Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_INODE_H
7#define BTRFS_INODE_H
8
9#include <linux/hash.h>
10#include "extent_map.h"
11#include "extent_io.h"
12#include "ordered-data.h"
13#include "delayed-inode.h"
14
15/*
16 * ordered_data_close is set by truncate when a file that used
17 * to have good data has been truncated to zero. When it is set
18 * the btrfs file release call will add this inode to the
19 * ordered operations list so that we make sure to flush out any
20 * new data the application may have written before commit.
21 */
22#define BTRFS_INODE_ORDERED_DATA_CLOSE 0
23#define BTRFS_INODE_ORPHAN_META_RESERVED 1
24#define BTRFS_INODE_DUMMY 2
25#define BTRFS_INODE_IN_DEFRAG 3
26#define BTRFS_INODE_HAS_ORPHAN_ITEM 4
27#define BTRFS_INODE_HAS_ASYNC_EXTENT 5
28#define BTRFS_INODE_NEEDS_FULL_SYNC 6
29#define BTRFS_INODE_COPY_EVERYTHING 7
30#define BTRFS_INODE_IN_DELALLOC_LIST 8
31#define BTRFS_INODE_READDIO_NEED_LOCK 9
32#define BTRFS_INODE_HAS_PROPS 10
33
34/* in memory btrfs inode */
35struct btrfs_inode {
36 /* which subvolume this inode belongs to */
37 struct btrfs_root *root;
38
39 /* key used to find this inode on disk. This is used by the code
40 * to read in roots of subvolumes
41 */
42 struct btrfs_key location;
43
44 /*
45 * Lock for counters and all fields used to determine if the inode is in
46 * the log or not (last_trans, last_sub_trans, last_log_commit,
47 * logged_trans).
48 */
49 spinlock_t lock;
50
51 /* the extent_tree has caches of all the extent mappings to disk */
52 struct extent_map_tree extent_tree;
53
54 /* the io_tree does range state (DIRTY, LOCKED etc) */
55 struct extent_io_tree io_tree;
56
57 /* special utility tree used to record which mirrors have already been
58 * tried when checksums fail for a given block
59 */
60 struct extent_io_tree io_failure_tree;
61
62 /* held while logging the inode in tree-log.c */
63 struct mutex log_mutex;
64
65 /* held while doing delalloc reservations */
66 struct mutex delalloc_mutex;
67
68 /* used to order data wrt metadata */
69 struct btrfs_ordered_inode_tree ordered_tree;
70
71 /* list of all the delalloc inodes in the FS. There are times we need
72 * to write all the delalloc pages to disk, and this list is used
73 * to walk them all.
74 */
75 struct list_head delalloc_inodes;
76
77 /* node for the red-black tree that links inodes in subvolume root */
78 struct rb_node rb_node;
79
80 unsigned long runtime_flags;
81
82 /* Keep track of who's O_SYNC/fsyncing currently */
83 atomic_t sync_writers;
84
85 /* full 64 bit generation number, struct vfs_inode doesn't have a big
86 * enough field for this.
87 */
88 u64 generation;
89
90 /*
91 * transid of the trans_handle that last modified this inode
92 */
93 u64 last_trans;
94
95 /*
96 * transid that last logged this inode
97 */
98 u64 logged_trans;
99
100 /*
101 * log transid when this inode was last modified
102 */
103 int last_sub_trans;
104
105 /* a local copy of root's last_log_commit */
106 int last_log_commit;
107
108 /* total number of bytes pending delalloc, used by stat to calc the
109 * real block usage of the file
110 */
111 u64 delalloc_bytes;
112
113 /*
114 * Total number of bytes pending delalloc that fall within a file
115 * range that is either a hole or beyond EOF (and no prealloc extent
116 * exists in the range). This is always <= delalloc_bytes.
117 */
118 u64 new_delalloc_bytes;
119
120 /*
121 * total number of bytes pending defrag, used by stat to check whether
122 * it needs COW.
123 */
124 u64 defrag_bytes;
125
126 /*
127 * the size of the file stored in the metadata on disk. data=ordered
128 * means the in-memory i_size might be larger than the size on disk
129 * because not all the blocks are written yet.
130 */
131 u64 disk_i_size;
132
133 /*
134 * if this is a directory then index_cnt is the counter for the index
135 * number for new files that are created
136 */
137 u64 index_cnt;
138
139 /* Cache the directory index number to speed the dir/file remove */
140 u64 dir_index;
141
142 /* the fsync log has some corner cases that mean we have to check
143 * directories to see if any unlinks have been done before
144 * the directory was logged. See tree-log.c for all the
145 * details
146 */
147 u64 last_unlink_trans;
148
149 /*
150 * Number of bytes outstanding that are going to need csums. This is
151 * used in ENOSPC accounting.
152 */
153 u64 csum_bytes;
154
155 /* flags field from the on disk inode */
156 u32 flags;
157
158 /*
159 * Counters to keep track of the number of extent item's we may use due
160 * to delalloc and such. outstanding_extents is the number of extent
161 * items we think we'll end up using, and reserved_extents is the number
162 * of extent items we've reserved metadata for.
163 */
164 unsigned outstanding_extents;
165
166 struct btrfs_block_rsv block_rsv;
167
168 /*
169 * Cached values of inode properties
170 */
171 unsigned prop_compress; /* per-file compression algorithm */
172 /*
173 * Force compression on the file using the defrag ioctl, could be
174 * different from prop_compress and takes precedence if set
175 */
176 unsigned defrag_compress;
177
178 struct btrfs_delayed_node *delayed_node;
179
180 /* File creation time. */
181 struct timespec i_otime;
182
183 /* Hook into fs_info->delayed_iputs */
184 struct list_head delayed_iput;
185
186 /*
187 * To avoid races between lockless (i_mutex not held) direct IO writes
188 * and concurrent fsync requests. Direct IO writes must acquire read
189 * access on this semaphore for creating an extent map and its
190 * corresponding ordered extent. The fast fsync path must acquire write
191 * access on this semaphore before it collects ordered extents and
192 * extent maps.
193 */
194 struct rw_semaphore dio_sem;
195
196 struct inode vfs_inode;
197};
198
199extern unsigned char btrfs_filetype_table[];
200
201static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
202{
203 return container_of(inode, struct btrfs_inode, vfs_inode);
204}
205
206static inline unsigned long btrfs_inode_hash(u64 objectid,
207 const struct btrfs_root *root)
208{
209 u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
210
211#if BITS_PER_LONG == 32
212 h = (h >> 32) ^ (h & 0xffffffff);
213#endif
214
215 return (unsigned long)h;
216}
217
218static inline void btrfs_insert_inode_hash(struct inode *inode)
219{
220 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
221
222 __insert_inode_hash(inode, h);
223}
224
225static inline u64 btrfs_ino(const struct btrfs_inode *inode)
226{
227 u64 ino = inode->location.objectid;
228
229 /*
230 * !ino: btree_inode
231 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
232 */
233 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
234 ino = inode->vfs_inode.i_ino;
235 return ino;
236}
237
238static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
239{
240 i_size_write(&inode->vfs_inode, size);
241 inode->disk_i_size = size;
242}
243
244static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
245{
246 struct btrfs_root *root = inode->root;
247
248 if (root == root->fs_info->tree_root &&
249 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
250 return true;
251 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
252 return true;
253 return false;
254}
255
256static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
257 int mod)
258{
259 lockdep_assert_held(&inode->lock);
260 inode->outstanding_extents += mod;
261 if (btrfs_is_free_space_inode(inode))
262 return;
263 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
264 mod);
265}
266
267static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
268{
269 int ret = 0;
270
271 spin_lock(&inode->lock);
272 if (inode->logged_trans == generation &&
273 inode->last_sub_trans <= inode->last_log_commit &&
274 inode->last_sub_trans <= inode->root->last_log_commit) {
275 /*
276 * After a ranged fsync we might have left some extent maps
277 * (that fall outside the fsync's range). So return false
278 * here if the list isn't empty, to make sure btrfs_log_inode()
279 * will be called and process those extent maps.
280 */
281 smp_mb();
282 if (list_empty(&inode->extent_tree.modified_extents))
283 ret = 1;
284 }
285 spin_unlock(&inode->lock);
286 return ret;
287}
288
289#define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
290
291struct btrfs_dio_private {
292 struct inode *inode;
293 unsigned long flags;
294 u64 logical_offset;
295 u64 disk_bytenr;
296 u64 bytes;
297 void *private;
298
299 /* number of bios pending for this dio */
300 atomic_t pending_bios;
301
302 /* IO errors */
303 int errors;
304
305 /* orig_bio is our btrfs_io_bio */
306 struct bio *orig_bio;
307
308 /* dio_bio came from fs/direct-io.c */
309 struct bio *dio_bio;
310
311 /*
312 * The original bio may be split to several sub-bios, this is
313 * done during endio of sub-bios
314 */
315 blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
316 blk_status_t);
317};
318
319/*
320 * Disable DIO read nolock optimization, so new dio readers will be forced
321 * to grab i_mutex. It is used to avoid the endless truncate due to
322 * nonlocked dio read.
323 */
324static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
325{
326 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
327 smp_mb();
328}
329
330static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
331{
332 smp_mb__before_atomic();
333 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
334}
335
336static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
337 u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
338{
339 struct btrfs_root *root = inode->root;
340
341 /* Output minus objectid, which is more meaningful */
342 if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
343 btrfs_warn_rl(root->fs_info,
344 "csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
345 root->objectid, btrfs_ino(inode),
346 logical_start, csum, csum_expected, mirror_num);
347 else
348 btrfs_warn_rl(root->fs_info,
349 "csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
350 root->objectid, btrfs_ino(inode),
351 logical_start, csum, csum_expected, mirror_num);
352}
353
354#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#ifndef __BTRFS_I__
20#define __BTRFS_I__
21
22#include <linux/hash.h>
23#include "extent_map.h"
24#include "extent_io.h"
25#include "ordered-data.h"
26#include "delayed-inode.h"
27
28/*
29 * ordered_data_close is set by truncate when a file that used
30 * to have good data has been truncated to zero. When it is set
31 * the btrfs file release call will add this inode to the
32 * ordered operations list so that we make sure to flush out any
33 * new data the application may have written before commit.
34 */
35#define BTRFS_INODE_ORDERED_DATA_CLOSE 0
36#define BTRFS_INODE_ORPHAN_META_RESERVED 1
37#define BTRFS_INODE_DUMMY 2
38#define BTRFS_INODE_IN_DEFRAG 3
39#define BTRFS_INODE_DELALLOC_META_RESERVED 4
40#define BTRFS_INODE_HAS_ORPHAN_ITEM 5
41#define BTRFS_INODE_HAS_ASYNC_EXTENT 6
42#define BTRFS_INODE_NEEDS_FULL_SYNC 7
43#define BTRFS_INODE_COPY_EVERYTHING 8
44#define BTRFS_INODE_IN_DELALLOC_LIST 9
45#define BTRFS_INODE_READDIO_NEED_LOCK 10
46#define BTRFS_INODE_HAS_PROPS 11
47
48/* in memory btrfs inode */
49struct btrfs_inode {
50 /* which subvolume this inode belongs to */
51 struct btrfs_root *root;
52
53 /* key used to find this inode on disk. This is used by the code
54 * to read in roots of subvolumes
55 */
56 struct btrfs_key location;
57
58 /*
59 * Lock for counters and all fields used to determine if the inode is in
60 * the log or not (last_trans, last_sub_trans, last_log_commit,
61 * logged_trans).
62 */
63 spinlock_t lock;
64
65 /* the extent_tree has caches of all the extent mappings to disk */
66 struct extent_map_tree extent_tree;
67
68 /* the io_tree does range state (DIRTY, LOCKED etc) */
69 struct extent_io_tree io_tree;
70
71 /* special utility tree used to record which mirrors have already been
72 * tried when checksums fail for a given block
73 */
74 struct extent_io_tree io_failure_tree;
75
76 /* held while logging the inode in tree-log.c */
77 struct mutex log_mutex;
78
79 /* held while doing delalloc reservations */
80 struct mutex delalloc_mutex;
81
82 /* used to order data wrt metadata */
83 struct btrfs_ordered_inode_tree ordered_tree;
84
85 /* list of all the delalloc inodes in the FS. There are times we need
86 * to write all the delalloc pages to disk, and this list is used
87 * to walk them all.
88 */
89 struct list_head delalloc_inodes;
90
91 /* node for the red-black tree that links inodes in subvolume root */
92 struct rb_node rb_node;
93
94 unsigned long runtime_flags;
95
96 /* Keep track of who's O_SYNC/fsyncing currently */
97 atomic_t sync_writers;
98
99 /* full 64 bit generation number, struct vfs_inode doesn't have a big
100 * enough field for this.
101 */
102 u64 generation;
103
104 /*
105 * transid of the trans_handle that last modified this inode
106 */
107 u64 last_trans;
108
109 /*
110 * transid that last logged this inode
111 */
112 u64 logged_trans;
113
114 /*
115 * log transid when this inode was last modified
116 */
117 int last_sub_trans;
118
119 /* a local copy of root's last_log_commit */
120 int last_log_commit;
121
122 /* total number of bytes pending delalloc, used by stat to calc the
123 * real block usage of the file
124 */
125 u64 delalloc_bytes;
126
127 /*
128 * total number of bytes pending defrag, used by stat to check whether
129 * it needs COW.
130 */
131 u64 defrag_bytes;
132
133 /*
134 * the size of the file stored in the metadata on disk. data=ordered
135 * means the in-memory i_size might be larger than the size on disk
136 * because not all the blocks are written yet.
137 */
138 u64 disk_i_size;
139
140 /*
141 * if this is a directory then index_cnt is the counter for the index
142 * number for new files that are created
143 */
144 u64 index_cnt;
145
146 /* Cache the directory index number to speed the dir/file remove */
147 u64 dir_index;
148
149 /* the fsync log has some corner cases that mean we have to check
150 * directories to see if any unlinks have been done before
151 * the directory was logged. See tree-log.c for all the
152 * details
153 */
154 u64 last_unlink_trans;
155
156 /*
157 * Number of bytes outstanding that are going to need csums. This is
158 * used in ENOSPC accounting.
159 */
160 u64 csum_bytes;
161
162 /* flags field from the on disk inode */
163 u32 flags;
164
165 /*
166 * Counters to keep track of the number of extent item's we may use due
167 * to delalloc and such. outstanding_extents is the number of extent
168 * items we think we'll end up using, and reserved_extents is the number
169 * of extent items we've reserved metadata for.
170 */
171 unsigned outstanding_extents;
172 unsigned reserved_extents;
173
174 /*
175 * always compress this one file
176 */
177 unsigned force_compress;
178
179 struct btrfs_delayed_node *delayed_node;
180
181 /* File creation time. */
182 struct timespec i_otime;
183
184 /* Hook into fs_info->delayed_iputs */
185 struct list_head delayed_iput;
186 long delayed_iput_count;
187
188 /*
189 * To avoid races between lockless (i_mutex not held) direct IO writes
190 * and concurrent fsync requests. Direct IO writes must acquire read
191 * access on this semaphore for creating an extent map and its
192 * corresponding ordered extent. The fast fsync path must acquire write
193 * access on this semaphore before it collects ordered extents and
194 * extent maps.
195 */
196 struct rw_semaphore dio_sem;
197
198 struct inode vfs_inode;
199};
200
201extern unsigned char btrfs_filetype_table[];
202
203static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
204{
205 return container_of(inode, struct btrfs_inode, vfs_inode);
206}
207
208static inline unsigned long btrfs_inode_hash(u64 objectid,
209 const struct btrfs_root *root)
210{
211 u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
212
213#if BITS_PER_LONG == 32
214 h = (h >> 32) ^ (h & 0xffffffff);
215#endif
216
217 return (unsigned long)h;
218}
219
220static inline void btrfs_insert_inode_hash(struct inode *inode)
221{
222 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
223
224 __insert_inode_hash(inode, h);
225}
226
227static inline u64 btrfs_ino(struct inode *inode)
228{
229 u64 ino = BTRFS_I(inode)->location.objectid;
230
231 /*
232 * !ino: btree_inode
233 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
234 */
235 if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY)
236 ino = inode->i_ino;
237 return ino;
238}
239
240static inline void btrfs_i_size_write(struct inode *inode, u64 size)
241{
242 i_size_write(inode, size);
243 BTRFS_I(inode)->disk_i_size = size;
244}
245
246static inline bool btrfs_is_free_space_inode(struct inode *inode)
247{
248 struct btrfs_root *root = BTRFS_I(inode)->root;
249
250 if (root == root->fs_info->tree_root &&
251 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
252 return true;
253 if (BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
254 return true;
255 return false;
256}
257
258static inline int btrfs_inode_in_log(struct inode *inode, u64 generation)
259{
260 int ret = 0;
261
262 spin_lock(&BTRFS_I(inode)->lock);
263 if (BTRFS_I(inode)->logged_trans == generation &&
264 BTRFS_I(inode)->last_sub_trans <=
265 BTRFS_I(inode)->last_log_commit &&
266 BTRFS_I(inode)->last_sub_trans <=
267 BTRFS_I(inode)->root->last_log_commit) {
268 /*
269 * After a ranged fsync we might have left some extent maps
270 * (that fall outside the fsync's range). So return false
271 * here if the list isn't empty, to make sure btrfs_log_inode()
272 * will be called and process those extent maps.
273 */
274 smp_mb();
275 if (list_empty(&BTRFS_I(inode)->extent_tree.modified_extents))
276 ret = 1;
277 }
278 spin_unlock(&BTRFS_I(inode)->lock);
279 return ret;
280}
281
282#define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
283
284struct btrfs_dio_private {
285 struct inode *inode;
286 unsigned long flags;
287 u64 logical_offset;
288 u64 disk_bytenr;
289 u64 bytes;
290 void *private;
291
292 /* number of bios pending for this dio */
293 atomic_t pending_bios;
294
295 /* IO errors */
296 int errors;
297
298 /* orig_bio is our btrfs_io_bio */
299 struct bio *orig_bio;
300
301 /* dio_bio came from fs/direct-io.c */
302 struct bio *dio_bio;
303
304 /*
305 * The original bio may be split to several sub-bios, this is
306 * done during endio of sub-bios
307 */
308 int (*subio_endio)(struct inode *, struct btrfs_io_bio *, int);
309};
310
311/*
312 * Disable DIO read nolock optimization, so new dio readers will be forced
313 * to grab i_mutex. It is used to avoid the endless truncate due to
314 * nonlocked dio read.
315 */
316static inline void btrfs_inode_block_unlocked_dio(struct inode *inode)
317{
318 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &BTRFS_I(inode)->runtime_flags);
319 smp_mb();
320}
321
322static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode)
323{
324 smp_mb__before_atomic();
325 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK,
326 &BTRFS_I(inode)->runtime_flags);
327}
328
329bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end);
330
331#endif