 .close = sctp_close,
7883 .connect = sctp_connect,
7884 .disconnect = sctp_disconnect,
7885 .accept = sctp_accept,
7886 .ioctl = sctp_ioctl,
7887 .init = sctp_init_sock,
7888 .destroy = sctp_v6_destroy_sock,
7889 .shutdown = sctp_shutdown,
7890 .setsockopt = sctp_setsockopt,
7891 .getsockopt = sctp_getsockopt,
7892 .sendmsg = sctp_sendmsg,
7893 .recvmsg = sctp_recvmsg,
7894 .bind = sctp_bind,
7895 .backlog_rcv = sctp_backlog_rcv,
7896 .hash = sctp_hash,
7897 .unhash = sctp_unhash,
7898 .get_port = sctp_get_port,
7899 .obj_size = sizeof(struct sctp6_sock),
7900 .sysctl_mem = sysctl_sctp_mem,
7901 .sysctl_rmem = sysctl_sctp_rmem,
7902 .sysctl_wmem = sysctl_sctp_wmem,
7903 .memory_pressure = &sctp_memory_pressure,
7904 .enter_memory_pressure = sctp_enter_memory_pressure,
7905 .memory_allocated = &sctp_memory_allocated,
7906 .sockets_allocated = &sctp_sockets_allocated,
7907};
7908#endif /* IS_ENABLED(CONFIG_IPV6) */