Loading...
1/**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/etherdevice.h>
18#include "rsi_mgmt.h"
19#include "rsi_common.h"
20#include "rsi_ps.h"
21#include "rsi_hal.h"
22
23static struct bootup_params boot_params_20 = {
24 .magic_number = cpu_to_le16(0x5aa5),
25 .crystal_good_time = 0x0,
26 .valid = cpu_to_le32(VALID_20),
27 .reserved_for_valids = 0x0,
28 .bootup_mode_info = 0x0,
29 .digital_loop_back_params = 0x0,
30 .rtls_timestamp_en = 0x0,
31 .host_spi_intr_cfg = 0x0,
32 .device_clk_info = {{
33 .pll_config_g = {
34 .tapll_info_g = {
35 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
36 (TA_PLL_M_VAL_20)),
37 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
38 },
39 .pll960_info_g = {
40 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
41 (PLL960_N_VAL_20)),
42 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
43 .pll_reg_3 = 0x0,
44 },
45 .afepll_info_g = {
46 .pll_reg = cpu_to_le16(0x9f0),
47 }
48 },
49 .switch_clk_g = {
50 .switch_clk_info = cpu_to_le16(0xb),
51 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
52 .umac_clock_reg_config = cpu_to_le16(0x48),
53 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
54 }
55 },
56 {
57 .pll_config_g = {
58 .tapll_info_g = {
59 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
60 (TA_PLL_M_VAL_20)),
61 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
62 },
63 .pll960_info_g = {
64 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
65 (PLL960_N_VAL_20)),
66 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
67 .pll_reg_3 = 0x0,
68 },
69 .afepll_info_g = {
70 .pll_reg = cpu_to_le16(0x9f0),
71 }
72 },
73 .switch_clk_g = {
74 .switch_clk_info = 0x0,
75 .bbp_lmac_clk_reg_val = 0x0,
76 .umac_clock_reg_config = 0x0,
77 .qspi_uart_clock_reg_config = 0x0
78 }
79 },
80 {
81 .pll_config_g = {
82 .tapll_info_g = {
83 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
84 (TA_PLL_M_VAL_20)),
85 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
86 },
87 .pll960_info_g = {
88 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
89 (PLL960_N_VAL_20)),
90 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
91 .pll_reg_3 = 0x0,
92 },
93 .afepll_info_g = {
94 .pll_reg = cpu_to_le16(0x9f0),
95 }
96 },
97 .switch_clk_g = {
98 .switch_clk_info = 0x0,
99 .bbp_lmac_clk_reg_val = 0x0,
100 .umac_clock_reg_config = 0x0,
101 .qspi_uart_clock_reg_config = 0x0
102 }
103 } },
104 .buckboost_wakeup_cnt = 0x0,
105 .pmu_wakeup_wait = 0x0,
106 .shutdown_wait_time = 0x0,
107 .pmu_slp_clkout_sel = 0x0,
108 .wdt_prog_value = 0x0,
109 .wdt_soc_rst_delay = 0x0,
110 .dcdc_operation_mode = 0x0,
111 .soc_reset_wait_cnt = 0x0,
112 .waiting_time_at_fresh_sleep = 0x0,
113 .max_threshold_to_avoid_sleep = 0x0,
114 .beacon_resedue_alg_en = 0,
115};
116
117static struct bootup_params boot_params_40 = {
118 .magic_number = cpu_to_le16(0x5aa5),
119 .crystal_good_time = 0x0,
120 .valid = cpu_to_le32(VALID_40),
121 .reserved_for_valids = 0x0,
122 .bootup_mode_info = 0x0,
123 .digital_loop_back_params = 0x0,
124 .rtls_timestamp_en = 0x0,
125 .host_spi_intr_cfg = 0x0,
126 .device_clk_info = {{
127 .pll_config_g = {
128 .tapll_info_g = {
129 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
130 (TA_PLL_M_VAL_40)),
131 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
132 },
133 .pll960_info_g = {
134 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
135 (PLL960_N_VAL_40)),
136 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
137 .pll_reg_3 = 0x0,
138 },
139 .afepll_info_g = {
140 .pll_reg = cpu_to_le16(0x9f0),
141 }
142 },
143 .switch_clk_g = {
144 .switch_clk_info = cpu_to_le16(0x09),
145 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
146 .umac_clock_reg_config = cpu_to_le16(0x48),
147 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
148 }
149 },
150 {
151 .pll_config_g = {
152 .tapll_info_g = {
153 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
154 (TA_PLL_M_VAL_40)),
155 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
156 },
157 .pll960_info_g = {
158 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
159 (PLL960_N_VAL_40)),
160 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
161 .pll_reg_3 = 0x0,
162 },
163 .afepll_info_g = {
164 .pll_reg = cpu_to_le16(0x9f0),
165 }
166 },
167 .switch_clk_g = {
168 .switch_clk_info = 0x0,
169 .bbp_lmac_clk_reg_val = 0x0,
170 .umac_clock_reg_config = 0x0,
171 .qspi_uart_clock_reg_config = 0x0
172 }
173 },
174 {
175 .pll_config_g = {
176 .tapll_info_g = {
177 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
178 (TA_PLL_M_VAL_40)),
179 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
180 },
181 .pll960_info_g = {
182 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
183 (PLL960_N_VAL_40)),
184 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
185 .pll_reg_3 = 0x0,
186 },
187 .afepll_info_g = {
188 .pll_reg = cpu_to_le16(0x9f0),
189 }
190 },
191 .switch_clk_g = {
192 .switch_clk_info = 0x0,
193 .bbp_lmac_clk_reg_val = 0x0,
194 .umac_clock_reg_config = 0x0,
195 .qspi_uart_clock_reg_config = 0x0
196 }
197 } },
198 .buckboost_wakeup_cnt = 0x0,
199 .pmu_wakeup_wait = 0x0,
200 .shutdown_wait_time = 0x0,
201 .pmu_slp_clkout_sel = 0x0,
202 .wdt_prog_value = 0x0,
203 .wdt_soc_rst_delay = 0x0,
204 .dcdc_operation_mode = 0x0,
205 .soc_reset_wait_cnt = 0x0,
206 .waiting_time_at_fresh_sleep = 0x0,
207 .max_threshold_to_avoid_sleep = 0x0,
208 .beacon_resedue_alg_en = 0,
209};
210
211static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
212
213/**
214 * rsi_set_default_parameters() - This function sets default parameters.
215 * @common: Pointer to the driver private structure.
216 *
217 * Return: none
218 */
219static void rsi_set_default_parameters(struct rsi_common *common)
220{
221 common->band = NL80211_BAND_2GHZ;
222 common->channel_width = BW_20MHZ;
223 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
224 common->channel = 1;
225 common->min_rate = 0xffff;
226 common->fsm_state = FSM_CARD_NOT_READY;
227 common->iface_down = true;
228 common->endpoint = EP_2GHZ_20MHZ;
229 common->driver_mode = 1; /* End to end mode */
230 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
231 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
232 common->rf_power_val = 0; /* Default 1.9V */
233 common->wlan_rf_power_mode = 0;
234 common->obm_ant_sel_val = 2;
235 common->beacon_interval = RSI_BEACON_INTERVAL;
236 common->dtim_cnt = RSI_DTIM_COUNT;
237}
238
239/**
240 * rsi_set_contention_vals() - This function sets the contention values for the
241 * backoff procedure.
242 * @common: Pointer to the driver private structure.
243 *
244 * Return: None.
245 */
246static void rsi_set_contention_vals(struct rsi_common *common)
247{
248 u8 ii = 0;
249
250 for (; ii < NUM_EDCA_QUEUES; ii++) {
251 common->tx_qinfo[ii].wme_params =
252 (((common->edca_params[ii].cw_min / 2) +
253 (common->edca_params[ii].aifs)) *
254 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
255 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
256 common->tx_qinfo[ii].pkt_contended = 0;
257 }
258}
259
260/**
261 * rsi_send_internal_mgmt_frame() - This function sends management frames to
262 * firmware.Also schedules packet to queue
263 * for transmission.
264 * @common: Pointer to the driver private structure.
265 * @skb: Pointer to the socket buffer structure.
266 *
267 * Return: 0 on success, -1 on failure.
268 */
269static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
270 struct sk_buff *skb)
271{
272 struct skb_info *tx_params;
273 struct rsi_cmd_desc *desc;
274
275 if (skb == NULL) {
276 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
277 return -ENOMEM;
278 }
279 desc = (struct rsi_cmd_desc *)skb->data;
280 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
281 skb->priority = MGMT_SOFT_Q;
282 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
283 tx_params->flags |= INTERNAL_MGMT_PKT;
284 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
285 rsi_set_event(&common->tx_thread.event);
286 return 0;
287}
288
289/**
290 * rsi_load_radio_caps() - This function is used to send radio capabilities
291 * values to firmware.
292 * @common: Pointer to the driver private structure.
293 *
294 * Return: 0 on success, corresponding negative error code on failure.
295 */
296static int rsi_load_radio_caps(struct rsi_common *common)
297{
298 struct rsi_radio_caps *radio_caps;
299 struct rsi_hw *adapter = common->priv;
300 u16 inx = 0;
301 u8 ii;
302 u8 radio_id = 0;
303 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
304 0xf0, 0xf0, 0xf0, 0xf0,
305 0xf0, 0xf0, 0xf0, 0xf0,
306 0xf0, 0xf0, 0xf0, 0xf0,
307 0xf0, 0xf0, 0xf0, 0xf0};
308 struct sk_buff *skb;
309 u16 frame_len = sizeof(struct rsi_radio_caps);
310
311 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
312
313 skb = dev_alloc_skb(frame_len);
314
315 if (!skb) {
316 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
317 __func__);
318 return -ENOMEM;
319 }
320
321 memset(skb->data, 0, frame_len);
322 radio_caps = (struct rsi_radio_caps *)skb->data;
323
324 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
325 radio_caps->channel_num = common->channel;
326 radio_caps->rf_model = RSI_RF_TYPE;
327
328 if (common->channel_width == BW_40MHZ) {
329 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
330 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
331
332 if (common->fsm_state == FSM_MAC_INIT_DONE) {
333 struct ieee80211_hw *hw = adapter->hw;
334 struct ieee80211_conf *conf = &hw->conf;
335
336 if (conf_is_ht40_plus(conf)) {
337 radio_caps->radio_cfg_info =
338 RSI_CMDDESC_LOWER_20_ENABLE;
339 radio_caps->radio_info =
340 RSI_CMDDESC_LOWER_20_ENABLE;
341 } else if (conf_is_ht40_minus(conf)) {
342 radio_caps->radio_cfg_info =
343 RSI_CMDDESC_UPPER_20_ENABLE;
344 radio_caps->radio_info =
345 RSI_CMDDESC_UPPER_20_ENABLE;
346 } else {
347 radio_caps->radio_cfg_info =
348 RSI_CMDDESC_40MHZ;
349 radio_caps->radio_info =
350 RSI_CMDDESC_FULL_40_ENABLE;
351 }
352 }
353 }
354 radio_caps->radio_info |= radio_id;
355
356 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
357 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
358 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
359 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
360 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
361 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
362
363 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
364 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
365 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
366 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
367 radio_caps->qos_params[ii].txop_q = 0;
368 }
369
370 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
371 radio_caps->qos_params[ii].cont_win_min_q =
372 cpu_to_le16(common->edca_params[ii].cw_min);
373 radio_caps->qos_params[ii].cont_win_max_q =
374 cpu_to_le16(common->edca_params[ii].cw_max);
375 radio_caps->qos_params[ii].aifsn_val_q =
376 cpu_to_le16((common->edca_params[ii].aifs) << 8);
377 radio_caps->qos_params[ii].txop_q =
378 cpu_to_le16(common->edca_params[ii].txop);
379 }
380
381 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
382 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
383 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
384
385 memcpy(&common->rate_pwr[0], &gc[0], 40);
386 for (ii = 0; ii < 20; ii++)
387 radio_caps->gcpd_per_rate[inx++] =
388 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
389
390 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
391 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
392
393 skb_put(skb, frame_len);
394
395 return rsi_send_internal_mgmt_frame(common, skb);
396}
397
398/**
399 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
400 * @common: Pointer to the driver private structure.
401 * @msg: Pointer to received packet.
402 * @msg_len: Length of the recieved packet.
403 * @type: Type of recieved packet.
404 *
405 * Return: 0 on success, -1 on failure.
406 */
407static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
408 u8 *msg,
409 s32 msg_len)
410{
411 struct rsi_hw *adapter = common->priv;
412 struct ieee80211_tx_info *info;
413 struct skb_info *rx_params;
414 u8 pad_bytes = msg[4];
415 struct sk_buff *skb;
416
417 if (!adapter->sc_nvifs)
418 return -ENOLINK;
419
420 msg_len -= pad_bytes;
421 if (msg_len <= 0) {
422 rsi_dbg(MGMT_RX_ZONE,
423 "%s: Invalid rx msg of len = %d\n",
424 __func__, msg_len);
425 return -EINVAL;
426 }
427
428 skb = dev_alloc_skb(msg_len);
429 if (!skb)
430 return -ENOMEM;
431
432 skb_put_data(skb,
433 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
434 msg_len);
435
436 info = IEEE80211_SKB_CB(skb);
437 rx_params = (struct skb_info *)info->driver_data;
438 rx_params->rssi = rsi_get_rssi(msg);
439 rx_params->channel = rsi_get_channel(msg);
440 rsi_indicate_pkt_to_os(common, skb);
441
442 return 0;
443}
444
445/**
446 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
447 * frame to firmware.
448 * @common: Pointer to the driver private structure.
449 * @opmode: Operating mode of device.
450 * @notify_event: Notification about station connection.
451 * @bssid: bssid.
452 * @qos_enable: Qos is enabled.
453 * @aid: Aid (unique for all STA).
454 *
455 * Return: status: 0 on success, corresponding negative error code on failure.
456 */
457static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
458 enum opmode opmode,
459 u8 notify_event,
460 const unsigned char *bssid,
461 u8 qos_enable,
462 u16 aid,
463 u16 sta_id,
464 struct ieee80211_vif *vif)
465{
466 struct sk_buff *skb = NULL;
467 struct rsi_peer_notify *peer_notify;
468 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
469 int status;
470 u16 frame_len = sizeof(struct rsi_peer_notify);
471
472 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
473
474 skb = dev_alloc_skb(frame_len);
475
476 if (!skb) {
477 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
478 __func__);
479 return -ENOMEM;
480 }
481
482 memset(skb->data, 0, frame_len);
483 peer_notify = (struct rsi_peer_notify *)skb->data;
484
485 if (opmode == RSI_OPMODE_STA)
486 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
487 else if (opmode == RSI_OPMODE_AP)
488 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
489
490 switch (notify_event) {
491 case STA_CONNECTED:
492 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
493 break;
494 case STA_DISCONNECTED:
495 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
496 break;
497 default:
498 break;
499 }
500
501 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
502 ether_addr_copy(peer_notify->mac_addr, bssid);
503 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
504 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
505
506 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
507 (frame_len - FRAME_DESC_SZ),
508 RSI_WIFI_MGMT_Q);
509 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
510 peer_notify->desc.desc_dword3.qid_tid = sta_id;
511 peer_notify->desc.desc_dword3.sta_id = vap_id;
512
513 skb_put(skb, frame_len);
514
515 status = rsi_send_internal_mgmt_frame(common, skb);
516
517 if ((vif->type == NL80211_IFTYPE_STATION) &&
518 (!status && qos_enable)) {
519 rsi_set_contention_vals(common);
520 status = rsi_load_radio_caps(common);
521 }
522 return status;
523}
524
525/**
526 * rsi_send_aggregation_params_frame() - This function sends the ampdu
527 * indication frame to firmware.
528 * @common: Pointer to the driver private structure.
529 * @tid: traffic identifier.
530 * @ssn: ssn.
531 * @buf_size: buffer size.
532 * @event: notification about station connection.
533 *
534 * Return: 0 on success, corresponding negative error code on failure.
535 */
536int rsi_send_aggregation_params_frame(struct rsi_common *common,
537 u16 tid,
538 u16 ssn,
539 u8 buf_size,
540 u8 event,
541 u8 sta_id)
542{
543 struct sk_buff *skb = NULL;
544 struct rsi_aggr_params *aggr_params;
545 u16 frame_len = sizeof(struct rsi_aggr_params);
546
547 skb = dev_alloc_skb(frame_len);
548
549 if (!skb) {
550 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
551 __func__);
552 return -ENOMEM;
553 }
554
555 memset(skb->data, 0, frame_len);
556 aggr_params = (struct rsi_aggr_params *)skb->data;
557
558 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
559
560 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
561 aggr_params->desc_dword0.frame_type = AMPDU_IND;
562
563 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
564 aggr_params->peer_id = sta_id;
565 if (event == STA_TX_ADDBA_DONE) {
566 aggr_params->seq_start = cpu_to_le16(ssn);
567 aggr_params->baw_size = cpu_to_le16(buf_size);
568 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
569 } else if (event == STA_RX_ADDBA_DONE) {
570 aggr_params->seq_start = cpu_to_le16(ssn);
571 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
572 RSI_AGGR_PARAMS_RX_AGGR);
573 } else if (event == STA_RX_DELBA) {
574 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
575 }
576
577 skb_put(skb, frame_len);
578
579 return rsi_send_internal_mgmt_frame(common, skb);
580}
581
582/**
583 * rsi_program_bb_rf() - This function starts base band and RF programming.
584 * This is called after initial configurations are done.
585 * @common: Pointer to the driver private structure.
586 *
587 * Return: 0 on success, corresponding negative error code on failure.
588 */
589static int rsi_program_bb_rf(struct rsi_common *common)
590{
591 struct sk_buff *skb;
592 struct rsi_bb_rf_prog *bb_rf_prog;
593 u16 frame_len = sizeof(struct rsi_bb_rf_prog);
594
595 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
596
597 skb = dev_alloc_skb(frame_len);
598 if (!skb) {
599 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
600 __func__);
601 return -ENOMEM;
602 }
603
604 memset(skb->data, 0, frame_len);
605 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
606
607 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
608 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
609 bb_rf_prog->endpoint = common->endpoint;
610 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
611
612 if (common->rf_reset) {
613 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE);
614 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
615 __func__);
616 common->rf_reset = 0;
617 }
618 common->bb_rf_prog_count = 1;
619 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
620 (RSI_RF_TYPE << 4));
621 skb_put(skb, frame_len);
622
623 return rsi_send_internal_mgmt_frame(common, skb);
624}
625
626/**
627 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
628 * @common: Pointer to the driver private structure.
629 * @opmode: Operating mode of device.
630 *
631 * Return: 0 on success, corresponding negative error code on failure.
632 */
633int rsi_set_vap_capabilities(struct rsi_common *common,
634 enum opmode mode,
635 u8 *mac_addr,
636 u8 vap_id,
637 u8 vap_status)
638{
639 struct sk_buff *skb = NULL;
640 struct rsi_vap_caps *vap_caps;
641 struct rsi_hw *adapter = common->priv;
642 struct ieee80211_hw *hw = adapter->hw;
643 struct ieee80211_conf *conf = &hw->conf;
644 u16 frame_len = sizeof(struct rsi_vap_caps);
645
646 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
647
648 skb = dev_alloc_skb(frame_len);
649 if (!skb) {
650 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
651 __func__);
652 return -ENOMEM;
653 }
654
655 memset(skb->data, 0, frame_len);
656 vap_caps = (struct rsi_vap_caps *)skb->data;
657
658 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
659 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
660 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
661 vap_caps->status = vap_status;
662 vap_caps->vif_type = mode;
663 vap_caps->channel_bw = common->channel_width;
664 vap_caps->vap_id = vap_id;
665 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
666 (common->radio_id & 0xf);
667
668 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
669 vap_caps->keep_alive_period = cpu_to_le16(90);
670 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
671
672 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
673
674 if (common->band == NL80211_BAND_5GHZ) {
675 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
676 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
677 } else {
678 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
679 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
680 }
681 if (conf_is_ht40(conf)) {
682 if (conf_is_ht40_minus(conf))
683 vap_caps->ctrl_rate_flags =
684 cpu_to_le16(UPPER_20_ENABLE);
685 else if (conf_is_ht40_plus(conf))
686 vap_caps->ctrl_rate_flags =
687 cpu_to_le16(LOWER_20_ENABLE);
688 else
689 vap_caps->ctrl_rate_flags =
690 cpu_to_le16(FULL40M_ENABLE);
691 }
692
693 vap_caps->default_data_rate = 0;
694 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
695 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
696
697 skb_put(skb, frame_len);
698
699 return rsi_send_internal_mgmt_frame(common, skb);
700}
701
702/**
703 * rsi_hal_load_key() - This function is used to load keys within the firmware.
704 * @common: Pointer to the driver private structure.
705 * @data: Pointer to the key data.
706 * @key_len: Key length to be loaded.
707 * @key_type: Type of key: GROUP/PAIRWISE.
708 * @key_id: Key index.
709 * @cipher: Type of cipher used.
710 *
711 * Return: 0 on success, -1 on failure.
712 */
713int rsi_hal_load_key(struct rsi_common *common,
714 u8 *data,
715 u16 key_len,
716 u8 key_type,
717 u8 key_id,
718 u32 cipher,
719 s16 sta_id,
720 struct ieee80211_vif *vif)
721{
722 struct sk_buff *skb = NULL;
723 struct rsi_set_key *set_key;
724 u16 key_descriptor = 0;
725 u16 frame_len = sizeof(struct rsi_set_key);
726
727 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
728
729 skb = dev_alloc_skb(frame_len);
730 if (!skb) {
731 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
732 __func__);
733 return -ENOMEM;
734 }
735
736 memset(skb->data, 0, frame_len);
737 set_key = (struct rsi_set_key *)skb->data;
738
739 if (key_type == RSI_GROUP_KEY) {
740 key_descriptor = RSI_KEY_TYPE_BROADCAST;
741 if (vif->type == NL80211_IFTYPE_AP)
742 key_descriptor |= RSI_KEY_MODE_AP;
743 }
744 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
745 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
746 key_id = 0;
747 key_descriptor |= RSI_WEP_KEY;
748 if (key_len >= 13)
749 key_descriptor |= RSI_WEP_KEY_104;
750 } else if (cipher != KEY_TYPE_CLEAR) {
751 key_descriptor |= RSI_CIPHER_WPA;
752 if (cipher == WLAN_CIPHER_SUITE_TKIP)
753 key_descriptor |= RSI_CIPHER_TKIP;
754 }
755 key_descriptor |= RSI_PROTECT_DATA_FRAMES;
756 key_descriptor |= ((key_id << RSI_KEY_ID_OFFSET) & RSI_KEY_ID_MASK);
757
758 rsi_set_len_qno(&set_key->desc_dword0.len_qno,
759 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
760 set_key->desc_dword0.frame_type = SET_KEY_REQ;
761 set_key->key_desc = cpu_to_le16(key_descriptor);
762 set_key->sta_id = sta_id;
763
764 if (data) {
765 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
766 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
767 memcpy(&set_key->key[key_id][1], data, key_len * 2);
768 } else {
769 memcpy(&set_key->key[0][0], data, key_len);
770 }
771 memcpy(set_key->tx_mic_key, &data[16], 8);
772 memcpy(set_key->rx_mic_key, &data[24], 8);
773 } else {
774 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
775 }
776
777 skb_put(skb, frame_len);
778
779 return rsi_send_internal_mgmt_frame(common, skb);
780}
781
782/*
783 * This function sends the common device configuration parameters to device.
784 * This frame includes the useful information to make device works on
785 * specific operating mode.
786 */
787static int rsi_send_common_dev_params(struct rsi_common *common)
788{
789 struct sk_buff *skb;
790 u16 frame_len;
791 struct rsi_config_vals *dev_cfgs;
792
793 frame_len = sizeof(struct rsi_config_vals);
794
795 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
796 skb = dev_alloc_skb(frame_len);
797 if (!skb) {
798 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
799 return -ENOMEM;
800 }
801
802 memset(skb->data, 0, frame_len);
803
804 dev_cfgs = (struct rsi_config_vals *)skb->data;
805 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
806
807 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
808 RSI_COEX_Q);
809 dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
810
811 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
812 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
813
814 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
815 dev_cfgs->unused_soc_gpio_bitmap =
816 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
817
818 dev_cfgs->opermode = common->oper_mode;
819 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
820 dev_cfgs->driver_mode = common->driver_mode;
821 dev_cfgs->region_code = NL80211_DFS_FCC;
822 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
823
824 skb_put(skb, frame_len);
825
826 return rsi_send_internal_mgmt_frame(common, skb);
827}
828
829/*
830 * rsi_load_bootup_params() - This function send bootup params to the firmware.
831 * @common: Pointer to the driver private structure.
832 *
833 * Return: 0 on success, corresponding error code on failure.
834 */
835static int rsi_load_bootup_params(struct rsi_common *common)
836{
837 struct sk_buff *skb;
838 struct rsi_boot_params *boot_params;
839
840 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
841 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
842 if (!skb) {
843 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
844 __func__);
845 return -ENOMEM;
846 }
847
848 memset(skb->data, 0, sizeof(struct rsi_boot_params));
849 boot_params = (struct rsi_boot_params *)skb->data;
850
851 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
852
853 if (common->channel_width == BW_40MHZ) {
854 memcpy(&boot_params->bootup_params,
855 &boot_params_40,
856 sizeof(struct bootup_params));
857 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
858 UMAC_CLK_40BW);
859 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
860 } else {
861 memcpy(&boot_params->bootup_params,
862 &boot_params_20,
863 sizeof(struct bootup_params));
864 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
865 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
866 rsi_dbg(MGMT_TX_ZONE,
867 "%s: Packet 20MHZ <=== %d\n", __func__,
868 UMAC_CLK_20BW);
869 } else {
870 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
871 rsi_dbg(MGMT_TX_ZONE,
872 "%s: Packet 20MHZ <=== %d\n", __func__,
873 UMAC_CLK_40MHZ);
874 }
875 }
876
877 /**
878 * Bit{0:11} indicates length of the Packet
879 * Bit{12:15} indicates host queue number
880 */
881 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
882 (RSI_WIFI_MGMT_Q << 12));
883 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
884
885 skb_put(skb, sizeof(struct rsi_boot_params));
886
887 return rsi_send_internal_mgmt_frame(common, skb);
888}
889
890/**
891 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
892 * internal management frame to indicate it to firmware.
893 * @common: Pointer to the driver private structure.
894 *
895 * Return: 0 on success, corresponding error code on failure.
896 */
897static int rsi_send_reset_mac(struct rsi_common *common)
898{
899 struct sk_buff *skb;
900 struct rsi_mac_frame *mgmt_frame;
901
902 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
903
904 skb = dev_alloc_skb(FRAME_DESC_SZ);
905 if (!skb) {
906 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
907 __func__);
908 return -ENOMEM;
909 }
910
911 memset(skb->data, 0, FRAME_DESC_SZ);
912 mgmt_frame = (struct rsi_mac_frame *)skb->data;
913
914 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
915 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
916 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
917
918 skb_put(skb, FRAME_DESC_SZ);
919
920 return rsi_send_internal_mgmt_frame(common, skb);
921}
922
923/**
924 * rsi_band_check() - This function programs the band
925 * @common: Pointer to the driver private structure.
926 *
927 * Return: 0 on success, corresponding error code on failure.
928 */
929int rsi_band_check(struct rsi_common *common,
930 struct ieee80211_channel *curchan)
931{
932 struct rsi_hw *adapter = common->priv;
933 struct ieee80211_hw *hw = adapter->hw;
934 u8 prev_bw = common->channel_width;
935 u8 prev_ep = common->endpoint;
936 int status = 0;
937
938 if (common->band != curchan->band) {
939 common->rf_reset = 1;
940 common->band = curchan->band;
941 }
942
943 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
944 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
945 common->channel_width = BW_20MHZ;
946 else
947 common->channel_width = BW_40MHZ;
948
949 if (common->band == NL80211_BAND_2GHZ) {
950 if (common->channel_width)
951 common->endpoint = EP_2GHZ_40MHZ;
952 else
953 common->endpoint = EP_2GHZ_20MHZ;
954 } else {
955 if (common->channel_width)
956 common->endpoint = EP_5GHZ_40MHZ;
957 else
958 common->endpoint = EP_5GHZ_20MHZ;
959 }
960
961 if (common->endpoint != prev_ep) {
962 status = rsi_program_bb_rf(common);
963 if (status)
964 return status;
965 }
966
967 if (common->channel_width != prev_bw) {
968 status = rsi_load_bootup_params(common);
969 if (status)
970 return status;
971
972 status = rsi_load_radio_caps(common);
973 if (status)
974 return status;
975 }
976
977 return status;
978}
979
980/**
981 * rsi_set_channel() - This function programs the channel.
982 * @common: Pointer to the driver private structure.
983 * @channel: Channel value to be set.
984 *
985 * Return: 0 on success, corresponding error code on failure.
986 */
987int rsi_set_channel(struct rsi_common *common,
988 struct ieee80211_channel *channel)
989{
990 struct sk_buff *skb = NULL;
991 struct rsi_chan_config *chan_cfg;
992 u16 frame_len = sizeof(struct rsi_chan_config);
993
994 rsi_dbg(MGMT_TX_ZONE,
995 "%s: Sending scan req frame\n", __func__);
996
997 skb = dev_alloc_skb(frame_len);
998 if (!skb) {
999 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1000 __func__);
1001 return -ENOMEM;
1002 }
1003
1004 if (!channel) {
1005 dev_kfree_skb(skb);
1006 return 0;
1007 }
1008 memset(skb->data, 0, frame_len);
1009 chan_cfg = (struct rsi_chan_config *)skb->data;
1010
1011 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1012 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1013 chan_cfg->channel_number = channel->hw_value;
1014 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1015 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1016 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1017
1018 if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1019 (channel->flags & IEEE80211_CHAN_RADAR)) {
1020 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1021 } else {
1022 if (common->tx_power < channel->max_power)
1023 chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1024 else
1025 chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1026 }
1027 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1028
1029 if (common->channel_width == BW_40MHZ)
1030 chan_cfg->channel_width = 0x1;
1031
1032 common->channel = channel->hw_value;
1033
1034 skb_put(skb, frame_len);
1035
1036 return rsi_send_internal_mgmt_frame(common, skb);
1037}
1038
1039/**
1040 * rsi_send_radio_params_update() - This function sends the radio
1041 * parameters update to device
1042 * @common: Pointer to the driver private structure.
1043 * @channel: Channel value to be set.
1044 *
1045 * Return: 0 on success, corresponding error code on failure.
1046 */
1047int rsi_send_radio_params_update(struct rsi_common *common)
1048{
1049 struct rsi_mac_frame *cmd_frame;
1050 struct sk_buff *skb = NULL;
1051
1052 rsi_dbg(MGMT_TX_ZONE,
1053 "%s: Sending Radio Params update frame\n", __func__);
1054
1055 skb = dev_alloc_skb(FRAME_DESC_SZ);
1056 if (!skb) {
1057 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1058 __func__);
1059 return -ENOMEM;
1060 }
1061
1062 memset(skb->data, 0, FRAME_DESC_SZ);
1063 cmd_frame = (struct rsi_mac_frame *)skb->data;
1064
1065 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1066 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1067 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1068
1069 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1070
1071 skb_put(skb, FRAME_DESC_SZ);
1072
1073 return rsi_send_internal_mgmt_frame(common, skb);
1074}
1075
1076/* This function programs the threshold. */
1077int rsi_send_vap_dynamic_update(struct rsi_common *common)
1078{
1079 struct sk_buff *skb;
1080 struct rsi_dynamic_s *dynamic_frame;
1081
1082 rsi_dbg(MGMT_TX_ZONE,
1083 "%s: Sending vap update indication frame\n", __func__);
1084
1085 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1086 if (!skb)
1087 return -ENOMEM;
1088
1089 memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1090 dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1091 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1092 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1093
1094 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1095 dynamic_frame->desc_dword2.pkt_info =
1096 cpu_to_le32(common->rts_threshold);
1097
1098 if (common->wow_flags & RSI_WOW_ENABLED) {
1099 /* Beacon miss threshold */
1100 dynamic_frame->desc_dword3.token =
1101 cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1102 dynamic_frame->frame_body.keep_alive_period =
1103 cpu_to_le16(RSI_WOW_KEEPALIVE);
1104 } else {
1105 dynamic_frame->frame_body.keep_alive_period =
1106 cpu_to_le16(RSI_DEF_KEEPALIVE);
1107 }
1108
1109 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1110
1111 skb_put(skb, sizeof(struct rsi_dynamic_s));
1112
1113 return rsi_send_internal_mgmt_frame(common, skb);
1114}
1115
1116/**
1117 * rsi_compare() - This function is used to compare two integers
1118 * @a: pointer to the first integer
1119 * @b: pointer to the second integer
1120 *
1121 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1122 */
1123static int rsi_compare(const void *a, const void *b)
1124{
1125 u16 _a = *(const u16 *)(a);
1126 u16 _b = *(const u16 *)(b);
1127
1128 if (_a > _b)
1129 return -1;
1130
1131 if (_a < _b)
1132 return 1;
1133
1134 return 0;
1135}
1136
1137/**
1138 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1139 * @rate: The standard rate to be mapped.
1140 * @offset: Offset that will be returned.
1141 *
1142 * Return: 0 if it is a mcs rate, else 1
1143 */
1144static bool rsi_map_rates(u16 rate, int *offset)
1145{
1146 int kk;
1147 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1148 if (rate == mcs[kk]) {
1149 *offset = kk;
1150 return false;
1151 }
1152 }
1153
1154 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1155 if (rate == rsi_rates[kk].bitrate / 5) {
1156 *offset = kk;
1157 break;
1158 }
1159 }
1160 return true;
1161}
1162
1163/**
1164 * rsi_send_auto_rate_request() - This function is to set rates for connection
1165 * and send autorate request to firmware.
1166 * @common: Pointer to the driver private structure.
1167 *
1168 * Return: 0 on success, corresponding error code on failure.
1169 */
1170static int rsi_send_auto_rate_request(struct rsi_common *common,
1171 struct ieee80211_sta *sta,
1172 u16 sta_id,
1173 struct ieee80211_vif *vif)
1174{
1175 struct sk_buff *skb;
1176 struct rsi_auto_rate *auto_rate;
1177 int ii = 0, jj = 0, kk = 0;
1178 struct ieee80211_hw *hw = common->priv->hw;
1179 u8 band = hw->conf.chandef.chan->band;
1180 u8 num_supported_rates = 0;
1181 u8 rate_table_offset, rate_offset = 0;
1182 u32 rate_bitmap;
1183 u16 *selected_rates, min_rate;
1184 bool is_ht = false, is_sgi = false;
1185 u16 frame_len = sizeof(struct rsi_auto_rate);
1186
1187 rsi_dbg(MGMT_TX_ZONE,
1188 "%s: Sending auto rate request frame\n", __func__);
1189
1190 skb = dev_alloc_skb(frame_len);
1191 if (!skb) {
1192 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1193 __func__);
1194 return -ENOMEM;
1195 }
1196
1197 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1198 if (!selected_rates) {
1199 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1200 __func__);
1201 dev_kfree_skb(skb);
1202 return -ENOMEM;
1203 }
1204
1205 auto_rate = (struct rsi_auto_rate *)skb->data;
1206
1207 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1208 auto_rate->collision_tolerance = cpu_to_le16(3);
1209 auto_rate->failure_limit = cpu_to_le16(3);
1210 auto_rate->initial_boundary = cpu_to_le16(3);
1211 auto_rate->max_threshold_limt = cpu_to_le16(27);
1212
1213 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1214
1215 if (common->channel_width == BW_40MHZ)
1216 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1217 auto_rate->desc.desc_dword3.sta_id = sta_id;
1218
1219 if (vif->type == NL80211_IFTYPE_STATION) {
1220 rate_bitmap = common->bitrate_mask[band];
1221 is_ht = common->vif_info[0].is_ht;
1222 is_sgi = common->vif_info[0].sgi;
1223 } else {
1224 rate_bitmap = sta->supp_rates[band];
1225 is_ht = sta->ht_cap.ht_supported;
1226 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1227 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1228 is_sgi = true;
1229 }
1230
1231 if (band == NL80211_BAND_2GHZ) {
1232 if ((rate_bitmap == 0) && (is_ht))
1233 min_rate = RSI_RATE_MCS0;
1234 else
1235 min_rate = RSI_RATE_1;
1236 rate_table_offset = 0;
1237 } else {
1238 if ((rate_bitmap == 0) && (is_ht))
1239 min_rate = RSI_RATE_MCS0;
1240 else
1241 min_rate = RSI_RATE_6;
1242 rate_table_offset = 4;
1243 }
1244
1245 for (ii = 0, jj = 0;
1246 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1247 if (rate_bitmap & BIT(ii)) {
1248 selected_rates[jj++] =
1249 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1250 rate_offset++;
1251 }
1252 }
1253 num_supported_rates = jj;
1254
1255 if (is_ht) {
1256 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1257 selected_rates[jj++] = mcs[ii];
1258 num_supported_rates += ARRAY_SIZE(mcs);
1259 rate_offset += ARRAY_SIZE(mcs);
1260 }
1261
1262 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1263
1264 /* mapping the rates to RSI rates */
1265 for (ii = 0; ii < jj; ii++) {
1266 if (rsi_map_rates(selected_rates[ii], &kk)) {
1267 auto_rate->supported_rates[ii] =
1268 cpu_to_le16(rsi_rates[kk].hw_value);
1269 } else {
1270 auto_rate->supported_rates[ii] =
1271 cpu_to_le16(rsi_mcsrates[kk]);
1272 }
1273 }
1274
1275 /* loading HT rates in the bottom half of the auto rate table */
1276 if (is_ht) {
1277 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1278 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1279 if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1280 auto_rate->supported_rates[ii++] =
1281 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1282 else
1283 auto_rate->supported_rates[ii++] =
1284 cpu_to_le16(rsi_mcsrates[kk]);
1285 auto_rate->supported_rates[ii] =
1286 cpu_to_le16(rsi_mcsrates[kk--]);
1287 }
1288
1289 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1290 auto_rate->supported_rates[ii] =
1291 cpu_to_le16(rsi_mcsrates[0]);
1292 }
1293 }
1294
1295 for (; ii < RSI_TBL_SZ; ii++)
1296 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1297
1298 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1299 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1300 num_supported_rates *= 2;
1301
1302 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1303 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1304
1305 skb_put(skb, frame_len);
1306 kfree(selected_rates);
1307
1308 return rsi_send_internal_mgmt_frame(common, skb);
1309}
1310
1311/**
1312 * rsi_inform_bss_status() - This function informs about bss status with the
1313 * help of sta notify params by sending an internal
1314 * management frame to firmware.
1315 * @common: Pointer to the driver private structure.
1316 * @status: Bss status type.
1317 * @bssid: Bssid.
1318 * @qos_enable: Qos is enabled.
1319 * @aid: Aid (unique for all STAs).
1320 *
1321 * Return: None.
1322 */
1323void rsi_inform_bss_status(struct rsi_common *common,
1324 enum opmode opmode,
1325 u8 status,
1326 const u8 *addr,
1327 u8 qos_enable,
1328 u16 aid,
1329 struct ieee80211_sta *sta,
1330 u16 sta_id,
1331 struct ieee80211_vif *vif)
1332{
1333 if (status) {
1334 if (opmode == RSI_OPMODE_STA)
1335 common->hw_data_qs_blocked = true;
1336 rsi_hal_send_sta_notify_frame(common,
1337 opmode,
1338 STA_CONNECTED,
1339 addr,
1340 qos_enable,
1341 aid, sta_id,
1342 vif);
1343 if (common->min_rate == 0xffff)
1344 rsi_send_auto_rate_request(common, sta, sta_id, vif);
1345 if (opmode == RSI_OPMODE_STA) {
1346 if (!rsi_send_block_unblock_frame(common, false))
1347 common->hw_data_qs_blocked = false;
1348 }
1349 } else {
1350 if (opmode == RSI_OPMODE_STA)
1351 common->hw_data_qs_blocked = true;
1352
1353 if (!(common->wow_flags & RSI_WOW_ENABLED))
1354 rsi_hal_send_sta_notify_frame(common, opmode,
1355 STA_DISCONNECTED, addr,
1356 qos_enable, aid, sta_id,
1357 vif);
1358 if (opmode == RSI_OPMODE_STA)
1359 rsi_send_block_unblock_frame(common, true);
1360 }
1361}
1362
1363/**
1364 * rsi_eeprom_read() - This function sends a frame to read the mac address
1365 * from the eeprom.
1366 * @common: Pointer to the driver private structure.
1367 *
1368 * Return: 0 on success, -1 on failure.
1369 */
1370static int rsi_eeprom_read(struct rsi_common *common)
1371{
1372 struct rsi_eeprom_read_frame *mgmt_frame;
1373 struct rsi_hw *adapter = common->priv;
1374 struct sk_buff *skb;
1375
1376 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1377
1378 skb = dev_alloc_skb(FRAME_DESC_SZ);
1379 if (!skb) {
1380 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1381 __func__);
1382 return -ENOMEM;
1383 }
1384
1385 memset(skb->data, 0, FRAME_DESC_SZ);
1386 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1387
1388 /* FrameType */
1389 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1390 mgmt_frame->pkt_type = EEPROM_READ;
1391
1392 /* Number of bytes to read */
1393 mgmt_frame->pkt_info =
1394 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1395 RSI_EEPROM_LEN_MASK);
1396 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1397 RSI_EEPROM_HDR_SIZE_MASK);
1398
1399 /* Address to read */
1400 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1401
1402 skb_put(skb, FRAME_DESC_SZ);
1403
1404 return rsi_send_internal_mgmt_frame(common, skb);
1405}
1406
1407/**
1408 * This function sends a frame to block/unblock
1409 * data queues in the firmware
1410 *
1411 * @param common Pointer to the driver private structure.
1412 * @param block event - block if true, unblock if false
1413 * @return 0 on success, -1 on failure.
1414 */
1415int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1416{
1417 struct rsi_block_unblock_data *mgmt_frame;
1418 struct sk_buff *skb;
1419
1420 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1421
1422 skb = dev_alloc_skb(FRAME_DESC_SZ);
1423 if (!skb) {
1424 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1425 __func__);
1426 return -ENOMEM;
1427 }
1428
1429 memset(skb->data, 0, FRAME_DESC_SZ);
1430 mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1431
1432 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1433 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1434 mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1435
1436 if (block_event) {
1437 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1438 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1439 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1440 } else {
1441 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1442 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1443 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1444 }
1445
1446 skb_put(skb, FRAME_DESC_SZ);
1447
1448 return rsi_send_internal_mgmt_frame(common, skb);
1449}
1450
1451/**
1452 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1453 *
1454 * @common: Pointer to the driver private structure.
1455 * @rx_filter_word: Flags of filter packets
1456 *
1457 * @Return: 0 on success, -1 on failure.
1458 */
1459int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1460{
1461 struct rsi_mac_frame *cmd_frame;
1462 struct sk_buff *skb;
1463
1464 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1465
1466 skb = dev_alloc_skb(FRAME_DESC_SZ);
1467 if (!skb) {
1468 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1469 __func__);
1470 return -ENOMEM;
1471 }
1472
1473 memset(skb->data, 0, FRAME_DESC_SZ);
1474 cmd_frame = (struct rsi_mac_frame *)skb->data;
1475
1476 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1477 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1478 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1479
1480 skb_put(skb, FRAME_DESC_SZ);
1481
1482 return rsi_send_internal_mgmt_frame(common, skb);
1483}
1484
1485int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1486 struct ieee80211_vif *vif)
1487{
1488 struct rsi_common *common = adapter->priv;
1489 struct ieee80211_bss_conf *bss = &vif->bss_conf;
1490 struct rsi_request_ps *ps;
1491 struct rsi_ps_info *ps_info;
1492 struct sk_buff *skb;
1493 int frame_len = sizeof(*ps);
1494
1495 skb = dev_alloc_skb(frame_len);
1496 if (!skb)
1497 return -ENOMEM;
1498 memset(skb->data, 0, frame_len);
1499
1500 ps = (struct rsi_request_ps *)skb->data;
1501 ps_info = &adapter->ps_info;
1502
1503 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1504 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1505 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1506 if (enable) {
1507 ps->ps_sleep.enable = RSI_PS_ENABLE;
1508 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1509 } else {
1510 ps->ps_sleep.enable = RSI_PS_DISABLE;
1511 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1512 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1513 }
1514
1515 ps->ps_uapsd_acs = common->uapsd_bitmap;
1516
1517 ps->ps_sleep.sleep_type = ps_info->sleep_type;
1518 ps->ps_sleep.num_bcns_per_lis_int =
1519 cpu_to_le16(ps_info->num_bcns_per_lis_int);
1520 ps->ps_sleep.sleep_duration =
1521 cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1522
1523 if (bss->assoc)
1524 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1525 else
1526 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1527
1528 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1529 ps->ps_dtim_interval_duration =
1530 cpu_to_le32(ps_info->dtim_interval_duration);
1531
1532 if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1533 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1534
1535 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1536 skb_put(skb, frame_len);
1537
1538 return rsi_send_internal_mgmt_frame(common, skb);
1539}
1540
1541/**
1542 * rsi_set_antenna() - This fuction send antenna configuration request
1543 * to device
1544 *
1545 * @common: Pointer to the driver private structure.
1546 * @antenna: bitmap for tx antenna selection
1547 *
1548 * Return: 0 on Success, negative error code on failure
1549 */
1550int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1551{
1552 struct rsi_ant_sel_frame *ant_sel_frame;
1553 struct sk_buff *skb;
1554
1555 skb = dev_alloc_skb(FRAME_DESC_SZ);
1556 if (!skb) {
1557 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1558 __func__);
1559 return -ENOMEM;
1560 }
1561
1562 memset(skb->data, 0, FRAME_DESC_SZ);
1563
1564 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1565 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1566 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1567 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1568 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1569 0, RSI_WIFI_MGMT_Q);
1570 skb_put(skb, FRAME_DESC_SZ);
1571
1572 return rsi_send_internal_mgmt_frame(common, skb);
1573}
1574
1575static int rsi_send_beacon(struct rsi_common *common)
1576{
1577 struct sk_buff *skb = NULL;
1578 u8 dword_align_bytes = 0;
1579
1580 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1581 if (!skb)
1582 return -ENOMEM;
1583
1584 memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1585
1586 dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1587 if (dword_align_bytes)
1588 skb_pull(skb, (64 - dword_align_bytes));
1589 if (rsi_prepare_beacon(common, skb)) {
1590 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1591 return -EINVAL;
1592 }
1593 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1594 rsi_set_event(&common->tx_thread.event);
1595 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1596
1597 return 0;
1598}
1599
1600#ifdef CONFIG_PM
1601int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1602 u16 sleep_status)
1603{
1604 struct rsi_wowlan_req *cmd_frame;
1605 struct sk_buff *skb;
1606 u8 length;
1607
1608 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1609
1610 length = sizeof(*cmd_frame);
1611 skb = dev_alloc_skb(length);
1612 if (!skb)
1613 return -ENOMEM;
1614 memset(skb->data, 0, length);
1615 cmd_frame = (struct rsi_wowlan_req *)skb->data;
1616
1617 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1618 (length - FRAME_DESC_SZ),
1619 RSI_WIFI_MGMT_Q);
1620 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1621 cmd_frame->host_sleep_status = sleep_status;
1622 if (common->secinfo.security_enable &&
1623 common->secinfo.gtk_cipher)
1624 flags |= RSI_WOW_GTK_REKEY;
1625 if (sleep_status)
1626 cmd_frame->wow_flags = flags;
1627 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1628 cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1629
1630 skb_put(skb, length);
1631
1632 return rsi_send_internal_mgmt_frame(common, skb);
1633}
1634#endif
1635
1636/**
1637 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1638 * @common: Pointer to the driver private structure.
1639 * @msg: Pointer to received packet.
1640 *
1641 * Return: 0 on success, -1 on failure.
1642 */
1643static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1644 u8 *msg)
1645{
1646 struct rsi_hw *adapter = common->priv;
1647 u8 sub_type = (msg[15] & 0xff);
1648 u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1649 u8 offset;
1650
1651 switch (sub_type) {
1652 case BOOTUP_PARAMS_REQUEST:
1653 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1654 __func__);
1655 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1656 adapter->eeprom.length = (IEEE80211_ADDR_LEN +
1657 WLAN_MAC_MAGIC_WORD_LEN +
1658 WLAN_HOST_MODE_LEN);
1659 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1660 if (rsi_eeprom_read(common)) {
1661 common->fsm_state = FSM_CARD_NOT_READY;
1662 goto out;
1663 }
1664 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1665 } else {
1666 rsi_dbg(INFO_ZONE,
1667 "%s: Received bootup params cfm in %d state\n",
1668 __func__, common->fsm_state);
1669 return 0;
1670 }
1671 break;
1672
1673 case EEPROM_READ:
1674 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1675 if (msg_len <= 0) {
1676 rsi_dbg(FSM_ZONE,
1677 "%s: [EEPROM_READ] Invalid len %d\n",
1678 __func__, msg_len);
1679 goto out;
1680 }
1681 if (msg[16] != MAGIC_WORD) {
1682 rsi_dbg(FSM_ZONE,
1683 "%s: [EEPROM_READ] Invalid token\n", __func__);
1684 common->fsm_state = FSM_CARD_NOT_READY;
1685 goto out;
1686 }
1687 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1688 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1689 WLAN_MAC_MAGIC_WORD_LEN);
1690 memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1691 adapter->eeprom.length =
1692 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1693 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1694 if (rsi_eeprom_read(common)) {
1695 rsi_dbg(ERR_ZONE,
1696 "%s: Failed reading RF band\n",
1697 __func__);
1698 common->fsm_state = FSM_CARD_NOT_READY;
1699 goto out;
1700 }
1701 common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
1702 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
1703 if ((msg[17] & 0x3) == 0x3) {
1704 rsi_dbg(INIT_ZONE, "Dual band supported\n");
1705 common->band = NL80211_BAND_5GHZ;
1706 common->num_supp_bands = 2;
1707 } else if ((msg[17] & 0x3) == 0x1) {
1708 rsi_dbg(INIT_ZONE,
1709 "Only 2.4Ghz band supported\n");
1710 common->band = NL80211_BAND_2GHZ;
1711 common->num_supp_bands = 1;
1712 }
1713 if (rsi_send_reset_mac(common))
1714 goto out;
1715 common->fsm_state = FSM_RESET_MAC_SENT;
1716 } else {
1717 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
1718 __func__);
1719 return 0;
1720 }
1721 break;
1722
1723 case RESET_MAC_REQ:
1724 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1725 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1726 __func__);
1727
1728 if (rsi_load_radio_caps(common))
1729 goto out;
1730 else
1731 common->fsm_state = FSM_RADIO_CAPS_SENT;
1732 } else {
1733 rsi_dbg(ERR_ZONE,
1734 "%s: Received reset mac cfm in %d state\n",
1735 __func__, common->fsm_state);
1736 return 0;
1737 }
1738 break;
1739
1740 case RADIO_CAPABILITIES:
1741 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1742 common->rf_reset = 1;
1743 if (rsi_program_bb_rf(common)) {
1744 goto out;
1745 } else {
1746 common->fsm_state = FSM_BB_RF_PROG_SENT;
1747 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1748 __func__);
1749 }
1750 } else {
1751 rsi_dbg(INFO_ZONE,
1752 "%s: Received radio caps cfm in %d state\n",
1753 __func__, common->fsm_state);
1754 return 0;
1755 }
1756 break;
1757
1758 case BB_PROG_VALUES_REQUEST:
1759 case RF_PROG_VALUES_REQUEST:
1760 case BBP_PROG_IN_TA:
1761 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1762 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1763 common->bb_rf_prog_count--;
1764 if (!common->bb_rf_prog_count) {
1765 common->fsm_state = FSM_MAC_INIT_DONE;
1766 if (common->reinit_hw) {
1767 complete(&common->wlan_init_completion);
1768 } else {
1769 return rsi_mac80211_attach(common);
1770 }
1771 }
1772 } else {
1773 rsi_dbg(INFO_ZONE,
1774 "%s: Received bbb_rf cfm in %d state\n",
1775 __func__, common->fsm_state);
1776 return 0;
1777 }
1778 break;
1779 case WAKEUP_SLEEP_REQUEST:
1780 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
1781 return rsi_handle_ps_confirm(adapter, msg);
1782 default:
1783 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1784 __func__);
1785 break;
1786 }
1787 return 0;
1788out:
1789 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1790 __func__);
1791 return -EINVAL;
1792}
1793
1794int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
1795{
1796 switch (common->fsm_state) {
1797 case FSM_CARD_NOT_READY:
1798 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
1799 rsi_set_default_parameters(common);
1800 if (rsi_send_common_dev_params(common) < 0)
1801 return -EINVAL;
1802 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
1803 break;
1804 case FSM_COMMON_DEV_PARAMS_SENT:
1805 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
1806
1807 /* Get usb buffer status register address */
1808 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
1809 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
1810 common->priv->usb_buffer_status_reg);
1811
1812 if (rsi_load_bootup_params(common)) {
1813 common->fsm_state = FSM_CARD_NOT_READY;
1814 return -EINVAL;
1815 }
1816 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1817 break;
1818 default:
1819 rsi_dbg(ERR_ZONE,
1820 "%s: card ready indication in invalid state %d.\n",
1821 __func__, common->fsm_state);
1822 return -EINVAL;
1823 }
1824
1825 return 0;
1826}
1827
1828/**
1829 * rsi_mgmt_pkt_recv() - This function processes the management packets
1830 * recieved from the hardware.
1831 * @common: Pointer to the driver private structure.
1832 * @msg: Pointer to the received packet.
1833 *
1834 * Return: 0 on success, -1 on failure.
1835 */
1836int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1837{
1838 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1839 u16 msg_type = (msg[2]);
1840
1841 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1842 __func__, msg_len, msg_type);
1843
1844 switch (msg_type) {
1845 case TA_CONFIRM_TYPE:
1846 return rsi_handle_ta_confirm_type(common, msg);
1847 case CARD_READY_IND:
1848 common->hibernate_resume = false;
1849 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1850 __func__);
1851 return rsi_handle_card_ready(common, msg);
1852 case TX_STATUS_IND:
1853 if (msg[15] == PROBEREQ_CONFIRM) {
1854 common->mgmt_q_block = false;
1855 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1856 __func__);
1857 }
1858 break;
1859 case BEACON_EVENT_IND:
1860 rsi_dbg(INFO_ZONE, "Beacon event\n");
1861 if (common->fsm_state != FSM_MAC_INIT_DONE)
1862 return -1;
1863 if (common->iface_down)
1864 return -1;
1865 if (!common->beacon_enabled)
1866 return -1;
1867 rsi_send_beacon(common);
1868 break;
1869 case RX_DOT11_MGMT:
1870 return rsi_mgmt_pkt_to_core(common, msg, msg_len);
1871 default:
1872 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
1873 }
1874 return 0;
1875}
1/**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/etherdevice.h>
18#include "rsi_mgmt.h"
19#include "rsi_common.h"
20
21static struct bootup_params boot_params_20 = {
22 .magic_number = cpu_to_le16(0x5aa5),
23 .crystal_good_time = 0x0,
24 .valid = cpu_to_le32(VALID_20),
25 .reserved_for_valids = 0x0,
26 .bootup_mode_info = 0x0,
27 .digital_loop_back_params = 0x0,
28 .rtls_timestamp_en = 0x0,
29 .host_spi_intr_cfg = 0x0,
30 .device_clk_info = {{
31 .pll_config_g = {
32 .tapll_info_g = {
33 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 (TA_PLL_M_VAL_20)),
35 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36 },
37 .pll960_info_g = {
38 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 (PLL960_N_VAL_20)),
40 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 .pll_reg_3 = 0x0,
42 },
43 .afepll_info_g = {
44 .pll_reg = cpu_to_le16(0x9f0),
45 }
46 },
47 .switch_clk_g = {
48 .switch_clk_info = cpu_to_le16(BIT(3)),
49 .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 .umac_clock_reg_config = 0x0,
51 .qspi_uart_clock_reg_config = 0x0
52 }
53 },
54 {
55 .pll_config_g = {
56 .tapll_info_g = {
57 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 (TA_PLL_M_VAL_20)),
59 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60 },
61 .pll960_info_g = {
62 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 (PLL960_N_VAL_20)),
64 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 .pll_reg_3 = 0x0,
66 },
67 .afepll_info_g = {
68 .pll_reg = cpu_to_le16(0x9f0),
69 }
70 },
71 .switch_clk_g = {
72 .switch_clk_info = 0x0,
73 .bbp_lmac_clk_reg_val = 0x0,
74 .umac_clock_reg_config = 0x0,
75 .qspi_uart_clock_reg_config = 0x0
76 }
77 },
78 {
79 .pll_config_g = {
80 .tapll_info_g = {
81 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 (TA_PLL_M_VAL_20)),
83 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84 },
85 .pll960_info_g = {
86 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 (PLL960_N_VAL_20)),
88 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 .pll_reg_3 = 0x0,
90 },
91 .afepll_info_g = {
92 .pll_reg = cpu_to_le16(0x9f0),
93 }
94 },
95 .switch_clk_g = {
96 .switch_clk_info = 0x0,
97 .bbp_lmac_clk_reg_val = 0x0,
98 .umac_clock_reg_config = 0x0,
99 .qspi_uart_clock_reg_config = 0x0
100 }
101 } },
102 .buckboost_wakeup_cnt = 0x0,
103 .pmu_wakeup_wait = 0x0,
104 .shutdown_wait_time = 0x0,
105 .pmu_slp_clkout_sel = 0x0,
106 .wdt_prog_value = 0x0,
107 .wdt_soc_rst_delay = 0x0,
108 .dcdc_operation_mode = 0x0,
109 .soc_reset_wait_cnt = 0x0
110};
111
112static struct bootup_params boot_params_40 = {
113 .magic_number = cpu_to_le16(0x5aa5),
114 .crystal_good_time = 0x0,
115 .valid = cpu_to_le32(VALID_40),
116 .reserved_for_valids = 0x0,
117 .bootup_mode_info = 0x0,
118 .digital_loop_back_params = 0x0,
119 .rtls_timestamp_en = 0x0,
120 .host_spi_intr_cfg = 0x0,
121 .device_clk_info = {{
122 .pll_config_g = {
123 .tapll_info_g = {
124 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 (TA_PLL_M_VAL_40)),
126 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127 },
128 .pll960_info_g = {
129 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 (PLL960_N_VAL_40)),
131 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 .pll_reg_3 = 0x0,
133 },
134 .afepll_info_g = {
135 .pll_reg = cpu_to_le16(0x9f0),
136 }
137 },
138 .switch_clk_g = {
139 .switch_clk_info = cpu_to_le16(0x09),
140 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 .umac_clock_reg_config = cpu_to_le16(0x48),
142 .qspi_uart_clock_reg_config = 0x0
143 }
144 },
145 {
146 .pll_config_g = {
147 .tapll_info_g = {
148 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 (TA_PLL_M_VAL_40)),
150 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151 },
152 .pll960_info_g = {
153 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 (PLL960_N_VAL_40)),
155 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 .pll_reg_3 = 0x0,
157 },
158 .afepll_info_g = {
159 .pll_reg = cpu_to_le16(0x9f0),
160 }
161 },
162 .switch_clk_g = {
163 .switch_clk_info = 0x0,
164 .bbp_lmac_clk_reg_val = 0x0,
165 .umac_clock_reg_config = 0x0,
166 .qspi_uart_clock_reg_config = 0x0
167 }
168 },
169 {
170 .pll_config_g = {
171 .tapll_info_g = {
172 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 (TA_PLL_M_VAL_40)),
174 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175 },
176 .pll960_info_g = {
177 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 (PLL960_N_VAL_40)),
179 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 .pll_reg_3 = 0x0,
181 },
182 .afepll_info_g = {
183 .pll_reg = cpu_to_le16(0x9f0),
184 }
185 },
186 .switch_clk_g = {
187 .switch_clk_info = 0x0,
188 .bbp_lmac_clk_reg_val = 0x0,
189 .umac_clock_reg_config = 0x0,
190 .qspi_uart_clock_reg_config = 0x0
191 }
192 } },
193 .buckboost_wakeup_cnt = 0x0,
194 .pmu_wakeup_wait = 0x0,
195 .shutdown_wait_time = 0x0,
196 .pmu_slp_clkout_sel = 0x0,
197 .wdt_prog_value = 0x0,
198 .wdt_soc_rst_delay = 0x0,
199 .dcdc_operation_mode = 0x0,
200 .soc_reset_wait_cnt = 0x0
201};
202
203static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205/**
206 * rsi_set_default_parameters() - This function sets default parameters.
207 * @common: Pointer to the driver private structure.
208 *
209 * Return: none
210 */
211static void rsi_set_default_parameters(struct rsi_common *common)
212{
213 common->band = NL80211_BAND_2GHZ;
214 common->channel_width = BW_20MHZ;
215 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 common->channel = 1;
217 common->min_rate = 0xffff;
218 common->fsm_state = FSM_CARD_NOT_READY;
219 common->iface_down = true;
220 common->endpoint = EP_2GHZ_20MHZ;
221}
222
223/**
224 * rsi_set_contention_vals() - This function sets the contention values for the
225 * backoff procedure.
226 * @common: Pointer to the driver private structure.
227 *
228 * Return: None.
229 */
230static void rsi_set_contention_vals(struct rsi_common *common)
231{
232 u8 ii = 0;
233
234 for (; ii < NUM_EDCA_QUEUES; ii++) {
235 common->tx_qinfo[ii].wme_params =
236 (((common->edca_params[ii].cw_min / 2) +
237 (common->edca_params[ii].aifs)) *
238 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240 common->tx_qinfo[ii].pkt_contended = 0;
241 }
242}
243
244/**
245 * rsi_send_internal_mgmt_frame() - This function sends management frames to
246 * firmware.Also schedules packet to queue
247 * for transmission.
248 * @common: Pointer to the driver private structure.
249 * @skb: Pointer to the socket buffer structure.
250 *
251 * Return: 0 on success, -1 on failure.
252 */
253static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254 struct sk_buff *skb)
255{
256 struct skb_info *tx_params;
257
258 if (skb == NULL) {
259 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260 return -ENOMEM;
261 }
262 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263 tx_params->flags |= INTERNAL_MGMT_PKT;
264 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265 rsi_set_event(&common->tx_thread.event);
266 return 0;
267}
268
269/**
270 * rsi_load_radio_caps() - This function is used to send radio capabilities
271 * values to firmware.
272 * @common: Pointer to the driver private structure.
273 *
274 * Return: 0 on success, corresponding negative error code on failure.
275 */
276static int rsi_load_radio_caps(struct rsi_common *common)
277{
278 struct rsi_radio_caps *radio_caps;
279 struct rsi_hw *adapter = common->priv;
280 u16 inx = 0;
281 u8 ii;
282 u8 radio_id = 0;
283 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284 0xf0, 0xf0, 0xf0, 0xf0,
285 0xf0, 0xf0, 0xf0, 0xf0,
286 0xf0, 0xf0, 0xf0, 0xf0,
287 0xf0, 0xf0, 0xf0, 0xf0};
288 struct sk_buff *skb;
289
290 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
291
292 skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
293
294 if (!skb) {
295 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
296 __func__);
297 return -ENOMEM;
298 }
299
300 memset(skb->data, 0, sizeof(struct rsi_radio_caps));
301 radio_caps = (struct rsi_radio_caps *)skb->data;
302
303 radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
304 radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
305
306 if (common->channel_width == BW_40MHZ) {
307 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
308 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
309
310 if (common->fsm_state == FSM_MAC_INIT_DONE) {
311 struct ieee80211_hw *hw = adapter->hw;
312 struct ieee80211_conf *conf = &hw->conf;
313 if (conf_is_ht40_plus(conf)) {
314 radio_caps->desc_word[5] =
315 cpu_to_le16(LOWER_20_ENABLE);
316 radio_caps->desc_word[5] |=
317 cpu_to_le16(LOWER_20_ENABLE >> 12);
318 } else if (conf_is_ht40_minus(conf)) {
319 radio_caps->desc_word[5] =
320 cpu_to_le16(UPPER_20_ENABLE);
321 radio_caps->desc_word[5] |=
322 cpu_to_le16(UPPER_20_ENABLE >> 12);
323 } else {
324 radio_caps->desc_word[5] =
325 cpu_to_le16(BW_40MHZ << 12);
326 radio_caps->desc_word[5] |=
327 cpu_to_le16(FULL40M_ENABLE);
328 }
329 }
330 }
331
332 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
333 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
334 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
335 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
336 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
337 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
338
339 radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
340
341 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
342 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
343 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
344 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
345 radio_caps->qos_params[ii].txop_q = 0;
346 }
347
348 for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
349 radio_caps->qos_params[ii].cont_win_min_q =
350 cpu_to_le16(common->edca_params[ii].cw_min);
351 radio_caps->qos_params[ii].cont_win_max_q =
352 cpu_to_le16(common->edca_params[ii].cw_max);
353 radio_caps->qos_params[ii].aifsn_val_q =
354 cpu_to_le16((common->edca_params[ii].aifs) << 8);
355 radio_caps->qos_params[ii].txop_q =
356 cpu_to_le16(common->edca_params[ii].txop);
357 }
358
359 memcpy(&common->rate_pwr[0], &gc[0], 40);
360 for (ii = 0; ii < 20; ii++)
361 radio_caps->gcpd_per_rate[inx++] =
362 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
363
364 radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
365 FRAME_DESC_SZ) |
366 (RSI_WIFI_MGMT_Q << 12));
367
368
369 skb_put(skb, (sizeof(struct rsi_radio_caps)));
370
371 return rsi_send_internal_mgmt_frame(common, skb);
372}
373
374/**
375 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
376 * @common: Pointer to the driver private structure.
377 * @msg: Pointer to received packet.
378 * @msg_len: Length of the recieved packet.
379 * @type: Type of recieved packet.
380 *
381 * Return: 0 on success, -1 on failure.
382 */
383static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
384 u8 *msg,
385 s32 msg_len,
386 u8 type)
387{
388 struct rsi_hw *adapter = common->priv;
389 struct ieee80211_tx_info *info;
390 struct skb_info *rx_params;
391 u8 pad_bytes = msg[4];
392 u8 pkt_recv;
393 struct sk_buff *skb;
394 char *buffer;
395
396 if (type == RX_DOT11_MGMT) {
397 if (!adapter->sc_nvifs)
398 return -ENOLINK;
399
400 msg_len -= pad_bytes;
401 if (msg_len <= 0) {
402 rsi_dbg(MGMT_RX_ZONE,
403 "%s: Invalid rx msg of len = %d\n",
404 __func__, msg_len);
405 return -EINVAL;
406 }
407
408 skb = dev_alloc_skb(msg_len);
409 if (!skb) {
410 rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
411 __func__);
412 return -ENOMEM;
413 }
414
415 buffer = skb_put(skb, msg_len);
416
417 memcpy(buffer,
418 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
419 msg_len);
420
421 pkt_recv = buffer[0];
422
423 info = IEEE80211_SKB_CB(skb);
424 rx_params = (struct skb_info *)info->driver_data;
425 rx_params->rssi = rsi_get_rssi(msg);
426 rx_params->channel = rsi_get_channel(msg);
427 rsi_indicate_pkt_to_os(common, skb);
428 } else {
429 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
430 }
431
432 return 0;
433}
434
435/**
436 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
437 * frame to firmware.
438 * @common: Pointer to the driver private structure.
439 * @opmode: Operating mode of device.
440 * @notify_event: Notification about station connection.
441 * @bssid: bssid.
442 * @qos_enable: Qos is enabled.
443 * @aid: Aid (unique for all STA).
444 *
445 * Return: status: 0 on success, corresponding negative error code on failure.
446 */
447static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
448 u8 opmode,
449 u8 notify_event,
450 const unsigned char *bssid,
451 u8 qos_enable,
452 u16 aid)
453{
454 struct sk_buff *skb = NULL;
455 struct rsi_peer_notify *peer_notify;
456 u16 vap_id = 0;
457 int status;
458
459 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
460
461 skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
462
463 if (!skb) {
464 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
465 __func__);
466 return -ENOMEM;
467 }
468
469 memset(skb->data, 0, sizeof(struct rsi_peer_notify));
470 peer_notify = (struct rsi_peer_notify *)skb->data;
471
472 peer_notify->command = cpu_to_le16(opmode << 1);
473
474 switch (notify_event) {
475 case STA_CONNECTED:
476 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
477 break;
478 case STA_DISCONNECTED:
479 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
480 break;
481 default:
482 break;
483 }
484
485 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
486 ether_addr_copy(peer_notify->mac_addr, bssid);
487
488 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
489
490 peer_notify->desc_word[0] =
491 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
492 (RSI_WIFI_MGMT_Q << 12));
493 peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
494 peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
495
496 skb_put(skb, sizeof(struct rsi_peer_notify));
497
498 status = rsi_send_internal_mgmt_frame(common, skb);
499
500 if (!status && qos_enable) {
501 rsi_set_contention_vals(common);
502 status = rsi_load_radio_caps(common);
503 }
504 return status;
505}
506
507/**
508 * rsi_send_aggregation_params_frame() - This function sends the ampdu
509 * indication frame to firmware.
510 * @common: Pointer to the driver private structure.
511 * @tid: traffic identifier.
512 * @ssn: ssn.
513 * @buf_size: buffer size.
514 * @event: notification about station connection.
515 *
516 * Return: 0 on success, corresponding negative error code on failure.
517 */
518int rsi_send_aggregation_params_frame(struct rsi_common *common,
519 u16 tid,
520 u16 ssn,
521 u8 buf_size,
522 u8 event)
523{
524 struct sk_buff *skb = NULL;
525 struct rsi_mac_frame *mgmt_frame;
526 u8 peer_id = 0;
527
528 skb = dev_alloc_skb(FRAME_DESC_SZ);
529
530 if (!skb) {
531 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
532 __func__);
533 return -ENOMEM;
534 }
535
536 memset(skb->data, 0, FRAME_DESC_SZ);
537 mgmt_frame = (struct rsi_mac_frame *)skb->data;
538
539 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
540
541 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
542 mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
543
544 if (event == STA_TX_ADDBA_DONE) {
545 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
546 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
547 mgmt_frame->desc_word[7] =
548 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
549 } else if (event == STA_RX_ADDBA_DONE) {
550 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
551 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
552 (START_AMPDU_AGGR << 4) |
553 (RX_BA_INDICATION << 5) |
554 (peer_id << 8));
555 } else if (event == STA_TX_DELBA) {
556 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
557 (STOP_AMPDU_AGGR << 4) |
558 (peer_id << 8));
559 } else if (event == STA_RX_DELBA) {
560 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
561 (STOP_AMPDU_AGGR << 4) |
562 (RX_BA_INDICATION << 5) |
563 (peer_id << 8));
564 }
565
566 skb_put(skb, FRAME_DESC_SZ);
567
568 return rsi_send_internal_mgmt_frame(common, skb);
569}
570
571/**
572 * rsi_program_bb_rf() - This function starts base band and RF programming.
573 * This is called after initial configurations are done.
574 * @common: Pointer to the driver private structure.
575 *
576 * Return: 0 on success, corresponding negative error code on failure.
577 */
578static int rsi_program_bb_rf(struct rsi_common *common)
579{
580 struct sk_buff *skb;
581 struct rsi_mac_frame *mgmt_frame;
582
583 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
584
585 skb = dev_alloc_skb(FRAME_DESC_SZ);
586 if (!skb) {
587 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
588 __func__);
589 return -ENOMEM;
590 }
591
592 memset(skb->data, 0, FRAME_DESC_SZ);
593 mgmt_frame = (struct rsi_mac_frame *)skb->data;
594
595 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
596 mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
597 mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
598
599 if (common->rf_reset) {
600 mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE);
601 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
602 __func__);
603 common->rf_reset = 0;
604 }
605 common->bb_rf_prog_count = 1;
606 mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
607 BBP_REG_WRITE | (RSI_RF_TYPE << 4));
608 skb_put(skb, FRAME_DESC_SZ);
609
610 return rsi_send_internal_mgmt_frame(common, skb);
611}
612
613/**
614 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
615 * @common: Pointer to the driver private structure.
616 * @opmode: Operating mode of device.
617 *
618 * Return: 0 on success, corresponding negative error code on failure.
619 */
620int rsi_set_vap_capabilities(struct rsi_common *common,
621 enum opmode mode,
622 u8 vap_status)
623{
624 struct sk_buff *skb = NULL;
625 struct rsi_vap_caps *vap_caps;
626 struct rsi_hw *adapter = common->priv;
627 struct ieee80211_hw *hw = adapter->hw;
628 struct ieee80211_conf *conf = &hw->conf;
629 u16 vap_id = 0;
630
631 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
632
633 skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
634 if (!skb) {
635 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
636 __func__);
637 return -ENOMEM;
638 }
639
640 memset(skb->data, 0, sizeof(struct rsi_vap_caps));
641 vap_caps = (struct rsi_vap_caps *)skb->data;
642
643 vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
644 FRAME_DESC_SZ) |
645 (RSI_WIFI_MGMT_Q << 12));
646 vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
647 vap_caps->desc_word[2] = cpu_to_le16(vap_status << 8);
648 vap_caps->desc_word[4] = cpu_to_le16(mode |
649 (common->channel_width << 8));
650 vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
651 (common->mac_id << 4) |
652 common->radio_id);
653
654 memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
655 vap_caps->keep_alive_period = cpu_to_le16(90);
656 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
657
658 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
659 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
660
661 if (common->band == NL80211_BAND_5GHZ) {
662 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
663 if (conf_is_ht40(&common->priv->hw->conf)) {
664 vap_caps->default_ctrl_rate |=
665 cpu_to_le32(FULL40M_ENABLE << 16);
666 }
667 } else {
668 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_1);
669 if (conf_is_ht40_minus(conf))
670 vap_caps->default_ctrl_rate |=
671 cpu_to_le32(UPPER_20_ENABLE << 16);
672 else if (conf_is_ht40_plus(conf))
673 vap_caps->default_ctrl_rate |=
674 cpu_to_le32(LOWER_20_ENABLE << 16);
675 }
676
677 vap_caps->default_data_rate = 0;
678 vap_caps->beacon_interval = cpu_to_le16(200);
679 vap_caps->dtim_period = cpu_to_le16(4);
680
681 skb_put(skb, sizeof(*vap_caps));
682
683 return rsi_send_internal_mgmt_frame(common, skb);
684}
685
686/**
687 * rsi_hal_load_key() - This function is used to load keys within the firmware.
688 * @common: Pointer to the driver private structure.
689 * @data: Pointer to the key data.
690 * @key_len: Key length to be loaded.
691 * @key_type: Type of key: GROUP/PAIRWISE.
692 * @key_id: Key index.
693 * @cipher: Type of cipher used.
694 *
695 * Return: 0 on success, -1 on failure.
696 */
697int rsi_hal_load_key(struct rsi_common *common,
698 u8 *data,
699 u16 key_len,
700 u8 key_type,
701 u8 key_id,
702 u32 cipher)
703{
704 struct sk_buff *skb = NULL;
705 struct rsi_set_key *set_key;
706 u16 key_descriptor = 0;
707
708 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
709
710 skb = dev_alloc_skb(sizeof(struct rsi_set_key));
711 if (!skb) {
712 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
713 __func__);
714 return -ENOMEM;
715 }
716
717 memset(skb->data, 0, sizeof(struct rsi_set_key));
718 set_key = (struct rsi_set_key *)skb->data;
719
720 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
721 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
722 key_len += 1;
723 key_descriptor |= BIT(2);
724 if (key_len >= 13)
725 key_descriptor |= BIT(3);
726 } else if (cipher != KEY_TYPE_CLEAR) {
727 key_descriptor |= BIT(4);
728 if (key_type == RSI_PAIRWISE_KEY)
729 key_id = 0;
730 if (cipher == WLAN_CIPHER_SUITE_TKIP)
731 key_descriptor |= BIT(5);
732 }
733 key_descriptor |= (key_type | BIT(13) | (key_id << 14));
734
735 set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
736 FRAME_DESC_SZ) |
737 (RSI_WIFI_MGMT_Q << 12));
738 set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
739 set_key->desc_word[4] = cpu_to_le16(key_descriptor);
740
741 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
742 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
743 memcpy(&set_key->key[key_id][1],
744 data,
745 key_len * 2);
746 } else {
747 memcpy(&set_key->key[0][0], data, key_len);
748 }
749
750 memcpy(set_key->tx_mic_key, &data[16], 8);
751 memcpy(set_key->rx_mic_key, &data[24], 8);
752
753 skb_put(skb, sizeof(struct rsi_set_key));
754
755 return rsi_send_internal_mgmt_frame(common, skb);
756}
757
758/*
759 * rsi_load_bootup_params() - This function send bootup params to the firmware.
760 * @common: Pointer to the driver private structure.
761 *
762 * Return: 0 on success, corresponding error code on failure.
763 */
764static int rsi_load_bootup_params(struct rsi_common *common)
765{
766 struct sk_buff *skb;
767 struct rsi_boot_params *boot_params;
768
769 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
770 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
771 if (!skb) {
772 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
773 __func__);
774 return -ENOMEM;
775 }
776
777 memset(skb->data, 0, sizeof(struct rsi_boot_params));
778 boot_params = (struct rsi_boot_params *)skb->data;
779
780 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
781
782 if (common->channel_width == BW_40MHZ) {
783 memcpy(&boot_params->bootup_params,
784 &boot_params_40,
785 sizeof(struct bootup_params));
786 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
787 UMAC_CLK_40BW);
788 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
789 } else {
790 memcpy(&boot_params->bootup_params,
791 &boot_params_20,
792 sizeof(struct bootup_params));
793 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
794 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
795 rsi_dbg(MGMT_TX_ZONE,
796 "%s: Packet 20MHZ <=== %d\n", __func__,
797 UMAC_CLK_20BW);
798 } else {
799 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
800 rsi_dbg(MGMT_TX_ZONE,
801 "%s: Packet 20MHZ <=== %d\n", __func__,
802 UMAC_CLK_40MHZ);
803 }
804 }
805
806 /**
807 * Bit{0:11} indicates length of the Packet
808 * Bit{12:15} indicates host queue number
809 */
810 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
811 (RSI_WIFI_MGMT_Q << 12));
812 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
813
814 skb_put(skb, sizeof(struct rsi_boot_params));
815
816 return rsi_send_internal_mgmt_frame(common, skb);
817}
818
819/**
820 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
821 * internal management frame to indicate it to firmware.
822 * @common: Pointer to the driver private structure.
823 *
824 * Return: 0 on success, corresponding error code on failure.
825 */
826static int rsi_send_reset_mac(struct rsi_common *common)
827{
828 struct sk_buff *skb;
829 struct rsi_mac_frame *mgmt_frame;
830
831 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
832
833 skb = dev_alloc_skb(FRAME_DESC_SZ);
834 if (!skb) {
835 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
836 __func__);
837 return -ENOMEM;
838 }
839
840 memset(skb->data, 0, FRAME_DESC_SZ);
841 mgmt_frame = (struct rsi_mac_frame *)skb->data;
842
843 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
844 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
845 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
846
847 skb_put(skb, FRAME_DESC_SZ);
848
849 return rsi_send_internal_mgmt_frame(common, skb);
850}
851
852/**
853 * rsi_band_check() - This function programs the band
854 * @common: Pointer to the driver private structure.
855 *
856 * Return: 0 on success, corresponding error code on failure.
857 */
858int rsi_band_check(struct rsi_common *common)
859{
860 struct rsi_hw *adapter = common->priv;
861 struct ieee80211_hw *hw = adapter->hw;
862 u8 prev_bw = common->channel_width;
863 u8 prev_ep = common->endpoint;
864 struct ieee80211_channel *curchan = hw->conf.chandef.chan;
865 int status = 0;
866
867 if (common->band != curchan->band) {
868 common->rf_reset = 1;
869 common->band = curchan->band;
870 }
871
872 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
873 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
874 common->channel_width = BW_20MHZ;
875 else
876 common->channel_width = BW_40MHZ;
877
878 if (common->band == NL80211_BAND_2GHZ) {
879 if (common->channel_width)
880 common->endpoint = EP_2GHZ_40MHZ;
881 else
882 common->endpoint = EP_2GHZ_20MHZ;
883 } else {
884 if (common->channel_width)
885 common->endpoint = EP_5GHZ_40MHZ;
886 else
887 common->endpoint = EP_5GHZ_20MHZ;
888 }
889
890 if (common->endpoint != prev_ep) {
891 status = rsi_program_bb_rf(common);
892 if (status)
893 return status;
894 }
895
896 if (common->channel_width != prev_bw) {
897 status = rsi_load_bootup_params(common);
898 if (status)
899 return status;
900
901 status = rsi_load_radio_caps(common);
902 if (status)
903 return status;
904 }
905
906 return status;
907}
908
909/**
910 * rsi_set_channel() - This function programs the channel.
911 * @common: Pointer to the driver private structure.
912 * @channel: Channel value to be set.
913 *
914 * Return: 0 on success, corresponding error code on failure.
915 */
916int rsi_set_channel(struct rsi_common *common,
917 struct ieee80211_channel *channel)
918{
919 struct sk_buff *skb = NULL;
920 struct rsi_mac_frame *mgmt_frame;
921
922 rsi_dbg(MGMT_TX_ZONE,
923 "%s: Sending scan req frame\n", __func__);
924
925 skb = dev_alloc_skb(FRAME_DESC_SZ);
926 if (!skb) {
927 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
928 __func__);
929 return -ENOMEM;
930 }
931
932 if (!channel) {
933 dev_kfree_skb(skb);
934 return 0;
935 }
936 memset(skb->data, 0, FRAME_DESC_SZ);
937 mgmt_frame = (struct rsi_mac_frame *)skb->data;
938
939 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
940 mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
941 mgmt_frame->desc_word[4] = cpu_to_le16(channel->hw_value);
942
943 mgmt_frame->desc_word[4] |=
944 cpu_to_le16(((char)(channel->max_antenna_gain)) << 8);
945 mgmt_frame->desc_word[5] =
946 cpu_to_le16((char)(channel->max_antenna_gain));
947
948 mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
949 BBP_REG_WRITE |
950 (RSI_RF_TYPE << 4));
951
952 if (!(channel->flags & IEEE80211_CHAN_NO_IR) &&
953 !(channel->flags & IEEE80211_CHAN_RADAR)) {
954 if (common->tx_power < channel->max_power)
955 mgmt_frame->desc_word[6] = cpu_to_le16(common->tx_power);
956 else
957 mgmt_frame->desc_word[6] = cpu_to_le16(channel->max_power);
958 }
959 mgmt_frame->desc_word[7] = cpu_to_le16(common->priv->dfs_region);
960
961 if (common->channel_width == BW_40MHZ)
962 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
963
964 common->channel = channel->hw_value;
965
966 skb_put(skb, FRAME_DESC_SZ);
967
968 return rsi_send_internal_mgmt_frame(common, skb);
969}
970
971/**
972 * rsi_send_radio_params_update() - This function sends the radio
973 * parameters update to device
974 * @common: Pointer to the driver private structure.
975 * @channel: Channel value to be set.
976 *
977 * Return: 0 on success, corresponding error code on failure.
978 */
979int rsi_send_radio_params_update(struct rsi_common *common)
980{
981 struct rsi_mac_frame *cmd_frame;
982 struct sk_buff *skb = NULL;
983
984 rsi_dbg(MGMT_TX_ZONE,
985 "%s: Sending Radio Params update frame\n", __func__);
986
987 skb = dev_alloc_skb(FRAME_DESC_SZ);
988 if (!skb) {
989 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
990 __func__);
991 return -ENOMEM;
992 }
993
994 memset(skb->data, 0, FRAME_DESC_SZ);
995 cmd_frame = (struct rsi_mac_frame *)skb->data;
996
997 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
998 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
999 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1000
1001 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1002
1003 skb_put(skb, FRAME_DESC_SZ);
1004
1005 return rsi_send_internal_mgmt_frame(common, skb);
1006}
1007
1008/**
1009 * rsi_compare() - This function is used to compare two integers
1010 * @a: pointer to the first integer
1011 * @b: pointer to the second integer
1012 *
1013 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1014 */
1015static int rsi_compare(const void *a, const void *b)
1016{
1017 u16 _a = *(const u16 *)(a);
1018 u16 _b = *(const u16 *)(b);
1019
1020 if (_a > _b)
1021 return -1;
1022
1023 if (_a < _b)
1024 return 1;
1025
1026 return 0;
1027}
1028
1029/**
1030 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1031 * @rate: The standard rate to be mapped.
1032 * @offset: Offset that will be returned.
1033 *
1034 * Return: 0 if it is a mcs rate, else 1
1035 */
1036static bool rsi_map_rates(u16 rate, int *offset)
1037{
1038 int kk;
1039 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1040 if (rate == mcs[kk]) {
1041 *offset = kk;
1042 return false;
1043 }
1044 }
1045
1046 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1047 if (rate == rsi_rates[kk].bitrate / 5) {
1048 *offset = kk;
1049 break;
1050 }
1051 }
1052 return true;
1053}
1054
1055/**
1056 * rsi_send_auto_rate_request() - This function is to set rates for connection
1057 * and send autorate request to firmware.
1058 * @common: Pointer to the driver private structure.
1059 *
1060 * Return: 0 on success, corresponding error code on failure.
1061 */
1062static int rsi_send_auto_rate_request(struct rsi_common *common)
1063{
1064 struct sk_buff *skb;
1065 struct rsi_auto_rate *auto_rate;
1066 int ii = 0, jj = 0, kk = 0;
1067 struct ieee80211_hw *hw = common->priv->hw;
1068 u8 band = hw->conf.chandef.chan->band;
1069 u8 num_supported_rates = 0;
1070 u8 rate_table_offset, rate_offset = 0;
1071 u32 rate_bitmap = common->bitrate_mask[band];
1072
1073 u16 *selected_rates, min_rate;
1074
1075 skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
1076 if (!skb) {
1077 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1078 __func__);
1079 return -ENOMEM;
1080 }
1081
1082 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1083 if (!selected_rates) {
1084 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1085 __func__);
1086 dev_kfree_skb(skb);
1087 return -ENOMEM;
1088 }
1089
1090 memset(skb->data, 0, sizeof(struct rsi_auto_rate));
1091
1092 auto_rate = (struct rsi_auto_rate *)skb->data;
1093
1094 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1095 auto_rate->collision_tolerance = cpu_to_le16(3);
1096 auto_rate->failure_limit = cpu_to_le16(3);
1097 auto_rate->initial_boundary = cpu_to_le16(3);
1098 auto_rate->max_threshold_limt = cpu_to_le16(27);
1099
1100 auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
1101
1102 if (common->channel_width == BW_40MHZ)
1103 auto_rate->desc_word[7] |= cpu_to_le16(1);
1104
1105 if (band == NL80211_BAND_2GHZ) {
1106 min_rate = RSI_RATE_1;
1107 rate_table_offset = 0;
1108 } else {
1109 min_rate = RSI_RATE_6;
1110 rate_table_offset = 4;
1111 }
1112
1113 for (ii = 0, jj = 0;
1114 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1115 if (rate_bitmap & BIT(ii)) {
1116 selected_rates[jj++] =
1117 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1118 rate_offset++;
1119 }
1120 }
1121 num_supported_rates = jj;
1122
1123 if (common->vif_info[0].is_ht) {
1124 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1125 selected_rates[jj++] = mcs[ii];
1126 num_supported_rates += ARRAY_SIZE(mcs);
1127 rate_offset += ARRAY_SIZE(mcs);
1128 }
1129
1130 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1131
1132 /* mapping the rates to RSI rates */
1133 for (ii = 0; ii < jj; ii++) {
1134 if (rsi_map_rates(selected_rates[ii], &kk)) {
1135 auto_rate->supported_rates[ii] =
1136 cpu_to_le16(rsi_rates[kk].hw_value);
1137 } else {
1138 auto_rate->supported_rates[ii] =
1139 cpu_to_le16(rsi_mcsrates[kk]);
1140 }
1141 }
1142
1143 /* loading HT rates in the bottom half of the auto rate table */
1144 if (common->vif_info[0].is_ht) {
1145 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1146 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1147 if (common->vif_info[0].sgi ||
1148 conf_is_ht40(&common->priv->hw->conf))
1149 auto_rate->supported_rates[ii++] =
1150 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1151 auto_rate->supported_rates[ii] =
1152 cpu_to_le16(rsi_mcsrates[kk--]);
1153 }
1154
1155 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1156 auto_rate->supported_rates[ii] =
1157 cpu_to_le16(rsi_mcsrates[0]);
1158 }
1159 }
1160
1161 for (; ii < RSI_TBL_SZ; ii++)
1162 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1163
1164 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1165 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1166 auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1167 num_supported_rates *= 2;
1168
1169 auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1170 FRAME_DESC_SZ) |
1171 (RSI_WIFI_MGMT_Q << 12));
1172
1173 skb_put(skb,
1174 sizeof(struct rsi_auto_rate));
1175 kfree(selected_rates);
1176
1177 return rsi_send_internal_mgmt_frame(common, skb);
1178}
1179
1180/**
1181 * rsi_inform_bss_status() - This function informs about bss status with the
1182 * help of sta notify params by sending an internal
1183 * management frame to firmware.
1184 * @common: Pointer to the driver private structure.
1185 * @status: Bss status type.
1186 * @bssid: Bssid.
1187 * @qos_enable: Qos is enabled.
1188 * @aid: Aid (unique for all STAs).
1189 *
1190 * Return: None.
1191 */
1192void rsi_inform_bss_status(struct rsi_common *common,
1193 u8 status,
1194 const unsigned char *bssid,
1195 u8 qos_enable,
1196 u16 aid)
1197{
1198 if (status) {
1199 rsi_hal_send_sta_notify_frame(common,
1200 RSI_IFTYPE_STATION,
1201 STA_CONNECTED,
1202 bssid,
1203 qos_enable,
1204 aid);
1205 if (common->min_rate == 0xffff)
1206 rsi_send_auto_rate_request(common);
1207 } else {
1208 rsi_hal_send_sta_notify_frame(common,
1209 RSI_IFTYPE_STATION,
1210 STA_DISCONNECTED,
1211 bssid,
1212 qos_enable,
1213 aid);
1214 }
1215}
1216
1217/**
1218 * rsi_eeprom_read() - This function sends a frame to read the mac address
1219 * from the eeprom.
1220 * @common: Pointer to the driver private structure.
1221 *
1222 * Return: 0 on success, -1 on failure.
1223 */
1224static int rsi_eeprom_read(struct rsi_common *common)
1225{
1226 struct rsi_mac_frame *mgmt_frame;
1227 struct sk_buff *skb;
1228
1229 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1230
1231 skb = dev_alloc_skb(FRAME_DESC_SZ);
1232 if (!skb) {
1233 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1234 __func__);
1235 return -ENOMEM;
1236 }
1237
1238 memset(skb->data, 0, FRAME_DESC_SZ);
1239 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1240
1241 /* FrameType */
1242 mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1243 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1244 /* Number of bytes to read */
1245 mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1246 WLAN_MAC_MAGIC_WORD_LEN +
1247 WLAN_HOST_MODE_LEN +
1248 WLAN_FW_VERSION_LEN);
1249 /* Address to read */
1250 mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1251
1252 skb_put(skb, FRAME_DESC_SZ);
1253
1254 return rsi_send_internal_mgmt_frame(common, skb);
1255}
1256
1257/**
1258 * This function sends a frame to block/unblock
1259 * data queues in the firmware
1260 *
1261 * @param common Pointer to the driver private structure.
1262 * @param block event - block if true, unblock if false
1263 * @return 0 on success, -1 on failure.
1264 */
1265int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1266{
1267 struct rsi_mac_frame *mgmt_frame;
1268 struct sk_buff *skb;
1269
1270 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1271
1272 skb = dev_alloc_skb(FRAME_DESC_SZ);
1273 if (!skb) {
1274 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1275 __func__);
1276 return -ENOMEM;
1277 }
1278
1279 memset(skb->data, 0, FRAME_DESC_SZ);
1280 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1281
1282 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1283 mgmt_frame->desc_word[1] = cpu_to_le16(BLOCK_HW_QUEUE);
1284
1285 if (block_event) {
1286 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1287 mgmt_frame->desc_word[4] = cpu_to_le16(0xf);
1288 } else {
1289 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1290 mgmt_frame->desc_word[5] = cpu_to_le16(0xf);
1291 }
1292
1293 skb_put(skb, FRAME_DESC_SZ);
1294
1295 return rsi_send_internal_mgmt_frame(common, skb);
1296
1297}
1298
1299/**
1300 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1301 *
1302 * @common: Pointer to the driver private structure.
1303 * @rx_filter_word: Flags of filter packets
1304 *
1305 * @Return: 0 on success, -1 on failure.
1306 */
1307int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1308{
1309 struct rsi_mac_frame *cmd_frame;
1310 struct sk_buff *skb;
1311
1312 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1313
1314 skb = dev_alloc_skb(FRAME_DESC_SZ);
1315 if (!skb) {
1316 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1317 __func__);
1318 return -ENOMEM;
1319 }
1320
1321 memset(skb->data, 0, FRAME_DESC_SZ);
1322 cmd_frame = (struct rsi_mac_frame *)skb->data;
1323
1324 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1325 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1326 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1327
1328 skb_put(skb, FRAME_DESC_SZ);
1329
1330 return rsi_send_internal_mgmt_frame(common, skb);
1331}
1332
1333/**
1334 * rsi_set_antenna() - This fuction send antenna configuration request
1335 * to device
1336 *
1337 * @common: Pointer to the driver private structure.
1338 * @antenna: bitmap for tx antenna selection
1339 *
1340 * Return: 0 on Success, negative error code on failure
1341 */
1342int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1343{
1344 struct rsi_mac_frame *cmd_frame;
1345 struct sk_buff *skb;
1346
1347 skb = dev_alloc_skb(FRAME_DESC_SZ);
1348 if (!skb) {
1349 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1350 __func__);
1351 return -ENOMEM;
1352 }
1353
1354 memset(skb->data, 0, FRAME_DESC_SZ);
1355 cmd_frame = (struct rsi_mac_frame *)skb->data;
1356
1357 cmd_frame->desc_word[1] = cpu_to_le16(ANT_SEL_FRAME);
1358 cmd_frame->desc_word[3] = cpu_to_le16(antenna & 0x00ff);
1359 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1360
1361 skb_put(skb, FRAME_DESC_SZ);
1362
1363 return rsi_send_internal_mgmt_frame(common, skb);
1364}
1365
1366/**
1367 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1368 * @common: Pointer to the driver private structure.
1369 * @msg: Pointer to received packet.
1370 *
1371 * Return: 0 on success, -1 on failure.
1372 */
1373static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1374 u8 *msg)
1375{
1376 u8 sub_type = (msg[15] & 0xff);
1377
1378 switch (sub_type) {
1379 case BOOTUP_PARAMS_REQUEST:
1380 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1381 __func__);
1382 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1383 if (rsi_eeprom_read(common)) {
1384 common->fsm_state = FSM_CARD_NOT_READY;
1385 goto out;
1386 } else {
1387 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1388 }
1389 } else {
1390 rsi_dbg(INFO_ZONE,
1391 "%s: Received bootup params cfm in %d state\n",
1392 __func__, common->fsm_state);
1393 return 0;
1394 }
1395 break;
1396
1397 case EEPROM_READ_TYPE:
1398 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1399 if (msg[16] == MAGIC_WORD) {
1400 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1401 + WLAN_MAC_MAGIC_WORD_LEN);
1402 memcpy(common->mac_addr,
1403 &msg[offset],
1404 ETH_ALEN);
1405 memcpy(&common->fw_ver,
1406 &msg[offset + ETH_ALEN],
1407 sizeof(struct version_info));
1408
1409 } else {
1410 common->fsm_state = FSM_CARD_NOT_READY;
1411 break;
1412 }
1413 if (rsi_send_reset_mac(common))
1414 goto out;
1415 else
1416 common->fsm_state = FSM_RESET_MAC_SENT;
1417 } else {
1418 rsi_dbg(ERR_ZONE,
1419 "%s: Received eeprom mac addr in %d state\n",
1420 __func__, common->fsm_state);
1421 return 0;
1422 }
1423 break;
1424
1425 case RESET_MAC_REQ:
1426 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1427 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1428 __func__);
1429
1430 if (rsi_load_radio_caps(common))
1431 goto out;
1432 else
1433 common->fsm_state = FSM_RADIO_CAPS_SENT;
1434 } else {
1435 rsi_dbg(ERR_ZONE,
1436 "%s: Received reset mac cfm in %d state\n",
1437 __func__, common->fsm_state);
1438 return 0;
1439 }
1440 break;
1441
1442 case RADIO_CAPABILITIES:
1443 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1444 common->rf_reset = 1;
1445 if (rsi_program_bb_rf(common)) {
1446 goto out;
1447 } else {
1448 common->fsm_state = FSM_BB_RF_PROG_SENT;
1449 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1450 __func__);
1451 }
1452 } else {
1453 rsi_dbg(INFO_ZONE,
1454 "%s: Received radio caps cfm in %d state\n",
1455 __func__, common->fsm_state);
1456 return 0;
1457 }
1458 break;
1459
1460 case BB_PROG_VALUES_REQUEST:
1461 case RF_PROG_VALUES_REQUEST:
1462 case BBP_PROG_IN_TA:
1463 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1464 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1465 common->bb_rf_prog_count--;
1466 if (!common->bb_rf_prog_count) {
1467 common->fsm_state = FSM_MAC_INIT_DONE;
1468 return rsi_mac80211_attach(common);
1469 }
1470 } else {
1471 rsi_dbg(INFO_ZONE,
1472 "%s: Received bbb_rf cfm in %d state\n",
1473 __func__, common->fsm_state);
1474 return 0;
1475 }
1476 break;
1477
1478 default:
1479 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1480 __func__);
1481 break;
1482 }
1483 return 0;
1484out:
1485 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1486 __func__);
1487 return -EINVAL;
1488}
1489
1490/**
1491 * rsi_mgmt_pkt_recv() - This function processes the management packets
1492 * recieved from the hardware.
1493 * @common: Pointer to the driver private structure.
1494 * @msg: Pointer to the received packet.
1495 *
1496 * Return: 0 on success, -1 on failure.
1497 */
1498int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1499{
1500 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1501 u16 msg_type = (msg[2]);
1502 int ret;
1503
1504 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1505 __func__, msg_len, msg_type);
1506
1507 if (msg_type == TA_CONFIRM_TYPE) {
1508 return rsi_handle_ta_confirm_type(common, msg);
1509 } else if (msg_type == CARD_READY_IND) {
1510 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1511 __func__);
1512 if (common->fsm_state == FSM_CARD_NOT_READY) {
1513 rsi_set_default_parameters(common);
1514
1515 ret = rsi_load_bootup_params(common);
1516 if (ret)
1517 return ret;
1518 else
1519 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1520 } else {
1521 return -EINVAL;
1522 }
1523 } else if (msg_type == TX_STATUS_IND) {
1524 if (msg[15] == PROBEREQ_CONFIRM) {
1525 common->mgmt_q_block = false;
1526 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1527 __func__);
1528 }
1529 } else {
1530 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1531 }
1532 return 0;
1533}