Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include "extent_map.h"
 11#include "extent_io.h"
 12#include "ordered-data.h"
 13#include "delayed-inode.h"
 14
 15/*
 16 * ordered_data_close is set by truncate when a file that used
 17 * to have good data has been truncated to zero.  When it is set
 18 * the btrfs file release call will add this inode to the
 19 * ordered operations list so that we make sure to flush out any
 20 * new data the application may have written before commit.
 21 */
 22#define BTRFS_INODE_ORDERED_DATA_CLOSE		0
 23#define BTRFS_INODE_ORPHAN_META_RESERVED	1
 24#define BTRFS_INODE_DUMMY			2
 25#define BTRFS_INODE_IN_DEFRAG			3
 26#define BTRFS_INODE_HAS_ORPHAN_ITEM		4
 27#define BTRFS_INODE_HAS_ASYNC_EXTENT		5
 28#define BTRFS_INODE_NEEDS_FULL_SYNC		6
 29#define BTRFS_INODE_COPY_EVERYTHING		7
 30#define BTRFS_INODE_IN_DELALLOC_LIST		8
 31#define BTRFS_INODE_READDIO_NEED_LOCK		9
 32#define BTRFS_INODE_HAS_PROPS		        10
 
 33
 34/* in memory btrfs inode */
 35struct btrfs_inode {
 36	/* which subvolume this inode belongs to */
 37	struct btrfs_root *root;
 38
 39	/* key used to find this inode on disk.  This is used by the code
 40	 * to read in roots of subvolumes
 41	 */
 42	struct btrfs_key location;
 43
 44	/*
 45	 * Lock for counters and all fields used to determine if the inode is in
 46	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 47	 * logged_trans).
 48	 */
 49	spinlock_t lock;
 50
 51	/* the extent_tree has caches of all the extent mappings to disk */
 52	struct extent_map_tree extent_tree;
 53
 54	/* the io_tree does range state (DIRTY, LOCKED etc) */
 55	struct extent_io_tree io_tree;
 56
 57	/* special utility tree used to record which mirrors have already been
 58	 * tried when checksums fail for a given block
 59	 */
 60	struct extent_io_tree io_failure_tree;
 61
 62	/* held while logging the inode in tree-log.c */
 63	struct mutex log_mutex;
 64
 65	/* held while doing delalloc reservations */
 66	struct mutex delalloc_mutex;
 67
 68	/* used to order data wrt metadata */
 69	struct btrfs_ordered_inode_tree ordered_tree;
 70
 71	/* list of all the delalloc inodes in the FS.  There are times we need
 72	 * to write all the delalloc pages to disk, and this list is used
 73	 * to walk them all.
 74	 */
 75	struct list_head delalloc_inodes;
 76
 77	/* node for the red-black tree that links inodes in subvolume root */
 78	struct rb_node rb_node;
 79
 80	unsigned long runtime_flags;
 81
 82	/* Keep track of who's O_SYNC/fsyncing currently */
 83	atomic_t sync_writers;
 84
 85	/* full 64 bit generation number, struct vfs_inode doesn't have a big
 86	 * enough field for this.
 87	 */
 88	u64 generation;
 89
 90	/*
 91	 * transid of the trans_handle that last modified this inode
 92	 */
 93	u64 last_trans;
 94
 95	/*
 96	 * transid that last logged this inode
 97	 */
 98	u64 logged_trans;
 99
100	/*
101	 * log transid when this inode was last modified
102	 */
103	int last_sub_trans;
104
105	/* a local copy of root's last_log_commit */
106	int last_log_commit;
107
108	/* total number of bytes pending delalloc, used by stat to calc the
109	 * real block usage of the file
110	 */
111	u64 delalloc_bytes;
112
113	/*
114	 * Total number of bytes pending delalloc that fall within a file
115	 * range that is either a hole or beyond EOF (and no prealloc extent
116	 * exists in the range). This is always <= delalloc_bytes.
117	 */
118	u64 new_delalloc_bytes;
119
120	/*
121	 * total number of bytes pending defrag, used by stat to check whether
122	 * it needs COW.
123	 */
124	u64 defrag_bytes;
125
126	/*
127	 * the size of the file stored in the metadata on disk.  data=ordered
128	 * means the in-memory i_size might be larger than the size on disk
129	 * because not all the blocks are written yet.
130	 */
131	u64 disk_i_size;
132
133	/*
134	 * if this is a directory then index_cnt is the counter for the index
135	 * number for new files that are created
136	 */
137	u64 index_cnt;
138
139	/* Cache the directory index number to speed the dir/file remove */
140	u64 dir_index;
141
142	/* the fsync log has some corner cases that mean we have to check
143	 * directories to see if any unlinks have been done before
144	 * the directory was logged.  See tree-log.c for all the
145	 * details
146	 */
147	u64 last_unlink_trans;
148
149	/*
150	 * Number of bytes outstanding that are going to need csums.  This is
151	 * used in ENOSPC accounting.
152	 */
153	u64 csum_bytes;
154
155	/* flags field from the on disk inode */
156	u32 flags;
157
158	/*
159	 * Counters to keep track of the number of extent item's we may use due
160	 * to delalloc and such.  outstanding_extents is the number of extent
161	 * items we think we'll end up using, and reserved_extents is the number
162	 * of extent items we've reserved metadata for.
163	 */
164	unsigned outstanding_extents;
 
165
166	struct btrfs_block_rsv block_rsv;
167
168	/*
169	 * Cached values of inode properties
170	 */
171	unsigned prop_compress;		/* per-file compression algorithm */
172	/*
173	 * Force compression on the file using the defrag ioctl, could be
174	 * different from prop_compress and takes precedence if set
175	 */
176	unsigned defrag_compress;
177
178	struct btrfs_delayed_node *delayed_node;
179
180	/* File creation time. */
181	struct timespec i_otime;
182
183	/* Hook into fs_info->delayed_iputs */
184	struct list_head delayed_iput;
 
185
186	/*
187	 * To avoid races between lockless (i_mutex not held) direct IO writes
188	 * and concurrent fsync requests. Direct IO writes must acquire read
189	 * access on this semaphore for creating an extent map and its
190	 * corresponding ordered extent. The fast fsync path must acquire write
191	 * access on this semaphore before it collects ordered extents and
192	 * extent maps.
193	 */
194	struct rw_semaphore dio_sem;
195
196	struct inode vfs_inode;
197};
198
199extern unsigned char btrfs_filetype_table[];
200
201static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
202{
203	return container_of(inode, struct btrfs_inode, vfs_inode);
204}
205
206static inline unsigned long btrfs_inode_hash(u64 objectid,
207					     const struct btrfs_root *root)
208{
209	u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
210
211#if BITS_PER_LONG == 32
212	h = (h >> 32) ^ (h & 0xffffffff);
213#endif
214
215	return (unsigned long)h;
216}
217
218static inline void btrfs_insert_inode_hash(struct inode *inode)
219{
220	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
221
222	__insert_inode_hash(inode, h);
223}
224
225static inline u64 btrfs_ino(const struct btrfs_inode *inode)
226{
227	u64 ino = inode->location.objectid;
228
229	/*
230	 * !ino: btree_inode
231	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
232	 */
233	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
234		ino = inode->vfs_inode.i_ino;
235	return ino;
236}
237
238static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
239{
240	i_size_write(&inode->vfs_inode, size);
241	inode->disk_i_size = size;
242}
243
244static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
245{
246	struct btrfs_root *root = inode->root;
247
248	if (root == root->fs_info->tree_root &&
249	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
250		return true;
251	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
252		return true;
253	return false;
254}
255
256static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
257						 int mod)
258{
259	lockdep_assert_held(&inode->lock);
260	inode->outstanding_extents += mod;
261	if (btrfs_is_free_space_inode(inode))
262		return;
263	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
264						  mod);
265}
266
267static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
268{
269	int ret = 0;
270
271	spin_lock(&inode->lock);
272	if (inode->logged_trans == generation &&
273	    inode->last_sub_trans <= inode->last_log_commit &&
274	    inode->last_sub_trans <= inode->root->last_log_commit) {
 
 
275		/*
276		 * After a ranged fsync we might have left some extent maps
277		 * (that fall outside the fsync's range). So return false
278		 * here if the list isn't empty, to make sure btrfs_log_inode()
279		 * will be called and process those extent maps.
280		 */
281		smp_mb();
282		if (list_empty(&inode->extent_tree.modified_extents))
283			ret = 1;
284	}
285	spin_unlock(&inode->lock);
286	return ret;
287}
288
289#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
290
291struct btrfs_dio_private {
292	struct inode *inode;
293	unsigned long flags;
294	u64 logical_offset;
295	u64 disk_bytenr;
296	u64 bytes;
297	void *private;
298
299	/* number of bios pending for this dio */
300	atomic_t pending_bios;
301
302	/* IO errors */
303	int errors;
304
305	/* orig_bio is our btrfs_io_bio */
306	struct bio *orig_bio;
307
308	/* dio_bio came from fs/direct-io.c */
309	struct bio *dio_bio;
310
311	/*
312	 * The original bio may be split to several sub-bios, this is
313	 * done during endio of sub-bios
314	 */
315	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
316			blk_status_t);
317};
318
319/*
320 * Disable DIO read nolock optimization, so new dio readers will be forced
321 * to grab i_mutex. It is used to avoid the endless truncate due to
322 * nonlocked dio read.
323 */
324static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
325{
326	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
327	smp_mb();
328}
329
330static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
331{
332	smp_mb__before_atomic();
333	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
 
334}
335
336static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
337		u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
338{
339	struct btrfs_root *root = inode->root;
340
341	/* Output minus objectid, which is more meaningful */
342	if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
343		btrfs_warn_rl(root->fs_info,
344	"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
345			root->objectid, btrfs_ino(inode),
346			logical_start, csum, csum_expected, mirror_num);
347	else
348		btrfs_warn_rl(root->fs_info,
349	"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
350			root->objectid, btrfs_ino(inode),
351			logical_start, csum, csum_expected, mirror_num);
352}
353
354#endif
v4.10.11
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#ifndef __BTRFS_I__
 20#define __BTRFS_I__
 21
 22#include <linux/hash.h>
 23#include "extent_map.h"
 24#include "extent_io.h"
 25#include "ordered-data.h"
 26#include "delayed-inode.h"
 27
 28/*
 29 * ordered_data_close is set by truncate when a file that used
 30 * to have good data has been truncated to zero.  When it is set
 31 * the btrfs file release call will add this inode to the
 32 * ordered operations list so that we make sure to flush out any
 33 * new data the application may have written before commit.
 34 */
 35#define BTRFS_INODE_ORDERED_DATA_CLOSE		0
 36#define BTRFS_INODE_ORPHAN_META_RESERVED	1
 37#define BTRFS_INODE_DUMMY			2
 38#define BTRFS_INODE_IN_DEFRAG			3
 39#define BTRFS_INODE_DELALLOC_META_RESERVED	4
 40#define BTRFS_INODE_HAS_ORPHAN_ITEM		5
 41#define BTRFS_INODE_HAS_ASYNC_EXTENT		6
 42#define BTRFS_INODE_NEEDS_FULL_SYNC		7
 43#define BTRFS_INODE_COPY_EVERYTHING		8
 44#define BTRFS_INODE_IN_DELALLOC_LIST		9
 45#define BTRFS_INODE_READDIO_NEED_LOCK		10
 46#define BTRFS_INODE_HAS_PROPS		        11
 47
 48/* in memory btrfs inode */
 49struct btrfs_inode {
 50	/* which subvolume this inode belongs to */
 51	struct btrfs_root *root;
 52
 53	/* key used to find this inode on disk.  This is used by the code
 54	 * to read in roots of subvolumes
 55	 */
 56	struct btrfs_key location;
 57
 58	/*
 59	 * Lock for counters and all fields used to determine if the inode is in
 60	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 61	 * logged_trans).
 62	 */
 63	spinlock_t lock;
 64
 65	/* the extent_tree has caches of all the extent mappings to disk */
 66	struct extent_map_tree extent_tree;
 67
 68	/* the io_tree does range state (DIRTY, LOCKED etc) */
 69	struct extent_io_tree io_tree;
 70
 71	/* special utility tree used to record which mirrors have already been
 72	 * tried when checksums fail for a given block
 73	 */
 74	struct extent_io_tree io_failure_tree;
 75
 76	/* held while logging the inode in tree-log.c */
 77	struct mutex log_mutex;
 78
 79	/* held while doing delalloc reservations */
 80	struct mutex delalloc_mutex;
 81
 82	/* used to order data wrt metadata */
 83	struct btrfs_ordered_inode_tree ordered_tree;
 84
 85	/* list of all the delalloc inodes in the FS.  There are times we need
 86	 * to write all the delalloc pages to disk, and this list is used
 87	 * to walk them all.
 88	 */
 89	struct list_head delalloc_inodes;
 90
 91	/* node for the red-black tree that links inodes in subvolume root */
 92	struct rb_node rb_node;
 93
 94	unsigned long runtime_flags;
 95
 96	/* Keep track of who's O_SYNC/fsyncing currently */
 97	atomic_t sync_writers;
 98
 99	/* full 64 bit generation number, struct vfs_inode doesn't have a big
100	 * enough field for this.
101	 */
102	u64 generation;
103
104	/*
105	 * transid of the trans_handle that last modified this inode
106	 */
107	u64 last_trans;
108
109	/*
110	 * transid that last logged this inode
111	 */
112	u64 logged_trans;
113
114	/*
115	 * log transid when this inode was last modified
116	 */
117	int last_sub_trans;
118
119	/* a local copy of root's last_log_commit */
120	int last_log_commit;
121
122	/* total number of bytes pending delalloc, used by stat to calc the
123	 * real block usage of the file
124	 */
125	u64 delalloc_bytes;
126
127	/*
 
 
 
 
 
 
 
128	 * total number of bytes pending defrag, used by stat to check whether
129	 * it needs COW.
130	 */
131	u64 defrag_bytes;
132
133	/*
134	 * the size of the file stored in the metadata on disk.  data=ordered
135	 * means the in-memory i_size might be larger than the size on disk
136	 * because not all the blocks are written yet.
137	 */
138	u64 disk_i_size;
139
140	/*
141	 * if this is a directory then index_cnt is the counter for the index
142	 * number for new files that are created
143	 */
144	u64 index_cnt;
145
146	/* Cache the directory index number to speed the dir/file remove */
147	u64 dir_index;
148
149	/* the fsync log has some corner cases that mean we have to check
150	 * directories to see if any unlinks have been done before
151	 * the directory was logged.  See tree-log.c for all the
152	 * details
153	 */
154	u64 last_unlink_trans;
155
156	/*
157	 * Number of bytes outstanding that are going to need csums.  This is
158	 * used in ENOSPC accounting.
159	 */
160	u64 csum_bytes;
161
162	/* flags field from the on disk inode */
163	u32 flags;
164
165	/*
166	 * Counters to keep track of the number of extent item's we may use due
167	 * to delalloc and such.  outstanding_extents is the number of extent
168	 * items we think we'll end up using, and reserved_extents is the number
169	 * of extent items we've reserved metadata for.
170	 */
171	unsigned outstanding_extents;
172	unsigned reserved_extents;
173
 
 
 
 
 
 
174	/*
175	 * always compress this one file
 
176	 */
177	unsigned force_compress;
178
179	struct btrfs_delayed_node *delayed_node;
180
181	/* File creation time. */
182	struct timespec i_otime;
183
184	/* Hook into fs_info->delayed_iputs */
185	struct list_head delayed_iput;
186	long delayed_iput_count;
187
188	/*
189	 * To avoid races between lockless (i_mutex not held) direct IO writes
190	 * and concurrent fsync requests. Direct IO writes must acquire read
191	 * access on this semaphore for creating an extent map and its
192	 * corresponding ordered extent. The fast fsync path must acquire write
193	 * access on this semaphore before it collects ordered extents and
194	 * extent maps.
195	 */
196	struct rw_semaphore dio_sem;
197
198	struct inode vfs_inode;
199};
200
201extern unsigned char btrfs_filetype_table[];
202
203static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
204{
205	return container_of(inode, struct btrfs_inode, vfs_inode);
206}
207
208static inline unsigned long btrfs_inode_hash(u64 objectid,
209					     const struct btrfs_root *root)
210{
211	u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
212
213#if BITS_PER_LONG == 32
214	h = (h >> 32) ^ (h & 0xffffffff);
215#endif
216
217	return (unsigned long)h;
218}
219
220static inline void btrfs_insert_inode_hash(struct inode *inode)
221{
222	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
223
224	__insert_inode_hash(inode, h);
225}
226
227static inline u64 btrfs_ino(struct inode *inode)
228{
229	u64 ino = BTRFS_I(inode)->location.objectid;
230
231	/*
232	 * !ino: btree_inode
233	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
234	 */
235	if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY)
236		ino = inode->i_ino;
237	return ino;
238}
239
240static inline void btrfs_i_size_write(struct inode *inode, u64 size)
241{
242	i_size_write(inode, size);
243	BTRFS_I(inode)->disk_i_size = size;
244}
245
246static inline bool btrfs_is_free_space_inode(struct inode *inode)
247{
248	struct btrfs_root *root = BTRFS_I(inode)->root;
249
250	if (root == root->fs_info->tree_root &&
251	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
252		return true;
253	if (BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
254		return true;
255	return false;
256}
257
258static inline int btrfs_inode_in_log(struct inode *inode, u64 generation)
 
 
 
 
 
 
 
 
 
 
 
259{
260	int ret = 0;
261
262	spin_lock(&BTRFS_I(inode)->lock);
263	if (BTRFS_I(inode)->logged_trans == generation &&
264	    BTRFS_I(inode)->last_sub_trans <=
265	    BTRFS_I(inode)->last_log_commit &&
266	    BTRFS_I(inode)->last_sub_trans <=
267	    BTRFS_I(inode)->root->last_log_commit) {
268		/*
269		 * After a ranged fsync we might have left some extent maps
270		 * (that fall outside the fsync's range). So return false
271		 * here if the list isn't empty, to make sure btrfs_log_inode()
272		 * will be called and process those extent maps.
273		 */
274		smp_mb();
275		if (list_empty(&BTRFS_I(inode)->extent_tree.modified_extents))
276			ret = 1;
277	}
278	spin_unlock(&BTRFS_I(inode)->lock);
279	return ret;
280}
281
282#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
283
284struct btrfs_dio_private {
285	struct inode *inode;
286	unsigned long flags;
287	u64 logical_offset;
288	u64 disk_bytenr;
289	u64 bytes;
290	void *private;
291
292	/* number of bios pending for this dio */
293	atomic_t pending_bios;
294
295	/* IO errors */
296	int errors;
297
298	/* orig_bio is our btrfs_io_bio */
299	struct bio *orig_bio;
300
301	/* dio_bio came from fs/direct-io.c */
302	struct bio *dio_bio;
303
304	/*
305	 * The original bio may be split to several sub-bios, this is
306	 * done during endio of sub-bios
307	 */
308	int (*subio_endio)(struct inode *, struct btrfs_io_bio *, int);
 
309};
310
311/*
312 * Disable DIO read nolock optimization, so new dio readers will be forced
313 * to grab i_mutex. It is used to avoid the endless truncate due to
314 * nonlocked dio read.
315 */
316static inline void btrfs_inode_block_unlocked_dio(struct inode *inode)
317{
318	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &BTRFS_I(inode)->runtime_flags);
319	smp_mb();
320}
321
322static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode)
323{
324	smp_mb__before_atomic();
325	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK,
326		  &BTRFS_I(inode)->runtime_flags);
327}
328
329bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331#endif