Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 30#ifdef CONFIG_SUPERH
 31#include <asm/rtc.h>
 32#else
 33/* Default values for RZ/A RTC */
 34#define rtc_reg_size		sizeof(u16)
 35#define RTC_BIT_INVERTED        0	/* no chip bugs */
 36#define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
 37#define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
 38#endif
 39
 40#define DRV_NAME	"sh-rtc"
 41
 42#define RTC_REG(r)	((r) * rtc_reg_size)
 43
 44#define R64CNT		RTC_REG(0)
 45
 46#define RSECCNT		RTC_REG(1)	/* RTC sec */
 47#define RMINCNT		RTC_REG(2)	/* RTC min */
 48#define RHRCNT		RTC_REG(3)	/* RTC hour */
 49#define RWKCNT		RTC_REG(4)	/* RTC week */
 50#define RDAYCNT		RTC_REG(5)	/* RTC day */
 51#define RMONCNT		RTC_REG(6)	/* RTC month */
 52#define RYRCNT		RTC_REG(7)	/* RTC year */
 53#define RSECAR		RTC_REG(8)	/* ALARM sec */
 54#define RMINAR		RTC_REG(9)	/* ALARM min */
 55#define RHRAR		RTC_REG(10)	/* ALARM hour */
 56#define RWKAR		RTC_REG(11)	/* ALARM week */
 57#define RDAYAR		RTC_REG(12)	/* ALARM day */
 58#define RMONAR		RTC_REG(13)	/* ALARM month */
 59#define RCR1		RTC_REG(14)	/* Control */
 60#define RCR2		RTC_REG(15)	/* Control */
 61
 62/*
 63 * Note on RYRAR and RCR3: Up until this point most of the register
 64 * definitions are consistent across all of the available parts. However,
 65 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 66 * register used to control RYRCNT/RYRAR compare) varies considerably
 67 * across various parts, occasionally being mapped in to a completely
 68 * unrelated address space. For proper RYRAR support a separate resource
 69 * would have to be handed off, but as this is purely optional in
 70 * practice, we simply opt not to support it, thereby keeping the code
 71 * quite a bit more simplified.
 72 */
 73
 74/* ALARM Bits - or with BCD encoded value */
 75#define AR_ENB		0x80	/* Enable for alarm cmp   */
 76
 77/* Period Bits */
 78#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 79#define PF_COUNT	0x200	/* Half periodic counter */
 80#define PF_OXS		0x400	/* Periodic One x Second */
 81#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 82#define PF_MASK		0xf00
 83
 84/* RCR1 Bits */
 85#define RCR1_CF		0x80	/* Carry Flag             */
 86#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 87#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 88#define RCR1_AF		0x01	/* Alarm Flag             */
 89
 90/* RCR2 Bits */
 91#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 92#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 93#define RCR2_RTCEN	0x08	/* ENable RTC              */
 94#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 95#define RCR2_RESET	0x02	/* Reset bit               */
 96#define RCR2_START	0x01	/* Start bit               */
 97
 98struct sh_rtc {
 99	void __iomem		*regbase;
100	unsigned long		regsize;
101	struct resource		*res;
102	int			alarm_irq;
103	int			periodic_irq;
104	int			carry_irq;
105	struct clk		*clk;
106	struct rtc_device	*rtc_dev;
107	spinlock_t		lock;
108	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
109	unsigned short		periodic_freq;
110};
111
112static int __sh_rtc_interrupt(struct sh_rtc *rtc)
113{
114	unsigned int tmp, pending;
115
116	tmp = readb(rtc->regbase + RCR1);
117	pending = tmp & RCR1_CF;
118	tmp &= ~RCR1_CF;
119	writeb(tmp, rtc->regbase + RCR1);
120
121	/* Users have requested One x Second IRQ */
122	if (pending && rtc->periodic_freq & PF_OXS)
123		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
124
125	return pending;
126}
127
128static int __sh_rtc_alarm(struct sh_rtc *rtc)
129{
130	unsigned int tmp, pending;
131
132	tmp = readb(rtc->regbase + RCR1);
133	pending = tmp & RCR1_AF;
134	tmp &= ~(RCR1_AF | RCR1_AIE);
135	writeb(tmp, rtc->regbase + RCR1);
136
137	if (pending)
138		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
139
140	return pending;
141}
142
143static int __sh_rtc_periodic(struct sh_rtc *rtc)
144{
145	struct rtc_device *rtc_dev = rtc->rtc_dev;
146	struct rtc_task *irq_task;
147	unsigned int tmp, pending;
148
149	tmp = readb(rtc->regbase + RCR2);
150	pending = tmp & RCR2_PEF;
151	tmp &= ~RCR2_PEF;
152	writeb(tmp, rtc->regbase + RCR2);
153
154	if (!pending)
155		return 0;
156
157	/* Half period enabled than one skipped and the next notified */
158	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
159		rtc->periodic_freq &= ~PF_COUNT;
160	else {
161		if (rtc->periodic_freq & PF_HP)
162			rtc->periodic_freq |= PF_COUNT;
163		if (rtc->periodic_freq & PF_KOU) {
164			spin_lock(&rtc_dev->irq_task_lock);
165			irq_task = rtc_dev->irq_task;
166			if (irq_task)
167				irq_task->func(irq_task->private_data);
168			spin_unlock(&rtc_dev->irq_task_lock);
169		} else
170			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
171	}
172
173	return pending;
174}
175
176static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
177{
178	struct sh_rtc *rtc = dev_id;
179	int ret;
180
181	spin_lock(&rtc->lock);
182	ret = __sh_rtc_interrupt(rtc);
183	spin_unlock(&rtc->lock);
184
185	return IRQ_RETVAL(ret);
186}
187
188static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
189{
190	struct sh_rtc *rtc = dev_id;
191	int ret;
192
193	spin_lock(&rtc->lock);
194	ret = __sh_rtc_alarm(rtc);
195	spin_unlock(&rtc->lock);
196
197	return IRQ_RETVAL(ret);
198}
199
200static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
201{
202	struct sh_rtc *rtc = dev_id;
203	int ret;
204
205	spin_lock(&rtc->lock);
206	ret = __sh_rtc_periodic(rtc);
207	spin_unlock(&rtc->lock);
208
209	return IRQ_RETVAL(ret);
210}
211
212static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
213{
214	struct sh_rtc *rtc = dev_id;
215	int ret;
216
217	spin_lock(&rtc->lock);
218	ret = __sh_rtc_interrupt(rtc);
219	ret |= __sh_rtc_alarm(rtc);
220	ret |= __sh_rtc_periodic(rtc);
221	spin_unlock(&rtc->lock);
222
223	return IRQ_RETVAL(ret);
224}
225
226static int sh_rtc_irq_set_state(struct device *dev, int enable)
227{
228	struct sh_rtc *rtc = dev_get_drvdata(dev);
229	unsigned int tmp;
230
231	spin_lock_irq(&rtc->lock);
232
233	tmp = readb(rtc->regbase + RCR2);
234
235	if (enable) {
236		rtc->periodic_freq |= PF_KOU;
237		tmp &= ~RCR2_PEF;	/* Clear PES bit */
238		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
239	} else {
240		rtc->periodic_freq &= ~PF_KOU;
241		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
242	}
243
244	writeb(tmp, rtc->regbase + RCR2);
245
246	spin_unlock_irq(&rtc->lock);
247
248	return 0;
249}
250
251static int sh_rtc_irq_set_freq(struct device *dev, int freq)
252{
253	struct sh_rtc *rtc = dev_get_drvdata(dev);
254	int tmp, ret = 0;
255
256	spin_lock_irq(&rtc->lock);
257	tmp = rtc->periodic_freq & PF_MASK;
258
259	switch (freq) {
260	case 0:
261		rtc->periodic_freq = 0x00;
262		break;
263	case 1:
264		rtc->periodic_freq = 0x60;
265		break;
266	case 2:
267		rtc->periodic_freq = 0x50;
268		break;
269	case 4:
270		rtc->periodic_freq = 0x40;
271		break;
272	case 8:
273		rtc->periodic_freq = 0x30 | PF_HP;
274		break;
275	case 16:
276		rtc->periodic_freq = 0x30;
277		break;
278	case 32:
279		rtc->periodic_freq = 0x20 | PF_HP;
280		break;
281	case 64:
282		rtc->periodic_freq = 0x20;
283		break;
284	case 128:
285		rtc->periodic_freq = 0x10 | PF_HP;
286		break;
287	case 256:
288		rtc->periodic_freq = 0x10;
289		break;
290	default:
291		ret = -ENOTSUPP;
292	}
293
294	if (ret == 0)
295		rtc->periodic_freq |= tmp;
296
297	spin_unlock_irq(&rtc->lock);
298	return ret;
299}
300
301static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
302{
303	struct sh_rtc *rtc = dev_get_drvdata(dev);
304	unsigned int tmp;
305
306	spin_lock_irq(&rtc->lock);
307
308	tmp = readb(rtc->regbase + RCR1);
309
310	if (enable)
311		tmp |= RCR1_AIE;
312	else
313		tmp &= ~RCR1_AIE;
314
315	writeb(tmp, rtc->regbase + RCR1);
316
317	spin_unlock_irq(&rtc->lock);
318}
319
320static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
321{
322	struct sh_rtc *rtc = dev_get_drvdata(dev);
323	unsigned int tmp;
324
325	tmp = readb(rtc->regbase + RCR1);
326	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
327
328	tmp = readb(rtc->regbase + RCR2);
329	seq_printf(seq, "periodic_IRQ\t: %s\n",
330		   (tmp & RCR2_PESMASK) ? "yes" : "no");
331
332	return 0;
333}
334
335static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
336{
337	struct sh_rtc *rtc = dev_get_drvdata(dev);
338	unsigned int tmp;
339
340	spin_lock_irq(&rtc->lock);
341
342	tmp = readb(rtc->regbase + RCR1);
343
344	if (!enable)
345		tmp &= ~RCR1_CIE;
346	else
347		tmp |= RCR1_CIE;
348
349	writeb(tmp, rtc->regbase + RCR1);
350
351	spin_unlock_irq(&rtc->lock);
352}
353
354static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
355{
356	sh_rtc_setaie(dev, enabled);
357	return 0;
358}
359
360static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
361{
362	struct platform_device *pdev = to_platform_device(dev);
363	struct sh_rtc *rtc = platform_get_drvdata(pdev);
364	unsigned int sec128, sec2, yr, yr100, cf_bit;
365
366	do {
367		unsigned int tmp;
368
369		spin_lock_irq(&rtc->lock);
370
371		tmp = readb(rtc->regbase + RCR1);
372		tmp &= ~RCR1_CF; /* Clear CF-bit */
373		tmp |= RCR1_CIE;
374		writeb(tmp, rtc->regbase + RCR1);
375
376		sec128 = readb(rtc->regbase + R64CNT);
377
378		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
379		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
380		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
381		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
382		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
383		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
384
385		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
386			yr  = readw(rtc->regbase + RYRCNT);
387			yr100 = bcd2bin(yr >> 8);
388			yr &= 0xff;
389		} else {
390			yr  = readb(rtc->regbase + RYRCNT);
391			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
392		}
393
394		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
395
396		sec2 = readb(rtc->regbase + R64CNT);
397		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
398
399		spin_unlock_irq(&rtc->lock);
400	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
401
402#if RTC_BIT_INVERTED != 0
403	if ((sec128 & RTC_BIT_INVERTED))
404		tm->tm_sec--;
405#endif
406
407	/* only keep the carry interrupt enabled if UIE is on */
408	if (!(rtc->periodic_freq & PF_OXS))
409		sh_rtc_setcie(dev, 0);
410
411	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
412		"mday=%d, mon=%d, year=%d, wday=%d\n",
413		__func__,
414		tm->tm_sec, tm->tm_min, tm->tm_hour,
415		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
416
417	return 0;
418}
419
420static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
421{
422	struct platform_device *pdev = to_platform_device(dev);
423	struct sh_rtc *rtc = platform_get_drvdata(pdev);
424	unsigned int tmp;
425	int year;
426
427	spin_lock_irq(&rtc->lock);
428
429	/* Reset pre-scaler & stop RTC */
430	tmp = readb(rtc->regbase + RCR2);
431	tmp |= RCR2_RESET;
432	tmp &= ~RCR2_START;
433	writeb(tmp, rtc->regbase + RCR2);
434
435	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
436	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
437	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
438	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
439	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
440	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
441
442	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
443		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
444			bin2bcd(tm->tm_year % 100);
445		writew(year, rtc->regbase + RYRCNT);
446	} else {
447		year = tm->tm_year % 100;
448		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
449	}
450
451	/* Start RTC */
452	tmp = readb(rtc->regbase + RCR2);
453	tmp &= ~RCR2_RESET;
454	tmp |= RCR2_RTCEN | RCR2_START;
455	writeb(tmp, rtc->regbase + RCR2);
456
457	spin_unlock_irq(&rtc->lock);
458
459	return 0;
460}
461
462static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
463{
464	unsigned int byte;
465	int value = 0xff;	/* return 0xff for ignored values */
466
467	byte = readb(rtc->regbase + reg_off);
468	if (byte & AR_ENB) {
469		byte &= ~AR_ENB;	/* strip the enable bit */
470		value = bcd2bin(byte);
471	}
472
473	return value;
474}
475
476static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
477{
478	struct platform_device *pdev = to_platform_device(dev);
479	struct sh_rtc *rtc = platform_get_drvdata(pdev);
480	struct rtc_time *tm = &wkalrm->time;
481
482	spin_lock_irq(&rtc->lock);
483
484	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
485	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
486	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
487	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
488	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
489	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
490	if (tm->tm_mon > 0)
491		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
492
493	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
494
495	spin_unlock_irq(&rtc->lock);
496
497	return 0;
498}
499
500static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
501					    int value, int reg_off)
502{
503	/* < 0 for a value that is ignored */
504	if (value < 0)
505		writeb(0, rtc->regbase + reg_off);
506	else
507		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
508}
509
510static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
511{
512	struct platform_device *pdev = to_platform_device(dev);
513	struct sh_rtc *rtc = platform_get_drvdata(pdev);
514	unsigned int rcr1;
515	struct rtc_time *tm = &wkalrm->time;
516	int mon;
517
518	spin_lock_irq(&rtc->lock);
519
520	/* disable alarm interrupt and clear the alarm flag */
521	rcr1 = readb(rtc->regbase + RCR1);
522	rcr1 &= ~(RCR1_AF | RCR1_AIE);
523	writeb(rcr1, rtc->regbase + RCR1);
524
525	/* set alarm time */
526	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
527	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
528	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
529	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
530	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
531	mon = tm->tm_mon;
532	if (mon >= 0)
533		mon += 1;
534	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
535
536	if (wkalrm->enabled) {
537		rcr1 |= RCR1_AIE;
538		writeb(rcr1, rtc->regbase + RCR1);
539	}
540
541	spin_unlock_irq(&rtc->lock);
542
543	return 0;
544}
545
546static const struct rtc_class_ops sh_rtc_ops = {
547	.read_time	= sh_rtc_read_time,
548	.set_time	= sh_rtc_set_time,
549	.read_alarm	= sh_rtc_read_alarm,
550	.set_alarm	= sh_rtc_set_alarm,
551	.proc		= sh_rtc_proc,
552	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
553};
554
555static int __init sh_rtc_probe(struct platform_device *pdev)
556{
557	struct sh_rtc *rtc;
558	struct resource *res;
559	struct rtc_time r;
560	char clk_name[6];
561	int clk_id, ret;
562
563	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
564	if (unlikely(!rtc))
565		return -ENOMEM;
566
567	spin_lock_init(&rtc->lock);
568
569	/* get periodic/carry/alarm irqs */
570	ret = platform_get_irq(pdev, 0);
571	if (unlikely(ret <= 0)) {
572		dev_err(&pdev->dev, "No IRQ resource\n");
573		return -ENOENT;
574	}
575
576	rtc->periodic_irq = ret;
577	rtc->carry_irq = platform_get_irq(pdev, 1);
578	rtc->alarm_irq = platform_get_irq(pdev, 2);
579
580	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
581	if (!res)
582		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
583	if (unlikely(res == NULL)) {
584		dev_err(&pdev->dev, "No IO resource\n");
585		return -ENOENT;
586	}
587
588	rtc->regsize = resource_size(res);
589
590	rtc->res = devm_request_mem_region(&pdev->dev, res->start,
591					rtc->regsize, pdev->name);
592	if (unlikely(!rtc->res))
593		return -EBUSY;
594
595	rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
596					rtc->regsize);
597	if (unlikely(!rtc->regbase))
598		return -EINVAL;
599
600	if (!pdev->dev.of_node) {
601		clk_id = pdev->id;
602		/* With a single device, the clock id is still "rtc0" */
603		if (clk_id < 0)
604			clk_id = 0;
605
606		snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
607	} else
608		snprintf(clk_name, sizeof(clk_name), "fck");
609
610	rtc->clk = devm_clk_get(&pdev->dev, clk_name);
611	if (IS_ERR(rtc->clk)) {
612		/*
613		 * No error handling for rtc->clk intentionally, not all
614		 * platforms will have a unique clock for the RTC, and
615		 * the clk API can handle the struct clk pointer being
616		 * NULL.
617		 */
618		rtc->clk = NULL;
619	}
620
621	clk_enable(rtc->clk);
622
623	rtc->capabilities = RTC_DEF_CAPABILITIES;
624
625#ifdef CONFIG_SUPERH
626	if (dev_get_platdata(&pdev->dev)) {
627		struct sh_rtc_platform_info *pinfo =
628			dev_get_platdata(&pdev->dev);
629
630		/*
631		 * Some CPUs have special capabilities in addition to the
632		 * default set. Add those in here.
633		 */
634		rtc->capabilities |= pinfo->capabilities;
635	}
636#endif
637
638	if (rtc->carry_irq <= 0) {
639		/* register shared periodic/carry/alarm irq */
640		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
641				sh_rtc_shared, 0, "sh-rtc", rtc);
642		if (unlikely(ret)) {
643			dev_err(&pdev->dev,
644				"request IRQ failed with %d, IRQ %d\n", ret,
645				rtc->periodic_irq);
646			goto err_unmap;
647		}
648	} else {
649		/* register periodic/carry/alarm irqs */
650		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
651				sh_rtc_periodic, 0, "sh-rtc period", rtc);
652		if (unlikely(ret)) {
653			dev_err(&pdev->dev,
654				"request period IRQ failed with %d, IRQ %d\n",
655				ret, rtc->periodic_irq);
656			goto err_unmap;
657		}
658
659		ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
660				sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
661		if (unlikely(ret)) {
662			dev_err(&pdev->dev,
663				"request carry IRQ failed with %d, IRQ %d\n",
664				ret, rtc->carry_irq);
665			goto err_unmap;
666		}
667
668		ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
669				sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
670		if (unlikely(ret)) {
671			dev_err(&pdev->dev,
672				"request alarm IRQ failed with %d, IRQ %d\n",
673				ret, rtc->alarm_irq);
674			goto err_unmap;
675		}
676	}
677
678	platform_set_drvdata(pdev, rtc);
679
680	/* everything disabled by default */
681	sh_rtc_irq_set_freq(&pdev->dev, 0);
682	sh_rtc_irq_set_state(&pdev->dev, 0);
683	sh_rtc_setaie(&pdev->dev, 0);
684	sh_rtc_setcie(&pdev->dev, 0);
685
686	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
687					   &sh_rtc_ops, THIS_MODULE);
688	if (IS_ERR(rtc->rtc_dev)) {
689		ret = PTR_ERR(rtc->rtc_dev);
690		goto err_unmap;
691	}
692
693	rtc->rtc_dev->max_user_freq = 256;
694
695	/* reset rtc to epoch 0 if time is invalid */
696	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
697		rtc_time_to_tm(0, &r);
698		rtc_set_time(rtc->rtc_dev, &r);
699	}
700
701	device_init_wakeup(&pdev->dev, 1);
702	return 0;
703
704err_unmap:
705	clk_disable(rtc->clk);
706
707	return ret;
708}
709
710static int __exit sh_rtc_remove(struct platform_device *pdev)
711{
712	struct sh_rtc *rtc = platform_get_drvdata(pdev);
713
714	sh_rtc_irq_set_state(&pdev->dev, 0);
715
716	sh_rtc_setaie(&pdev->dev, 0);
717	sh_rtc_setcie(&pdev->dev, 0);
718
719	clk_disable(rtc->clk);
720
721	return 0;
722}
723
724static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
725{
726	struct platform_device *pdev = to_platform_device(dev);
727	struct sh_rtc *rtc = platform_get_drvdata(pdev);
728
729	irq_set_irq_wake(rtc->periodic_irq, enabled);
730
731	if (rtc->carry_irq > 0) {
732		irq_set_irq_wake(rtc->carry_irq, enabled);
733		irq_set_irq_wake(rtc->alarm_irq, enabled);
734	}
735}
736
737static int __maybe_unused sh_rtc_suspend(struct device *dev)
 
738{
739	if (device_may_wakeup(dev))
740		sh_rtc_set_irq_wake(dev, 1);
741
742	return 0;
743}
744
745static int __maybe_unused sh_rtc_resume(struct device *dev)
746{
747	if (device_may_wakeup(dev))
748		sh_rtc_set_irq_wake(dev, 0);
749
750	return 0;
751}
 
752
753static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
754
755static const struct of_device_id sh_rtc_of_match[] = {
756	{ .compatible = "renesas,sh-rtc", },
757	{ /* sentinel */ }
758};
759MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
760
761static struct platform_driver sh_rtc_platform_driver = {
762	.driver		= {
763		.name	= DRV_NAME,
764		.pm	= &sh_rtc_pm_ops,
765		.of_match_table = sh_rtc_of_match,
766	},
767	.remove		= __exit_p(sh_rtc_remove),
768};
769
770module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
771
772MODULE_DESCRIPTION("SuperH on-chip RTC driver");
773MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
774	      "Jamie Lenehan <lenehan@twibble.org>, "
775	      "Angelo Castello <angelo.castello@st.com>");
776MODULE_LICENSE("GPL");
777MODULE_ALIAS("platform:" DRV_NAME);
v4.10.11
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 
 30#include <asm/rtc.h>
 
 
 
 
 
 
 
 31
 32#define DRV_NAME	"sh-rtc"
 33
 34#define RTC_REG(r)	((r) * rtc_reg_size)
 35
 36#define R64CNT		RTC_REG(0)
 37
 38#define RSECCNT		RTC_REG(1)	/* RTC sec */
 39#define RMINCNT		RTC_REG(2)	/* RTC min */
 40#define RHRCNT		RTC_REG(3)	/* RTC hour */
 41#define RWKCNT		RTC_REG(4)	/* RTC week */
 42#define RDAYCNT		RTC_REG(5)	/* RTC day */
 43#define RMONCNT		RTC_REG(6)	/* RTC month */
 44#define RYRCNT		RTC_REG(7)	/* RTC year */
 45#define RSECAR		RTC_REG(8)	/* ALARM sec */
 46#define RMINAR		RTC_REG(9)	/* ALARM min */
 47#define RHRAR		RTC_REG(10)	/* ALARM hour */
 48#define RWKAR		RTC_REG(11)	/* ALARM week */
 49#define RDAYAR		RTC_REG(12)	/* ALARM day */
 50#define RMONAR		RTC_REG(13)	/* ALARM month */
 51#define RCR1		RTC_REG(14)	/* Control */
 52#define RCR2		RTC_REG(15)	/* Control */
 53
 54/*
 55 * Note on RYRAR and RCR3: Up until this point most of the register
 56 * definitions are consistent across all of the available parts. However,
 57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 58 * register used to control RYRCNT/RYRAR compare) varies considerably
 59 * across various parts, occasionally being mapped in to a completely
 60 * unrelated address space. For proper RYRAR support a separate resource
 61 * would have to be handed off, but as this is purely optional in
 62 * practice, we simply opt not to support it, thereby keeping the code
 63 * quite a bit more simplified.
 64 */
 65
 66/* ALARM Bits - or with BCD encoded value */
 67#define AR_ENB		0x80	/* Enable for alarm cmp   */
 68
 69/* Period Bits */
 70#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 71#define PF_COUNT	0x200	/* Half periodic counter */
 72#define PF_OXS		0x400	/* Periodic One x Second */
 73#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 74#define PF_MASK		0xf00
 75
 76/* RCR1 Bits */
 77#define RCR1_CF		0x80	/* Carry Flag             */
 78#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 79#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 80#define RCR1_AF		0x01	/* Alarm Flag             */
 81
 82/* RCR2 Bits */
 83#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 84#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 85#define RCR2_RTCEN	0x08	/* ENable RTC              */
 86#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 87#define RCR2_RESET	0x02	/* Reset bit               */
 88#define RCR2_START	0x01	/* Start bit               */
 89
 90struct sh_rtc {
 91	void __iomem		*regbase;
 92	unsigned long		regsize;
 93	struct resource		*res;
 94	int			alarm_irq;
 95	int			periodic_irq;
 96	int			carry_irq;
 97	struct clk		*clk;
 98	struct rtc_device	*rtc_dev;
 99	spinlock_t		lock;
100	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
101	unsigned short		periodic_freq;
102};
103
104static int __sh_rtc_interrupt(struct sh_rtc *rtc)
105{
106	unsigned int tmp, pending;
107
108	tmp = readb(rtc->regbase + RCR1);
109	pending = tmp & RCR1_CF;
110	tmp &= ~RCR1_CF;
111	writeb(tmp, rtc->regbase + RCR1);
112
113	/* Users have requested One x Second IRQ */
114	if (pending && rtc->periodic_freq & PF_OXS)
115		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
116
117	return pending;
118}
119
120static int __sh_rtc_alarm(struct sh_rtc *rtc)
121{
122	unsigned int tmp, pending;
123
124	tmp = readb(rtc->regbase + RCR1);
125	pending = tmp & RCR1_AF;
126	tmp &= ~(RCR1_AF | RCR1_AIE);
127	writeb(tmp, rtc->regbase + RCR1);
128
129	if (pending)
130		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131
132	return pending;
133}
134
135static int __sh_rtc_periodic(struct sh_rtc *rtc)
136{
137	struct rtc_device *rtc_dev = rtc->rtc_dev;
138	struct rtc_task *irq_task;
139	unsigned int tmp, pending;
140
141	tmp = readb(rtc->regbase + RCR2);
142	pending = tmp & RCR2_PEF;
143	tmp &= ~RCR2_PEF;
144	writeb(tmp, rtc->regbase + RCR2);
145
146	if (!pending)
147		return 0;
148
149	/* Half period enabled than one skipped and the next notified */
150	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151		rtc->periodic_freq &= ~PF_COUNT;
152	else {
153		if (rtc->periodic_freq & PF_HP)
154			rtc->periodic_freq |= PF_COUNT;
155		if (rtc->periodic_freq & PF_KOU) {
156			spin_lock(&rtc_dev->irq_task_lock);
157			irq_task = rtc_dev->irq_task;
158			if (irq_task)
159				irq_task->func(irq_task->private_data);
160			spin_unlock(&rtc_dev->irq_task_lock);
161		} else
162			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163	}
164
165	return pending;
166}
167
168static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169{
170	struct sh_rtc *rtc = dev_id;
171	int ret;
172
173	spin_lock(&rtc->lock);
174	ret = __sh_rtc_interrupt(rtc);
175	spin_unlock(&rtc->lock);
176
177	return IRQ_RETVAL(ret);
178}
179
180static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181{
182	struct sh_rtc *rtc = dev_id;
183	int ret;
184
185	spin_lock(&rtc->lock);
186	ret = __sh_rtc_alarm(rtc);
187	spin_unlock(&rtc->lock);
188
189	return IRQ_RETVAL(ret);
190}
191
192static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193{
194	struct sh_rtc *rtc = dev_id;
195	int ret;
196
197	spin_lock(&rtc->lock);
198	ret = __sh_rtc_periodic(rtc);
199	spin_unlock(&rtc->lock);
200
201	return IRQ_RETVAL(ret);
202}
203
204static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205{
206	struct sh_rtc *rtc = dev_id;
207	int ret;
208
209	spin_lock(&rtc->lock);
210	ret = __sh_rtc_interrupt(rtc);
211	ret |= __sh_rtc_alarm(rtc);
212	ret |= __sh_rtc_periodic(rtc);
213	spin_unlock(&rtc->lock);
214
215	return IRQ_RETVAL(ret);
216}
217
218static int sh_rtc_irq_set_state(struct device *dev, int enable)
219{
220	struct sh_rtc *rtc = dev_get_drvdata(dev);
221	unsigned int tmp;
222
223	spin_lock_irq(&rtc->lock);
224
225	tmp = readb(rtc->regbase + RCR2);
226
227	if (enable) {
228		rtc->periodic_freq |= PF_KOU;
229		tmp &= ~RCR2_PEF;	/* Clear PES bit */
230		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
231	} else {
232		rtc->periodic_freq &= ~PF_KOU;
233		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
234	}
235
236	writeb(tmp, rtc->regbase + RCR2);
237
238	spin_unlock_irq(&rtc->lock);
239
240	return 0;
241}
242
243static int sh_rtc_irq_set_freq(struct device *dev, int freq)
244{
245	struct sh_rtc *rtc = dev_get_drvdata(dev);
246	int tmp, ret = 0;
247
248	spin_lock_irq(&rtc->lock);
249	tmp = rtc->periodic_freq & PF_MASK;
250
251	switch (freq) {
252	case 0:
253		rtc->periodic_freq = 0x00;
254		break;
255	case 1:
256		rtc->periodic_freq = 0x60;
257		break;
258	case 2:
259		rtc->periodic_freq = 0x50;
260		break;
261	case 4:
262		rtc->periodic_freq = 0x40;
263		break;
264	case 8:
265		rtc->periodic_freq = 0x30 | PF_HP;
266		break;
267	case 16:
268		rtc->periodic_freq = 0x30;
269		break;
270	case 32:
271		rtc->periodic_freq = 0x20 | PF_HP;
272		break;
273	case 64:
274		rtc->periodic_freq = 0x20;
275		break;
276	case 128:
277		rtc->periodic_freq = 0x10 | PF_HP;
278		break;
279	case 256:
280		rtc->periodic_freq = 0x10;
281		break;
282	default:
283		ret = -ENOTSUPP;
284	}
285
286	if (ret == 0)
287		rtc->periodic_freq |= tmp;
288
289	spin_unlock_irq(&rtc->lock);
290	return ret;
291}
292
293static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
294{
295	struct sh_rtc *rtc = dev_get_drvdata(dev);
296	unsigned int tmp;
297
298	spin_lock_irq(&rtc->lock);
299
300	tmp = readb(rtc->regbase + RCR1);
301
302	if (enable)
303		tmp |= RCR1_AIE;
304	else
305		tmp &= ~RCR1_AIE;
306
307	writeb(tmp, rtc->regbase + RCR1);
308
309	spin_unlock_irq(&rtc->lock);
310}
311
312static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
313{
314	struct sh_rtc *rtc = dev_get_drvdata(dev);
315	unsigned int tmp;
316
317	tmp = readb(rtc->regbase + RCR1);
318	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
319
320	tmp = readb(rtc->regbase + RCR2);
321	seq_printf(seq, "periodic_IRQ\t: %s\n",
322		   (tmp & RCR2_PESMASK) ? "yes" : "no");
323
324	return 0;
325}
326
327static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
328{
329	struct sh_rtc *rtc = dev_get_drvdata(dev);
330	unsigned int tmp;
331
332	spin_lock_irq(&rtc->lock);
333
334	tmp = readb(rtc->regbase + RCR1);
335
336	if (!enable)
337		tmp &= ~RCR1_CIE;
338	else
339		tmp |= RCR1_CIE;
340
341	writeb(tmp, rtc->regbase + RCR1);
342
343	spin_unlock_irq(&rtc->lock);
344}
345
346static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
347{
348	sh_rtc_setaie(dev, enabled);
349	return 0;
350}
351
352static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
353{
354	struct platform_device *pdev = to_platform_device(dev);
355	struct sh_rtc *rtc = platform_get_drvdata(pdev);
356	unsigned int sec128, sec2, yr, yr100, cf_bit;
357
358	do {
359		unsigned int tmp;
360
361		spin_lock_irq(&rtc->lock);
362
363		tmp = readb(rtc->regbase + RCR1);
364		tmp &= ~RCR1_CF; /* Clear CF-bit */
365		tmp |= RCR1_CIE;
366		writeb(tmp, rtc->regbase + RCR1);
367
368		sec128 = readb(rtc->regbase + R64CNT);
369
370		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
371		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
372		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
373		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
374		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
375		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
376
377		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
378			yr  = readw(rtc->regbase + RYRCNT);
379			yr100 = bcd2bin(yr >> 8);
380			yr &= 0xff;
381		} else {
382			yr  = readb(rtc->regbase + RYRCNT);
383			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
384		}
385
386		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
387
388		sec2 = readb(rtc->regbase + R64CNT);
389		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
390
391		spin_unlock_irq(&rtc->lock);
392	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
393
394#if RTC_BIT_INVERTED != 0
395	if ((sec128 & RTC_BIT_INVERTED))
396		tm->tm_sec--;
397#endif
398
399	/* only keep the carry interrupt enabled if UIE is on */
400	if (!(rtc->periodic_freq & PF_OXS))
401		sh_rtc_setcie(dev, 0);
402
403	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
404		"mday=%d, mon=%d, year=%d, wday=%d\n",
405		__func__,
406		tm->tm_sec, tm->tm_min, tm->tm_hour,
407		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
408
409	return rtc_valid_tm(tm);
410}
411
412static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
413{
414	struct platform_device *pdev = to_platform_device(dev);
415	struct sh_rtc *rtc = platform_get_drvdata(pdev);
416	unsigned int tmp;
417	int year;
418
419	spin_lock_irq(&rtc->lock);
420
421	/* Reset pre-scaler & stop RTC */
422	tmp = readb(rtc->regbase + RCR2);
423	tmp |= RCR2_RESET;
424	tmp &= ~RCR2_START;
425	writeb(tmp, rtc->regbase + RCR2);
426
427	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
428	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
429	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
430	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
431	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
432	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
433
434	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
435		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
436			bin2bcd(tm->tm_year % 100);
437		writew(year, rtc->regbase + RYRCNT);
438	} else {
439		year = tm->tm_year % 100;
440		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
441	}
442
443	/* Start RTC */
444	tmp = readb(rtc->regbase + RCR2);
445	tmp &= ~RCR2_RESET;
446	tmp |= RCR2_RTCEN | RCR2_START;
447	writeb(tmp, rtc->regbase + RCR2);
448
449	spin_unlock_irq(&rtc->lock);
450
451	return 0;
452}
453
454static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
455{
456	unsigned int byte;
457	int value = 0xff;	/* return 0xff for ignored values */
458
459	byte = readb(rtc->regbase + reg_off);
460	if (byte & AR_ENB) {
461		byte &= ~AR_ENB;	/* strip the enable bit */
462		value = bcd2bin(byte);
463	}
464
465	return value;
466}
467
468static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
469{
470	struct platform_device *pdev = to_platform_device(dev);
471	struct sh_rtc *rtc = platform_get_drvdata(pdev);
472	struct rtc_time *tm = &wkalrm->time;
473
474	spin_lock_irq(&rtc->lock);
475
476	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
477	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
478	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
479	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
480	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
481	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
482	if (tm->tm_mon > 0)
483		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
484
485	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
486
487	spin_unlock_irq(&rtc->lock);
488
489	return 0;
490}
491
492static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
493					    int value, int reg_off)
494{
495	/* < 0 for a value that is ignored */
496	if (value < 0)
497		writeb(0, rtc->regbase + reg_off);
498	else
499		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
500}
501
502static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503{
504	struct platform_device *pdev = to_platform_device(dev);
505	struct sh_rtc *rtc = platform_get_drvdata(pdev);
506	unsigned int rcr1;
507	struct rtc_time *tm = &wkalrm->time;
508	int mon;
509
510	spin_lock_irq(&rtc->lock);
511
512	/* disable alarm interrupt and clear the alarm flag */
513	rcr1 = readb(rtc->regbase + RCR1);
514	rcr1 &= ~(RCR1_AF | RCR1_AIE);
515	writeb(rcr1, rtc->regbase + RCR1);
516
517	/* set alarm time */
518	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
519	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
520	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
521	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
522	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
523	mon = tm->tm_mon;
524	if (mon >= 0)
525		mon += 1;
526	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
527
528	if (wkalrm->enabled) {
529		rcr1 |= RCR1_AIE;
530		writeb(rcr1, rtc->regbase + RCR1);
531	}
532
533	spin_unlock_irq(&rtc->lock);
534
535	return 0;
536}
537
538static struct rtc_class_ops sh_rtc_ops = {
539	.read_time	= sh_rtc_read_time,
540	.set_time	= sh_rtc_set_time,
541	.read_alarm	= sh_rtc_read_alarm,
542	.set_alarm	= sh_rtc_set_alarm,
543	.proc		= sh_rtc_proc,
544	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
545};
546
547static int __init sh_rtc_probe(struct platform_device *pdev)
548{
549	struct sh_rtc *rtc;
550	struct resource *res;
551	struct rtc_time r;
552	char clk_name[6];
553	int clk_id, ret;
554
555	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
556	if (unlikely(!rtc))
557		return -ENOMEM;
558
559	spin_lock_init(&rtc->lock);
560
561	/* get periodic/carry/alarm irqs */
562	ret = platform_get_irq(pdev, 0);
563	if (unlikely(ret <= 0)) {
564		dev_err(&pdev->dev, "No IRQ resource\n");
565		return -ENOENT;
566	}
567
568	rtc->periodic_irq = ret;
569	rtc->carry_irq = platform_get_irq(pdev, 1);
570	rtc->alarm_irq = platform_get_irq(pdev, 2);
571
572	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
 
 
573	if (unlikely(res == NULL)) {
574		dev_err(&pdev->dev, "No IO resource\n");
575		return -ENOENT;
576	}
577
578	rtc->regsize = resource_size(res);
579
580	rtc->res = devm_request_mem_region(&pdev->dev, res->start,
581					rtc->regsize, pdev->name);
582	if (unlikely(!rtc->res))
583		return -EBUSY;
584
585	rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
586					rtc->regsize);
587	if (unlikely(!rtc->regbase))
588		return -EINVAL;
589
590	clk_id = pdev->id;
591	/* With a single device, the clock id is still "rtc0" */
592	if (clk_id < 0)
593		clk_id = 0;
594
595	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
 
 
 
596
597	rtc->clk = devm_clk_get(&pdev->dev, clk_name);
598	if (IS_ERR(rtc->clk)) {
599		/*
600		 * No error handling for rtc->clk intentionally, not all
601		 * platforms will have a unique clock for the RTC, and
602		 * the clk API can handle the struct clk pointer being
603		 * NULL.
604		 */
605		rtc->clk = NULL;
606	}
607
608	clk_enable(rtc->clk);
609
610	rtc->capabilities = RTC_DEF_CAPABILITIES;
 
 
611	if (dev_get_platdata(&pdev->dev)) {
612		struct sh_rtc_platform_info *pinfo =
613			dev_get_platdata(&pdev->dev);
614
615		/*
616		 * Some CPUs have special capabilities in addition to the
617		 * default set. Add those in here.
618		 */
619		rtc->capabilities |= pinfo->capabilities;
620	}
 
621
622	if (rtc->carry_irq <= 0) {
623		/* register shared periodic/carry/alarm irq */
624		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
625				sh_rtc_shared, 0, "sh-rtc", rtc);
626		if (unlikely(ret)) {
627			dev_err(&pdev->dev,
628				"request IRQ failed with %d, IRQ %d\n", ret,
629				rtc->periodic_irq);
630			goto err_unmap;
631		}
632	} else {
633		/* register periodic/carry/alarm irqs */
634		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
635				sh_rtc_periodic, 0, "sh-rtc period", rtc);
636		if (unlikely(ret)) {
637			dev_err(&pdev->dev,
638				"request period IRQ failed with %d, IRQ %d\n",
639				ret, rtc->periodic_irq);
640			goto err_unmap;
641		}
642
643		ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
644				sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
645		if (unlikely(ret)) {
646			dev_err(&pdev->dev,
647				"request carry IRQ failed with %d, IRQ %d\n",
648				ret, rtc->carry_irq);
649			goto err_unmap;
650		}
651
652		ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
653				sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
654		if (unlikely(ret)) {
655			dev_err(&pdev->dev,
656				"request alarm IRQ failed with %d, IRQ %d\n",
657				ret, rtc->alarm_irq);
658			goto err_unmap;
659		}
660	}
661
662	platform_set_drvdata(pdev, rtc);
663
664	/* everything disabled by default */
665	sh_rtc_irq_set_freq(&pdev->dev, 0);
666	sh_rtc_irq_set_state(&pdev->dev, 0);
667	sh_rtc_setaie(&pdev->dev, 0);
668	sh_rtc_setcie(&pdev->dev, 0);
669
670	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
671					   &sh_rtc_ops, THIS_MODULE);
672	if (IS_ERR(rtc->rtc_dev)) {
673		ret = PTR_ERR(rtc->rtc_dev);
674		goto err_unmap;
675	}
676
677	rtc->rtc_dev->max_user_freq = 256;
678
679	/* reset rtc to epoch 0 if time is invalid */
680	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
681		rtc_time_to_tm(0, &r);
682		rtc_set_time(rtc->rtc_dev, &r);
683	}
684
685	device_init_wakeup(&pdev->dev, 1);
686	return 0;
687
688err_unmap:
689	clk_disable(rtc->clk);
690
691	return ret;
692}
693
694static int __exit sh_rtc_remove(struct platform_device *pdev)
695{
696	struct sh_rtc *rtc = platform_get_drvdata(pdev);
697
698	sh_rtc_irq_set_state(&pdev->dev, 0);
699
700	sh_rtc_setaie(&pdev->dev, 0);
701	sh_rtc_setcie(&pdev->dev, 0);
702
703	clk_disable(rtc->clk);
704
705	return 0;
706}
707
708static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
709{
710	struct platform_device *pdev = to_platform_device(dev);
711	struct sh_rtc *rtc = platform_get_drvdata(pdev);
712
713	irq_set_irq_wake(rtc->periodic_irq, enabled);
714
715	if (rtc->carry_irq > 0) {
716		irq_set_irq_wake(rtc->carry_irq, enabled);
717		irq_set_irq_wake(rtc->alarm_irq, enabled);
718	}
719}
720
721#ifdef CONFIG_PM_SLEEP
722static int sh_rtc_suspend(struct device *dev)
723{
724	if (device_may_wakeup(dev))
725		sh_rtc_set_irq_wake(dev, 1);
726
727	return 0;
728}
729
730static int sh_rtc_resume(struct device *dev)
731{
732	if (device_may_wakeup(dev))
733		sh_rtc_set_irq_wake(dev, 0);
734
735	return 0;
736}
737#endif
738
739static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
740
 
 
 
 
 
 
741static struct platform_driver sh_rtc_platform_driver = {
742	.driver		= {
743		.name	= DRV_NAME,
744		.pm	= &sh_rtc_pm_ops,
 
745	},
746	.remove		= __exit_p(sh_rtc_remove),
747};
748
749module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
750
751MODULE_DESCRIPTION("SuperH on-chip RTC driver");
752MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
753	      "Jamie Lenehan <lenehan@twibble.org>, "
754	      "Angelo Castello <angelo.castello@st.com>");
755MODULE_LICENSE("GPL");
756MODULE_ALIAS("platform:" DRV_NAME);