Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
 
 
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 13#include <linux/of_device.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16
 17/*
 18 * Managed DMA API
 19 */
 20struct dma_devres {
 21	size_t		size;
 22	void		*vaddr;
 23	dma_addr_t	dma_handle;
 24	unsigned long	attrs;
 25};
 26
 27static void dmam_release(struct device *dev, void *res)
 
 
 
 
 
 
 
 28{
 29	struct dma_devres *this = res;
 30
 31	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 32			this->attrs);
 33}
 34
 35static int dmam_match(struct device *dev, void *res, void *match_data)
 36{
 37	struct dma_devres *this = res, *match = match_data;
 38
 39	if (this->vaddr == match->vaddr) {
 40		WARN_ON(this->size != match->size ||
 41			this->dma_handle != match->dma_handle);
 42		return 1;
 43	}
 44	return 0;
 45}
 46
 47/**
 48 * dmam_alloc_coherent - Managed dma_alloc_coherent()
 49 * @dev: Device to allocate coherent memory for
 50 * @size: Size of allocation
 51 * @dma_handle: Out argument for allocated DMA handle
 52 * @gfp: Allocation flags
 53 *
 54 * Managed dma_alloc_coherent().  Memory allocated using this function
 55 * will be automatically released on driver detach.
 56 *
 57 * RETURNS:
 58 * Pointer to allocated memory on success, NULL on failure.
 59 */
 60void *dmam_alloc_coherent(struct device *dev, size_t size,
 61			   dma_addr_t *dma_handle, gfp_t gfp)
 62{
 63	struct dma_devres *dr;
 64	void *vaddr;
 65
 66	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 67	if (!dr)
 68		return NULL;
 69
 70	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
 71	if (!vaddr) {
 72		devres_free(dr);
 73		return NULL;
 74	}
 75
 76	dr->vaddr = vaddr;
 77	dr->dma_handle = *dma_handle;
 78	dr->size = size;
 79
 80	devres_add(dev, dr);
 81
 82	return vaddr;
 83}
 84EXPORT_SYMBOL(dmam_alloc_coherent);
 85
 86/**
 87 * dmam_free_coherent - Managed dma_free_coherent()
 88 * @dev: Device to free coherent memory for
 89 * @size: Size of allocation
 90 * @vaddr: Virtual address of the memory to free
 91 * @dma_handle: DMA handle of the memory to free
 92 *
 93 * Managed dma_free_coherent().
 94 */
 95void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 96			dma_addr_t dma_handle)
 97{
 98	struct dma_devres match_data = { size, vaddr, dma_handle };
 99
100	dma_free_coherent(dev, size, vaddr, dma_handle);
101	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 
102}
103EXPORT_SYMBOL(dmam_free_coherent);
104
105/**
106 * dmam_alloc_attrs - Managed dma_alloc_attrs()
107 * @dev: Device to allocate non_coherent memory for
108 * @size: Size of allocation
109 * @dma_handle: Out argument for allocated DMA handle
110 * @gfp: Allocation flags
111 * @attrs: Flags in the DMA_ATTR_* namespace.
112 *
113 * Managed dma_alloc_attrs().  Memory allocated using this function will be
114 * automatically released on driver detach.
115 *
116 * RETURNS:
117 * Pointer to allocated memory on success, NULL on failure.
118 */
119void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
120		gfp_t gfp, unsigned long attrs)
121{
122	struct dma_devres *dr;
123	void *vaddr;
124
125	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
126	if (!dr)
127		return NULL;
128
129	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
130	if (!vaddr) {
131		devres_free(dr);
132		return NULL;
133	}
134
135	dr->vaddr = vaddr;
136	dr->dma_handle = *dma_handle;
137	dr->size = size;
138	dr->attrs = attrs;
139
140	devres_add(dev, dr);
141
142	return vaddr;
143}
144EXPORT_SYMBOL(dmam_alloc_attrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
146#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
147
148static void dmam_coherent_decl_release(struct device *dev, void *res)
149{
150	dma_release_declared_memory(dev);
151}
152
153/**
154 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
155 * @dev: Device to declare coherent memory for
156 * @phys_addr: Physical address of coherent memory to be declared
157 * @device_addr: Device address of coherent memory to be declared
158 * @size: Size of coherent memory to be declared
159 * @flags: Flags
160 *
161 * Managed dma_declare_coherent_memory().
162 *
163 * RETURNS:
164 * 0 on success, -errno on failure.
165 */
166int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
167				 dma_addr_t device_addr, size_t size, int flags)
168{
169	void *res;
170	int rc;
171
172	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
173	if (!res)
174		return -ENOMEM;
175
176	rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
177					 flags);
178	if (!rc)
179		devres_add(dev, res);
180	else
 
181		devres_free(res);
 
 
182
183	return rc;
184}
185EXPORT_SYMBOL(dmam_declare_coherent_memory);
186
187/**
188 * dmam_release_declared_memory - Managed dma_release_declared_memory().
189 * @dev: Device to release declared coherent memory for
190 *
191 * Managed dmam_release_declared_memory().
192 */
193void dmam_release_declared_memory(struct device *dev)
194{
195	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
196}
197EXPORT_SYMBOL(dmam_release_declared_memory);
198
199#endif
200
201/*
202 * Create scatter-list for the already allocated DMA buffer.
203 */
204int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
205		 void *cpu_addr, dma_addr_t handle, size_t size)
206{
207	struct page *page = virt_to_page(cpu_addr);
208	int ret;
209
210	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
211	if (unlikely(ret))
212		return ret;
213
214	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
215	return 0;
216}
217EXPORT_SYMBOL(dma_common_get_sgtable);
218
219/*
220 * Create userspace mapping for the DMA-coherent memory.
221 */
222int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
223		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
224{
225	int ret = -ENXIO;
226#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
227	unsigned long user_count = vma_pages(vma);
228	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 
229	unsigned long off = vma->vm_pgoff;
230
231	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
232
233	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
234		return ret;
235
236	if (off < count && user_count <= (count - off))
237		ret = remap_pfn_range(vma, vma->vm_start,
238				      page_to_pfn(virt_to_page(cpu_addr)) + off,
239				      user_count << PAGE_SHIFT,
240				      vma->vm_page_prot);
241#endif	/* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
 
242
243	return ret;
244}
245EXPORT_SYMBOL(dma_common_mmap);
246
247#ifdef CONFIG_MMU
248static struct vm_struct *__dma_common_pages_remap(struct page **pages,
249			size_t size, unsigned long vm_flags, pgprot_t prot,
250			const void *caller)
251{
252	struct vm_struct *area;
253
254	area = get_vm_area_caller(size, vm_flags, caller);
255	if (!area)
256		return NULL;
257
258	if (map_vm_area(area, prot, pages)) {
259		vunmap(area->addr);
260		return NULL;
261	}
262
263	return area;
264}
265
266/*
267 * remaps an array of PAGE_SIZE pages into another vm_area
268 * Cannot be used in non-sleeping contexts
269 */
270void *dma_common_pages_remap(struct page **pages, size_t size,
271			unsigned long vm_flags, pgprot_t prot,
272			const void *caller)
273{
274	struct vm_struct *area;
275
276	area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
277	if (!area)
278		return NULL;
279
280	area->pages = pages;
281
 
 
 
 
 
282	return area->addr;
283}
284
285/*
286 * remaps an allocated contiguous region into another vm_area.
287 * Cannot be used in non-sleeping contexts
288 */
289
290void *dma_common_contiguous_remap(struct page *page, size_t size,
291			unsigned long vm_flags,
292			pgprot_t prot, const void *caller)
293{
294	int i;
295	struct page **pages;
296	struct vm_struct *area;
 
297
298	pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
299	if (!pages)
300		return NULL;
301
302	for (i = 0; i < (size >> PAGE_SHIFT); i++)
303		pages[i] = nth_page(page, i);
304
305	area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
306
307	kfree(pages);
308
309	if (!area)
310		return NULL;
311	return area->addr;
312}
313
314/*
315 * unmaps a range previously mapped by dma_common_*_remap
316 */
317void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
318{
319	struct vm_struct *area = find_vm_area(cpu_addr);
320
321	if (!area || (area->flags & vm_flags) != vm_flags) {
322		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
323		return;
324	}
325
326	unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
327	vunmap(cpu_addr);
328}
329#endif
330
331/*
332 * Common configuration to enable DMA API use for a device
333 */
334#include <linux/pci.h>
335
336int dma_configure(struct device *dev)
337{
338	struct device *bridge = NULL, *dma_dev = dev;
339	enum dev_dma_attr attr;
340	int ret = 0;
341
342	if (dev_is_pci(dev)) {
343		bridge = pci_get_host_bridge_device(to_pci_dev(dev));
344		dma_dev = bridge;
345		if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
346		    dma_dev->parent->of_node)
347			dma_dev = dma_dev->parent;
348	}
349
350	if (dma_dev->of_node) {
351		ret = of_dma_configure(dev, dma_dev->of_node);
352	} else if (has_acpi_companion(dma_dev)) {
353		attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
354		if (attr != DEV_DMA_NOT_SUPPORTED)
355			ret = acpi_dma_configure(dev, attr);
356	}
357
358	if (bridge)
359		pci_put_host_bridge_device(bridge);
360
361	return ret;
362}
363
364void dma_deconfigure(struct device *dev)
365{
366	of_dma_deconfigure(dev);
367	acpi_dma_deconfigure(dev);
368}
v4.10.11
 
  1/*
  2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
  3 *
  4 * Copyright (c) 2006  SUSE Linux Products GmbH
  5 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  6 *
  7 * This file is released under the GPLv2.
  8 */
  9
 
 10#include <linux/dma-mapping.h>
 11#include <linux/export.h>
 12#include <linux/gfp.h>
 
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15
 16/*
 17 * Managed DMA API
 18 */
 19struct dma_devres {
 20	size_t		size;
 21	void		*vaddr;
 22	dma_addr_t	dma_handle;
 
 23};
 24
 25static void dmam_coherent_release(struct device *dev, void *res)
 26{
 27	struct dma_devres *this = res;
 28
 29	dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
 30}
 31
 32static void dmam_noncoherent_release(struct device *dev, void *res)
 33{
 34	struct dma_devres *this = res;
 35
 36	dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
 
 37}
 38
 39static int dmam_match(struct device *dev, void *res, void *match_data)
 40{
 41	struct dma_devres *this = res, *match = match_data;
 42
 43	if (this->vaddr == match->vaddr) {
 44		WARN_ON(this->size != match->size ||
 45			this->dma_handle != match->dma_handle);
 46		return 1;
 47	}
 48	return 0;
 49}
 50
 51/**
 52 * dmam_alloc_coherent - Managed dma_alloc_coherent()
 53 * @dev: Device to allocate coherent memory for
 54 * @size: Size of allocation
 55 * @dma_handle: Out argument for allocated DMA handle
 56 * @gfp: Allocation flags
 57 *
 58 * Managed dma_alloc_coherent().  Memory allocated using this function
 59 * will be automatically released on driver detach.
 60 *
 61 * RETURNS:
 62 * Pointer to allocated memory on success, NULL on failure.
 63 */
 64void *dmam_alloc_coherent(struct device *dev, size_t size,
 65			   dma_addr_t *dma_handle, gfp_t gfp)
 66{
 67	struct dma_devres *dr;
 68	void *vaddr;
 69
 70	dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
 71	if (!dr)
 72		return NULL;
 73
 74	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
 75	if (!vaddr) {
 76		devres_free(dr);
 77		return NULL;
 78	}
 79
 80	dr->vaddr = vaddr;
 81	dr->dma_handle = *dma_handle;
 82	dr->size = size;
 83
 84	devres_add(dev, dr);
 85
 86	return vaddr;
 87}
 88EXPORT_SYMBOL(dmam_alloc_coherent);
 89
 90/**
 91 * dmam_free_coherent - Managed dma_free_coherent()
 92 * @dev: Device to free coherent memory for
 93 * @size: Size of allocation
 94 * @vaddr: Virtual address of the memory to free
 95 * @dma_handle: DMA handle of the memory to free
 96 *
 97 * Managed dma_free_coherent().
 98 */
 99void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
100			dma_addr_t dma_handle)
101{
102	struct dma_devres match_data = { size, vaddr, dma_handle };
103
104	dma_free_coherent(dev, size, vaddr, dma_handle);
105	WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
106			       &match_data));
107}
108EXPORT_SYMBOL(dmam_free_coherent);
109
110/**
111 * dmam_alloc_non_coherent - Managed dma_alloc_noncoherent()
112 * @dev: Device to allocate non_coherent memory for
113 * @size: Size of allocation
114 * @dma_handle: Out argument for allocated DMA handle
115 * @gfp: Allocation flags
 
116 *
117 * Managed dma_alloc_noncoherent().  Memory allocated using this
118 * function will be automatically released on driver detach.
119 *
120 * RETURNS:
121 * Pointer to allocated memory on success, NULL on failure.
122 */
123void *dmam_alloc_noncoherent(struct device *dev, size_t size,
124			     dma_addr_t *dma_handle, gfp_t gfp)
125{
126	struct dma_devres *dr;
127	void *vaddr;
128
129	dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
130	if (!dr)
131		return NULL;
132
133	vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
134	if (!vaddr) {
135		devres_free(dr);
136		return NULL;
137	}
138
139	dr->vaddr = vaddr;
140	dr->dma_handle = *dma_handle;
141	dr->size = size;
 
142
143	devres_add(dev, dr);
144
145	return vaddr;
146}
147EXPORT_SYMBOL(dmam_alloc_noncoherent);
148
149/**
150 * dmam_free_coherent - Managed dma_free_noncoherent()
151 * @dev: Device to free noncoherent memory for
152 * @size: Size of allocation
153 * @vaddr: Virtual address of the memory to free
154 * @dma_handle: DMA handle of the memory to free
155 *
156 * Managed dma_free_noncoherent().
157 */
158void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
159			   dma_addr_t dma_handle)
160{
161	struct dma_devres match_data = { size, vaddr, dma_handle };
162
163	dma_free_noncoherent(dev, size, vaddr, dma_handle);
164	WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
165				&match_data));
166}
167EXPORT_SYMBOL(dmam_free_noncoherent);
168
169#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
170
171static void dmam_coherent_decl_release(struct device *dev, void *res)
172{
173	dma_release_declared_memory(dev);
174}
175
176/**
177 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
178 * @dev: Device to declare coherent memory for
179 * @phys_addr: Physical address of coherent memory to be declared
180 * @device_addr: Device address of coherent memory to be declared
181 * @size: Size of coherent memory to be declared
182 * @flags: Flags
183 *
184 * Managed dma_declare_coherent_memory().
185 *
186 * RETURNS:
187 * 0 on success, -errno on failure.
188 */
189int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
190				 dma_addr_t device_addr, size_t size, int flags)
191{
192	void *res;
193	int rc;
194
195	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
196	if (!res)
197		return -ENOMEM;
198
199	rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
200					 flags);
201	if (rc) {
202		devres_add(dev, res);
203		rc = 0;
204	} else {
205		devres_free(res);
206		rc = -ENOMEM;
207	}
208
209	return rc;
210}
211EXPORT_SYMBOL(dmam_declare_coherent_memory);
212
213/**
214 * dmam_release_declared_memory - Managed dma_release_declared_memory().
215 * @dev: Device to release declared coherent memory for
216 *
217 * Managed dmam_release_declared_memory().
218 */
219void dmam_release_declared_memory(struct device *dev)
220{
221	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
222}
223EXPORT_SYMBOL(dmam_release_declared_memory);
224
225#endif
226
227/*
228 * Create scatter-list for the already allocated DMA buffer.
229 */
230int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
231		 void *cpu_addr, dma_addr_t handle, size_t size)
232{
233	struct page *page = virt_to_page(cpu_addr);
234	int ret;
235
236	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
237	if (unlikely(ret))
238		return ret;
239
240	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
241	return 0;
242}
243EXPORT_SYMBOL(dma_common_get_sgtable);
244
245/*
246 * Create userspace mapping for the DMA-coherent memory.
247 */
248int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
249		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
250{
251	int ret = -ENXIO;
252#if defined(CONFIG_MMU) && !defined(CONFIG_ARCH_NO_COHERENT_DMA_MMAP)
253	unsigned long user_count = vma_pages(vma);
254	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
255	unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
256	unsigned long off = vma->vm_pgoff;
257
258	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
259
260	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
261		return ret;
262
263	if (off < count && user_count <= (count - off)) {
264		ret = remap_pfn_range(vma, vma->vm_start,
265				      pfn + off,
266				      user_count << PAGE_SHIFT,
267				      vma->vm_page_prot);
268	}
269#endif	/* CONFIG_MMU && !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
270
271	return ret;
272}
273EXPORT_SYMBOL(dma_common_mmap);
274
275#ifdef CONFIG_MMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276/*
277 * remaps an array of PAGE_SIZE pages into another vm_area
278 * Cannot be used in non-sleeping contexts
279 */
280void *dma_common_pages_remap(struct page **pages, size_t size,
281			unsigned long vm_flags, pgprot_t prot,
282			const void *caller)
283{
284	struct vm_struct *area;
285
286	area = get_vm_area_caller(size, vm_flags, caller);
287	if (!area)
288		return NULL;
289
290	area->pages = pages;
291
292	if (map_vm_area(area, prot, pages)) {
293		vunmap(area->addr);
294		return NULL;
295	}
296
297	return area->addr;
298}
299
300/*
301 * remaps an allocated contiguous region into another vm_area.
302 * Cannot be used in non-sleeping contexts
303 */
304
305void *dma_common_contiguous_remap(struct page *page, size_t size,
306			unsigned long vm_flags,
307			pgprot_t prot, const void *caller)
308{
309	int i;
310	struct page **pages;
311	void *ptr;
312	unsigned long pfn;
313
314	pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
315	if (!pages)
316		return NULL;
317
318	for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++)
319		pages[i] = pfn_to_page(pfn + i);
320
321	ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller);
322
323	kfree(pages);
324
325	return ptr;
 
 
326}
327
328/*
329 * unmaps a range previously mapped by dma_common_*_remap
330 */
331void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
332{
333	struct vm_struct *area = find_vm_area(cpu_addr);
334
335	if (!area || (area->flags & vm_flags) != vm_flags) {
336		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
337		return;
338	}
339
340	unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
341	vunmap(cpu_addr);
342}
343#endif