Loading...
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24#include <linux/firmware.h>
25#include <drm/drmP.h>
26#include "amdgpu.h"
27#include "amdgpu_ucode.h"
28#include "amdgpu_trace.h"
29#include "vi.h"
30#include "vid.h"
31
32#include "oss/oss_3_0_d.h"
33#include "oss/oss_3_0_sh_mask.h"
34
35#include "gmc/gmc_8_1_d.h"
36#include "gmc/gmc_8_1_sh_mask.h"
37
38#include "gca/gfx_8_0_d.h"
39#include "gca/gfx_8_0_enum.h"
40#include "gca/gfx_8_0_sh_mask.h"
41
42#include "bif/bif_5_0_d.h"
43#include "bif/bif_5_0_sh_mask.h"
44
45#include "tonga_sdma_pkt_open.h"
46
47static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65
66
67static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68{
69 SDMA0_REGISTER_OFFSET,
70 SDMA1_REGISTER_OFFSET
71};
72
73static const u32 golden_settings_tonga_a11[] =
74{
75 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85};
86
87static const u32 tonga_mgcg_cgcg_init[] =
88{
89 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91};
92
93static const u32 golden_settings_fiji_a10[] =
94{
95 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103};
104
105static const u32 fiji_mgcg_cgcg_init[] =
106{
107 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109};
110
111static const u32 golden_settings_polaris11_a11[] =
112{
113 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123};
124
125static const u32 golden_settings_polaris10_a11[] =
126{
127 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137};
138
139static const u32 cz_golden_settings_a11[] =
140{
141 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153};
154
155static const u32 cz_mgcg_cgcg_init[] =
156{
157 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159};
160
161static const u32 stoney_golden_settings_a11[] =
162{
163 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167};
168
169static const u32 stoney_mgcg_cgcg_init[] =
170{
171 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172};
173
174/*
175 * sDMA - System DMA
176 * Starting with CIK, the GPU has new asynchronous
177 * DMA engines. These engines are used for compute
178 * and gfx. There are two DMA engines (SDMA0, SDMA1)
179 * and each one supports 1 ring buffer used for gfx
180 * and 2 queues used for compute.
181 *
182 * The programming model is very similar to the CP
183 * (ring buffer, IBs, etc.), but sDMA has it's own
184 * packet format that is different from the PM4 format
185 * used by the CP. sDMA supports copying data, writing
186 * embedded data, solid fills, and a number of other
187 * things. It also has support for tiling/detiling of
188 * buffers.
189 */
190
191static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192{
193 switch (adev->asic_type) {
194 case CHIP_FIJI:
195 amdgpu_device_program_register_sequence(adev,
196 fiji_mgcg_cgcg_init,
197 ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 amdgpu_device_program_register_sequence(adev,
199 golden_settings_fiji_a10,
200 ARRAY_SIZE(golden_settings_fiji_a10));
201 break;
202 case CHIP_TONGA:
203 amdgpu_device_program_register_sequence(adev,
204 tonga_mgcg_cgcg_init,
205 ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 amdgpu_device_program_register_sequence(adev,
207 golden_settings_tonga_a11,
208 ARRAY_SIZE(golden_settings_tonga_a11));
209 break;
210 case CHIP_POLARIS11:
211 case CHIP_POLARIS12:
212 amdgpu_device_program_register_sequence(adev,
213 golden_settings_polaris11_a11,
214 ARRAY_SIZE(golden_settings_polaris11_a11));
215 break;
216 case CHIP_POLARIS10:
217 amdgpu_device_program_register_sequence(adev,
218 golden_settings_polaris10_a11,
219 ARRAY_SIZE(golden_settings_polaris10_a11));
220 break;
221 case CHIP_CARRIZO:
222 amdgpu_device_program_register_sequence(adev,
223 cz_mgcg_cgcg_init,
224 ARRAY_SIZE(cz_mgcg_cgcg_init));
225 amdgpu_device_program_register_sequence(adev,
226 cz_golden_settings_a11,
227 ARRAY_SIZE(cz_golden_settings_a11));
228 break;
229 case CHIP_STONEY:
230 amdgpu_device_program_register_sequence(adev,
231 stoney_mgcg_cgcg_init,
232 ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 amdgpu_device_program_register_sequence(adev,
234 stoney_golden_settings_a11,
235 ARRAY_SIZE(stoney_golden_settings_a11));
236 break;
237 default:
238 break;
239 }
240}
241
242static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243{
244 int i;
245 for (i = 0; i < adev->sdma.num_instances; i++) {
246 release_firmware(adev->sdma.instance[i].fw);
247 adev->sdma.instance[i].fw = NULL;
248 }
249}
250
251/**
252 * sdma_v3_0_init_microcode - load ucode images from disk
253 *
254 * @adev: amdgpu_device pointer
255 *
256 * Use the firmware interface to load the ucode images into
257 * the driver (not loaded into hw).
258 * Returns 0 on success, error on failure.
259 */
260static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261{
262 const char *chip_name;
263 char fw_name[30];
264 int err = 0, i;
265 struct amdgpu_firmware_info *info = NULL;
266 const struct common_firmware_header *header = NULL;
267 const struct sdma_firmware_header_v1_0 *hdr;
268
269 DRM_DEBUG("\n");
270
271 switch (adev->asic_type) {
272 case CHIP_TONGA:
273 chip_name = "tonga";
274 break;
275 case CHIP_FIJI:
276 chip_name = "fiji";
277 break;
278 case CHIP_POLARIS11:
279 chip_name = "polaris11";
280 break;
281 case CHIP_POLARIS10:
282 chip_name = "polaris10";
283 break;
284 case CHIP_POLARIS12:
285 chip_name = "polaris12";
286 break;
287 case CHIP_CARRIZO:
288 chip_name = "carrizo";
289 break;
290 case CHIP_STONEY:
291 chip_name = "stoney";
292 break;
293 default: BUG();
294 }
295
296 for (i = 0; i < adev->sdma.num_instances; i++) {
297 if (i == 0)
298 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 else
300 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 if (err)
303 goto out;
304 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 if (err)
306 goto out;
307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 if (adev->sdma.instance[i].feature_version >= 20)
311 adev->sdma.instance[i].burst_nop = true;
312
313 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 info->fw = adev->sdma.instance[i].fw;
317 header = (const struct common_firmware_header *)info->fw->data;
318 adev->firmware.fw_size +=
319 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 }
321 }
322out:
323 if (err) {
324 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325 for (i = 0; i < adev->sdma.num_instances; i++) {
326 release_firmware(adev->sdma.instance[i].fw);
327 adev->sdma.instance[i].fw = NULL;
328 }
329 }
330 return err;
331}
332
333/**
334 * sdma_v3_0_ring_get_rptr - get the current read pointer
335 *
336 * @ring: amdgpu ring pointer
337 *
338 * Get the current rptr from the hardware (VI+).
339 */
340static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341{
342 /* XXX check if swapping is necessary on BE */
343 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344}
345
346/**
347 * sdma_v3_0_ring_get_wptr - get the current write pointer
348 *
349 * @ring: amdgpu ring pointer
350 *
351 * Get the current wptr from the hardware (VI+).
352 */
353static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354{
355 struct amdgpu_device *adev = ring->adev;
356 u32 wptr;
357
358 if (ring->use_doorbell || ring->use_pollmem) {
359 /* XXX check if swapping is necessary on BE */
360 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 } else {
362 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363
364 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 }
366
367 return wptr;
368}
369
370/**
371 * sdma_v3_0_ring_set_wptr - commit the write pointer
372 *
373 * @ring: amdgpu ring pointer
374 *
375 * Write the wptr back to the hardware (VI+).
376 */
377static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378{
379 struct amdgpu_device *adev = ring->adev;
380
381 if (ring->use_doorbell) {
382 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383 /* XXX check if swapping is necessary on BE */
384 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
385 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
386 } else if (ring->use_pollmem) {
387 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388
389 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390 } else {
391 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
392
393 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
394 }
395}
396
397static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398{
399 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
400 int i;
401
402 for (i = 0; i < count; i++)
403 if (sdma && sdma->burst_nop && (i == 0))
404 amdgpu_ring_write(ring, ring->funcs->nop |
405 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 else
407 amdgpu_ring_write(ring, ring->funcs->nop);
408}
409
410/**
411 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412 *
413 * @ring: amdgpu ring pointer
414 * @ib: IB object to schedule
415 *
416 * Schedule an IB in the DMA ring (VI).
417 */
418static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
419 struct amdgpu_ib *ib,
420 unsigned vmid, bool ctx_switch)
421{
422 /* IB packet must end on a 8 DW boundary */
423 sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
424
425 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
426 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
427 /* base must be 32 byte aligned */
428 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
429 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
430 amdgpu_ring_write(ring, ib->length_dw);
431 amdgpu_ring_write(ring, 0);
432 amdgpu_ring_write(ring, 0);
433
434}
435
436/**
437 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
438 *
439 * @ring: amdgpu ring pointer
440 *
441 * Emit an hdp flush packet on the requested DMA ring.
442 */
443static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
444{
445 u32 ref_and_mask = 0;
446
447 if (ring == &ring->adev->sdma.instance[0].ring)
448 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
449 else
450 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
451
452 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
453 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
454 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
455 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
456 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
457 amdgpu_ring_write(ring, ref_and_mask); /* reference */
458 amdgpu_ring_write(ring, ref_and_mask); /* mask */
459 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
460 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
461}
462
463/**
464 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
465 *
466 * @ring: amdgpu ring pointer
467 * @fence: amdgpu fence object
468 *
469 * Add a DMA fence packet to the ring to write
470 * the fence seq number and DMA trap packet to generate
471 * an interrupt if needed (VI).
472 */
473static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
474 unsigned flags)
475{
476 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
477 /* write the fence */
478 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
479 amdgpu_ring_write(ring, lower_32_bits(addr));
480 amdgpu_ring_write(ring, upper_32_bits(addr));
481 amdgpu_ring_write(ring, lower_32_bits(seq));
482
483 /* optionally write high bits as well */
484 if (write64bit) {
485 addr += 4;
486 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
487 amdgpu_ring_write(ring, lower_32_bits(addr));
488 amdgpu_ring_write(ring, upper_32_bits(addr));
489 amdgpu_ring_write(ring, upper_32_bits(seq));
490 }
491
492 /* generate an interrupt */
493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
494 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
495}
496
497/**
498 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
499 *
500 * @adev: amdgpu_device pointer
501 *
502 * Stop the gfx async dma ring buffers (VI).
503 */
504static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
505{
506 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
507 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
508 u32 rb_cntl, ib_cntl;
509 int i;
510
511 if ((adev->mman.buffer_funcs_ring == sdma0) ||
512 (adev->mman.buffer_funcs_ring == sdma1))
513 amdgpu_ttm_set_buffer_funcs_status(adev, false);
514
515 for (i = 0; i < adev->sdma.num_instances; i++) {
516 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
517 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
518 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
519 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
520 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
521 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
522 }
523 sdma0->ready = false;
524 sdma1->ready = false;
525}
526
527/**
528 * sdma_v3_0_rlc_stop - stop the compute async dma engines
529 *
530 * @adev: amdgpu_device pointer
531 *
532 * Stop the compute async dma queues (VI).
533 */
534static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
535{
536 /* XXX todo */
537}
538
539/**
540 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
541 *
542 * @adev: amdgpu_device pointer
543 * @enable: enable/disable the DMA MEs context switch.
544 *
545 * Halt or unhalt the async dma engines context switch (VI).
546 */
547static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
548{
549 u32 f32_cntl, phase_quantum = 0;
550 int i;
551
552 if (amdgpu_sdma_phase_quantum) {
553 unsigned value = amdgpu_sdma_phase_quantum;
554 unsigned unit = 0;
555
556 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
557 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
558 value = (value + 1) >> 1;
559 unit++;
560 }
561 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
562 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
563 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
564 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
565 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
566 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
567 WARN_ONCE(1,
568 "clamping sdma_phase_quantum to %uK clock cycles\n",
569 value << unit);
570 }
571 phase_quantum =
572 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
573 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
574 }
575
576 for (i = 0; i < adev->sdma.num_instances; i++) {
577 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
578 if (enable) {
579 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
580 AUTO_CTXSW_ENABLE, 1);
581 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
582 ATC_L1_ENABLE, 1);
583 if (amdgpu_sdma_phase_quantum) {
584 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
585 phase_quantum);
586 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
587 phase_quantum);
588 }
589 } else {
590 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
591 AUTO_CTXSW_ENABLE, 0);
592 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
593 ATC_L1_ENABLE, 1);
594 }
595
596 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
597 }
598}
599
600/**
601 * sdma_v3_0_enable - stop the async dma engines
602 *
603 * @adev: amdgpu_device pointer
604 * @enable: enable/disable the DMA MEs.
605 *
606 * Halt or unhalt the async dma engines (VI).
607 */
608static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
609{
610 u32 f32_cntl;
611 int i;
612
613 if (!enable) {
614 sdma_v3_0_gfx_stop(adev);
615 sdma_v3_0_rlc_stop(adev);
616 }
617
618 for (i = 0; i < adev->sdma.num_instances; i++) {
619 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
620 if (enable)
621 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
622 else
623 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
624 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
625 }
626}
627
628/**
629 * sdma_v3_0_gfx_resume - setup and start the async dma engines
630 *
631 * @adev: amdgpu_device pointer
632 *
633 * Set up the gfx DMA ring buffers and enable them (VI).
634 * Returns 0 for success, error for failure.
635 */
636static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
637{
638 struct amdgpu_ring *ring;
639 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
640 u32 rb_bufsz;
641 u32 wb_offset;
642 u32 doorbell;
643 u64 wptr_gpu_addr;
644 int i, j, r;
645
646 for (i = 0; i < adev->sdma.num_instances; i++) {
647 ring = &adev->sdma.instance[i].ring;
648 amdgpu_ring_clear_ring(ring);
649 wb_offset = (ring->rptr_offs * 4);
650
651 mutex_lock(&adev->srbm_mutex);
652 for (j = 0; j < 16; j++) {
653 vi_srbm_select(adev, 0, 0, 0, j);
654 /* SDMA GFX */
655 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
656 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
657 }
658 vi_srbm_select(adev, 0, 0, 0, 0);
659 mutex_unlock(&adev->srbm_mutex);
660
661 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
662 adev->gfx.config.gb_addr_config & 0x70);
663
664 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
665
666 /* Set ring buffer size in dwords */
667 rb_bufsz = order_base_2(ring->ring_size / 4);
668 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
669 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
670#ifdef __BIG_ENDIAN
671 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
672 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
673 RPTR_WRITEBACK_SWAP_ENABLE, 1);
674#endif
675 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
676
677 /* Initialize the ring buffer's read and write pointers */
678 ring->wptr = 0;
679 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
680 sdma_v3_0_ring_set_wptr(ring);
681 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
682 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
683
684 /* set the wb address whether it's enabled or not */
685 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
686 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
687 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
688 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
689
690 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
691
692 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
693 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
694
695 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
696
697 if (ring->use_doorbell) {
698 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
699 OFFSET, ring->doorbell_index);
700 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
701 } else {
702 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
703 }
704 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
705
706 /* setup the wptr shadow polling */
707 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
708
709 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
710 lower_32_bits(wptr_gpu_addr));
711 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
712 upper_32_bits(wptr_gpu_addr));
713 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
714 if (ring->use_pollmem) {
715 /*wptr polling is not enogh fast, directly clean the wptr register */
716 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
717 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
718 SDMA0_GFX_RB_WPTR_POLL_CNTL,
719 ENABLE, 1);
720 } else {
721 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
722 SDMA0_GFX_RB_WPTR_POLL_CNTL,
723 ENABLE, 0);
724 }
725 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
726
727 /* enable DMA RB */
728 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
729 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
730
731 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
732 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
733#ifdef __BIG_ENDIAN
734 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
735#endif
736 /* enable DMA IBs */
737 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
738
739 ring->ready = true;
740 }
741
742 /* unhalt the MEs */
743 sdma_v3_0_enable(adev, true);
744 /* enable sdma ring preemption */
745 sdma_v3_0_ctx_switch_enable(adev, true);
746
747 for (i = 0; i < adev->sdma.num_instances; i++) {
748 ring = &adev->sdma.instance[i].ring;
749 r = amdgpu_ring_test_ring(ring);
750 if (r) {
751 ring->ready = false;
752 return r;
753 }
754
755 if (adev->mman.buffer_funcs_ring == ring)
756 amdgpu_ttm_set_buffer_funcs_status(adev, true);
757 }
758
759 return 0;
760}
761
762/**
763 * sdma_v3_0_rlc_resume - setup and start the async dma engines
764 *
765 * @adev: amdgpu_device pointer
766 *
767 * Set up the compute DMA queues and enable them (VI).
768 * Returns 0 for success, error for failure.
769 */
770static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
771{
772 /* XXX todo */
773 return 0;
774}
775
776/**
777 * sdma_v3_0_load_microcode - load the sDMA ME ucode
778 *
779 * @adev: amdgpu_device pointer
780 *
781 * Loads the sDMA0/1 ucode.
782 * Returns 0 for success, -EINVAL if the ucode is not available.
783 */
784static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
785{
786 const struct sdma_firmware_header_v1_0 *hdr;
787 const __le32 *fw_data;
788 u32 fw_size;
789 int i, j;
790
791 /* halt the MEs */
792 sdma_v3_0_enable(adev, false);
793
794 for (i = 0; i < adev->sdma.num_instances; i++) {
795 if (!adev->sdma.instance[i].fw)
796 return -EINVAL;
797 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
798 amdgpu_ucode_print_sdma_hdr(&hdr->header);
799 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
800 fw_data = (const __le32 *)
801 (adev->sdma.instance[i].fw->data +
802 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
803 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
804 for (j = 0; j < fw_size; j++)
805 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
806 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
807 }
808
809 return 0;
810}
811
812/**
813 * sdma_v3_0_start - setup and start the async dma engines
814 *
815 * @adev: amdgpu_device pointer
816 *
817 * Set up the DMA engines and enable them (VI).
818 * Returns 0 for success, error for failure.
819 */
820static int sdma_v3_0_start(struct amdgpu_device *adev)
821{
822 int r;
823
824 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
825 r = sdma_v3_0_load_microcode(adev);
826 if (r)
827 return r;
828 }
829
830 /* disable sdma engine before programing it */
831 sdma_v3_0_ctx_switch_enable(adev, false);
832 sdma_v3_0_enable(adev, false);
833
834 /* start the gfx rings and rlc compute queues */
835 r = sdma_v3_0_gfx_resume(adev);
836 if (r)
837 return r;
838 r = sdma_v3_0_rlc_resume(adev);
839 if (r)
840 return r;
841
842 return 0;
843}
844
845/**
846 * sdma_v3_0_ring_test_ring - simple async dma engine test
847 *
848 * @ring: amdgpu_ring structure holding ring information
849 *
850 * Test the DMA engine by writing using it to write an
851 * value to memory. (VI).
852 * Returns 0 for success, error for failure.
853 */
854static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
855{
856 struct amdgpu_device *adev = ring->adev;
857 unsigned i;
858 unsigned index;
859 int r;
860 u32 tmp;
861 u64 gpu_addr;
862
863 r = amdgpu_device_wb_get(adev, &index);
864 if (r) {
865 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
866 return r;
867 }
868
869 gpu_addr = adev->wb.gpu_addr + (index * 4);
870 tmp = 0xCAFEDEAD;
871 adev->wb.wb[index] = cpu_to_le32(tmp);
872
873 r = amdgpu_ring_alloc(ring, 5);
874 if (r) {
875 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
876 amdgpu_device_wb_free(adev, index);
877 return r;
878 }
879
880 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
881 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
882 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
883 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
884 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
885 amdgpu_ring_write(ring, 0xDEADBEEF);
886 amdgpu_ring_commit(ring);
887
888 for (i = 0; i < adev->usec_timeout; i++) {
889 tmp = le32_to_cpu(adev->wb.wb[index]);
890 if (tmp == 0xDEADBEEF)
891 break;
892 DRM_UDELAY(1);
893 }
894
895 if (i < adev->usec_timeout) {
896 DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
897 } else {
898 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
899 ring->idx, tmp);
900 r = -EINVAL;
901 }
902 amdgpu_device_wb_free(adev, index);
903
904 return r;
905}
906
907/**
908 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
909 *
910 * @ring: amdgpu_ring structure holding ring information
911 *
912 * Test a simple IB in the DMA ring (VI).
913 * Returns 0 on success, error on failure.
914 */
915static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
916{
917 struct amdgpu_device *adev = ring->adev;
918 struct amdgpu_ib ib;
919 struct dma_fence *f = NULL;
920 unsigned index;
921 u32 tmp = 0;
922 u64 gpu_addr;
923 long r;
924
925 r = amdgpu_device_wb_get(adev, &index);
926 if (r) {
927 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
928 return r;
929 }
930
931 gpu_addr = adev->wb.gpu_addr + (index * 4);
932 tmp = 0xCAFEDEAD;
933 adev->wb.wb[index] = cpu_to_le32(tmp);
934 memset(&ib, 0, sizeof(ib));
935 r = amdgpu_ib_get(adev, NULL, 256, &ib);
936 if (r) {
937 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
938 goto err0;
939 }
940
941 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
942 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
943 ib.ptr[1] = lower_32_bits(gpu_addr);
944 ib.ptr[2] = upper_32_bits(gpu_addr);
945 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
946 ib.ptr[4] = 0xDEADBEEF;
947 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
948 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
949 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
950 ib.length_dw = 8;
951
952 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
953 if (r)
954 goto err1;
955
956 r = dma_fence_wait_timeout(f, false, timeout);
957 if (r == 0) {
958 DRM_ERROR("amdgpu: IB test timed out\n");
959 r = -ETIMEDOUT;
960 goto err1;
961 } else if (r < 0) {
962 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
963 goto err1;
964 }
965 tmp = le32_to_cpu(adev->wb.wb[index]);
966 if (tmp == 0xDEADBEEF) {
967 DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
968 r = 0;
969 } else {
970 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
971 r = -EINVAL;
972 }
973err1:
974 amdgpu_ib_free(adev, &ib, NULL);
975 dma_fence_put(f);
976err0:
977 amdgpu_device_wb_free(adev, index);
978 return r;
979}
980
981/**
982 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
983 *
984 * @ib: indirect buffer to fill with commands
985 * @pe: addr of the page entry
986 * @src: src addr to copy from
987 * @count: number of page entries to update
988 *
989 * Update PTEs by copying them from the GART using sDMA (CIK).
990 */
991static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
992 uint64_t pe, uint64_t src,
993 unsigned count)
994{
995 unsigned bytes = count * 8;
996
997 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
998 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
999 ib->ptr[ib->length_dw++] = bytes;
1000 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1001 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1002 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1003 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1004 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1005}
1006
1007/**
1008 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1009 *
1010 * @ib: indirect buffer to fill with commands
1011 * @pe: addr of the page entry
1012 * @value: dst addr to write into pe
1013 * @count: number of page entries to update
1014 * @incr: increase next addr by incr bytes
1015 *
1016 * Update PTEs by writing them manually using sDMA (CIK).
1017 */
1018static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1019 uint64_t value, unsigned count,
1020 uint32_t incr)
1021{
1022 unsigned ndw = count * 2;
1023
1024 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1025 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1026 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1027 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1028 ib->ptr[ib->length_dw++] = ndw;
1029 for (; ndw > 0; ndw -= 2) {
1030 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1031 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1032 value += incr;
1033 }
1034}
1035
1036/**
1037 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1038 *
1039 * @ib: indirect buffer to fill with commands
1040 * @pe: addr of the page entry
1041 * @addr: dst addr to write into pe
1042 * @count: number of page entries to update
1043 * @incr: increase next addr by incr bytes
1044 * @flags: access flags
1045 *
1046 * Update the page tables using sDMA (CIK).
1047 */
1048static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1049 uint64_t addr, unsigned count,
1050 uint32_t incr, uint64_t flags)
1051{
1052 /* for physically contiguous pages (vram) */
1053 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1054 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1055 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1056 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1057 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1058 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1059 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1060 ib->ptr[ib->length_dw++] = incr; /* increment size */
1061 ib->ptr[ib->length_dw++] = 0;
1062 ib->ptr[ib->length_dw++] = count; /* number of entries */
1063}
1064
1065/**
1066 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1067 *
1068 * @ib: indirect buffer to fill with padding
1069 *
1070 */
1071static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1072{
1073 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1074 u32 pad_count;
1075 int i;
1076
1077 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1078 for (i = 0; i < pad_count; i++)
1079 if (sdma && sdma->burst_nop && (i == 0))
1080 ib->ptr[ib->length_dw++] =
1081 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1082 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1083 else
1084 ib->ptr[ib->length_dw++] =
1085 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1086}
1087
1088/**
1089 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1090 *
1091 * @ring: amdgpu_ring pointer
1092 *
1093 * Make sure all previous operations are completed (CIK).
1094 */
1095static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1096{
1097 uint32_t seq = ring->fence_drv.sync_seq;
1098 uint64_t addr = ring->fence_drv.gpu_addr;
1099
1100 /* wait for idle */
1101 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1102 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1103 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1104 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1105 amdgpu_ring_write(ring, addr & 0xfffffffc);
1106 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1107 amdgpu_ring_write(ring, seq); /* reference */
1108 amdgpu_ring_write(ring, 0xffffffff); /* mask */
1109 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1111}
1112
1113/**
1114 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1115 *
1116 * @ring: amdgpu_ring pointer
1117 * @vm: amdgpu_vm pointer
1118 *
1119 * Update the page table base and flush the VM TLB
1120 * using sDMA (VI).
1121 */
1122static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1123 unsigned vmid, uint64_t pd_addr)
1124{
1125 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1126
1127 /* wait for flush */
1128 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1129 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1130 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1131 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1132 amdgpu_ring_write(ring, 0);
1133 amdgpu_ring_write(ring, 0); /* reference */
1134 amdgpu_ring_write(ring, 0); /* mask */
1135 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1136 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1137}
1138
1139static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1140 uint32_t reg, uint32_t val)
1141{
1142 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1143 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1144 amdgpu_ring_write(ring, reg);
1145 amdgpu_ring_write(ring, val);
1146}
1147
1148static int sdma_v3_0_early_init(void *handle)
1149{
1150 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1151
1152 switch (adev->asic_type) {
1153 case CHIP_STONEY:
1154 adev->sdma.num_instances = 1;
1155 break;
1156 default:
1157 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1158 break;
1159 }
1160
1161 sdma_v3_0_set_ring_funcs(adev);
1162 sdma_v3_0_set_buffer_funcs(adev);
1163 sdma_v3_0_set_vm_pte_funcs(adev);
1164 sdma_v3_0_set_irq_funcs(adev);
1165
1166 return 0;
1167}
1168
1169static int sdma_v3_0_sw_init(void *handle)
1170{
1171 struct amdgpu_ring *ring;
1172 int r, i;
1173 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1174
1175 /* SDMA trap event */
1176 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1177 &adev->sdma.trap_irq);
1178 if (r)
1179 return r;
1180
1181 /* SDMA Privileged inst */
1182 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1183 &adev->sdma.illegal_inst_irq);
1184 if (r)
1185 return r;
1186
1187 /* SDMA Privileged inst */
1188 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1189 &adev->sdma.illegal_inst_irq);
1190 if (r)
1191 return r;
1192
1193 r = sdma_v3_0_init_microcode(adev);
1194 if (r) {
1195 DRM_ERROR("Failed to load sdma firmware!\n");
1196 return r;
1197 }
1198
1199 for (i = 0; i < adev->sdma.num_instances; i++) {
1200 ring = &adev->sdma.instance[i].ring;
1201 ring->ring_obj = NULL;
1202 if (!amdgpu_sriov_vf(adev)) {
1203 ring->use_doorbell = true;
1204 ring->doorbell_index = (i == 0) ?
1205 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1206 } else {
1207 ring->use_pollmem = true;
1208 }
1209
1210 sprintf(ring->name, "sdma%d", i);
1211 r = amdgpu_ring_init(adev, ring, 1024,
1212 &adev->sdma.trap_irq,
1213 (i == 0) ?
1214 AMDGPU_SDMA_IRQ_TRAP0 :
1215 AMDGPU_SDMA_IRQ_TRAP1);
1216 if (r)
1217 return r;
1218 }
1219
1220 return r;
1221}
1222
1223static int sdma_v3_0_sw_fini(void *handle)
1224{
1225 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1226 int i;
1227
1228 for (i = 0; i < adev->sdma.num_instances; i++)
1229 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1230
1231 sdma_v3_0_free_microcode(adev);
1232 return 0;
1233}
1234
1235static int sdma_v3_0_hw_init(void *handle)
1236{
1237 int r;
1238 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1239
1240 sdma_v3_0_init_golden_registers(adev);
1241
1242 r = sdma_v3_0_start(adev);
1243 if (r)
1244 return r;
1245
1246 return r;
1247}
1248
1249static int sdma_v3_0_hw_fini(void *handle)
1250{
1251 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1252
1253 sdma_v3_0_ctx_switch_enable(adev, false);
1254 sdma_v3_0_enable(adev, false);
1255
1256 return 0;
1257}
1258
1259static int sdma_v3_0_suspend(void *handle)
1260{
1261 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1262
1263 return sdma_v3_0_hw_fini(adev);
1264}
1265
1266static int sdma_v3_0_resume(void *handle)
1267{
1268 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269
1270 return sdma_v3_0_hw_init(adev);
1271}
1272
1273static bool sdma_v3_0_is_idle(void *handle)
1274{
1275 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276 u32 tmp = RREG32(mmSRBM_STATUS2);
1277
1278 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1279 SRBM_STATUS2__SDMA1_BUSY_MASK))
1280 return false;
1281
1282 return true;
1283}
1284
1285static int sdma_v3_0_wait_for_idle(void *handle)
1286{
1287 unsigned i;
1288 u32 tmp;
1289 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290
1291 for (i = 0; i < adev->usec_timeout; i++) {
1292 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1293 SRBM_STATUS2__SDMA1_BUSY_MASK);
1294
1295 if (!tmp)
1296 return 0;
1297 udelay(1);
1298 }
1299 return -ETIMEDOUT;
1300}
1301
1302static bool sdma_v3_0_check_soft_reset(void *handle)
1303{
1304 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1305 u32 srbm_soft_reset = 0;
1306 u32 tmp = RREG32(mmSRBM_STATUS2);
1307
1308 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1309 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1310 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1311 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1312 }
1313
1314 if (srbm_soft_reset) {
1315 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1316 return true;
1317 } else {
1318 adev->sdma.srbm_soft_reset = 0;
1319 return false;
1320 }
1321}
1322
1323static int sdma_v3_0_pre_soft_reset(void *handle)
1324{
1325 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1326 u32 srbm_soft_reset = 0;
1327
1328 if (!adev->sdma.srbm_soft_reset)
1329 return 0;
1330
1331 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1332
1333 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1334 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1335 sdma_v3_0_ctx_switch_enable(adev, false);
1336 sdma_v3_0_enable(adev, false);
1337 }
1338
1339 return 0;
1340}
1341
1342static int sdma_v3_0_post_soft_reset(void *handle)
1343{
1344 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1345 u32 srbm_soft_reset = 0;
1346
1347 if (!adev->sdma.srbm_soft_reset)
1348 return 0;
1349
1350 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1351
1352 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1353 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1354 sdma_v3_0_gfx_resume(adev);
1355 sdma_v3_0_rlc_resume(adev);
1356 }
1357
1358 return 0;
1359}
1360
1361static int sdma_v3_0_soft_reset(void *handle)
1362{
1363 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1364 u32 srbm_soft_reset = 0;
1365 u32 tmp;
1366
1367 if (!adev->sdma.srbm_soft_reset)
1368 return 0;
1369
1370 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1371
1372 if (srbm_soft_reset) {
1373 tmp = RREG32(mmSRBM_SOFT_RESET);
1374 tmp |= srbm_soft_reset;
1375 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1376 WREG32(mmSRBM_SOFT_RESET, tmp);
1377 tmp = RREG32(mmSRBM_SOFT_RESET);
1378
1379 udelay(50);
1380
1381 tmp &= ~srbm_soft_reset;
1382 WREG32(mmSRBM_SOFT_RESET, tmp);
1383 tmp = RREG32(mmSRBM_SOFT_RESET);
1384
1385 /* Wait a little for things to settle down */
1386 udelay(50);
1387 }
1388
1389 return 0;
1390}
1391
1392static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1393 struct amdgpu_irq_src *source,
1394 unsigned type,
1395 enum amdgpu_interrupt_state state)
1396{
1397 u32 sdma_cntl;
1398
1399 switch (type) {
1400 case AMDGPU_SDMA_IRQ_TRAP0:
1401 switch (state) {
1402 case AMDGPU_IRQ_STATE_DISABLE:
1403 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1404 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1405 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1406 break;
1407 case AMDGPU_IRQ_STATE_ENABLE:
1408 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1409 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1410 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1411 break;
1412 default:
1413 break;
1414 }
1415 break;
1416 case AMDGPU_SDMA_IRQ_TRAP1:
1417 switch (state) {
1418 case AMDGPU_IRQ_STATE_DISABLE:
1419 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1420 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1421 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1422 break;
1423 case AMDGPU_IRQ_STATE_ENABLE:
1424 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1425 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1426 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1427 break;
1428 default:
1429 break;
1430 }
1431 break;
1432 default:
1433 break;
1434 }
1435 return 0;
1436}
1437
1438static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1439 struct amdgpu_irq_src *source,
1440 struct amdgpu_iv_entry *entry)
1441{
1442 u8 instance_id, queue_id;
1443
1444 instance_id = (entry->ring_id & 0x3) >> 0;
1445 queue_id = (entry->ring_id & 0xc) >> 2;
1446 DRM_DEBUG("IH: SDMA trap\n");
1447 switch (instance_id) {
1448 case 0:
1449 switch (queue_id) {
1450 case 0:
1451 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1452 break;
1453 case 1:
1454 /* XXX compute */
1455 break;
1456 case 2:
1457 /* XXX compute */
1458 break;
1459 }
1460 break;
1461 case 1:
1462 switch (queue_id) {
1463 case 0:
1464 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1465 break;
1466 case 1:
1467 /* XXX compute */
1468 break;
1469 case 2:
1470 /* XXX compute */
1471 break;
1472 }
1473 break;
1474 }
1475 return 0;
1476}
1477
1478static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1479 struct amdgpu_irq_src *source,
1480 struct amdgpu_iv_entry *entry)
1481{
1482 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1483 schedule_work(&adev->reset_work);
1484 return 0;
1485}
1486
1487static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1488 struct amdgpu_device *adev,
1489 bool enable)
1490{
1491 uint32_t temp, data;
1492 int i;
1493
1494 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1495 for (i = 0; i < adev->sdma.num_instances; i++) {
1496 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1497 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1498 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1499 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1500 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1501 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1502 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1503 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1504 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1505 if (data != temp)
1506 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1507 }
1508 } else {
1509 for (i = 0; i < adev->sdma.num_instances; i++) {
1510 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1511 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1512 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1513 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1514 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1515 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1516 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1517 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1518 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1519
1520 if (data != temp)
1521 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1522 }
1523 }
1524}
1525
1526static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1527 struct amdgpu_device *adev,
1528 bool enable)
1529{
1530 uint32_t temp, data;
1531 int i;
1532
1533 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1534 for (i = 0; i < adev->sdma.num_instances; i++) {
1535 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1536 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1537
1538 if (temp != data)
1539 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1540 }
1541 } else {
1542 for (i = 0; i < adev->sdma.num_instances; i++) {
1543 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1544 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1545
1546 if (temp != data)
1547 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1548 }
1549 }
1550}
1551
1552static int sdma_v3_0_set_clockgating_state(void *handle,
1553 enum amd_clockgating_state state)
1554{
1555 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1556
1557 if (amdgpu_sriov_vf(adev))
1558 return 0;
1559
1560 switch (adev->asic_type) {
1561 case CHIP_FIJI:
1562 case CHIP_CARRIZO:
1563 case CHIP_STONEY:
1564 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1565 state == AMD_CG_STATE_GATE);
1566 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1567 state == AMD_CG_STATE_GATE);
1568 break;
1569 default:
1570 break;
1571 }
1572 return 0;
1573}
1574
1575static int sdma_v3_0_set_powergating_state(void *handle,
1576 enum amd_powergating_state state)
1577{
1578 return 0;
1579}
1580
1581static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1582{
1583 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1584 int data;
1585
1586 if (amdgpu_sriov_vf(adev))
1587 *flags = 0;
1588
1589 /* AMD_CG_SUPPORT_SDMA_MGCG */
1590 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1591 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1592 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1593
1594 /* AMD_CG_SUPPORT_SDMA_LS */
1595 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1596 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1597 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1598}
1599
1600static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1601 .name = "sdma_v3_0",
1602 .early_init = sdma_v3_0_early_init,
1603 .late_init = NULL,
1604 .sw_init = sdma_v3_0_sw_init,
1605 .sw_fini = sdma_v3_0_sw_fini,
1606 .hw_init = sdma_v3_0_hw_init,
1607 .hw_fini = sdma_v3_0_hw_fini,
1608 .suspend = sdma_v3_0_suspend,
1609 .resume = sdma_v3_0_resume,
1610 .is_idle = sdma_v3_0_is_idle,
1611 .wait_for_idle = sdma_v3_0_wait_for_idle,
1612 .check_soft_reset = sdma_v3_0_check_soft_reset,
1613 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1614 .post_soft_reset = sdma_v3_0_post_soft_reset,
1615 .soft_reset = sdma_v3_0_soft_reset,
1616 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1617 .set_powergating_state = sdma_v3_0_set_powergating_state,
1618 .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1619};
1620
1621static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1622 .type = AMDGPU_RING_TYPE_SDMA,
1623 .align_mask = 0xf,
1624 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1625 .support_64bit_ptrs = false,
1626 .get_rptr = sdma_v3_0_ring_get_rptr,
1627 .get_wptr = sdma_v3_0_ring_get_wptr,
1628 .set_wptr = sdma_v3_0_ring_set_wptr,
1629 .emit_frame_size =
1630 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1631 3 + /* hdp invalidate */
1632 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1633 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1634 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1635 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1636 .emit_ib = sdma_v3_0_ring_emit_ib,
1637 .emit_fence = sdma_v3_0_ring_emit_fence,
1638 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1639 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1640 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1641 .test_ring = sdma_v3_0_ring_test_ring,
1642 .test_ib = sdma_v3_0_ring_test_ib,
1643 .insert_nop = sdma_v3_0_ring_insert_nop,
1644 .pad_ib = sdma_v3_0_ring_pad_ib,
1645 .emit_wreg = sdma_v3_0_ring_emit_wreg,
1646};
1647
1648static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1649{
1650 int i;
1651
1652 for (i = 0; i < adev->sdma.num_instances; i++)
1653 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1654}
1655
1656static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1657 .set = sdma_v3_0_set_trap_irq_state,
1658 .process = sdma_v3_0_process_trap_irq,
1659};
1660
1661static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1662 .process = sdma_v3_0_process_illegal_inst_irq,
1663};
1664
1665static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1666{
1667 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1668 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1669 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1670}
1671
1672/**
1673 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1674 *
1675 * @ring: amdgpu_ring structure holding ring information
1676 * @src_offset: src GPU address
1677 * @dst_offset: dst GPU address
1678 * @byte_count: number of bytes to xfer
1679 *
1680 * Copy GPU buffers using the DMA engine (VI).
1681 * Used by the amdgpu ttm implementation to move pages if
1682 * registered as the asic copy callback.
1683 */
1684static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1685 uint64_t src_offset,
1686 uint64_t dst_offset,
1687 uint32_t byte_count)
1688{
1689 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1690 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1691 ib->ptr[ib->length_dw++] = byte_count;
1692 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1693 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1694 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1695 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1696 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1697}
1698
1699/**
1700 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1701 *
1702 * @ring: amdgpu_ring structure holding ring information
1703 * @src_data: value to write to buffer
1704 * @dst_offset: dst GPU address
1705 * @byte_count: number of bytes to xfer
1706 *
1707 * Fill GPU buffers using the DMA engine (VI).
1708 */
1709static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1710 uint32_t src_data,
1711 uint64_t dst_offset,
1712 uint32_t byte_count)
1713{
1714 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1715 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1716 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1717 ib->ptr[ib->length_dw++] = src_data;
1718 ib->ptr[ib->length_dw++] = byte_count;
1719}
1720
1721static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1722 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1723 .copy_num_dw = 7,
1724 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1725
1726 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1727 .fill_num_dw = 5,
1728 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1729};
1730
1731static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1732{
1733 if (adev->mman.buffer_funcs == NULL) {
1734 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1735 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1736 }
1737}
1738
1739static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1740 .copy_pte_num_dw = 7,
1741 .copy_pte = sdma_v3_0_vm_copy_pte,
1742
1743 .write_pte = sdma_v3_0_vm_write_pte,
1744 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1745};
1746
1747static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1748{
1749 unsigned i;
1750
1751 if (adev->vm_manager.vm_pte_funcs == NULL) {
1752 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1753 for (i = 0; i < adev->sdma.num_instances; i++)
1754 adev->vm_manager.vm_pte_rings[i] =
1755 &adev->sdma.instance[i].ring;
1756
1757 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1758 }
1759}
1760
1761const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1762{
1763 .type = AMD_IP_BLOCK_TYPE_SDMA,
1764 .major = 3,
1765 .minor = 0,
1766 .rev = 0,
1767 .funcs = &sdma_v3_0_ip_funcs,
1768};
1769
1770const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1771{
1772 .type = AMD_IP_BLOCK_TYPE_SDMA,
1773 .major = 3,
1774 .minor = 1,
1775 .rev = 0,
1776 .funcs = &sdma_v3_0_ip_funcs,
1777};
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24#include <linux/firmware.h>
25#include <drm/drmP.h>
26#include "amdgpu.h"
27#include "amdgpu_ucode.h"
28#include "amdgpu_trace.h"
29#include "vi.h"
30#include "vid.h"
31
32#include "oss/oss_3_0_d.h"
33#include "oss/oss_3_0_sh_mask.h"
34
35#include "gmc/gmc_8_1_d.h"
36#include "gmc/gmc_8_1_sh_mask.h"
37
38#include "gca/gfx_8_0_d.h"
39#include "gca/gfx_8_0_enum.h"
40#include "gca/gfx_8_0_sh_mask.h"
41
42#include "bif/bif_5_0_d.h"
43#include "bif/bif_5_0_sh_mask.h"
44
45#include "tonga_sdma_pkt_open.h"
46
47static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65
66
67static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68{
69 SDMA0_REGISTER_OFFSET,
70 SDMA1_REGISTER_OFFSET
71};
72
73static const u32 golden_settings_tonga_a11[] =
74{
75 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85};
86
87static const u32 tonga_mgcg_cgcg_init[] =
88{
89 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91};
92
93static const u32 golden_settings_fiji_a10[] =
94{
95 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103};
104
105static const u32 fiji_mgcg_cgcg_init[] =
106{
107 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109};
110
111static const u32 golden_settings_polaris11_a11[] =
112{
113 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123};
124
125static const u32 golden_settings_polaris10_a11[] =
126{
127 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137};
138
139static const u32 cz_golden_settings_a11[] =
140{
141 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153};
154
155static const u32 cz_mgcg_cgcg_init[] =
156{
157 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159};
160
161static const u32 stoney_golden_settings_a11[] =
162{
163 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167};
168
169static const u32 stoney_mgcg_cgcg_init[] =
170{
171 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172};
173
174/*
175 * sDMA - System DMA
176 * Starting with CIK, the GPU has new asynchronous
177 * DMA engines. These engines are used for compute
178 * and gfx. There are two DMA engines (SDMA0, SDMA1)
179 * and each one supports 1 ring buffer used for gfx
180 * and 2 queues used for compute.
181 *
182 * The programming model is very similar to the CP
183 * (ring buffer, IBs, etc.), but sDMA has it's own
184 * packet format that is different from the PM4 format
185 * used by the CP. sDMA supports copying data, writing
186 * embedded data, solid fills, and a number of other
187 * things. It also has support for tiling/detiling of
188 * buffers.
189 */
190
191static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192{
193 switch (adev->asic_type) {
194 case CHIP_FIJI:
195 amdgpu_program_register_sequence(adev,
196 fiji_mgcg_cgcg_init,
197 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
198 amdgpu_program_register_sequence(adev,
199 golden_settings_fiji_a10,
200 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
201 break;
202 case CHIP_TONGA:
203 amdgpu_program_register_sequence(adev,
204 tonga_mgcg_cgcg_init,
205 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
206 amdgpu_program_register_sequence(adev,
207 golden_settings_tonga_a11,
208 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
209 break;
210 case CHIP_POLARIS11:
211 case CHIP_POLARIS12:
212 amdgpu_program_register_sequence(adev,
213 golden_settings_polaris11_a11,
214 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
215 break;
216 case CHIP_POLARIS10:
217 amdgpu_program_register_sequence(adev,
218 golden_settings_polaris10_a11,
219 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
220 break;
221 case CHIP_CARRIZO:
222 amdgpu_program_register_sequence(adev,
223 cz_mgcg_cgcg_init,
224 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
225 amdgpu_program_register_sequence(adev,
226 cz_golden_settings_a11,
227 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
228 break;
229 case CHIP_STONEY:
230 amdgpu_program_register_sequence(adev,
231 stoney_mgcg_cgcg_init,
232 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
233 amdgpu_program_register_sequence(adev,
234 stoney_golden_settings_a11,
235 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
236 break;
237 default:
238 break;
239 }
240}
241
242static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243{
244 int i;
245 for (i = 0; i < adev->sdma.num_instances; i++) {
246 release_firmware(adev->sdma.instance[i].fw);
247 adev->sdma.instance[i].fw = NULL;
248 }
249}
250
251/**
252 * sdma_v3_0_init_microcode - load ucode images from disk
253 *
254 * @adev: amdgpu_device pointer
255 *
256 * Use the firmware interface to load the ucode images into
257 * the driver (not loaded into hw).
258 * Returns 0 on success, error on failure.
259 */
260static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261{
262 const char *chip_name;
263 char fw_name[30];
264 int err = 0, i;
265 struct amdgpu_firmware_info *info = NULL;
266 const struct common_firmware_header *header = NULL;
267 const struct sdma_firmware_header_v1_0 *hdr;
268
269 DRM_DEBUG("\n");
270
271 switch (adev->asic_type) {
272 case CHIP_TONGA:
273 chip_name = "tonga";
274 break;
275 case CHIP_FIJI:
276 chip_name = "fiji";
277 break;
278 case CHIP_POLARIS11:
279 chip_name = "polaris11";
280 break;
281 case CHIP_POLARIS10:
282 chip_name = "polaris10";
283 break;
284 case CHIP_POLARIS12:
285 chip_name = "polaris12";
286 break;
287 case CHIP_CARRIZO:
288 chip_name = "carrizo";
289 break;
290 case CHIP_STONEY:
291 chip_name = "stoney";
292 break;
293 default: BUG();
294 }
295
296 for (i = 0; i < adev->sdma.num_instances; i++) {
297 if (i == 0)
298 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299 else
300 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302 if (err)
303 goto out;
304 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305 if (err)
306 goto out;
307 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310 if (adev->sdma.instance[i].feature_version >= 20)
311 adev->sdma.instance[i].burst_nop = true;
312
313 if (adev->firmware.smu_load) {
314 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 info->fw = adev->sdma.instance[i].fw;
317 header = (const struct common_firmware_header *)info->fw->data;
318 adev->firmware.fw_size +=
319 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 }
321 }
322out:
323 if (err) {
324 printk(KERN_ERR
325 "sdma_v3_0: Failed to load firmware \"%s\"\n",
326 fw_name);
327 for (i = 0; i < adev->sdma.num_instances; i++) {
328 release_firmware(adev->sdma.instance[i].fw);
329 adev->sdma.instance[i].fw = NULL;
330 }
331 }
332 return err;
333}
334
335/**
336 * sdma_v3_0_ring_get_rptr - get the current read pointer
337 *
338 * @ring: amdgpu ring pointer
339 *
340 * Get the current rptr from the hardware (VI+).
341 */
342static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
343{
344 /* XXX check if swapping is necessary on BE */
345 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
346}
347
348/**
349 * sdma_v3_0_ring_get_wptr - get the current write pointer
350 *
351 * @ring: amdgpu ring pointer
352 *
353 * Get the current wptr from the hardware (VI+).
354 */
355static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
356{
357 struct amdgpu_device *adev = ring->adev;
358 u32 wptr;
359
360 if (ring->use_doorbell) {
361 /* XXX check if swapping is necessary on BE */
362 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
363 } else {
364 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
365
366 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
367 }
368
369 return wptr;
370}
371
372/**
373 * sdma_v3_0_ring_set_wptr - commit the write pointer
374 *
375 * @ring: amdgpu ring pointer
376 *
377 * Write the wptr back to the hardware (VI+).
378 */
379static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
380{
381 struct amdgpu_device *adev = ring->adev;
382
383 if (ring->use_doorbell) {
384 /* XXX check if swapping is necessary on BE */
385 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
386 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
387 } else {
388 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
389
390 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
391 }
392}
393
394static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
395{
396 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
397 int i;
398
399 for (i = 0; i < count; i++)
400 if (sdma && sdma->burst_nop && (i == 0))
401 amdgpu_ring_write(ring, ring->funcs->nop |
402 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
403 else
404 amdgpu_ring_write(ring, ring->funcs->nop);
405}
406
407/**
408 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
409 *
410 * @ring: amdgpu ring pointer
411 * @ib: IB object to schedule
412 *
413 * Schedule an IB in the DMA ring (VI).
414 */
415static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
416 struct amdgpu_ib *ib,
417 unsigned vm_id, bool ctx_switch)
418{
419 u32 vmid = vm_id & 0xf;
420
421 /* IB packet must end on a 8 DW boundary */
422 sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
423
424 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
425 SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
426 /* base must be 32 byte aligned */
427 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
428 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
429 amdgpu_ring_write(ring, ib->length_dw);
430 amdgpu_ring_write(ring, 0);
431 amdgpu_ring_write(ring, 0);
432
433}
434
435/**
436 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
437 *
438 * @ring: amdgpu ring pointer
439 *
440 * Emit an hdp flush packet on the requested DMA ring.
441 */
442static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
443{
444 u32 ref_and_mask = 0;
445
446 if (ring == &ring->adev->sdma.instance[0].ring)
447 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
448 else
449 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
450
451 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
452 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
453 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
454 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
455 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
456 amdgpu_ring_write(ring, ref_and_mask); /* reference */
457 amdgpu_ring_write(ring, ref_and_mask); /* mask */
458 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
459 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
460}
461
462static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
463{
464 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
465 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
466 amdgpu_ring_write(ring, mmHDP_DEBUG0);
467 amdgpu_ring_write(ring, 1);
468}
469
470/**
471 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
472 *
473 * @ring: amdgpu ring pointer
474 * @fence: amdgpu fence object
475 *
476 * Add a DMA fence packet to the ring to write
477 * the fence seq number and DMA trap packet to generate
478 * an interrupt if needed (VI).
479 */
480static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 unsigned flags)
482{
483 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 /* write the fence */
485 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 amdgpu_ring_write(ring, lower_32_bits(addr));
487 amdgpu_ring_write(ring, upper_32_bits(addr));
488 amdgpu_ring_write(ring, lower_32_bits(seq));
489
490 /* optionally write high bits as well */
491 if (write64bit) {
492 addr += 4;
493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 amdgpu_ring_write(ring, lower_32_bits(addr));
495 amdgpu_ring_write(ring, upper_32_bits(addr));
496 amdgpu_ring_write(ring, upper_32_bits(seq));
497 }
498
499 /* generate an interrupt */
500 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502}
503
504/**
505 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506 *
507 * @adev: amdgpu_device pointer
508 *
509 * Stop the gfx async dma ring buffers (VI).
510 */
511static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512{
513 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
514 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
515 u32 rb_cntl, ib_cntl;
516 int i;
517
518 if ((adev->mman.buffer_funcs_ring == sdma0) ||
519 (adev->mman.buffer_funcs_ring == sdma1))
520 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
521
522 for (i = 0; i < adev->sdma.num_instances; i++) {
523 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
524 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
525 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
526 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
527 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
528 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
529 }
530 sdma0->ready = false;
531 sdma1->ready = false;
532}
533
534/**
535 * sdma_v3_0_rlc_stop - stop the compute async dma engines
536 *
537 * @adev: amdgpu_device pointer
538 *
539 * Stop the compute async dma queues (VI).
540 */
541static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
542{
543 /* XXX todo */
544}
545
546/**
547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
548 *
549 * @adev: amdgpu_device pointer
550 * @enable: enable/disable the DMA MEs context switch.
551 *
552 * Halt or unhalt the async dma engines context switch (VI).
553 */
554static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
555{
556 u32 f32_cntl;
557 int i;
558
559 for (i = 0; i < adev->sdma.num_instances; i++) {
560 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
561 if (enable)
562 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
563 AUTO_CTXSW_ENABLE, 1);
564 else
565 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
566 AUTO_CTXSW_ENABLE, 0);
567 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
568 }
569}
570
571/**
572 * sdma_v3_0_enable - stop the async dma engines
573 *
574 * @adev: amdgpu_device pointer
575 * @enable: enable/disable the DMA MEs.
576 *
577 * Halt or unhalt the async dma engines (VI).
578 */
579static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
580{
581 u32 f32_cntl;
582 int i;
583
584 if (!enable) {
585 sdma_v3_0_gfx_stop(adev);
586 sdma_v3_0_rlc_stop(adev);
587 }
588
589 for (i = 0; i < adev->sdma.num_instances; i++) {
590 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
591 if (enable)
592 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
593 else
594 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
595 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
596 }
597}
598
599/**
600 * sdma_v3_0_gfx_resume - setup and start the async dma engines
601 *
602 * @adev: amdgpu_device pointer
603 *
604 * Set up the gfx DMA ring buffers and enable them (VI).
605 * Returns 0 for success, error for failure.
606 */
607static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
608{
609 struct amdgpu_ring *ring;
610 u32 rb_cntl, ib_cntl;
611 u32 rb_bufsz;
612 u32 wb_offset;
613 u32 doorbell;
614 int i, j, r;
615
616 for (i = 0; i < adev->sdma.num_instances; i++) {
617 ring = &adev->sdma.instance[i].ring;
618 wb_offset = (ring->rptr_offs * 4);
619
620 mutex_lock(&adev->srbm_mutex);
621 for (j = 0; j < 16; j++) {
622 vi_srbm_select(adev, 0, 0, 0, j);
623 /* SDMA GFX */
624 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
625 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
626 }
627 vi_srbm_select(adev, 0, 0, 0, 0);
628 mutex_unlock(&adev->srbm_mutex);
629
630 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
631 adev->gfx.config.gb_addr_config & 0x70);
632
633 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
634
635 /* Set ring buffer size in dwords */
636 rb_bufsz = order_base_2(ring->ring_size / 4);
637 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
638 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
639#ifdef __BIG_ENDIAN
640 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
641 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
642 RPTR_WRITEBACK_SWAP_ENABLE, 1);
643#endif
644 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
645
646 /* Initialize the ring buffer's read and write pointers */
647 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
648 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
649 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
650 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
651
652 /* set the wb address whether it's enabled or not */
653 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
654 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
655 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
656 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
657
658 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
659
660 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
661 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
662
663 ring->wptr = 0;
664 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
665
666 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
667
668 if (ring->use_doorbell) {
669 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
670 OFFSET, ring->doorbell_index);
671 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
672 } else {
673 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
674 }
675 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
676
677 /* enable DMA RB */
678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
679 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
680
681 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
682 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
683#ifdef __BIG_ENDIAN
684 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
685#endif
686 /* enable DMA IBs */
687 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
688
689 ring->ready = true;
690 }
691
692 /* unhalt the MEs */
693 sdma_v3_0_enable(adev, true);
694 /* enable sdma ring preemption */
695 sdma_v3_0_ctx_switch_enable(adev, true);
696
697 for (i = 0; i < adev->sdma.num_instances; i++) {
698 ring = &adev->sdma.instance[i].ring;
699 r = amdgpu_ring_test_ring(ring);
700 if (r) {
701 ring->ready = false;
702 return r;
703 }
704
705 if (adev->mman.buffer_funcs_ring == ring)
706 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
707 }
708
709 return 0;
710}
711
712/**
713 * sdma_v3_0_rlc_resume - setup and start the async dma engines
714 *
715 * @adev: amdgpu_device pointer
716 *
717 * Set up the compute DMA queues and enable them (VI).
718 * Returns 0 for success, error for failure.
719 */
720static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
721{
722 /* XXX todo */
723 return 0;
724}
725
726/**
727 * sdma_v3_0_load_microcode - load the sDMA ME ucode
728 *
729 * @adev: amdgpu_device pointer
730 *
731 * Loads the sDMA0/1 ucode.
732 * Returns 0 for success, -EINVAL if the ucode is not available.
733 */
734static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
735{
736 const struct sdma_firmware_header_v1_0 *hdr;
737 const __le32 *fw_data;
738 u32 fw_size;
739 int i, j;
740
741 /* halt the MEs */
742 sdma_v3_0_enable(adev, false);
743
744 for (i = 0; i < adev->sdma.num_instances; i++) {
745 if (!adev->sdma.instance[i].fw)
746 return -EINVAL;
747 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
748 amdgpu_ucode_print_sdma_hdr(&hdr->header);
749 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
750 fw_data = (const __le32 *)
751 (adev->sdma.instance[i].fw->data +
752 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
753 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
754 for (j = 0; j < fw_size; j++)
755 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
756 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
757 }
758
759 return 0;
760}
761
762/**
763 * sdma_v3_0_start - setup and start the async dma engines
764 *
765 * @adev: amdgpu_device pointer
766 *
767 * Set up the DMA engines and enable them (VI).
768 * Returns 0 for success, error for failure.
769 */
770static int sdma_v3_0_start(struct amdgpu_device *adev)
771{
772 int r, i;
773
774 if (!adev->pp_enabled) {
775 if (!adev->firmware.smu_load) {
776 r = sdma_v3_0_load_microcode(adev);
777 if (r)
778 return r;
779 } else {
780 for (i = 0; i < adev->sdma.num_instances; i++) {
781 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
782 (i == 0) ?
783 AMDGPU_UCODE_ID_SDMA0 :
784 AMDGPU_UCODE_ID_SDMA1);
785 if (r)
786 return -EINVAL;
787 }
788 }
789 }
790
791 /* disble sdma engine before programing it */
792 sdma_v3_0_ctx_switch_enable(adev, false);
793 sdma_v3_0_enable(adev, false);
794
795 /* start the gfx rings and rlc compute queues */
796 r = sdma_v3_0_gfx_resume(adev);
797 if (r)
798 return r;
799 r = sdma_v3_0_rlc_resume(adev);
800 if (r)
801 return r;
802
803 return 0;
804}
805
806/**
807 * sdma_v3_0_ring_test_ring - simple async dma engine test
808 *
809 * @ring: amdgpu_ring structure holding ring information
810 *
811 * Test the DMA engine by writing using it to write an
812 * value to memory. (VI).
813 * Returns 0 for success, error for failure.
814 */
815static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
816{
817 struct amdgpu_device *adev = ring->adev;
818 unsigned i;
819 unsigned index;
820 int r;
821 u32 tmp;
822 u64 gpu_addr;
823
824 r = amdgpu_wb_get(adev, &index);
825 if (r) {
826 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
827 return r;
828 }
829
830 gpu_addr = adev->wb.gpu_addr + (index * 4);
831 tmp = 0xCAFEDEAD;
832 adev->wb.wb[index] = cpu_to_le32(tmp);
833
834 r = amdgpu_ring_alloc(ring, 5);
835 if (r) {
836 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
837 amdgpu_wb_free(adev, index);
838 return r;
839 }
840
841 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
842 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
843 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
844 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
845 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
846 amdgpu_ring_write(ring, 0xDEADBEEF);
847 amdgpu_ring_commit(ring);
848
849 for (i = 0; i < adev->usec_timeout; i++) {
850 tmp = le32_to_cpu(adev->wb.wb[index]);
851 if (tmp == 0xDEADBEEF)
852 break;
853 DRM_UDELAY(1);
854 }
855
856 if (i < adev->usec_timeout) {
857 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
858 } else {
859 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
860 ring->idx, tmp);
861 r = -EINVAL;
862 }
863 amdgpu_wb_free(adev, index);
864
865 return r;
866}
867
868/**
869 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
870 *
871 * @ring: amdgpu_ring structure holding ring information
872 *
873 * Test a simple IB in the DMA ring (VI).
874 * Returns 0 on success, error on failure.
875 */
876static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
877{
878 struct amdgpu_device *adev = ring->adev;
879 struct amdgpu_ib ib;
880 struct dma_fence *f = NULL;
881 unsigned index;
882 u32 tmp = 0;
883 u64 gpu_addr;
884 long r;
885
886 r = amdgpu_wb_get(adev, &index);
887 if (r) {
888 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
889 return r;
890 }
891
892 gpu_addr = adev->wb.gpu_addr + (index * 4);
893 tmp = 0xCAFEDEAD;
894 adev->wb.wb[index] = cpu_to_le32(tmp);
895 memset(&ib, 0, sizeof(ib));
896 r = amdgpu_ib_get(adev, NULL, 256, &ib);
897 if (r) {
898 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
899 goto err0;
900 }
901
902 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
903 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
904 ib.ptr[1] = lower_32_bits(gpu_addr);
905 ib.ptr[2] = upper_32_bits(gpu_addr);
906 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
907 ib.ptr[4] = 0xDEADBEEF;
908 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
909 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
910 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
911 ib.length_dw = 8;
912
913 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
914 if (r)
915 goto err1;
916
917 r = dma_fence_wait_timeout(f, false, timeout);
918 if (r == 0) {
919 DRM_ERROR("amdgpu: IB test timed out\n");
920 r = -ETIMEDOUT;
921 goto err1;
922 } else if (r < 0) {
923 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
924 goto err1;
925 }
926 tmp = le32_to_cpu(adev->wb.wb[index]);
927 if (tmp == 0xDEADBEEF) {
928 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
929 r = 0;
930 } else {
931 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
932 r = -EINVAL;
933 }
934err1:
935 amdgpu_ib_free(adev, &ib, NULL);
936 dma_fence_put(f);
937err0:
938 amdgpu_wb_free(adev, index);
939 return r;
940}
941
942/**
943 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
944 *
945 * @ib: indirect buffer to fill with commands
946 * @pe: addr of the page entry
947 * @src: src addr to copy from
948 * @count: number of page entries to update
949 *
950 * Update PTEs by copying them from the GART using sDMA (CIK).
951 */
952static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
953 uint64_t pe, uint64_t src,
954 unsigned count)
955{
956 unsigned bytes = count * 8;
957
958 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
959 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
960 ib->ptr[ib->length_dw++] = bytes;
961 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
962 ib->ptr[ib->length_dw++] = lower_32_bits(src);
963 ib->ptr[ib->length_dw++] = upper_32_bits(src);
964 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
965 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
966}
967
968/**
969 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
970 *
971 * @ib: indirect buffer to fill with commands
972 * @pe: addr of the page entry
973 * @value: dst addr to write into pe
974 * @count: number of page entries to update
975 * @incr: increase next addr by incr bytes
976 *
977 * Update PTEs by writing them manually using sDMA (CIK).
978 */
979static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
980 uint64_t value, unsigned count,
981 uint32_t incr)
982{
983 unsigned ndw = count * 2;
984
985 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
986 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
987 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
988 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
989 ib->ptr[ib->length_dw++] = ndw;
990 for (; ndw > 0; ndw -= 2) {
991 ib->ptr[ib->length_dw++] = lower_32_bits(value);
992 ib->ptr[ib->length_dw++] = upper_32_bits(value);
993 value += incr;
994 }
995}
996
997/**
998 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
999 *
1000 * @ib: indirect buffer to fill with commands
1001 * @pe: addr of the page entry
1002 * @addr: dst addr to write into pe
1003 * @count: number of page entries to update
1004 * @incr: increase next addr by incr bytes
1005 * @flags: access flags
1006 *
1007 * Update the page tables using sDMA (CIK).
1008 */
1009static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1010 uint64_t addr, unsigned count,
1011 uint32_t incr, uint32_t flags)
1012{
1013 /* for physically contiguous pages (vram) */
1014 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1015 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1016 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1017 ib->ptr[ib->length_dw++] = flags; /* mask */
1018 ib->ptr[ib->length_dw++] = 0;
1019 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1020 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1021 ib->ptr[ib->length_dw++] = incr; /* increment size */
1022 ib->ptr[ib->length_dw++] = 0;
1023 ib->ptr[ib->length_dw++] = count; /* number of entries */
1024}
1025
1026/**
1027 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1028 *
1029 * @ib: indirect buffer to fill with padding
1030 *
1031 */
1032static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1033{
1034 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1035 u32 pad_count;
1036 int i;
1037
1038 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1039 for (i = 0; i < pad_count; i++)
1040 if (sdma && sdma->burst_nop && (i == 0))
1041 ib->ptr[ib->length_dw++] =
1042 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1043 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1044 else
1045 ib->ptr[ib->length_dw++] =
1046 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1047}
1048
1049/**
1050 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1051 *
1052 * @ring: amdgpu_ring pointer
1053 *
1054 * Make sure all previous operations are completed (CIK).
1055 */
1056static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1057{
1058 uint32_t seq = ring->fence_drv.sync_seq;
1059 uint64_t addr = ring->fence_drv.gpu_addr;
1060
1061 /* wait for idle */
1062 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1063 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1064 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1065 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1066 amdgpu_ring_write(ring, addr & 0xfffffffc);
1067 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1068 amdgpu_ring_write(ring, seq); /* reference */
1069 amdgpu_ring_write(ring, 0xfffffff); /* mask */
1070 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1071 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1072}
1073
1074/**
1075 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1076 *
1077 * @ring: amdgpu_ring pointer
1078 * @vm: amdgpu_vm pointer
1079 *
1080 * Update the page table base and flush the VM TLB
1081 * using sDMA (VI).
1082 */
1083static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1084 unsigned vm_id, uint64_t pd_addr)
1085{
1086 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1087 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1088 if (vm_id < 8) {
1089 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1090 } else {
1091 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1092 }
1093 amdgpu_ring_write(ring, pd_addr >> 12);
1094
1095 /* flush TLB */
1096 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1097 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1098 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1099 amdgpu_ring_write(ring, 1 << vm_id);
1100
1101 /* wait for flush */
1102 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1103 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1104 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1105 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1106 amdgpu_ring_write(ring, 0);
1107 amdgpu_ring_write(ring, 0); /* reference */
1108 amdgpu_ring_write(ring, 0); /* mask */
1109 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1111}
1112
1113static int sdma_v3_0_early_init(void *handle)
1114{
1115 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1116
1117 switch (adev->asic_type) {
1118 case CHIP_STONEY:
1119 adev->sdma.num_instances = 1;
1120 break;
1121 default:
1122 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1123 break;
1124 }
1125
1126 sdma_v3_0_set_ring_funcs(adev);
1127 sdma_v3_0_set_buffer_funcs(adev);
1128 sdma_v3_0_set_vm_pte_funcs(adev);
1129 sdma_v3_0_set_irq_funcs(adev);
1130
1131 return 0;
1132}
1133
1134static int sdma_v3_0_sw_init(void *handle)
1135{
1136 struct amdgpu_ring *ring;
1137 int r, i;
1138 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1139
1140 /* SDMA trap event */
1141 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1142 if (r)
1143 return r;
1144
1145 /* SDMA Privileged inst */
1146 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1147 if (r)
1148 return r;
1149
1150 /* SDMA Privileged inst */
1151 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1152 if (r)
1153 return r;
1154
1155 r = sdma_v3_0_init_microcode(adev);
1156 if (r) {
1157 DRM_ERROR("Failed to load sdma firmware!\n");
1158 return r;
1159 }
1160
1161 for (i = 0; i < adev->sdma.num_instances; i++) {
1162 ring = &adev->sdma.instance[i].ring;
1163 ring->ring_obj = NULL;
1164 ring->use_doorbell = true;
1165 ring->doorbell_index = (i == 0) ?
1166 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1167
1168 sprintf(ring->name, "sdma%d", i);
1169 r = amdgpu_ring_init(adev, ring, 1024,
1170 &adev->sdma.trap_irq,
1171 (i == 0) ?
1172 AMDGPU_SDMA_IRQ_TRAP0 :
1173 AMDGPU_SDMA_IRQ_TRAP1);
1174 if (r)
1175 return r;
1176 }
1177
1178 return r;
1179}
1180
1181static int sdma_v3_0_sw_fini(void *handle)
1182{
1183 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1184 int i;
1185
1186 for (i = 0; i < adev->sdma.num_instances; i++)
1187 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1188
1189 sdma_v3_0_free_microcode(adev);
1190 return 0;
1191}
1192
1193static int sdma_v3_0_hw_init(void *handle)
1194{
1195 int r;
1196 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1197
1198 sdma_v3_0_init_golden_registers(adev);
1199
1200 r = sdma_v3_0_start(adev);
1201 if (r)
1202 return r;
1203
1204 return r;
1205}
1206
1207static int sdma_v3_0_hw_fini(void *handle)
1208{
1209 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1210
1211 sdma_v3_0_ctx_switch_enable(adev, false);
1212 sdma_v3_0_enable(adev, false);
1213
1214 return 0;
1215}
1216
1217static int sdma_v3_0_suspend(void *handle)
1218{
1219 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1220
1221 return sdma_v3_0_hw_fini(adev);
1222}
1223
1224static int sdma_v3_0_resume(void *handle)
1225{
1226 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1227
1228 return sdma_v3_0_hw_init(adev);
1229}
1230
1231static bool sdma_v3_0_is_idle(void *handle)
1232{
1233 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1234 u32 tmp = RREG32(mmSRBM_STATUS2);
1235
1236 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1237 SRBM_STATUS2__SDMA1_BUSY_MASK))
1238 return false;
1239
1240 return true;
1241}
1242
1243static int sdma_v3_0_wait_for_idle(void *handle)
1244{
1245 unsigned i;
1246 u32 tmp;
1247 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248
1249 for (i = 0; i < adev->usec_timeout; i++) {
1250 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1251 SRBM_STATUS2__SDMA1_BUSY_MASK);
1252
1253 if (!tmp)
1254 return 0;
1255 udelay(1);
1256 }
1257 return -ETIMEDOUT;
1258}
1259
1260static bool sdma_v3_0_check_soft_reset(void *handle)
1261{
1262 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263 u32 srbm_soft_reset = 0;
1264 u32 tmp = RREG32(mmSRBM_STATUS2);
1265
1266 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1267 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1268 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1269 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1270 }
1271
1272 if (srbm_soft_reset) {
1273 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1274 return true;
1275 } else {
1276 adev->sdma.srbm_soft_reset = 0;
1277 return false;
1278 }
1279}
1280
1281static int sdma_v3_0_pre_soft_reset(void *handle)
1282{
1283 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 u32 srbm_soft_reset = 0;
1285
1286 if (!adev->sdma.srbm_soft_reset)
1287 return 0;
1288
1289 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1290
1291 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1292 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1293 sdma_v3_0_ctx_switch_enable(adev, false);
1294 sdma_v3_0_enable(adev, false);
1295 }
1296
1297 return 0;
1298}
1299
1300static int sdma_v3_0_post_soft_reset(void *handle)
1301{
1302 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303 u32 srbm_soft_reset = 0;
1304
1305 if (!adev->sdma.srbm_soft_reset)
1306 return 0;
1307
1308 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1309
1310 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1311 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1312 sdma_v3_0_gfx_resume(adev);
1313 sdma_v3_0_rlc_resume(adev);
1314 }
1315
1316 return 0;
1317}
1318
1319static int sdma_v3_0_soft_reset(void *handle)
1320{
1321 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1322 u32 srbm_soft_reset = 0;
1323 u32 tmp;
1324
1325 if (!adev->sdma.srbm_soft_reset)
1326 return 0;
1327
1328 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1329
1330 if (srbm_soft_reset) {
1331 tmp = RREG32(mmSRBM_SOFT_RESET);
1332 tmp |= srbm_soft_reset;
1333 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1334 WREG32(mmSRBM_SOFT_RESET, tmp);
1335 tmp = RREG32(mmSRBM_SOFT_RESET);
1336
1337 udelay(50);
1338
1339 tmp &= ~srbm_soft_reset;
1340 WREG32(mmSRBM_SOFT_RESET, tmp);
1341 tmp = RREG32(mmSRBM_SOFT_RESET);
1342
1343 /* Wait a little for things to settle down */
1344 udelay(50);
1345 }
1346
1347 return 0;
1348}
1349
1350static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1351 struct amdgpu_irq_src *source,
1352 unsigned type,
1353 enum amdgpu_interrupt_state state)
1354{
1355 u32 sdma_cntl;
1356
1357 switch (type) {
1358 case AMDGPU_SDMA_IRQ_TRAP0:
1359 switch (state) {
1360 case AMDGPU_IRQ_STATE_DISABLE:
1361 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1362 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1363 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1364 break;
1365 case AMDGPU_IRQ_STATE_ENABLE:
1366 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1367 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1368 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1369 break;
1370 default:
1371 break;
1372 }
1373 break;
1374 case AMDGPU_SDMA_IRQ_TRAP1:
1375 switch (state) {
1376 case AMDGPU_IRQ_STATE_DISABLE:
1377 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1378 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1379 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1380 break;
1381 case AMDGPU_IRQ_STATE_ENABLE:
1382 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1383 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1384 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1385 break;
1386 default:
1387 break;
1388 }
1389 break;
1390 default:
1391 break;
1392 }
1393 return 0;
1394}
1395
1396static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1397 struct amdgpu_irq_src *source,
1398 struct amdgpu_iv_entry *entry)
1399{
1400 u8 instance_id, queue_id;
1401
1402 instance_id = (entry->ring_id & 0x3) >> 0;
1403 queue_id = (entry->ring_id & 0xc) >> 2;
1404 DRM_DEBUG("IH: SDMA trap\n");
1405 switch (instance_id) {
1406 case 0:
1407 switch (queue_id) {
1408 case 0:
1409 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1410 break;
1411 case 1:
1412 /* XXX compute */
1413 break;
1414 case 2:
1415 /* XXX compute */
1416 break;
1417 }
1418 break;
1419 case 1:
1420 switch (queue_id) {
1421 case 0:
1422 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1423 break;
1424 case 1:
1425 /* XXX compute */
1426 break;
1427 case 2:
1428 /* XXX compute */
1429 break;
1430 }
1431 break;
1432 }
1433 return 0;
1434}
1435
1436static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1437 struct amdgpu_irq_src *source,
1438 struct amdgpu_iv_entry *entry)
1439{
1440 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1441 schedule_work(&adev->reset_work);
1442 return 0;
1443}
1444
1445static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1446 struct amdgpu_device *adev,
1447 bool enable)
1448{
1449 uint32_t temp, data;
1450 int i;
1451
1452 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1453 for (i = 0; i < adev->sdma.num_instances; i++) {
1454 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1455 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463 if (data != temp)
1464 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1465 }
1466 } else {
1467 for (i = 0; i < adev->sdma.num_instances; i++) {
1468 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1477
1478 if (data != temp)
1479 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1480 }
1481 }
1482}
1483
1484static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1485 struct amdgpu_device *adev,
1486 bool enable)
1487{
1488 uint32_t temp, data;
1489 int i;
1490
1491 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1492 for (i = 0; i < adev->sdma.num_instances; i++) {
1493 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1494 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1495
1496 if (temp != data)
1497 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1498 }
1499 } else {
1500 for (i = 0; i < adev->sdma.num_instances; i++) {
1501 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1502 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1503
1504 if (temp != data)
1505 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1506 }
1507 }
1508}
1509
1510static int sdma_v3_0_set_clockgating_state(void *handle,
1511 enum amd_clockgating_state state)
1512{
1513 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1514
1515 switch (adev->asic_type) {
1516 case CHIP_FIJI:
1517 case CHIP_CARRIZO:
1518 case CHIP_STONEY:
1519 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1520 state == AMD_CG_STATE_GATE ? true : false);
1521 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1522 state == AMD_CG_STATE_GATE ? true : false);
1523 break;
1524 default:
1525 break;
1526 }
1527 return 0;
1528}
1529
1530static int sdma_v3_0_set_powergating_state(void *handle,
1531 enum amd_powergating_state state)
1532{
1533 return 0;
1534}
1535
1536static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1537 .name = "sdma_v3_0",
1538 .early_init = sdma_v3_0_early_init,
1539 .late_init = NULL,
1540 .sw_init = sdma_v3_0_sw_init,
1541 .sw_fini = sdma_v3_0_sw_fini,
1542 .hw_init = sdma_v3_0_hw_init,
1543 .hw_fini = sdma_v3_0_hw_fini,
1544 .suspend = sdma_v3_0_suspend,
1545 .resume = sdma_v3_0_resume,
1546 .is_idle = sdma_v3_0_is_idle,
1547 .wait_for_idle = sdma_v3_0_wait_for_idle,
1548 .check_soft_reset = sdma_v3_0_check_soft_reset,
1549 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1550 .post_soft_reset = sdma_v3_0_post_soft_reset,
1551 .soft_reset = sdma_v3_0_soft_reset,
1552 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1553 .set_powergating_state = sdma_v3_0_set_powergating_state,
1554};
1555
1556static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1557 .type = AMDGPU_RING_TYPE_SDMA,
1558 .align_mask = 0xf,
1559 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1560 .get_rptr = sdma_v3_0_ring_get_rptr,
1561 .get_wptr = sdma_v3_0_ring_get_wptr,
1562 .set_wptr = sdma_v3_0_ring_set_wptr,
1563 .emit_frame_size =
1564 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1565 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1566 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1567 12 + /* sdma_v3_0_ring_emit_vm_flush */
1568 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1569 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1570 .emit_ib = sdma_v3_0_ring_emit_ib,
1571 .emit_fence = sdma_v3_0_ring_emit_fence,
1572 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1573 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1574 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1575 .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1576 .test_ring = sdma_v3_0_ring_test_ring,
1577 .test_ib = sdma_v3_0_ring_test_ib,
1578 .insert_nop = sdma_v3_0_ring_insert_nop,
1579 .pad_ib = sdma_v3_0_ring_pad_ib,
1580};
1581
1582static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1583{
1584 int i;
1585
1586 for (i = 0; i < adev->sdma.num_instances; i++)
1587 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1588}
1589
1590static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1591 .set = sdma_v3_0_set_trap_irq_state,
1592 .process = sdma_v3_0_process_trap_irq,
1593};
1594
1595static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1596 .process = sdma_v3_0_process_illegal_inst_irq,
1597};
1598
1599static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1600{
1601 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1602 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1603 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1604}
1605
1606/**
1607 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1608 *
1609 * @ring: amdgpu_ring structure holding ring information
1610 * @src_offset: src GPU address
1611 * @dst_offset: dst GPU address
1612 * @byte_count: number of bytes to xfer
1613 *
1614 * Copy GPU buffers using the DMA engine (VI).
1615 * Used by the amdgpu ttm implementation to move pages if
1616 * registered as the asic copy callback.
1617 */
1618static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1619 uint64_t src_offset,
1620 uint64_t dst_offset,
1621 uint32_t byte_count)
1622{
1623 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1624 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1625 ib->ptr[ib->length_dw++] = byte_count;
1626 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1627 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1628 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1629 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1630 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1631}
1632
1633/**
1634 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1635 *
1636 * @ring: amdgpu_ring structure holding ring information
1637 * @src_data: value to write to buffer
1638 * @dst_offset: dst GPU address
1639 * @byte_count: number of bytes to xfer
1640 *
1641 * Fill GPU buffers using the DMA engine (VI).
1642 */
1643static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1644 uint32_t src_data,
1645 uint64_t dst_offset,
1646 uint32_t byte_count)
1647{
1648 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1649 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1650 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1651 ib->ptr[ib->length_dw++] = src_data;
1652 ib->ptr[ib->length_dw++] = byte_count;
1653}
1654
1655static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1656 .copy_max_bytes = 0x1fffff,
1657 .copy_num_dw = 7,
1658 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1659
1660 .fill_max_bytes = 0x1fffff,
1661 .fill_num_dw = 5,
1662 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1663};
1664
1665static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1666{
1667 if (adev->mman.buffer_funcs == NULL) {
1668 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1669 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1670 }
1671}
1672
1673static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1674 .copy_pte = sdma_v3_0_vm_copy_pte,
1675 .write_pte = sdma_v3_0_vm_write_pte,
1676 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1677};
1678
1679static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1680{
1681 unsigned i;
1682
1683 if (adev->vm_manager.vm_pte_funcs == NULL) {
1684 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1685 for (i = 0; i < adev->sdma.num_instances; i++)
1686 adev->vm_manager.vm_pte_rings[i] =
1687 &adev->sdma.instance[i].ring;
1688
1689 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1690 }
1691}
1692
1693const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1694{
1695 .type = AMD_IP_BLOCK_TYPE_SDMA,
1696 .major = 3,
1697 .minor = 0,
1698 .rev = 0,
1699 .funcs = &sdma_v3_0_ip_funcs,
1700};
1701
1702const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1703{
1704 .type = AMD_IP_BLOCK_TYPE_SDMA,
1705 .major = 3,
1706 .minor = 1,
1707 .rev = 0,
1708 .funcs = &sdma_v3_0_ip_funcs,
1709};