Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Alex Deucher
  23 */
  24#include <linux/firmware.h>
  25#include <drm/drmP.h>
  26#include "amdgpu.h"
  27#include "amdgpu_ucode.h"
  28#include "amdgpu_trace.h"
  29#include "vi.h"
  30#include "vid.h"
  31
  32#include "oss/oss_3_0_d.h"
  33#include "oss/oss_3_0_sh_mask.h"
  34
  35#include "gmc/gmc_8_1_d.h"
  36#include "gmc/gmc_8_1_sh_mask.h"
  37
  38#include "gca/gfx_8_0_d.h"
  39#include "gca/gfx_8_0_enum.h"
  40#include "gca/gfx_8_0_sh_mask.h"
  41
  42#include "bif/bif_5_0_d.h"
  43#include "bif/bif_5_0_sh_mask.h"
  44
  45#include "tonga_sdma_pkt_open.h"
  46
  47static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  48static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  49static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  50static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  51
  52MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  53MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  54MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  55MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  56MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  57MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  58MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  59MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  60MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  61MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  65
  66
  67static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  68{
  69	SDMA0_REGISTER_OFFSET,
  70	SDMA1_REGISTER_OFFSET
  71};
  72
  73static const u32 golden_settings_tonga_a11[] =
  74{
  75	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  76	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  77	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  78	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  79	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  80	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  82	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85};
  86
  87static const u32 tonga_mgcg_cgcg_init[] =
  88{
  89	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  90	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  91};
  92
  93static const u32 golden_settings_fiji_a10[] =
  94{
  95	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  96	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  97	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  98	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  99	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 100	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 101	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 102	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 103};
 104
 105static const u32 fiji_mgcg_cgcg_init[] =
 106{
 107	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
 108	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
 109};
 110
 111static const u32 golden_settings_polaris11_a11[] =
 112{
 113	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
 114	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
 115	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 116	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 117	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 118	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 119	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
 120	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 121	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 122	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 123};
 124
 125static const u32 golden_settings_polaris10_a11[] =
 126{
 127	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
 128	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
 129	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 130	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 131	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 132	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 133	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
 134	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 135	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 136	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 137};
 138
 139static const u32 cz_golden_settings_a11[] =
 140{
 141	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
 142	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
 143	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
 144	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
 145	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
 146	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
 147	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 148	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
 149	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
 150	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
 151	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
 152	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
 153};
 154
 155static const u32 cz_mgcg_cgcg_init[] =
 156{
 157	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
 158	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
 159};
 160
 161static const u32 stoney_golden_settings_a11[] =
 162{
 163	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
 164	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
 165	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
 166	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
 167};
 168
 169static const u32 stoney_mgcg_cgcg_init[] =
 170{
 171	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
 172};
 173
 174/*
 175 * sDMA - System DMA
 176 * Starting with CIK, the GPU has new asynchronous
 177 * DMA engines.  These engines are used for compute
 178 * and gfx.  There are two DMA engines (SDMA0, SDMA1)
 179 * and each one supports 1 ring buffer used for gfx
 180 * and 2 queues used for compute.
 181 *
 182 * The programming model is very similar to the CP
 183 * (ring buffer, IBs, etc.), but sDMA has it's own
 184 * packet format that is different from the PM4 format
 185 * used by the CP. sDMA supports copying data, writing
 186 * embedded data, solid fills, and a number of other
 187 * things.  It also has support for tiling/detiling of
 188 * buffers.
 189 */
 190
 191static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
 192{
 193	switch (adev->asic_type) {
 194	case CHIP_FIJI:
 195		amdgpu_device_program_register_sequence(adev,
 196							fiji_mgcg_cgcg_init,
 197							ARRAY_SIZE(fiji_mgcg_cgcg_init));
 198		amdgpu_device_program_register_sequence(adev,
 199							golden_settings_fiji_a10,
 200							ARRAY_SIZE(golden_settings_fiji_a10));
 201		break;
 202	case CHIP_TONGA:
 203		amdgpu_device_program_register_sequence(adev,
 204							tonga_mgcg_cgcg_init,
 205							ARRAY_SIZE(tonga_mgcg_cgcg_init));
 206		amdgpu_device_program_register_sequence(adev,
 207							golden_settings_tonga_a11,
 208							ARRAY_SIZE(golden_settings_tonga_a11));
 209		break;
 210	case CHIP_POLARIS11:
 211	case CHIP_POLARIS12:
 212		amdgpu_device_program_register_sequence(adev,
 213							golden_settings_polaris11_a11,
 214							ARRAY_SIZE(golden_settings_polaris11_a11));
 215		break;
 216	case CHIP_POLARIS10:
 217		amdgpu_device_program_register_sequence(adev,
 218							golden_settings_polaris10_a11,
 219							ARRAY_SIZE(golden_settings_polaris10_a11));
 220		break;
 221	case CHIP_CARRIZO:
 222		amdgpu_device_program_register_sequence(adev,
 223							cz_mgcg_cgcg_init,
 224							ARRAY_SIZE(cz_mgcg_cgcg_init));
 225		amdgpu_device_program_register_sequence(adev,
 226							cz_golden_settings_a11,
 227							ARRAY_SIZE(cz_golden_settings_a11));
 228		break;
 229	case CHIP_STONEY:
 230		amdgpu_device_program_register_sequence(adev,
 231							stoney_mgcg_cgcg_init,
 232							ARRAY_SIZE(stoney_mgcg_cgcg_init));
 233		amdgpu_device_program_register_sequence(adev,
 234							stoney_golden_settings_a11,
 235							ARRAY_SIZE(stoney_golden_settings_a11));
 236		break;
 237	default:
 238		break;
 239	}
 240}
 241
 242static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
 243{
 244	int i;
 245	for (i = 0; i < adev->sdma.num_instances; i++) {
 246		release_firmware(adev->sdma.instance[i].fw);
 247		adev->sdma.instance[i].fw = NULL;
 248	}
 249}
 250
 251/**
 252 * sdma_v3_0_init_microcode - load ucode images from disk
 253 *
 254 * @adev: amdgpu_device pointer
 255 *
 256 * Use the firmware interface to load the ucode images into
 257 * the driver (not loaded into hw).
 258 * Returns 0 on success, error on failure.
 259 */
 260static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
 261{
 262	const char *chip_name;
 263	char fw_name[30];
 264	int err = 0, i;
 265	struct amdgpu_firmware_info *info = NULL;
 266	const struct common_firmware_header *header = NULL;
 267	const struct sdma_firmware_header_v1_0 *hdr;
 268
 269	DRM_DEBUG("\n");
 270
 271	switch (adev->asic_type) {
 272	case CHIP_TONGA:
 273		chip_name = "tonga";
 274		break;
 275	case CHIP_FIJI:
 276		chip_name = "fiji";
 277		break;
 278	case CHIP_POLARIS11:
 279		chip_name = "polaris11";
 280		break;
 281	case CHIP_POLARIS10:
 282		chip_name = "polaris10";
 283		break;
 284	case CHIP_POLARIS12:
 285		chip_name = "polaris12";
 286		break;
 287	case CHIP_CARRIZO:
 288		chip_name = "carrizo";
 289		break;
 290	case CHIP_STONEY:
 291		chip_name = "stoney";
 292		break;
 293	default: BUG();
 294	}
 295
 296	for (i = 0; i < adev->sdma.num_instances; i++) {
 297		if (i == 0)
 298			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
 299		else
 300			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
 301		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
 302		if (err)
 303			goto out;
 304		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
 305		if (err)
 306			goto out;
 307		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
 308		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
 309		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
 310		if (adev->sdma.instance[i].feature_version >= 20)
 311			adev->sdma.instance[i].burst_nop = true;
 312
 313		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
 314			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
 315			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
 316			info->fw = adev->sdma.instance[i].fw;
 317			header = (const struct common_firmware_header *)info->fw->data;
 318			adev->firmware.fw_size +=
 319				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
 320		}
 321	}
 322out:
 323	if (err) {
 324		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
 
 
 325		for (i = 0; i < adev->sdma.num_instances; i++) {
 326			release_firmware(adev->sdma.instance[i].fw);
 327			adev->sdma.instance[i].fw = NULL;
 328		}
 329	}
 330	return err;
 331}
 332
 333/**
 334 * sdma_v3_0_ring_get_rptr - get the current read pointer
 335 *
 336 * @ring: amdgpu ring pointer
 337 *
 338 * Get the current rptr from the hardware (VI+).
 339 */
 340static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
 341{
 342	/* XXX check if swapping is necessary on BE */
 343	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
 344}
 345
 346/**
 347 * sdma_v3_0_ring_get_wptr - get the current write pointer
 348 *
 349 * @ring: amdgpu ring pointer
 350 *
 351 * Get the current wptr from the hardware (VI+).
 352 */
 353static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
 354{
 355	struct amdgpu_device *adev = ring->adev;
 356	u32 wptr;
 357
 358	if (ring->use_doorbell || ring->use_pollmem) {
 359		/* XXX check if swapping is necessary on BE */
 360		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
 361	} else {
 362		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
 363
 364		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
 365	}
 366
 367	return wptr;
 368}
 369
 370/**
 371 * sdma_v3_0_ring_set_wptr - commit the write pointer
 372 *
 373 * @ring: amdgpu ring pointer
 374 *
 375 * Write the wptr back to the hardware (VI+).
 376 */
 377static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
 378{
 379	struct amdgpu_device *adev = ring->adev;
 380
 381	if (ring->use_doorbell) {
 382		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
 383		/* XXX check if swapping is necessary on BE */
 384		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
 385		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
 386	} else if (ring->use_pollmem) {
 387		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
 388
 389		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
 390	} else {
 391		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
 392
 393		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
 394	}
 395}
 396
 397static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 398{
 399	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
 400	int i;
 401
 402	for (i = 0; i < count; i++)
 403		if (sdma && sdma->burst_nop && (i == 0))
 404			amdgpu_ring_write(ring, ring->funcs->nop |
 405				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 406		else
 407			amdgpu_ring_write(ring, ring->funcs->nop);
 408}
 409
 410/**
 411 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
 412 *
 413 * @ring: amdgpu ring pointer
 414 * @ib: IB object to schedule
 415 *
 416 * Schedule an IB in the DMA ring (VI).
 417 */
 418static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
 419				   struct amdgpu_ib *ib,
 420				   unsigned vmid, bool ctx_switch)
 421{
 
 
 422	/* IB packet must end on a 8 DW boundary */
 423	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
 424
 425	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 426			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 427	/* base must be 32 byte aligned */
 428	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 429	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 430	amdgpu_ring_write(ring, ib->length_dw);
 431	amdgpu_ring_write(ring, 0);
 432	amdgpu_ring_write(ring, 0);
 433
 434}
 435
 436/**
 437 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 438 *
 439 * @ring: amdgpu ring pointer
 440 *
 441 * Emit an hdp flush packet on the requested DMA ring.
 442 */
 443static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 444{
 445	u32 ref_and_mask = 0;
 446
 447	if (ring == &ring->adev->sdma.instance[0].ring)
 448		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
 449	else
 450		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
 451
 452	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 453			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
 454			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 455	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
 456	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
 457	amdgpu_ring_write(ring, ref_and_mask); /* reference */
 458	amdgpu_ring_write(ring, ref_and_mask); /* mask */
 459	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 460			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
 461}
 462
 
 
 
 
 
 
 
 
 463/**
 464 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
 465 *
 466 * @ring: amdgpu ring pointer
 467 * @fence: amdgpu fence object
 468 *
 469 * Add a DMA fence packet to the ring to write
 470 * the fence seq number and DMA trap packet to generate
 471 * an interrupt if needed (VI).
 472 */
 473static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 474				      unsigned flags)
 475{
 476	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 477	/* write the fence */
 478	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 479	amdgpu_ring_write(ring, lower_32_bits(addr));
 480	amdgpu_ring_write(ring, upper_32_bits(addr));
 481	amdgpu_ring_write(ring, lower_32_bits(seq));
 482
 483	/* optionally write high bits as well */
 484	if (write64bit) {
 485		addr += 4;
 486		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 487		amdgpu_ring_write(ring, lower_32_bits(addr));
 488		amdgpu_ring_write(ring, upper_32_bits(addr));
 489		amdgpu_ring_write(ring, upper_32_bits(seq));
 490	}
 491
 492	/* generate an interrupt */
 493	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 494	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 495}
 496
 497/**
 498 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
 499 *
 500 * @adev: amdgpu_device pointer
 501 *
 502 * Stop the gfx async dma ring buffers (VI).
 503 */
 504static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
 505{
 506	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
 507	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
 508	u32 rb_cntl, ib_cntl;
 509	int i;
 510
 511	if ((adev->mman.buffer_funcs_ring == sdma0) ||
 512	    (adev->mman.buffer_funcs_ring == sdma1))
 513		amdgpu_ttm_set_buffer_funcs_status(adev, false);
 514
 515	for (i = 0; i < adev->sdma.num_instances; i++) {
 516		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
 517		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
 518		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
 519		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
 520		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
 521		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
 522	}
 523	sdma0->ready = false;
 524	sdma1->ready = false;
 525}
 526
 527/**
 528 * sdma_v3_0_rlc_stop - stop the compute async dma engines
 529 *
 530 * @adev: amdgpu_device pointer
 531 *
 532 * Stop the compute async dma queues (VI).
 533 */
 534static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
 535{
 536	/* XXX todo */
 537}
 538
 539/**
 540 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
 541 *
 542 * @adev: amdgpu_device pointer
 543 * @enable: enable/disable the DMA MEs context switch.
 544 *
 545 * Halt or unhalt the async dma engines context switch (VI).
 546 */
 547static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 548{
 549	u32 f32_cntl, phase_quantum = 0;
 550	int i;
 551
 552	if (amdgpu_sdma_phase_quantum) {
 553		unsigned value = amdgpu_sdma_phase_quantum;
 554		unsigned unit = 0;
 555
 556		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 557				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
 558			value = (value + 1) >> 1;
 559			unit++;
 560		}
 561		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 562			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
 563			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 564				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
 565			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 566				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
 567			WARN_ONCE(1,
 568			"clamping sdma_phase_quantum to %uK clock cycles\n",
 569				  value << unit);
 570		}
 571		phase_quantum =
 572			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
 573			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
 574	}
 575
 576	for (i = 0; i < adev->sdma.num_instances; i++) {
 577		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
 578		if (enable) {
 579			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 580					AUTO_CTXSW_ENABLE, 1);
 581			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 582					ATC_L1_ENABLE, 1);
 583			if (amdgpu_sdma_phase_quantum) {
 584				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
 585				       phase_quantum);
 586				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
 587				       phase_quantum);
 588			}
 589		} else {
 590			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 591					AUTO_CTXSW_ENABLE, 0);
 592			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 593					ATC_L1_ENABLE, 1);
 594		}
 595
 596		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
 597	}
 598}
 599
 600/**
 601 * sdma_v3_0_enable - stop the async dma engines
 602 *
 603 * @adev: amdgpu_device pointer
 604 * @enable: enable/disable the DMA MEs.
 605 *
 606 * Halt or unhalt the async dma engines (VI).
 607 */
 608static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
 609{
 610	u32 f32_cntl;
 611	int i;
 612
 613	if (!enable) {
 614		sdma_v3_0_gfx_stop(adev);
 615		sdma_v3_0_rlc_stop(adev);
 616	}
 617
 618	for (i = 0; i < adev->sdma.num_instances; i++) {
 619		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
 620		if (enable)
 621			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
 622		else
 623			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
 624		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
 625	}
 626}
 627
 628/**
 629 * sdma_v3_0_gfx_resume - setup and start the async dma engines
 630 *
 631 * @adev: amdgpu_device pointer
 632 *
 633 * Set up the gfx DMA ring buffers and enable them (VI).
 634 * Returns 0 for success, error for failure.
 635 */
 636static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
 637{
 638	struct amdgpu_ring *ring;
 639	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
 640	u32 rb_bufsz;
 641	u32 wb_offset;
 642	u32 doorbell;
 643	u64 wptr_gpu_addr;
 644	int i, j, r;
 645
 646	for (i = 0; i < adev->sdma.num_instances; i++) {
 647		ring = &adev->sdma.instance[i].ring;
 648		amdgpu_ring_clear_ring(ring);
 649		wb_offset = (ring->rptr_offs * 4);
 650
 651		mutex_lock(&adev->srbm_mutex);
 652		for (j = 0; j < 16; j++) {
 653			vi_srbm_select(adev, 0, 0, 0, j);
 654			/* SDMA GFX */
 655			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
 656			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
 657		}
 658		vi_srbm_select(adev, 0, 0, 0, 0);
 659		mutex_unlock(&adev->srbm_mutex);
 660
 661		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
 662		       adev->gfx.config.gb_addr_config & 0x70);
 663
 664		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
 665
 666		/* Set ring buffer size in dwords */
 667		rb_bufsz = order_base_2(ring->ring_size / 4);
 668		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
 669		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
 670#ifdef __BIG_ENDIAN
 671		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
 672		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
 673					RPTR_WRITEBACK_SWAP_ENABLE, 1);
 674#endif
 675		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
 676
 677		/* Initialize the ring buffer's read and write pointers */
 678		ring->wptr = 0;
 679		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
 680		sdma_v3_0_ring_set_wptr(ring);
 681		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
 682		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
 683
 684		/* set the wb address whether it's enabled or not */
 685		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
 686		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
 687		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
 688		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
 689
 690		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
 691
 692		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
 693		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
 694
 
 
 
 695		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
 696
 697		if (ring->use_doorbell) {
 698			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
 699						 OFFSET, ring->doorbell_index);
 700			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
 701		} else {
 702			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
 703		}
 704		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
 705
 706		/* setup the wptr shadow polling */
 707		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
 708
 709		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
 710		       lower_32_bits(wptr_gpu_addr));
 711		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
 712		       upper_32_bits(wptr_gpu_addr));
 713		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
 714		if (ring->use_pollmem) {
 715			/*wptr polling is not enogh fast, directly clean the wptr register */
 716			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
 717			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
 718						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
 719						       ENABLE, 1);
 720		} else {
 721			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
 722						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
 723						       ENABLE, 0);
 724		}
 725		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
 726
 727		/* enable DMA RB */
 728		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
 729		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
 730
 731		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
 732		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
 733#ifdef __BIG_ENDIAN
 734		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
 735#endif
 736		/* enable DMA IBs */
 737		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
 738
 739		ring->ready = true;
 740	}
 741
 742	/* unhalt the MEs */
 743	sdma_v3_0_enable(adev, true);
 744	/* enable sdma ring preemption */
 745	sdma_v3_0_ctx_switch_enable(adev, true);
 746
 747	for (i = 0; i < adev->sdma.num_instances; i++) {
 748		ring = &adev->sdma.instance[i].ring;
 749		r = amdgpu_ring_test_ring(ring);
 750		if (r) {
 751			ring->ready = false;
 752			return r;
 753		}
 754
 755		if (adev->mman.buffer_funcs_ring == ring)
 756			amdgpu_ttm_set_buffer_funcs_status(adev, true);
 757	}
 758
 759	return 0;
 760}
 761
 762/**
 763 * sdma_v3_0_rlc_resume - setup and start the async dma engines
 764 *
 765 * @adev: amdgpu_device pointer
 766 *
 767 * Set up the compute DMA queues and enable them (VI).
 768 * Returns 0 for success, error for failure.
 769 */
 770static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
 771{
 772	/* XXX todo */
 773	return 0;
 774}
 775
 776/**
 777 * sdma_v3_0_load_microcode - load the sDMA ME ucode
 778 *
 779 * @adev: amdgpu_device pointer
 780 *
 781 * Loads the sDMA0/1 ucode.
 782 * Returns 0 for success, -EINVAL if the ucode is not available.
 783 */
 784static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
 785{
 786	const struct sdma_firmware_header_v1_0 *hdr;
 787	const __le32 *fw_data;
 788	u32 fw_size;
 789	int i, j;
 790
 791	/* halt the MEs */
 792	sdma_v3_0_enable(adev, false);
 793
 794	for (i = 0; i < adev->sdma.num_instances; i++) {
 795		if (!adev->sdma.instance[i].fw)
 796			return -EINVAL;
 797		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
 798		amdgpu_ucode_print_sdma_hdr(&hdr->header);
 799		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
 800		fw_data = (const __le32 *)
 801			(adev->sdma.instance[i].fw->data +
 802				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
 803		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
 804		for (j = 0; j < fw_size; j++)
 805			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
 806		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
 807	}
 808
 809	return 0;
 810}
 811
 812/**
 813 * sdma_v3_0_start - setup and start the async dma engines
 814 *
 815 * @adev: amdgpu_device pointer
 816 *
 817 * Set up the DMA engines and enable them (VI).
 818 * Returns 0 for success, error for failure.
 819 */
 820static int sdma_v3_0_start(struct amdgpu_device *adev)
 821{
 822	int r;
 823
 824	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
 825		r = sdma_v3_0_load_microcode(adev);
 826		if (r)
 827			return r;
 
 
 
 
 
 
 
 
 
 
 
 828	}
 829
 830	/* disable sdma engine before programing it */
 831	sdma_v3_0_ctx_switch_enable(adev, false);
 832	sdma_v3_0_enable(adev, false);
 833
 834	/* start the gfx rings and rlc compute queues */
 835	r = sdma_v3_0_gfx_resume(adev);
 836	if (r)
 837		return r;
 838	r = sdma_v3_0_rlc_resume(adev);
 839	if (r)
 840		return r;
 841
 842	return 0;
 843}
 844
 845/**
 846 * sdma_v3_0_ring_test_ring - simple async dma engine test
 847 *
 848 * @ring: amdgpu_ring structure holding ring information
 849 *
 850 * Test the DMA engine by writing using it to write an
 851 * value to memory. (VI).
 852 * Returns 0 for success, error for failure.
 853 */
 854static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
 855{
 856	struct amdgpu_device *adev = ring->adev;
 857	unsigned i;
 858	unsigned index;
 859	int r;
 860	u32 tmp;
 861	u64 gpu_addr;
 862
 863	r = amdgpu_device_wb_get(adev, &index);
 864	if (r) {
 865		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
 866		return r;
 867	}
 868
 869	gpu_addr = adev->wb.gpu_addr + (index * 4);
 870	tmp = 0xCAFEDEAD;
 871	adev->wb.wb[index] = cpu_to_le32(tmp);
 872
 873	r = amdgpu_ring_alloc(ring, 5);
 874	if (r) {
 875		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
 876		amdgpu_device_wb_free(adev, index);
 877		return r;
 878	}
 879
 880	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
 881			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
 882	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
 883	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
 884	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
 885	amdgpu_ring_write(ring, 0xDEADBEEF);
 886	amdgpu_ring_commit(ring);
 887
 888	for (i = 0; i < adev->usec_timeout; i++) {
 889		tmp = le32_to_cpu(adev->wb.wb[index]);
 890		if (tmp == 0xDEADBEEF)
 891			break;
 892		DRM_UDELAY(1);
 893	}
 894
 895	if (i < adev->usec_timeout) {
 896		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
 897	} else {
 898		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
 899			  ring->idx, tmp);
 900		r = -EINVAL;
 901	}
 902	amdgpu_device_wb_free(adev, index);
 903
 904	return r;
 905}
 906
 907/**
 908 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
 909 *
 910 * @ring: amdgpu_ring structure holding ring information
 911 *
 912 * Test a simple IB in the DMA ring (VI).
 913 * Returns 0 on success, error on failure.
 914 */
 915static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
 916{
 917	struct amdgpu_device *adev = ring->adev;
 918	struct amdgpu_ib ib;
 919	struct dma_fence *f = NULL;
 920	unsigned index;
 921	u32 tmp = 0;
 922	u64 gpu_addr;
 923	long r;
 924
 925	r = amdgpu_device_wb_get(adev, &index);
 926	if (r) {
 927		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
 928		return r;
 929	}
 930
 931	gpu_addr = adev->wb.gpu_addr + (index * 4);
 932	tmp = 0xCAFEDEAD;
 933	adev->wb.wb[index] = cpu_to_le32(tmp);
 934	memset(&ib, 0, sizeof(ib));
 935	r = amdgpu_ib_get(adev, NULL, 256, &ib);
 936	if (r) {
 937		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
 938		goto err0;
 939	}
 940
 941	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
 942		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
 943	ib.ptr[1] = lower_32_bits(gpu_addr);
 944	ib.ptr[2] = upper_32_bits(gpu_addr);
 945	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
 946	ib.ptr[4] = 0xDEADBEEF;
 947	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
 948	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
 949	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
 950	ib.length_dw = 8;
 951
 952	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
 953	if (r)
 954		goto err1;
 955
 956	r = dma_fence_wait_timeout(f, false, timeout);
 957	if (r == 0) {
 958		DRM_ERROR("amdgpu: IB test timed out\n");
 959		r = -ETIMEDOUT;
 960		goto err1;
 961	} else if (r < 0) {
 962		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
 963		goto err1;
 964	}
 965	tmp = le32_to_cpu(adev->wb.wb[index]);
 966	if (tmp == 0xDEADBEEF) {
 967		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
 968		r = 0;
 969	} else {
 970		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
 971		r = -EINVAL;
 972	}
 973err1:
 974	amdgpu_ib_free(adev, &ib, NULL);
 975	dma_fence_put(f);
 976err0:
 977	amdgpu_device_wb_free(adev, index);
 978	return r;
 979}
 980
 981/**
 982 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
 983 *
 984 * @ib: indirect buffer to fill with commands
 985 * @pe: addr of the page entry
 986 * @src: src addr to copy from
 987 * @count: number of page entries to update
 988 *
 989 * Update PTEs by copying them from the GART using sDMA (CIK).
 990 */
 991static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
 992				  uint64_t pe, uint64_t src,
 993				  unsigned count)
 994{
 995	unsigned bytes = count * 8;
 996
 997	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
 998		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
 999	ib->ptr[ib->length_dw++] = bytes;
1000	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1001	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1002	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1003	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1004	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1005}
1006
1007/**
1008 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1009 *
1010 * @ib: indirect buffer to fill with commands
1011 * @pe: addr of the page entry
1012 * @value: dst addr to write into pe
1013 * @count: number of page entries to update
1014 * @incr: increase next addr by incr bytes
1015 *
1016 * Update PTEs by writing them manually using sDMA (CIK).
1017 */
1018static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1019				   uint64_t value, unsigned count,
1020				   uint32_t incr)
1021{
1022	unsigned ndw = count * 2;
1023
1024	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1025		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1026	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1027	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1028	ib->ptr[ib->length_dw++] = ndw;
1029	for (; ndw > 0; ndw -= 2) {
1030		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1031		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1032		value += incr;
1033	}
1034}
1035
1036/**
1037 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1038 *
1039 * @ib: indirect buffer to fill with commands
1040 * @pe: addr of the page entry
1041 * @addr: dst addr to write into pe
1042 * @count: number of page entries to update
1043 * @incr: increase next addr by incr bytes
1044 * @flags: access flags
1045 *
1046 * Update the page tables using sDMA (CIK).
1047 */
1048static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1049				     uint64_t addr, unsigned count,
1050				     uint32_t incr, uint64_t flags)
1051{
1052	/* for physically contiguous pages (vram) */
1053	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1054	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1055	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1056	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1057	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1058	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1059	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1060	ib->ptr[ib->length_dw++] = incr; /* increment size */
1061	ib->ptr[ib->length_dw++] = 0;
1062	ib->ptr[ib->length_dw++] = count; /* number of entries */
1063}
1064
1065/**
1066 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1067 *
1068 * @ib: indirect buffer to fill with padding
1069 *
1070 */
1071static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1072{
1073	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1074	u32 pad_count;
1075	int i;
1076
1077	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1078	for (i = 0; i < pad_count; i++)
1079		if (sdma && sdma->burst_nop && (i == 0))
1080			ib->ptr[ib->length_dw++] =
1081				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1082				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1083		else
1084			ib->ptr[ib->length_dw++] =
1085				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1086}
1087
1088/**
1089 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1090 *
1091 * @ring: amdgpu_ring pointer
1092 *
1093 * Make sure all previous operations are completed (CIK).
1094 */
1095static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1096{
1097	uint32_t seq = ring->fence_drv.sync_seq;
1098	uint64_t addr = ring->fence_drv.gpu_addr;
1099
1100	/* wait for idle */
1101	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1102			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1103			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1104			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1105	amdgpu_ring_write(ring, addr & 0xfffffffc);
1106	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1107	amdgpu_ring_write(ring, seq); /* reference */
1108	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1109	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1111}
1112
1113/**
1114 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1115 *
1116 * @ring: amdgpu_ring pointer
1117 * @vm: amdgpu_vm pointer
1118 *
1119 * Update the page table base and flush the VM TLB
1120 * using sDMA (VI).
1121 */
1122static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1123					 unsigned vmid, uint64_t pd_addr)
1124{
1125	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
1126
1127	/* wait for flush */
1128	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1129			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1130			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1131	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1132	amdgpu_ring_write(ring, 0);
1133	amdgpu_ring_write(ring, 0); /* reference */
1134	amdgpu_ring_write(ring, 0); /* mask */
1135	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1136			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1137}
1138
1139static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1140				     uint32_t reg, uint32_t val)
1141{
1142	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1143			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1144	amdgpu_ring_write(ring, reg);
1145	amdgpu_ring_write(ring, val);
1146}
1147
1148static int sdma_v3_0_early_init(void *handle)
1149{
1150	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1151
1152	switch (adev->asic_type) {
1153	case CHIP_STONEY:
1154		adev->sdma.num_instances = 1;
1155		break;
1156	default:
1157		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1158		break;
1159	}
1160
1161	sdma_v3_0_set_ring_funcs(adev);
1162	sdma_v3_0_set_buffer_funcs(adev);
1163	sdma_v3_0_set_vm_pte_funcs(adev);
1164	sdma_v3_0_set_irq_funcs(adev);
1165
1166	return 0;
1167}
1168
1169static int sdma_v3_0_sw_init(void *handle)
1170{
1171	struct amdgpu_ring *ring;
1172	int r, i;
1173	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1174
1175	/* SDMA trap event */
1176	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1177			      &adev->sdma.trap_irq);
1178	if (r)
1179		return r;
1180
1181	/* SDMA Privileged inst */
1182	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1183			      &adev->sdma.illegal_inst_irq);
1184	if (r)
1185		return r;
1186
1187	/* SDMA Privileged inst */
1188	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1189			      &adev->sdma.illegal_inst_irq);
1190	if (r)
1191		return r;
1192
1193	r = sdma_v3_0_init_microcode(adev);
1194	if (r) {
1195		DRM_ERROR("Failed to load sdma firmware!\n");
1196		return r;
1197	}
1198
1199	for (i = 0; i < adev->sdma.num_instances; i++) {
1200		ring = &adev->sdma.instance[i].ring;
1201		ring->ring_obj = NULL;
1202		if (!amdgpu_sriov_vf(adev)) {
1203			ring->use_doorbell = true;
1204			ring->doorbell_index = (i == 0) ?
1205				AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1206		} else {
1207			ring->use_pollmem = true;
1208		}
1209
1210		sprintf(ring->name, "sdma%d", i);
1211		r = amdgpu_ring_init(adev, ring, 1024,
1212				     &adev->sdma.trap_irq,
1213				     (i == 0) ?
1214				     AMDGPU_SDMA_IRQ_TRAP0 :
1215				     AMDGPU_SDMA_IRQ_TRAP1);
1216		if (r)
1217			return r;
1218	}
1219
1220	return r;
1221}
1222
1223static int sdma_v3_0_sw_fini(void *handle)
1224{
1225	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1226	int i;
1227
1228	for (i = 0; i < adev->sdma.num_instances; i++)
1229		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1230
1231	sdma_v3_0_free_microcode(adev);
1232	return 0;
1233}
1234
1235static int sdma_v3_0_hw_init(void *handle)
1236{
1237	int r;
1238	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1239
1240	sdma_v3_0_init_golden_registers(adev);
1241
1242	r = sdma_v3_0_start(adev);
1243	if (r)
1244		return r;
1245
1246	return r;
1247}
1248
1249static int sdma_v3_0_hw_fini(void *handle)
1250{
1251	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1252
1253	sdma_v3_0_ctx_switch_enable(adev, false);
1254	sdma_v3_0_enable(adev, false);
1255
1256	return 0;
1257}
1258
1259static int sdma_v3_0_suspend(void *handle)
1260{
1261	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1262
1263	return sdma_v3_0_hw_fini(adev);
1264}
1265
1266static int sdma_v3_0_resume(void *handle)
1267{
1268	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269
1270	return sdma_v3_0_hw_init(adev);
1271}
1272
1273static bool sdma_v3_0_is_idle(void *handle)
1274{
1275	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276	u32 tmp = RREG32(mmSRBM_STATUS2);
1277
1278	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1279		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1280	    return false;
1281
1282	return true;
1283}
1284
1285static int sdma_v3_0_wait_for_idle(void *handle)
1286{
1287	unsigned i;
1288	u32 tmp;
1289	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290
1291	for (i = 0; i < adev->usec_timeout; i++) {
1292		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1293				SRBM_STATUS2__SDMA1_BUSY_MASK);
1294
1295		if (!tmp)
1296			return 0;
1297		udelay(1);
1298	}
1299	return -ETIMEDOUT;
1300}
1301
1302static bool sdma_v3_0_check_soft_reset(void *handle)
1303{
1304	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1305	u32 srbm_soft_reset = 0;
1306	u32 tmp = RREG32(mmSRBM_STATUS2);
1307
1308	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1309	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1310		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1311		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1312	}
1313
1314	if (srbm_soft_reset) {
1315		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1316		return true;
1317	} else {
1318		adev->sdma.srbm_soft_reset = 0;
1319		return false;
1320	}
1321}
1322
1323static int sdma_v3_0_pre_soft_reset(void *handle)
1324{
1325	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1326	u32 srbm_soft_reset = 0;
1327
1328	if (!adev->sdma.srbm_soft_reset)
1329		return 0;
1330
1331	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1332
1333	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1334	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1335		sdma_v3_0_ctx_switch_enable(adev, false);
1336		sdma_v3_0_enable(adev, false);
1337	}
1338
1339	return 0;
1340}
1341
1342static int sdma_v3_0_post_soft_reset(void *handle)
1343{
1344	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1345	u32 srbm_soft_reset = 0;
1346
1347	if (!adev->sdma.srbm_soft_reset)
1348		return 0;
1349
1350	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1351
1352	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1353	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1354		sdma_v3_0_gfx_resume(adev);
1355		sdma_v3_0_rlc_resume(adev);
1356	}
1357
1358	return 0;
1359}
1360
1361static int sdma_v3_0_soft_reset(void *handle)
1362{
1363	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1364	u32 srbm_soft_reset = 0;
1365	u32 tmp;
1366
1367	if (!adev->sdma.srbm_soft_reset)
1368		return 0;
1369
1370	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1371
1372	if (srbm_soft_reset) {
1373		tmp = RREG32(mmSRBM_SOFT_RESET);
1374		tmp |= srbm_soft_reset;
1375		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1376		WREG32(mmSRBM_SOFT_RESET, tmp);
1377		tmp = RREG32(mmSRBM_SOFT_RESET);
1378
1379		udelay(50);
1380
1381		tmp &= ~srbm_soft_reset;
1382		WREG32(mmSRBM_SOFT_RESET, tmp);
1383		tmp = RREG32(mmSRBM_SOFT_RESET);
1384
1385		/* Wait a little for things to settle down */
1386		udelay(50);
1387	}
1388
1389	return 0;
1390}
1391
1392static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1393					struct amdgpu_irq_src *source,
1394					unsigned type,
1395					enum amdgpu_interrupt_state state)
1396{
1397	u32 sdma_cntl;
1398
1399	switch (type) {
1400	case AMDGPU_SDMA_IRQ_TRAP0:
1401		switch (state) {
1402		case AMDGPU_IRQ_STATE_DISABLE:
1403			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1404			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1405			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1406			break;
1407		case AMDGPU_IRQ_STATE_ENABLE:
1408			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1409			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1410			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1411			break;
1412		default:
1413			break;
1414		}
1415		break;
1416	case AMDGPU_SDMA_IRQ_TRAP1:
1417		switch (state) {
1418		case AMDGPU_IRQ_STATE_DISABLE:
1419			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1420			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1421			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1422			break;
1423		case AMDGPU_IRQ_STATE_ENABLE:
1424			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1425			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1426			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1427			break;
1428		default:
1429			break;
1430		}
1431		break;
1432	default:
1433		break;
1434	}
1435	return 0;
1436}
1437
1438static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1439				      struct amdgpu_irq_src *source,
1440				      struct amdgpu_iv_entry *entry)
1441{
1442	u8 instance_id, queue_id;
1443
1444	instance_id = (entry->ring_id & 0x3) >> 0;
1445	queue_id = (entry->ring_id & 0xc) >> 2;
1446	DRM_DEBUG("IH: SDMA trap\n");
1447	switch (instance_id) {
1448	case 0:
1449		switch (queue_id) {
1450		case 0:
1451			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1452			break;
1453		case 1:
1454			/* XXX compute */
1455			break;
1456		case 2:
1457			/* XXX compute */
1458			break;
1459		}
1460		break;
1461	case 1:
1462		switch (queue_id) {
1463		case 0:
1464			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1465			break;
1466		case 1:
1467			/* XXX compute */
1468			break;
1469		case 2:
1470			/* XXX compute */
1471			break;
1472		}
1473		break;
1474	}
1475	return 0;
1476}
1477
1478static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1479					      struct amdgpu_irq_src *source,
1480					      struct amdgpu_iv_entry *entry)
1481{
1482	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1483	schedule_work(&adev->reset_work);
1484	return 0;
1485}
1486
1487static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1488		struct amdgpu_device *adev,
1489		bool enable)
1490{
1491	uint32_t temp, data;
1492	int i;
1493
1494	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1495		for (i = 0; i < adev->sdma.num_instances; i++) {
1496			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1497			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1498				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1499				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1500				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1501				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1502				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1503				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1504				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1505			if (data != temp)
1506				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1507		}
1508	} else {
1509		for (i = 0; i < adev->sdma.num_instances; i++) {
1510			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1511			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1512				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1513				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1514				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1515				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1516				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1517				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1518				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1519
1520			if (data != temp)
1521				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1522		}
1523	}
1524}
1525
1526static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1527		struct amdgpu_device *adev,
1528		bool enable)
1529{
1530	uint32_t temp, data;
1531	int i;
1532
1533	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1534		for (i = 0; i < adev->sdma.num_instances; i++) {
1535			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1536			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1537
1538			if (temp != data)
1539				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1540		}
1541	} else {
1542		for (i = 0; i < adev->sdma.num_instances; i++) {
1543			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1544			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1545
1546			if (temp != data)
1547				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1548		}
1549	}
1550}
1551
1552static int sdma_v3_0_set_clockgating_state(void *handle,
1553					  enum amd_clockgating_state state)
1554{
1555	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1556
1557	if (amdgpu_sriov_vf(adev))
1558		return 0;
1559
1560	switch (adev->asic_type) {
1561	case CHIP_FIJI:
1562	case CHIP_CARRIZO:
1563	case CHIP_STONEY:
1564		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1565				state == AMD_CG_STATE_GATE);
1566		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1567				state == AMD_CG_STATE_GATE);
1568		break;
1569	default:
1570		break;
1571	}
1572	return 0;
1573}
1574
1575static int sdma_v3_0_set_powergating_state(void *handle,
1576					  enum amd_powergating_state state)
1577{
1578	return 0;
1579}
1580
1581static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1582{
1583	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1584	int data;
1585
1586	if (amdgpu_sriov_vf(adev))
1587		*flags = 0;
1588
1589	/* AMD_CG_SUPPORT_SDMA_MGCG */
1590	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1591	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1592		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1593
1594	/* AMD_CG_SUPPORT_SDMA_LS */
1595	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1596	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1597		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1598}
1599
1600static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1601	.name = "sdma_v3_0",
1602	.early_init = sdma_v3_0_early_init,
1603	.late_init = NULL,
1604	.sw_init = sdma_v3_0_sw_init,
1605	.sw_fini = sdma_v3_0_sw_fini,
1606	.hw_init = sdma_v3_0_hw_init,
1607	.hw_fini = sdma_v3_0_hw_fini,
1608	.suspend = sdma_v3_0_suspend,
1609	.resume = sdma_v3_0_resume,
1610	.is_idle = sdma_v3_0_is_idle,
1611	.wait_for_idle = sdma_v3_0_wait_for_idle,
1612	.check_soft_reset = sdma_v3_0_check_soft_reset,
1613	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1614	.post_soft_reset = sdma_v3_0_post_soft_reset,
1615	.soft_reset = sdma_v3_0_soft_reset,
1616	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1617	.set_powergating_state = sdma_v3_0_set_powergating_state,
1618	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1619};
1620
1621static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1622	.type = AMDGPU_RING_TYPE_SDMA,
1623	.align_mask = 0xf,
1624	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1625	.support_64bit_ptrs = false,
1626	.get_rptr = sdma_v3_0_ring_get_rptr,
1627	.get_wptr = sdma_v3_0_ring_get_wptr,
1628	.set_wptr = sdma_v3_0_ring_set_wptr,
1629	.emit_frame_size =
1630		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1631		3 + /* hdp invalidate */
1632		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1633		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1634		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1635	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1636	.emit_ib = sdma_v3_0_ring_emit_ib,
1637	.emit_fence = sdma_v3_0_ring_emit_fence,
1638	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1639	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1640	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
 
1641	.test_ring = sdma_v3_0_ring_test_ring,
1642	.test_ib = sdma_v3_0_ring_test_ib,
1643	.insert_nop = sdma_v3_0_ring_insert_nop,
1644	.pad_ib = sdma_v3_0_ring_pad_ib,
1645	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1646};
1647
1648static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1649{
1650	int i;
1651
1652	for (i = 0; i < adev->sdma.num_instances; i++)
1653		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1654}
1655
1656static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1657	.set = sdma_v3_0_set_trap_irq_state,
1658	.process = sdma_v3_0_process_trap_irq,
1659};
1660
1661static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1662	.process = sdma_v3_0_process_illegal_inst_irq,
1663};
1664
1665static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1666{
1667	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1668	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1669	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1670}
1671
1672/**
1673 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1674 *
1675 * @ring: amdgpu_ring structure holding ring information
1676 * @src_offset: src GPU address
1677 * @dst_offset: dst GPU address
1678 * @byte_count: number of bytes to xfer
1679 *
1680 * Copy GPU buffers using the DMA engine (VI).
1681 * Used by the amdgpu ttm implementation to move pages if
1682 * registered as the asic copy callback.
1683 */
1684static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1685				       uint64_t src_offset,
1686				       uint64_t dst_offset,
1687				       uint32_t byte_count)
1688{
1689	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1690		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1691	ib->ptr[ib->length_dw++] = byte_count;
1692	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1693	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1694	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1695	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1696	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1697}
1698
1699/**
1700 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1701 *
1702 * @ring: amdgpu_ring structure holding ring information
1703 * @src_data: value to write to buffer
1704 * @dst_offset: dst GPU address
1705 * @byte_count: number of bytes to xfer
1706 *
1707 * Fill GPU buffers using the DMA engine (VI).
1708 */
1709static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1710				       uint32_t src_data,
1711				       uint64_t dst_offset,
1712				       uint32_t byte_count)
1713{
1714	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1715	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1716	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1717	ib->ptr[ib->length_dw++] = src_data;
1718	ib->ptr[ib->length_dw++] = byte_count;
1719}
1720
1721static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1722	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1723	.copy_num_dw = 7,
1724	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1725
1726	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1727	.fill_num_dw = 5,
1728	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1729};
1730
1731static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1732{
1733	if (adev->mman.buffer_funcs == NULL) {
1734		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1735		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1736	}
1737}
1738
1739static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1740	.copy_pte_num_dw = 7,
1741	.copy_pte = sdma_v3_0_vm_copy_pte,
1742
1743	.write_pte = sdma_v3_0_vm_write_pte,
1744	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1745};
1746
1747static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1748{
1749	unsigned i;
1750
1751	if (adev->vm_manager.vm_pte_funcs == NULL) {
1752		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1753		for (i = 0; i < adev->sdma.num_instances; i++)
1754			adev->vm_manager.vm_pte_rings[i] =
1755				&adev->sdma.instance[i].ring;
1756
1757		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1758	}
1759}
1760
1761const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1762{
1763	.type = AMD_IP_BLOCK_TYPE_SDMA,
1764	.major = 3,
1765	.minor = 0,
1766	.rev = 0,
1767	.funcs = &sdma_v3_0_ip_funcs,
1768};
1769
1770const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1771{
1772	.type = AMD_IP_BLOCK_TYPE_SDMA,
1773	.major = 3,
1774	.minor = 1,
1775	.rev = 0,
1776	.funcs = &sdma_v3_0_ip_funcs,
1777};
v4.10.11
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Alex Deucher
  23 */
  24#include <linux/firmware.h>
  25#include <drm/drmP.h>
  26#include "amdgpu.h"
  27#include "amdgpu_ucode.h"
  28#include "amdgpu_trace.h"
  29#include "vi.h"
  30#include "vid.h"
  31
  32#include "oss/oss_3_0_d.h"
  33#include "oss/oss_3_0_sh_mask.h"
  34
  35#include "gmc/gmc_8_1_d.h"
  36#include "gmc/gmc_8_1_sh_mask.h"
  37
  38#include "gca/gfx_8_0_d.h"
  39#include "gca/gfx_8_0_enum.h"
  40#include "gca/gfx_8_0_sh_mask.h"
  41
  42#include "bif/bif_5_0_d.h"
  43#include "bif/bif_5_0_sh_mask.h"
  44
  45#include "tonga_sdma_pkt_open.h"
  46
  47static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  48static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  49static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  50static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  51
  52MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  53MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  54MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  55MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  56MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  57MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  58MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  59MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  60MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  61MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  65
  66
  67static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  68{
  69	SDMA0_REGISTER_OFFSET,
  70	SDMA1_REGISTER_OFFSET
  71};
  72
  73static const u32 golden_settings_tonga_a11[] =
  74{
  75	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  76	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  77	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  78	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  79	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  80	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  82	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85};
  86
  87static const u32 tonga_mgcg_cgcg_init[] =
  88{
  89	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  90	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  91};
  92
  93static const u32 golden_settings_fiji_a10[] =
  94{
  95	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  96	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  97	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  98	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  99	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 100	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 101	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 102	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 103};
 104
 105static const u32 fiji_mgcg_cgcg_init[] =
 106{
 107	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
 108	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
 109};
 110
 111static const u32 golden_settings_polaris11_a11[] =
 112{
 113	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
 114	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
 115	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 116	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 117	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 118	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 119	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
 120	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 121	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 122	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 123};
 124
 125static const u32 golden_settings_polaris10_a11[] =
 126{
 127	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
 128	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
 129	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 130	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 131	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 132	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 133	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
 134	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
 135	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
 136	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
 137};
 138
 139static const u32 cz_golden_settings_a11[] =
 140{
 141	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
 142	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
 143	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
 144	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
 145	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
 146	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
 147	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
 148	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
 149	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
 150	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
 151	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
 152	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
 153};
 154
 155static const u32 cz_mgcg_cgcg_init[] =
 156{
 157	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
 158	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
 159};
 160
 161static const u32 stoney_golden_settings_a11[] =
 162{
 163	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
 164	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
 165	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
 166	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
 167};
 168
 169static const u32 stoney_mgcg_cgcg_init[] =
 170{
 171	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
 172};
 173
 174/*
 175 * sDMA - System DMA
 176 * Starting with CIK, the GPU has new asynchronous
 177 * DMA engines.  These engines are used for compute
 178 * and gfx.  There are two DMA engines (SDMA0, SDMA1)
 179 * and each one supports 1 ring buffer used for gfx
 180 * and 2 queues used for compute.
 181 *
 182 * The programming model is very similar to the CP
 183 * (ring buffer, IBs, etc.), but sDMA has it's own
 184 * packet format that is different from the PM4 format
 185 * used by the CP. sDMA supports copying data, writing
 186 * embedded data, solid fills, and a number of other
 187 * things.  It also has support for tiling/detiling of
 188 * buffers.
 189 */
 190
 191static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
 192{
 193	switch (adev->asic_type) {
 194	case CHIP_FIJI:
 195		amdgpu_program_register_sequence(adev,
 196						 fiji_mgcg_cgcg_init,
 197						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
 198		amdgpu_program_register_sequence(adev,
 199						 golden_settings_fiji_a10,
 200						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
 201		break;
 202	case CHIP_TONGA:
 203		amdgpu_program_register_sequence(adev,
 204						 tonga_mgcg_cgcg_init,
 205						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
 206		amdgpu_program_register_sequence(adev,
 207						 golden_settings_tonga_a11,
 208						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
 209		break;
 210	case CHIP_POLARIS11:
 211	case CHIP_POLARIS12:
 212		amdgpu_program_register_sequence(adev,
 213						 golden_settings_polaris11_a11,
 214						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
 215		break;
 216	case CHIP_POLARIS10:
 217		amdgpu_program_register_sequence(adev,
 218						 golden_settings_polaris10_a11,
 219						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
 220		break;
 221	case CHIP_CARRIZO:
 222		amdgpu_program_register_sequence(adev,
 223						 cz_mgcg_cgcg_init,
 224						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
 225		amdgpu_program_register_sequence(adev,
 226						 cz_golden_settings_a11,
 227						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
 228		break;
 229	case CHIP_STONEY:
 230		amdgpu_program_register_sequence(adev,
 231						 stoney_mgcg_cgcg_init,
 232						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
 233		amdgpu_program_register_sequence(adev,
 234						 stoney_golden_settings_a11,
 235						 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
 236		break;
 237	default:
 238		break;
 239	}
 240}
 241
 242static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
 243{
 244	int i;
 245	for (i = 0; i < adev->sdma.num_instances; i++) {
 246		release_firmware(adev->sdma.instance[i].fw);
 247		adev->sdma.instance[i].fw = NULL;
 248	}
 249}
 250
 251/**
 252 * sdma_v3_0_init_microcode - load ucode images from disk
 253 *
 254 * @adev: amdgpu_device pointer
 255 *
 256 * Use the firmware interface to load the ucode images into
 257 * the driver (not loaded into hw).
 258 * Returns 0 on success, error on failure.
 259 */
 260static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
 261{
 262	const char *chip_name;
 263	char fw_name[30];
 264	int err = 0, i;
 265	struct amdgpu_firmware_info *info = NULL;
 266	const struct common_firmware_header *header = NULL;
 267	const struct sdma_firmware_header_v1_0 *hdr;
 268
 269	DRM_DEBUG("\n");
 270
 271	switch (adev->asic_type) {
 272	case CHIP_TONGA:
 273		chip_name = "tonga";
 274		break;
 275	case CHIP_FIJI:
 276		chip_name = "fiji";
 277		break;
 278	case CHIP_POLARIS11:
 279		chip_name = "polaris11";
 280		break;
 281	case CHIP_POLARIS10:
 282		chip_name = "polaris10";
 283		break;
 284	case CHIP_POLARIS12:
 285		chip_name = "polaris12";
 286		break;
 287	case CHIP_CARRIZO:
 288		chip_name = "carrizo";
 289		break;
 290	case CHIP_STONEY:
 291		chip_name = "stoney";
 292		break;
 293	default: BUG();
 294	}
 295
 296	for (i = 0; i < adev->sdma.num_instances; i++) {
 297		if (i == 0)
 298			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
 299		else
 300			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
 301		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
 302		if (err)
 303			goto out;
 304		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
 305		if (err)
 306			goto out;
 307		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
 308		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
 309		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
 310		if (adev->sdma.instance[i].feature_version >= 20)
 311			adev->sdma.instance[i].burst_nop = true;
 312
 313		if (adev->firmware.smu_load) {
 314			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
 315			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
 316			info->fw = adev->sdma.instance[i].fw;
 317			header = (const struct common_firmware_header *)info->fw->data;
 318			adev->firmware.fw_size +=
 319				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
 320		}
 321	}
 322out:
 323	if (err) {
 324		printk(KERN_ERR
 325		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
 326		       fw_name);
 327		for (i = 0; i < adev->sdma.num_instances; i++) {
 328			release_firmware(adev->sdma.instance[i].fw);
 329			adev->sdma.instance[i].fw = NULL;
 330		}
 331	}
 332	return err;
 333}
 334
 335/**
 336 * sdma_v3_0_ring_get_rptr - get the current read pointer
 337 *
 338 * @ring: amdgpu ring pointer
 339 *
 340 * Get the current rptr from the hardware (VI+).
 341 */
 342static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
 343{
 344	/* XXX check if swapping is necessary on BE */
 345	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
 346}
 347
 348/**
 349 * sdma_v3_0_ring_get_wptr - get the current write pointer
 350 *
 351 * @ring: amdgpu ring pointer
 352 *
 353 * Get the current wptr from the hardware (VI+).
 354 */
 355static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
 356{
 357	struct amdgpu_device *adev = ring->adev;
 358	u32 wptr;
 359
 360	if (ring->use_doorbell) {
 361		/* XXX check if swapping is necessary on BE */
 362		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
 363	} else {
 364		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
 365
 366		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
 367	}
 368
 369	return wptr;
 370}
 371
 372/**
 373 * sdma_v3_0_ring_set_wptr - commit the write pointer
 374 *
 375 * @ring: amdgpu ring pointer
 376 *
 377 * Write the wptr back to the hardware (VI+).
 378 */
 379static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
 380{
 381	struct amdgpu_device *adev = ring->adev;
 382
 383	if (ring->use_doorbell) {
 
 384		/* XXX check if swapping is necessary on BE */
 385		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
 386		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
 
 
 
 
 387	} else {
 388		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
 389
 390		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
 391	}
 392}
 393
 394static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 395{
 396	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
 397	int i;
 398
 399	for (i = 0; i < count; i++)
 400		if (sdma && sdma->burst_nop && (i == 0))
 401			amdgpu_ring_write(ring, ring->funcs->nop |
 402				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 403		else
 404			amdgpu_ring_write(ring, ring->funcs->nop);
 405}
 406
 407/**
 408 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
 409 *
 410 * @ring: amdgpu ring pointer
 411 * @ib: IB object to schedule
 412 *
 413 * Schedule an IB in the DMA ring (VI).
 414 */
 415static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
 416				   struct amdgpu_ib *ib,
 417				   unsigned vm_id, bool ctx_switch)
 418{
 419	u32 vmid = vm_id & 0xf;
 420
 421	/* IB packet must end on a 8 DW boundary */
 422	sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
 423
 424	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 425			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
 426	/* base must be 32 byte aligned */
 427	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 428	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 429	amdgpu_ring_write(ring, ib->length_dw);
 430	amdgpu_ring_write(ring, 0);
 431	amdgpu_ring_write(ring, 0);
 432
 433}
 434
 435/**
 436 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 437 *
 438 * @ring: amdgpu ring pointer
 439 *
 440 * Emit an hdp flush packet on the requested DMA ring.
 441 */
 442static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 443{
 444	u32 ref_and_mask = 0;
 445
 446	if (ring == &ring->adev->sdma.instance[0].ring)
 447		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
 448	else
 449		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
 450
 451	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 452			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
 453			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 454	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
 455	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
 456	amdgpu_ring_write(ring, ref_and_mask); /* reference */
 457	amdgpu_ring_write(ring, ref_and_mask); /* mask */
 458	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 459			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
 460}
 461
 462static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
 463{
 464	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
 465			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
 466	amdgpu_ring_write(ring, mmHDP_DEBUG0);
 467	amdgpu_ring_write(ring, 1);
 468}
 469
 470/**
 471 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
 472 *
 473 * @ring: amdgpu ring pointer
 474 * @fence: amdgpu fence object
 475 *
 476 * Add a DMA fence packet to the ring to write
 477 * the fence seq number and DMA trap packet to generate
 478 * an interrupt if needed (VI).
 479 */
 480static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 481				      unsigned flags)
 482{
 483	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 484	/* write the fence */
 485	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 486	amdgpu_ring_write(ring, lower_32_bits(addr));
 487	amdgpu_ring_write(ring, upper_32_bits(addr));
 488	amdgpu_ring_write(ring, lower_32_bits(seq));
 489
 490	/* optionally write high bits as well */
 491	if (write64bit) {
 492		addr += 4;
 493		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 494		amdgpu_ring_write(ring, lower_32_bits(addr));
 495		amdgpu_ring_write(ring, upper_32_bits(addr));
 496		amdgpu_ring_write(ring, upper_32_bits(seq));
 497	}
 498
 499	/* generate an interrupt */
 500	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 501	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 502}
 503
 504/**
 505 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
 506 *
 507 * @adev: amdgpu_device pointer
 508 *
 509 * Stop the gfx async dma ring buffers (VI).
 510 */
 511static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
 512{
 513	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
 514	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
 515	u32 rb_cntl, ib_cntl;
 516	int i;
 517
 518	if ((adev->mman.buffer_funcs_ring == sdma0) ||
 519	    (adev->mman.buffer_funcs_ring == sdma1))
 520		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
 521
 522	for (i = 0; i < adev->sdma.num_instances; i++) {
 523		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
 524		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
 525		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
 526		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
 527		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
 528		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
 529	}
 530	sdma0->ready = false;
 531	sdma1->ready = false;
 532}
 533
 534/**
 535 * sdma_v3_0_rlc_stop - stop the compute async dma engines
 536 *
 537 * @adev: amdgpu_device pointer
 538 *
 539 * Stop the compute async dma queues (VI).
 540 */
 541static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
 542{
 543	/* XXX todo */
 544}
 545
 546/**
 547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
 548 *
 549 * @adev: amdgpu_device pointer
 550 * @enable: enable/disable the DMA MEs context switch.
 551 *
 552 * Halt or unhalt the async dma engines context switch (VI).
 553 */
 554static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 555{
 556	u32 f32_cntl;
 557	int i;
 558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559	for (i = 0; i < adev->sdma.num_instances; i++) {
 560		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
 561		if (enable)
 562			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 563					AUTO_CTXSW_ENABLE, 1);
 564		else
 
 
 
 
 
 
 
 
 565			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 566					AUTO_CTXSW_ENABLE, 0);
 
 
 
 
 567		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
 568	}
 569}
 570
 571/**
 572 * sdma_v3_0_enable - stop the async dma engines
 573 *
 574 * @adev: amdgpu_device pointer
 575 * @enable: enable/disable the DMA MEs.
 576 *
 577 * Halt or unhalt the async dma engines (VI).
 578 */
 579static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
 580{
 581	u32 f32_cntl;
 582	int i;
 583
 584	if (!enable) {
 585		sdma_v3_0_gfx_stop(adev);
 586		sdma_v3_0_rlc_stop(adev);
 587	}
 588
 589	for (i = 0; i < adev->sdma.num_instances; i++) {
 590		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
 591		if (enable)
 592			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
 593		else
 594			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
 595		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
 596	}
 597}
 598
 599/**
 600 * sdma_v3_0_gfx_resume - setup and start the async dma engines
 601 *
 602 * @adev: amdgpu_device pointer
 603 *
 604 * Set up the gfx DMA ring buffers and enable them (VI).
 605 * Returns 0 for success, error for failure.
 606 */
 607static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
 608{
 609	struct amdgpu_ring *ring;
 610	u32 rb_cntl, ib_cntl;
 611	u32 rb_bufsz;
 612	u32 wb_offset;
 613	u32 doorbell;
 
 614	int i, j, r;
 615
 616	for (i = 0; i < adev->sdma.num_instances; i++) {
 617		ring = &adev->sdma.instance[i].ring;
 
 618		wb_offset = (ring->rptr_offs * 4);
 619
 620		mutex_lock(&adev->srbm_mutex);
 621		for (j = 0; j < 16; j++) {
 622			vi_srbm_select(adev, 0, 0, 0, j);
 623			/* SDMA GFX */
 624			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
 625			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
 626		}
 627		vi_srbm_select(adev, 0, 0, 0, 0);
 628		mutex_unlock(&adev->srbm_mutex);
 629
 630		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
 631		       adev->gfx.config.gb_addr_config & 0x70);
 632
 633		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
 634
 635		/* Set ring buffer size in dwords */
 636		rb_bufsz = order_base_2(ring->ring_size / 4);
 637		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
 638		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
 639#ifdef __BIG_ENDIAN
 640		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
 641		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
 642					RPTR_WRITEBACK_SWAP_ENABLE, 1);
 643#endif
 644		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
 645
 646		/* Initialize the ring buffer's read and write pointers */
 
 647		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
 648		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
 649		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
 650		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
 651
 652		/* set the wb address whether it's enabled or not */
 653		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
 654		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
 655		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
 656		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
 657
 658		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
 659
 660		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
 661		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
 662
 663		ring->wptr = 0;
 664		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
 665
 666		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
 667
 668		if (ring->use_doorbell) {
 669			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
 670						 OFFSET, ring->doorbell_index);
 671			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
 672		} else {
 673			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
 674		}
 675		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
 676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677		/* enable DMA RB */
 678		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
 679		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
 680
 681		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
 682		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
 683#ifdef __BIG_ENDIAN
 684		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
 685#endif
 686		/* enable DMA IBs */
 687		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
 688
 689		ring->ready = true;
 690	}
 691
 692	/* unhalt the MEs */
 693	sdma_v3_0_enable(adev, true);
 694	/* enable sdma ring preemption */
 695	sdma_v3_0_ctx_switch_enable(adev, true);
 696
 697	for (i = 0; i < adev->sdma.num_instances; i++) {
 698		ring = &adev->sdma.instance[i].ring;
 699		r = amdgpu_ring_test_ring(ring);
 700		if (r) {
 701			ring->ready = false;
 702			return r;
 703		}
 704
 705		if (adev->mman.buffer_funcs_ring == ring)
 706			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
 707	}
 708
 709	return 0;
 710}
 711
 712/**
 713 * sdma_v3_0_rlc_resume - setup and start the async dma engines
 714 *
 715 * @adev: amdgpu_device pointer
 716 *
 717 * Set up the compute DMA queues and enable them (VI).
 718 * Returns 0 for success, error for failure.
 719 */
 720static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
 721{
 722	/* XXX todo */
 723	return 0;
 724}
 725
 726/**
 727 * sdma_v3_0_load_microcode - load the sDMA ME ucode
 728 *
 729 * @adev: amdgpu_device pointer
 730 *
 731 * Loads the sDMA0/1 ucode.
 732 * Returns 0 for success, -EINVAL if the ucode is not available.
 733 */
 734static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
 735{
 736	const struct sdma_firmware_header_v1_0 *hdr;
 737	const __le32 *fw_data;
 738	u32 fw_size;
 739	int i, j;
 740
 741	/* halt the MEs */
 742	sdma_v3_0_enable(adev, false);
 743
 744	for (i = 0; i < adev->sdma.num_instances; i++) {
 745		if (!adev->sdma.instance[i].fw)
 746			return -EINVAL;
 747		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
 748		amdgpu_ucode_print_sdma_hdr(&hdr->header);
 749		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
 750		fw_data = (const __le32 *)
 751			(adev->sdma.instance[i].fw->data +
 752				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
 753		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
 754		for (j = 0; j < fw_size; j++)
 755			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
 756		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
 757	}
 758
 759	return 0;
 760}
 761
 762/**
 763 * sdma_v3_0_start - setup and start the async dma engines
 764 *
 765 * @adev: amdgpu_device pointer
 766 *
 767 * Set up the DMA engines and enable them (VI).
 768 * Returns 0 for success, error for failure.
 769 */
 770static int sdma_v3_0_start(struct amdgpu_device *adev)
 771{
 772	int r, i;
 773
 774	if (!adev->pp_enabled) {
 775		if (!adev->firmware.smu_load) {
 776			r = sdma_v3_0_load_microcode(adev);
 777			if (r)
 778				return r;
 779		} else {
 780			for (i = 0; i < adev->sdma.num_instances; i++) {
 781				r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
 782										 (i == 0) ?
 783										 AMDGPU_UCODE_ID_SDMA0 :
 784										 AMDGPU_UCODE_ID_SDMA1);
 785				if (r)
 786					return -EINVAL;
 787			}
 788		}
 789	}
 790
 791	/* disble sdma engine before programing it */
 792	sdma_v3_0_ctx_switch_enable(adev, false);
 793	sdma_v3_0_enable(adev, false);
 794
 795	/* start the gfx rings and rlc compute queues */
 796	r = sdma_v3_0_gfx_resume(adev);
 797	if (r)
 798		return r;
 799	r = sdma_v3_0_rlc_resume(adev);
 800	if (r)
 801		return r;
 802
 803	return 0;
 804}
 805
 806/**
 807 * sdma_v3_0_ring_test_ring - simple async dma engine test
 808 *
 809 * @ring: amdgpu_ring structure holding ring information
 810 *
 811 * Test the DMA engine by writing using it to write an
 812 * value to memory. (VI).
 813 * Returns 0 for success, error for failure.
 814 */
 815static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
 816{
 817	struct amdgpu_device *adev = ring->adev;
 818	unsigned i;
 819	unsigned index;
 820	int r;
 821	u32 tmp;
 822	u64 gpu_addr;
 823
 824	r = amdgpu_wb_get(adev, &index);
 825	if (r) {
 826		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
 827		return r;
 828	}
 829
 830	gpu_addr = adev->wb.gpu_addr + (index * 4);
 831	tmp = 0xCAFEDEAD;
 832	adev->wb.wb[index] = cpu_to_le32(tmp);
 833
 834	r = amdgpu_ring_alloc(ring, 5);
 835	if (r) {
 836		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
 837		amdgpu_wb_free(adev, index);
 838		return r;
 839	}
 840
 841	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
 842			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
 843	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
 844	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
 845	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
 846	amdgpu_ring_write(ring, 0xDEADBEEF);
 847	amdgpu_ring_commit(ring);
 848
 849	for (i = 0; i < adev->usec_timeout; i++) {
 850		tmp = le32_to_cpu(adev->wb.wb[index]);
 851		if (tmp == 0xDEADBEEF)
 852			break;
 853		DRM_UDELAY(1);
 854	}
 855
 856	if (i < adev->usec_timeout) {
 857		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
 858	} else {
 859		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
 860			  ring->idx, tmp);
 861		r = -EINVAL;
 862	}
 863	amdgpu_wb_free(adev, index);
 864
 865	return r;
 866}
 867
 868/**
 869 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
 870 *
 871 * @ring: amdgpu_ring structure holding ring information
 872 *
 873 * Test a simple IB in the DMA ring (VI).
 874 * Returns 0 on success, error on failure.
 875 */
 876static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
 877{
 878	struct amdgpu_device *adev = ring->adev;
 879	struct amdgpu_ib ib;
 880	struct dma_fence *f = NULL;
 881	unsigned index;
 882	u32 tmp = 0;
 883	u64 gpu_addr;
 884	long r;
 885
 886	r = amdgpu_wb_get(adev, &index);
 887	if (r) {
 888		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
 889		return r;
 890	}
 891
 892	gpu_addr = adev->wb.gpu_addr + (index * 4);
 893	tmp = 0xCAFEDEAD;
 894	adev->wb.wb[index] = cpu_to_le32(tmp);
 895	memset(&ib, 0, sizeof(ib));
 896	r = amdgpu_ib_get(adev, NULL, 256, &ib);
 897	if (r) {
 898		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
 899		goto err0;
 900	}
 901
 902	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
 903		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
 904	ib.ptr[1] = lower_32_bits(gpu_addr);
 905	ib.ptr[2] = upper_32_bits(gpu_addr);
 906	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
 907	ib.ptr[4] = 0xDEADBEEF;
 908	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
 909	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
 910	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
 911	ib.length_dw = 8;
 912
 913	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
 914	if (r)
 915		goto err1;
 916
 917	r = dma_fence_wait_timeout(f, false, timeout);
 918	if (r == 0) {
 919		DRM_ERROR("amdgpu: IB test timed out\n");
 920		r = -ETIMEDOUT;
 921		goto err1;
 922	} else if (r < 0) {
 923		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
 924		goto err1;
 925	}
 926	tmp = le32_to_cpu(adev->wb.wb[index]);
 927	if (tmp == 0xDEADBEEF) {
 928		DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
 929		r = 0;
 930	} else {
 931		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
 932		r = -EINVAL;
 933	}
 934err1:
 935	amdgpu_ib_free(adev, &ib, NULL);
 936	dma_fence_put(f);
 937err0:
 938	amdgpu_wb_free(adev, index);
 939	return r;
 940}
 941
 942/**
 943 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
 944 *
 945 * @ib: indirect buffer to fill with commands
 946 * @pe: addr of the page entry
 947 * @src: src addr to copy from
 948 * @count: number of page entries to update
 949 *
 950 * Update PTEs by copying them from the GART using sDMA (CIK).
 951 */
 952static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
 953				  uint64_t pe, uint64_t src,
 954				  unsigned count)
 955{
 956	unsigned bytes = count * 8;
 957
 958	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
 959		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
 960	ib->ptr[ib->length_dw++] = bytes;
 961	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
 962	ib->ptr[ib->length_dw++] = lower_32_bits(src);
 963	ib->ptr[ib->length_dw++] = upper_32_bits(src);
 964	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
 965	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
 966}
 967
 968/**
 969 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
 970 *
 971 * @ib: indirect buffer to fill with commands
 972 * @pe: addr of the page entry
 973 * @value: dst addr to write into pe
 974 * @count: number of page entries to update
 975 * @incr: increase next addr by incr bytes
 976 *
 977 * Update PTEs by writing them manually using sDMA (CIK).
 978 */
 979static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
 980				   uint64_t value, unsigned count,
 981				   uint32_t incr)
 982{
 983	unsigned ndw = count * 2;
 984
 985	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
 986		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
 987	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
 988	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
 989	ib->ptr[ib->length_dw++] = ndw;
 990	for (; ndw > 0; ndw -= 2) {
 991		ib->ptr[ib->length_dw++] = lower_32_bits(value);
 992		ib->ptr[ib->length_dw++] = upper_32_bits(value);
 993		value += incr;
 994	}
 995}
 996
 997/**
 998 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
 999 *
1000 * @ib: indirect buffer to fill with commands
1001 * @pe: addr of the page entry
1002 * @addr: dst addr to write into pe
1003 * @count: number of page entries to update
1004 * @incr: increase next addr by incr bytes
1005 * @flags: access flags
1006 *
1007 * Update the page tables using sDMA (CIK).
1008 */
1009static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1010				     uint64_t addr, unsigned count,
1011				     uint32_t incr, uint32_t flags)
1012{
1013	/* for physically contiguous pages (vram) */
1014	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1015	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1016	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1017	ib->ptr[ib->length_dw++] = flags; /* mask */
1018	ib->ptr[ib->length_dw++] = 0;
1019	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1020	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1021	ib->ptr[ib->length_dw++] = incr; /* increment size */
1022	ib->ptr[ib->length_dw++] = 0;
1023	ib->ptr[ib->length_dw++] = count; /* number of entries */
1024}
1025
1026/**
1027 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1028 *
1029 * @ib: indirect buffer to fill with padding
1030 *
1031 */
1032static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1033{
1034	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1035	u32 pad_count;
1036	int i;
1037
1038	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1039	for (i = 0; i < pad_count; i++)
1040		if (sdma && sdma->burst_nop && (i == 0))
1041			ib->ptr[ib->length_dw++] =
1042				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1043				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1044		else
1045			ib->ptr[ib->length_dw++] =
1046				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1047}
1048
1049/**
1050 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1051 *
1052 * @ring: amdgpu_ring pointer
1053 *
1054 * Make sure all previous operations are completed (CIK).
1055 */
1056static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1057{
1058	uint32_t seq = ring->fence_drv.sync_seq;
1059	uint64_t addr = ring->fence_drv.gpu_addr;
1060
1061	/* wait for idle */
1062	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1063			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1064			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1065			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1066	amdgpu_ring_write(ring, addr & 0xfffffffc);
1067	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1068	amdgpu_ring_write(ring, seq); /* reference */
1069	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1070	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1071			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1072}
1073
1074/**
1075 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1076 *
1077 * @ring: amdgpu_ring pointer
1078 * @vm: amdgpu_vm pointer
1079 *
1080 * Update the page table base and flush the VM TLB
1081 * using sDMA (VI).
1082 */
1083static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1084					 unsigned vm_id, uint64_t pd_addr)
1085{
1086	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1087			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1088	if (vm_id < 8) {
1089		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1090	} else {
1091		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1092	}
1093	amdgpu_ring_write(ring, pd_addr >> 12);
1094
1095	/* flush TLB */
1096	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1097			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1098	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1099	amdgpu_ring_write(ring, 1 << vm_id);
1100
1101	/* wait for flush */
1102	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1103			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1104			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1105	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1106	amdgpu_ring_write(ring, 0);
1107	amdgpu_ring_write(ring, 0); /* reference */
1108	amdgpu_ring_write(ring, 0); /* mask */
1109	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1110			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1111}
1112
 
 
 
 
 
 
 
 
 
1113static int sdma_v3_0_early_init(void *handle)
1114{
1115	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1116
1117	switch (adev->asic_type) {
1118	case CHIP_STONEY:
1119		adev->sdma.num_instances = 1;
1120		break;
1121	default:
1122		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1123		break;
1124	}
1125
1126	sdma_v3_0_set_ring_funcs(adev);
1127	sdma_v3_0_set_buffer_funcs(adev);
1128	sdma_v3_0_set_vm_pte_funcs(adev);
1129	sdma_v3_0_set_irq_funcs(adev);
1130
1131	return 0;
1132}
1133
1134static int sdma_v3_0_sw_init(void *handle)
1135{
1136	struct amdgpu_ring *ring;
1137	int r, i;
1138	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1139
1140	/* SDMA trap event */
1141	r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
 
1142	if (r)
1143		return r;
1144
1145	/* SDMA Privileged inst */
1146	r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
 
1147	if (r)
1148		return r;
1149
1150	/* SDMA Privileged inst */
1151	r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
 
1152	if (r)
1153		return r;
1154
1155	r = sdma_v3_0_init_microcode(adev);
1156	if (r) {
1157		DRM_ERROR("Failed to load sdma firmware!\n");
1158		return r;
1159	}
1160
1161	for (i = 0; i < adev->sdma.num_instances; i++) {
1162		ring = &adev->sdma.instance[i].ring;
1163		ring->ring_obj = NULL;
1164		ring->use_doorbell = true;
1165		ring->doorbell_index = (i == 0) ?
1166			AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
 
 
 
 
1167
1168		sprintf(ring->name, "sdma%d", i);
1169		r = amdgpu_ring_init(adev, ring, 1024,
1170				     &adev->sdma.trap_irq,
1171				     (i == 0) ?
1172				     AMDGPU_SDMA_IRQ_TRAP0 :
1173				     AMDGPU_SDMA_IRQ_TRAP1);
1174		if (r)
1175			return r;
1176	}
1177
1178	return r;
1179}
1180
1181static int sdma_v3_0_sw_fini(void *handle)
1182{
1183	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1184	int i;
1185
1186	for (i = 0; i < adev->sdma.num_instances; i++)
1187		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1188
1189	sdma_v3_0_free_microcode(adev);
1190	return 0;
1191}
1192
1193static int sdma_v3_0_hw_init(void *handle)
1194{
1195	int r;
1196	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1197
1198	sdma_v3_0_init_golden_registers(adev);
1199
1200	r = sdma_v3_0_start(adev);
1201	if (r)
1202		return r;
1203
1204	return r;
1205}
1206
1207static int sdma_v3_0_hw_fini(void *handle)
1208{
1209	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1210
1211	sdma_v3_0_ctx_switch_enable(adev, false);
1212	sdma_v3_0_enable(adev, false);
1213
1214	return 0;
1215}
1216
1217static int sdma_v3_0_suspend(void *handle)
1218{
1219	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1220
1221	return sdma_v3_0_hw_fini(adev);
1222}
1223
1224static int sdma_v3_0_resume(void *handle)
1225{
1226	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1227
1228	return sdma_v3_0_hw_init(adev);
1229}
1230
1231static bool sdma_v3_0_is_idle(void *handle)
1232{
1233	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1234	u32 tmp = RREG32(mmSRBM_STATUS2);
1235
1236	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1237		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1238	    return false;
1239
1240	return true;
1241}
1242
1243static int sdma_v3_0_wait_for_idle(void *handle)
1244{
1245	unsigned i;
1246	u32 tmp;
1247	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248
1249	for (i = 0; i < adev->usec_timeout; i++) {
1250		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1251				SRBM_STATUS2__SDMA1_BUSY_MASK);
1252
1253		if (!tmp)
1254			return 0;
1255		udelay(1);
1256	}
1257	return -ETIMEDOUT;
1258}
1259
1260static bool sdma_v3_0_check_soft_reset(void *handle)
1261{
1262	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1263	u32 srbm_soft_reset = 0;
1264	u32 tmp = RREG32(mmSRBM_STATUS2);
1265
1266	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1267	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1268		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1269		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1270	}
1271
1272	if (srbm_soft_reset) {
1273		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1274		return true;
1275	} else {
1276		adev->sdma.srbm_soft_reset = 0;
1277		return false;
1278	}
1279}
1280
1281static int sdma_v3_0_pre_soft_reset(void *handle)
1282{
1283	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284	u32 srbm_soft_reset = 0;
1285
1286	if (!adev->sdma.srbm_soft_reset)
1287		return 0;
1288
1289	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1290
1291	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1292	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1293		sdma_v3_0_ctx_switch_enable(adev, false);
1294		sdma_v3_0_enable(adev, false);
1295	}
1296
1297	return 0;
1298}
1299
1300static int sdma_v3_0_post_soft_reset(void *handle)
1301{
1302	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303	u32 srbm_soft_reset = 0;
1304
1305	if (!adev->sdma.srbm_soft_reset)
1306		return 0;
1307
1308	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1309
1310	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1311	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1312		sdma_v3_0_gfx_resume(adev);
1313		sdma_v3_0_rlc_resume(adev);
1314	}
1315
1316	return 0;
1317}
1318
1319static int sdma_v3_0_soft_reset(void *handle)
1320{
1321	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1322	u32 srbm_soft_reset = 0;
1323	u32 tmp;
1324
1325	if (!adev->sdma.srbm_soft_reset)
1326		return 0;
1327
1328	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1329
1330	if (srbm_soft_reset) {
1331		tmp = RREG32(mmSRBM_SOFT_RESET);
1332		tmp |= srbm_soft_reset;
1333		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1334		WREG32(mmSRBM_SOFT_RESET, tmp);
1335		tmp = RREG32(mmSRBM_SOFT_RESET);
1336
1337		udelay(50);
1338
1339		tmp &= ~srbm_soft_reset;
1340		WREG32(mmSRBM_SOFT_RESET, tmp);
1341		tmp = RREG32(mmSRBM_SOFT_RESET);
1342
1343		/* Wait a little for things to settle down */
1344		udelay(50);
1345	}
1346
1347	return 0;
1348}
1349
1350static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1351					struct amdgpu_irq_src *source,
1352					unsigned type,
1353					enum amdgpu_interrupt_state state)
1354{
1355	u32 sdma_cntl;
1356
1357	switch (type) {
1358	case AMDGPU_SDMA_IRQ_TRAP0:
1359		switch (state) {
1360		case AMDGPU_IRQ_STATE_DISABLE:
1361			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1362			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1363			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1364			break;
1365		case AMDGPU_IRQ_STATE_ENABLE:
1366			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1367			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1368			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1369			break;
1370		default:
1371			break;
1372		}
1373		break;
1374	case AMDGPU_SDMA_IRQ_TRAP1:
1375		switch (state) {
1376		case AMDGPU_IRQ_STATE_DISABLE:
1377			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1378			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1379			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1380			break;
1381		case AMDGPU_IRQ_STATE_ENABLE:
1382			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1383			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1384			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1385			break;
1386		default:
1387			break;
1388		}
1389		break;
1390	default:
1391		break;
1392	}
1393	return 0;
1394}
1395
1396static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1397				      struct amdgpu_irq_src *source,
1398				      struct amdgpu_iv_entry *entry)
1399{
1400	u8 instance_id, queue_id;
1401
1402	instance_id = (entry->ring_id & 0x3) >> 0;
1403	queue_id = (entry->ring_id & 0xc) >> 2;
1404	DRM_DEBUG("IH: SDMA trap\n");
1405	switch (instance_id) {
1406	case 0:
1407		switch (queue_id) {
1408		case 0:
1409			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1410			break;
1411		case 1:
1412			/* XXX compute */
1413			break;
1414		case 2:
1415			/* XXX compute */
1416			break;
1417		}
1418		break;
1419	case 1:
1420		switch (queue_id) {
1421		case 0:
1422			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1423			break;
1424		case 1:
1425			/* XXX compute */
1426			break;
1427		case 2:
1428			/* XXX compute */
1429			break;
1430		}
1431		break;
1432	}
1433	return 0;
1434}
1435
1436static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1437					      struct amdgpu_irq_src *source,
1438					      struct amdgpu_iv_entry *entry)
1439{
1440	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1441	schedule_work(&adev->reset_work);
1442	return 0;
1443}
1444
1445static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1446		struct amdgpu_device *adev,
1447		bool enable)
1448{
1449	uint32_t temp, data;
1450	int i;
1451
1452	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1453		for (i = 0; i < adev->sdma.num_instances; i++) {
1454			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1455			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463			if (data != temp)
1464				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1465		}
1466	} else {
1467		for (i = 0; i < adev->sdma.num_instances; i++) {
1468			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1477
1478			if (data != temp)
1479				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1480		}
1481	}
1482}
1483
1484static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1485		struct amdgpu_device *adev,
1486		bool enable)
1487{
1488	uint32_t temp, data;
1489	int i;
1490
1491	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1492		for (i = 0; i < adev->sdma.num_instances; i++) {
1493			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1494			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1495
1496			if (temp != data)
1497				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1498		}
1499	} else {
1500		for (i = 0; i < adev->sdma.num_instances; i++) {
1501			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1502			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1503
1504			if (temp != data)
1505				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1506		}
1507	}
1508}
1509
1510static int sdma_v3_0_set_clockgating_state(void *handle,
1511					  enum amd_clockgating_state state)
1512{
1513	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1514
 
 
 
1515	switch (adev->asic_type) {
1516	case CHIP_FIJI:
1517	case CHIP_CARRIZO:
1518	case CHIP_STONEY:
1519		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1520				state == AMD_CG_STATE_GATE ? true : false);
1521		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1522				state == AMD_CG_STATE_GATE ? true : false);
1523		break;
1524	default:
1525		break;
1526	}
1527	return 0;
1528}
1529
1530static int sdma_v3_0_set_powergating_state(void *handle,
1531					  enum amd_powergating_state state)
1532{
1533	return 0;
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1537	.name = "sdma_v3_0",
1538	.early_init = sdma_v3_0_early_init,
1539	.late_init = NULL,
1540	.sw_init = sdma_v3_0_sw_init,
1541	.sw_fini = sdma_v3_0_sw_fini,
1542	.hw_init = sdma_v3_0_hw_init,
1543	.hw_fini = sdma_v3_0_hw_fini,
1544	.suspend = sdma_v3_0_suspend,
1545	.resume = sdma_v3_0_resume,
1546	.is_idle = sdma_v3_0_is_idle,
1547	.wait_for_idle = sdma_v3_0_wait_for_idle,
1548	.check_soft_reset = sdma_v3_0_check_soft_reset,
1549	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1550	.post_soft_reset = sdma_v3_0_post_soft_reset,
1551	.soft_reset = sdma_v3_0_soft_reset,
1552	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1553	.set_powergating_state = sdma_v3_0_set_powergating_state,
 
1554};
1555
1556static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1557	.type = AMDGPU_RING_TYPE_SDMA,
1558	.align_mask = 0xf,
1559	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
 
1560	.get_rptr = sdma_v3_0_ring_get_rptr,
1561	.get_wptr = sdma_v3_0_ring_get_wptr,
1562	.set_wptr = sdma_v3_0_ring_set_wptr,
1563	.emit_frame_size =
1564		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1565		3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1566		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1567		12 + /* sdma_v3_0_ring_emit_vm_flush */
1568		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1569	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1570	.emit_ib = sdma_v3_0_ring_emit_ib,
1571	.emit_fence = sdma_v3_0_ring_emit_fence,
1572	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1573	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1574	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1575	.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1576	.test_ring = sdma_v3_0_ring_test_ring,
1577	.test_ib = sdma_v3_0_ring_test_ib,
1578	.insert_nop = sdma_v3_0_ring_insert_nop,
1579	.pad_ib = sdma_v3_0_ring_pad_ib,
 
1580};
1581
1582static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1583{
1584	int i;
1585
1586	for (i = 0; i < adev->sdma.num_instances; i++)
1587		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1588}
1589
1590static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1591	.set = sdma_v3_0_set_trap_irq_state,
1592	.process = sdma_v3_0_process_trap_irq,
1593};
1594
1595static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1596	.process = sdma_v3_0_process_illegal_inst_irq,
1597};
1598
1599static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1600{
1601	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1602	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1603	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1604}
1605
1606/**
1607 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1608 *
1609 * @ring: amdgpu_ring structure holding ring information
1610 * @src_offset: src GPU address
1611 * @dst_offset: dst GPU address
1612 * @byte_count: number of bytes to xfer
1613 *
1614 * Copy GPU buffers using the DMA engine (VI).
1615 * Used by the amdgpu ttm implementation to move pages if
1616 * registered as the asic copy callback.
1617 */
1618static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1619				       uint64_t src_offset,
1620				       uint64_t dst_offset,
1621				       uint32_t byte_count)
1622{
1623	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1624		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1625	ib->ptr[ib->length_dw++] = byte_count;
1626	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1627	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1628	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1629	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1630	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1631}
1632
1633/**
1634 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1635 *
1636 * @ring: amdgpu_ring structure holding ring information
1637 * @src_data: value to write to buffer
1638 * @dst_offset: dst GPU address
1639 * @byte_count: number of bytes to xfer
1640 *
1641 * Fill GPU buffers using the DMA engine (VI).
1642 */
1643static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1644				       uint32_t src_data,
1645				       uint64_t dst_offset,
1646				       uint32_t byte_count)
1647{
1648	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1649	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1650	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1651	ib->ptr[ib->length_dw++] = src_data;
1652	ib->ptr[ib->length_dw++] = byte_count;
1653}
1654
1655static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1656	.copy_max_bytes = 0x1fffff,
1657	.copy_num_dw = 7,
1658	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1659
1660	.fill_max_bytes = 0x1fffff,
1661	.fill_num_dw = 5,
1662	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1663};
1664
1665static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1666{
1667	if (adev->mman.buffer_funcs == NULL) {
1668		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1669		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1670	}
1671}
1672
1673static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
 
1674	.copy_pte = sdma_v3_0_vm_copy_pte,
 
1675	.write_pte = sdma_v3_0_vm_write_pte,
1676	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1677};
1678
1679static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1680{
1681	unsigned i;
1682
1683	if (adev->vm_manager.vm_pte_funcs == NULL) {
1684		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1685		for (i = 0; i < adev->sdma.num_instances; i++)
1686			adev->vm_manager.vm_pte_rings[i] =
1687				&adev->sdma.instance[i].ring;
1688
1689		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1690	}
1691}
1692
1693const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1694{
1695	.type = AMD_IP_BLOCK_TYPE_SDMA,
1696	.major = 3,
1697	.minor = 0,
1698	.rev = 0,
1699	.funcs = &sdma_v3_0_ip_funcs,
1700};
1701
1702const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1703{
1704	.type = AMD_IP_BLOCK_TYPE_SDMA,
1705	.major = 3,
1706	.minor = 1,
1707	.rev = 0,
1708	.funcs = &sdma_v3_0_ip_funcs,
1709};