Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
   1/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
   2 *
   3 * This program is free software; you can redistribute it and/or
   4 * modify it under the terms of version 2 of the GNU General Public
   5 * License as published by the Free Software Foundation.
   6 *
   7 * This program is distributed in the hope that it will be useful, but
   8 * WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10 * General Public License for more details.
  11 */
  12
  13/* A BPF sock_map is used to store sock objects. This is primarly used
  14 * for doing socket redirect with BPF helper routines.
  15 *
  16 * A sock map may have BPF programs attached to it, currently a program
  17 * used to parse packets and a program to provide a verdict and redirect
  18 * decision on the packet are supported. Any programs attached to a sock
  19 * map are inherited by sock objects when they are added to the map. If
  20 * no BPF programs are attached the sock object may only be used for sock
  21 * redirect.
  22 *
  23 * A sock object may be in multiple maps, but can only inherit a single
  24 * parse or verdict program. If adding a sock object to a map would result
  25 * in having multiple parsing programs the update will return an EBUSY error.
  26 *
  27 * For reference this program is similar to devmap used in XDP context
  28 * reviewing these together may be useful. For an example please review
  29 * ./samples/bpf/sockmap/.
  30 */
  31#include <linux/bpf.h>
  32#include <net/sock.h>
  33#include <linux/filter.h>
  34#include <linux/errno.h>
  35#include <linux/file.h>
  36#include <linux/kernel.h>
  37#include <linux/net.h>
  38#include <linux/skbuff.h>
  39#include <linux/workqueue.h>
  40#include <linux/list.h>
  41#include <linux/mm.h>
  42#include <net/strparser.h>
  43#include <net/tcp.h>
  44#include <linux/ptr_ring.h>
  45#include <net/inet_common.h>
  46#include <linux/sched/signal.h>
  47
  48#define SOCK_CREATE_FLAG_MASK \
  49	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  50
  51struct bpf_stab {
  52	struct bpf_map map;
  53	struct sock **sock_map;
  54	struct bpf_prog *bpf_tx_msg;
  55	struct bpf_prog *bpf_parse;
  56	struct bpf_prog *bpf_verdict;
  57};
  58
  59enum smap_psock_state {
  60	SMAP_TX_RUNNING,
  61};
  62
  63struct smap_psock_map_entry {
  64	struct list_head list;
  65	struct sock **entry;
  66};
  67
  68struct smap_psock {
  69	struct rcu_head	rcu;
  70	refcount_t refcnt;
  71
  72	/* datapath variables */
  73	struct sk_buff_head rxqueue;
  74	bool strp_enabled;
  75
  76	/* datapath error path cache across tx work invocations */
  77	int save_rem;
  78	int save_off;
  79	struct sk_buff *save_skb;
  80
  81	/* datapath variables for tx_msg ULP */
  82	struct sock *sk_redir;
  83	int apply_bytes;
  84	int cork_bytes;
  85	int sg_size;
  86	int eval;
  87	struct sk_msg_buff *cork;
  88	struct list_head ingress;
  89
  90	struct strparser strp;
  91	struct bpf_prog *bpf_tx_msg;
  92	struct bpf_prog *bpf_parse;
  93	struct bpf_prog *bpf_verdict;
  94	struct list_head maps;
  95
  96	/* Back reference used when sock callback trigger sockmap operations */
  97	struct sock *sock;
  98	unsigned long state;
  99
 100	struct work_struct tx_work;
 101	struct work_struct gc_work;
 102
 103	struct proto *sk_proto;
 104	void (*save_close)(struct sock *sk, long timeout);
 105	void (*save_data_ready)(struct sock *sk);
 106	void (*save_write_space)(struct sock *sk);
 107};
 108
 109static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
 110static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 111			   int nonblock, int flags, int *addr_len);
 112static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 113static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
 114			    int offset, size_t size, int flags);
 115
 116static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
 117{
 118	return rcu_dereference_sk_user_data(sk);
 119}
 120
 121static bool bpf_tcp_stream_read(const struct sock *sk)
 122{
 123	struct smap_psock *psock;
 124	bool empty = true;
 125
 126	rcu_read_lock();
 127	psock = smap_psock_sk(sk);
 128	if (unlikely(!psock))
 129		goto out;
 130	empty = list_empty(&psock->ingress);
 131out:
 132	rcu_read_unlock();
 133	return !empty;
 134}
 135
 136static struct proto tcp_bpf_proto;
 137static int bpf_tcp_init(struct sock *sk)
 138{
 139	struct smap_psock *psock;
 140
 141	rcu_read_lock();
 142	psock = smap_psock_sk(sk);
 143	if (unlikely(!psock)) {
 144		rcu_read_unlock();
 145		return -EINVAL;
 146	}
 147
 148	if (unlikely(psock->sk_proto)) {
 149		rcu_read_unlock();
 150		return -EBUSY;
 151	}
 152
 153	psock->save_close = sk->sk_prot->close;
 154	psock->sk_proto = sk->sk_prot;
 155
 156	if (psock->bpf_tx_msg) {
 157		tcp_bpf_proto.sendmsg = bpf_tcp_sendmsg;
 158		tcp_bpf_proto.sendpage = bpf_tcp_sendpage;
 159		tcp_bpf_proto.recvmsg = bpf_tcp_recvmsg;
 160		tcp_bpf_proto.stream_memory_read = bpf_tcp_stream_read;
 161	}
 162
 163	sk->sk_prot = &tcp_bpf_proto;
 164	rcu_read_unlock();
 165	return 0;
 166}
 167
 168static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
 169static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
 170
 171static void bpf_tcp_release(struct sock *sk)
 172{
 173	struct smap_psock *psock;
 174
 175	rcu_read_lock();
 176	psock = smap_psock_sk(sk);
 177	if (unlikely(!psock))
 178		goto out;
 179
 180	if (psock->cork) {
 181		free_start_sg(psock->sock, psock->cork);
 182		kfree(psock->cork);
 183		psock->cork = NULL;
 184	}
 185
 186	if (psock->sk_proto) {
 187		sk->sk_prot = psock->sk_proto;
 188		psock->sk_proto = NULL;
 189	}
 190out:
 191	rcu_read_unlock();
 192}
 193
 194static void bpf_tcp_close(struct sock *sk, long timeout)
 195{
 196	void (*close_fun)(struct sock *sk, long timeout);
 197	struct smap_psock_map_entry *e, *tmp;
 198	struct sk_msg_buff *md, *mtmp;
 199	struct smap_psock *psock;
 200	struct sock *osk;
 201
 202	rcu_read_lock();
 203	psock = smap_psock_sk(sk);
 204	if (unlikely(!psock)) {
 205		rcu_read_unlock();
 206		return sk->sk_prot->close(sk, timeout);
 207	}
 208
 209	/* The psock may be destroyed anytime after exiting the RCU critial
 210	 * section so by the time we use close_fun the psock may no longer
 211	 * be valid. However, bpf_tcp_close is called with the sock lock
 212	 * held so the close hook and sk are still valid.
 213	 */
 214	close_fun = psock->save_close;
 215
 216	write_lock_bh(&sk->sk_callback_lock);
 217	if (psock->cork) {
 218		free_start_sg(psock->sock, psock->cork);
 219		kfree(psock->cork);
 220		psock->cork = NULL;
 221	}
 222
 223	list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
 224		list_del(&md->list);
 225		free_start_sg(psock->sock, md);
 226		kfree(md);
 227	}
 228
 229	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
 230		osk = cmpxchg(e->entry, sk, NULL);
 231		if (osk == sk) {
 232			list_del(&e->list);
 233			smap_release_sock(psock, sk);
 234		}
 235	}
 236	write_unlock_bh(&sk->sk_callback_lock);
 237	rcu_read_unlock();
 238	close_fun(sk, timeout);
 239}
 240
 241enum __sk_action {
 242	__SK_DROP = 0,
 243	__SK_PASS,
 244	__SK_REDIRECT,
 245	__SK_NONE,
 246};
 247
 248static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
 249	.name		= "bpf_tcp",
 250	.uid		= TCP_ULP_BPF,
 251	.user_visible	= false,
 252	.owner		= NULL,
 253	.init		= bpf_tcp_init,
 254	.release	= bpf_tcp_release,
 255};
 256
 257static int memcopy_from_iter(struct sock *sk,
 258			     struct sk_msg_buff *md,
 259			     struct iov_iter *from, int bytes)
 260{
 261	struct scatterlist *sg = md->sg_data;
 262	int i = md->sg_curr, rc = -ENOSPC;
 263
 264	do {
 265		int copy;
 266		char *to;
 267
 268		if (md->sg_copybreak >= sg[i].length) {
 269			md->sg_copybreak = 0;
 270
 271			if (++i == MAX_SKB_FRAGS)
 272				i = 0;
 273
 274			if (i == md->sg_end)
 275				break;
 276		}
 277
 278		copy = sg[i].length - md->sg_copybreak;
 279		to = sg_virt(&sg[i]) + md->sg_copybreak;
 280		md->sg_copybreak += copy;
 281
 282		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
 283			rc = copy_from_iter_nocache(to, copy, from);
 284		else
 285			rc = copy_from_iter(to, copy, from);
 286
 287		if (rc != copy) {
 288			rc = -EFAULT;
 289			goto out;
 290		}
 291
 292		bytes -= copy;
 293		if (!bytes)
 294			break;
 295
 296		md->sg_copybreak = 0;
 297		if (++i == MAX_SKB_FRAGS)
 298			i = 0;
 299	} while (i != md->sg_end);
 300out:
 301	md->sg_curr = i;
 302	return rc;
 303}
 304
 305static int bpf_tcp_push(struct sock *sk, int apply_bytes,
 306			struct sk_msg_buff *md,
 307			int flags, bool uncharge)
 308{
 309	bool apply = apply_bytes;
 310	struct scatterlist *sg;
 311	int offset, ret = 0;
 312	struct page *p;
 313	size_t size;
 314
 315	while (1) {
 316		sg = md->sg_data + md->sg_start;
 317		size = (apply && apply_bytes < sg->length) ?
 318			apply_bytes : sg->length;
 319		offset = sg->offset;
 320
 321		tcp_rate_check_app_limited(sk);
 322		p = sg_page(sg);
 323retry:
 324		ret = do_tcp_sendpages(sk, p, offset, size, flags);
 325		if (ret != size) {
 326			if (ret > 0) {
 327				if (apply)
 328					apply_bytes -= ret;
 329
 330				sg->offset += ret;
 331				sg->length -= ret;
 332				size -= ret;
 333				offset += ret;
 334				if (uncharge)
 335					sk_mem_uncharge(sk, ret);
 336				goto retry;
 337			}
 338
 339			return ret;
 340		}
 341
 342		if (apply)
 343			apply_bytes -= ret;
 344		sg->offset += ret;
 345		sg->length -= ret;
 346		if (uncharge)
 347			sk_mem_uncharge(sk, ret);
 348
 349		if (!sg->length) {
 350			put_page(p);
 351			md->sg_start++;
 352			if (md->sg_start == MAX_SKB_FRAGS)
 353				md->sg_start = 0;
 354			sg_init_table(sg, 1);
 355
 356			if (md->sg_start == md->sg_end)
 357				break;
 358		}
 359
 360		if (apply && !apply_bytes)
 361			break;
 362	}
 363	return 0;
 364}
 365
 366static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
 367{
 368	struct scatterlist *sg = md->sg_data + md->sg_start;
 369
 370	if (md->sg_copy[md->sg_start]) {
 371		md->data = md->data_end = 0;
 372	} else {
 373		md->data = sg_virt(sg);
 374		md->data_end = md->data + sg->length;
 375	}
 376}
 377
 378static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
 379{
 380	struct scatterlist *sg = md->sg_data;
 381	int i = md->sg_start;
 382
 383	do {
 384		int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
 385
 386		sk_mem_uncharge(sk, uncharge);
 387		bytes -= uncharge;
 388		if (!bytes)
 389			break;
 390		i++;
 391		if (i == MAX_SKB_FRAGS)
 392			i = 0;
 393	} while (i != md->sg_end);
 394}
 395
 396static void free_bytes_sg(struct sock *sk, int bytes,
 397			  struct sk_msg_buff *md, bool charge)
 398{
 399	struct scatterlist *sg = md->sg_data;
 400	int i = md->sg_start, free;
 401
 402	while (bytes && sg[i].length) {
 403		free = sg[i].length;
 404		if (bytes < free) {
 405			sg[i].length -= bytes;
 406			sg[i].offset += bytes;
 407			if (charge)
 408				sk_mem_uncharge(sk, bytes);
 409			break;
 410		}
 411
 412		if (charge)
 413			sk_mem_uncharge(sk, sg[i].length);
 414		put_page(sg_page(&sg[i]));
 415		bytes -= sg[i].length;
 416		sg[i].length = 0;
 417		sg[i].page_link = 0;
 418		sg[i].offset = 0;
 419		i++;
 420
 421		if (i == MAX_SKB_FRAGS)
 422			i = 0;
 423	}
 424	md->sg_start = i;
 425}
 426
 427static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
 428{
 429	struct scatterlist *sg = md->sg_data;
 430	int i = start, free = 0;
 431
 432	while (sg[i].length) {
 433		free += sg[i].length;
 434		sk_mem_uncharge(sk, sg[i].length);
 435		put_page(sg_page(&sg[i]));
 436		sg[i].length = 0;
 437		sg[i].page_link = 0;
 438		sg[i].offset = 0;
 439		i++;
 440
 441		if (i == MAX_SKB_FRAGS)
 442			i = 0;
 443	}
 444
 445	return free;
 446}
 447
 448static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
 449{
 450	int free = free_sg(sk, md->sg_start, md);
 451
 452	md->sg_start = md->sg_end;
 453	return free;
 454}
 455
 456static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
 457{
 458	return free_sg(sk, md->sg_curr, md);
 459}
 460
 461static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
 462{
 463	return ((_rc == SK_PASS) ?
 464	       (md->map ? __SK_REDIRECT : __SK_PASS) :
 465	       __SK_DROP);
 466}
 467
 468static unsigned int smap_do_tx_msg(struct sock *sk,
 469				   struct smap_psock *psock,
 470				   struct sk_msg_buff *md)
 471{
 472	struct bpf_prog *prog;
 473	unsigned int rc, _rc;
 474
 475	preempt_disable();
 476	rcu_read_lock();
 477
 478	/* If the policy was removed mid-send then default to 'accept' */
 479	prog = READ_ONCE(psock->bpf_tx_msg);
 480	if (unlikely(!prog)) {
 481		_rc = SK_PASS;
 482		goto verdict;
 483	}
 484
 485	bpf_compute_data_pointers_sg(md);
 486	rc = (*prog->bpf_func)(md, prog->insnsi);
 487	psock->apply_bytes = md->apply_bytes;
 488
 489	/* Moving return codes from UAPI namespace into internal namespace */
 490	_rc = bpf_map_msg_verdict(rc, md);
 491
 492	/* The psock has a refcount on the sock but not on the map and because
 493	 * we need to drop rcu read lock here its possible the map could be
 494	 * removed between here and when we need it to execute the sock
 495	 * redirect. So do the map lookup now for future use.
 496	 */
 497	if (_rc == __SK_REDIRECT) {
 498		if (psock->sk_redir)
 499			sock_put(psock->sk_redir);
 500		psock->sk_redir = do_msg_redirect_map(md);
 501		if (!psock->sk_redir) {
 502			_rc = __SK_DROP;
 503			goto verdict;
 504		}
 505		sock_hold(psock->sk_redir);
 506	}
 507verdict:
 508	rcu_read_unlock();
 509	preempt_enable();
 510
 511	return _rc;
 512}
 513
 514static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
 515			   struct smap_psock *psock,
 516			   struct sk_msg_buff *md, int flags)
 517{
 518	bool apply = apply_bytes;
 519	size_t size, copied = 0;
 520	struct sk_msg_buff *r;
 521	int err = 0, i;
 522
 523	r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
 524	if (unlikely(!r))
 525		return -ENOMEM;
 526
 527	lock_sock(sk);
 528	r->sg_start = md->sg_start;
 529	i = md->sg_start;
 530
 531	do {
 532		size = (apply && apply_bytes < md->sg_data[i].length) ?
 533			apply_bytes : md->sg_data[i].length;
 534
 535		if (!sk_wmem_schedule(sk, size)) {
 536			if (!copied)
 537				err = -ENOMEM;
 538			break;
 539		}
 540
 541		sk_mem_charge(sk, size);
 542		r->sg_data[i] = md->sg_data[i];
 543		r->sg_data[i].length = size;
 544		md->sg_data[i].length -= size;
 545		md->sg_data[i].offset += size;
 546		copied += size;
 547
 548		if (md->sg_data[i].length) {
 549			get_page(sg_page(&r->sg_data[i]));
 550			r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
 551		} else {
 552			i++;
 553			if (i == MAX_SKB_FRAGS)
 554				i = 0;
 555			r->sg_end = i;
 556		}
 557
 558		if (apply) {
 559			apply_bytes -= size;
 560			if (!apply_bytes)
 561				break;
 562		}
 563	} while (i != md->sg_end);
 564
 565	md->sg_start = i;
 566
 567	if (!err) {
 568		list_add_tail(&r->list, &psock->ingress);
 569		sk->sk_data_ready(sk);
 570	} else {
 571		free_start_sg(sk, r);
 572		kfree(r);
 573	}
 574
 575	release_sock(sk);
 576	return err;
 577}
 578
 579static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
 580				       struct sk_msg_buff *md,
 581				       int flags)
 582{
 583	bool ingress = !!(md->flags & BPF_F_INGRESS);
 584	struct smap_psock *psock;
 585	struct scatterlist *sg;
 586	int err = 0;
 587
 588	sg = md->sg_data;
 589
 590	rcu_read_lock();
 591	psock = smap_psock_sk(sk);
 592	if (unlikely(!psock))
 593		goto out_rcu;
 594
 595	if (!refcount_inc_not_zero(&psock->refcnt))
 596		goto out_rcu;
 597
 598	rcu_read_unlock();
 599
 600	if (ingress) {
 601		err = bpf_tcp_ingress(sk, send, psock, md, flags);
 602	} else {
 603		lock_sock(sk);
 604		err = bpf_tcp_push(sk, send, md, flags, false);
 605		release_sock(sk);
 606	}
 607	smap_release_sock(psock, sk);
 608	if (unlikely(err))
 609		goto out;
 610	return 0;
 611out_rcu:
 612	rcu_read_unlock();
 613out:
 614	free_bytes_sg(NULL, send, md, false);
 615	return err;
 616}
 617
 618static inline void bpf_md_init(struct smap_psock *psock)
 619{
 620	if (!psock->apply_bytes) {
 621		psock->eval =  __SK_NONE;
 622		if (psock->sk_redir) {
 623			sock_put(psock->sk_redir);
 624			psock->sk_redir = NULL;
 625		}
 626	}
 627}
 628
 629static void apply_bytes_dec(struct smap_psock *psock, int i)
 630{
 631	if (psock->apply_bytes) {
 632		if (psock->apply_bytes < i)
 633			psock->apply_bytes = 0;
 634		else
 635			psock->apply_bytes -= i;
 636	}
 637}
 638
 639static int bpf_exec_tx_verdict(struct smap_psock *psock,
 640			       struct sk_msg_buff *m,
 641			       struct sock *sk,
 642			       int *copied, int flags)
 643{
 644	bool cork = false, enospc = (m->sg_start == m->sg_end);
 645	struct sock *redir;
 646	int err = 0;
 647	int send;
 648
 649more_data:
 650	if (psock->eval == __SK_NONE)
 651		psock->eval = smap_do_tx_msg(sk, psock, m);
 652
 653	if (m->cork_bytes &&
 654	    m->cork_bytes > psock->sg_size && !enospc) {
 655		psock->cork_bytes = m->cork_bytes - psock->sg_size;
 656		if (!psock->cork) {
 657			psock->cork = kcalloc(1,
 658					sizeof(struct sk_msg_buff),
 659					GFP_ATOMIC | __GFP_NOWARN);
 660
 661			if (!psock->cork) {
 662				err = -ENOMEM;
 663				goto out_err;
 664			}
 665		}
 666		memcpy(psock->cork, m, sizeof(*m));
 667		goto out_err;
 668	}
 669
 670	send = psock->sg_size;
 671	if (psock->apply_bytes && psock->apply_bytes < send)
 672		send = psock->apply_bytes;
 673
 674	switch (psock->eval) {
 675	case __SK_PASS:
 676		err = bpf_tcp_push(sk, send, m, flags, true);
 677		if (unlikely(err)) {
 678			*copied -= free_start_sg(sk, m);
 679			break;
 680		}
 681
 682		apply_bytes_dec(psock, send);
 683		psock->sg_size -= send;
 684		break;
 685	case __SK_REDIRECT:
 686		redir = psock->sk_redir;
 687		apply_bytes_dec(psock, send);
 688
 689		if (psock->cork) {
 690			cork = true;
 691			psock->cork = NULL;
 692		}
 693
 694		return_mem_sg(sk, send, m);
 695		release_sock(sk);
 696
 697		err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
 698		lock_sock(sk);
 699
 700		if (unlikely(err < 0)) {
 701			free_start_sg(sk, m);
 702			psock->sg_size = 0;
 703			if (!cork)
 704				*copied -= send;
 705		} else {
 706			psock->sg_size -= send;
 707		}
 708
 709		if (cork) {
 710			free_start_sg(sk, m);
 711			psock->sg_size = 0;
 712			kfree(m);
 713			m = NULL;
 714			err = 0;
 715		}
 716		break;
 717	case __SK_DROP:
 718	default:
 719		free_bytes_sg(sk, send, m, true);
 720		apply_bytes_dec(psock, send);
 721		*copied -= send;
 722		psock->sg_size -= send;
 723		err = -EACCES;
 724		break;
 725	}
 726
 727	if (likely(!err)) {
 728		bpf_md_init(psock);
 729		if (m &&
 730		    m->sg_data[m->sg_start].page_link &&
 731		    m->sg_data[m->sg_start].length)
 732			goto more_data;
 733	}
 734
 735out_err:
 736	return err;
 737}
 738
 739static int bpf_wait_data(struct sock *sk,
 740			 struct smap_psock *psk, int flags,
 741			 long timeo, int *err)
 742{
 743	int rc;
 744
 745	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 746
 747	add_wait_queue(sk_sleep(sk), &wait);
 748	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
 749	rc = sk_wait_event(sk, &timeo,
 750			   !list_empty(&psk->ingress) ||
 751			   !skb_queue_empty(&sk->sk_receive_queue),
 752			   &wait);
 753	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
 754	remove_wait_queue(sk_sleep(sk), &wait);
 755
 756	return rc;
 757}
 758
 759static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 760			   int nonblock, int flags, int *addr_len)
 761{
 762	struct iov_iter *iter = &msg->msg_iter;
 763	struct smap_psock *psock;
 764	int copied = 0;
 765
 766	if (unlikely(flags & MSG_ERRQUEUE))
 767		return inet_recv_error(sk, msg, len, addr_len);
 768
 769	rcu_read_lock();
 770	psock = smap_psock_sk(sk);
 771	if (unlikely(!psock))
 772		goto out;
 773
 774	if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
 775		goto out;
 776	rcu_read_unlock();
 777
 778	if (!skb_queue_empty(&sk->sk_receive_queue))
 779		return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
 780
 781	lock_sock(sk);
 782bytes_ready:
 783	while (copied != len) {
 784		struct scatterlist *sg;
 785		struct sk_msg_buff *md;
 786		int i;
 787
 788		md = list_first_entry_or_null(&psock->ingress,
 789					      struct sk_msg_buff, list);
 790		if (unlikely(!md))
 791			break;
 792		i = md->sg_start;
 793		do {
 794			struct page *page;
 795			int n, copy;
 796
 797			sg = &md->sg_data[i];
 798			copy = sg->length;
 799			page = sg_page(sg);
 800
 801			if (copied + copy > len)
 802				copy = len - copied;
 803
 804			n = copy_page_to_iter(page, sg->offset, copy, iter);
 805			if (n != copy) {
 806				md->sg_start = i;
 807				release_sock(sk);
 808				smap_release_sock(psock, sk);
 809				return -EFAULT;
 810			}
 811
 812			copied += copy;
 813			sg->offset += copy;
 814			sg->length -= copy;
 815			sk_mem_uncharge(sk, copy);
 816
 817			if (!sg->length) {
 818				i++;
 819				if (i == MAX_SKB_FRAGS)
 820					i = 0;
 821				if (!md->skb)
 822					put_page(page);
 823			}
 824			if (copied == len)
 825				break;
 826		} while (i != md->sg_end);
 827		md->sg_start = i;
 828
 829		if (!sg->length && md->sg_start == md->sg_end) {
 830			list_del(&md->list);
 831			if (md->skb)
 832				consume_skb(md->skb);
 833			kfree(md);
 834		}
 835	}
 836
 837	if (!copied) {
 838		long timeo;
 839		int data;
 840		int err = 0;
 841
 842		timeo = sock_rcvtimeo(sk, nonblock);
 843		data = bpf_wait_data(sk, psock, flags, timeo, &err);
 844
 845		if (data) {
 846			if (!skb_queue_empty(&sk->sk_receive_queue)) {
 847				release_sock(sk);
 848				smap_release_sock(psock, sk);
 849				copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
 850				return copied;
 851			}
 852			goto bytes_ready;
 853		}
 854
 855		if (err)
 856			copied = err;
 857	}
 858
 859	release_sock(sk);
 860	smap_release_sock(psock, sk);
 861	return copied;
 862out:
 863	rcu_read_unlock();
 864	return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
 865}
 866
 867
 868static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 869{
 870	int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
 871	struct sk_msg_buff md = {0};
 872	unsigned int sg_copy = 0;
 873	struct smap_psock *psock;
 874	int copied = 0, err = 0;
 875	struct scatterlist *sg;
 876	long timeo;
 877
 878	/* Its possible a sock event or user removed the psock _but_ the ops
 879	 * have not been reprogrammed yet so we get here. In this case fallback
 880	 * to tcp_sendmsg. Note this only works because we _only_ ever allow
 881	 * a single ULP there is no hierarchy here.
 882	 */
 883	rcu_read_lock();
 884	psock = smap_psock_sk(sk);
 885	if (unlikely(!psock)) {
 886		rcu_read_unlock();
 887		return tcp_sendmsg(sk, msg, size);
 888	}
 889
 890	/* Increment the psock refcnt to ensure its not released while sending a
 891	 * message. Required because sk lookup and bpf programs are used in
 892	 * separate rcu critical sections. Its OK if we lose the map entry
 893	 * but we can't lose the sock reference.
 894	 */
 895	if (!refcount_inc_not_zero(&psock->refcnt)) {
 896		rcu_read_unlock();
 897		return tcp_sendmsg(sk, msg, size);
 898	}
 899
 900	sg = md.sg_data;
 901	sg_init_marker(sg, MAX_SKB_FRAGS);
 902	rcu_read_unlock();
 903
 904	lock_sock(sk);
 905	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 906
 907	while (msg_data_left(msg)) {
 908		struct sk_msg_buff *m;
 909		bool enospc = false;
 910		int copy;
 911
 912		if (sk->sk_err) {
 913			err = sk->sk_err;
 914			goto out_err;
 915		}
 916
 917		copy = msg_data_left(msg);
 918		if (!sk_stream_memory_free(sk))
 919			goto wait_for_sndbuf;
 920
 921		m = psock->cork_bytes ? psock->cork : &md;
 922		m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
 923		err = sk_alloc_sg(sk, copy, m->sg_data,
 924				  m->sg_start, &m->sg_end, &sg_copy,
 925				  m->sg_end - 1);
 926		if (err) {
 927			if (err != -ENOSPC)
 928				goto wait_for_memory;
 929			enospc = true;
 930			copy = sg_copy;
 931		}
 932
 933		err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
 934		if (err < 0) {
 935			free_curr_sg(sk, m);
 936			goto out_err;
 937		}
 938
 939		psock->sg_size += copy;
 940		copied += copy;
 941		sg_copy = 0;
 942
 943		/* When bytes are being corked skip running BPF program and
 944		 * applying verdict unless there is no more buffer space. In
 945		 * the ENOSPC case simply run BPF prorgram with currently
 946		 * accumulated data. We don't have much choice at this point
 947		 * we could try extending the page frags or chaining complex
 948		 * frags but even in these cases _eventually_ we will hit an
 949		 * OOM scenario. More complex recovery schemes may be
 950		 * implemented in the future, but BPF programs must handle
 951		 * the case where apply_cork requests are not honored. The
 952		 * canonical method to verify this is to check data length.
 953		 */
 954		if (psock->cork_bytes) {
 955			if (copy > psock->cork_bytes)
 956				psock->cork_bytes = 0;
 957			else
 958				psock->cork_bytes -= copy;
 959
 960			if (psock->cork_bytes && !enospc)
 961				goto out_cork;
 962
 963			/* All cork bytes accounted for re-run filter */
 964			psock->eval = __SK_NONE;
 965			psock->cork_bytes = 0;
 966		}
 967
 968		err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
 969		if (unlikely(err < 0))
 970			goto out_err;
 971		continue;
 972wait_for_sndbuf:
 973		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 974wait_for_memory:
 975		err = sk_stream_wait_memory(sk, &timeo);
 976		if (err)
 977			goto out_err;
 978	}
 979out_err:
 980	if (err < 0)
 981		err = sk_stream_error(sk, msg->msg_flags, err);
 982out_cork:
 983	release_sock(sk);
 984	smap_release_sock(psock, sk);
 985	return copied ? copied : err;
 986}
 987
 988static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
 989			    int offset, size_t size, int flags)
 990{
 991	struct sk_msg_buff md = {0}, *m = NULL;
 992	int err = 0, copied = 0;
 993	struct smap_psock *psock;
 994	struct scatterlist *sg;
 995	bool enospc = false;
 996
 997	rcu_read_lock();
 998	psock = smap_psock_sk(sk);
 999	if (unlikely(!psock))
1000		goto accept;
1001
1002	if (!refcount_inc_not_zero(&psock->refcnt))
1003		goto accept;
1004	rcu_read_unlock();
1005
1006	lock_sock(sk);
1007
1008	if (psock->cork_bytes) {
1009		m = psock->cork;
1010		sg = &m->sg_data[m->sg_end];
1011	} else {
1012		m = &md;
1013		sg = m->sg_data;
1014		sg_init_marker(sg, MAX_SKB_FRAGS);
1015	}
1016
1017	/* Catch case where ring is full and sendpage is stalled. */
1018	if (unlikely(m->sg_end == m->sg_start &&
1019	    m->sg_data[m->sg_end].length))
1020		goto out_err;
1021
1022	psock->sg_size += size;
1023	sg_set_page(sg, page, size, offset);
1024	get_page(page);
1025	m->sg_copy[m->sg_end] = true;
1026	sk_mem_charge(sk, size);
1027	m->sg_end++;
1028	copied = size;
1029
1030	if (m->sg_end == MAX_SKB_FRAGS)
1031		m->sg_end = 0;
1032
1033	if (m->sg_end == m->sg_start)
1034		enospc = true;
1035
1036	if (psock->cork_bytes) {
1037		if (size > psock->cork_bytes)
1038			psock->cork_bytes = 0;
1039		else
1040			psock->cork_bytes -= size;
1041
1042		if (psock->cork_bytes && !enospc)
1043			goto out_err;
1044
1045		/* All cork bytes accounted for re-run filter */
1046		psock->eval = __SK_NONE;
1047		psock->cork_bytes = 0;
1048	}
1049
1050	err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
1051out_err:
1052	release_sock(sk);
1053	smap_release_sock(psock, sk);
1054	return copied ? copied : err;
1055accept:
1056	rcu_read_unlock();
1057	return tcp_sendpage(sk, page, offset, size, flags);
1058}
1059
1060static void bpf_tcp_msg_add(struct smap_psock *psock,
1061			    struct sock *sk,
1062			    struct bpf_prog *tx_msg)
1063{
1064	struct bpf_prog *orig_tx_msg;
1065
1066	orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
1067	if (orig_tx_msg)
1068		bpf_prog_put(orig_tx_msg);
1069}
1070
1071static int bpf_tcp_ulp_register(void)
1072{
1073	tcp_bpf_proto = tcp_prot;
1074	tcp_bpf_proto.close = bpf_tcp_close;
1075	/* Once BPF TX ULP is registered it is never unregistered. It
1076	 * will be in the ULP list for the lifetime of the system. Doing
1077	 * duplicate registers is not a problem.
1078	 */
1079	return tcp_register_ulp(&bpf_tcp_ulp_ops);
1080}
1081
1082static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
1083{
1084	struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
1085	int rc;
1086
1087	if (unlikely(!prog))
1088		return __SK_DROP;
1089
1090	skb_orphan(skb);
1091	/* We need to ensure that BPF metadata for maps is also cleared
1092	 * when we orphan the skb so that we don't have the possibility
1093	 * to reference a stale map.
1094	 */
1095	TCP_SKB_CB(skb)->bpf.map = NULL;
1096	skb->sk = psock->sock;
1097	bpf_compute_data_pointers(skb);
1098	preempt_disable();
1099	rc = (*prog->bpf_func)(skb, prog->insnsi);
1100	preempt_enable();
1101	skb->sk = NULL;
1102
1103	/* Moving return codes from UAPI namespace into internal namespace */
1104	return rc == SK_PASS ?
1105		(TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
1106		__SK_DROP;
1107}
1108
1109static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
1110{
1111	struct sock *sk = psock->sock;
1112	int copied = 0, num_sg;
1113	struct sk_msg_buff *r;
1114
1115	r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
1116	if (unlikely(!r))
1117		return -EAGAIN;
1118
1119	if (!sk_rmem_schedule(sk, skb, skb->len)) {
1120		kfree(r);
1121		return -EAGAIN;
1122	}
1123
1124	sg_init_table(r->sg_data, MAX_SKB_FRAGS);
1125	num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
1126	if (unlikely(num_sg < 0)) {
1127		kfree(r);
1128		return num_sg;
1129	}
1130	sk_mem_charge(sk, skb->len);
1131	copied = skb->len;
1132	r->sg_start = 0;
1133	r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
1134	r->skb = skb;
1135	list_add_tail(&r->list, &psock->ingress);
1136	sk->sk_data_ready(sk);
1137	return copied;
1138}
1139
1140static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
1141{
1142	struct smap_psock *peer;
1143	struct sock *sk;
1144	__u32 in;
1145	int rc;
1146
1147	rc = smap_verdict_func(psock, skb);
1148	switch (rc) {
1149	case __SK_REDIRECT:
1150		sk = do_sk_redirect_map(skb);
1151		if (!sk) {
1152			kfree_skb(skb);
1153			break;
1154		}
1155
1156		peer = smap_psock_sk(sk);
1157		in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
1158
1159		if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
1160			     !test_bit(SMAP_TX_RUNNING, &peer->state))) {
1161			kfree_skb(skb);
1162			break;
1163		}
1164
1165		if (!in && sock_writeable(sk)) {
1166			skb_set_owner_w(skb, sk);
1167			skb_queue_tail(&peer->rxqueue, skb);
1168			schedule_work(&peer->tx_work);
1169			break;
1170		} else if (in &&
1171			   atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
1172			skb_queue_tail(&peer->rxqueue, skb);
1173			schedule_work(&peer->tx_work);
1174			break;
1175		}
1176	/* Fall through and free skb otherwise */
1177	case __SK_DROP:
1178	default:
1179		kfree_skb(skb);
1180	}
1181}
1182
1183static void smap_report_sk_error(struct smap_psock *psock, int err)
1184{
1185	struct sock *sk = psock->sock;
1186
1187	sk->sk_err = err;
1188	sk->sk_error_report(sk);
1189}
1190
1191static void smap_read_sock_strparser(struct strparser *strp,
1192				     struct sk_buff *skb)
1193{
1194	struct smap_psock *psock;
1195
1196	rcu_read_lock();
1197	psock = container_of(strp, struct smap_psock, strp);
1198	smap_do_verdict(psock, skb);
1199	rcu_read_unlock();
1200}
1201
1202/* Called with lock held on socket */
1203static void smap_data_ready(struct sock *sk)
1204{
1205	struct smap_psock *psock;
1206
1207	rcu_read_lock();
1208	psock = smap_psock_sk(sk);
1209	if (likely(psock)) {
1210		write_lock_bh(&sk->sk_callback_lock);
1211		strp_data_ready(&psock->strp);
1212		write_unlock_bh(&sk->sk_callback_lock);
1213	}
1214	rcu_read_unlock();
1215}
1216
1217static void smap_tx_work(struct work_struct *w)
1218{
1219	struct smap_psock *psock;
1220	struct sk_buff *skb;
1221	int rem, off, n;
1222
1223	psock = container_of(w, struct smap_psock, tx_work);
1224
1225	/* lock sock to avoid losing sk_socket at some point during loop */
1226	lock_sock(psock->sock);
1227	if (psock->save_skb) {
1228		skb = psock->save_skb;
1229		rem = psock->save_rem;
1230		off = psock->save_off;
1231		psock->save_skb = NULL;
1232		goto start;
1233	}
1234
1235	while ((skb = skb_dequeue(&psock->rxqueue))) {
1236		__u32 flags;
1237
1238		rem = skb->len;
1239		off = 0;
1240start:
1241		flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
1242		do {
1243			if (likely(psock->sock->sk_socket)) {
1244				if (flags)
1245					n = smap_do_ingress(psock, skb);
1246				else
1247					n = skb_send_sock_locked(psock->sock,
1248								 skb, off, rem);
1249			} else {
1250				n = -EINVAL;
1251			}
1252
1253			if (n <= 0) {
1254				if (n == -EAGAIN) {
1255					/* Retry when space is available */
1256					psock->save_skb = skb;
1257					psock->save_rem = rem;
1258					psock->save_off = off;
1259					goto out;
1260				}
1261				/* Hard errors break pipe and stop xmit */
1262				smap_report_sk_error(psock, n ? -n : EPIPE);
1263				clear_bit(SMAP_TX_RUNNING, &psock->state);
1264				kfree_skb(skb);
1265				goto out;
1266			}
1267			rem -= n;
1268			off += n;
1269		} while (rem);
1270
1271		if (!flags)
1272			kfree_skb(skb);
1273	}
1274out:
1275	release_sock(psock->sock);
1276}
1277
1278static void smap_write_space(struct sock *sk)
1279{
1280	struct smap_psock *psock;
1281
1282	rcu_read_lock();
1283	psock = smap_psock_sk(sk);
1284	if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
1285		schedule_work(&psock->tx_work);
1286	rcu_read_unlock();
1287}
1288
1289static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
1290{
1291	if (!psock->strp_enabled)
1292		return;
1293	sk->sk_data_ready = psock->save_data_ready;
1294	sk->sk_write_space = psock->save_write_space;
1295	psock->save_data_ready = NULL;
1296	psock->save_write_space = NULL;
1297	strp_stop(&psock->strp);
1298	psock->strp_enabled = false;
1299}
1300
1301static void smap_destroy_psock(struct rcu_head *rcu)
1302{
1303	struct smap_psock *psock = container_of(rcu,
1304						  struct smap_psock, rcu);
1305
1306	/* Now that a grace period has passed there is no longer
1307	 * any reference to this sock in the sockmap so we can
1308	 * destroy the psock, strparser, and bpf programs. But,
1309	 * because we use workqueue sync operations we can not
1310	 * do it in rcu context
1311	 */
1312	schedule_work(&psock->gc_work);
1313}
1314
1315static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
1316{
1317	if (refcount_dec_and_test(&psock->refcnt)) {
1318		tcp_cleanup_ulp(sock);
1319		smap_stop_sock(psock, sock);
1320		clear_bit(SMAP_TX_RUNNING, &psock->state);
1321		rcu_assign_sk_user_data(sock, NULL);
1322		call_rcu_sched(&psock->rcu, smap_destroy_psock);
1323	}
1324}
1325
1326static int smap_parse_func_strparser(struct strparser *strp,
1327				       struct sk_buff *skb)
1328{
1329	struct smap_psock *psock;
1330	struct bpf_prog *prog;
1331	int rc;
1332
1333	rcu_read_lock();
1334	psock = container_of(strp, struct smap_psock, strp);
1335	prog = READ_ONCE(psock->bpf_parse);
1336
1337	if (unlikely(!prog)) {
1338		rcu_read_unlock();
1339		return skb->len;
1340	}
1341
1342	/* Attach socket for bpf program to use if needed we can do this
1343	 * because strparser clones the skb before handing it to a upper
1344	 * layer, meaning skb_orphan has been called. We NULL sk on the
1345	 * way out to ensure we don't trigger a BUG_ON in skb/sk operations
1346	 * later and because we are not charging the memory of this skb to
1347	 * any socket yet.
1348	 */
1349	skb->sk = psock->sock;
1350	bpf_compute_data_pointers(skb);
1351	rc = (*prog->bpf_func)(skb, prog->insnsi);
1352	skb->sk = NULL;
1353	rcu_read_unlock();
1354	return rc;
1355}
1356
1357static int smap_read_sock_done(struct strparser *strp, int err)
1358{
1359	return err;
1360}
1361
1362static int smap_init_sock(struct smap_psock *psock,
1363			  struct sock *sk)
1364{
1365	static const struct strp_callbacks cb = {
1366		.rcv_msg = smap_read_sock_strparser,
1367		.parse_msg = smap_parse_func_strparser,
1368		.read_sock_done = smap_read_sock_done,
1369	};
1370
1371	return strp_init(&psock->strp, sk, &cb);
1372}
1373
1374static void smap_init_progs(struct smap_psock *psock,
1375			    struct bpf_stab *stab,
1376			    struct bpf_prog *verdict,
1377			    struct bpf_prog *parse)
1378{
1379	struct bpf_prog *orig_parse, *orig_verdict;
1380
1381	orig_parse = xchg(&psock->bpf_parse, parse);
1382	orig_verdict = xchg(&psock->bpf_verdict, verdict);
1383
1384	if (orig_verdict)
1385		bpf_prog_put(orig_verdict);
1386	if (orig_parse)
1387		bpf_prog_put(orig_parse);
1388}
1389
1390static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
1391{
1392	if (sk->sk_data_ready == smap_data_ready)
1393		return;
1394	psock->save_data_ready = sk->sk_data_ready;
1395	psock->save_write_space = sk->sk_write_space;
1396	sk->sk_data_ready = smap_data_ready;
1397	sk->sk_write_space = smap_write_space;
1398	psock->strp_enabled = true;
1399}
1400
1401static void sock_map_remove_complete(struct bpf_stab *stab)
1402{
1403	bpf_map_area_free(stab->sock_map);
1404	kfree(stab);
1405}
1406
1407static void smap_gc_work(struct work_struct *w)
1408{
1409	struct smap_psock_map_entry *e, *tmp;
1410	struct sk_msg_buff *md, *mtmp;
1411	struct smap_psock *psock;
1412
1413	psock = container_of(w, struct smap_psock, gc_work);
1414
1415	/* no callback lock needed because we already detached sockmap ops */
1416	if (psock->strp_enabled)
1417		strp_done(&psock->strp);
1418
1419	cancel_work_sync(&psock->tx_work);
1420	__skb_queue_purge(&psock->rxqueue);
1421
1422	/* At this point all strparser and xmit work must be complete */
1423	if (psock->bpf_parse)
1424		bpf_prog_put(psock->bpf_parse);
1425	if (psock->bpf_verdict)
1426		bpf_prog_put(psock->bpf_verdict);
1427	if (psock->bpf_tx_msg)
1428		bpf_prog_put(psock->bpf_tx_msg);
1429
1430	if (psock->cork) {
1431		free_start_sg(psock->sock, psock->cork);
1432		kfree(psock->cork);
1433	}
1434
1435	list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
1436		list_del(&md->list);
1437		free_start_sg(psock->sock, md);
1438		kfree(md);
1439	}
1440
1441	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1442		list_del(&e->list);
1443		kfree(e);
1444	}
1445
1446	if (psock->sk_redir)
1447		sock_put(psock->sk_redir);
1448
1449	sock_put(psock->sock);
1450	kfree(psock);
1451}
1452
1453static struct smap_psock *smap_init_psock(struct sock *sock,
1454					  struct bpf_stab *stab)
1455{
1456	struct smap_psock *psock;
1457
1458	psock = kzalloc_node(sizeof(struct smap_psock),
1459			     GFP_ATOMIC | __GFP_NOWARN,
1460			     stab->map.numa_node);
1461	if (!psock)
1462		return ERR_PTR(-ENOMEM);
1463
1464	psock->eval =  __SK_NONE;
1465	psock->sock = sock;
1466	skb_queue_head_init(&psock->rxqueue);
1467	INIT_WORK(&psock->tx_work, smap_tx_work);
1468	INIT_WORK(&psock->gc_work, smap_gc_work);
1469	INIT_LIST_HEAD(&psock->maps);
1470	INIT_LIST_HEAD(&psock->ingress);
1471	refcount_set(&psock->refcnt, 1);
1472
1473	rcu_assign_sk_user_data(sock, psock);
1474	sock_hold(sock);
1475	return psock;
1476}
1477
1478static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
1479{
1480	struct bpf_stab *stab;
1481	u64 cost;
1482	int err;
1483
1484	if (!capable(CAP_NET_ADMIN))
1485		return ERR_PTR(-EPERM);
1486
1487	/* check sanity of attributes */
1488	if (attr->max_entries == 0 || attr->key_size != 4 ||
1489	    attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
1490		return ERR_PTR(-EINVAL);
1491
1492	err = bpf_tcp_ulp_register();
1493	if (err && err != -EEXIST)
1494		return ERR_PTR(err);
1495
1496	stab = kzalloc(sizeof(*stab), GFP_USER);
1497	if (!stab)
1498		return ERR_PTR(-ENOMEM);
1499
1500	bpf_map_init_from_attr(&stab->map, attr);
1501
1502	/* make sure page count doesn't overflow */
1503	cost = (u64) stab->map.max_entries * sizeof(struct sock *);
1504	err = -EINVAL;
1505	if (cost >= U32_MAX - PAGE_SIZE)
1506		goto free_stab;
1507
1508	stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
1509
1510	/* if map size is larger than memlock limit, reject it early */
1511	err = bpf_map_precharge_memlock(stab->map.pages);
1512	if (err)
1513		goto free_stab;
1514
1515	err = -ENOMEM;
1516	stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
1517					    sizeof(struct sock *),
1518					    stab->map.numa_node);
1519	if (!stab->sock_map)
1520		goto free_stab;
1521
1522	return &stab->map;
1523free_stab:
1524	kfree(stab);
1525	return ERR_PTR(err);
1526}
1527
1528static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
1529{
1530	struct smap_psock_map_entry *e, *tmp;
1531
1532	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1533		if (e->entry == entry) {
1534			list_del(&e->list);
1535			break;
1536		}
1537	}
1538}
1539
1540static void sock_map_free(struct bpf_map *map)
1541{
1542	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1543	int i;
1544
1545	synchronize_rcu();
1546
1547	/* At this point no update, lookup or delete operations can happen.
1548	 * However, be aware we can still get a socket state event updates,
1549	 * and data ready callabacks that reference the psock from sk_user_data
1550	 * Also psock worker threads are still in-flight. So smap_release_sock
1551	 * will only free the psock after cancel_sync on the worker threads
1552	 * and a grace period expire to ensure psock is really safe to remove.
1553	 */
1554	rcu_read_lock();
1555	for (i = 0; i < stab->map.max_entries; i++) {
1556		struct smap_psock *psock;
1557		struct sock *sock;
1558
1559		sock = xchg(&stab->sock_map[i], NULL);
1560		if (!sock)
1561			continue;
1562
1563		write_lock_bh(&sock->sk_callback_lock);
1564		psock = smap_psock_sk(sock);
1565		/* This check handles a racing sock event that can get the
1566		 * sk_callback_lock before this case but after xchg happens
1567		 * causing the refcnt to hit zero and sock user data (psock)
1568		 * to be null and queued for garbage collection.
1569		 */
1570		if (likely(psock)) {
1571			smap_list_remove(psock, &stab->sock_map[i]);
1572			smap_release_sock(psock, sock);
1573		}
1574		write_unlock_bh(&sock->sk_callback_lock);
1575	}
1576	rcu_read_unlock();
1577
1578	sock_map_remove_complete(stab);
1579}
1580
1581static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
1582{
1583	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1584	u32 i = key ? *(u32 *)key : U32_MAX;
1585	u32 *next = (u32 *)next_key;
1586
1587	if (i >= stab->map.max_entries) {
1588		*next = 0;
1589		return 0;
1590	}
1591
1592	if (i == stab->map.max_entries - 1)
1593		return -ENOENT;
1594
1595	*next = i + 1;
1596	return 0;
1597}
1598
1599struct sock  *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
1600{
1601	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1602
1603	if (key >= map->max_entries)
1604		return NULL;
1605
1606	return READ_ONCE(stab->sock_map[key]);
1607}
1608
1609static int sock_map_delete_elem(struct bpf_map *map, void *key)
1610{
1611	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1612	struct smap_psock *psock;
1613	int k = *(u32 *)key;
1614	struct sock *sock;
1615
1616	if (k >= map->max_entries)
1617		return -EINVAL;
1618
1619	sock = xchg(&stab->sock_map[k], NULL);
1620	if (!sock)
1621		return -EINVAL;
1622
1623	write_lock_bh(&sock->sk_callback_lock);
1624	psock = smap_psock_sk(sock);
1625	if (!psock)
1626		goto out;
1627
1628	if (psock->bpf_parse)
1629		smap_stop_sock(psock, sock);
1630	smap_list_remove(psock, &stab->sock_map[k]);
1631	smap_release_sock(psock, sock);
1632out:
1633	write_unlock_bh(&sock->sk_callback_lock);
1634	return 0;
1635}
1636
1637/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
1638 * done inside rcu critical sections. This ensures on updates that the psock
1639 * will not be released via smap_release_sock() until concurrent updates/deletes
1640 * complete. All operations operate on sock_map using cmpxchg and xchg
1641 * operations to ensure we do not get stale references. Any reads into the
1642 * map must be done with READ_ONCE() because of this.
1643 *
1644 * A psock is destroyed via call_rcu and after any worker threads are cancelled
1645 * and syncd so we are certain all references from the update/lookup/delete
1646 * operations as well as references in the data path are no longer in use.
1647 *
1648 * Psocks may exist in multiple maps, but only a single set of parse/verdict
1649 * programs may be inherited from the maps it belongs to. A reference count
1650 * is kept with the total number of references to the psock from all maps. The
1651 * psock will not be released until this reaches zero. The psock and sock
1652 * user data data use the sk_callback_lock to protect critical data structures
1653 * from concurrent access. This allows us to avoid two updates from modifying
1654 * the user data in sock and the lock is required anyways for modifying
1655 * callbacks, we simply increase its scope slightly.
1656 *
1657 * Rules to follow,
1658 *  - psock must always be read inside RCU critical section
1659 *  - sk_user_data must only be modified inside sk_callback_lock and read
1660 *    inside RCU critical section.
1661 *  - psock->maps list must only be read & modified inside sk_callback_lock
1662 *  - sock_map must use READ_ONCE and (cmp)xchg operations
1663 *  - BPF verdict/parse programs must use READ_ONCE and xchg operations
1664 */
1665static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
1666				    struct bpf_map *map,
1667				    void *key, u64 flags)
1668{
1669	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1670	struct smap_psock_map_entry *e = NULL;
1671	struct bpf_prog *verdict, *parse, *tx_msg;
1672	struct sock *osock, *sock;
1673	struct smap_psock *psock;
1674	u32 i = *(u32 *)key;
1675	bool new = false;
1676	int err;
1677
1678	if (unlikely(flags > BPF_EXIST))
1679		return -EINVAL;
1680
1681	if (unlikely(i >= stab->map.max_entries))
1682		return -E2BIG;
1683
1684	sock = READ_ONCE(stab->sock_map[i]);
1685	if (flags == BPF_EXIST && !sock)
1686		return -ENOENT;
1687	else if (flags == BPF_NOEXIST && sock)
1688		return -EEXIST;
1689
1690	sock = skops->sk;
1691
1692	/* 1. If sock map has BPF programs those will be inherited by the
1693	 * sock being added. If the sock is already attached to BPF programs
1694	 * this results in an error.
1695	 */
1696	verdict = READ_ONCE(stab->bpf_verdict);
1697	parse = READ_ONCE(stab->bpf_parse);
1698	tx_msg = READ_ONCE(stab->bpf_tx_msg);
1699
1700	if (parse && verdict) {
1701		/* bpf prog refcnt may be zero if a concurrent attach operation
1702		 * removes the program after the above READ_ONCE() but before
1703		 * we increment the refcnt. If this is the case abort with an
1704		 * error.
1705		 */
1706		verdict = bpf_prog_inc_not_zero(verdict);
1707		if (IS_ERR(verdict))
1708			return PTR_ERR(verdict);
1709
1710		parse = bpf_prog_inc_not_zero(parse);
1711		if (IS_ERR(parse)) {
1712			bpf_prog_put(verdict);
1713			return PTR_ERR(parse);
1714		}
1715	}
1716
1717	if (tx_msg) {
1718		tx_msg = bpf_prog_inc_not_zero(tx_msg);
1719		if (IS_ERR(tx_msg)) {
1720			if (parse && verdict) {
1721				bpf_prog_put(parse);
1722				bpf_prog_put(verdict);
1723			}
1724			return PTR_ERR(tx_msg);
1725		}
1726	}
1727
1728	write_lock_bh(&sock->sk_callback_lock);
1729	psock = smap_psock_sk(sock);
1730
1731	/* 2. Do not allow inheriting programs if psock exists and has
1732	 * already inherited programs. This would create confusion on
1733	 * which parser/verdict program is running. If no psock exists
1734	 * create one. Inside sk_callback_lock to ensure concurrent create
1735	 * doesn't update user data.
1736	 */
1737	if (psock) {
1738		if (READ_ONCE(psock->bpf_parse) && parse) {
1739			err = -EBUSY;
1740			goto out_progs;
1741		}
1742		if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
1743			err = -EBUSY;
1744			goto out_progs;
1745		}
1746		if (!refcount_inc_not_zero(&psock->refcnt)) {
1747			err = -EAGAIN;
1748			goto out_progs;
1749		}
1750	} else {
1751		psock = smap_init_psock(sock, stab);
1752		if (IS_ERR(psock)) {
1753			err = PTR_ERR(psock);
1754			goto out_progs;
1755		}
1756
1757		set_bit(SMAP_TX_RUNNING, &psock->state);
1758		new = true;
1759	}
1760
1761	e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
1762	if (!e) {
1763		err = -ENOMEM;
1764		goto out_progs;
1765	}
1766	e->entry = &stab->sock_map[i];
1767
1768	/* 3. At this point we have a reference to a valid psock that is
1769	 * running. Attach any BPF programs needed.
1770	 */
1771	if (tx_msg)
1772		bpf_tcp_msg_add(psock, sock, tx_msg);
1773	if (new) {
1774		err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
1775		if (err)
1776			goto out_free;
1777	}
1778
1779	if (parse && verdict && !psock->strp_enabled) {
1780		err = smap_init_sock(psock, sock);
1781		if (err)
1782			goto out_free;
1783		smap_init_progs(psock, stab, verdict, parse);
1784		smap_start_sock(psock, sock);
1785	}
1786
1787	/* 4. Place psock in sockmap for use and stop any programs on
1788	 * the old sock assuming its not the same sock we are replacing
1789	 * it with. Because we can only have a single set of programs if
1790	 * old_sock has a strp we can stop it.
1791	 */
1792	list_add_tail(&e->list, &psock->maps);
1793	write_unlock_bh(&sock->sk_callback_lock);
1794
1795	osock = xchg(&stab->sock_map[i], sock);
1796	if (osock) {
1797		struct smap_psock *opsock = smap_psock_sk(osock);
1798
1799		write_lock_bh(&osock->sk_callback_lock);
1800		smap_list_remove(opsock, &stab->sock_map[i]);
1801		smap_release_sock(opsock, osock);
1802		write_unlock_bh(&osock->sk_callback_lock);
1803	}
1804	return 0;
1805out_free:
1806	smap_release_sock(psock, sock);
1807out_progs:
1808	if (parse && verdict) {
1809		bpf_prog_put(parse);
1810		bpf_prog_put(verdict);
1811	}
1812	if (tx_msg)
1813		bpf_prog_put(tx_msg);
1814	write_unlock_bh(&sock->sk_callback_lock);
1815	kfree(e);
1816	return err;
1817}
1818
1819int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
1820{
1821	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1822	struct bpf_prog *orig;
1823
1824	if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
1825		return -EINVAL;
1826
1827	switch (type) {
1828	case BPF_SK_MSG_VERDICT:
1829		orig = xchg(&stab->bpf_tx_msg, prog);
1830		break;
1831	case BPF_SK_SKB_STREAM_PARSER:
1832		orig = xchg(&stab->bpf_parse, prog);
1833		break;
1834	case BPF_SK_SKB_STREAM_VERDICT:
1835		orig = xchg(&stab->bpf_verdict, prog);
1836		break;
1837	default:
1838		return -EOPNOTSUPP;
1839	}
1840
1841	if (orig)
1842		bpf_prog_put(orig);
1843
1844	return 0;
1845}
1846
1847static void *sock_map_lookup(struct bpf_map *map, void *key)
1848{
1849	return NULL;
1850}
1851
1852static int sock_map_update_elem(struct bpf_map *map,
1853				void *key, void *value, u64 flags)
1854{
1855	struct bpf_sock_ops_kern skops;
1856	u32 fd = *(u32 *)value;
1857	struct socket *socket;
1858	int err;
1859
1860	socket = sockfd_lookup(fd, &err);
1861	if (!socket)
1862		return err;
1863
1864	skops.sk = socket->sk;
1865	if (!skops.sk) {
1866		fput(socket->file);
1867		return -EINVAL;
1868	}
1869
1870	if (skops.sk->sk_type != SOCK_STREAM ||
1871	    skops.sk->sk_protocol != IPPROTO_TCP) {
1872		fput(socket->file);
1873		return -EOPNOTSUPP;
1874	}
1875
1876	err = sock_map_ctx_update_elem(&skops, map, key, flags);
1877	fput(socket->file);
1878	return err;
1879}
1880
1881static void sock_map_release(struct bpf_map *map)
1882{
1883	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1884	struct bpf_prog *orig;
1885
1886	orig = xchg(&stab->bpf_parse, NULL);
1887	if (orig)
1888		bpf_prog_put(orig);
1889	orig = xchg(&stab->bpf_verdict, NULL);
1890	if (orig)
1891		bpf_prog_put(orig);
1892
1893	orig = xchg(&stab->bpf_tx_msg, NULL);
1894	if (orig)
1895		bpf_prog_put(orig);
1896}
1897
1898const struct bpf_map_ops sock_map_ops = {
1899	.map_alloc = sock_map_alloc,
1900	.map_free = sock_map_free,
1901	.map_lookup_elem = sock_map_lookup,
1902	.map_get_next_key = sock_map_get_next_key,
1903	.map_update_elem = sock_map_update_elem,
1904	.map_delete_elem = sock_map_delete_elem,
1905	.map_release_uref = sock_map_release,
1906};
1907
1908BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
1909	   struct bpf_map *, map, void *, key, u64, flags)
1910{
1911	WARN_ON_ONCE(!rcu_read_lock_held());
1912	return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
1913}
1914
1915const struct bpf_func_proto bpf_sock_map_update_proto = {
1916	.func		= bpf_sock_map_update,
1917	.gpl_only	= false,
1918	.pkt_access	= true,
1919	.ret_type	= RET_INTEGER,
1920	.arg1_type	= ARG_PTR_TO_CTX,
1921	.arg2_type	= ARG_CONST_MAP_PTR,
1922	.arg3_type	= ARG_PTR_TO_MAP_KEY,
1923	.arg4_type	= ARG_ANYTHING,
1924};
1