Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.17
  1/*
  2 * Copyright (C) 2014 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@mips.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 11#include <linux/cpuhotplug.h>
 12#include <linux/init.h>
 13#include <linux/percpu.h>
 14#include <linux/slab.h>
 15#include <linux/suspend.h>
 16
 17#include <asm/asm-offsets.h>
 18#include <asm/cacheflush.h>
 19#include <asm/cacheops.h>
 20#include <asm/idle.h>
 21#include <asm/mips-cps.h>
 
 22#include <asm/mipsmtregs.h>
 23#include <asm/pm.h>
 24#include <asm/pm-cps.h>
 25#include <asm/smp-cps.h>
 26#include <asm/uasm.h>
 27
 28/*
 29 * cps_nc_entry_fn - type of a generated non-coherent state entry function
 30 * @online: the count of online coupled VPEs
 31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
 32 *
 33 * The code entering & exiting non-coherent states is generated at runtime
 34 * using uasm, in order to ensure that the compiler cannot insert a stray
 35 * memory access at an unfortunate time and to allow the generation of optimal
 36 * core-specific code particularly for cache routines. If coupled_coherence
 37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
 38 * returns the number of VPEs that were in the wait state at the point this
 39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
 40 * the entry function for CPS_PM_NC_WAIT.
 41 */
 42typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
 43
 44/*
 45 * The entry point of the generated non-coherent idle state entry/exit
 46 * functions. Actually per-core rather than per-CPU.
 47 */
 48static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
 49				  nc_asm_enter);
 50
 51/* Bitmap indicating which states are supported by the system */
 52static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
 53
 54/*
 55 * Indicates the number of coupled VPEs ready to operate in a non-coherent
 56 * state. Actually per-core rather than per-CPU.
 57 */
 58static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
 
 59
 60/* Indicates online CPUs coupled with the current CPU */
 61static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
 62
 63/*
 64 * Used to synchronize entry to deep idle states. Actually per-core rather
 65 * than per-CPU.
 66 */
 67static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
 68
 69/* Saved CPU state across the CPS_PM_POWER_GATED state */
 70DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
 71
 72/* A somewhat arbitrary number of labels & relocs for uasm */
 73static struct uasm_label labels[32];
 74static struct uasm_reloc relocs[32];
 75
 76enum mips_reg {
 77	zero, at, v0, v1, a0, a1, a2, a3,
 78	t0, t1, t2, t3, t4, t5, t6, t7,
 79	s0, s1, s2, s3, s4, s5, s6, s7,
 80	t8, t9, k0, k1, gp, sp, fp, ra,
 81};
 82
 83bool cps_pm_support_state(enum cps_pm_state state)
 84{
 85	return test_bit(state, state_support);
 86}
 87
 88static void coupled_barrier(atomic_t *a, unsigned online)
 89{
 90	/*
 91	 * This function is effectively the same as
 92	 * cpuidle_coupled_parallel_barrier, which can't be used here since
 93	 * there's no cpuidle device.
 94	 */
 95
 96	if (!coupled_coherence)
 97		return;
 98
 99	smp_mb__before_atomic();
100	atomic_inc(a);
101
102	while (atomic_read(a) < online)
103		cpu_relax();
104
105	if (atomic_inc_return(a) == online * 2) {
106		atomic_set(a, 0);
107		return;
108	}
109
110	while (atomic_read(a) > online)
111		cpu_relax();
112}
113
114int cps_pm_enter_state(enum cps_pm_state state)
115{
116	unsigned cpu = smp_processor_id();
117	unsigned core = cpu_core(&current_cpu_data);
118	unsigned online, left;
119	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
120	u32 *core_ready_count, *nc_core_ready_count;
121	void *nc_addr;
122	cps_nc_entry_fn entry;
123	struct core_boot_config *core_cfg;
124	struct vpe_boot_config *vpe_cfg;
125
126	/* Check that there is an entry function for this state */
127	entry = per_cpu(nc_asm_enter, core)[state];
128	if (!entry)
129		return -EINVAL;
130
131	/* Calculate which coupled CPUs (VPEs) are online */
132#if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
133	if (cpu_online(cpu)) {
134		cpumask_and(coupled_mask, cpu_online_mask,
135			    &cpu_sibling_map[cpu]);
136		online = cpumask_weight(coupled_mask);
137		cpumask_clear_cpu(cpu, coupled_mask);
138	} else
139#endif
140	{
141		cpumask_clear(coupled_mask);
142		online = 1;
143	}
144
145	/* Setup the VPE to run mips_cps_pm_restore when started again */
146	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
147		/* Power gating relies upon CPS SMP */
148		if (!mips_cps_smp_in_use())
149			return -EINVAL;
150
151		core_cfg = &mips_cps_core_bootcfg[core];
152		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
153		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
154		vpe_cfg->gp = (unsigned long)current_thread_info();
155		vpe_cfg->sp = 0;
156	}
157
158	/* Indicate that this CPU might not be coherent */
159	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
160	smp_mb__after_atomic();
161
162	/* Create a non-coherent mapping of the core ready_count */
163	core_ready_count = per_cpu(ready_count, core);
164	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
165				   (unsigned long)core_ready_count);
166	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
167	nc_core_ready_count = nc_addr;
168
169	/* Ensure ready_count is zero-initialised before the assembly runs */
170	WRITE_ONCE(*nc_core_ready_count, 0);
171	coupled_barrier(&per_cpu(pm_barrier, core), online);
172
173	/* Run the generated entry code */
174	left = entry(online, nc_core_ready_count);
175
176	/* Remove the non-coherent mapping of ready_count */
177	kunmap_noncoherent();
178
179	/* Indicate that this CPU is definitely coherent */
180	cpumask_set_cpu(cpu, &cpu_coherent_mask);
181
182	/*
183	 * If this VPE is the first to leave the non-coherent wait state then
184	 * it needs to wake up any coupled VPEs still running their wait
185	 * instruction so that they return to cpuidle, which can then complete
186	 * coordination between the coupled VPEs & provide the governor with
187	 * a chance to reflect on the length of time the VPEs were in the
188	 * idle state.
189	 */
190	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
191		arch_send_call_function_ipi_mask(coupled_mask);
192
193	return 0;
194}
195
196static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
197				  struct uasm_reloc **pr,
198				  const struct cache_desc *cache,
199				  unsigned op, int lbl)
200{
201	unsigned cache_size = cache->ways << cache->waybit;
202	unsigned i;
203	const unsigned unroll_lines = 32;
204
205	/* If the cache isn't present this function has it easy */
206	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
207		return;
208
209	/* Load base address */
210	UASM_i_LA(pp, t0, (long)CKSEG0);
211
212	/* Calculate end address */
213	if (cache_size < 0x8000)
214		uasm_i_addiu(pp, t1, t0, cache_size);
215	else
216		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
217
218	/* Start of cache op loop */
219	uasm_build_label(pl, *pp, lbl);
220
221	/* Generate the cache ops */
222	for (i = 0; i < unroll_lines; i++) {
223		if (cpu_has_mips_r6) {
224			uasm_i_cache(pp, op, 0, t0);
225			uasm_i_addiu(pp, t0, t0, cache->linesz);
226		} else {
227			uasm_i_cache(pp, op, i * cache->linesz, t0);
228		}
229	}
230
231	if (!cpu_has_mips_r6)
232		/* Update the base address */
233		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
234
235	/* Loop if we haven't reached the end address yet */
236	uasm_il_bne(pp, pr, t0, t1, lbl);
237	uasm_i_nop(pp);
238}
239
240static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
241			     struct uasm_reloc **pr,
242			     const struct cpuinfo_mips *cpu_info,
243			     int lbl)
244{
245	unsigned i, fsb_size = 8;
246	unsigned num_loads = (fsb_size * 3) / 2;
247	unsigned line_stride = 2;
248	unsigned line_size = cpu_info->dcache.linesz;
249	unsigned perf_counter, perf_event;
250	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
251
252	/*
253	 * Determine whether this CPU requires an FSB flush, and if so which
254	 * performance counter/event reflect stalls due to a full FSB.
255	 */
256	switch (__get_cpu_type(cpu_info->cputype)) {
257	case CPU_INTERAPTIV:
258		perf_counter = 1;
259		perf_event = 51;
260		break;
261
262	case CPU_PROAPTIV:
263		/* Newer proAptiv cores don't require this workaround */
264		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
265			return 0;
266
267		/* On older ones it's unavailable */
268		return -1;
269
270	default:
271		/* Assume that the CPU does not need this workaround */
272		return 0;
273	}
274
275	/*
276	 * Ensure that the fill/store buffer (FSB) is not holding the results
277	 * of a prefetch, since if it is then the CPC sequencer may become
278	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
279	 */
280
281	/* Preserve perf counter setup */
282	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
283	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
284
285	/* Setup perf counter to count FSB full pipeline stalls */
286	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
287	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
288	uasm_i_ehb(pp);
289	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
290	uasm_i_ehb(pp);
291
292	/* Base address for loads */
293	UASM_i_LA(pp, t0, (long)CKSEG0);
294
295	/* Start of clear loop */
296	uasm_build_label(pl, *pp, lbl);
297
298	/* Perform some loads to fill the FSB */
299	for (i = 0; i < num_loads; i++)
300		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
301
302	/*
303	 * Invalidate the new D-cache entries so that the cache will need
304	 * refilling (via the FSB) if the loop is executed again.
305	 */
306	for (i = 0; i < num_loads; i++) {
307		uasm_i_cache(pp, Hit_Invalidate_D,
308			     i * line_size * line_stride, t0);
309		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
310			     i * line_size * line_stride, t0);
311	}
312
313	/* Barrier ensuring previous cache invalidates are complete */
314	uasm_i_sync(pp, STYPE_SYNC);
315	uasm_i_ehb(pp);
316
317	/* Check whether the pipeline stalled due to the FSB being full */
318	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
319
320	/* Loop if it didn't */
321	uasm_il_beqz(pp, pr, t1, lbl);
322	uasm_i_nop(pp);
323
324	/* Restore perf counter 1. The count may well now be wrong... */
325	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
326	uasm_i_ehb(pp);
327	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
328	uasm_i_ehb(pp);
329
330	return 0;
331}
332
333static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
334				struct uasm_reloc **pr,
335				unsigned r_addr, int lbl)
336{
337	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
338	uasm_build_label(pl, *pp, lbl);
339	uasm_i_ll(pp, t1, 0, r_addr);
340	uasm_i_or(pp, t1, t1, t0);
341	uasm_i_sc(pp, t1, 0, r_addr);
342	uasm_il_beqz(pp, pr, t1, lbl);
343	uasm_i_nop(pp);
344}
345
346static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
347{
348	struct uasm_label *l = labels;
349	struct uasm_reloc *r = relocs;
350	u32 *buf, *p;
351	const unsigned r_online = a0;
352	const unsigned r_nc_count = a1;
353	const unsigned r_pcohctl = t7;
354	const unsigned max_instrs = 256;
355	unsigned cpc_cmd;
356	int err;
357	enum {
358		lbl_incready = 1,
359		lbl_poll_cont,
360		lbl_secondary_hang,
361		lbl_disable_coherence,
362		lbl_flush_fsb,
363		lbl_invicache,
364		lbl_flushdcache,
365		lbl_hang,
366		lbl_set_cont,
367		lbl_secondary_cont,
368		lbl_decready,
369	};
370
371	/* Allocate a buffer to hold the generated code */
372	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
373	if (!buf)
374		return NULL;
375
376	/* Clear labels & relocs ready for (re)use */
377	memset(labels, 0, sizeof(labels));
378	memset(relocs, 0, sizeof(relocs));
379
380	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
381		/* Power gating relies upon CPS SMP */
382		if (!mips_cps_smp_in_use())
383			goto out_err;
384
385		/*
386		 * Save CPU state. Note the non-standard calling convention
387		 * with the return address placed in v0 to avoid clobbering
388		 * the ra register before it is saved.
389		 */
390		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
391		uasm_i_jalr(&p, v0, t0);
392		uasm_i_nop(&p);
393	}
394
395	/*
396	 * Load addresses of required CM & CPC registers. This is done early
397	 * because they're needed in both the enable & disable coherence steps
398	 * but in the coupled case the enable step will only run on one VPE.
399	 */
400	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
401
402	if (coupled_coherence) {
403		/* Increment ready_count */
404		uasm_i_sync(&p, STYPE_SYNC_MB);
405		uasm_build_label(&l, p, lbl_incready);
406		uasm_i_ll(&p, t1, 0, r_nc_count);
407		uasm_i_addiu(&p, t2, t1, 1);
408		uasm_i_sc(&p, t2, 0, r_nc_count);
409		uasm_il_beqz(&p, &r, t2, lbl_incready);
410		uasm_i_addiu(&p, t1, t1, 1);
411
412		/* Barrier ensuring all CPUs see the updated r_nc_count value */
413		uasm_i_sync(&p, STYPE_SYNC_MB);
414
415		/*
416		 * If this is the last VPE to become ready for non-coherence
417		 * then it should branch below.
418		 */
419		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
420		uasm_i_nop(&p);
421
422		if (state < CPS_PM_POWER_GATED) {
423			/*
424			 * Otherwise this is not the last VPE to become ready
425			 * for non-coherence. It needs to wait until coherence
426			 * has been disabled before proceeding, which it will do
427			 * by polling for the top bit of ready_count being set.
428			 */
429			uasm_i_addiu(&p, t1, zero, -1);
430			uasm_build_label(&l, p, lbl_poll_cont);
431			uasm_i_lw(&p, t0, 0, r_nc_count);
432			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
433			uasm_i_ehb(&p);
434			if (cpu_has_mipsmt)
435				uasm_i_yield(&p, zero, t1);
436			uasm_il_b(&p, &r, lbl_poll_cont);
437			uasm_i_nop(&p);
438		} else {
439			/*
440			 * The core will lose power & this VPE will not continue
441			 * so it can simply halt here.
442			 */
443			if (cpu_has_mipsmt) {
444				/* Halt the VPE via C0 tchalt register */
445				uasm_i_addiu(&p, t0, zero, TCHALT_H);
446				uasm_i_mtc0(&p, t0, 2, 4);
447			} else if (cpu_has_vp) {
448				/* Halt the VP via the CPC VP_STOP register */
449				unsigned int vpe_id;
450
451				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
452				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
453				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
454				uasm_i_sw(&p, t0, 0, t1);
455			} else {
456				BUG();
457			}
458			uasm_build_label(&l, p, lbl_secondary_hang);
459			uasm_il_b(&p, &r, lbl_secondary_hang);
460			uasm_i_nop(&p);
461		}
462	}
463
464	/*
465	 * This is the point of no return - this VPE will now proceed to
466	 * disable coherence. At this point we *must* be sure that no other
467	 * VPE within the core will interfere with the L1 dcache.
468	 */
469	uasm_build_label(&l, p, lbl_disable_coherence);
470
471	/* Invalidate the L1 icache */
472	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
473			      Index_Invalidate_I, lbl_invicache);
474
475	/* Writeback & invalidate the L1 dcache */
476	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
477			      Index_Writeback_Inv_D, lbl_flushdcache);
478
479	/* Barrier ensuring previous cache invalidates are complete */
480	uasm_i_sync(&p, STYPE_SYNC);
481	uasm_i_ehb(&p);
482
483	if (mips_cm_revision() < CM_REV_CM3) {
484		/*
485		* Disable all but self interventions. The load from COHCTL is
486		* defined by the interAptiv & proAptiv SUMs as ensuring that the
487		*  operation resulting from the preceding store is complete.
488		*/
489		uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
490		uasm_i_sw(&p, t0, 0, r_pcohctl);
491		uasm_i_lw(&p, t0, 0, r_pcohctl);
492
493		/* Barrier to ensure write to coherence control is complete */
494		uasm_i_sync(&p, STYPE_SYNC);
495		uasm_i_ehb(&p);
496	}
497
498	/* Disable coherence */
499	uasm_i_sw(&p, zero, 0, r_pcohctl);
500	uasm_i_lw(&p, t0, 0, r_pcohctl);
501
502	if (state >= CPS_PM_CLOCK_GATED) {
503		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
504					lbl_flush_fsb);
505		if (err)
506			goto out_err;
507
508		/* Determine the CPC command to issue */
509		switch (state) {
510		case CPS_PM_CLOCK_GATED:
511			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
512			break;
513		case CPS_PM_POWER_GATED:
514			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
515			break;
516		default:
517			BUG();
518			goto out_err;
519		}
520
521		/* Issue the CPC command */
522		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
523		uasm_i_addiu(&p, t1, zero, cpc_cmd);
524		uasm_i_sw(&p, t1, 0, t0);
525
526		if (state == CPS_PM_POWER_GATED) {
527			/* If anything goes wrong just hang */
528			uasm_build_label(&l, p, lbl_hang);
529			uasm_il_b(&p, &r, lbl_hang);
530			uasm_i_nop(&p);
531
532			/*
533			 * There's no point generating more code, the core is
534			 * powered down & if powered back up will run from the
535			 * reset vector not from here.
536			 */
537			goto gen_done;
538		}
539
540		/* Barrier to ensure write to CPC command is complete */
541		uasm_i_sync(&p, STYPE_SYNC);
542		uasm_i_ehb(&p);
543	}
544
545	if (state == CPS_PM_NC_WAIT) {
546		/*
547		 * At this point it is safe for all VPEs to proceed with
548		 * execution. This VPE will set the top bit of ready_count
549		 * to indicate to the other VPEs that they may continue.
550		 */
551		if (coupled_coherence)
552			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
553					    lbl_set_cont);
554
555		/*
556		 * VPEs which did not disable coherence will continue
557		 * executing, after coherence has been disabled, from this
558		 * point.
559		 */
560		uasm_build_label(&l, p, lbl_secondary_cont);
561
562		/* Now perform our wait */
563		uasm_i_wait(&p, 0);
564	}
565
566	/*
567	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
568	 * will run this. The first will actually re-enable coherence & the
569	 * rest will just be performing a rather unusual nop.
570	 */
571	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
572				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
573				: CM3_GCR_Cx_COHERENCE_COHEN);
574
575	uasm_i_sw(&p, t0, 0, r_pcohctl);
576	uasm_i_lw(&p, t0, 0, r_pcohctl);
577
578	/* Barrier to ensure write to coherence control is complete */
579	uasm_i_sync(&p, STYPE_SYNC);
580	uasm_i_ehb(&p);
581
582	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
583		/* Decrement ready_count */
584		uasm_build_label(&l, p, lbl_decready);
585		uasm_i_sync(&p, STYPE_SYNC_MB);
586		uasm_i_ll(&p, t1, 0, r_nc_count);
587		uasm_i_addiu(&p, t2, t1, -1);
588		uasm_i_sc(&p, t2, 0, r_nc_count);
589		uasm_il_beqz(&p, &r, t2, lbl_decready);
590		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
591
592		/* Barrier ensuring all CPUs see the updated r_nc_count value */
593		uasm_i_sync(&p, STYPE_SYNC_MB);
594	}
595
596	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
597		/*
598		 * At this point it is safe for all VPEs to proceed with
599		 * execution. This VPE will set the top bit of ready_count
600		 * to indicate to the other VPEs that they may continue.
601		 */
602		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
603
604		/*
605		 * This core will be reliant upon another core sending a
606		 * power-up command to the CPC in order to resume operation.
607		 * Thus an arbitrary VPE can't trigger the core leaving the
608		 * idle state and the one that disables coherence might as well
609		 * be the one to re-enable it. The rest will continue from here
610		 * after that has been done.
611		 */
612		uasm_build_label(&l, p, lbl_secondary_cont);
613
614		/* Barrier ensuring all CPUs see the updated r_nc_count value */
615		uasm_i_sync(&p, STYPE_SYNC_MB);
616	}
617
618	/* The core is coherent, time to return to C code */
619	uasm_i_jr(&p, ra);
620	uasm_i_nop(&p);
621
622gen_done:
623	/* Ensure the code didn't exceed the resources allocated for it */
624	BUG_ON((p - buf) > max_instrs);
625	BUG_ON((l - labels) > ARRAY_SIZE(labels));
626	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
627
628	/* Patch branch offsets */
629	uasm_resolve_relocs(relocs, labels);
630
631	/* Flush the icache */
632	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
633
634	return buf;
635out_err:
636	kfree(buf);
637	return NULL;
638}
639
640static int cps_pm_online_cpu(unsigned int cpu)
641{
642	enum cps_pm_state state;
643	unsigned core = cpu_core(&cpu_data[cpu]);
 
644	void *entry_fn, *core_rc;
645
646	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
647		if (per_cpu(nc_asm_enter, core)[state])
648			continue;
649		if (!test_bit(state, state_support))
650			continue;
651
652		entry_fn = cps_gen_entry_code(cpu, state);
653		if (!entry_fn) {
654			pr_err("Failed to generate core %u state %u entry\n",
655			       core, state);
656			clear_bit(state, state_support);
657		}
658
659		per_cpu(nc_asm_enter, core)[state] = entry_fn;
660	}
661
662	if (!per_cpu(ready_count, core)) {
663		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
664		if (!core_rc) {
665			pr_err("Failed allocate core %u ready_count\n", core);
666			return -ENOMEM;
667		}
 
 
 
 
 
668		per_cpu(ready_count, core) = core_rc;
669	}
670
671	return 0;
672}
673
674static int cps_pm_power_notifier(struct notifier_block *this,
675				 unsigned long event, void *ptr)
676{
677	unsigned int stat;
678
679	switch (event) {
680	case PM_SUSPEND_PREPARE:
681		stat = read_cpc_cl_stat_conf();
682		/*
683		 * If we're attempting to suspend the system and power down all
684		 * of the cores, the JTAG detect bit indicates that the CPC will
685		 * instead put the cores into clock-off state. In this state
686		 * a connected debugger can cause the CPU to attempt
687		 * interactions with the powered down system. At best this will
688		 * fail. At worst, it can hang the NoC, requiring a hard reset.
689		 * To avoid this, just block system suspend if a JTAG probe
690		 * is detected.
691		 */
692		if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
693			pr_warn("JTAG probe is connected - abort suspend\n");
694			return NOTIFY_BAD;
695		}
696		return NOTIFY_DONE;
697	default:
698		return NOTIFY_DONE;
699	}
700}
701
702static int __init cps_pm_init(void)
703{
704	/* A CM is required for all non-coherent states */
705	if (!mips_cm_present()) {
706		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
707		return 0;
708	}
709
710	/*
711	 * If interrupts were enabled whilst running a wait instruction on a
712	 * non-coherent core then the VPE may end up processing interrupts
713	 * whilst non-coherent. That would be bad.
714	 */
715	if (cpu_wait == r4k_wait_irqoff)
716		set_bit(CPS_PM_NC_WAIT, state_support);
717	else
718		pr_warn("pm-cps: non-coherent wait unavailable\n");
719
720	/* Detect whether a CPC is present */
721	if (mips_cpc_present()) {
722		/* Detect whether clock gating is implemented */
723		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
724			set_bit(CPS_PM_CLOCK_GATED, state_support);
725		else
726			pr_warn("pm-cps: CPC does not support clock gating\n");
727
728		/* Power gating is available with CPS SMP & any CPC */
729		if (mips_cps_smp_in_use())
730			set_bit(CPS_PM_POWER_GATED, state_support);
731		else
732			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
733	} else {
734		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
735	}
736
737	pm_notifier(cps_pm_power_notifier, 0);
738
739	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
740				 cps_pm_online_cpu, NULL);
741}
742arch_initcall(cps_pm_init);
v4.10.11
  1/*
  2 * Copyright (C) 2014 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@imgtec.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 11#include <linux/cpuhotplug.h>
 12#include <linux/init.h>
 13#include <linux/percpu.h>
 14#include <linux/slab.h>
 
 15
 16#include <asm/asm-offsets.h>
 17#include <asm/cacheflush.h>
 18#include <asm/cacheops.h>
 19#include <asm/idle.h>
 20#include <asm/mips-cm.h>
 21#include <asm/mips-cpc.h>
 22#include <asm/mipsmtregs.h>
 23#include <asm/pm.h>
 24#include <asm/pm-cps.h>
 25#include <asm/smp-cps.h>
 26#include <asm/uasm.h>
 27
 28/*
 29 * cps_nc_entry_fn - type of a generated non-coherent state entry function
 30 * @online: the count of online coupled VPEs
 31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
 32 *
 33 * The code entering & exiting non-coherent states is generated at runtime
 34 * using uasm, in order to ensure that the compiler cannot insert a stray
 35 * memory access at an unfortunate time and to allow the generation of optimal
 36 * core-specific code particularly for cache routines. If coupled_coherence
 37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
 38 * returns the number of VPEs that were in the wait state at the point this
 39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
 40 * the entry function for CPS_PM_NC_WAIT.
 41 */
 42typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
 43
 44/*
 45 * The entry point of the generated non-coherent idle state entry/exit
 46 * functions. Actually per-core rather than per-CPU.
 47 */
 48static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
 49				  nc_asm_enter);
 50
 51/* Bitmap indicating which states are supported by the system */
 52DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
 53
 54/*
 55 * Indicates the number of coupled VPEs ready to operate in a non-coherent
 56 * state. Actually per-core rather than per-CPU.
 57 */
 58static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
 59static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
 60
 61/* Indicates online CPUs coupled with the current CPU */
 62static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
 63
 64/*
 65 * Used to synchronize entry to deep idle states. Actually per-core rather
 66 * than per-CPU.
 67 */
 68static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
 69
 70/* Saved CPU state across the CPS_PM_POWER_GATED state */
 71DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
 72
 73/* A somewhat arbitrary number of labels & relocs for uasm */
 74static struct uasm_label labels[32];
 75static struct uasm_reloc relocs[32];
 76
 77enum mips_reg {
 78	zero, at, v0, v1, a0, a1, a2, a3,
 79	t0, t1, t2, t3, t4, t5, t6, t7,
 80	s0, s1, s2, s3, s4, s5, s6, s7,
 81	t8, t9, k0, k1, gp, sp, fp, ra,
 82};
 83
 84bool cps_pm_support_state(enum cps_pm_state state)
 85{
 86	return test_bit(state, state_support);
 87}
 88
 89static void coupled_barrier(atomic_t *a, unsigned online)
 90{
 91	/*
 92	 * This function is effectively the same as
 93	 * cpuidle_coupled_parallel_barrier, which can't be used here since
 94	 * there's no cpuidle device.
 95	 */
 96
 97	if (!coupled_coherence)
 98		return;
 99
100	smp_mb__before_atomic();
101	atomic_inc(a);
102
103	while (atomic_read(a) < online)
104		cpu_relax();
105
106	if (atomic_inc_return(a) == online * 2) {
107		atomic_set(a, 0);
108		return;
109	}
110
111	while (atomic_read(a) > online)
112		cpu_relax();
113}
114
115int cps_pm_enter_state(enum cps_pm_state state)
116{
117	unsigned cpu = smp_processor_id();
118	unsigned core = current_cpu_data.core;
119	unsigned online, left;
120	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
121	u32 *core_ready_count, *nc_core_ready_count;
122	void *nc_addr;
123	cps_nc_entry_fn entry;
124	struct core_boot_config *core_cfg;
125	struct vpe_boot_config *vpe_cfg;
126
127	/* Check that there is an entry function for this state */
128	entry = per_cpu(nc_asm_enter, core)[state];
129	if (!entry)
130		return -EINVAL;
131
132	/* Calculate which coupled CPUs (VPEs) are online */
133#if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
134	if (cpu_online(cpu)) {
135		cpumask_and(coupled_mask, cpu_online_mask,
136			    &cpu_sibling_map[cpu]);
137		online = cpumask_weight(coupled_mask);
138		cpumask_clear_cpu(cpu, coupled_mask);
139	} else
140#endif
141	{
142		cpumask_clear(coupled_mask);
143		online = 1;
144	}
145
146	/* Setup the VPE to run mips_cps_pm_restore when started again */
147	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
148		/* Power gating relies upon CPS SMP */
149		if (!mips_cps_smp_in_use())
150			return -EINVAL;
151
152		core_cfg = &mips_cps_core_bootcfg[core];
153		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
154		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
155		vpe_cfg->gp = (unsigned long)current_thread_info();
156		vpe_cfg->sp = 0;
157	}
158
159	/* Indicate that this CPU might not be coherent */
160	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
161	smp_mb__after_atomic();
162
163	/* Create a non-coherent mapping of the core ready_count */
164	core_ready_count = per_cpu(ready_count, core);
165	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
166				   (unsigned long)core_ready_count);
167	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
168	nc_core_ready_count = nc_addr;
169
170	/* Ensure ready_count is zero-initialised before the assembly runs */
171	ACCESS_ONCE(*nc_core_ready_count) = 0;
172	coupled_barrier(&per_cpu(pm_barrier, core), online);
173
174	/* Run the generated entry code */
175	left = entry(online, nc_core_ready_count);
176
177	/* Remove the non-coherent mapping of ready_count */
178	kunmap_noncoherent();
179
180	/* Indicate that this CPU is definitely coherent */
181	cpumask_set_cpu(cpu, &cpu_coherent_mask);
182
183	/*
184	 * If this VPE is the first to leave the non-coherent wait state then
185	 * it needs to wake up any coupled VPEs still running their wait
186	 * instruction so that they return to cpuidle, which can then complete
187	 * coordination between the coupled VPEs & provide the governor with
188	 * a chance to reflect on the length of time the VPEs were in the
189	 * idle state.
190	 */
191	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
192		arch_send_call_function_ipi_mask(coupled_mask);
193
194	return 0;
195}
196
197static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
198				  struct uasm_reloc **pr,
199				  const struct cache_desc *cache,
200				  unsigned op, int lbl)
201{
202	unsigned cache_size = cache->ways << cache->waybit;
203	unsigned i;
204	const unsigned unroll_lines = 32;
205
206	/* If the cache isn't present this function has it easy */
207	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
208		return;
209
210	/* Load base address */
211	UASM_i_LA(pp, t0, (long)CKSEG0);
212
213	/* Calculate end address */
214	if (cache_size < 0x8000)
215		uasm_i_addiu(pp, t1, t0, cache_size);
216	else
217		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
218
219	/* Start of cache op loop */
220	uasm_build_label(pl, *pp, lbl);
221
222	/* Generate the cache ops */
223	for (i = 0; i < unroll_lines; i++) {
224		if (cpu_has_mips_r6) {
225			uasm_i_cache(pp, op, 0, t0);
226			uasm_i_addiu(pp, t0, t0, cache->linesz);
227		} else {
228			uasm_i_cache(pp, op, i * cache->linesz, t0);
229		}
230	}
231
232	if (!cpu_has_mips_r6)
233		/* Update the base address */
234		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
235
236	/* Loop if we haven't reached the end address yet */
237	uasm_il_bne(pp, pr, t0, t1, lbl);
238	uasm_i_nop(pp);
239}
240
241static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
242			     struct uasm_reloc **pr,
243			     const struct cpuinfo_mips *cpu_info,
244			     int lbl)
245{
246	unsigned i, fsb_size = 8;
247	unsigned num_loads = (fsb_size * 3) / 2;
248	unsigned line_stride = 2;
249	unsigned line_size = cpu_info->dcache.linesz;
250	unsigned perf_counter, perf_event;
251	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
252
253	/*
254	 * Determine whether this CPU requires an FSB flush, and if so which
255	 * performance counter/event reflect stalls due to a full FSB.
256	 */
257	switch (__get_cpu_type(cpu_info->cputype)) {
258	case CPU_INTERAPTIV:
259		perf_counter = 1;
260		perf_event = 51;
261		break;
262
263	case CPU_PROAPTIV:
264		/* Newer proAptiv cores don't require this workaround */
265		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
266			return 0;
267
268		/* On older ones it's unavailable */
269		return -1;
270
271	default:
272		/* Assume that the CPU does not need this workaround */
273		return 0;
274	}
275
276	/*
277	 * Ensure that the fill/store buffer (FSB) is not holding the results
278	 * of a prefetch, since if it is then the CPC sequencer may become
279	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
280	 */
281
282	/* Preserve perf counter setup */
283	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
284	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
285
286	/* Setup perf counter to count FSB full pipeline stalls */
287	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
288	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
289	uasm_i_ehb(pp);
290	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
291	uasm_i_ehb(pp);
292
293	/* Base address for loads */
294	UASM_i_LA(pp, t0, (long)CKSEG0);
295
296	/* Start of clear loop */
297	uasm_build_label(pl, *pp, lbl);
298
299	/* Perform some loads to fill the FSB */
300	for (i = 0; i < num_loads; i++)
301		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
302
303	/*
304	 * Invalidate the new D-cache entries so that the cache will need
305	 * refilling (via the FSB) if the loop is executed again.
306	 */
307	for (i = 0; i < num_loads; i++) {
308		uasm_i_cache(pp, Hit_Invalidate_D,
309			     i * line_size * line_stride, t0);
310		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
311			     i * line_size * line_stride, t0);
312	}
313
314	/* Barrier ensuring previous cache invalidates are complete */
315	uasm_i_sync(pp, STYPE_SYNC);
316	uasm_i_ehb(pp);
317
318	/* Check whether the pipeline stalled due to the FSB being full */
319	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
320
321	/* Loop if it didn't */
322	uasm_il_beqz(pp, pr, t1, lbl);
323	uasm_i_nop(pp);
324
325	/* Restore perf counter 1. The count may well now be wrong... */
326	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
327	uasm_i_ehb(pp);
328	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
329	uasm_i_ehb(pp);
330
331	return 0;
332}
333
334static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
335				struct uasm_reloc **pr,
336				unsigned r_addr, int lbl)
337{
338	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
339	uasm_build_label(pl, *pp, lbl);
340	uasm_i_ll(pp, t1, 0, r_addr);
341	uasm_i_or(pp, t1, t1, t0);
342	uasm_i_sc(pp, t1, 0, r_addr);
343	uasm_il_beqz(pp, pr, t1, lbl);
344	uasm_i_nop(pp);
345}
346
347static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
348{
349	struct uasm_label *l = labels;
350	struct uasm_reloc *r = relocs;
351	u32 *buf, *p;
352	const unsigned r_online = a0;
353	const unsigned r_nc_count = a1;
354	const unsigned r_pcohctl = t7;
355	const unsigned max_instrs = 256;
356	unsigned cpc_cmd;
357	int err;
358	enum {
359		lbl_incready = 1,
360		lbl_poll_cont,
361		lbl_secondary_hang,
362		lbl_disable_coherence,
363		lbl_flush_fsb,
364		lbl_invicache,
365		lbl_flushdcache,
366		lbl_hang,
367		lbl_set_cont,
368		lbl_secondary_cont,
369		lbl_decready,
370	};
371
372	/* Allocate a buffer to hold the generated code */
373	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
374	if (!buf)
375		return NULL;
376
377	/* Clear labels & relocs ready for (re)use */
378	memset(labels, 0, sizeof(labels));
379	memset(relocs, 0, sizeof(relocs));
380
381	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
382		/* Power gating relies upon CPS SMP */
383		if (!mips_cps_smp_in_use())
384			goto out_err;
385
386		/*
387		 * Save CPU state. Note the non-standard calling convention
388		 * with the return address placed in v0 to avoid clobbering
389		 * the ra register before it is saved.
390		 */
391		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
392		uasm_i_jalr(&p, v0, t0);
393		uasm_i_nop(&p);
394	}
395
396	/*
397	 * Load addresses of required CM & CPC registers. This is done early
398	 * because they're needed in both the enable & disable coherence steps
399	 * but in the coupled case the enable step will only run on one VPE.
400	 */
401	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
402
403	if (coupled_coherence) {
404		/* Increment ready_count */
405		uasm_i_sync(&p, STYPE_SYNC_MB);
406		uasm_build_label(&l, p, lbl_incready);
407		uasm_i_ll(&p, t1, 0, r_nc_count);
408		uasm_i_addiu(&p, t2, t1, 1);
409		uasm_i_sc(&p, t2, 0, r_nc_count);
410		uasm_il_beqz(&p, &r, t2, lbl_incready);
411		uasm_i_addiu(&p, t1, t1, 1);
412
413		/* Barrier ensuring all CPUs see the updated r_nc_count value */
414		uasm_i_sync(&p, STYPE_SYNC_MB);
415
416		/*
417		 * If this is the last VPE to become ready for non-coherence
418		 * then it should branch below.
419		 */
420		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
421		uasm_i_nop(&p);
422
423		if (state < CPS_PM_POWER_GATED) {
424			/*
425			 * Otherwise this is not the last VPE to become ready
426			 * for non-coherence. It needs to wait until coherence
427			 * has been disabled before proceeding, which it will do
428			 * by polling for the top bit of ready_count being set.
429			 */
430			uasm_i_addiu(&p, t1, zero, -1);
431			uasm_build_label(&l, p, lbl_poll_cont);
432			uasm_i_lw(&p, t0, 0, r_nc_count);
433			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
434			uasm_i_ehb(&p);
435			if (cpu_has_mipsmt)
436				uasm_i_yield(&p, zero, t1);
437			uasm_il_b(&p, &r, lbl_poll_cont);
438			uasm_i_nop(&p);
439		} else {
440			/*
441			 * The core will lose power & this VPE will not continue
442			 * so it can simply halt here.
443			 */
444			if (cpu_has_mipsmt) {
445				/* Halt the VPE via C0 tchalt register */
446				uasm_i_addiu(&p, t0, zero, TCHALT_H);
447				uasm_i_mtc0(&p, t0, 2, 4);
448			} else if (cpu_has_vp) {
449				/* Halt the VP via the CPC VP_STOP register */
450				unsigned int vpe_id;
451
452				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
453				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
454				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
455				uasm_i_sw(&p, t0, 0, t1);
456			} else {
457				BUG();
458			}
459			uasm_build_label(&l, p, lbl_secondary_hang);
460			uasm_il_b(&p, &r, lbl_secondary_hang);
461			uasm_i_nop(&p);
462		}
463	}
464
465	/*
466	 * This is the point of no return - this VPE will now proceed to
467	 * disable coherence. At this point we *must* be sure that no other
468	 * VPE within the core will interfere with the L1 dcache.
469	 */
470	uasm_build_label(&l, p, lbl_disable_coherence);
471
472	/* Invalidate the L1 icache */
473	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
474			      Index_Invalidate_I, lbl_invicache);
475
476	/* Writeback & invalidate the L1 dcache */
477	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
478			      Index_Writeback_Inv_D, lbl_flushdcache);
479
480	/* Barrier ensuring previous cache invalidates are complete */
481	uasm_i_sync(&p, STYPE_SYNC);
482	uasm_i_ehb(&p);
483
484	if (mips_cm_revision() < CM_REV_CM3) {
485		/*
486		* Disable all but self interventions. The load from COHCTL is
487		* defined by the interAptiv & proAptiv SUMs as ensuring that the
488		*  operation resulting from the preceding store is complete.
489		*/
490		uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
491		uasm_i_sw(&p, t0, 0, r_pcohctl);
492		uasm_i_lw(&p, t0, 0, r_pcohctl);
493
494		/* Barrier to ensure write to coherence control is complete */
495		uasm_i_sync(&p, STYPE_SYNC);
496		uasm_i_ehb(&p);
497	}
498
499	/* Disable coherence */
500	uasm_i_sw(&p, zero, 0, r_pcohctl);
501	uasm_i_lw(&p, t0, 0, r_pcohctl);
502
503	if (state >= CPS_PM_CLOCK_GATED) {
504		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
505					lbl_flush_fsb);
506		if (err)
507			goto out_err;
508
509		/* Determine the CPC command to issue */
510		switch (state) {
511		case CPS_PM_CLOCK_GATED:
512			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
513			break;
514		case CPS_PM_POWER_GATED:
515			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
516			break;
517		default:
518			BUG();
519			goto out_err;
520		}
521
522		/* Issue the CPC command */
523		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
524		uasm_i_addiu(&p, t1, zero, cpc_cmd);
525		uasm_i_sw(&p, t1, 0, t0);
526
527		if (state == CPS_PM_POWER_GATED) {
528			/* If anything goes wrong just hang */
529			uasm_build_label(&l, p, lbl_hang);
530			uasm_il_b(&p, &r, lbl_hang);
531			uasm_i_nop(&p);
532
533			/*
534			 * There's no point generating more code, the core is
535			 * powered down & if powered back up will run from the
536			 * reset vector not from here.
537			 */
538			goto gen_done;
539		}
540
541		/* Barrier to ensure write to CPC command is complete */
542		uasm_i_sync(&p, STYPE_SYNC);
543		uasm_i_ehb(&p);
544	}
545
546	if (state == CPS_PM_NC_WAIT) {
547		/*
548		 * At this point it is safe for all VPEs to proceed with
549		 * execution. This VPE will set the top bit of ready_count
550		 * to indicate to the other VPEs that they may continue.
551		 */
552		if (coupled_coherence)
553			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
554					    lbl_set_cont);
555
556		/*
557		 * VPEs which did not disable coherence will continue
558		 * executing, after coherence has been disabled, from this
559		 * point.
560		 */
561		uasm_build_label(&l, p, lbl_secondary_cont);
562
563		/* Now perform our wait */
564		uasm_i_wait(&p, 0);
565	}
566
567	/*
568	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
569	 * will run this. The first will actually re-enable coherence & the
570	 * rest will just be performing a rather unusual nop.
571	 */
572	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
573				? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK
574				: CM3_GCR_Cx_COHERENCE_COHEN_MSK);
575
576	uasm_i_sw(&p, t0, 0, r_pcohctl);
577	uasm_i_lw(&p, t0, 0, r_pcohctl);
578
579	/* Barrier to ensure write to coherence control is complete */
580	uasm_i_sync(&p, STYPE_SYNC);
581	uasm_i_ehb(&p);
582
583	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
584		/* Decrement ready_count */
585		uasm_build_label(&l, p, lbl_decready);
586		uasm_i_sync(&p, STYPE_SYNC_MB);
587		uasm_i_ll(&p, t1, 0, r_nc_count);
588		uasm_i_addiu(&p, t2, t1, -1);
589		uasm_i_sc(&p, t2, 0, r_nc_count);
590		uasm_il_beqz(&p, &r, t2, lbl_decready);
591		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
592
593		/* Barrier ensuring all CPUs see the updated r_nc_count value */
594		uasm_i_sync(&p, STYPE_SYNC_MB);
595	}
596
597	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
598		/*
599		 * At this point it is safe for all VPEs to proceed with
600		 * execution. This VPE will set the top bit of ready_count
601		 * to indicate to the other VPEs that they may continue.
602		 */
603		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
604
605		/*
606		 * This core will be reliant upon another core sending a
607		 * power-up command to the CPC in order to resume operation.
608		 * Thus an arbitrary VPE can't trigger the core leaving the
609		 * idle state and the one that disables coherence might as well
610		 * be the one to re-enable it. The rest will continue from here
611		 * after that has been done.
612		 */
613		uasm_build_label(&l, p, lbl_secondary_cont);
614
615		/* Barrier ensuring all CPUs see the updated r_nc_count value */
616		uasm_i_sync(&p, STYPE_SYNC_MB);
617	}
618
619	/* The core is coherent, time to return to C code */
620	uasm_i_jr(&p, ra);
621	uasm_i_nop(&p);
622
623gen_done:
624	/* Ensure the code didn't exceed the resources allocated for it */
625	BUG_ON((p - buf) > max_instrs);
626	BUG_ON((l - labels) > ARRAY_SIZE(labels));
627	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
628
629	/* Patch branch offsets */
630	uasm_resolve_relocs(relocs, labels);
631
632	/* Flush the icache */
633	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
634
635	return buf;
636out_err:
637	kfree(buf);
638	return NULL;
639}
640
641static int cps_pm_online_cpu(unsigned int cpu)
642{
643	enum cps_pm_state state;
644	unsigned core = cpu_data[cpu].core;
645	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
646	void *entry_fn, *core_rc;
647
648	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
649		if (per_cpu(nc_asm_enter, core)[state])
650			continue;
651		if (!test_bit(state, state_support))
652			continue;
653
654		entry_fn = cps_gen_entry_code(cpu, state);
655		if (!entry_fn) {
656			pr_err("Failed to generate core %u state %u entry\n",
657			       core, state);
658			clear_bit(state, state_support);
659		}
660
661		per_cpu(nc_asm_enter, core)[state] = entry_fn;
662	}
663
664	if (!per_cpu(ready_count, core)) {
665		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
666		if (!core_rc) {
667			pr_err("Failed allocate core %u ready_count\n", core);
668			return -ENOMEM;
669		}
670		per_cpu(ready_count_alloc, core) = core_rc;
671
672		/* Ensure ready_count is aligned to a cacheline boundary */
673		core_rc += dlinesz - 1;
674		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
675		per_cpu(ready_count, core) = core_rc;
676	}
677
678	return 0;
679}
680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681static int __init cps_pm_init(void)
682{
683	/* A CM is required for all non-coherent states */
684	if (!mips_cm_present()) {
685		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
686		return 0;
687	}
688
689	/*
690	 * If interrupts were enabled whilst running a wait instruction on a
691	 * non-coherent core then the VPE may end up processing interrupts
692	 * whilst non-coherent. That would be bad.
693	 */
694	if (cpu_wait == r4k_wait_irqoff)
695		set_bit(CPS_PM_NC_WAIT, state_support);
696	else
697		pr_warn("pm-cps: non-coherent wait unavailable\n");
698
699	/* Detect whether a CPC is present */
700	if (mips_cpc_present()) {
701		/* Detect whether clock gating is implemented */
702		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
703			set_bit(CPS_PM_CLOCK_GATED, state_support);
704		else
705			pr_warn("pm-cps: CPC does not support clock gating\n");
706
707		/* Power gating is available with CPS SMP & any CPC */
708		if (mips_cps_smp_in_use())
709			set_bit(CPS_PM_POWER_GATED, state_support);
710		else
711			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
712	} else {
713		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
714	}
 
 
715
716	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
717				 cps_pm_online_cpu, NULL);
718}
719arch_initcall(cps_pm_init);