Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 * Copyright 2003 PathScale, Inc.
  6 * Licensed under the GPL
  7 */
  8
  9#include <linux/stddef.h>
 10#include <linux/err.h>
 11#include <linux/hardirq.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/personality.h>
 15#include <linux/proc_fs.h>
 16#include <linux/ptrace.h>
 17#include <linux/random.h>
 18#include <linux/slab.h>
 19#include <linux/sched.h>
 20#include <linux/sched/debug.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/seq_file.h>
 24#include <linux/tick.h>
 25#include <linux/threads.h>
 26#include <linux/tracehook.h>
 27#include <asm/current.h>
 28#include <asm/pgtable.h>
 29#include <asm/mmu_context.h>
 30#include <linux/uaccess.h>
 31#include <as-layout.h>
 32#include <kern_util.h>
 33#include <os.h>
 34#include <skas.h>
 35#include <timer-internal.h>
 36
 37/*
 38 * This is a per-cpu array.  A processor only modifies its entry and it only
 39 * cares about its entry, so it's OK if another processor is modifying its
 40 * entry.
 41 */
 42struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
 43
 44static inline int external_pid(void)
 45{
 46	/* FIXME: Need to look up userspace_pid by cpu */
 47	return userspace_pid[0];
 48}
 49
 50int pid_to_processor_id(int pid)
 51{
 52	int i;
 53
 54	for (i = 0; i < ncpus; i++) {
 55		if (cpu_tasks[i].pid == pid)
 56			return i;
 57	}
 58	return -1;
 59}
 60
 61void free_stack(unsigned long stack, int order)
 62{
 63	free_pages(stack, order);
 64}
 65
 66unsigned long alloc_stack(int order, int atomic)
 67{
 68	unsigned long page;
 69	gfp_t flags = GFP_KERNEL;
 70
 71	if (atomic)
 72		flags = GFP_ATOMIC;
 73	page = __get_free_pages(flags, order);
 74
 75	return page;
 76}
 77
 78static inline void set_current(struct task_struct *task)
 79{
 80	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
 81		{ external_pid(), task });
 82}
 83
 84extern void arch_switch_to(struct task_struct *to);
 85
 86void *__switch_to(struct task_struct *from, struct task_struct *to)
 87{
 88	to->thread.prev_sched = from;
 89	set_current(to);
 90
 91	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
 92	arch_switch_to(current);
 93
 94	return current->thread.prev_sched;
 95}
 96
 97void interrupt_end(void)
 98{
 99	struct pt_regs *regs = &current->thread.regs;
100
101	if (need_resched())
102		schedule();
103	if (test_thread_flag(TIF_SIGPENDING))
104		do_signal(regs);
105	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
106		tracehook_notify_resume(regs);
107}
108
109int get_current_pid(void)
110{
111	return task_pid_nr(current);
112}
113
114/*
115 * This is called magically, by its address being stuffed in a jmp_buf
116 * and being longjmp-d to.
117 */
118void new_thread_handler(void)
119{
120	int (*fn)(void *), n;
121	void *arg;
122
123	if (current->thread.prev_sched != NULL)
124		schedule_tail(current->thread.prev_sched);
125	current->thread.prev_sched = NULL;
126
127	fn = current->thread.request.u.thread.proc;
128	arg = current->thread.request.u.thread.arg;
129
130	/*
131	 * callback returns only if the kernel thread execs a process
132	 */
133	n = fn(arg);
134	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
135}
136
137/* Called magically, see new_thread_handler above */
138void fork_handler(void)
139{
140	force_flush_all();
141
142	schedule_tail(current->thread.prev_sched);
143
144	/*
145	 * XXX: if interrupt_end() calls schedule, this call to
146	 * arch_switch_to isn't needed. We could want to apply this to
147	 * improve performance. -bb
148	 */
149	arch_switch_to(current);
150
151	current->thread.prev_sched = NULL;
152
153	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
154}
155
156int copy_thread(unsigned long clone_flags, unsigned long sp,
157		unsigned long arg, struct task_struct * p)
158{
159	void (*handler)(void);
160	int kthread = current->flags & PF_KTHREAD;
161	int ret = 0;
162
163	p->thread = (struct thread_struct) INIT_THREAD;
164
165	if (!kthread) {
166	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
167		       sizeof(p->thread.regs.regs));
168		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169		if (sp != 0)
170			REGS_SP(p->thread.regs.regs.gp) = sp;
171
172		handler = fork_handler;
173
174		arch_copy_thread(&current->thread.arch, &p->thread.arch);
175	} else {
176		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177		p->thread.request.u.thread.proc = (int (*)(void *))sp;
178		p->thread.request.u.thread.arg = (void *)arg;
179		handler = new_thread_handler;
180	}
181
182	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183
184	if (!kthread) {
185		clear_flushed_tls(p);
186
187		/*
188		 * Set a new TLS for the child thread?
189		 */
190		if (clone_flags & CLONE_SETTLS)
191			ret = arch_copy_tls(p);
192	}
193
194	return ret;
195}
196
197void initial_thread_cb(void (*proc)(void *), void *arg)
198{
199	int save_kmalloc_ok = kmalloc_ok;
200
201	kmalloc_ok = 0;
202	initial_thread_cb_skas(proc, arg);
203	kmalloc_ok = save_kmalloc_ok;
204}
205
206void arch_cpu_idle(void)
207{
208	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
209	os_idle_sleep(UM_NSEC_PER_SEC);
210	local_irq_enable();
211}
212
213int __cant_sleep(void) {
214	return in_atomic() || irqs_disabled() || in_interrupt();
215	/* Is in_interrupt() really needed? */
216}
217
218int user_context(unsigned long sp)
219{
220	unsigned long stack;
221
222	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
223	return stack != (unsigned long) current_thread_info();
224}
225
226extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
227
228void do_uml_exitcalls(void)
229{
230	exitcall_t *call;
231
232	call = &__uml_exitcall_end;
233	while (--call >= &__uml_exitcall_begin)
234		(*call)();
235}
236
237char *uml_strdup(const char *string)
238{
239	return kstrdup(string, GFP_KERNEL);
240}
241EXPORT_SYMBOL(uml_strdup);
242
243int copy_to_user_proc(void __user *to, void *from, int size)
244{
245	return copy_to_user(to, from, size);
246}
247
248int copy_from_user_proc(void *to, void __user *from, int size)
249{
250	return copy_from_user(to, from, size);
251}
252
253int clear_user_proc(void __user *buf, int size)
254{
255	return clear_user(buf, size);
 
 
 
 
 
256}
257
258int cpu(void)
259{
260	return current_thread_info()->cpu;
261}
262
263static atomic_t using_sysemu = ATOMIC_INIT(0);
264int sysemu_supported;
265
266void set_using_sysemu(int value)
267{
268	if (value > sysemu_supported)
269		return;
270	atomic_set(&using_sysemu, value);
271}
272
273int get_using_sysemu(void)
274{
275	return atomic_read(&using_sysemu);
276}
277
278static int sysemu_proc_show(struct seq_file *m, void *v)
279{
280	seq_printf(m, "%d\n", get_using_sysemu());
281	return 0;
282}
283
284static int sysemu_proc_open(struct inode *inode, struct file *file)
285{
286	return single_open(file, sysemu_proc_show, NULL);
287}
288
289static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
290				 size_t count, loff_t *pos)
291{
292	char tmp[2];
293
294	if (copy_from_user(tmp, buf, 1))
295		return -EFAULT;
296
297	if (tmp[0] >= '0' && tmp[0] <= '2')
298		set_using_sysemu(tmp[0] - '0');
299	/* We use the first char, but pretend to write everything */
300	return count;
301}
302
303static const struct file_operations sysemu_proc_fops = {
304	.owner		= THIS_MODULE,
305	.open		= sysemu_proc_open,
306	.read		= seq_read,
307	.llseek		= seq_lseek,
308	.release	= single_release,
309	.write		= sysemu_proc_write,
310};
311
312int __init make_proc_sysemu(void)
313{
314	struct proc_dir_entry *ent;
315	if (!sysemu_supported)
316		return 0;
317
318	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
319
320	if (ent == NULL)
321	{
322		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
323		return 0;
324	}
325
326	return 0;
327}
328
329late_initcall(make_proc_sysemu);
330
331int singlestepping(void * t)
332{
333	struct task_struct *task = t ? t : current;
334
335	if (!(task->ptrace & PT_DTRACE))
336		return 0;
337
338	if (task->thread.singlestep_syscall)
339		return 1;
340
341	return 2;
342}
343
344/*
345 * Only x86 and x86_64 have an arch_align_stack().
346 * All other arches have "#define arch_align_stack(x) (x)"
347 * in their asm/exec.h
348 * As this is included in UML from asm-um/system-generic.h,
349 * we can use it to behave as the subarch does.
350 */
351#ifndef arch_align_stack
352unsigned long arch_align_stack(unsigned long sp)
353{
354	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
355		sp -= get_random_int() % 8192;
356	return sp & ~0xf;
357}
358#endif
359
360unsigned long get_wchan(struct task_struct *p)
361{
362	unsigned long stack_page, sp, ip;
363	bool seen_sched = 0;
364
365	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
366		return 0;
367
368	stack_page = (unsigned long) task_stack_page(p);
369	/* Bail if the process has no kernel stack for some reason */
370	if (stack_page == 0)
371		return 0;
372
373	sp = p->thread.switch_buf->JB_SP;
374	/*
375	 * Bail if the stack pointer is below the bottom of the kernel
376	 * stack for some reason
377	 */
378	if (sp < stack_page)
379		return 0;
380
381	while (sp < stack_page + THREAD_SIZE) {
382		ip = *((unsigned long *) sp);
383		if (in_sched_functions(ip))
384			/* Ignore everything until we're above the scheduler */
385			seen_sched = 1;
386		else if (kernel_text_address(ip) && seen_sched)
387			return ip;
388
389		sp += sizeof(unsigned long);
390	}
391
392	return 0;
393}
394
395int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
396{
397	int cpu = current_thread_info()->cpu;
398
399	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
400}
401
v4.10.11
  1/*
  2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 * Copyright 2003 PathScale, Inc.
  6 * Licensed under the GPL
  7 */
  8
  9#include <linux/stddef.h>
 10#include <linux/err.h>
 11#include <linux/hardirq.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/personality.h>
 15#include <linux/proc_fs.h>
 16#include <linux/ptrace.h>
 17#include <linux/random.h>
 18#include <linux/slab.h>
 19#include <linux/sched.h>
 
 
 
 20#include <linux/seq_file.h>
 21#include <linux/tick.h>
 22#include <linux/threads.h>
 23#include <linux/tracehook.h>
 24#include <asm/current.h>
 25#include <asm/pgtable.h>
 26#include <asm/mmu_context.h>
 27#include <linux/uaccess.h>
 28#include <as-layout.h>
 29#include <kern_util.h>
 30#include <os.h>
 31#include <skas.h>
 32#include <timer-internal.h>
 33
 34/*
 35 * This is a per-cpu array.  A processor only modifies its entry and it only
 36 * cares about its entry, so it's OK if another processor is modifying its
 37 * entry.
 38 */
 39struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
 40
 41static inline int external_pid(void)
 42{
 43	/* FIXME: Need to look up userspace_pid by cpu */
 44	return userspace_pid[0];
 45}
 46
 47int pid_to_processor_id(int pid)
 48{
 49	int i;
 50
 51	for (i = 0; i < ncpus; i++) {
 52		if (cpu_tasks[i].pid == pid)
 53			return i;
 54	}
 55	return -1;
 56}
 57
 58void free_stack(unsigned long stack, int order)
 59{
 60	free_pages(stack, order);
 61}
 62
 63unsigned long alloc_stack(int order, int atomic)
 64{
 65	unsigned long page;
 66	gfp_t flags = GFP_KERNEL;
 67
 68	if (atomic)
 69		flags = GFP_ATOMIC;
 70	page = __get_free_pages(flags, order);
 71
 72	return page;
 73}
 74
 75static inline void set_current(struct task_struct *task)
 76{
 77	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
 78		{ external_pid(), task });
 79}
 80
 81extern void arch_switch_to(struct task_struct *to);
 82
 83void *__switch_to(struct task_struct *from, struct task_struct *to)
 84{
 85	to->thread.prev_sched = from;
 86	set_current(to);
 87
 88	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
 89	arch_switch_to(current);
 90
 91	return current->thread.prev_sched;
 92}
 93
 94void interrupt_end(void)
 95{
 96	struct pt_regs *regs = &current->thread.regs;
 97
 98	if (need_resched())
 99		schedule();
100	if (test_thread_flag(TIF_SIGPENDING))
101		do_signal(regs);
102	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
103		tracehook_notify_resume(regs);
104}
105
106int get_current_pid(void)
107{
108	return task_pid_nr(current);
109}
110
111/*
112 * This is called magically, by its address being stuffed in a jmp_buf
113 * and being longjmp-d to.
114 */
115void new_thread_handler(void)
116{
117	int (*fn)(void *), n;
118	void *arg;
119
120	if (current->thread.prev_sched != NULL)
121		schedule_tail(current->thread.prev_sched);
122	current->thread.prev_sched = NULL;
123
124	fn = current->thread.request.u.thread.proc;
125	arg = current->thread.request.u.thread.arg;
126
127	/*
128	 * callback returns only if the kernel thread execs a process
129	 */
130	n = fn(arg);
131	userspace(&current->thread.regs.regs);
132}
133
134/* Called magically, see new_thread_handler above */
135void fork_handler(void)
136{
137	force_flush_all();
138
139	schedule_tail(current->thread.prev_sched);
140
141	/*
142	 * XXX: if interrupt_end() calls schedule, this call to
143	 * arch_switch_to isn't needed. We could want to apply this to
144	 * improve performance. -bb
145	 */
146	arch_switch_to(current);
147
148	current->thread.prev_sched = NULL;
149
150	userspace(&current->thread.regs.regs);
151}
152
153int copy_thread(unsigned long clone_flags, unsigned long sp,
154		unsigned long arg, struct task_struct * p)
155{
156	void (*handler)(void);
157	int kthread = current->flags & PF_KTHREAD;
158	int ret = 0;
159
160	p->thread = (struct thread_struct) INIT_THREAD;
161
162	if (!kthread) {
163	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
164		       sizeof(p->thread.regs.regs));
165		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
166		if (sp != 0)
167			REGS_SP(p->thread.regs.regs.gp) = sp;
168
169		handler = fork_handler;
170
171		arch_copy_thread(&current->thread.arch, &p->thread.arch);
172	} else {
173		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
174		p->thread.request.u.thread.proc = (int (*)(void *))sp;
175		p->thread.request.u.thread.arg = (void *)arg;
176		handler = new_thread_handler;
177	}
178
179	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
180
181	if (!kthread) {
182		clear_flushed_tls(p);
183
184		/*
185		 * Set a new TLS for the child thread?
186		 */
187		if (clone_flags & CLONE_SETTLS)
188			ret = arch_copy_tls(p);
189	}
190
191	return ret;
192}
193
194void initial_thread_cb(void (*proc)(void *), void *arg)
195{
196	int save_kmalloc_ok = kmalloc_ok;
197
198	kmalloc_ok = 0;
199	initial_thread_cb_skas(proc, arg);
200	kmalloc_ok = save_kmalloc_ok;
201}
202
203void arch_cpu_idle(void)
204{
205	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
206	os_idle_sleep(UM_NSEC_PER_SEC);
207	local_irq_enable();
208}
209
210int __cant_sleep(void) {
211	return in_atomic() || irqs_disabled() || in_interrupt();
212	/* Is in_interrupt() really needed? */
213}
214
215int user_context(unsigned long sp)
216{
217	unsigned long stack;
218
219	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
220	return stack != (unsigned long) current_thread_info();
221}
222
223extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
224
225void do_uml_exitcalls(void)
226{
227	exitcall_t *call;
228
229	call = &__uml_exitcall_end;
230	while (--call >= &__uml_exitcall_begin)
231		(*call)();
232}
233
234char *uml_strdup(const char *string)
235{
236	return kstrdup(string, GFP_KERNEL);
237}
238EXPORT_SYMBOL(uml_strdup);
239
240int copy_to_user_proc(void __user *to, void *from, int size)
241{
242	return copy_to_user(to, from, size);
243}
244
245int copy_from_user_proc(void *to, void __user *from, int size)
246{
247	return copy_from_user(to, from, size);
248}
249
250int clear_user_proc(void __user *buf, int size)
251{
252	return clear_user(buf, size);
253}
254
255int strlen_user_proc(char __user *str)
256{
257	return strlen_user(str);
258}
259
260int cpu(void)
261{
262	return current_thread_info()->cpu;
263}
264
265static atomic_t using_sysemu = ATOMIC_INIT(0);
266int sysemu_supported;
267
268void set_using_sysemu(int value)
269{
270	if (value > sysemu_supported)
271		return;
272	atomic_set(&using_sysemu, value);
273}
274
275int get_using_sysemu(void)
276{
277	return atomic_read(&using_sysemu);
278}
279
280static int sysemu_proc_show(struct seq_file *m, void *v)
281{
282	seq_printf(m, "%d\n", get_using_sysemu());
283	return 0;
284}
285
286static int sysemu_proc_open(struct inode *inode, struct file *file)
287{
288	return single_open(file, sysemu_proc_show, NULL);
289}
290
291static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
292				 size_t count, loff_t *pos)
293{
294	char tmp[2];
295
296	if (copy_from_user(tmp, buf, 1))
297		return -EFAULT;
298
299	if (tmp[0] >= '0' && tmp[0] <= '2')
300		set_using_sysemu(tmp[0] - '0');
301	/* We use the first char, but pretend to write everything */
302	return count;
303}
304
305static const struct file_operations sysemu_proc_fops = {
306	.owner		= THIS_MODULE,
307	.open		= sysemu_proc_open,
308	.read		= seq_read,
309	.llseek		= seq_lseek,
310	.release	= single_release,
311	.write		= sysemu_proc_write,
312};
313
314int __init make_proc_sysemu(void)
315{
316	struct proc_dir_entry *ent;
317	if (!sysemu_supported)
318		return 0;
319
320	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
321
322	if (ent == NULL)
323	{
324		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
325		return 0;
326	}
327
328	return 0;
329}
330
331late_initcall(make_proc_sysemu);
332
333int singlestepping(void * t)
334{
335	struct task_struct *task = t ? t : current;
336
337	if (!(task->ptrace & PT_DTRACE))
338		return 0;
339
340	if (task->thread.singlestep_syscall)
341		return 1;
342
343	return 2;
344}
345
346/*
347 * Only x86 and x86_64 have an arch_align_stack().
348 * All other arches have "#define arch_align_stack(x) (x)"
349 * in their asm/exec.h
350 * As this is included in UML from asm-um/system-generic.h,
351 * we can use it to behave as the subarch does.
352 */
353#ifndef arch_align_stack
354unsigned long arch_align_stack(unsigned long sp)
355{
356	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
357		sp -= get_random_int() % 8192;
358	return sp & ~0xf;
359}
360#endif
361
362unsigned long get_wchan(struct task_struct *p)
363{
364	unsigned long stack_page, sp, ip;
365	bool seen_sched = 0;
366
367	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
368		return 0;
369
370	stack_page = (unsigned long) task_stack_page(p);
371	/* Bail if the process has no kernel stack for some reason */
372	if (stack_page == 0)
373		return 0;
374
375	sp = p->thread.switch_buf->JB_SP;
376	/*
377	 * Bail if the stack pointer is below the bottom of the kernel
378	 * stack for some reason
379	 */
380	if (sp < stack_page)
381		return 0;
382
383	while (sp < stack_page + THREAD_SIZE) {
384		ip = *((unsigned long *) sp);
385		if (in_sched_functions(ip))
386			/* Ignore everything until we're above the scheduler */
387			seen_sched = 1;
388		else if (kernel_text_address(ip) && seen_sched)
389			return ip;
390
391		sp += sizeof(unsigned long);
392	}
393
394	return 0;
395}
396
397int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398{
399	int cpu = current_thread_info()->cpu;
400
401	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402}
403