Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/bitops.h>
 25
 26#include "udf_i.h"
 27#include "udf_sb.h"
 28
 29#define udf_clear_bit	__test_and_clear_bit_le
 30#define udf_set_bit	__test_and_set_bit_le
 31#define udf_test_bit	test_bit_le
 32#define udf_find_next_one_bit	find_next_bit_le
 33
 34static int read_block_bitmap(struct super_block *sb,
 35			     struct udf_bitmap *bitmap, unsigned int block,
 36			     unsigned long bitmap_nr)
 37{
 38	struct buffer_head *bh = NULL;
 39	int retval = 0;
 40	struct kernel_lb_addr loc;
 41
 42	loc.logicalBlockNum = bitmap->s_extPosition;
 43	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 44
 45	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 46	if (!bh)
 47		retval = -EIO;
 48
 49	bitmap->s_block_bitmap[bitmap_nr] = bh;
 50	return retval;
 51}
 52
 53static int __load_block_bitmap(struct super_block *sb,
 54			       struct udf_bitmap *bitmap,
 55			       unsigned int block_group)
 56{
 57	int retval = 0;
 58	int nr_groups = bitmap->s_nr_groups;
 59
 60	if (block_group >= nr_groups) {
 61		udf_debug("block_group (%u) > nr_groups (%d)\n",
 62			  block_group, nr_groups);
 63	}
 64
 65	if (bitmap->s_block_bitmap[block_group])
 66		return block_group;
 67
 68	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
 69	if (retval < 0)
 70		return retval;
 71
 72	return block_group;
 73}
 74
 75static inline int load_block_bitmap(struct super_block *sb,
 76				    struct udf_bitmap *bitmap,
 77				    unsigned int block_group)
 78{
 79	int slot;
 80
 81	slot = __load_block_bitmap(sb, bitmap, block_group);
 82
 83	if (slot < 0)
 84		return slot;
 85
 86	if (!bitmap->s_block_bitmap[slot])
 87		return -EIO;
 88
 89	return slot;
 90}
 91
 92static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 93{
 94	struct udf_sb_info *sbi = UDF_SB(sb);
 95	struct logicalVolIntegrityDesc *lvid;
 96
 97	if (!sbi->s_lvid_bh)
 98		return;
 99
100	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102	udf_updated_lvid(sb);
103}
104
105static void udf_bitmap_free_blocks(struct super_block *sb,
106				   struct udf_bitmap *bitmap,
107				   struct kernel_lb_addr *bloc,
108				   uint32_t offset,
109				   uint32_t count)
110{
111	struct udf_sb_info *sbi = UDF_SB(sb);
112	struct buffer_head *bh = NULL;
113	struct udf_part_map *partmap;
114	unsigned long block;
115	unsigned long block_group;
116	unsigned long bit;
117	unsigned long i;
118	int bitmap_nr;
119	unsigned long overflow;
120
121	mutex_lock(&sbi->s_alloc_mutex);
122	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123	if (bloc->logicalBlockNum + count < count ||
124	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125		udf_debug("%u < %d || %u + %u > %u\n",
126			  bloc->logicalBlockNum, 0,
127			  bloc->logicalBlockNum, count,
128			  partmap->s_partition_len);
129		goto error_return;
130	}
131
132	block = bloc->logicalBlockNum + offset +
133		(sizeof(struct spaceBitmapDesc) << 3);
134
135	do {
136		overflow = 0;
137		block_group = block >> (sb->s_blocksize_bits + 3);
138		bit = block % (sb->s_blocksize << 3);
139
140		/*
141		* Check to see if we are freeing blocks across a group boundary.
142		*/
143		if (bit + count > (sb->s_blocksize << 3)) {
144			overflow = bit + count - (sb->s_blocksize << 3);
145			count -= overflow;
146		}
147		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148		if (bitmap_nr < 0)
149			goto error_return;
150
151		bh = bitmap->s_block_bitmap[bitmap_nr];
152		for (i = 0; i < count; i++) {
153			if (udf_set_bit(bit + i, bh->b_data)) {
154				udf_debug("bit %lu already set\n", bit + i);
155				udf_debug("byte=%2x\n",
156					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
157			}
158		}
159		udf_add_free_space(sb, sbi->s_partition, count);
160		mark_buffer_dirty(bh);
161		if (overflow) {
162			block += count;
163			count = overflow;
164		}
165	} while (overflow);
166
167error_return:
168	mutex_unlock(&sbi->s_alloc_mutex);
169}
170
171static int udf_bitmap_prealloc_blocks(struct super_block *sb,
172				      struct udf_bitmap *bitmap,
173				      uint16_t partition, uint32_t first_block,
174				      uint32_t block_count)
175{
176	struct udf_sb_info *sbi = UDF_SB(sb);
177	int alloc_count = 0;
178	int bit, block, block_group, group_start;
179	int nr_groups, bitmap_nr;
180	struct buffer_head *bh;
181	__u32 part_len;
182
183	mutex_lock(&sbi->s_alloc_mutex);
184	part_len = sbi->s_partmaps[partition].s_partition_len;
185	if (first_block >= part_len)
186		goto out;
187
188	if (first_block + block_count > part_len)
189		block_count = part_len - first_block;
190
191	do {
192		nr_groups = udf_compute_nr_groups(sb, partition);
193		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
194		block_group = block >> (sb->s_blocksize_bits + 3);
195		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
196
197		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198		if (bitmap_nr < 0)
199			goto out;
200		bh = bitmap->s_block_bitmap[bitmap_nr];
201
202		bit = block % (sb->s_blocksize << 3);
203
204		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
205			if (!udf_clear_bit(bit, bh->b_data))
206				goto out;
207			block_count--;
208			alloc_count++;
209			bit++;
210			block++;
211		}
212		mark_buffer_dirty(bh);
213	} while (block_count > 0);
214
215out:
216	udf_add_free_space(sb, partition, -alloc_count);
217	mutex_unlock(&sbi->s_alloc_mutex);
218	return alloc_count;
219}
220
221static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
222				struct udf_bitmap *bitmap, uint16_t partition,
223				uint32_t goal, int *err)
224{
225	struct udf_sb_info *sbi = UDF_SB(sb);
226	int newbit, bit = 0;
227	udf_pblk_t block;
228	int block_group, group_start;
229	int end_goal, nr_groups, bitmap_nr, i;
230	struct buffer_head *bh = NULL;
231	char *ptr;
232	udf_pblk_t newblock = 0;
233
234	*err = -ENOSPC;
235	mutex_lock(&sbi->s_alloc_mutex);
236
237repeat:
238	if (goal >= sbi->s_partmaps[partition].s_partition_len)
239		goal = 0;
240
241	nr_groups = bitmap->s_nr_groups;
242	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
243	block_group = block >> (sb->s_blocksize_bits + 3);
244	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
245
246	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
247	if (bitmap_nr < 0)
248		goto error_return;
249	bh = bitmap->s_block_bitmap[bitmap_nr];
250	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
251		      sb->s_blocksize - group_start);
252
253	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
254		bit = block % (sb->s_blocksize << 3);
255		if (udf_test_bit(bit, bh->b_data))
256			goto got_block;
257
258		end_goal = (bit + 63) & ~63;
259		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
260		if (bit < end_goal)
261			goto got_block;
262
263		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
264			      sb->s_blocksize - ((bit + 7) >> 3));
265		newbit = (ptr - ((char *)bh->b_data)) << 3;
266		if (newbit < sb->s_blocksize << 3) {
267			bit = newbit;
268			goto search_back;
269		}
270
271		newbit = udf_find_next_one_bit(bh->b_data,
272					       sb->s_blocksize << 3, bit);
273		if (newbit < sb->s_blocksize << 3) {
274			bit = newbit;
275			goto got_block;
276		}
277	}
278
279	for (i = 0; i < (nr_groups * 2); i++) {
280		block_group++;
281		if (block_group >= nr_groups)
282			block_group = 0;
283		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
284
285		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
286		if (bitmap_nr < 0)
287			goto error_return;
288		bh = bitmap->s_block_bitmap[bitmap_nr];
289		if (i < nr_groups) {
290			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
291				      sb->s_blocksize - group_start);
292			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
293				bit = (ptr - ((char *)bh->b_data)) << 3;
294				break;
295			}
296		} else {
297			bit = udf_find_next_one_bit(bh->b_data,
298						    sb->s_blocksize << 3,
299						    group_start << 3);
300			if (bit < sb->s_blocksize << 3)
301				break;
302		}
303	}
304	if (i >= (nr_groups * 2)) {
305		mutex_unlock(&sbi->s_alloc_mutex);
306		return newblock;
307	}
308	if (bit < sb->s_blocksize << 3)
309		goto search_back;
310	else
311		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
312					    group_start << 3);
313	if (bit >= sb->s_blocksize << 3) {
314		mutex_unlock(&sbi->s_alloc_mutex);
315		return 0;
316	}
317
318search_back:
319	i = 0;
320	while (i < 7 && bit > (group_start << 3) &&
321	       udf_test_bit(bit - 1, bh->b_data)) {
322		++i;
323		--bit;
324	}
325
326got_block:
327	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
328		(sizeof(struct spaceBitmapDesc) << 3);
329
330	if (!udf_clear_bit(bit, bh->b_data)) {
331		udf_debug("bit already cleared for block %d\n", bit);
332		goto repeat;
333	}
334
335	mark_buffer_dirty(bh);
336
337	udf_add_free_space(sb, partition, -1);
338	mutex_unlock(&sbi->s_alloc_mutex);
339	*err = 0;
340	return newblock;
341
342error_return:
343	*err = -EIO;
344	mutex_unlock(&sbi->s_alloc_mutex);
345	return 0;
346}
347
348static void udf_table_free_blocks(struct super_block *sb,
349				  struct inode *table,
350				  struct kernel_lb_addr *bloc,
351				  uint32_t offset,
352				  uint32_t count)
353{
354	struct udf_sb_info *sbi = UDF_SB(sb);
355	struct udf_part_map *partmap;
356	uint32_t start, end;
357	uint32_t elen;
358	struct kernel_lb_addr eloc;
359	struct extent_position oepos, epos;
360	int8_t etype;
361	struct udf_inode_info *iinfo;
362
363	mutex_lock(&sbi->s_alloc_mutex);
364	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
365	if (bloc->logicalBlockNum + count < count ||
366	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
367		udf_debug("%u < %d || %u + %u > %u\n",
368			  bloc->logicalBlockNum, 0,
369			  bloc->logicalBlockNum, count,
370			  partmap->s_partition_len);
371		goto error_return;
372	}
373
374	iinfo = UDF_I(table);
375	udf_add_free_space(sb, sbi->s_partition, count);
376
377	start = bloc->logicalBlockNum + offset;
378	end = bloc->logicalBlockNum + offset + count - 1;
379
380	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
381	elen = 0;
382	epos.block = oepos.block = iinfo->i_location;
383	epos.bh = oepos.bh = NULL;
384
385	while (count &&
386	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
387		if (((eloc.logicalBlockNum +
388			(elen >> sb->s_blocksize_bits)) == start)) {
389			if ((0x3FFFFFFF - elen) <
390					(count << sb->s_blocksize_bits)) {
391				uint32_t tmp = ((0x3FFFFFFF - elen) >>
392							sb->s_blocksize_bits);
393				count -= tmp;
394				start += tmp;
395				elen = (etype << 30) |
396					(0x40000000 - sb->s_blocksize);
397			} else {
398				elen = (etype << 30) |
399					(elen +
400					(count << sb->s_blocksize_bits));
401				start += count;
402				count = 0;
403			}
404			udf_write_aext(table, &oepos, &eloc, elen, 1);
405		} else if (eloc.logicalBlockNum == (end + 1)) {
406			if ((0x3FFFFFFF - elen) <
407					(count << sb->s_blocksize_bits)) {
408				uint32_t tmp = ((0x3FFFFFFF - elen) >>
409						sb->s_blocksize_bits);
410				count -= tmp;
411				end -= tmp;
412				eloc.logicalBlockNum -= tmp;
413				elen = (etype << 30) |
414					(0x40000000 - sb->s_blocksize);
415			} else {
416				eloc.logicalBlockNum = start;
417				elen = (etype << 30) |
418					(elen +
419					(count << sb->s_blocksize_bits));
420				end -= count;
421				count = 0;
422			}
423			udf_write_aext(table, &oepos, &eloc, elen, 1);
424		}
425
426		if (epos.bh != oepos.bh) {
427			oepos.block = epos.block;
428			brelse(oepos.bh);
429			get_bh(epos.bh);
430			oepos.bh = epos.bh;
431			oepos.offset = 0;
432		} else {
433			oepos.offset = epos.offset;
434		}
435	}
436
437	if (count) {
438		/*
439		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
440		 * allocate a new block, and since we hold the super block
441		 * lock already very bad things would happen :)
442		 *
443		 * We copy the behavior of udf_add_aext, but instead of
444		 * trying to allocate a new block close to the existing one,
445		 * we just steal a block from the extent we are trying to add.
446		 *
447		 * It would be nice if the blocks were close together, but it
448		 * isn't required.
449		 */
450
451		int adsize;
452
453		eloc.logicalBlockNum = start;
454		elen = EXT_RECORDED_ALLOCATED |
455			(count << sb->s_blocksize_bits);
456
457		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
458			adsize = sizeof(struct short_ad);
459		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
460			adsize = sizeof(struct long_ad);
461		else {
462			brelse(oepos.bh);
463			brelse(epos.bh);
464			goto error_return;
465		}
466
467		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
468			/* Steal a block from the extent being free'd */
469			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
470						&epos);
471
472			eloc.logicalBlockNum++;
473			elen -= sb->s_blocksize;
474		}
475
476		/* It's possible that stealing the block emptied the extent */
477		if (elen)
478			__udf_add_aext(table, &epos, &eloc, elen, 1);
479	}
480
481	brelse(epos.bh);
482	brelse(oepos.bh);
483
484error_return:
485	mutex_unlock(&sbi->s_alloc_mutex);
486	return;
487}
488
489static int udf_table_prealloc_blocks(struct super_block *sb,
490				     struct inode *table, uint16_t partition,
491				     uint32_t first_block, uint32_t block_count)
492{
493	struct udf_sb_info *sbi = UDF_SB(sb);
494	int alloc_count = 0;
495	uint32_t elen, adsize;
496	struct kernel_lb_addr eloc;
497	struct extent_position epos;
498	int8_t etype = -1;
499	struct udf_inode_info *iinfo;
500
501	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
502		return 0;
503
504	iinfo = UDF_I(table);
505	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
506		adsize = sizeof(struct short_ad);
507	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
508		adsize = sizeof(struct long_ad);
509	else
510		return 0;
511
512	mutex_lock(&sbi->s_alloc_mutex);
513	epos.offset = sizeof(struct unallocSpaceEntry);
514	epos.block = iinfo->i_location;
515	epos.bh = NULL;
516	eloc.logicalBlockNum = 0xFFFFFFFF;
517
518	while (first_block != eloc.logicalBlockNum &&
519	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
520		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
521			  eloc.logicalBlockNum, elen, first_block);
522		; /* empty loop body */
523	}
524
525	if (first_block == eloc.logicalBlockNum) {
526		epos.offset -= adsize;
527
528		alloc_count = (elen >> sb->s_blocksize_bits);
529		if (alloc_count > block_count) {
530			alloc_count = block_count;
531			eloc.logicalBlockNum += alloc_count;
532			elen -= (alloc_count << sb->s_blocksize_bits);
533			udf_write_aext(table, &epos, &eloc,
534					(etype << 30) | elen, 1);
535		} else
536			udf_delete_aext(table, epos, eloc,
537					(etype << 30) | elen);
538	} else {
539		alloc_count = 0;
540	}
541
542	brelse(epos.bh);
543
544	if (alloc_count)
545		udf_add_free_space(sb, partition, -alloc_count);
546	mutex_unlock(&sbi->s_alloc_mutex);
547	return alloc_count;
548}
549
550static udf_pblk_t udf_table_new_block(struct super_block *sb,
551			       struct inode *table, uint16_t partition,
552			       uint32_t goal, int *err)
553{
554	struct udf_sb_info *sbi = UDF_SB(sb);
555	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
556	udf_pblk_t newblock = 0;
557	uint32_t adsize;
558	uint32_t elen, goal_elen = 0;
559	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
560	struct extent_position epos, goal_epos;
561	int8_t etype;
562	struct udf_inode_info *iinfo = UDF_I(table);
563
564	*err = -ENOSPC;
565
566	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
567		adsize = sizeof(struct short_ad);
568	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
569		adsize = sizeof(struct long_ad);
570	else
571		return newblock;
572
573	mutex_lock(&sbi->s_alloc_mutex);
574	if (goal >= sbi->s_partmaps[partition].s_partition_len)
575		goal = 0;
576
577	/* We search for the closest matching block to goal. If we find
578	   a exact hit, we stop. Otherwise we keep going till we run out
579	   of extents. We store the buffer_head, bloc, and extoffset
580	   of the current closest match and use that when we are done.
581	 */
582	epos.offset = sizeof(struct unallocSpaceEntry);
583	epos.block = iinfo->i_location;
584	epos.bh = goal_epos.bh = NULL;
585
586	while (spread &&
587	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
588		if (goal >= eloc.logicalBlockNum) {
589			if (goal < eloc.logicalBlockNum +
590					(elen >> sb->s_blocksize_bits))
591				nspread = 0;
592			else
593				nspread = goal - eloc.logicalBlockNum -
594					(elen >> sb->s_blocksize_bits);
595		} else {
596			nspread = eloc.logicalBlockNum - goal;
597		}
598
599		if (nspread < spread) {
600			spread = nspread;
601			if (goal_epos.bh != epos.bh) {
602				brelse(goal_epos.bh);
603				goal_epos.bh = epos.bh;
604				get_bh(goal_epos.bh);
605			}
606			goal_epos.block = epos.block;
607			goal_epos.offset = epos.offset - adsize;
608			goal_eloc = eloc;
609			goal_elen = (etype << 30) | elen;
610		}
611	}
612
613	brelse(epos.bh);
614
615	if (spread == 0xFFFFFFFF) {
616		brelse(goal_epos.bh);
617		mutex_unlock(&sbi->s_alloc_mutex);
618		return 0;
619	}
620
621	/* Only allocate blocks from the beginning of the extent.
622	   That way, we only delete (empty) extents, never have to insert an
623	   extent because of splitting */
624	/* This works, but very poorly.... */
625
626	newblock = goal_eloc.logicalBlockNum;
627	goal_eloc.logicalBlockNum++;
628	goal_elen -= sb->s_blocksize;
629
630	if (goal_elen)
631		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
632	else
633		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
634	brelse(goal_epos.bh);
635
636	udf_add_free_space(sb, partition, -1);
637
638	mutex_unlock(&sbi->s_alloc_mutex);
639	*err = 0;
640	return newblock;
641}
642
643void udf_free_blocks(struct super_block *sb, struct inode *inode,
644		     struct kernel_lb_addr *bloc, uint32_t offset,
645		     uint32_t count)
646{
647	uint16_t partition = bloc->partitionReferenceNum;
648	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
649
650	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
651		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
652				       bloc, offset, count);
653	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
654		udf_table_free_blocks(sb, map->s_uspace.s_table,
655				      bloc, offset, count);
656	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
657		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
658				       bloc, offset, count);
659	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
660		udf_table_free_blocks(sb, map->s_fspace.s_table,
661				      bloc, offset, count);
662	}
663
664	if (inode) {
665		inode_sub_bytes(inode,
666				((sector_t)count) << sb->s_blocksize_bits);
667	}
668}
669
670inline int udf_prealloc_blocks(struct super_block *sb,
671			       struct inode *inode,
672			       uint16_t partition, uint32_t first_block,
673			       uint32_t block_count)
674{
675	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
676	int allocated;
677
678	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
679		allocated = udf_bitmap_prealloc_blocks(sb,
680						       map->s_uspace.s_bitmap,
681						       partition, first_block,
682						       block_count);
683	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
684		allocated = udf_table_prealloc_blocks(sb,
685						      map->s_uspace.s_table,
686						      partition, first_block,
687						      block_count);
688	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
689		allocated = udf_bitmap_prealloc_blocks(sb,
690						       map->s_fspace.s_bitmap,
691						       partition, first_block,
692						       block_count);
693	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
694		allocated = udf_table_prealloc_blocks(sb,
695						      map->s_fspace.s_table,
696						      partition, first_block,
697						      block_count);
698	else
699		return 0;
700
701	if (inode && allocated > 0)
702		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
703	return allocated;
704}
705
706inline udf_pblk_t udf_new_block(struct super_block *sb,
707			 struct inode *inode,
708			 uint16_t partition, uint32_t goal, int *err)
709{
710	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
711	udf_pblk_t block;
712
713	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
714		block = udf_bitmap_new_block(sb,
715					     map->s_uspace.s_bitmap,
716					     partition, goal, err);
717	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
718		block = udf_table_new_block(sb,
719					    map->s_uspace.s_table,
720					    partition, goal, err);
721	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
722		block = udf_bitmap_new_block(sb,
723					     map->s_fspace.s_bitmap,
724					     partition, goal, err);
725	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
726		block = udf_table_new_block(sb,
727					    map->s_fspace.s_table,
728					    partition, goal, err);
729	else {
730		*err = -EIO;
731		return 0;
732	}
733	if (inode && block)
734		inode_add_bytes(inode, sb->s_blocksize);
735	return block;
736}
v4.10.11
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/bitops.h>
 25
 26#include "udf_i.h"
 27#include "udf_sb.h"
 28
 29#define udf_clear_bit	__test_and_clear_bit_le
 30#define udf_set_bit	__test_and_set_bit_le
 31#define udf_test_bit	test_bit_le
 32#define udf_find_next_one_bit	find_next_bit_le
 33
 34static int read_block_bitmap(struct super_block *sb,
 35			     struct udf_bitmap *bitmap, unsigned int block,
 36			     unsigned long bitmap_nr)
 37{
 38	struct buffer_head *bh = NULL;
 39	int retval = 0;
 40	struct kernel_lb_addr loc;
 41
 42	loc.logicalBlockNum = bitmap->s_extPosition;
 43	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 44
 45	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 46	if (!bh)
 47		retval = -EIO;
 48
 49	bitmap->s_block_bitmap[bitmap_nr] = bh;
 50	return retval;
 51}
 52
 53static int __load_block_bitmap(struct super_block *sb,
 54			       struct udf_bitmap *bitmap,
 55			       unsigned int block_group)
 56{
 57	int retval = 0;
 58	int nr_groups = bitmap->s_nr_groups;
 59
 60	if (block_group >= nr_groups) {
 61		udf_debug("block_group (%d) > nr_groups (%d)\n",
 62			  block_group, nr_groups);
 63	}
 64
 65	if (bitmap->s_block_bitmap[block_group])
 66		return block_group;
 67
 68	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
 69	if (retval < 0)
 70		return retval;
 71
 72	return block_group;
 73}
 74
 75static inline int load_block_bitmap(struct super_block *sb,
 76				    struct udf_bitmap *bitmap,
 77				    unsigned int block_group)
 78{
 79	int slot;
 80
 81	slot = __load_block_bitmap(sb, bitmap, block_group);
 82
 83	if (slot < 0)
 84		return slot;
 85
 86	if (!bitmap->s_block_bitmap[slot])
 87		return -EIO;
 88
 89	return slot;
 90}
 91
 92static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 93{
 94	struct udf_sb_info *sbi = UDF_SB(sb);
 95	struct logicalVolIntegrityDesc *lvid;
 96
 97	if (!sbi->s_lvid_bh)
 98		return;
 99
100	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102	udf_updated_lvid(sb);
103}
104
105static void udf_bitmap_free_blocks(struct super_block *sb,
106				   struct udf_bitmap *bitmap,
107				   struct kernel_lb_addr *bloc,
108				   uint32_t offset,
109				   uint32_t count)
110{
111	struct udf_sb_info *sbi = UDF_SB(sb);
112	struct buffer_head *bh = NULL;
113	struct udf_part_map *partmap;
114	unsigned long block;
115	unsigned long block_group;
116	unsigned long bit;
117	unsigned long i;
118	int bitmap_nr;
119	unsigned long overflow;
120
121	mutex_lock(&sbi->s_alloc_mutex);
122	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123	if (bloc->logicalBlockNum + count < count ||
124	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125		udf_debug("%d < %d || %d + %d > %d\n",
126			  bloc->logicalBlockNum, 0,
127			  bloc->logicalBlockNum, count,
128			  partmap->s_partition_len);
129		goto error_return;
130	}
131
132	block = bloc->logicalBlockNum + offset +
133		(sizeof(struct spaceBitmapDesc) << 3);
134
135	do {
136		overflow = 0;
137		block_group = block >> (sb->s_blocksize_bits + 3);
138		bit = block % (sb->s_blocksize << 3);
139
140		/*
141		* Check to see if we are freeing blocks across a group boundary.
142		*/
143		if (bit + count > (sb->s_blocksize << 3)) {
144			overflow = bit + count - (sb->s_blocksize << 3);
145			count -= overflow;
146		}
147		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148		if (bitmap_nr < 0)
149			goto error_return;
150
151		bh = bitmap->s_block_bitmap[bitmap_nr];
152		for (i = 0; i < count; i++) {
153			if (udf_set_bit(bit + i, bh->b_data)) {
154				udf_debug("bit %ld already set\n", bit + i);
155				udf_debug("byte=%2x\n",
156					  ((char *)bh->b_data)[(bit + i) >> 3]);
157			}
158		}
159		udf_add_free_space(sb, sbi->s_partition, count);
160		mark_buffer_dirty(bh);
161		if (overflow) {
162			block += count;
163			count = overflow;
164		}
165	} while (overflow);
166
167error_return:
168	mutex_unlock(&sbi->s_alloc_mutex);
169}
170
171static int udf_bitmap_prealloc_blocks(struct super_block *sb,
172				      struct udf_bitmap *bitmap,
173				      uint16_t partition, uint32_t first_block,
174				      uint32_t block_count)
175{
176	struct udf_sb_info *sbi = UDF_SB(sb);
177	int alloc_count = 0;
178	int bit, block, block_group, group_start;
179	int nr_groups, bitmap_nr;
180	struct buffer_head *bh;
181	__u32 part_len;
182
183	mutex_lock(&sbi->s_alloc_mutex);
184	part_len = sbi->s_partmaps[partition].s_partition_len;
185	if (first_block >= part_len)
186		goto out;
187
188	if (first_block + block_count > part_len)
189		block_count = part_len - first_block;
190
191	do {
192		nr_groups = udf_compute_nr_groups(sb, partition);
193		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
194		block_group = block >> (sb->s_blocksize_bits + 3);
195		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
196
197		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198		if (bitmap_nr < 0)
199			goto out;
200		bh = bitmap->s_block_bitmap[bitmap_nr];
201
202		bit = block % (sb->s_blocksize << 3);
203
204		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
205			if (!udf_clear_bit(bit, bh->b_data))
206				goto out;
207			block_count--;
208			alloc_count++;
209			bit++;
210			block++;
211		}
212		mark_buffer_dirty(bh);
213	} while (block_count > 0);
214
215out:
216	udf_add_free_space(sb, partition, -alloc_count);
217	mutex_unlock(&sbi->s_alloc_mutex);
218	return alloc_count;
219}
220
221static int udf_bitmap_new_block(struct super_block *sb,
222				struct udf_bitmap *bitmap, uint16_t partition,
223				uint32_t goal, int *err)
224{
225	struct udf_sb_info *sbi = UDF_SB(sb);
226	int newbit, bit = 0, block, block_group, group_start;
 
 
227	int end_goal, nr_groups, bitmap_nr, i;
228	struct buffer_head *bh = NULL;
229	char *ptr;
230	int newblock = 0;
231
232	*err = -ENOSPC;
233	mutex_lock(&sbi->s_alloc_mutex);
234
235repeat:
236	if (goal >= sbi->s_partmaps[partition].s_partition_len)
237		goal = 0;
238
239	nr_groups = bitmap->s_nr_groups;
240	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
241	block_group = block >> (sb->s_blocksize_bits + 3);
242	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243
244	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
245	if (bitmap_nr < 0)
246		goto error_return;
247	bh = bitmap->s_block_bitmap[bitmap_nr];
248	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
249		      sb->s_blocksize - group_start);
250
251	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
252		bit = block % (sb->s_blocksize << 3);
253		if (udf_test_bit(bit, bh->b_data))
254			goto got_block;
255
256		end_goal = (bit + 63) & ~63;
257		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
258		if (bit < end_goal)
259			goto got_block;
260
261		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
262			      sb->s_blocksize - ((bit + 7) >> 3));
263		newbit = (ptr - ((char *)bh->b_data)) << 3;
264		if (newbit < sb->s_blocksize << 3) {
265			bit = newbit;
266			goto search_back;
267		}
268
269		newbit = udf_find_next_one_bit(bh->b_data,
270					       sb->s_blocksize << 3, bit);
271		if (newbit < sb->s_blocksize << 3) {
272			bit = newbit;
273			goto got_block;
274		}
275	}
276
277	for (i = 0; i < (nr_groups * 2); i++) {
278		block_group++;
279		if (block_group >= nr_groups)
280			block_group = 0;
281		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
282
283		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
284		if (bitmap_nr < 0)
285			goto error_return;
286		bh = bitmap->s_block_bitmap[bitmap_nr];
287		if (i < nr_groups) {
288			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
289				      sb->s_blocksize - group_start);
290			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
291				bit = (ptr - ((char *)bh->b_data)) << 3;
292				break;
293			}
294		} else {
295			bit = udf_find_next_one_bit(bh->b_data,
296						    sb->s_blocksize << 3,
297						    group_start << 3);
298			if (bit < sb->s_blocksize << 3)
299				break;
300		}
301	}
302	if (i >= (nr_groups * 2)) {
303		mutex_unlock(&sbi->s_alloc_mutex);
304		return newblock;
305	}
306	if (bit < sb->s_blocksize << 3)
307		goto search_back;
308	else
309		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
310					    group_start << 3);
311	if (bit >= sb->s_blocksize << 3) {
312		mutex_unlock(&sbi->s_alloc_mutex);
313		return 0;
314	}
315
316search_back:
317	i = 0;
318	while (i < 7 && bit > (group_start << 3) &&
319	       udf_test_bit(bit - 1, bh->b_data)) {
320		++i;
321		--bit;
322	}
323
324got_block:
325	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
326		(sizeof(struct spaceBitmapDesc) << 3);
327
328	if (!udf_clear_bit(bit, bh->b_data)) {
329		udf_debug("bit already cleared for block %d\n", bit);
330		goto repeat;
331	}
332
333	mark_buffer_dirty(bh);
334
335	udf_add_free_space(sb, partition, -1);
336	mutex_unlock(&sbi->s_alloc_mutex);
337	*err = 0;
338	return newblock;
339
340error_return:
341	*err = -EIO;
342	mutex_unlock(&sbi->s_alloc_mutex);
343	return 0;
344}
345
346static void udf_table_free_blocks(struct super_block *sb,
347				  struct inode *table,
348				  struct kernel_lb_addr *bloc,
349				  uint32_t offset,
350				  uint32_t count)
351{
352	struct udf_sb_info *sbi = UDF_SB(sb);
353	struct udf_part_map *partmap;
354	uint32_t start, end;
355	uint32_t elen;
356	struct kernel_lb_addr eloc;
357	struct extent_position oepos, epos;
358	int8_t etype;
359	struct udf_inode_info *iinfo;
360
361	mutex_lock(&sbi->s_alloc_mutex);
362	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
363	if (bloc->logicalBlockNum + count < count ||
364	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
365		udf_debug("%d < %d || %d + %d > %d\n",
366			  bloc->logicalBlockNum, 0,
367			  bloc->logicalBlockNum, count,
368			  partmap->s_partition_len);
369		goto error_return;
370	}
371
372	iinfo = UDF_I(table);
373	udf_add_free_space(sb, sbi->s_partition, count);
374
375	start = bloc->logicalBlockNum + offset;
376	end = bloc->logicalBlockNum + offset + count - 1;
377
378	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
379	elen = 0;
380	epos.block = oepos.block = iinfo->i_location;
381	epos.bh = oepos.bh = NULL;
382
383	while (count &&
384	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
385		if (((eloc.logicalBlockNum +
386			(elen >> sb->s_blocksize_bits)) == start)) {
387			if ((0x3FFFFFFF - elen) <
388					(count << sb->s_blocksize_bits)) {
389				uint32_t tmp = ((0x3FFFFFFF - elen) >>
390							sb->s_blocksize_bits);
391				count -= tmp;
392				start += tmp;
393				elen = (etype << 30) |
394					(0x40000000 - sb->s_blocksize);
395			} else {
396				elen = (etype << 30) |
397					(elen +
398					(count << sb->s_blocksize_bits));
399				start += count;
400				count = 0;
401			}
402			udf_write_aext(table, &oepos, &eloc, elen, 1);
403		} else if (eloc.logicalBlockNum == (end + 1)) {
404			if ((0x3FFFFFFF - elen) <
405					(count << sb->s_blocksize_bits)) {
406				uint32_t tmp = ((0x3FFFFFFF - elen) >>
407						sb->s_blocksize_bits);
408				count -= tmp;
409				end -= tmp;
410				eloc.logicalBlockNum -= tmp;
411				elen = (etype << 30) |
412					(0x40000000 - sb->s_blocksize);
413			} else {
414				eloc.logicalBlockNum = start;
415				elen = (etype << 30) |
416					(elen +
417					(count << sb->s_blocksize_bits));
418				end -= count;
419				count = 0;
420			}
421			udf_write_aext(table, &oepos, &eloc, elen, 1);
422		}
423
424		if (epos.bh != oepos.bh) {
425			oepos.block = epos.block;
426			brelse(oepos.bh);
427			get_bh(epos.bh);
428			oepos.bh = epos.bh;
429			oepos.offset = 0;
430		} else {
431			oepos.offset = epos.offset;
432		}
433	}
434
435	if (count) {
436		/*
437		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
438		 * allocate a new block, and since we hold the super block
439		 * lock already very bad things would happen :)
440		 *
441		 * We copy the behavior of udf_add_aext, but instead of
442		 * trying to allocate a new block close to the existing one,
443		 * we just steal a block from the extent we are trying to add.
444		 *
445		 * It would be nice if the blocks were close together, but it
446		 * isn't required.
447		 */
448
449		int adsize;
450
451		eloc.logicalBlockNum = start;
452		elen = EXT_RECORDED_ALLOCATED |
453			(count << sb->s_blocksize_bits);
454
455		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
456			adsize = sizeof(struct short_ad);
457		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
458			adsize = sizeof(struct long_ad);
459		else {
460			brelse(oepos.bh);
461			brelse(epos.bh);
462			goto error_return;
463		}
464
465		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
466			/* Steal a block from the extent being free'd */
467			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
468						&epos);
469
470			eloc.logicalBlockNum++;
471			elen -= sb->s_blocksize;
472		}
473
474		/* It's possible that stealing the block emptied the extent */
475		if (elen)
476			__udf_add_aext(table, &epos, &eloc, elen, 1);
477	}
478
479	brelse(epos.bh);
480	brelse(oepos.bh);
481
482error_return:
483	mutex_unlock(&sbi->s_alloc_mutex);
484	return;
485}
486
487static int udf_table_prealloc_blocks(struct super_block *sb,
488				     struct inode *table, uint16_t partition,
489				     uint32_t first_block, uint32_t block_count)
490{
491	struct udf_sb_info *sbi = UDF_SB(sb);
492	int alloc_count = 0;
493	uint32_t elen, adsize;
494	struct kernel_lb_addr eloc;
495	struct extent_position epos;
496	int8_t etype = -1;
497	struct udf_inode_info *iinfo;
498
499	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
500		return 0;
501
502	iinfo = UDF_I(table);
503	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
504		adsize = sizeof(struct short_ad);
505	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
506		adsize = sizeof(struct long_ad);
507	else
508		return 0;
509
510	mutex_lock(&sbi->s_alloc_mutex);
511	epos.offset = sizeof(struct unallocSpaceEntry);
512	epos.block = iinfo->i_location;
513	epos.bh = NULL;
514	eloc.logicalBlockNum = 0xFFFFFFFF;
515
516	while (first_block != eloc.logicalBlockNum &&
517	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
518		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
519			  eloc.logicalBlockNum, elen, first_block);
520		; /* empty loop body */
521	}
522
523	if (first_block == eloc.logicalBlockNum) {
524		epos.offset -= adsize;
525
526		alloc_count = (elen >> sb->s_blocksize_bits);
527		if (alloc_count > block_count) {
528			alloc_count = block_count;
529			eloc.logicalBlockNum += alloc_count;
530			elen -= (alloc_count << sb->s_blocksize_bits);
531			udf_write_aext(table, &epos, &eloc,
532					(etype << 30) | elen, 1);
533		} else
534			udf_delete_aext(table, epos, eloc,
535					(etype << 30) | elen);
536	} else {
537		alloc_count = 0;
538	}
539
540	brelse(epos.bh);
541
542	if (alloc_count)
543		udf_add_free_space(sb, partition, -alloc_count);
544	mutex_unlock(&sbi->s_alloc_mutex);
545	return alloc_count;
546}
547
548static int udf_table_new_block(struct super_block *sb,
549			       struct inode *table, uint16_t partition,
550			       uint32_t goal, int *err)
551{
552	struct udf_sb_info *sbi = UDF_SB(sb);
553	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
554	uint32_t newblock = 0, adsize;
 
555	uint32_t elen, goal_elen = 0;
556	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
557	struct extent_position epos, goal_epos;
558	int8_t etype;
559	struct udf_inode_info *iinfo = UDF_I(table);
560
561	*err = -ENOSPC;
562
563	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
564		adsize = sizeof(struct short_ad);
565	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
566		adsize = sizeof(struct long_ad);
567	else
568		return newblock;
569
570	mutex_lock(&sbi->s_alloc_mutex);
571	if (goal >= sbi->s_partmaps[partition].s_partition_len)
572		goal = 0;
573
574	/* We search for the closest matching block to goal. If we find
575	   a exact hit, we stop. Otherwise we keep going till we run out
576	   of extents. We store the buffer_head, bloc, and extoffset
577	   of the current closest match and use that when we are done.
578	 */
579	epos.offset = sizeof(struct unallocSpaceEntry);
580	epos.block = iinfo->i_location;
581	epos.bh = goal_epos.bh = NULL;
582
583	while (spread &&
584	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
585		if (goal >= eloc.logicalBlockNum) {
586			if (goal < eloc.logicalBlockNum +
587					(elen >> sb->s_blocksize_bits))
588				nspread = 0;
589			else
590				nspread = goal - eloc.logicalBlockNum -
591					(elen >> sb->s_blocksize_bits);
592		} else {
593			nspread = eloc.logicalBlockNum - goal;
594		}
595
596		if (nspread < spread) {
597			spread = nspread;
598			if (goal_epos.bh != epos.bh) {
599				brelse(goal_epos.bh);
600				goal_epos.bh = epos.bh;
601				get_bh(goal_epos.bh);
602			}
603			goal_epos.block = epos.block;
604			goal_epos.offset = epos.offset - adsize;
605			goal_eloc = eloc;
606			goal_elen = (etype << 30) | elen;
607		}
608	}
609
610	brelse(epos.bh);
611
612	if (spread == 0xFFFFFFFF) {
613		brelse(goal_epos.bh);
614		mutex_unlock(&sbi->s_alloc_mutex);
615		return 0;
616	}
617
618	/* Only allocate blocks from the beginning of the extent.
619	   That way, we only delete (empty) extents, never have to insert an
620	   extent because of splitting */
621	/* This works, but very poorly.... */
622
623	newblock = goal_eloc.logicalBlockNum;
624	goal_eloc.logicalBlockNum++;
625	goal_elen -= sb->s_blocksize;
626
627	if (goal_elen)
628		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
629	else
630		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
631	brelse(goal_epos.bh);
632
633	udf_add_free_space(sb, partition, -1);
634
635	mutex_unlock(&sbi->s_alloc_mutex);
636	*err = 0;
637	return newblock;
638}
639
640void udf_free_blocks(struct super_block *sb, struct inode *inode,
641		     struct kernel_lb_addr *bloc, uint32_t offset,
642		     uint32_t count)
643{
644	uint16_t partition = bloc->partitionReferenceNum;
645	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
646
647	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
648		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
649				       bloc, offset, count);
650	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
651		udf_table_free_blocks(sb, map->s_uspace.s_table,
652				      bloc, offset, count);
653	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
654		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
655				       bloc, offset, count);
656	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
657		udf_table_free_blocks(sb, map->s_fspace.s_table,
658				      bloc, offset, count);
659	}
660
661	if (inode) {
662		inode_sub_bytes(inode,
663				((sector_t)count) << sb->s_blocksize_bits);
664	}
665}
666
667inline int udf_prealloc_blocks(struct super_block *sb,
668			       struct inode *inode,
669			       uint16_t partition, uint32_t first_block,
670			       uint32_t block_count)
671{
672	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
673	int allocated;
674
675	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
676		allocated = udf_bitmap_prealloc_blocks(sb,
677						       map->s_uspace.s_bitmap,
678						       partition, first_block,
679						       block_count);
680	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
681		allocated = udf_table_prealloc_blocks(sb,
682						      map->s_uspace.s_table,
683						      partition, first_block,
684						      block_count);
685	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
686		allocated = udf_bitmap_prealloc_blocks(sb,
687						       map->s_fspace.s_bitmap,
688						       partition, first_block,
689						       block_count);
690	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
691		allocated = udf_table_prealloc_blocks(sb,
692						      map->s_fspace.s_table,
693						      partition, first_block,
694						      block_count);
695	else
696		return 0;
697
698	if (inode && allocated > 0)
699		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
700	return allocated;
701}
702
703inline int udf_new_block(struct super_block *sb,
704			 struct inode *inode,
705			 uint16_t partition, uint32_t goal, int *err)
706{
707	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
708	int block;
709
710	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
711		block = udf_bitmap_new_block(sb,
712					     map->s_uspace.s_bitmap,
713					     partition, goal, err);
714	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
715		block = udf_table_new_block(sb,
716					    map->s_uspace.s_table,
717					    partition, goal, err);
718	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
719		block = udf_bitmap_new_block(sb,
720					     map->s_fspace.s_bitmap,
721					     partition, goal, err);
722	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
723		block = udf_table_new_block(sb,
724					    map->s_fspace.s_table,
725					    partition, goal, err);
726	else {
727		*err = -EIO;
728		return 0;
729	}
730	if (inode && block)
731		inode_add_bytes(inode, sb->s_blocksize);
732	return block;
733}