Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2008 David Daney
7 */
8
9#include <linux/sched.h>
10
11#include <asm/processor.h>
12#include <asm/watch.h>
13
14/*
15 * Install the watch registers for the current thread. A maximum of
16 * four registers are installed although the machine may have more.
17 */
18void mips_install_watch_registers(struct task_struct *t)
19{
20 struct mips3264_watch_reg_state *watches = &t->thread.watch.mips3264;
21 unsigned int watchhi = MIPS_WATCHHI_G | /* Trap all ASIDs */
22 MIPS_WATCHHI_IRW; /* Clear result bits */
23
24 switch (current_cpu_data.watch_reg_use_cnt) {
25 default:
26 BUG();
27 case 4:
28 write_c0_watchlo3(watches->watchlo[3]);
29 write_c0_watchhi3(watchhi | watches->watchhi[3]);
30 case 3:
31 write_c0_watchlo2(watches->watchlo[2]);
32 write_c0_watchhi2(watchhi | watches->watchhi[2]);
33 case 2:
34 write_c0_watchlo1(watches->watchlo[1]);
35 write_c0_watchhi1(watchhi | watches->watchhi[1]);
36 case 1:
37 write_c0_watchlo0(watches->watchlo[0]);
38 write_c0_watchhi0(watchhi | watches->watchhi[0]);
39 }
40}
41
42/*
43 * Read back the watchhi registers so the user space debugger has
44 * access to the I, R, and W bits. A maximum of four registers are
45 * read although the machine may have more.
46 */
47void mips_read_watch_registers(void)
48{
49 struct mips3264_watch_reg_state *watches =
50 ¤t->thread.watch.mips3264;
51 unsigned int watchhi_mask = MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW;
52
53 switch (current_cpu_data.watch_reg_use_cnt) {
54 default:
55 BUG();
56 case 4:
57 watches->watchhi[3] = (read_c0_watchhi3() & watchhi_mask);
58 case 3:
59 watches->watchhi[2] = (read_c0_watchhi2() & watchhi_mask);
60 case 2:
61 watches->watchhi[1] = (read_c0_watchhi1() & watchhi_mask);
62 case 1:
63 watches->watchhi[0] = (read_c0_watchhi0() & watchhi_mask);
64 }
65 if (current_cpu_data.watch_reg_use_cnt == 1 &&
66 (watches->watchhi[0] & MIPS_WATCHHI_IRW) == 0) {
67 /* Pathological case of release 1 architecture that
68 * doesn't set the condition bits. We assume that
69 * since we got here, the watch condition was met and
70 * signal that the conditions requested in watchlo
71 * were met. */
72 watches->watchhi[0] |= (watches->watchlo[0] & MIPS_WATCHHI_IRW);
73 }
74 }
75
76/*
77 * Disable all watch registers. Although only four registers are
78 * installed, all are cleared to eliminate the possibility of endless
79 * looping in the watch handler.
80 */
81void mips_clear_watch_registers(void)
82{
83 switch (current_cpu_data.watch_reg_count) {
84 default:
85 BUG();
86 case 8:
87 write_c0_watchlo7(0);
88 case 7:
89 write_c0_watchlo6(0);
90 case 6:
91 write_c0_watchlo5(0);
92 case 5:
93 write_c0_watchlo4(0);
94 case 4:
95 write_c0_watchlo3(0);
96 case 3:
97 write_c0_watchlo2(0);
98 case 2:
99 write_c0_watchlo1(0);
100 case 1:
101 write_c0_watchlo0(0);
102 }
103}
104
105void mips_probe_watch_registers(struct cpuinfo_mips *c)
106{
107 unsigned int t;
108
109 if ((c->options & MIPS_CPU_WATCH) == 0)
110 return;
111 /*
112 * Check which of the I,R and W bits are supported, then
113 * disable the register.
114 */
115 write_c0_watchlo0(MIPS_WATCHLO_IRW);
116 back_to_back_c0_hazard();
117 t = read_c0_watchlo0();
118 write_c0_watchlo0(0);
119 c->watch_reg_masks[0] = t & MIPS_WATCHLO_IRW;
120
121 /* Write the mask bits and read them back to determine which
122 * can be used. */
123 c->watch_reg_count = 1;
124 c->watch_reg_use_cnt = 1;
125 t = read_c0_watchhi0();
126 write_c0_watchhi0(t | MIPS_WATCHHI_MASK);
127 back_to_back_c0_hazard();
128 t = read_c0_watchhi0();
129 c->watch_reg_masks[0] |= (t & MIPS_WATCHHI_MASK);
130 if ((t & MIPS_WATCHHI_M) == 0)
131 return;
132
133 write_c0_watchlo1(MIPS_WATCHLO_IRW);
134 back_to_back_c0_hazard();
135 t = read_c0_watchlo1();
136 write_c0_watchlo1(0);
137 c->watch_reg_masks[1] = t & MIPS_WATCHLO_IRW;
138
139 c->watch_reg_count = 2;
140 c->watch_reg_use_cnt = 2;
141 t = read_c0_watchhi1();
142 write_c0_watchhi1(t | MIPS_WATCHHI_MASK);
143 back_to_back_c0_hazard();
144 t = read_c0_watchhi1();
145 c->watch_reg_masks[1] |= (t & MIPS_WATCHHI_MASK);
146 if ((t & MIPS_WATCHHI_M) == 0)
147 return;
148
149 write_c0_watchlo2(MIPS_WATCHLO_IRW);
150 back_to_back_c0_hazard();
151 t = read_c0_watchlo2();
152 write_c0_watchlo2(0);
153 c->watch_reg_masks[2] = t & MIPS_WATCHLO_IRW;
154
155 c->watch_reg_count = 3;
156 c->watch_reg_use_cnt = 3;
157 t = read_c0_watchhi2();
158 write_c0_watchhi2(t | MIPS_WATCHHI_MASK);
159 back_to_back_c0_hazard();
160 t = read_c0_watchhi2();
161 c->watch_reg_masks[2] |= (t & MIPS_WATCHHI_MASK);
162 if ((t & MIPS_WATCHHI_M) == 0)
163 return;
164
165 write_c0_watchlo3(MIPS_WATCHLO_IRW);
166 back_to_back_c0_hazard();
167 t = read_c0_watchlo3();
168 write_c0_watchlo3(0);
169 c->watch_reg_masks[3] = t & MIPS_WATCHLO_IRW;
170
171 c->watch_reg_count = 4;
172 c->watch_reg_use_cnt = 4;
173 t = read_c0_watchhi3();
174 write_c0_watchhi3(t | MIPS_WATCHHI_MASK);
175 back_to_back_c0_hazard();
176 t = read_c0_watchhi3();
177 c->watch_reg_masks[3] |= (t & MIPS_WATCHHI_MASK);
178 if ((t & MIPS_WATCHHI_M) == 0)
179 return;
180
181 /* We use at most 4, but probe and report up to 8. */
182 c->watch_reg_count = 5;
183 t = read_c0_watchhi4();
184 if ((t & MIPS_WATCHHI_M) == 0)
185 return;
186
187 c->watch_reg_count = 6;
188 t = read_c0_watchhi5();
189 if ((t & MIPS_WATCHHI_M) == 0)
190 return;
191
192 c->watch_reg_count = 7;
193 t = read_c0_watchhi6();
194 if ((t & MIPS_WATCHHI_M) == 0)
195 return;
196
197 c->watch_reg_count = 8;
198}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2008 David Daney
7 */
8
9#include <linux/sched.h>
10
11#include <asm/processor.h>
12#include <asm/watch.h>
13
14/*
15 * Install the watch registers for the current thread. A maximum of
16 * four registers are installed although the machine may have more.
17 */
18void mips_install_watch_registers(struct task_struct *t)
19{
20 struct mips3264_watch_reg_state *watches = &t->thread.watch.mips3264;
21 switch (current_cpu_data.watch_reg_use_cnt) {
22 default:
23 BUG();
24 case 4:
25 write_c0_watchlo3(watches->watchlo[3]);
26 /* Write 1 to the I, R, and W bits to clear them, and
27 1 to G so all ASIDs are trapped. */
28 write_c0_watchhi3(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW |
29 watches->watchhi[3]);
30 case 3:
31 write_c0_watchlo2(watches->watchlo[2]);
32 write_c0_watchhi2(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW |
33 watches->watchhi[2]);
34 case 2:
35 write_c0_watchlo1(watches->watchlo[1]);
36 write_c0_watchhi1(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW |
37 watches->watchhi[1]);
38 case 1:
39 write_c0_watchlo0(watches->watchlo[0]);
40 write_c0_watchhi0(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW |
41 watches->watchhi[0]);
42 }
43}
44
45/*
46 * Read back the watchhi registers so the user space debugger has
47 * access to the I, R, and W bits. A maximum of four registers are
48 * read although the machine may have more.
49 */
50void mips_read_watch_registers(void)
51{
52 struct mips3264_watch_reg_state *watches =
53 ¤t->thread.watch.mips3264;
54 switch (current_cpu_data.watch_reg_use_cnt) {
55 default:
56 BUG();
57 case 4:
58 watches->watchhi[3] = (read_c0_watchhi3() &
59 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW));
60 case 3:
61 watches->watchhi[2] = (read_c0_watchhi2() &
62 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW));
63 case 2:
64 watches->watchhi[1] = (read_c0_watchhi1() &
65 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW));
66 case 1:
67 watches->watchhi[0] = (read_c0_watchhi0() &
68 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW));
69 }
70 if (current_cpu_data.watch_reg_use_cnt == 1 &&
71 (watches->watchhi[0] & MIPS_WATCHHI_IRW) == 0) {
72 /* Pathological case of release 1 architecture that
73 * doesn't set the condition bits. We assume that
74 * since we got here, the watch condition was met and
75 * signal that the conditions requested in watchlo
76 * were met. */
77 watches->watchhi[0] |= (watches->watchlo[0] & MIPS_WATCHHI_IRW);
78 }
79 }
80
81/*
82 * Disable all watch registers. Although only four registers are
83 * installed, all are cleared to eliminate the possibility of endless
84 * looping in the watch handler.
85 */
86void mips_clear_watch_registers(void)
87{
88 switch (current_cpu_data.watch_reg_count) {
89 default:
90 BUG();
91 case 8:
92 write_c0_watchlo7(0);
93 case 7:
94 write_c0_watchlo6(0);
95 case 6:
96 write_c0_watchlo5(0);
97 case 5:
98 write_c0_watchlo4(0);
99 case 4:
100 write_c0_watchlo3(0);
101 case 3:
102 write_c0_watchlo2(0);
103 case 2:
104 write_c0_watchlo1(0);
105 case 1:
106 write_c0_watchlo0(0);
107 }
108}
109
110void mips_probe_watch_registers(struct cpuinfo_mips *c)
111{
112 unsigned int t;
113
114 if ((c->options & MIPS_CPU_WATCH) == 0)
115 return;
116 /*
117 * Check which of the I,R and W bits are supported, then
118 * disable the register.
119 */
120 write_c0_watchlo0(MIPS_WATCHLO_IRW);
121 back_to_back_c0_hazard();
122 t = read_c0_watchlo0();
123 write_c0_watchlo0(0);
124 c->watch_reg_masks[0] = t & MIPS_WATCHLO_IRW;
125
126 /* Write the mask bits and read them back to determine which
127 * can be used. */
128 c->watch_reg_count = 1;
129 c->watch_reg_use_cnt = 1;
130 t = read_c0_watchhi0();
131 write_c0_watchhi0(t | MIPS_WATCHHI_MASK);
132 back_to_back_c0_hazard();
133 t = read_c0_watchhi0();
134 c->watch_reg_masks[0] |= (t & MIPS_WATCHHI_MASK);
135 if ((t & MIPS_WATCHHI_M) == 0)
136 return;
137
138 write_c0_watchlo1(MIPS_WATCHLO_IRW);
139 back_to_back_c0_hazard();
140 t = read_c0_watchlo1();
141 write_c0_watchlo1(0);
142 c->watch_reg_masks[1] = t & MIPS_WATCHLO_IRW;
143
144 c->watch_reg_count = 2;
145 c->watch_reg_use_cnt = 2;
146 t = read_c0_watchhi1();
147 write_c0_watchhi1(t | MIPS_WATCHHI_MASK);
148 back_to_back_c0_hazard();
149 t = read_c0_watchhi1();
150 c->watch_reg_masks[1] |= (t & MIPS_WATCHHI_MASK);
151 if ((t & MIPS_WATCHHI_M) == 0)
152 return;
153
154 write_c0_watchlo2(MIPS_WATCHLO_IRW);
155 back_to_back_c0_hazard();
156 t = read_c0_watchlo2();
157 write_c0_watchlo2(0);
158 c->watch_reg_masks[2] = t & MIPS_WATCHLO_IRW;
159
160 c->watch_reg_count = 3;
161 c->watch_reg_use_cnt = 3;
162 t = read_c0_watchhi2();
163 write_c0_watchhi2(t | MIPS_WATCHHI_MASK);
164 back_to_back_c0_hazard();
165 t = read_c0_watchhi2();
166 c->watch_reg_masks[2] |= (t & MIPS_WATCHHI_MASK);
167 if ((t & MIPS_WATCHHI_M) == 0)
168 return;
169
170 write_c0_watchlo3(MIPS_WATCHLO_IRW);
171 back_to_back_c0_hazard();
172 t = read_c0_watchlo3();
173 write_c0_watchlo3(0);
174 c->watch_reg_masks[3] = t & MIPS_WATCHLO_IRW;
175
176 c->watch_reg_count = 4;
177 c->watch_reg_use_cnt = 4;
178 t = read_c0_watchhi3();
179 write_c0_watchhi3(t | MIPS_WATCHHI_MASK);
180 back_to_back_c0_hazard();
181 t = read_c0_watchhi3();
182 c->watch_reg_masks[3] |= (t & MIPS_WATCHHI_MASK);
183 if ((t & MIPS_WATCHHI_M) == 0)
184 return;
185
186 /* We use at most 4, but probe and report up to 8. */
187 c->watch_reg_count = 5;
188 t = read_c0_watchhi4();
189 if ((t & MIPS_WATCHHI_M) == 0)
190 return;
191
192 c->watch_reg_count = 6;
193 t = read_c0_watchhi5();
194 if ((t & MIPS_WATCHHI_M) == 0)
195 return;
196
197 c->watch_reg_count = 7;
198 t = read_c0_watchhi6();
199 if ((t & MIPS_WATCHHI_M) == 0)
200 return;
201
202 c->watch_reg_count = 8;
203}