Loading...
1/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
12#include <linux/bpf_perf_event.h>
13#include <linux/filter.h>
14#include <linux/uaccess.h>
15#include <linux/ctype.h>
16#include <linux/kprobes.h>
17#include <linux/error-injection.h>
18
19#include "trace_probe.h"
20#include "trace.h"
21
22u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
23
24/**
25 * trace_call_bpf - invoke BPF program
26 * @call: tracepoint event
27 * @ctx: opaque context pointer
28 *
29 * kprobe handlers execute BPF programs via this helper.
30 * Can be used from static tracepoints in the future.
31 *
32 * Return: BPF programs always return an integer which is interpreted by
33 * kprobe handler as:
34 * 0 - return from kprobe (event is filtered out)
35 * 1 - store kprobe event into ring buffer
36 * Other values are reserved and currently alias to 1
37 */
38unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
39{
40 unsigned int ret;
41
42 if (in_nmi()) /* not supported yet */
43 return 1;
44
45 preempt_disable();
46
47 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
48 /*
49 * since some bpf program is already running on this cpu,
50 * don't call into another bpf program (same or different)
51 * and don't send kprobe event into ring-buffer,
52 * so return zero here
53 */
54 ret = 0;
55 goto out;
56 }
57
58 /*
59 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
60 * to all call sites, we did a bpf_prog_array_valid() there to check
61 * whether call->prog_array is empty or not, which is
62 * a heurisitc to speed up execution.
63 *
64 * If bpf_prog_array_valid() fetched prog_array was
65 * non-NULL, we go into trace_call_bpf() and do the actual
66 * proper rcu_dereference() under RCU lock.
67 * If it turns out that prog_array is NULL then, we bail out.
68 * For the opposite, if the bpf_prog_array_valid() fetched pointer
69 * was NULL, you'll skip the prog_array with the risk of missing
70 * out of events when it was updated in between this and the
71 * rcu_dereference() which is accepted risk.
72 */
73 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
74
75 out:
76 __this_cpu_dec(bpf_prog_active);
77 preempt_enable();
78
79 return ret;
80}
81EXPORT_SYMBOL_GPL(trace_call_bpf);
82
83#ifdef CONFIG_BPF_KPROBE_OVERRIDE
84BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
85{
86 regs_set_return_value(regs, rc);
87 override_function_with_return(regs);
88 return 0;
89}
90
91static const struct bpf_func_proto bpf_override_return_proto = {
92 .func = bpf_override_return,
93 .gpl_only = true,
94 .ret_type = RET_INTEGER,
95 .arg1_type = ARG_PTR_TO_CTX,
96 .arg2_type = ARG_ANYTHING,
97};
98#endif
99
100BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
101{
102 int ret;
103
104 ret = probe_kernel_read(dst, unsafe_ptr, size);
105 if (unlikely(ret < 0))
106 memset(dst, 0, size);
107
108 return ret;
109}
110
111static const struct bpf_func_proto bpf_probe_read_proto = {
112 .func = bpf_probe_read,
113 .gpl_only = true,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
116 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
117 .arg3_type = ARG_ANYTHING,
118};
119
120BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
121 u32, size)
122{
123 /*
124 * Ensure we're in user context which is safe for the helper to
125 * run. This helper has no business in a kthread.
126 *
127 * access_ok() should prevent writing to non-user memory, but in
128 * some situations (nommu, temporary switch, etc) access_ok() does
129 * not provide enough validation, hence the check on KERNEL_DS.
130 */
131
132 if (unlikely(in_interrupt() ||
133 current->flags & (PF_KTHREAD | PF_EXITING)))
134 return -EPERM;
135 if (unlikely(uaccess_kernel()))
136 return -EPERM;
137 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
138 return -EPERM;
139
140 return probe_kernel_write(unsafe_ptr, src, size);
141}
142
143static const struct bpf_func_proto bpf_probe_write_user_proto = {
144 .func = bpf_probe_write_user,
145 .gpl_only = true,
146 .ret_type = RET_INTEGER,
147 .arg1_type = ARG_ANYTHING,
148 .arg2_type = ARG_PTR_TO_MEM,
149 .arg3_type = ARG_CONST_SIZE,
150};
151
152static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
153{
154 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
155 current->comm, task_pid_nr(current));
156
157 return &bpf_probe_write_user_proto;
158}
159
160/*
161 * Only limited trace_printk() conversion specifiers allowed:
162 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
163 */
164BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
165 u64, arg2, u64, arg3)
166{
167 bool str_seen = false;
168 int mod[3] = {};
169 int fmt_cnt = 0;
170 u64 unsafe_addr;
171 char buf[64];
172 int i;
173
174 /*
175 * bpf_check()->check_func_arg()->check_stack_boundary()
176 * guarantees that fmt points to bpf program stack,
177 * fmt_size bytes of it were initialized and fmt_size > 0
178 */
179 if (fmt[--fmt_size] != 0)
180 return -EINVAL;
181
182 /* check format string for allowed specifiers */
183 for (i = 0; i < fmt_size; i++) {
184 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
185 return -EINVAL;
186
187 if (fmt[i] != '%')
188 continue;
189
190 if (fmt_cnt >= 3)
191 return -EINVAL;
192
193 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
194 i++;
195 if (fmt[i] == 'l') {
196 mod[fmt_cnt]++;
197 i++;
198 } else if (fmt[i] == 'p' || fmt[i] == 's') {
199 mod[fmt_cnt]++;
200 i++;
201 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
202 return -EINVAL;
203 fmt_cnt++;
204 if (fmt[i - 1] == 's') {
205 if (str_seen)
206 /* allow only one '%s' per fmt string */
207 return -EINVAL;
208 str_seen = true;
209
210 switch (fmt_cnt) {
211 case 1:
212 unsafe_addr = arg1;
213 arg1 = (long) buf;
214 break;
215 case 2:
216 unsafe_addr = arg2;
217 arg2 = (long) buf;
218 break;
219 case 3:
220 unsafe_addr = arg3;
221 arg3 = (long) buf;
222 break;
223 }
224 buf[0] = 0;
225 strncpy_from_unsafe(buf,
226 (void *) (long) unsafe_addr,
227 sizeof(buf));
228 }
229 continue;
230 }
231
232 if (fmt[i] == 'l') {
233 mod[fmt_cnt]++;
234 i++;
235 }
236
237 if (fmt[i] != 'i' && fmt[i] != 'd' &&
238 fmt[i] != 'u' && fmt[i] != 'x')
239 return -EINVAL;
240 fmt_cnt++;
241 }
242
243/* Horrid workaround for getting va_list handling working with different
244 * argument type combinations generically for 32 and 64 bit archs.
245 */
246#define __BPF_TP_EMIT() __BPF_ARG3_TP()
247#define __BPF_TP(...) \
248 __trace_printk(0 /* Fake ip */, \
249 fmt, ##__VA_ARGS__)
250
251#define __BPF_ARG1_TP(...) \
252 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
253 ? __BPF_TP(arg1, ##__VA_ARGS__) \
254 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
255 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
256 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
257
258#define __BPF_ARG2_TP(...) \
259 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
260 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
261 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
262 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
263 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
264
265#define __BPF_ARG3_TP(...) \
266 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
267 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
268 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
269 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
270 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
271
272 return __BPF_TP_EMIT();
273}
274
275static const struct bpf_func_proto bpf_trace_printk_proto = {
276 .func = bpf_trace_printk,
277 .gpl_only = true,
278 .ret_type = RET_INTEGER,
279 .arg1_type = ARG_PTR_TO_MEM,
280 .arg2_type = ARG_CONST_SIZE,
281};
282
283const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
284{
285 /*
286 * this program might be calling bpf_trace_printk,
287 * so allocate per-cpu printk buffers
288 */
289 trace_printk_init_buffers();
290
291 return &bpf_trace_printk_proto;
292}
293
294static __always_inline int
295get_map_perf_counter(struct bpf_map *map, u64 flags,
296 u64 *value, u64 *enabled, u64 *running)
297{
298 struct bpf_array *array = container_of(map, struct bpf_array, map);
299 unsigned int cpu = smp_processor_id();
300 u64 index = flags & BPF_F_INDEX_MASK;
301 struct bpf_event_entry *ee;
302
303 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
304 return -EINVAL;
305 if (index == BPF_F_CURRENT_CPU)
306 index = cpu;
307 if (unlikely(index >= array->map.max_entries))
308 return -E2BIG;
309
310 ee = READ_ONCE(array->ptrs[index]);
311 if (!ee)
312 return -ENOENT;
313
314 return perf_event_read_local(ee->event, value, enabled, running);
315}
316
317BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
318{
319 u64 value = 0;
320 int err;
321
322 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
323 /*
324 * this api is ugly since we miss [-22..-2] range of valid
325 * counter values, but that's uapi
326 */
327 if (err)
328 return err;
329 return value;
330}
331
332static const struct bpf_func_proto bpf_perf_event_read_proto = {
333 .func = bpf_perf_event_read,
334 .gpl_only = true,
335 .ret_type = RET_INTEGER,
336 .arg1_type = ARG_CONST_MAP_PTR,
337 .arg2_type = ARG_ANYTHING,
338};
339
340BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
341 struct bpf_perf_event_value *, buf, u32, size)
342{
343 int err = -EINVAL;
344
345 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
346 goto clear;
347 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
348 &buf->running);
349 if (unlikely(err))
350 goto clear;
351 return 0;
352clear:
353 memset(buf, 0, size);
354 return err;
355}
356
357static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
358 .func = bpf_perf_event_read_value,
359 .gpl_only = true,
360 .ret_type = RET_INTEGER,
361 .arg1_type = ARG_CONST_MAP_PTR,
362 .arg2_type = ARG_ANYTHING,
363 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
364 .arg4_type = ARG_CONST_SIZE,
365};
366
367static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
368
369static __always_inline u64
370__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
371 u64 flags, struct perf_sample_data *sd)
372{
373 struct bpf_array *array = container_of(map, struct bpf_array, map);
374 unsigned int cpu = smp_processor_id();
375 u64 index = flags & BPF_F_INDEX_MASK;
376 struct bpf_event_entry *ee;
377 struct perf_event *event;
378
379 if (index == BPF_F_CURRENT_CPU)
380 index = cpu;
381 if (unlikely(index >= array->map.max_entries))
382 return -E2BIG;
383
384 ee = READ_ONCE(array->ptrs[index]);
385 if (!ee)
386 return -ENOENT;
387
388 event = ee->event;
389 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
390 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
391 return -EINVAL;
392
393 if (unlikely(event->oncpu != cpu))
394 return -EOPNOTSUPP;
395
396 perf_event_output(event, sd, regs);
397 return 0;
398}
399
400BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
401 u64, flags, void *, data, u64, size)
402{
403 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
404 struct perf_raw_record raw = {
405 .frag = {
406 .size = size,
407 .data = data,
408 },
409 };
410
411 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
412 return -EINVAL;
413
414 perf_sample_data_init(sd, 0, 0);
415 sd->raw = &raw;
416
417 return __bpf_perf_event_output(regs, map, flags, sd);
418}
419
420static const struct bpf_func_proto bpf_perf_event_output_proto = {
421 .func = bpf_perf_event_output,
422 .gpl_only = true,
423 .ret_type = RET_INTEGER,
424 .arg1_type = ARG_PTR_TO_CTX,
425 .arg2_type = ARG_CONST_MAP_PTR,
426 .arg3_type = ARG_ANYTHING,
427 .arg4_type = ARG_PTR_TO_MEM,
428 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
429};
430
431static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
432static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
433
434u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
435 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
436{
437 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
438 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
439 struct perf_raw_frag frag = {
440 .copy = ctx_copy,
441 .size = ctx_size,
442 .data = ctx,
443 };
444 struct perf_raw_record raw = {
445 .frag = {
446 {
447 .next = ctx_size ? &frag : NULL,
448 },
449 .size = meta_size,
450 .data = meta,
451 },
452 };
453
454 perf_fetch_caller_regs(regs);
455 perf_sample_data_init(sd, 0, 0);
456 sd->raw = &raw;
457
458 return __bpf_perf_event_output(regs, map, flags, sd);
459}
460
461BPF_CALL_0(bpf_get_current_task)
462{
463 return (long) current;
464}
465
466static const struct bpf_func_proto bpf_get_current_task_proto = {
467 .func = bpf_get_current_task,
468 .gpl_only = true,
469 .ret_type = RET_INTEGER,
470};
471
472BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
473{
474 struct bpf_array *array = container_of(map, struct bpf_array, map);
475 struct cgroup *cgrp;
476
477 if (unlikely(in_interrupt()))
478 return -EINVAL;
479 if (unlikely(idx >= array->map.max_entries))
480 return -E2BIG;
481
482 cgrp = READ_ONCE(array->ptrs[idx]);
483 if (unlikely(!cgrp))
484 return -EAGAIN;
485
486 return task_under_cgroup_hierarchy(current, cgrp);
487}
488
489static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
490 .func = bpf_current_task_under_cgroup,
491 .gpl_only = false,
492 .ret_type = RET_INTEGER,
493 .arg1_type = ARG_CONST_MAP_PTR,
494 .arg2_type = ARG_ANYTHING,
495};
496
497BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
498 const void *, unsafe_ptr)
499{
500 int ret;
501
502 /*
503 * The strncpy_from_unsafe() call will likely not fill the entire
504 * buffer, but that's okay in this circumstance as we're probing
505 * arbitrary memory anyway similar to bpf_probe_read() and might
506 * as well probe the stack. Thus, memory is explicitly cleared
507 * only in error case, so that improper users ignoring return
508 * code altogether don't copy garbage; otherwise length of string
509 * is returned that can be used for bpf_perf_event_output() et al.
510 */
511 ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
512 if (unlikely(ret < 0))
513 memset(dst, 0, size);
514
515 return ret;
516}
517
518static const struct bpf_func_proto bpf_probe_read_str_proto = {
519 .func = bpf_probe_read_str,
520 .gpl_only = true,
521 .ret_type = RET_INTEGER,
522 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
523 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
524 .arg3_type = ARG_ANYTHING,
525};
526
527static const struct bpf_func_proto *
528tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
529{
530 switch (func_id) {
531 case BPF_FUNC_map_lookup_elem:
532 return &bpf_map_lookup_elem_proto;
533 case BPF_FUNC_map_update_elem:
534 return &bpf_map_update_elem_proto;
535 case BPF_FUNC_map_delete_elem:
536 return &bpf_map_delete_elem_proto;
537 case BPF_FUNC_probe_read:
538 return &bpf_probe_read_proto;
539 case BPF_FUNC_ktime_get_ns:
540 return &bpf_ktime_get_ns_proto;
541 case BPF_FUNC_tail_call:
542 return &bpf_tail_call_proto;
543 case BPF_FUNC_get_current_pid_tgid:
544 return &bpf_get_current_pid_tgid_proto;
545 case BPF_FUNC_get_current_task:
546 return &bpf_get_current_task_proto;
547 case BPF_FUNC_get_current_uid_gid:
548 return &bpf_get_current_uid_gid_proto;
549 case BPF_FUNC_get_current_comm:
550 return &bpf_get_current_comm_proto;
551 case BPF_FUNC_trace_printk:
552 return bpf_get_trace_printk_proto();
553 case BPF_FUNC_get_smp_processor_id:
554 return &bpf_get_smp_processor_id_proto;
555 case BPF_FUNC_get_numa_node_id:
556 return &bpf_get_numa_node_id_proto;
557 case BPF_FUNC_perf_event_read:
558 return &bpf_perf_event_read_proto;
559 case BPF_FUNC_probe_write_user:
560 return bpf_get_probe_write_proto();
561 case BPF_FUNC_current_task_under_cgroup:
562 return &bpf_current_task_under_cgroup_proto;
563 case BPF_FUNC_get_prandom_u32:
564 return &bpf_get_prandom_u32_proto;
565 case BPF_FUNC_probe_read_str:
566 return &bpf_probe_read_str_proto;
567 default:
568 return NULL;
569 }
570}
571
572static const struct bpf_func_proto *
573kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
574{
575 switch (func_id) {
576 case BPF_FUNC_perf_event_output:
577 return &bpf_perf_event_output_proto;
578 case BPF_FUNC_get_stackid:
579 return &bpf_get_stackid_proto;
580 case BPF_FUNC_perf_event_read_value:
581 return &bpf_perf_event_read_value_proto;
582#ifdef CONFIG_BPF_KPROBE_OVERRIDE
583 case BPF_FUNC_override_return:
584 return &bpf_override_return_proto;
585#endif
586 default:
587 return tracing_func_proto(func_id, prog);
588 }
589}
590
591/* bpf+kprobe programs can access fields of 'struct pt_regs' */
592static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
593 const struct bpf_prog *prog,
594 struct bpf_insn_access_aux *info)
595{
596 if (off < 0 || off >= sizeof(struct pt_regs))
597 return false;
598 if (type != BPF_READ)
599 return false;
600 if (off % size != 0)
601 return false;
602 /*
603 * Assertion for 32 bit to make sure last 8 byte access
604 * (BPF_DW) to the last 4 byte member is disallowed.
605 */
606 if (off + size > sizeof(struct pt_regs))
607 return false;
608
609 return true;
610}
611
612const struct bpf_verifier_ops kprobe_verifier_ops = {
613 .get_func_proto = kprobe_prog_func_proto,
614 .is_valid_access = kprobe_prog_is_valid_access,
615};
616
617const struct bpf_prog_ops kprobe_prog_ops = {
618};
619
620BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
621 u64, flags, void *, data, u64, size)
622{
623 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
624
625 /*
626 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
627 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
628 * from there and call the same bpf_perf_event_output() helper inline.
629 */
630 return ____bpf_perf_event_output(regs, map, flags, data, size);
631}
632
633static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
634 .func = bpf_perf_event_output_tp,
635 .gpl_only = true,
636 .ret_type = RET_INTEGER,
637 .arg1_type = ARG_PTR_TO_CTX,
638 .arg2_type = ARG_CONST_MAP_PTR,
639 .arg3_type = ARG_ANYTHING,
640 .arg4_type = ARG_PTR_TO_MEM,
641 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
642};
643
644BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
645 u64, flags)
646{
647 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
648
649 /*
650 * Same comment as in bpf_perf_event_output_tp(), only that this time
651 * the other helper's function body cannot be inlined due to being
652 * external, thus we need to call raw helper function.
653 */
654 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
655 flags, 0, 0);
656}
657
658static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
659 .func = bpf_get_stackid_tp,
660 .gpl_only = true,
661 .ret_type = RET_INTEGER,
662 .arg1_type = ARG_PTR_TO_CTX,
663 .arg2_type = ARG_CONST_MAP_PTR,
664 .arg3_type = ARG_ANYTHING,
665};
666
667static const struct bpf_func_proto *
668tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
669{
670 switch (func_id) {
671 case BPF_FUNC_perf_event_output:
672 return &bpf_perf_event_output_proto_tp;
673 case BPF_FUNC_get_stackid:
674 return &bpf_get_stackid_proto_tp;
675 default:
676 return tracing_func_proto(func_id, prog);
677 }
678}
679
680static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
681 const struct bpf_prog *prog,
682 struct bpf_insn_access_aux *info)
683{
684 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
685 return false;
686 if (type != BPF_READ)
687 return false;
688 if (off % size != 0)
689 return false;
690
691 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
692 return true;
693}
694
695const struct bpf_verifier_ops tracepoint_verifier_ops = {
696 .get_func_proto = tp_prog_func_proto,
697 .is_valid_access = tp_prog_is_valid_access,
698};
699
700const struct bpf_prog_ops tracepoint_prog_ops = {
701};
702
703BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
704 struct bpf_perf_event_value *, buf, u32, size)
705{
706 int err = -EINVAL;
707
708 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
709 goto clear;
710 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
711 &buf->running);
712 if (unlikely(err))
713 goto clear;
714 return 0;
715clear:
716 memset(buf, 0, size);
717 return err;
718}
719
720static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
721 .func = bpf_perf_prog_read_value,
722 .gpl_only = true,
723 .ret_type = RET_INTEGER,
724 .arg1_type = ARG_PTR_TO_CTX,
725 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
726 .arg3_type = ARG_CONST_SIZE,
727};
728
729static const struct bpf_func_proto *
730pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
731{
732 switch (func_id) {
733 case BPF_FUNC_perf_event_output:
734 return &bpf_perf_event_output_proto_tp;
735 case BPF_FUNC_get_stackid:
736 return &bpf_get_stackid_proto_tp;
737 case BPF_FUNC_perf_prog_read_value:
738 return &bpf_perf_prog_read_value_proto;
739 default:
740 return tracing_func_proto(func_id, prog);
741 }
742}
743
744/*
745 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
746 * to avoid potential recursive reuse issue when/if tracepoints are added
747 * inside bpf_*_event_output and/or bpf_get_stack_id
748 */
749static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
750BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
751 struct bpf_map *, map, u64, flags, void *, data, u64, size)
752{
753 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
754
755 perf_fetch_caller_regs(regs);
756 return ____bpf_perf_event_output(regs, map, flags, data, size);
757}
758
759static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
760 .func = bpf_perf_event_output_raw_tp,
761 .gpl_only = true,
762 .ret_type = RET_INTEGER,
763 .arg1_type = ARG_PTR_TO_CTX,
764 .arg2_type = ARG_CONST_MAP_PTR,
765 .arg3_type = ARG_ANYTHING,
766 .arg4_type = ARG_PTR_TO_MEM,
767 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
768};
769
770BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
771 struct bpf_map *, map, u64, flags)
772{
773 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
774
775 perf_fetch_caller_regs(regs);
776 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
777 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
778 flags, 0, 0);
779}
780
781static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
782 .func = bpf_get_stackid_raw_tp,
783 .gpl_only = true,
784 .ret_type = RET_INTEGER,
785 .arg1_type = ARG_PTR_TO_CTX,
786 .arg2_type = ARG_CONST_MAP_PTR,
787 .arg3_type = ARG_ANYTHING,
788};
789
790static const struct bpf_func_proto *
791raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
792{
793 switch (func_id) {
794 case BPF_FUNC_perf_event_output:
795 return &bpf_perf_event_output_proto_raw_tp;
796 case BPF_FUNC_get_stackid:
797 return &bpf_get_stackid_proto_raw_tp;
798 default:
799 return tracing_func_proto(func_id, prog);
800 }
801}
802
803static bool raw_tp_prog_is_valid_access(int off, int size,
804 enum bpf_access_type type,
805 const struct bpf_prog *prog,
806 struct bpf_insn_access_aux *info)
807{
808 /* largest tracepoint in the kernel has 12 args */
809 if (off < 0 || off >= sizeof(__u64) * 12)
810 return false;
811 if (type != BPF_READ)
812 return false;
813 if (off % size != 0)
814 return false;
815 return true;
816}
817
818const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
819 .get_func_proto = raw_tp_prog_func_proto,
820 .is_valid_access = raw_tp_prog_is_valid_access,
821};
822
823const struct bpf_prog_ops raw_tracepoint_prog_ops = {
824};
825
826static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
827 const struct bpf_prog *prog,
828 struct bpf_insn_access_aux *info)
829{
830 const int size_u64 = sizeof(u64);
831
832 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
833 return false;
834 if (type != BPF_READ)
835 return false;
836 if (off % size != 0)
837 return false;
838
839 switch (off) {
840 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
841 bpf_ctx_record_field_size(info, size_u64);
842 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
843 return false;
844 break;
845 case bpf_ctx_range(struct bpf_perf_event_data, addr):
846 bpf_ctx_record_field_size(info, size_u64);
847 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
848 return false;
849 break;
850 default:
851 if (size != sizeof(long))
852 return false;
853 }
854
855 return true;
856}
857
858static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
859 const struct bpf_insn *si,
860 struct bpf_insn *insn_buf,
861 struct bpf_prog *prog, u32 *target_size)
862{
863 struct bpf_insn *insn = insn_buf;
864
865 switch (si->off) {
866 case offsetof(struct bpf_perf_event_data, sample_period):
867 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
868 data), si->dst_reg, si->src_reg,
869 offsetof(struct bpf_perf_event_data_kern, data));
870 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
871 bpf_target_off(struct perf_sample_data, period, 8,
872 target_size));
873 break;
874 case offsetof(struct bpf_perf_event_data, addr):
875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
876 data), si->dst_reg, si->src_reg,
877 offsetof(struct bpf_perf_event_data_kern, data));
878 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
879 bpf_target_off(struct perf_sample_data, addr, 8,
880 target_size));
881 break;
882 default:
883 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
884 regs), si->dst_reg, si->src_reg,
885 offsetof(struct bpf_perf_event_data_kern, regs));
886 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
887 si->off);
888 break;
889 }
890
891 return insn - insn_buf;
892}
893
894const struct bpf_verifier_ops perf_event_verifier_ops = {
895 .get_func_proto = pe_prog_func_proto,
896 .is_valid_access = pe_prog_is_valid_access,
897 .convert_ctx_access = pe_prog_convert_ctx_access,
898};
899
900const struct bpf_prog_ops perf_event_prog_ops = {
901};
902
903static DEFINE_MUTEX(bpf_event_mutex);
904
905#define BPF_TRACE_MAX_PROGS 64
906
907int perf_event_attach_bpf_prog(struct perf_event *event,
908 struct bpf_prog *prog)
909{
910 struct bpf_prog_array __rcu *old_array;
911 struct bpf_prog_array *new_array;
912 int ret = -EEXIST;
913
914 /*
915 * Kprobe override only works if they are on the function entry,
916 * and only if they are on the opt-in list.
917 */
918 if (prog->kprobe_override &&
919 (!trace_kprobe_on_func_entry(event->tp_event) ||
920 !trace_kprobe_error_injectable(event->tp_event)))
921 return -EINVAL;
922
923 mutex_lock(&bpf_event_mutex);
924
925 if (event->prog)
926 goto unlock;
927
928 old_array = event->tp_event->prog_array;
929 if (old_array &&
930 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
931 ret = -E2BIG;
932 goto unlock;
933 }
934
935 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
936 if (ret < 0)
937 goto unlock;
938
939 /* set the new array to event->tp_event and set event->prog */
940 event->prog = prog;
941 rcu_assign_pointer(event->tp_event->prog_array, new_array);
942 bpf_prog_array_free(old_array);
943
944unlock:
945 mutex_unlock(&bpf_event_mutex);
946 return ret;
947}
948
949void perf_event_detach_bpf_prog(struct perf_event *event)
950{
951 struct bpf_prog_array __rcu *old_array;
952 struct bpf_prog_array *new_array;
953 int ret;
954
955 mutex_lock(&bpf_event_mutex);
956
957 if (!event->prog)
958 goto unlock;
959
960 old_array = event->tp_event->prog_array;
961 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
962 if (ret < 0) {
963 bpf_prog_array_delete_safe(old_array, event->prog);
964 } else {
965 rcu_assign_pointer(event->tp_event->prog_array, new_array);
966 bpf_prog_array_free(old_array);
967 }
968
969 bpf_prog_put(event->prog);
970 event->prog = NULL;
971
972unlock:
973 mutex_unlock(&bpf_event_mutex);
974}
975
976int perf_event_query_prog_array(struct perf_event *event, void __user *info)
977{
978 struct perf_event_query_bpf __user *uquery = info;
979 struct perf_event_query_bpf query = {};
980 u32 *ids, prog_cnt, ids_len;
981 int ret;
982
983 if (!capable(CAP_SYS_ADMIN))
984 return -EPERM;
985 if (event->attr.type != PERF_TYPE_TRACEPOINT)
986 return -EINVAL;
987 if (copy_from_user(&query, uquery, sizeof(query)))
988 return -EFAULT;
989
990 ids_len = query.ids_len;
991 if (ids_len > BPF_TRACE_MAX_PROGS)
992 return -E2BIG;
993 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
994 if (!ids)
995 return -ENOMEM;
996 /*
997 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
998 * is required when user only wants to check for uquery->prog_cnt.
999 * There is no need to check for it since the case is handled
1000 * gracefully in bpf_prog_array_copy_info.
1001 */
1002
1003 mutex_lock(&bpf_event_mutex);
1004 ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1005 ids,
1006 ids_len,
1007 &prog_cnt);
1008 mutex_unlock(&bpf_event_mutex);
1009
1010 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1011 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1012 ret = -EFAULT;
1013
1014 kfree(ids);
1015 return ret;
1016}
1017
1018extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1019extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1020
1021struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name)
1022{
1023 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1024
1025 for (; btp < __stop__bpf_raw_tp; btp++) {
1026 if (!strcmp(btp->tp->name, name))
1027 return btp;
1028 }
1029 return NULL;
1030}
1031
1032static __always_inline
1033void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1034{
1035 rcu_read_lock();
1036 preempt_disable();
1037 (void) BPF_PROG_RUN(prog, args);
1038 preempt_enable();
1039 rcu_read_unlock();
1040}
1041
1042#define UNPACK(...) __VA_ARGS__
1043#define REPEAT_1(FN, DL, X, ...) FN(X)
1044#define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1045#define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1046#define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1047#define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1048#define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1049#define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1050#define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1051#define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1052#define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1053#define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1054#define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1055#define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
1056
1057#define SARG(X) u64 arg##X
1058#define COPY(X) args[X] = arg##X
1059
1060#define __DL_COM (,)
1061#define __DL_SEM (;)
1062
1063#define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1064
1065#define BPF_TRACE_DEFN_x(x) \
1066 void bpf_trace_run##x(struct bpf_prog *prog, \
1067 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
1068 { \
1069 u64 args[x]; \
1070 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
1071 __bpf_trace_run(prog, args); \
1072 } \
1073 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1074BPF_TRACE_DEFN_x(1);
1075BPF_TRACE_DEFN_x(2);
1076BPF_TRACE_DEFN_x(3);
1077BPF_TRACE_DEFN_x(4);
1078BPF_TRACE_DEFN_x(5);
1079BPF_TRACE_DEFN_x(6);
1080BPF_TRACE_DEFN_x(7);
1081BPF_TRACE_DEFN_x(8);
1082BPF_TRACE_DEFN_x(9);
1083BPF_TRACE_DEFN_x(10);
1084BPF_TRACE_DEFN_x(11);
1085BPF_TRACE_DEFN_x(12);
1086
1087static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1088{
1089 struct tracepoint *tp = btp->tp;
1090
1091 /*
1092 * check that program doesn't access arguments beyond what's
1093 * available in this tracepoint
1094 */
1095 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1096 return -EINVAL;
1097
1098 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1099}
1100
1101int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1102{
1103 int err;
1104
1105 mutex_lock(&bpf_event_mutex);
1106 err = __bpf_probe_register(btp, prog);
1107 mutex_unlock(&bpf_event_mutex);
1108 return err;
1109}
1110
1111int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1112{
1113 int err;
1114
1115 mutex_lock(&bpf_event_mutex);
1116 err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1117 mutex_unlock(&bpf_event_mutex);
1118 return err;
1119}
1/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
12#include <linux/bpf_perf_event.h>
13#include <linux/filter.h>
14#include <linux/uaccess.h>
15#include <linux/ctype.h>
16#include "trace.h"
17
18/**
19 * trace_call_bpf - invoke BPF program
20 * @prog: BPF program
21 * @ctx: opaque context pointer
22 *
23 * kprobe handlers execute BPF programs via this helper.
24 * Can be used from static tracepoints in the future.
25 *
26 * Return: BPF programs always return an integer which is interpreted by
27 * kprobe handler as:
28 * 0 - return from kprobe (event is filtered out)
29 * 1 - store kprobe event into ring buffer
30 * Other values are reserved and currently alias to 1
31 */
32unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
33{
34 unsigned int ret;
35
36 if (in_nmi()) /* not supported yet */
37 return 1;
38
39 preempt_disable();
40
41 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
42 /*
43 * since some bpf program is already running on this cpu,
44 * don't call into another bpf program (same or different)
45 * and don't send kprobe event into ring-buffer,
46 * so return zero here
47 */
48 ret = 0;
49 goto out;
50 }
51
52 rcu_read_lock();
53 ret = BPF_PROG_RUN(prog, ctx);
54 rcu_read_unlock();
55
56 out:
57 __this_cpu_dec(bpf_prog_active);
58 preempt_enable();
59
60 return ret;
61}
62EXPORT_SYMBOL_GPL(trace_call_bpf);
63
64BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
65{
66 int ret;
67
68 ret = probe_kernel_read(dst, unsafe_ptr, size);
69 if (unlikely(ret < 0))
70 memset(dst, 0, size);
71
72 return ret;
73}
74
75static const struct bpf_func_proto bpf_probe_read_proto = {
76 .func = bpf_probe_read,
77 .gpl_only = true,
78 .ret_type = RET_INTEGER,
79 .arg1_type = ARG_PTR_TO_RAW_STACK,
80 .arg2_type = ARG_CONST_STACK_SIZE,
81 .arg3_type = ARG_ANYTHING,
82};
83
84BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
85 u32, size)
86{
87 /*
88 * Ensure we're in user context which is safe for the helper to
89 * run. This helper has no business in a kthread.
90 *
91 * access_ok() should prevent writing to non-user memory, but in
92 * some situations (nommu, temporary switch, etc) access_ok() does
93 * not provide enough validation, hence the check on KERNEL_DS.
94 */
95
96 if (unlikely(in_interrupt() ||
97 current->flags & (PF_KTHREAD | PF_EXITING)))
98 return -EPERM;
99 if (unlikely(segment_eq(get_fs(), KERNEL_DS)))
100 return -EPERM;
101 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
102 return -EPERM;
103
104 return probe_kernel_write(unsafe_ptr, src, size);
105}
106
107static const struct bpf_func_proto bpf_probe_write_user_proto = {
108 .func = bpf_probe_write_user,
109 .gpl_only = true,
110 .ret_type = RET_INTEGER,
111 .arg1_type = ARG_ANYTHING,
112 .arg2_type = ARG_PTR_TO_STACK,
113 .arg3_type = ARG_CONST_STACK_SIZE,
114};
115
116static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
117{
118 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
119 current->comm, task_pid_nr(current));
120
121 return &bpf_probe_write_user_proto;
122}
123
124/*
125 * limited trace_printk()
126 * only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed
127 */
128BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
129 u64, arg2, u64, arg3)
130{
131 bool str_seen = false;
132 int mod[3] = {};
133 int fmt_cnt = 0;
134 u64 unsafe_addr;
135 char buf[64];
136 int i;
137
138 /*
139 * bpf_check()->check_func_arg()->check_stack_boundary()
140 * guarantees that fmt points to bpf program stack,
141 * fmt_size bytes of it were initialized and fmt_size > 0
142 */
143 if (fmt[--fmt_size] != 0)
144 return -EINVAL;
145
146 /* check format string for allowed specifiers */
147 for (i = 0; i < fmt_size; i++) {
148 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
149 return -EINVAL;
150
151 if (fmt[i] != '%')
152 continue;
153
154 if (fmt_cnt >= 3)
155 return -EINVAL;
156
157 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
158 i++;
159 if (fmt[i] == 'l') {
160 mod[fmt_cnt]++;
161 i++;
162 } else if (fmt[i] == 'p' || fmt[i] == 's') {
163 mod[fmt_cnt]++;
164 i++;
165 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
166 return -EINVAL;
167 fmt_cnt++;
168 if (fmt[i - 1] == 's') {
169 if (str_seen)
170 /* allow only one '%s' per fmt string */
171 return -EINVAL;
172 str_seen = true;
173
174 switch (fmt_cnt) {
175 case 1:
176 unsafe_addr = arg1;
177 arg1 = (long) buf;
178 break;
179 case 2:
180 unsafe_addr = arg2;
181 arg2 = (long) buf;
182 break;
183 case 3:
184 unsafe_addr = arg3;
185 arg3 = (long) buf;
186 break;
187 }
188 buf[0] = 0;
189 strncpy_from_unsafe(buf,
190 (void *) (long) unsafe_addr,
191 sizeof(buf));
192 }
193 continue;
194 }
195
196 if (fmt[i] == 'l') {
197 mod[fmt_cnt]++;
198 i++;
199 }
200
201 if (fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x')
202 return -EINVAL;
203 fmt_cnt++;
204 }
205
206 return __trace_printk(1/* fake ip will not be printed */, fmt,
207 mod[0] == 2 ? arg1 : mod[0] == 1 ? (long) arg1 : (u32) arg1,
208 mod[1] == 2 ? arg2 : mod[1] == 1 ? (long) arg2 : (u32) arg2,
209 mod[2] == 2 ? arg3 : mod[2] == 1 ? (long) arg3 : (u32) arg3);
210}
211
212static const struct bpf_func_proto bpf_trace_printk_proto = {
213 .func = bpf_trace_printk,
214 .gpl_only = true,
215 .ret_type = RET_INTEGER,
216 .arg1_type = ARG_PTR_TO_STACK,
217 .arg2_type = ARG_CONST_STACK_SIZE,
218};
219
220const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
221{
222 /*
223 * this program might be calling bpf_trace_printk,
224 * so allocate per-cpu printk buffers
225 */
226 trace_printk_init_buffers();
227
228 return &bpf_trace_printk_proto;
229}
230
231BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
232{
233 struct bpf_array *array = container_of(map, struct bpf_array, map);
234 unsigned int cpu = smp_processor_id();
235 u64 index = flags & BPF_F_INDEX_MASK;
236 struct bpf_event_entry *ee;
237 struct perf_event *event;
238
239 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
240 return -EINVAL;
241 if (index == BPF_F_CURRENT_CPU)
242 index = cpu;
243 if (unlikely(index >= array->map.max_entries))
244 return -E2BIG;
245
246 ee = READ_ONCE(array->ptrs[index]);
247 if (!ee)
248 return -ENOENT;
249
250 event = ee->event;
251 if (unlikely(event->attr.type != PERF_TYPE_HARDWARE &&
252 event->attr.type != PERF_TYPE_RAW))
253 return -EINVAL;
254
255 /* make sure event is local and doesn't have pmu::count */
256 if (unlikely(event->oncpu != cpu || event->pmu->count))
257 return -EINVAL;
258
259 /*
260 * we don't know if the function is run successfully by the
261 * return value. It can be judged in other places, such as
262 * eBPF programs.
263 */
264 return perf_event_read_local(event);
265}
266
267static const struct bpf_func_proto bpf_perf_event_read_proto = {
268 .func = bpf_perf_event_read,
269 .gpl_only = true,
270 .ret_type = RET_INTEGER,
271 .arg1_type = ARG_CONST_MAP_PTR,
272 .arg2_type = ARG_ANYTHING,
273};
274
275static __always_inline u64
276__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
277 u64 flags, struct perf_raw_record *raw)
278{
279 struct bpf_array *array = container_of(map, struct bpf_array, map);
280 unsigned int cpu = smp_processor_id();
281 u64 index = flags & BPF_F_INDEX_MASK;
282 struct perf_sample_data sample_data;
283 struct bpf_event_entry *ee;
284 struct perf_event *event;
285
286 if (index == BPF_F_CURRENT_CPU)
287 index = cpu;
288 if (unlikely(index >= array->map.max_entries))
289 return -E2BIG;
290
291 ee = READ_ONCE(array->ptrs[index]);
292 if (!ee)
293 return -ENOENT;
294
295 event = ee->event;
296 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
297 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
298 return -EINVAL;
299
300 if (unlikely(event->oncpu != cpu))
301 return -EOPNOTSUPP;
302
303 perf_sample_data_init(&sample_data, 0, 0);
304 sample_data.raw = raw;
305 perf_event_output(event, &sample_data, regs);
306 return 0;
307}
308
309BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
310 u64, flags, void *, data, u64, size)
311{
312 struct perf_raw_record raw = {
313 .frag = {
314 .size = size,
315 .data = data,
316 },
317 };
318
319 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
320 return -EINVAL;
321
322 return __bpf_perf_event_output(regs, map, flags, &raw);
323}
324
325static const struct bpf_func_proto bpf_perf_event_output_proto = {
326 .func = bpf_perf_event_output,
327 .gpl_only = true,
328 .ret_type = RET_INTEGER,
329 .arg1_type = ARG_PTR_TO_CTX,
330 .arg2_type = ARG_CONST_MAP_PTR,
331 .arg3_type = ARG_ANYTHING,
332 .arg4_type = ARG_PTR_TO_STACK,
333 .arg5_type = ARG_CONST_STACK_SIZE,
334};
335
336static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
337
338u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
339 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
340{
341 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
342 struct perf_raw_frag frag = {
343 .copy = ctx_copy,
344 .size = ctx_size,
345 .data = ctx,
346 };
347 struct perf_raw_record raw = {
348 .frag = {
349 {
350 .next = ctx_size ? &frag : NULL,
351 },
352 .size = meta_size,
353 .data = meta,
354 },
355 };
356
357 perf_fetch_caller_regs(regs);
358
359 return __bpf_perf_event_output(regs, map, flags, &raw);
360}
361
362BPF_CALL_0(bpf_get_current_task)
363{
364 return (long) current;
365}
366
367static const struct bpf_func_proto bpf_get_current_task_proto = {
368 .func = bpf_get_current_task,
369 .gpl_only = true,
370 .ret_type = RET_INTEGER,
371};
372
373BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
374{
375 struct bpf_array *array = container_of(map, struct bpf_array, map);
376 struct cgroup *cgrp;
377
378 if (unlikely(in_interrupt()))
379 return -EINVAL;
380 if (unlikely(idx >= array->map.max_entries))
381 return -E2BIG;
382
383 cgrp = READ_ONCE(array->ptrs[idx]);
384 if (unlikely(!cgrp))
385 return -EAGAIN;
386
387 return task_under_cgroup_hierarchy(current, cgrp);
388}
389
390static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
391 .func = bpf_current_task_under_cgroup,
392 .gpl_only = false,
393 .ret_type = RET_INTEGER,
394 .arg1_type = ARG_CONST_MAP_PTR,
395 .arg2_type = ARG_ANYTHING,
396};
397
398static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
399{
400 switch (func_id) {
401 case BPF_FUNC_map_lookup_elem:
402 return &bpf_map_lookup_elem_proto;
403 case BPF_FUNC_map_update_elem:
404 return &bpf_map_update_elem_proto;
405 case BPF_FUNC_map_delete_elem:
406 return &bpf_map_delete_elem_proto;
407 case BPF_FUNC_probe_read:
408 return &bpf_probe_read_proto;
409 case BPF_FUNC_ktime_get_ns:
410 return &bpf_ktime_get_ns_proto;
411 case BPF_FUNC_tail_call:
412 return &bpf_tail_call_proto;
413 case BPF_FUNC_get_current_pid_tgid:
414 return &bpf_get_current_pid_tgid_proto;
415 case BPF_FUNC_get_current_task:
416 return &bpf_get_current_task_proto;
417 case BPF_FUNC_get_current_uid_gid:
418 return &bpf_get_current_uid_gid_proto;
419 case BPF_FUNC_get_current_comm:
420 return &bpf_get_current_comm_proto;
421 case BPF_FUNC_trace_printk:
422 return bpf_get_trace_printk_proto();
423 case BPF_FUNC_get_smp_processor_id:
424 return &bpf_get_smp_processor_id_proto;
425 case BPF_FUNC_get_numa_node_id:
426 return &bpf_get_numa_node_id_proto;
427 case BPF_FUNC_perf_event_read:
428 return &bpf_perf_event_read_proto;
429 case BPF_FUNC_probe_write_user:
430 return bpf_get_probe_write_proto();
431 case BPF_FUNC_current_task_under_cgroup:
432 return &bpf_current_task_under_cgroup_proto;
433 case BPF_FUNC_get_prandom_u32:
434 return &bpf_get_prandom_u32_proto;
435 default:
436 return NULL;
437 }
438}
439
440static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
441{
442 switch (func_id) {
443 case BPF_FUNC_perf_event_output:
444 return &bpf_perf_event_output_proto;
445 case BPF_FUNC_get_stackid:
446 return &bpf_get_stackid_proto;
447 default:
448 return tracing_func_proto(func_id);
449 }
450}
451
452/* bpf+kprobe programs can access fields of 'struct pt_regs' */
453static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
454 enum bpf_reg_type *reg_type)
455{
456 if (off < 0 || off >= sizeof(struct pt_regs))
457 return false;
458 if (type != BPF_READ)
459 return false;
460 if (off % size != 0)
461 return false;
462 return true;
463}
464
465static const struct bpf_verifier_ops kprobe_prog_ops = {
466 .get_func_proto = kprobe_prog_func_proto,
467 .is_valid_access = kprobe_prog_is_valid_access,
468};
469
470static struct bpf_prog_type_list kprobe_tl = {
471 .ops = &kprobe_prog_ops,
472 .type = BPF_PROG_TYPE_KPROBE,
473};
474
475BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
476 u64, flags, void *, data, u64, size)
477{
478 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
479
480 /*
481 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
482 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
483 * from there and call the same bpf_perf_event_output() helper inline.
484 */
485 return ____bpf_perf_event_output(regs, map, flags, data, size);
486}
487
488static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
489 .func = bpf_perf_event_output_tp,
490 .gpl_only = true,
491 .ret_type = RET_INTEGER,
492 .arg1_type = ARG_PTR_TO_CTX,
493 .arg2_type = ARG_CONST_MAP_PTR,
494 .arg3_type = ARG_ANYTHING,
495 .arg4_type = ARG_PTR_TO_STACK,
496 .arg5_type = ARG_CONST_STACK_SIZE,
497};
498
499BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
500 u64, flags)
501{
502 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
503
504 /*
505 * Same comment as in bpf_perf_event_output_tp(), only that this time
506 * the other helper's function body cannot be inlined due to being
507 * external, thus we need to call raw helper function.
508 */
509 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
510 flags, 0, 0);
511}
512
513static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
514 .func = bpf_get_stackid_tp,
515 .gpl_only = true,
516 .ret_type = RET_INTEGER,
517 .arg1_type = ARG_PTR_TO_CTX,
518 .arg2_type = ARG_CONST_MAP_PTR,
519 .arg3_type = ARG_ANYTHING,
520};
521
522static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
523{
524 switch (func_id) {
525 case BPF_FUNC_perf_event_output:
526 return &bpf_perf_event_output_proto_tp;
527 case BPF_FUNC_get_stackid:
528 return &bpf_get_stackid_proto_tp;
529 default:
530 return tracing_func_proto(func_id);
531 }
532}
533
534static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
535 enum bpf_reg_type *reg_type)
536{
537 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
538 return false;
539 if (type != BPF_READ)
540 return false;
541 if (off % size != 0)
542 return false;
543 return true;
544}
545
546static const struct bpf_verifier_ops tracepoint_prog_ops = {
547 .get_func_proto = tp_prog_func_proto,
548 .is_valid_access = tp_prog_is_valid_access,
549};
550
551static struct bpf_prog_type_list tracepoint_tl = {
552 .ops = &tracepoint_prog_ops,
553 .type = BPF_PROG_TYPE_TRACEPOINT,
554};
555
556static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
557 enum bpf_reg_type *reg_type)
558{
559 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
560 return false;
561 if (type != BPF_READ)
562 return false;
563 if (off % size != 0)
564 return false;
565 if (off == offsetof(struct bpf_perf_event_data, sample_period)) {
566 if (size != sizeof(u64))
567 return false;
568 } else {
569 if (size != sizeof(long))
570 return false;
571 }
572 return true;
573}
574
575static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, int dst_reg,
576 int src_reg, int ctx_off,
577 struct bpf_insn *insn_buf,
578 struct bpf_prog *prog)
579{
580 struct bpf_insn *insn = insn_buf;
581
582 switch (ctx_off) {
583 case offsetof(struct bpf_perf_event_data, sample_period):
584 BUILD_BUG_ON(FIELD_SIZEOF(struct perf_sample_data, period) != sizeof(u64));
585
586 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
587 data), dst_reg, src_reg,
588 offsetof(struct bpf_perf_event_data_kern, data));
589 *insn++ = BPF_LDX_MEM(BPF_DW, dst_reg, dst_reg,
590 offsetof(struct perf_sample_data, period));
591 break;
592 default:
593 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
594 regs), dst_reg, src_reg,
595 offsetof(struct bpf_perf_event_data_kern, regs));
596 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), dst_reg, dst_reg, ctx_off);
597 break;
598 }
599
600 return insn - insn_buf;
601}
602
603static const struct bpf_verifier_ops perf_event_prog_ops = {
604 .get_func_proto = tp_prog_func_proto,
605 .is_valid_access = pe_prog_is_valid_access,
606 .convert_ctx_access = pe_prog_convert_ctx_access,
607};
608
609static struct bpf_prog_type_list perf_event_tl = {
610 .ops = &perf_event_prog_ops,
611 .type = BPF_PROG_TYPE_PERF_EVENT,
612};
613
614static int __init register_kprobe_prog_ops(void)
615{
616 bpf_register_prog_type(&kprobe_tl);
617 bpf_register_prog_type(&tracepoint_tl);
618 bpf_register_prog_type(&perf_event_tl);
619 return 0;
620}
621late_initcall(register_kprobe_prog_ops);