Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/secure_seq.h>
76#include <net/busy_poll.h>
77
78#include <linux/inet.h>
79#include <linux/ipv6.h>
80#include <linux/stddef.h>
81#include <linux/proc_fs.h>
82#include <linux/seq_file.h>
83#include <linux/inetdevice.h>
84
85#include <crypto/hash.h>
86#include <linux/scatterlist.h>
87
88#include <trace/events/tcp.h>
89
90#ifdef CONFIG_TCP_MD5SIG
91static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, const struct tcphdr *th);
93#endif
94
95struct inet_hashinfo tcp_hashinfo;
96EXPORT_SYMBOL(tcp_hashinfo);
97
98static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99{
100 return secure_tcp_seq(ip_hdr(skb)->daddr,
101 ip_hdr(skb)->saddr,
102 tcp_hdr(skb)->dest,
103 tcp_hdr(skb)->source);
104}
105
106static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107{
108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109}
110
111int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112{
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
115
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
123
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
126 */
127 if (tcptw->tw_ts_recent_stamp &&
128 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
137 }
138
139 return 0;
140}
141EXPORT_SYMBOL_GPL(tcp_twsk_unique);
142
143static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
144 int addr_len)
145{
146 /* This check is replicated from tcp_v4_connect() and intended to
147 * prevent BPF program called below from accessing bytes that are out
148 * of the bound specified by user in addr_len.
149 */
150 if (addr_len < sizeof(struct sockaddr_in))
151 return -EINVAL;
152
153 sock_owned_by_me(sk);
154
155 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
156}
157
158/* This will initiate an outgoing connection. */
159int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
160{
161 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
162 struct inet_sock *inet = inet_sk(sk);
163 struct tcp_sock *tp = tcp_sk(sk);
164 __be16 orig_sport, orig_dport;
165 __be32 daddr, nexthop;
166 struct flowi4 *fl4;
167 struct rtable *rt;
168 int err;
169 struct ip_options_rcu *inet_opt;
170 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
171
172 if (addr_len < sizeof(struct sockaddr_in))
173 return -EINVAL;
174
175 if (usin->sin_family != AF_INET)
176 return -EAFNOSUPPORT;
177
178 nexthop = daddr = usin->sin_addr.s_addr;
179 inet_opt = rcu_dereference_protected(inet->inet_opt,
180 lockdep_sock_is_held(sk));
181 if (inet_opt && inet_opt->opt.srr) {
182 if (!daddr)
183 return -EINVAL;
184 nexthop = inet_opt->opt.faddr;
185 }
186
187 orig_sport = inet->inet_sport;
188 orig_dport = usin->sin_port;
189 fl4 = &inet->cork.fl.u.ip4;
190 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
191 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
192 IPPROTO_TCP,
193 orig_sport, orig_dport, sk);
194 if (IS_ERR(rt)) {
195 err = PTR_ERR(rt);
196 if (err == -ENETUNREACH)
197 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
198 return err;
199 }
200
201 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
202 ip_rt_put(rt);
203 return -ENETUNREACH;
204 }
205
206 if (!inet_opt || !inet_opt->opt.srr)
207 daddr = fl4->daddr;
208
209 if (!inet->inet_saddr)
210 inet->inet_saddr = fl4->saddr;
211 sk_rcv_saddr_set(sk, inet->inet_saddr);
212
213 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
214 /* Reset inherited state */
215 tp->rx_opt.ts_recent = 0;
216 tp->rx_opt.ts_recent_stamp = 0;
217 if (likely(!tp->repair))
218 tp->write_seq = 0;
219 }
220
221 inet->inet_dport = usin->sin_port;
222 sk_daddr_set(sk, daddr);
223
224 inet_csk(sk)->icsk_ext_hdr_len = 0;
225 if (inet_opt)
226 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
227
228 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
229
230 /* Socket identity is still unknown (sport may be zero).
231 * However we set state to SYN-SENT and not releasing socket
232 * lock select source port, enter ourselves into the hash tables and
233 * complete initialization after this.
234 */
235 tcp_set_state(sk, TCP_SYN_SENT);
236 err = inet_hash_connect(tcp_death_row, sk);
237 if (err)
238 goto failure;
239
240 sk_set_txhash(sk);
241
242 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
243 inet->inet_sport, inet->inet_dport, sk);
244 if (IS_ERR(rt)) {
245 err = PTR_ERR(rt);
246 rt = NULL;
247 goto failure;
248 }
249 /* OK, now commit destination to socket. */
250 sk->sk_gso_type = SKB_GSO_TCPV4;
251 sk_setup_caps(sk, &rt->dst);
252 rt = NULL;
253
254 if (likely(!tp->repair)) {
255 if (!tp->write_seq)
256 tp->write_seq = secure_tcp_seq(inet->inet_saddr,
257 inet->inet_daddr,
258 inet->inet_sport,
259 usin->sin_port);
260 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
261 inet->inet_saddr,
262 inet->inet_daddr);
263 }
264
265 inet->inet_id = tp->write_seq ^ jiffies;
266
267 if (tcp_fastopen_defer_connect(sk, &err))
268 return err;
269 if (err)
270 goto failure;
271
272 err = tcp_connect(sk);
273
274 if (err)
275 goto failure;
276
277 return 0;
278
279failure:
280 /*
281 * This unhashes the socket and releases the local port,
282 * if necessary.
283 */
284 tcp_set_state(sk, TCP_CLOSE);
285 ip_rt_put(rt);
286 sk->sk_route_caps = 0;
287 inet->inet_dport = 0;
288 return err;
289}
290EXPORT_SYMBOL(tcp_v4_connect);
291
292/*
293 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
294 * It can be called through tcp_release_cb() if socket was owned by user
295 * at the time tcp_v4_err() was called to handle ICMP message.
296 */
297void tcp_v4_mtu_reduced(struct sock *sk)
298{
299 struct inet_sock *inet = inet_sk(sk);
300 struct dst_entry *dst;
301 u32 mtu;
302
303 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
304 return;
305 mtu = tcp_sk(sk)->mtu_info;
306 dst = inet_csk_update_pmtu(sk, mtu);
307 if (!dst)
308 return;
309
310 /* Something is about to be wrong... Remember soft error
311 * for the case, if this connection will not able to recover.
312 */
313 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314 sk->sk_err_soft = EMSGSIZE;
315
316 mtu = dst_mtu(dst);
317
318 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319 ip_sk_accept_pmtu(sk) &&
320 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
321 tcp_sync_mss(sk, mtu);
322
323 /* Resend the TCP packet because it's
324 * clear that the old packet has been
325 * dropped. This is the new "fast" path mtu
326 * discovery.
327 */
328 tcp_simple_retransmit(sk);
329 } /* else let the usual retransmit timer handle it */
330}
331EXPORT_SYMBOL(tcp_v4_mtu_reduced);
332
333static void do_redirect(struct sk_buff *skb, struct sock *sk)
334{
335 struct dst_entry *dst = __sk_dst_check(sk, 0);
336
337 if (dst)
338 dst->ops->redirect(dst, sk, skb);
339}
340
341
342/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
343void tcp_req_err(struct sock *sk, u32 seq, bool abort)
344{
345 struct request_sock *req = inet_reqsk(sk);
346 struct net *net = sock_net(sk);
347
348 /* ICMPs are not backlogged, hence we cannot get
349 * an established socket here.
350 */
351 if (seq != tcp_rsk(req)->snt_isn) {
352 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
353 } else if (abort) {
354 /*
355 * Still in SYN_RECV, just remove it silently.
356 * There is no good way to pass the error to the newly
357 * created socket, and POSIX does not want network
358 * errors returned from accept().
359 */
360 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
361 tcp_listendrop(req->rsk_listener);
362 }
363 reqsk_put(req);
364}
365EXPORT_SYMBOL(tcp_req_err);
366
367/*
368 * This routine is called by the ICMP module when it gets some
369 * sort of error condition. If err < 0 then the socket should
370 * be closed and the error returned to the user. If err > 0
371 * it's just the icmp type << 8 | icmp code. After adjustment
372 * header points to the first 8 bytes of the tcp header. We need
373 * to find the appropriate port.
374 *
375 * The locking strategy used here is very "optimistic". When
376 * someone else accesses the socket the ICMP is just dropped
377 * and for some paths there is no check at all.
378 * A more general error queue to queue errors for later handling
379 * is probably better.
380 *
381 */
382
383void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
384{
385 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
386 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
387 struct inet_connection_sock *icsk;
388 struct tcp_sock *tp;
389 struct inet_sock *inet;
390 const int type = icmp_hdr(icmp_skb)->type;
391 const int code = icmp_hdr(icmp_skb)->code;
392 struct sock *sk;
393 struct sk_buff *skb;
394 struct request_sock *fastopen;
395 u32 seq, snd_una;
396 s32 remaining;
397 u32 delta_us;
398 int err;
399 struct net *net = dev_net(icmp_skb->dev);
400
401 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
402 th->dest, iph->saddr, ntohs(th->source),
403 inet_iif(icmp_skb), 0);
404 if (!sk) {
405 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
406 return;
407 }
408 if (sk->sk_state == TCP_TIME_WAIT) {
409 inet_twsk_put(inet_twsk(sk));
410 return;
411 }
412 seq = ntohl(th->seq);
413 if (sk->sk_state == TCP_NEW_SYN_RECV)
414 return tcp_req_err(sk, seq,
415 type == ICMP_PARAMETERPROB ||
416 type == ICMP_TIME_EXCEEDED ||
417 (type == ICMP_DEST_UNREACH &&
418 (code == ICMP_NET_UNREACH ||
419 code == ICMP_HOST_UNREACH)));
420
421 bh_lock_sock(sk);
422 /* If too many ICMPs get dropped on busy
423 * servers this needs to be solved differently.
424 * We do take care of PMTU discovery (RFC1191) special case :
425 * we can receive locally generated ICMP messages while socket is held.
426 */
427 if (sock_owned_by_user(sk)) {
428 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
429 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
430 }
431 if (sk->sk_state == TCP_CLOSE)
432 goto out;
433
434 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
435 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
436 goto out;
437 }
438
439 icsk = inet_csk(sk);
440 tp = tcp_sk(sk);
441 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
442 fastopen = tp->fastopen_rsk;
443 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
444 if (sk->sk_state != TCP_LISTEN &&
445 !between(seq, snd_una, tp->snd_nxt)) {
446 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
447 goto out;
448 }
449
450 switch (type) {
451 case ICMP_REDIRECT:
452 if (!sock_owned_by_user(sk))
453 do_redirect(icmp_skb, sk);
454 goto out;
455 case ICMP_SOURCE_QUENCH:
456 /* Just silently ignore these. */
457 goto out;
458 case ICMP_PARAMETERPROB:
459 err = EPROTO;
460 break;
461 case ICMP_DEST_UNREACH:
462 if (code > NR_ICMP_UNREACH)
463 goto out;
464
465 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
466 /* We are not interested in TCP_LISTEN and open_requests
467 * (SYN-ACKs send out by Linux are always <576bytes so
468 * they should go through unfragmented).
469 */
470 if (sk->sk_state == TCP_LISTEN)
471 goto out;
472
473 tp->mtu_info = info;
474 if (!sock_owned_by_user(sk)) {
475 tcp_v4_mtu_reduced(sk);
476 } else {
477 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
478 sock_hold(sk);
479 }
480 goto out;
481 }
482
483 err = icmp_err_convert[code].errno;
484 /* check if icmp_skb allows revert of backoff
485 * (see draft-zimmermann-tcp-lcd) */
486 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
487 break;
488 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
489 !icsk->icsk_backoff || fastopen)
490 break;
491
492 if (sock_owned_by_user(sk))
493 break;
494
495 icsk->icsk_backoff--;
496 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
497 TCP_TIMEOUT_INIT;
498 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
499
500 skb = tcp_rtx_queue_head(sk);
501 BUG_ON(!skb);
502
503 tcp_mstamp_refresh(tp);
504 delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp);
505 remaining = icsk->icsk_rto -
506 usecs_to_jiffies(delta_us);
507
508 if (remaining > 0) {
509 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
510 remaining, TCP_RTO_MAX);
511 } else {
512 /* RTO revert clocked out retransmission.
513 * Will retransmit now */
514 tcp_retransmit_timer(sk);
515 }
516
517 break;
518 case ICMP_TIME_EXCEEDED:
519 err = EHOSTUNREACH;
520 break;
521 default:
522 goto out;
523 }
524
525 switch (sk->sk_state) {
526 case TCP_SYN_SENT:
527 case TCP_SYN_RECV:
528 /* Only in fast or simultaneous open. If a fast open socket is
529 * is already accepted it is treated as a connected one below.
530 */
531 if (fastopen && !fastopen->sk)
532 break;
533
534 if (!sock_owned_by_user(sk)) {
535 sk->sk_err = err;
536
537 sk->sk_error_report(sk);
538
539 tcp_done(sk);
540 } else {
541 sk->sk_err_soft = err;
542 }
543 goto out;
544 }
545
546 /* If we've already connected we will keep trying
547 * until we time out, or the user gives up.
548 *
549 * rfc1122 4.2.3.9 allows to consider as hard errors
550 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
551 * but it is obsoleted by pmtu discovery).
552 *
553 * Note, that in modern internet, where routing is unreliable
554 * and in each dark corner broken firewalls sit, sending random
555 * errors ordered by their masters even this two messages finally lose
556 * their original sense (even Linux sends invalid PORT_UNREACHs)
557 *
558 * Now we are in compliance with RFCs.
559 * --ANK (980905)
560 */
561
562 inet = inet_sk(sk);
563 if (!sock_owned_by_user(sk) && inet->recverr) {
564 sk->sk_err = err;
565 sk->sk_error_report(sk);
566 } else { /* Only an error on timeout */
567 sk->sk_err_soft = err;
568 }
569
570out:
571 bh_unlock_sock(sk);
572 sock_put(sk);
573}
574
575void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
576{
577 struct tcphdr *th = tcp_hdr(skb);
578
579 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
580 skb->csum_start = skb_transport_header(skb) - skb->head;
581 skb->csum_offset = offsetof(struct tcphdr, check);
582}
583
584/* This routine computes an IPv4 TCP checksum. */
585void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
586{
587 const struct inet_sock *inet = inet_sk(sk);
588
589 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
590}
591EXPORT_SYMBOL(tcp_v4_send_check);
592
593/*
594 * This routine will send an RST to the other tcp.
595 *
596 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
597 * for reset.
598 * Answer: if a packet caused RST, it is not for a socket
599 * existing in our system, if it is matched to a socket,
600 * it is just duplicate segment or bug in other side's TCP.
601 * So that we build reply only basing on parameters
602 * arrived with segment.
603 * Exception: precedence violation. We do not implement it in any case.
604 */
605
606static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
607{
608 const struct tcphdr *th = tcp_hdr(skb);
609 struct {
610 struct tcphdr th;
611#ifdef CONFIG_TCP_MD5SIG
612 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
613#endif
614 } rep;
615 struct ip_reply_arg arg;
616#ifdef CONFIG_TCP_MD5SIG
617 struct tcp_md5sig_key *key = NULL;
618 const __u8 *hash_location = NULL;
619 unsigned char newhash[16];
620 int genhash;
621 struct sock *sk1 = NULL;
622#endif
623 struct net *net;
624
625 /* Never send a reset in response to a reset. */
626 if (th->rst)
627 return;
628
629 /* If sk not NULL, it means we did a successful lookup and incoming
630 * route had to be correct. prequeue might have dropped our dst.
631 */
632 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
633 return;
634
635 /* Swap the send and the receive. */
636 memset(&rep, 0, sizeof(rep));
637 rep.th.dest = th->source;
638 rep.th.source = th->dest;
639 rep.th.doff = sizeof(struct tcphdr) / 4;
640 rep.th.rst = 1;
641
642 if (th->ack) {
643 rep.th.seq = th->ack_seq;
644 } else {
645 rep.th.ack = 1;
646 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
647 skb->len - (th->doff << 2));
648 }
649
650 memset(&arg, 0, sizeof(arg));
651 arg.iov[0].iov_base = (unsigned char *)&rep;
652 arg.iov[0].iov_len = sizeof(rep.th);
653
654 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
655#ifdef CONFIG_TCP_MD5SIG
656 rcu_read_lock();
657 hash_location = tcp_parse_md5sig_option(th);
658 if (sk && sk_fullsock(sk)) {
659 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
660 &ip_hdr(skb)->saddr, AF_INET);
661 } else if (hash_location) {
662 /*
663 * active side is lost. Try to find listening socket through
664 * source port, and then find md5 key through listening socket.
665 * we are not loose security here:
666 * Incoming packet is checked with md5 hash with finding key,
667 * no RST generated if md5 hash doesn't match.
668 */
669 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
670 ip_hdr(skb)->saddr,
671 th->source, ip_hdr(skb)->daddr,
672 ntohs(th->source), inet_iif(skb),
673 tcp_v4_sdif(skb));
674 /* don't send rst if it can't find key */
675 if (!sk1)
676 goto out;
677
678 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
679 &ip_hdr(skb)->saddr, AF_INET);
680 if (!key)
681 goto out;
682
683
684 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
685 if (genhash || memcmp(hash_location, newhash, 16) != 0)
686 goto out;
687
688 }
689
690 if (key) {
691 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
692 (TCPOPT_NOP << 16) |
693 (TCPOPT_MD5SIG << 8) |
694 TCPOLEN_MD5SIG);
695 /* Update length and the length the header thinks exists */
696 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
697 rep.th.doff = arg.iov[0].iov_len / 4;
698
699 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
700 key, ip_hdr(skb)->saddr,
701 ip_hdr(skb)->daddr, &rep.th);
702 }
703#endif
704 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
705 ip_hdr(skb)->saddr, /* XXX */
706 arg.iov[0].iov_len, IPPROTO_TCP, 0);
707 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
708 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
709
710 /* When socket is gone, all binding information is lost.
711 * routing might fail in this case. No choice here, if we choose to force
712 * input interface, we will misroute in case of asymmetric route.
713 */
714 if (sk) {
715 arg.bound_dev_if = sk->sk_bound_dev_if;
716 if (sk_fullsock(sk))
717 trace_tcp_send_reset(sk, skb);
718 }
719
720 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
721 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
722
723 arg.tos = ip_hdr(skb)->tos;
724 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
725 local_bh_disable();
726 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
727 skb, &TCP_SKB_CB(skb)->header.h4.opt,
728 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
729 &arg, arg.iov[0].iov_len);
730
731 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
732 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
733 local_bh_enable();
734
735#ifdef CONFIG_TCP_MD5SIG
736out:
737 rcu_read_unlock();
738#endif
739}
740
741/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
742 outside socket context is ugly, certainly. What can I do?
743 */
744
745static void tcp_v4_send_ack(const struct sock *sk,
746 struct sk_buff *skb, u32 seq, u32 ack,
747 u32 win, u32 tsval, u32 tsecr, int oif,
748 struct tcp_md5sig_key *key,
749 int reply_flags, u8 tos)
750{
751 const struct tcphdr *th = tcp_hdr(skb);
752 struct {
753 struct tcphdr th;
754 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
755#ifdef CONFIG_TCP_MD5SIG
756 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
757#endif
758 ];
759 } rep;
760 struct net *net = sock_net(sk);
761 struct ip_reply_arg arg;
762
763 memset(&rep.th, 0, sizeof(struct tcphdr));
764 memset(&arg, 0, sizeof(arg));
765
766 arg.iov[0].iov_base = (unsigned char *)&rep;
767 arg.iov[0].iov_len = sizeof(rep.th);
768 if (tsecr) {
769 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
770 (TCPOPT_TIMESTAMP << 8) |
771 TCPOLEN_TIMESTAMP);
772 rep.opt[1] = htonl(tsval);
773 rep.opt[2] = htonl(tsecr);
774 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
775 }
776
777 /* Swap the send and the receive. */
778 rep.th.dest = th->source;
779 rep.th.source = th->dest;
780 rep.th.doff = arg.iov[0].iov_len / 4;
781 rep.th.seq = htonl(seq);
782 rep.th.ack_seq = htonl(ack);
783 rep.th.ack = 1;
784 rep.th.window = htons(win);
785
786#ifdef CONFIG_TCP_MD5SIG
787 if (key) {
788 int offset = (tsecr) ? 3 : 0;
789
790 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
791 (TCPOPT_NOP << 16) |
792 (TCPOPT_MD5SIG << 8) |
793 TCPOLEN_MD5SIG);
794 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
795 rep.th.doff = arg.iov[0].iov_len/4;
796
797 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
798 key, ip_hdr(skb)->saddr,
799 ip_hdr(skb)->daddr, &rep.th);
800 }
801#endif
802 arg.flags = reply_flags;
803 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
804 ip_hdr(skb)->saddr, /* XXX */
805 arg.iov[0].iov_len, IPPROTO_TCP, 0);
806 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
807 if (oif)
808 arg.bound_dev_if = oif;
809 arg.tos = tos;
810 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
811 local_bh_disable();
812 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
813 skb, &TCP_SKB_CB(skb)->header.h4.opt,
814 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
815 &arg, arg.iov[0].iov_len);
816
817 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
818 local_bh_enable();
819}
820
821static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
822{
823 struct inet_timewait_sock *tw = inet_twsk(sk);
824 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
825
826 tcp_v4_send_ack(sk, skb,
827 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
828 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
829 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
830 tcptw->tw_ts_recent,
831 tw->tw_bound_dev_if,
832 tcp_twsk_md5_key(tcptw),
833 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
834 tw->tw_tos
835 );
836
837 inet_twsk_put(tw);
838}
839
840static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
841 struct request_sock *req)
842{
843 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
844 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
845 */
846 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
847 tcp_sk(sk)->snd_nxt;
848
849 /* RFC 7323 2.3
850 * The window field (SEG.WND) of every outgoing segment, with the
851 * exception of <SYN> segments, MUST be right-shifted by
852 * Rcv.Wind.Shift bits:
853 */
854 tcp_v4_send_ack(sk, skb, seq,
855 tcp_rsk(req)->rcv_nxt,
856 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
857 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
858 req->ts_recent,
859 0,
860 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
861 AF_INET),
862 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
863 ip_hdr(skb)->tos);
864}
865
866/*
867 * Send a SYN-ACK after having received a SYN.
868 * This still operates on a request_sock only, not on a big
869 * socket.
870 */
871static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
872 struct flowi *fl,
873 struct request_sock *req,
874 struct tcp_fastopen_cookie *foc,
875 enum tcp_synack_type synack_type)
876{
877 const struct inet_request_sock *ireq = inet_rsk(req);
878 struct flowi4 fl4;
879 int err = -1;
880 struct sk_buff *skb;
881
882 /* First, grab a route. */
883 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
884 return -1;
885
886 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
887
888 if (skb) {
889 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
890
891 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
892 ireq->ir_rmt_addr,
893 ireq_opt_deref(ireq));
894 err = net_xmit_eval(err);
895 }
896
897 return err;
898}
899
900/*
901 * IPv4 request_sock destructor.
902 */
903static void tcp_v4_reqsk_destructor(struct request_sock *req)
904{
905 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
906}
907
908#ifdef CONFIG_TCP_MD5SIG
909/*
910 * RFC2385 MD5 checksumming requires a mapping of
911 * IP address->MD5 Key.
912 * We need to maintain these in the sk structure.
913 */
914
915/* Find the Key structure for an address. */
916struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
917 const union tcp_md5_addr *addr,
918 int family)
919{
920 const struct tcp_sock *tp = tcp_sk(sk);
921 struct tcp_md5sig_key *key;
922 const struct tcp_md5sig_info *md5sig;
923 __be32 mask;
924 struct tcp_md5sig_key *best_match = NULL;
925 bool match;
926
927 /* caller either holds rcu_read_lock() or socket lock */
928 md5sig = rcu_dereference_check(tp->md5sig_info,
929 lockdep_sock_is_held(sk));
930 if (!md5sig)
931 return NULL;
932
933 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
934 if (key->family != family)
935 continue;
936
937 if (family == AF_INET) {
938 mask = inet_make_mask(key->prefixlen);
939 match = (key->addr.a4.s_addr & mask) ==
940 (addr->a4.s_addr & mask);
941#if IS_ENABLED(CONFIG_IPV6)
942 } else if (family == AF_INET6) {
943 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
944 key->prefixlen);
945#endif
946 } else {
947 match = false;
948 }
949
950 if (match && (!best_match ||
951 key->prefixlen > best_match->prefixlen))
952 best_match = key;
953 }
954 return best_match;
955}
956EXPORT_SYMBOL(tcp_md5_do_lookup);
957
958static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
959 const union tcp_md5_addr *addr,
960 int family, u8 prefixlen)
961{
962 const struct tcp_sock *tp = tcp_sk(sk);
963 struct tcp_md5sig_key *key;
964 unsigned int size = sizeof(struct in_addr);
965 const struct tcp_md5sig_info *md5sig;
966
967 /* caller either holds rcu_read_lock() or socket lock */
968 md5sig = rcu_dereference_check(tp->md5sig_info,
969 lockdep_sock_is_held(sk));
970 if (!md5sig)
971 return NULL;
972#if IS_ENABLED(CONFIG_IPV6)
973 if (family == AF_INET6)
974 size = sizeof(struct in6_addr);
975#endif
976 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
977 if (key->family != family)
978 continue;
979 if (!memcmp(&key->addr, addr, size) &&
980 key->prefixlen == prefixlen)
981 return key;
982 }
983 return NULL;
984}
985
986struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
987 const struct sock *addr_sk)
988{
989 const union tcp_md5_addr *addr;
990
991 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
992 return tcp_md5_do_lookup(sk, addr, AF_INET);
993}
994EXPORT_SYMBOL(tcp_v4_md5_lookup);
995
996/* This can be called on a newly created socket, from other files */
997int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
998 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
999 gfp_t gfp)
1000{
1001 /* Add Key to the list */
1002 struct tcp_md5sig_key *key;
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 struct tcp_md5sig_info *md5sig;
1005
1006 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1007 if (key) {
1008 /* Pre-existing entry - just update that one. */
1009 memcpy(key->key, newkey, newkeylen);
1010 key->keylen = newkeylen;
1011 return 0;
1012 }
1013
1014 md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 lockdep_sock_is_held(sk));
1016 if (!md5sig) {
1017 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 if (!md5sig)
1019 return -ENOMEM;
1020
1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 INIT_HLIST_HEAD(&md5sig->head);
1023 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 }
1025
1026 key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 if (!key)
1028 return -ENOMEM;
1029 if (!tcp_alloc_md5sig_pool()) {
1030 sock_kfree_s(sk, key, sizeof(*key));
1031 return -ENOMEM;
1032 }
1033
1034 memcpy(key->key, newkey, newkeylen);
1035 key->keylen = newkeylen;
1036 key->family = family;
1037 key->prefixlen = prefixlen;
1038 memcpy(&key->addr, addr,
1039 (family == AF_INET6) ? sizeof(struct in6_addr) :
1040 sizeof(struct in_addr));
1041 hlist_add_head_rcu(&key->node, &md5sig->head);
1042 return 0;
1043}
1044EXPORT_SYMBOL(tcp_md5_do_add);
1045
1046int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1047 u8 prefixlen)
1048{
1049 struct tcp_md5sig_key *key;
1050
1051 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1052 if (!key)
1053 return -ENOENT;
1054 hlist_del_rcu(&key->node);
1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 kfree_rcu(key, rcu);
1057 return 0;
1058}
1059EXPORT_SYMBOL(tcp_md5_do_del);
1060
1061static void tcp_clear_md5_list(struct sock *sk)
1062{
1063 struct tcp_sock *tp = tcp_sk(sk);
1064 struct tcp_md5sig_key *key;
1065 struct hlist_node *n;
1066 struct tcp_md5sig_info *md5sig;
1067
1068 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1069
1070 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1071 hlist_del_rcu(&key->node);
1072 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1073 kfree_rcu(key, rcu);
1074 }
1075}
1076
1077static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1078 char __user *optval, int optlen)
1079{
1080 struct tcp_md5sig cmd;
1081 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1082 u8 prefixlen = 32;
1083
1084 if (optlen < sizeof(cmd))
1085 return -EINVAL;
1086
1087 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1088 return -EFAULT;
1089
1090 if (sin->sin_family != AF_INET)
1091 return -EINVAL;
1092
1093 if (optname == TCP_MD5SIG_EXT &&
1094 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1095 prefixlen = cmd.tcpm_prefixlen;
1096 if (prefixlen > 32)
1097 return -EINVAL;
1098 }
1099
1100 if (!cmd.tcpm_keylen)
1101 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1102 AF_INET, prefixlen);
1103
1104 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1105 return -EINVAL;
1106
1107 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1108 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen,
1109 GFP_KERNEL);
1110}
1111
1112static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1113 __be32 daddr, __be32 saddr,
1114 const struct tcphdr *th, int nbytes)
1115{
1116 struct tcp4_pseudohdr *bp;
1117 struct scatterlist sg;
1118 struct tcphdr *_th;
1119
1120 bp = hp->scratch;
1121 bp->saddr = saddr;
1122 bp->daddr = daddr;
1123 bp->pad = 0;
1124 bp->protocol = IPPROTO_TCP;
1125 bp->len = cpu_to_be16(nbytes);
1126
1127 _th = (struct tcphdr *)(bp + 1);
1128 memcpy(_th, th, sizeof(*th));
1129 _th->check = 0;
1130
1131 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1132 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1133 sizeof(*bp) + sizeof(*th));
1134 return crypto_ahash_update(hp->md5_req);
1135}
1136
1137static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1138 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1139{
1140 struct tcp_md5sig_pool *hp;
1141 struct ahash_request *req;
1142
1143 hp = tcp_get_md5sig_pool();
1144 if (!hp)
1145 goto clear_hash_noput;
1146 req = hp->md5_req;
1147
1148 if (crypto_ahash_init(req))
1149 goto clear_hash;
1150 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1151 goto clear_hash;
1152 if (tcp_md5_hash_key(hp, key))
1153 goto clear_hash;
1154 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1155 if (crypto_ahash_final(req))
1156 goto clear_hash;
1157
1158 tcp_put_md5sig_pool();
1159 return 0;
1160
1161clear_hash:
1162 tcp_put_md5sig_pool();
1163clear_hash_noput:
1164 memset(md5_hash, 0, 16);
1165 return 1;
1166}
1167
1168int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1169 const struct sock *sk,
1170 const struct sk_buff *skb)
1171{
1172 struct tcp_md5sig_pool *hp;
1173 struct ahash_request *req;
1174 const struct tcphdr *th = tcp_hdr(skb);
1175 __be32 saddr, daddr;
1176
1177 if (sk) { /* valid for establish/request sockets */
1178 saddr = sk->sk_rcv_saddr;
1179 daddr = sk->sk_daddr;
1180 } else {
1181 const struct iphdr *iph = ip_hdr(skb);
1182 saddr = iph->saddr;
1183 daddr = iph->daddr;
1184 }
1185
1186 hp = tcp_get_md5sig_pool();
1187 if (!hp)
1188 goto clear_hash_noput;
1189 req = hp->md5_req;
1190
1191 if (crypto_ahash_init(req))
1192 goto clear_hash;
1193
1194 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1195 goto clear_hash;
1196 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1197 goto clear_hash;
1198 if (tcp_md5_hash_key(hp, key))
1199 goto clear_hash;
1200 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1201 if (crypto_ahash_final(req))
1202 goto clear_hash;
1203
1204 tcp_put_md5sig_pool();
1205 return 0;
1206
1207clear_hash:
1208 tcp_put_md5sig_pool();
1209clear_hash_noput:
1210 memset(md5_hash, 0, 16);
1211 return 1;
1212}
1213EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1214
1215#endif
1216
1217/* Called with rcu_read_lock() */
1218static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1219 const struct sk_buff *skb)
1220{
1221#ifdef CONFIG_TCP_MD5SIG
1222 /*
1223 * This gets called for each TCP segment that arrives
1224 * so we want to be efficient.
1225 * We have 3 drop cases:
1226 * o No MD5 hash and one expected.
1227 * o MD5 hash and we're not expecting one.
1228 * o MD5 hash and its wrong.
1229 */
1230 const __u8 *hash_location = NULL;
1231 struct tcp_md5sig_key *hash_expected;
1232 const struct iphdr *iph = ip_hdr(skb);
1233 const struct tcphdr *th = tcp_hdr(skb);
1234 int genhash;
1235 unsigned char newhash[16];
1236
1237 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1238 AF_INET);
1239 hash_location = tcp_parse_md5sig_option(th);
1240
1241 /* We've parsed the options - do we have a hash? */
1242 if (!hash_expected && !hash_location)
1243 return false;
1244
1245 if (hash_expected && !hash_location) {
1246 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1247 return true;
1248 }
1249
1250 if (!hash_expected && hash_location) {
1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1252 return true;
1253 }
1254
1255 /* Okay, so this is hash_expected and hash_location -
1256 * so we need to calculate the checksum.
1257 */
1258 genhash = tcp_v4_md5_hash_skb(newhash,
1259 hash_expected,
1260 NULL, skb);
1261
1262 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1264 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1265 &iph->saddr, ntohs(th->source),
1266 &iph->daddr, ntohs(th->dest),
1267 genhash ? " tcp_v4_calc_md5_hash failed"
1268 : "");
1269 return true;
1270 }
1271 return false;
1272#endif
1273 return false;
1274}
1275
1276static void tcp_v4_init_req(struct request_sock *req,
1277 const struct sock *sk_listener,
1278 struct sk_buff *skb)
1279{
1280 struct inet_request_sock *ireq = inet_rsk(req);
1281 struct net *net = sock_net(sk_listener);
1282
1283 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1284 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1285 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1286}
1287
1288static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1289 struct flowi *fl,
1290 const struct request_sock *req)
1291{
1292 return inet_csk_route_req(sk, &fl->u.ip4, req);
1293}
1294
1295struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1296 .family = PF_INET,
1297 .obj_size = sizeof(struct tcp_request_sock),
1298 .rtx_syn_ack = tcp_rtx_synack,
1299 .send_ack = tcp_v4_reqsk_send_ack,
1300 .destructor = tcp_v4_reqsk_destructor,
1301 .send_reset = tcp_v4_send_reset,
1302 .syn_ack_timeout = tcp_syn_ack_timeout,
1303};
1304
1305static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1306 .mss_clamp = TCP_MSS_DEFAULT,
1307#ifdef CONFIG_TCP_MD5SIG
1308 .req_md5_lookup = tcp_v4_md5_lookup,
1309 .calc_md5_hash = tcp_v4_md5_hash_skb,
1310#endif
1311 .init_req = tcp_v4_init_req,
1312#ifdef CONFIG_SYN_COOKIES
1313 .cookie_init_seq = cookie_v4_init_sequence,
1314#endif
1315 .route_req = tcp_v4_route_req,
1316 .init_seq = tcp_v4_init_seq,
1317 .init_ts_off = tcp_v4_init_ts_off,
1318 .send_synack = tcp_v4_send_synack,
1319};
1320
1321int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1322{
1323 /* Never answer to SYNs send to broadcast or multicast */
1324 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1325 goto drop;
1326
1327 return tcp_conn_request(&tcp_request_sock_ops,
1328 &tcp_request_sock_ipv4_ops, sk, skb);
1329
1330drop:
1331 tcp_listendrop(sk);
1332 return 0;
1333}
1334EXPORT_SYMBOL(tcp_v4_conn_request);
1335
1336
1337/*
1338 * The three way handshake has completed - we got a valid synack -
1339 * now create the new socket.
1340 */
1341struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1342 struct request_sock *req,
1343 struct dst_entry *dst,
1344 struct request_sock *req_unhash,
1345 bool *own_req)
1346{
1347 struct inet_request_sock *ireq;
1348 struct inet_sock *newinet;
1349 struct tcp_sock *newtp;
1350 struct sock *newsk;
1351#ifdef CONFIG_TCP_MD5SIG
1352 struct tcp_md5sig_key *key;
1353#endif
1354 struct ip_options_rcu *inet_opt;
1355
1356 if (sk_acceptq_is_full(sk))
1357 goto exit_overflow;
1358
1359 newsk = tcp_create_openreq_child(sk, req, skb);
1360 if (!newsk)
1361 goto exit_nonewsk;
1362
1363 newsk->sk_gso_type = SKB_GSO_TCPV4;
1364 inet_sk_rx_dst_set(newsk, skb);
1365
1366 newtp = tcp_sk(newsk);
1367 newinet = inet_sk(newsk);
1368 ireq = inet_rsk(req);
1369 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1370 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1371 newsk->sk_bound_dev_if = ireq->ir_iif;
1372 newinet->inet_saddr = ireq->ir_loc_addr;
1373 inet_opt = rcu_dereference(ireq->ireq_opt);
1374 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1375 newinet->mc_index = inet_iif(skb);
1376 newinet->mc_ttl = ip_hdr(skb)->ttl;
1377 newinet->rcv_tos = ip_hdr(skb)->tos;
1378 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1379 if (inet_opt)
1380 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1381 newinet->inet_id = newtp->write_seq ^ jiffies;
1382
1383 if (!dst) {
1384 dst = inet_csk_route_child_sock(sk, newsk, req);
1385 if (!dst)
1386 goto put_and_exit;
1387 } else {
1388 /* syncookie case : see end of cookie_v4_check() */
1389 }
1390 sk_setup_caps(newsk, dst);
1391
1392 tcp_ca_openreq_child(newsk, dst);
1393
1394 tcp_sync_mss(newsk, dst_mtu(dst));
1395 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1396
1397 tcp_initialize_rcv_mss(newsk);
1398
1399#ifdef CONFIG_TCP_MD5SIG
1400 /* Copy over the MD5 key from the original socket */
1401 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1402 AF_INET);
1403 if (key) {
1404 /*
1405 * We're using one, so create a matching key
1406 * on the newsk structure. If we fail to get
1407 * memory, then we end up not copying the key
1408 * across. Shucks.
1409 */
1410 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1411 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC);
1412 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1413 }
1414#endif
1415
1416 if (__inet_inherit_port(sk, newsk) < 0)
1417 goto put_and_exit;
1418 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1419 if (likely(*own_req)) {
1420 tcp_move_syn(newtp, req);
1421 ireq->ireq_opt = NULL;
1422 } else {
1423 newinet->inet_opt = NULL;
1424 }
1425 return newsk;
1426
1427exit_overflow:
1428 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1429exit_nonewsk:
1430 dst_release(dst);
1431exit:
1432 tcp_listendrop(sk);
1433 return NULL;
1434put_and_exit:
1435 newinet->inet_opt = NULL;
1436 inet_csk_prepare_forced_close(newsk);
1437 tcp_done(newsk);
1438 goto exit;
1439}
1440EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1441
1442static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1443{
1444#ifdef CONFIG_SYN_COOKIES
1445 const struct tcphdr *th = tcp_hdr(skb);
1446
1447 if (!th->syn)
1448 sk = cookie_v4_check(sk, skb);
1449#endif
1450 return sk;
1451}
1452
1453/* The socket must have it's spinlock held when we get
1454 * here, unless it is a TCP_LISTEN socket.
1455 *
1456 * We have a potential double-lock case here, so even when
1457 * doing backlog processing we use the BH locking scheme.
1458 * This is because we cannot sleep with the original spinlock
1459 * held.
1460 */
1461int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1462{
1463 struct sock *rsk;
1464
1465 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1466 struct dst_entry *dst = sk->sk_rx_dst;
1467
1468 sock_rps_save_rxhash(sk, skb);
1469 sk_mark_napi_id(sk, skb);
1470 if (dst) {
1471 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1472 !dst->ops->check(dst, 0)) {
1473 dst_release(dst);
1474 sk->sk_rx_dst = NULL;
1475 }
1476 }
1477 tcp_rcv_established(sk, skb, tcp_hdr(skb));
1478 return 0;
1479 }
1480
1481 if (tcp_checksum_complete(skb))
1482 goto csum_err;
1483
1484 if (sk->sk_state == TCP_LISTEN) {
1485 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1486
1487 if (!nsk)
1488 goto discard;
1489 if (nsk != sk) {
1490 if (tcp_child_process(sk, nsk, skb)) {
1491 rsk = nsk;
1492 goto reset;
1493 }
1494 return 0;
1495 }
1496 } else
1497 sock_rps_save_rxhash(sk, skb);
1498
1499 if (tcp_rcv_state_process(sk, skb)) {
1500 rsk = sk;
1501 goto reset;
1502 }
1503 return 0;
1504
1505reset:
1506 tcp_v4_send_reset(rsk, skb);
1507discard:
1508 kfree_skb(skb);
1509 /* Be careful here. If this function gets more complicated and
1510 * gcc suffers from register pressure on the x86, sk (in %ebx)
1511 * might be destroyed here. This current version compiles correctly,
1512 * but you have been warned.
1513 */
1514 return 0;
1515
1516csum_err:
1517 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1518 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1519 goto discard;
1520}
1521EXPORT_SYMBOL(tcp_v4_do_rcv);
1522
1523int tcp_v4_early_demux(struct sk_buff *skb)
1524{
1525 const struct iphdr *iph;
1526 const struct tcphdr *th;
1527 struct sock *sk;
1528
1529 if (skb->pkt_type != PACKET_HOST)
1530 return 0;
1531
1532 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1533 return 0;
1534
1535 iph = ip_hdr(skb);
1536 th = tcp_hdr(skb);
1537
1538 if (th->doff < sizeof(struct tcphdr) / 4)
1539 return 0;
1540
1541 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1542 iph->saddr, th->source,
1543 iph->daddr, ntohs(th->dest),
1544 skb->skb_iif, inet_sdif(skb));
1545 if (sk) {
1546 skb->sk = sk;
1547 skb->destructor = sock_edemux;
1548 if (sk_fullsock(sk)) {
1549 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1550
1551 if (dst)
1552 dst = dst_check(dst, 0);
1553 if (dst &&
1554 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1555 skb_dst_set_noref(skb, dst);
1556 }
1557 }
1558 return 0;
1559}
1560
1561bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1562{
1563 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1564
1565 /* Only socket owner can try to collapse/prune rx queues
1566 * to reduce memory overhead, so add a little headroom here.
1567 * Few sockets backlog are possibly concurrently non empty.
1568 */
1569 limit += 64*1024;
1570
1571 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1572 * we can fix skb->truesize to its real value to avoid future drops.
1573 * This is valid because skb is not yet charged to the socket.
1574 * It has been noticed pure SACK packets were sometimes dropped
1575 * (if cooked by drivers without copybreak feature).
1576 */
1577 skb_condense(skb);
1578
1579 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1580 bh_unlock_sock(sk);
1581 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1582 return true;
1583 }
1584 return false;
1585}
1586EXPORT_SYMBOL(tcp_add_backlog);
1587
1588int tcp_filter(struct sock *sk, struct sk_buff *skb)
1589{
1590 struct tcphdr *th = (struct tcphdr *)skb->data;
1591 unsigned int eaten = skb->len;
1592 int err;
1593
1594 err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1595 if (!err) {
1596 eaten -= skb->len;
1597 TCP_SKB_CB(skb)->end_seq -= eaten;
1598 }
1599 return err;
1600}
1601EXPORT_SYMBOL(tcp_filter);
1602
1603static void tcp_v4_restore_cb(struct sk_buff *skb)
1604{
1605 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1606 sizeof(struct inet_skb_parm));
1607}
1608
1609static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1610 const struct tcphdr *th)
1611{
1612 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1613 * barrier() makes sure compiler wont play fool^Waliasing games.
1614 */
1615 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1616 sizeof(struct inet_skb_parm));
1617 barrier();
1618
1619 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1620 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1621 skb->len - th->doff * 4);
1622 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1623 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1624 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1625 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1626 TCP_SKB_CB(skb)->sacked = 0;
1627 TCP_SKB_CB(skb)->has_rxtstamp =
1628 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1629}
1630
1631/*
1632 * From tcp_input.c
1633 */
1634
1635int tcp_v4_rcv(struct sk_buff *skb)
1636{
1637 struct net *net = dev_net(skb->dev);
1638 int sdif = inet_sdif(skb);
1639 const struct iphdr *iph;
1640 const struct tcphdr *th;
1641 bool refcounted;
1642 struct sock *sk;
1643 int ret;
1644
1645 if (skb->pkt_type != PACKET_HOST)
1646 goto discard_it;
1647
1648 /* Count it even if it's bad */
1649 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1650
1651 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1652 goto discard_it;
1653
1654 th = (const struct tcphdr *)skb->data;
1655
1656 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1657 goto bad_packet;
1658 if (!pskb_may_pull(skb, th->doff * 4))
1659 goto discard_it;
1660
1661 /* An explanation is required here, I think.
1662 * Packet length and doff are validated by header prediction,
1663 * provided case of th->doff==0 is eliminated.
1664 * So, we defer the checks. */
1665
1666 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1667 goto csum_error;
1668
1669 th = (const struct tcphdr *)skb->data;
1670 iph = ip_hdr(skb);
1671lookup:
1672 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1673 th->dest, sdif, &refcounted);
1674 if (!sk)
1675 goto no_tcp_socket;
1676
1677process:
1678 if (sk->sk_state == TCP_TIME_WAIT)
1679 goto do_time_wait;
1680
1681 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1682 struct request_sock *req = inet_reqsk(sk);
1683 bool req_stolen = false;
1684 struct sock *nsk;
1685
1686 sk = req->rsk_listener;
1687 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1688 sk_drops_add(sk, skb);
1689 reqsk_put(req);
1690 goto discard_it;
1691 }
1692 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1693 inet_csk_reqsk_queue_drop_and_put(sk, req);
1694 goto lookup;
1695 }
1696 /* We own a reference on the listener, increase it again
1697 * as we might lose it too soon.
1698 */
1699 sock_hold(sk);
1700 refcounted = true;
1701 nsk = NULL;
1702 if (!tcp_filter(sk, skb)) {
1703 th = (const struct tcphdr *)skb->data;
1704 iph = ip_hdr(skb);
1705 tcp_v4_fill_cb(skb, iph, th);
1706 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1707 }
1708 if (!nsk) {
1709 reqsk_put(req);
1710 if (req_stolen) {
1711 /* Another cpu got exclusive access to req
1712 * and created a full blown socket.
1713 * Try to feed this packet to this socket
1714 * instead of discarding it.
1715 */
1716 tcp_v4_restore_cb(skb);
1717 sock_put(sk);
1718 goto lookup;
1719 }
1720 goto discard_and_relse;
1721 }
1722 if (nsk == sk) {
1723 reqsk_put(req);
1724 tcp_v4_restore_cb(skb);
1725 } else if (tcp_child_process(sk, nsk, skb)) {
1726 tcp_v4_send_reset(nsk, skb);
1727 goto discard_and_relse;
1728 } else {
1729 sock_put(sk);
1730 return 0;
1731 }
1732 }
1733 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1734 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1735 goto discard_and_relse;
1736 }
1737
1738 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1739 goto discard_and_relse;
1740
1741 if (tcp_v4_inbound_md5_hash(sk, skb))
1742 goto discard_and_relse;
1743
1744 nf_reset(skb);
1745
1746 if (tcp_filter(sk, skb))
1747 goto discard_and_relse;
1748 th = (const struct tcphdr *)skb->data;
1749 iph = ip_hdr(skb);
1750 tcp_v4_fill_cb(skb, iph, th);
1751
1752 skb->dev = NULL;
1753
1754 if (sk->sk_state == TCP_LISTEN) {
1755 ret = tcp_v4_do_rcv(sk, skb);
1756 goto put_and_return;
1757 }
1758
1759 sk_incoming_cpu_update(sk);
1760
1761 bh_lock_sock_nested(sk);
1762 tcp_segs_in(tcp_sk(sk), skb);
1763 ret = 0;
1764 if (!sock_owned_by_user(sk)) {
1765 ret = tcp_v4_do_rcv(sk, skb);
1766 } else if (tcp_add_backlog(sk, skb)) {
1767 goto discard_and_relse;
1768 }
1769 bh_unlock_sock(sk);
1770
1771put_and_return:
1772 if (refcounted)
1773 sock_put(sk);
1774
1775 return ret;
1776
1777no_tcp_socket:
1778 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1779 goto discard_it;
1780
1781 tcp_v4_fill_cb(skb, iph, th);
1782
1783 if (tcp_checksum_complete(skb)) {
1784csum_error:
1785 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1786bad_packet:
1787 __TCP_INC_STATS(net, TCP_MIB_INERRS);
1788 } else {
1789 tcp_v4_send_reset(NULL, skb);
1790 }
1791
1792discard_it:
1793 /* Discard frame. */
1794 kfree_skb(skb);
1795 return 0;
1796
1797discard_and_relse:
1798 sk_drops_add(sk, skb);
1799 if (refcounted)
1800 sock_put(sk);
1801 goto discard_it;
1802
1803do_time_wait:
1804 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1805 inet_twsk_put(inet_twsk(sk));
1806 goto discard_it;
1807 }
1808
1809 tcp_v4_fill_cb(skb, iph, th);
1810
1811 if (tcp_checksum_complete(skb)) {
1812 inet_twsk_put(inet_twsk(sk));
1813 goto csum_error;
1814 }
1815 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1816 case TCP_TW_SYN: {
1817 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1818 &tcp_hashinfo, skb,
1819 __tcp_hdrlen(th),
1820 iph->saddr, th->source,
1821 iph->daddr, th->dest,
1822 inet_iif(skb),
1823 sdif);
1824 if (sk2) {
1825 inet_twsk_deschedule_put(inet_twsk(sk));
1826 sk = sk2;
1827 tcp_v4_restore_cb(skb);
1828 refcounted = false;
1829 goto process;
1830 }
1831 }
1832 /* to ACK */
1833 /* fall through */
1834 case TCP_TW_ACK:
1835 tcp_v4_timewait_ack(sk, skb);
1836 break;
1837 case TCP_TW_RST:
1838 tcp_v4_send_reset(sk, skb);
1839 inet_twsk_deschedule_put(inet_twsk(sk));
1840 goto discard_it;
1841 case TCP_TW_SUCCESS:;
1842 }
1843 goto discard_it;
1844}
1845
1846static struct timewait_sock_ops tcp_timewait_sock_ops = {
1847 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1848 .twsk_unique = tcp_twsk_unique,
1849 .twsk_destructor= tcp_twsk_destructor,
1850};
1851
1852void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1853{
1854 struct dst_entry *dst = skb_dst(skb);
1855
1856 if (dst && dst_hold_safe(dst)) {
1857 sk->sk_rx_dst = dst;
1858 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1859 }
1860}
1861EXPORT_SYMBOL(inet_sk_rx_dst_set);
1862
1863const struct inet_connection_sock_af_ops ipv4_specific = {
1864 .queue_xmit = ip_queue_xmit,
1865 .send_check = tcp_v4_send_check,
1866 .rebuild_header = inet_sk_rebuild_header,
1867 .sk_rx_dst_set = inet_sk_rx_dst_set,
1868 .conn_request = tcp_v4_conn_request,
1869 .syn_recv_sock = tcp_v4_syn_recv_sock,
1870 .net_header_len = sizeof(struct iphdr),
1871 .setsockopt = ip_setsockopt,
1872 .getsockopt = ip_getsockopt,
1873 .addr2sockaddr = inet_csk_addr2sockaddr,
1874 .sockaddr_len = sizeof(struct sockaddr_in),
1875#ifdef CONFIG_COMPAT
1876 .compat_setsockopt = compat_ip_setsockopt,
1877 .compat_getsockopt = compat_ip_getsockopt,
1878#endif
1879 .mtu_reduced = tcp_v4_mtu_reduced,
1880};
1881EXPORT_SYMBOL(ipv4_specific);
1882
1883#ifdef CONFIG_TCP_MD5SIG
1884static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1885 .md5_lookup = tcp_v4_md5_lookup,
1886 .calc_md5_hash = tcp_v4_md5_hash_skb,
1887 .md5_parse = tcp_v4_parse_md5_keys,
1888};
1889#endif
1890
1891/* NOTE: A lot of things set to zero explicitly by call to
1892 * sk_alloc() so need not be done here.
1893 */
1894static int tcp_v4_init_sock(struct sock *sk)
1895{
1896 struct inet_connection_sock *icsk = inet_csk(sk);
1897
1898 tcp_init_sock(sk);
1899
1900 icsk->icsk_af_ops = &ipv4_specific;
1901
1902#ifdef CONFIG_TCP_MD5SIG
1903 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1904#endif
1905
1906 return 0;
1907}
1908
1909void tcp_v4_destroy_sock(struct sock *sk)
1910{
1911 struct tcp_sock *tp = tcp_sk(sk);
1912
1913 trace_tcp_destroy_sock(sk);
1914
1915 tcp_clear_xmit_timers(sk);
1916
1917 tcp_cleanup_congestion_control(sk);
1918
1919 tcp_cleanup_ulp(sk);
1920
1921 /* Cleanup up the write buffer. */
1922 tcp_write_queue_purge(sk);
1923
1924 /* Check if we want to disable active TFO */
1925 tcp_fastopen_active_disable_ofo_check(sk);
1926
1927 /* Cleans up our, hopefully empty, out_of_order_queue. */
1928 skb_rbtree_purge(&tp->out_of_order_queue);
1929
1930#ifdef CONFIG_TCP_MD5SIG
1931 /* Clean up the MD5 key list, if any */
1932 if (tp->md5sig_info) {
1933 tcp_clear_md5_list(sk);
1934 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
1935 tp->md5sig_info = NULL;
1936 }
1937#endif
1938
1939 /* Clean up a referenced TCP bind bucket. */
1940 if (inet_csk(sk)->icsk_bind_hash)
1941 inet_put_port(sk);
1942
1943 BUG_ON(tp->fastopen_rsk);
1944
1945 /* If socket is aborted during connect operation */
1946 tcp_free_fastopen_req(tp);
1947 tcp_fastopen_destroy_cipher(sk);
1948 tcp_saved_syn_free(tp);
1949
1950 sk_sockets_allocated_dec(sk);
1951}
1952EXPORT_SYMBOL(tcp_v4_destroy_sock);
1953
1954#ifdef CONFIG_PROC_FS
1955/* Proc filesystem TCP sock list dumping. */
1956
1957/*
1958 * Get next listener socket follow cur. If cur is NULL, get first socket
1959 * starting from bucket given in st->bucket; when st->bucket is zero the
1960 * very first socket in the hash table is returned.
1961 */
1962static void *listening_get_next(struct seq_file *seq, void *cur)
1963{
1964 struct tcp_iter_state *st = seq->private;
1965 struct net *net = seq_file_net(seq);
1966 struct inet_listen_hashbucket *ilb;
1967 struct sock *sk = cur;
1968
1969 if (!sk) {
1970get_head:
1971 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1972 spin_lock(&ilb->lock);
1973 sk = sk_head(&ilb->head);
1974 st->offset = 0;
1975 goto get_sk;
1976 }
1977 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1978 ++st->num;
1979 ++st->offset;
1980
1981 sk = sk_next(sk);
1982get_sk:
1983 sk_for_each_from(sk) {
1984 if (!net_eq(sock_net(sk), net))
1985 continue;
1986 if (sk->sk_family == st->family)
1987 return sk;
1988 }
1989 spin_unlock(&ilb->lock);
1990 st->offset = 0;
1991 if (++st->bucket < INET_LHTABLE_SIZE)
1992 goto get_head;
1993 return NULL;
1994}
1995
1996static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1997{
1998 struct tcp_iter_state *st = seq->private;
1999 void *rc;
2000
2001 st->bucket = 0;
2002 st->offset = 0;
2003 rc = listening_get_next(seq, NULL);
2004
2005 while (rc && *pos) {
2006 rc = listening_get_next(seq, rc);
2007 --*pos;
2008 }
2009 return rc;
2010}
2011
2012static inline bool empty_bucket(const struct tcp_iter_state *st)
2013{
2014 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2015}
2016
2017/*
2018 * Get first established socket starting from bucket given in st->bucket.
2019 * If st->bucket is zero, the very first socket in the hash is returned.
2020 */
2021static void *established_get_first(struct seq_file *seq)
2022{
2023 struct tcp_iter_state *st = seq->private;
2024 struct net *net = seq_file_net(seq);
2025 void *rc = NULL;
2026
2027 st->offset = 0;
2028 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2029 struct sock *sk;
2030 struct hlist_nulls_node *node;
2031 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2032
2033 /* Lockless fast path for the common case of empty buckets */
2034 if (empty_bucket(st))
2035 continue;
2036
2037 spin_lock_bh(lock);
2038 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2039 if (sk->sk_family != st->family ||
2040 !net_eq(sock_net(sk), net)) {
2041 continue;
2042 }
2043 rc = sk;
2044 goto out;
2045 }
2046 spin_unlock_bh(lock);
2047 }
2048out:
2049 return rc;
2050}
2051
2052static void *established_get_next(struct seq_file *seq, void *cur)
2053{
2054 struct sock *sk = cur;
2055 struct hlist_nulls_node *node;
2056 struct tcp_iter_state *st = seq->private;
2057 struct net *net = seq_file_net(seq);
2058
2059 ++st->num;
2060 ++st->offset;
2061
2062 sk = sk_nulls_next(sk);
2063
2064 sk_nulls_for_each_from(sk, node) {
2065 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2066 return sk;
2067 }
2068
2069 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2070 ++st->bucket;
2071 return established_get_first(seq);
2072}
2073
2074static void *established_get_idx(struct seq_file *seq, loff_t pos)
2075{
2076 struct tcp_iter_state *st = seq->private;
2077 void *rc;
2078
2079 st->bucket = 0;
2080 rc = established_get_first(seq);
2081
2082 while (rc && pos) {
2083 rc = established_get_next(seq, rc);
2084 --pos;
2085 }
2086 return rc;
2087}
2088
2089static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2090{
2091 void *rc;
2092 struct tcp_iter_state *st = seq->private;
2093
2094 st->state = TCP_SEQ_STATE_LISTENING;
2095 rc = listening_get_idx(seq, &pos);
2096
2097 if (!rc) {
2098 st->state = TCP_SEQ_STATE_ESTABLISHED;
2099 rc = established_get_idx(seq, pos);
2100 }
2101
2102 return rc;
2103}
2104
2105static void *tcp_seek_last_pos(struct seq_file *seq)
2106{
2107 struct tcp_iter_state *st = seq->private;
2108 int offset = st->offset;
2109 int orig_num = st->num;
2110 void *rc = NULL;
2111
2112 switch (st->state) {
2113 case TCP_SEQ_STATE_LISTENING:
2114 if (st->bucket >= INET_LHTABLE_SIZE)
2115 break;
2116 st->state = TCP_SEQ_STATE_LISTENING;
2117 rc = listening_get_next(seq, NULL);
2118 while (offset-- && rc)
2119 rc = listening_get_next(seq, rc);
2120 if (rc)
2121 break;
2122 st->bucket = 0;
2123 st->state = TCP_SEQ_STATE_ESTABLISHED;
2124 /* Fallthrough */
2125 case TCP_SEQ_STATE_ESTABLISHED:
2126 if (st->bucket > tcp_hashinfo.ehash_mask)
2127 break;
2128 rc = established_get_first(seq);
2129 while (offset-- && rc)
2130 rc = established_get_next(seq, rc);
2131 }
2132
2133 st->num = orig_num;
2134
2135 return rc;
2136}
2137
2138static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2139{
2140 struct tcp_iter_state *st = seq->private;
2141 void *rc;
2142
2143 if (*pos && *pos == st->last_pos) {
2144 rc = tcp_seek_last_pos(seq);
2145 if (rc)
2146 goto out;
2147 }
2148
2149 st->state = TCP_SEQ_STATE_LISTENING;
2150 st->num = 0;
2151 st->bucket = 0;
2152 st->offset = 0;
2153 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2154
2155out:
2156 st->last_pos = *pos;
2157 return rc;
2158}
2159
2160static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2161{
2162 struct tcp_iter_state *st = seq->private;
2163 void *rc = NULL;
2164
2165 if (v == SEQ_START_TOKEN) {
2166 rc = tcp_get_idx(seq, 0);
2167 goto out;
2168 }
2169
2170 switch (st->state) {
2171 case TCP_SEQ_STATE_LISTENING:
2172 rc = listening_get_next(seq, v);
2173 if (!rc) {
2174 st->state = TCP_SEQ_STATE_ESTABLISHED;
2175 st->bucket = 0;
2176 st->offset = 0;
2177 rc = established_get_first(seq);
2178 }
2179 break;
2180 case TCP_SEQ_STATE_ESTABLISHED:
2181 rc = established_get_next(seq, v);
2182 break;
2183 }
2184out:
2185 ++*pos;
2186 st->last_pos = *pos;
2187 return rc;
2188}
2189
2190static void tcp_seq_stop(struct seq_file *seq, void *v)
2191{
2192 struct tcp_iter_state *st = seq->private;
2193
2194 switch (st->state) {
2195 case TCP_SEQ_STATE_LISTENING:
2196 if (v != SEQ_START_TOKEN)
2197 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2198 break;
2199 case TCP_SEQ_STATE_ESTABLISHED:
2200 if (v)
2201 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2202 break;
2203 }
2204}
2205
2206int tcp_seq_open(struct inode *inode, struct file *file)
2207{
2208 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2209 struct tcp_iter_state *s;
2210 int err;
2211
2212 err = seq_open_net(inode, file, &afinfo->seq_ops,
2213 sizeof(struct tcp_iter_state));
2214 if (err < 0)
2215 return err;
2216
2217 s = ((struct seq_file *)file->private_data)->private;
2218 s->family = afinfo->family;
2219 s->last_pos = 0;
2220 return 0;
2221}
2222EXPORT_SYMBOL(tcp_seq_open);
2223
2224int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2225{
2226 int rc = 0;
2227 struct proc_dir_entry *p;
2228
2229 afinfo->seq_ops.start = tcp_seq_start;
2230 afinfo->seq_ops.next = tcp_seq_next;
2231 afinfo->seq_ops.stop = tcp_seq_stop;
2232
2233 p = proc_create_data(afinfo->name, 0444, net->proc_net,
2234 afinfo->seq_fops, afinfo);
2235 if (!p)
2236 rc = -ENOMEM;
2237 return rc;
2238}
2239EXPORT_SYMBOL(tcp_proc_register);
2240
2241void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2242{
2243 remove_proc_entry(afinfo->name, net->proc_net);
2244}
2245EXPORT_SYMBOL(tcp_proc_unregister);
2246
2247static void get_openreq4(const struct request_sock *req,
2248 struct seq_file *f, int i)
2249{
2250 const struct inet_request_sock *ireq = inet_rsk(req);
2251 long delta = req->rsk_timer.expires - jiffies;
2252
2253 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2254 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2255 i,
2256 ireq->ir_loc_addr,
2257 ireq->ir_num,
2258 ireq->ir_rmt_addr,
2259 ntohs(ireq->ir_rmt_port),
2260 TCP_SYN_RECV,
2261 0, 0, /* could print option size, but that is af dependent. */
2262 1, /* timers active (only the expire timer) */
2263 jiffies_delta_to_clock_t(delta),
2264 req->num_timeout,
2265 from_kuid_munged(seq_user_ns(f),
2266 sock_i_uid(req->rsk_listener)),
2267 0, /* non standard timer */
2268 0, /* open_requests have no inode */
2269 0,
2270 req);
2271}
2272
2273static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2274{
2275 int timer_active;
2276 unsigned long timer_expires;
2277 const struct tcp_sock *tp = tcp_sk(sk);
2278 const struct inet_connection_sock *icsk = inet_csk(sk);
2279 const struct inet_sock *inet = inet_sk(sk);
2280 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2281 __be32 dest = inet->inet_daddr;
2282 __be32 src = inet->inet_rcv_saddr;
2283 __u16 destp = ntohs(inet->inet_dport);
2284 __u16 srcp = ntohs(inet->inet_sport);
2285 int rx_queue;
2286 int state;
2287
2288 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2289 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2290 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2291 timer_active = 1;
2292 timer_expires = icsk->icsk_timeout;
2293 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2294 timer_active = 4;
2295 timer_expires = icsk->icsk_timeout;
2296 } else if (timer_pending(&sk->sk_timer)) {
2297 timer_active = 2;
2298 timer_expires = sk->sk_timer.expires;
2299 } else {
2300 timer_active = 0;
2301 timer_expires = jiffies;
2302 }
2303
2304 state = inet_sk_state_load(sk);
2305 if (state == TCP_LISTEN)
2306 rx_queue = sk->sk_ack_backlog;
2307 else
2308 /* Because we don't lock the socket,
2309 * we might find a transient negative value.
2310 */
2311 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2312
2313 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2314 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2315 i, src, srcp, dest, destp, state,
2316 tp->write_seq - tp->snd_una,
2317 rx_queue,
2318 timer_active,
2319 jiffies_delta_to_clock_t(timer_expires - jiffies),
2320 icsk->icsk_retransmits,
2321 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2322 icsk->icsk_probes_out,
2323 sock_i_ino(sk),
2324 refcount_read(&sk->sk_refcnt), sk,
2325 jiffies_to_clock_t(icsk->icsk_rto),
2326 jiffies_to_clock_t(icsk->icsk_ack.ato),
2327 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2328 tp->snd_cwnd,
2329 state == TCP_LISTEN ?
2330 fastopenq->max_qlen :
2331 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2332}
2333
2334static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2335 struct seq_file *f, int i)
2336{
2337 long delta = tw->tw_timer.expires - jiffies;
2338 __be32 dest, src;
2339 __u16 destp, srcp;
2340
2341 dest = tw->tw_daddr;
2342 src = tw->tw_rcv_saddr;
2343 destp = ntohs(tw->tw_dport);
2344 srcp = ntohs(tw->tw_sport);
2345
2346 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2347 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2348 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2349 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2350 refcount_read(&tw->tw_refcnt), tw);
2351}
2352
2353#define TMPSZ 150
2354
2355static int tcp4_seq_show(struct seq_file *seq, void *v)
2356{
2357 struct tcp_iter_state *st;
2358 struct sock *sk = v;
2359
2360 seq_setwidth(seq, TMPSZ - 1);
2361 if (v == SEQ_START_TOKEN) {
2362 seq_puts(seq, " sl local_address rem_address st tx_queue "
2363 "rx_queue tr tm->when retrnsmt uid timeout "
2364 "inode");
2365 goto out;
2366 }
2367 st = seq->private;
2368
2369 if (sk->sk_state == TCP_TIME_WAIT)
2370 get_timewait4_sock(v, seq, st->num);
2371 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2372 get_openreq4(v, seq, st->num);
2373 else
2374 get_tcp4_sock(v, seq, st->num);
2375out:
2376 seq_pad(seq, '\n');
2377 return 0;
2378}
2379
2380static const struct file_operations tcp_afinfo_seq_fops = {
2381 .open = tcp_seq_open,
2382 .read = seq_read,
2383 .llseek = seq_lseek,
2384 .release = seq_release_net
2385};
2386
2387static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2388 .name = "tcp",
2389 .family = AF_INET,
2390 .seq_fops = &tcp_afinfo_seq_fops,
2391 .seq_ops = {
2392 .show = tcp4_seq_show,
2393 },
2394};
2395
2396static int __net_init tcp4_proc_init_net(struct net *net)
2397{
2398 return tcp_proc_register(net, &tcp4_seq_afinfo);
2399}
2400
2401static void __net_exit tcp4_proc_exit_net(struct net *net)
2402{
2403 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2404}
2405
2406static struct pernet_operations tcp4_net_ops = {
2407 .init = tcp4_proc_init_net,
2408 .exit = tcp4_proc_exit_net,
2409};
2410
2411int __init tcp4_proc_init(void)
2412{
2413 return register_pernet_subsys(&tcp4_net_ops);
2414}
2415
2416void tcp4_proc_exit(void)
2417{
2418 unregister_pernet_subsys(&tcp4_net_ops);
2419}
2420#endif /* CONFIG_PROC_FS */
2421
2422struct proto tcp_prot = {
2423 .name = "TCP",
2424 .owner = THIS_MODULE,
2425 .close = tcp_close,
2426 .pre_connect = tcp_v4_pre_connect,
2427 .connect = tcp_v4_connect,
2428 .disconnect = tcp_disconnect,
2429 .accept = inet_csk_accept,
2430 .ioctl = tcp_ioctl,
2431 .init = tcp_v4_init_sock,
2432 .destroy = tcp_v4_destroy_sock,
2433 .shutdown = tcp_shutdown,
2434 .setsockopt = tcp_setsockopt,
2435 .getsockopt = tcp_getsockopt,
2436 .keepalive = tcp_set_keepalive,
2437 .recvmsg = tcp_recvmsg,
2438 .sendmsg = tcp_sendmsg,
2439 .sendpage = tcp_sendpage,
2440 .backlog_rcv = tcp_v4_do_rcv,
2441 .release_cb = tcp_release_cb,
2442 .hash = inet_hash,
2443 .unhash = inet_unhash,
2444 .get_port = inet_csk_get_port,
2445 .enter_memory_pressure = tcp_enter_memory_pressure,
2446 .leave_memory_pressure = tcp_leave_memory_pressure,
2447 .stream_memory_free = tcp_stream_memory_free,
2448 .sockets_allocated = &tcp_sockets_allocated,
2449 .orphan_count = &tcp_orphan_count,
2450 .memory_allocated = &tcp_memory_allocated,
2451 .memory_pressure = &tcp_memory_pressure,
2452 .sysctl_mem = sysctl_tcp_mem,
2453 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2454 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2455 .max_header = MAX_TCP_HEADER,
2456 .obj_size = sizeof(struct tcp_sock),
2457 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2458 .twsk_prot = &tcp_timewait_sock_ops,
2459 .rsk_prot = &tcp_request_sock_ops,
2460 .h.hashinfo = &tcp_hashinfo,
2461 .no_autobind = true,
2462#ifdef CONFIG_COMPAT
2463 .compat_setsockopt = compat_tcp_setsockopt,
2464 .compat_getsockopt = compat_tcp_getsockopt,
2465#endif
2466 .diag_destroy = tcp_abort,
2467};
2468EXPORT_SYMBOL(tcp_prot);
2469
2470static void __net_exit tcp_sk_exit(struct net *net)
2471{
2472 int cpu;
2473
2474 module_put(net->ipv4.tcp_congestion_control->owner);
2475
2476 for_each_possible_cpu(cpu)
2477 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2478 free_percpu(net->ipv4.tcp_sk);
2479}
2480
2481static int __net_init tcp_sk_init(struct net *net)
2482{
2483 int res, cpu, cnt;
2484
2485 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2486 if (!net->ipv4.tcp_sk)
2487 return -ENOMEM;
2488
2489 for_each_possible_cpu(cpu) {
2490 struct sock *sk;
2491
2492 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2493 IPPROTO_TCP, net);
2494 if (res)
2495 goto fail;
2496 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2497 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2498 }
2499
2500 net->ipv4.sysctl_tcp_ecn = 2;
2501 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2502
2503 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2504 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2505 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2506
2507 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2508 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2509 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2510
2511 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2512 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2513 net->ipv4.sysctl_tcp_syncookies = 1;
2514 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2515 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2516 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2517 net->ipv4.sysctl_tcp_orphan_retries = 0;
2518 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2519 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2520 net->ipv4.sysctl_tcp_tw_reuse = 0;
2521
2522 cnt = tcp_hashinfo.ehash_mask + 1;
2523 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2;
2524 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2525
2526 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2527 net->ipv4.sysctl_tcp_sack = 1;
2528 net->ipv4.sysctl_tcp_window_scaling = 1;
2529 net->ipv4.sysctl_tcp_timestamps = 1;
2530 net->ipv4.sysctl_tcp_early_retrans = 3;
2531 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2532 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2533 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2534 net->ipv4.sysctl_tcp_max_reordering = 300;
2535 net->ipv4.sysctl_tcp_dsack = 1;
2536 net->ipv4.sysctl_tcp_app_win = 31;
2537 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2538 net->ipv4.sysctl_tcp_frto = 2;
2539 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2540 /* This limits the percentage of the congestion window which we
2541 * will allow a single TSO frame to consume. Building TSO frames
2542 * which are too large can cause TCP streams to be bursty.
2543 */
2544 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2545 /* Default TSQ limit of four TSO segments */
2546 net->ipv4.sysctl_tcp_limit_output_bytes = 262144;
2547 /* rfc5961 challenge ack rate limiting */
2548 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2549 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2550 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2551 net->ipv4.sysctl_tcp_autocorking = 1;
2552 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2553 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2554 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2555 if (net != &init_net) {
2556 memcpy(net->ipv4.sysctl_tcp_rmem,
2557 init_net.ipv4.sysctl_tcp_rmem,
2558 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2559 memcpy(net->ipv4.sysctl_tcp_wmem,
2560 init_net.ipv4.sysctl_tcp_wmem,
2561 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2562 }
2563 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2564 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2565 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2566 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2567
2568 /* Reno is always built in */
2569 if (!net_eq(net, &init_net) &&
2570 try_module_get(init_net.ipv4.tcp_congestion_control->owner))
2571 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2572 else
2573 net->ipv4.tcp_congestion_control = &tcp_reno;
2574
2575 return 0;
2576fail:
2577 tcp_sk_exit(net);
2578
2579 return res;
2580}
2581
2582static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2583{
2584 struct net *net;
2585
2586 inet_twsk_purge(&tcp_hashinfo, AF_INET);
2587
2588 list_for_each_entry(net, net_exit_list, exit_list)
2589 tcp_fastopen_ctx_destroy(net);
2590}
2591
2592static struct pernet_operations __net_initdata tcp_sk_ops = {
2593 .init = tcp_sk_init,
2594 .exit = tcp_sk_exit,
2595 .exit_batch = tcp_sk_exit_batch,
2596};
2597
2598void __init tcp_v4_init(void)
2599{
2600 if (register_pernet_subsys(&tcp_sk_ops))
2601 panic("Failed to create the TCP control socket.\n");
2602}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78
79#include <linux/inet.h>
80#include <linux/ipv6.h>
81#include <linux/stddef.h>
82#include <linux/proc_fs.h>
83#include <linux/seq_file.h>
84
85#include <linux/crypto.h>
86#include <linux/scatterlist.h>
87
88int sysctl_tcp_tw_reuse __read_mostly;
89int sysctl_tcp_low_latency __read_mostly;
90EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93#ifdef CONFIG_TCP_MD5SIG
94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96#endif
97
98struct inet_hashinfo tcp_hashinfo;
99EXPORT_SYMBOL(tcp_hashinfo);
100
101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102{
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107}
108
109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110{
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138}
139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141static int tcp_repair_connect(struct sock *sk)
142{
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147}
148
149/* This will initiate an outgoing connection. */
150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151{
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214 /*
215 * VJ's idea. We save last timestamp seen from
216 * the destination in peer table, when entering state
217 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218 * when trying new connection.
219 */
220 if (peer) {
221 inet_peer_refcheck(peer);
222 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224 tp->rx_opt.ts_recent = peer->tcp_ts;
225 }
226 }
227 }
228
229 inet->inet_dport = usin->sin_port;
230 inet->inet_daddr = daddr;
231
232 inet_csk(sk)->icsk_ext_hdr_len = 0;
233 if (inet_opt)
234 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238 /* Socket identity is still unknown (sport may be zero).
239 * However we set state to SYN-SENT and not releasing socket
240 * lock select source port, enter ourselves into the hash tables and
241 * complete initialization after this.
242 */
243 tcp_set_state(sk, TCP_SYN_SENT);
244 err = inet_hash_connect(&tcp_death_row, sk);
245 if (err)
246 goto failure;
247
248 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249 inet->inet_sport, inet->inet_dport, sk);
250 if (IS_ERR(rt)) {
251 err = PTR_ERR(rt);
252 rt = NULL;
253 goto failure;
254 }
255 /* OK, now commit destination to socket. */
256 sk->sk_gso_type = SKB_GSO_TCPV4;
257 sk_setup_caps(sk, &rt->dst);
258
259 if (!tp->write_seq && likely(!tp->repair))
260 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261 inet->inet_daddr,
262 inet->inet_sport,
263 usin->sin_port);
264
265 inet->inet_id = tp->write_seq ^ jiffies;
266
267 if (likely(!tp->repair))
268 err = tcp_connect(sk);
269 else
270 err = tcp_repair_connect(sk);
271
272 rt = NULL;
273 if (err)
274 goto failure;
275
276 return 0;
277
278failure:
279 /*
280 * This unhashes the socket and releases the local port,
281 * if necessary.
282 */
283 tcp_set_state(sk, TCP_CLOSE);
284 ip_rt_put(rt);
285 sk->sk_route_caps = 0;
286 inet->inet_dport = 0;
287 return err;
288}
289EXPORT_SYMBOL(tcp_v4_connect);
290
291/*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295{
296 struct dst_entry *dst;
297 struct inet_sock *inet = inet_sk(sk);
298
299 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300 * send out by Linux are always <576bytes so they should go through
301 * unfragmented).
302 */
303 if (sk->sk_state == TCP_LISTEN)
304 return;
305
306 /* We don't check in the destentry if pmtu discovery is forbidden
307 * on this route. We just assume that no packet_to_big packets
308 * are send back when pmtu discovery is not active.
309 * There is a small race when the user changes this flag in the
310 * route, but I think that's acceptable.
311 */
312 if ((dst = __sk_dst_check(sk, 0)) == NULL)
313 return;
314
315 dst->ops->update_pmtu(dst, mtu);
316
317 /* Something is about to be wrong... Remember soft error
318 * for the case, if this connection will not able to recover.
319 */
320 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321 sk->sk_err_soft = EMSGSIZE;
322
323 mtu = dst_mtu(dst);
324
325 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327 tcp_sync_mss(sk, mtu);
328
329 /* Resend the TCP packet because it's
330 * clear that the old packet has been
331 * dropped. This is the new "fast" path mtu
332 * discovery.
333 */
334 tcp_simple_retransmit(sk);
335 } /* else let the usual retransmit timer handle it */
336}
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355{
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 __u32 seq;
366 __u32 remaining;
367 int err;
368 struct net *net = dev_net(icmp_skb->dev);
369
370 if (icmp_skb->len < (iph->ihl << 2) + 8) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374
375 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376 iph->saddr, th->source, inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385
386 bh_lock_sock(sk);
387 /* If too many ICMPs get dropped on busy
388 * servers this needs to be solved differently.
389 */
390 if (sock_owned_by_user(sk))
391 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393 if (sk->sk_state == TCP_CLOSE)
394 goto out;
395
396 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398 goto out;
399 }
400
401 icsk = inet_csk(sk);
402 tp = tcp_sk(sk);
403 seq = ntohl(th->seq);
404 if (sk->sk_state != TCP_LISTEN &&
405 !between(seq, tp->snd_una, tp->snd_nxt)) {
406 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407 goto out;
408 }
409
410 switch (type) {
411 case ICMP_SOURCE_QUENCH:
412 /* Just silently ignore these. */
413 goto out;
414 case ICMP_PARAMETERPROB:
415 err = EPROTO;
416 break;
417 case ICMP_DEST_UNREACH:
418 if (code > NR_ICMP_UNREACH)
419 goto out;
420
421 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422 if (!sock_owned_by_user(sk))
423 do_pmtu_discovery(sk, iph, info);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540}
541
542static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544{
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557}
558
559/* This routine computes an IPv4 TCP checksum. */
560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561{
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565}
566EXPORT_SYMBOL(tcp_v4_send_check);
567
568int tcp_v4_gso_send_check(struct sk_buff *skb)
569{
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583}
584
585/*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599{
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603#ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605#endif
606 } rep;
607 struct ip_reply_arg arg;
608#ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614#endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643#ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687#endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702 &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707#ifdef CONFIG_TCP_MD5SIG
708release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713#endif
714}
715
716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724{
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729#ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731#endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760#ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775#endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785 &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788}
789
790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791{
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805}
806
807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809{
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818}
819
820/*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping)
829{
830 const struct inet_request_sock *ireq = inet_rsk(req);
831 struct flowi4 fl4;
832 int err = -1;
833 struct sk_buff * skb;
834
835 /* First, grab a route. */
836 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
837 return -1;
838
839 skb = tcp_make_synack(sk, dst, req, rvp);
840
841 if (skb) {
842 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
843
844 skb_set_queue_mapping(skb, queue_mapping);
845 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
846 ireq->rmt_addr,
847 ireq->opt);
848 err = net_xmit_eval(err);
849 }
850
851 dst_release(dst);
852 return err;
853}
854
855static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856 struct request_values *rvp)
857{
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
860}
861
862/*
863 * IPv4 request_sock destructor.
864 */
865static void tcp_v4_reqsk_destructor(struct request_sock *req)
866{
867 kfree(inet_rsk(req)->opt);
868}
869
870/*
871 * Return true if a syncookie should be sent
872 */
873bool tcp_syn_flood_action(struct sock *sk,
874 const struct sk_buff *skb,
875 const char *proto)
876{
877 const char *msg = "Dropping request";
878 bool want_cookie = false;
879 struct listen_sock *lopt;
880
881
882
883#ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889#endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899}
900EXPORT_SYMBOL(tcp_syn_flood_action);
901
902/*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906 struct sk_buff *skb)
907{
908 const struct ip_options *opt = &(IPCB(skb)->opt);
909 struct ip_options_rcu *dopt = NULL;
910
911 if (opt && opt->optlen) {
912 int opt_size = sizeof(*dopt) + opt->optlen;
913
914 dopt = kmalloc(opt_size, GFP_ATOMIC);
915 if (dopt) {
916 if (ip_options_echo(&dopt->opt, skb)) {
917 kfree(dopt);
918 dopt = NULL;
919 }
920 }
921 }
922 return dopt;
923}
924
925#ifdef CONFIG_TCP_MD5SIG
926/*
927 * RFC2385 MD5 checksumming requires a mapping of
928 * IP address->MD5 Key.
929 * We need to maintain these in the sk structure.
930 */
931
932/* Find the Key structure for an address. */
933struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934 const union tcp_md5_addr *addr,
935 int family)
936{
937 struct tcp_sock *tp = tcp_sk(sk);
938 struct tcp_md5sig_key *key;
939 struct hlist_node *pos;
940 unsigned int size = sizeof(struct in_addr);
941 struct tcp_md5sig_info *md5sig;
942
943 /* caller either holds rcu_read_lock() or socket lock */
944 md5sig = rcu_dereference_check(tp->md5sig_info,
945 sock_owned_by_user(sk) ||
946 lockdep_is_held(&sk->sk_lock.slock));
947 if (!md5sig)
948 return NULL;
949#if IS_ENABLED(CONFIG_IPV6)
950 if (family == AF_INET6)
951 size = sizeof(struct in6_addr);
952#endif
953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954 if (key->family != family)
955 continue;
956 if (!memcmp(&key->addr, addr, size))
957 return key;
958 }
959 return NULL;
960}
961EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964 struct sock *addr_sk)
965{
966 union tcp_md5_addr *addr;
967
968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969 return tcp_md5_do_lookup(sk, addr, AF_INET);
970}
971EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974 struct request_sock *req)
975{
976 union tcp_md5_addr *addr;
977
978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979 return tcp_md5_do_lookup(sk, addr, AF_INET);
980}
981
982/* This can be called on a newly created socket, from other files */
983int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985{
986 /* Add Key to the list */
987 struct tcp_md5sig_key *key;
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct tcp_md5sig_info *md5sig;
990
991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992 if (key) {
993 /* Pre-existing entry - just update that one. */
994 memcpy(key->key, newkey, newkeylen);
995 key->keylen = newkeylen;
996 return 0;
997 }
998
999 md5sig = rcu_dereference_protected(tp->md5sig_info,
1000 sock_owned_by_user(sk));
1001 if (!md5sig) {
1002 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003 if (!md5sig)
1004 return -ENOMEM;
1005
1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007 INIT_HLIST_HEAD(&md5sig->head);
1008 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009 }
1010
1011 key = sock_kmalloc(sk, sizeof(*key), gfp);
1012 if (!key)
1013 return -ENOMEM;
1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015 sock_kfree_s(sk, key, sizeof(*key));
1016 return -ENOMEM;
1017 }
1018
1019 memcpy(key->key, newkey, newkeylen);
1020 key->keylen = newkeylen;
1021 key->family = family;
1022 memcpy(&key->addr, addr,
1023 (family == AF_INET6) ? sizeof(struct in6_addr) :
1024 sizeof(struct in_addr));
1025 hlist_add_head_rcu(&key->node, &md5sig->head);
1026 return 0;
1027}
1028EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031{
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 struct tcp_md5sig_key *key;
1034 struct tcp_md5sig_info *md5sig;
1035
1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037 if (!key)
1038 return -ENOENT;
1039 hlist_del_rcu(&key->node);
1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041 kfree_rcu(key, rcu);
1042 md5sig = rcu_dereference_protected(tp->md5sig_info,
1043 sock_owned_by_user(sk));
1044 if (hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 return 0;
1047}
1048EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050void tcp_clear_md5_list(struct sock *sk)
1051{
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 struct tcp_md5sig_key *key;
1054 struct hlist_node *pos, *n;
1055 struct tcp_md5sig_info *md5sig;
1056
1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059 if (!hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 }
1066}
1067
1068static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069 int optlen)
1070{
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074 if (optlen < sizeof(cmd))
1075 return -EINVAL;
1076
1077 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078 return -EFAULT;
1079
1080 if (sin->sin_family != AF_INET)
1081 return -EINVAL;
1082
1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085 AF_INET);
1086
1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088 return -EINVAL;
1089
1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092 GFP_KERNEL);
1093}
1094
1095static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096 __be32 daddr, __be32 saddr, int nbytes)
1097{
1098 struct tcp4_pseudohdr *bp;
1099 struct scatterlist sg;
1100
1101 bp = &hp->md5_blk.ip4;
1102
1103 /*
1104 * 1. the TCP pseudo-header (in the order: source IP address,
1105 * destination IP address, zero-padded protocol number, and
1106 * segment length)
1107 */
1108 bp->saddr = saddr;
1109 bp->daddr = daddr;
1110 bp->pad = 0;
1111 bp->protocol = IPPROTO_TCP;
1112 bp->len = cpu_to_be16(nbytes);
1113
1114 sg_init_one(&sg, bp, sizeof(*bp));
1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116}
1117
1118static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120{
1121 struct tcp_md5sig_pool *hp;
1122 struct hash_desc *desc;
1123
1124 hp = tcp_get_md5sig_pool();
1125 if (!hp)
1126 goto clear_hash_noput;
1127 desc = &hp->md5_desc;
1128
1129 if (crypto_hash_init(desc))
1130 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1139
1140 tcp_put_md5sig_pool();
1141 return 0;
1142
1143clear_hash:
1144 tcp_put_md5sig_pool();
1145clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1148}
1149
1150int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151 const struct sock *sk, const struct request_sock *req,
1152 const struct sk_buff *skb)
1153{
1154 struct tcp_md5sig_pool *hp;
1155 struct hash_desc *desc;
1156 const struct tcphdr *th = tcp_hdr(skb);
1157 __be32 saddr, daddr;
1158
1159 if (sk) {
1160 saddr = inet_sk(sk)->inet_saddr;
1161 daddr = inet_sk(sk)->inet_daddr;
1162 } else if (req) {
1163 saddr = inet_rsk(req)->loc_addr;
1164 daddr = inet_rsk(req)->rmt_addr;
1165 } else {
1166 const struct iphdr *iph = ip_hdr(skb);
1167 saddr = iph->saddr;
1168 daddr = iph->daddr;
1169 }
1170
1171 hp = tcp_get_md5sig_pool();
1172 if (!hp)
1173 goto clear_hash_noput;
1174 desc = &hp->md5_desc;
1175
1176 if (crypto_hash_init(desc))
1177 goto clear_hash;
1178
1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180 goto clear_hash;
1181 if (tcp_md5_hash_header(hp, th))
1182 goto clear_hash;
1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184 goto clear_hash;
1185 if (tcp_md5_hash_key(hp, key))
1186 goto clear_hash;
1187 if (crypto_hash_final(desc, md5_hash))
1188 goto clear_hash;
1189
1190 tcp_put_md5sig_pool();
1191 return 0;
1192
1193clear_hash:
1194 tcp_put_md5sig_pool();
1195clear_hash_noput:
1196 memset(md5_hash, 0, 16);
1197 return 1;
1198}
1199EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202{
1203 /*
1204 * This gets called for each TCP segment that arrives
1205 * so we want to be efficient.
1206 * We have 3 drop cases:
1207 * o No MD5 hash and one expected.
1208 * o MD5 hash and we're not expecting one.
1209 * o MD5 hash and its wrong.
1210 */
1211 const __u8 *hash_location = NULL;
1212 struct tcp_md5sig_key *hash_expected;
1213 const struct iphdr *iph = ip_hdr(skb);
1214 const struct tcphdr *th = tcp_hdr(skb);
1215 int genhash;
1216 unsigned char newhash[16];
1217
1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219 AF_INET);
1220 hash_location = tcp_parse_md5sig_option(th);
1221
1222 /* We've parsed the options - do we have a hash? */
1223 if (!hash_expected && !hash_location)
1224 return false;
1225
1226 if (hash_expected && !hash_location) {
1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228 return true;
1229 }
1230
1231 if (!hash_expected && hash_location) {
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233 return true;
1234 }
1235
1236 /* Okay, so this is hash_expected and hash_location -
1237 * so we need to calculate the checksum.
1238 */
1239 genhash = tcp_v4_md5_hash_skb(newhash,
1240 hash_expected,
1241 NULL, NULL, skb);
1242
1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245 &iph->saddr, ntohs(th->source),
1246 &iph->daddr, ntohs(th->dest),
1247 genhash ? " tcp_v4_calc_md5_hash failed"
1248 : "");
1249 return true;
1250 }
1251 return false;
1252}
1253
1254#endif
1255
1256struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257 .family = PF_INET,
1258 .obj_size = sizeof(struct tcp_request_sock),
1259 .rtx_syn_ack = tcp_v4_rtx_synack,
1260 .send_ack = tcp_v4_reqsk_send_ack,
1261 .destructor = tcp_v4_reqsk_destructor,
1262 .send_reset = tcp_v4_send_reset,
1263 .syn_ack_timeout = tcp_syn_ack_timeout,
1264};
1265
1266#ifdef CONFIG_TCP_MD5SIG
1267static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1269 .calc_md5_hash = tcp_v4_md5_hash_skb,
1270};
1271#endif
1272
1273int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274{
1275 struct tcp_extend_values tmp_ext;
1276 struct tcp_options_received tmp_opt;
1277 const u8 *hash_location;
1278 struct request_sock *req;
1279 struct inet_request_sock *ireq;
1280 struct tcp_sock *tp = tcp_sk(sk);
1281 struct dst_entry *dst = NULL;
1282 __be32 saddr = ip_hdr(skb)->saddr;
1283 __be32 daddr = ip_hdr(skb)->daddr;
1284 __u32 isn = TCP_SKB_CB(skb)->when;
1285 bool want_cookie = false;
1286
1287 /* Never answer to SYNs send to broadcast or multicast */
1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289 goto drop;
1290
1291 /* TW buckets are converted to open requests without
1292 * limitations, they conserve resources and peer is
1293 * evidently real one.
1294 */
1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297 if (!want_cookie)
1298 goto drop;
1299 }
1300
1301 /* Accept backlog is full. If we have already queued enough
1302 * of warm entries in syn queue, drop request. It is better than
1303 * clogging syn queue with openreqs with exponentially increasing
1304 * timeout.
1305 */
1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307 goto drop;
1308
1309 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310 if (!req)
1311 goto drop;
1312
1313#ifdef CONFIG_TCP_MD5SIG
1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315#endif
1316
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319 tmp_opt.user_mss = tp->rx_opt.user_mss;
1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322 if (tmp_opt.cookie_plus > 0 &&
1323 tmp_opt.saw_tstamp &&
1324 !tp->rx_opt.cookie_out_never &&
1325 (sysctl_tcp_cookie_size > 0 ||
1326 (tp->cookie_values != NULL &&
1327 tp->cookie_values->cookie_desired > 0))) {
1328 u8 *c;
1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333 goto drop_and_release;
1334
1335 /* Secret recipe starts with IP addresses */
1336 *mess++ ^= (__force u32)daddr;
1337 *mess++ ^= (__force u32)saddr;
1338
1339 /* plus variable length Initiator Cookie */
1340 c = (u8 *)mess;
1341 while (l-- > 0)
1342 *c++ ^= *hash_location++;
1343
1344 want_cookie = false; /* not our kind of cookie */
1345 tmp_ext.cookie_out_never = 0; /* false */
1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347 } else if (!tp->rx_opt.cookie_in_always) {
1348 /* redundant indications, but ensure initialization. */
1349 tmp_ext.cookie_out_never = 1; /* true */
1350 tmp_ext.cookie_plus = 0;
1351 } else {
1352 goto drop_and_release;
1353 }
1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356 if (want_cookie && !tmp_opt.saw_tstamp)
1357 tcp_clear_options(&tmp_opt);
1358
1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360 tcp_openreq_init(req, &tmp_opt, skb);
1361
1362 ireq = inet_rsk(req);
1363 ireq->loc_addr = daddr;
1364 ireq->rmt_addr = saddr;
1365 ireq->no_srccheck = inet_sk(sk)->transparent;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368 if (security_inet_conn_request(sk, skb, req))
1369 goto drop_and_free;
1370
1371 if (!want_cookie || tmp_opt.tstamp_ok)
1372 TCP_ECN_create_request(req, skb);
1373
1374 if (want_cookie) {
1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376 req->cookie_ts = tmp_opt.tstamp_ok;
1377 } else if (!isn) {
1378 struct inet_peer *peer = NULL;
1379 struct flowi4 fl4;
1380
1381 /* VJ's idea. We save last timestamp seen
1382 * from the destination in peer table, when entering
1383 * state TIME-WAIT, and check against it before
1384 * accepting new connection request.
1385 *
1386 * If "isn" is not zero, this request hit alive
1387 * timewait bucket, so that all the necessary checks
1388 * are made in the function processing timewait state.
1389 */
1390 if (tmp_opt.saw_tstamp &&
1391 tcp_death_row.sysctl_tw_recycle &&
1392 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393 fl4.daddr == saddr &&
1394 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395 inet_peer_refcheck(peer);
1396 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397 (s32)(peer->tcp_ts - req->ts_recent) >
1398 TCP_PAWS_WINDOW) {
1399 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400 goto drop_and_release;
1401 }
1402 }
1403 /* Kill the following clause, if you dislike this way. */
1404 else if (!sysctl_tcp_syncookies &&
1405 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406 (sysctl_max_syn_backlog >> 2)) &&
1407 (!peer || !peer->tcp_ts_stamp) &&
1408 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409 /* Without syncookies last quarter of
1410 * backlog is filled with destinations,
1411 * proven to be alive.
1412 * It means that we continue to communicate
1413 * to destinations, already remembered
1414 * to the moment of synflood.
1415 */
1416 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417 &saddr, ntohs(tcp_hdr(skb)->source));
1418 goto drop_and_release;
1419 }
1420
1421 isn = tcp_v4_init_sequence(skb);
1422 }
1423 tcp_rsk(req)->snt_isn = isn;
1424 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426 if (tcp_v4_send_synack(sk, dst, req,
1427 (struct request_values *)&tmp_ext,
1428 skb_get_queue_mapping(skb)) ||
1429 want_cookie)
1430 goto drop_and_free;
1431
1432 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433 return 0;
1434
1435drop_and_release:
1436 dst_release(dst);
1437drop_and_free:
1438 reqsk_free(req);
1439drop:
1440 return 0;
1441}
1442EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445/*
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1448 */
1449struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450 struct request_sock *req,
1451 struct dst_entry *dst)
1452{
1453 struct inet_request_sock *ireq;
1454 struct inet_sock *newinet;
1455 struct tcp_sock *newtp;
1456 struct sock *newsk;
1457#ifdef CONFIG_TCP_MD5SIG
1458 struct tcp_md5sig_key *key;
1459#endif
1460 struct ip_options_rcu *inet_opt;
1461
1462 if (sk_acceptq_is_full(sk))
1463 goto exit_overflow;
1464
1465 newsk = tcp_create_openreq_child(sk, req, skb);
1466 if (!newsk)
1467 goto exit_nonewsk;
1468
1469 newsk->sk_gso_type = SKB_GSO_TCPV4;
1470
1471 newtp = tcp_sk(newsk);
1472 newinet = inet_sk(newsk);
1473 ireq = inet_rsk(req);
1474 newinet->inet_daddr = ireq->rmt_addr;
1475 newinet->inet_rcv_saddr = ireq->loc_addr;
1476 newinet->inet_saddr = ireq->loc_addr;
1477 inet_opt = ireq->opt;
1478 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479 ireq->opt = NULL;
1480 newinet->mc_index = inet_iif(skb);
1481 newinet->mc_ttl = ip_hdr(skb)->ttl;
1482 newinet->rcv_tos = ip_hdr(skb)->tos;
1483 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484 if (inet_opt)
1485 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486 newinet->inet_id = newtp->write_seq ^ jiffies;
1487
1488 if (!dst) {
1489 dst = inet_csk_route_child_sock(sk, newsk, req);
1490 if (!dst)
1491 goto put_and_exit;
1492 } else {
1493 /* syncookie case : see end of cookie_v4_check() */
1494 }
1495 sk_setup_caps(newsk, dst);
1496
1497 tcp_mtup_init(newsk);
1498 tcp_sync_mss(newsk, dst_mtu(dst));
1499 newtp->advmss = dst_metric_advmss(dst);
1500 if (tcp_sk(sk)->rx_opt.user_mss &&
1501 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504 tcp_initialize_rcv_mss(newsk);
1505 if (tcp_rsk(req)->snt_synack)
1506 tcp_valid_rtt_meas(newsk,
1507 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508 newtp->total_retrans = req->retrans;
1509
1510#ifdef CONFIG_TCP_MD5SIG
1511 /* Copy over the MD5 key from the original socket */
1512 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513 AF_INET);
1514 if (key != NULL) {
1515 /*
1516 * We're using one, so create a matching key
1517 * on the newsk structure. If we fail to get
1518 * memory, then we end up not copying the key
1519 * across. Shucks.
1520 */
1521 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524 }
1525#endif
1526
1527 if (__inet_inherit_port(sk, newsk) < 0)
1528 goto put_and_exit;
1529 __inet_hash_nolisten(newsk, NULL);
1530
1531 return newsk;
1532
1533exit_overflow:
1534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535exit_nonewsk:
1536 dst_release(dst);
1537exit:
1538 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539 return NULL;
1540put_and_exit:
1541 tcp_clear_xmit_timers(newsk);
1542 tcp_cleanup_congestion_control(newsk);
1543 bh_unlock_sock(newsk);
1544 sock_put(newsk);
1545 goto exit;
1546}
1547EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550{
1551 struct tcphdr *th = tcp_hdr(skb);
1552 const struct iphdr *iph = ip_hdr(skb);
1553 struct sock *nsk;
1554 struct request_sock **prev;
1555 /* Find possible connection requests. */
1556 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557 iph->saddr, iph->daddr);
1558 if (req)
1559 return tcp_check_req(sk, skb, req, prev);
1560
1561 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562 th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564 if (nsk) {
1565 if (nsk->sk_state != TCP_TIME_WAIT) {
1566 bh_lock_sock(nsk);
1567 return nsk;
1568 }
1569 inet_twsk_put(inet_twsk(nsk));
1570 return NULL;
1571 }
1572
1573#ifdef CONFIG_SYN_COOKIES
1574 if (!th->syn)
1575 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576#endif
1577 return sk;
1578}
1579
1580static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1581{
1582 const struct iphdr *iph = ip_hdr(skb);
1583
1584 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585 if (!tcp_v4_check(skb->len, iph->saddr,
1586 iph->daddr, skb->csum)) {
1587 skb->ip_summed = CHECKSUM_UNNECESSARY;
1588 return 0;
1589 }
1590 }
1591
1592 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593 skb->len, IPPROTO_TCP, 0);
1594
1595 if (skb->len <= 76) {
1596 return __skb_checksum_complete(skb);
1597 }
1598 return 0;
1599}
1600
1601
1602/* The socket must have it's spinlock held when we get
1603 * here.
1604 *
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1609 */
1610int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611{
1612 struct sock *rsk;
1613#ifdef CONFIG_TCP_MD5SIG
1614 /*
1615 * We really want to reject the packet as early as possible
1616 * if:
1617 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1618 * o There is an MD5 option and we're not expecting one
1619 */
1620 if (tcp_v4_inbound_md5_hash(sk, skb))
1621 goto discard;
1622#endif
1623
1624 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1625 sock_rps_save_rxhash(sk, skb);
1626 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627 rsk = sk;
1628 goto reset;
1629 }
1630 return 0;
1631 }
1632
1633 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634 goto csum_err;
1635
1636 if (sk->sk_state == TCP_LISTEN) {
1637 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638 if (!nsk)
1639 goto discard;
1640
1641 if (nsk != sk) {
1642 sock_rps_save_rxhash(nsk, skb);
1643 if (tcp_child_process(sk, nsk, skb)) {
1644 rsk = nsk;
1645 goto reset;
1646 }
1647 return 0;
1648 }
1649 } else
1650 sock_rps_save_rxhash(sk, skb);
1651
1652 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653 rsk = sk;
1654 goto reset;
1655 }
1656 return 0;
1657
1658reset:
1659 tcp_v4_send_reset(rsk, skb);
1660discard:
1661 kfree_skb(skb);
1662 /* Be careful here. If this function gets more complicated and
1663 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664 * might be destroyed here. This current version compiles correctly,
1665 * but you have been warned.
1666 */
1667 return 0;
1668
1669csum_err:
1670 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1671 goto discard;
1672}
1673EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
1675/*
1676 * From tcp_input.c
1677 */
1678
1679int tcp_v4_rcv(struct sk_buff *skb)
1680{
1681 const struct iphdr *iph;
1682 const struct tcphdr *th;
1683 struct sock *sk;
1684 int ret;
1685 struct net *net = dev_net(skb->dev);
1686
1687 if (skb->pkt_type != PACKET_HOST)
1688 goto discard_it;
1689
1690 /* Count it even if it's bad */
1691 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694 goto discard_it;
1695
1696 th = tcp_hdr(skb);
1697
1698 if (th->doff < sizeof(struct tcphdr) / 4)
1699 goto bad_packet;
1700 if (!pskb_may_pull(skb, th->doff * 4))
1701 goto discard_it;
1702
1703 /* An explanation is required here, I think.
1704 * Packet length and doff are validated by header prediction,
1705 * provided case of th->doff==0 is eliminated.
1706 * So, we defer the checks. */
1707 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708 goto bad_packet;
1709
1710 th = tcp_hdr(skb);
1711 iph = ip_hdr(skb);
1712 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714 skb->len - th->doff * 4);
1715 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716 TCP_SKB_CB(skb)->when = 0;
1717 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718 TCP_SKB_CB(skb)->sacked = 0;
1719
1720 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1721 if (!sk)
1722 goto no_tcp_socket;
1723
1724process:
1725 if (sk->sk_state == TCP_TIME_WAIT)
1726 goto do_time_wait;
1727
1728 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1730 goto discard_and_relse;
1731 }
1732
1733 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1734 goto discard_and_relse;
1735 nf_reset(skb);
1736
1737 if (sk_filter(sk, skb))
1738 goto discard_and_relse;
1739
1740 skb->dev = NULL;
1741
1742 bh_lock_sock_nested(sk);
1743 ret = 0;
1744 if (!sock_owned_by_user(sk)) {
1745#ifdef CONFIG_NET_DMA
1746 struct tcp_sock *tp = tcp_sk(sk);
1747 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748 tp->ucopy.dma_chan = net_dma_find_channel();
1749 if (tp->ucopy.dma_chan)
1750 ret = tcp_v4_do_rcv(sk, skb);
1751 else
1752#endif
1753 {
1754 if (!tcp_prequeue(sk, skb))
1755 ret = tcp_v4_do_rcv(sk, skb);
1756 }
1757 } else if (unlikely(sk_add_backlog(sk, skb,
1758 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759 bh_unlock_sock(sk);
1760 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761 goto discard_and_relse;
1762 }
1763 bh_unlock_sock(sk);
1764
1765 sock_put(sk);
1766
1767 return ret;
1768
1769no_tcp_socket:
1770 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771 goto discard_it;
1772
1773 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774bad_packet:
1775 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776 } else {
1777 tcp_v4_send_reset(NULL, skb);
1778 }
1779
1780discard_it:
1781 /* Discard frame. */
1782 kfree_skb(skb);
1783 return 0;
1784
1785discard_and_relse:
1786 sock_put(sk);
1787 goto discard_it;
1788
1789do_time_wait:
1790 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1791 inet_twsk_put(inet_twsk(sk));
1792 goto discard_it;
1793 }
1794
1795 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1797 inet_twsk_put(inet_twsk(sk));
1798 goto discard_it;
1799 }
1800 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801 case TCP_TW_SYN: {
1802 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803 &tcp_hashinfo,
1804 iph->daddr, th->dest,
1805 inet_iif(skb));
1806 if (sk2) {
1807 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808 inet_twsk_put(inet_twsk(sk));
1809 sk = sk2;
1810 goto process;
1811 }
1812 /* Fall through to ACK */
1813 }
1814 case TCP_TW_ACK:
1815 tcp_v4_timewait_ack(sk, skb);
1816 break;
1817 case TCP_TW_RST:
1818 goto no_tcp_socket;
1819 case TCP_TW_SUCCESS:;
1820 }
1821 goto discard_it;
1822}
1823
1824struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825{
1826 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827 struct inet_sock *inet = inet_sk(sk);
1828 struct inet_peer *peer;
1829
1830 if (!rt ||
1831 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833 *release_it = true;
1834 } else {
1835 if (!rt->peer)
1836 rt_bind_peer(rt, inet->inet_daddr, 1);
1837 peer = rt->peer;
1838 *release_it = false;
1839 }
1840
1841 return peer;
1842}
1843EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845void *tcp_v4_tw_get_peer(struct sock *sk)
1846{
1847 const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849 return inet_getpeer_v4(tw->tw_daddr, 1);
1850}
1851EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1855 .twsk_unique = tcp_twsk_unique,
1856 .twsk_destructor= tcp_twsk_destructor,
1857 .twsk_getpeer = tcp_v4_tw_get_peer,
1858};
1859
1860const struct inet_connection_sock_af_ops ipv4_specific = {
1861 .queue_xmit = ip_queue_xmit,
1862 .send_check = tcp_v4_send_check,
1863 .rebuild_header = inet_sk_rebuild_header,
1864 .conn_request = tcp_v4_conn_request,
1865 .syn_recv_sock = tcp_v4_syn_recv_sock,
1866 .get_peer = tcp_v4_get_peer,
1867 .net_header_len = sizeof(struct iphdr),
1868 .setsockopt = ip_setsockopt,
1869 .getsockopt = ip_getsockopt,
1870 .addr2sockaddr = inet_csk_addr2sockaddr,
1871 .sockaddr_len = sizeof(struct sockaddr_in),
1872 .bind_conflict = inet_csk_bind_conflict,
1873#ifdef CONFIG_COMPAT
1874 .compat_setsockopt = compat_ip_setsockopt,
1875 .compat_getsockopt = compat_ip_getsockopt,
1876#endif
1877};
1878EXPORT_SYMBOL(ipv4_specific);
1879
1880#ifdef CONFIG_TCP_MD5SIG
1881static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882 .md5_lookup = tcp_v4_md5_lookup,
1883 .calc_md5_hash = tcp_v4_md5_hash_skb,
1884 .md5_parse = tcp_v4_parse_md5_keys,
1885};
1886#endif
1887
1888/* NOTE: A lot of things set to zero explicitly by call to
1889 * sk_alloc() so need not be done here.
1890 */
1891static int tcp_v4_init_sock(struct sock *sk)
1892{
1893 struct inet_connection_sock *icsk = inet_csk(sk);
1894
1895 tcp_init_sock(sk);
1896
1897 icsk->icsk_af_ops = &ipv4_specific;
1898
1899#ifdef CONFIG_TCP_MD5SIG
1900 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901#endif
1902
1903 return 0;
1904}
1905
1906void tcp_v4_destroy_sock(struct sock *sk)
1907{
1908 struct tcp_sock *tp = tcp_sk(sk);
1909
1910 tcp_clear_xmit_timers(sk);
1911
1912 tcp_cleanup_congestion_control(sk);
1913
1914 /* Cleanup up the write buffer. */
1915 tcp_write_queue_purge(sk);
1916
1917 /* Cleans up our, hopefully empty, out_of_order_queue. */
1918 __skb_queue_purge(&tp->out_of_order_queue);
1919
1920#ifdef CONFIG_TCP_MD5SIG
1921 /* Clean up the MD5 key list, if any */
1922 if (tp->md5sig_info) {
1923 tcp_clear_md5_list(sk);
1924 kfree_rcu(tp->md5sig_info, rcu);
1925 tp->md5sig_info = NULL;
1926 }
1927#endif
1928
1929#ifdef CONFIG_NET_DMA
1930 /* Cleans up our sk_async_wait_queue */
1931 __skb_queue_purge(&sk->sk_async_wait_queue);
1932#endif
1933
1934 /* Clean prequeue, it must be empty really */
1935 __skb_queue_purge(&tp->ucopy.prequeue);
1936
1937 /* Clean up a referenced TCP bind bucket. */
1938 if (inet_csk(sk)->icsk_bind_hash)
1939 inet_put_port(sk);
1940
1941 /*
1942 * If sendmsg cached page exists, toss it.
1943 */
1944 if (sk->sk_sndmsg_page) {
1945 __free_page(sk->sk_sndmsg_page);
1946 sk->sk_sndmsg_page = NULL;
1947 }
1948
1949 /* TCP Cookie Transactions */
1950 if (tp->cookie_values != NULL) {
1951 kref_put(&tp->cookie_values->kref,
1952 tcp_cookie_values_release);
1953 tp->cookie_values = NULL;
1954 }
1955
1956 sk_sockets_allocated_dec(sk);
1957 sock_release_memcg(sk);
1958}
1959EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961#ifdef CONFIG_PROC_FS
1962/* Proc filesystem TCP sock list dumping. */
1963
1964static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1965{
1966 return hlist_nulls_empty(head) ? NULL :
1967 list_entry(head->first, struct inet_timewait_sock, tw_node);
1968}
1969
1970static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1971{
1972 return !is_a_nulls(tw->tw_node.next) ?
1973 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1974}
1975
1976/*
1977 * Get next listener socket follow cur. If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1980 */
1981static void *listening_get_next(struct seq_file *seq, void *cur)
1982{
1983 struct inet_connection_sock *icsk;
1984 struct hlist_nulls_node *node;
1985 struct sock *sk = cur;
1986 struct inet_listen_hashbucket *ilb;
1987 struct tcp_iter_state *st = seq->private;
1988 struct net *net = seq_file_net(seq);
1989
1990 if (!sk) {
1991 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992 spin_lock_bh(&ilb->lock);
1993 sk = sk_nulls_head(&ilb->head);
1994 st->offset = 0;
1995 goto get_sk;
1996 }
1997 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998 ++st->num;
1999 ++st->offset;
2000
2001 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002 struct request_sock *req = cur;
2003
2004 icsk = inet_csk(st->syn_wait_sk);
2005 req = req->dl_next;
2006 while (1) {
2007 while (req) {
2008 if (req->rsk_ops->family == st->family) {
2009 cur = req;
2010 goto out;
2011 }
2012 req = req->dl_next;
2013 }
2014 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015 break;
2016get_req:
2017 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018 }
2019 sk = sk_nulls_next(st->syn_wait_sk);
2020 st->state = TCP_SEQ_STATE_LISTENING;
2021 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 } else {
2023 icsk = inet_csk(sk);
2024 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026 goto start_req;
2027 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028 sk = sk_nulls_next(sk);
2029 }
2030get_sk:
2031 sk_nulls_for_each_from(sk, node) {
2032 if (!net_eq(sock_net(sk), net))
2033 continue;
2034 if (sk->sk_family == st->family) {
2035 cur = sk;
2036 goto out;
2037 }
2038 icsk = inet_csk(sk);
2039 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041start_req:
2042 st->uid = sock_i_uid(sk);
2043 st->syn_wait_sk = sk;
2044 st->state = TCP_SEQ_STATE_OPENREQ;
2045 st->sbucket = 0;
2046 goto get_req;
2047 }
2048 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049 }
2050 spin_unlock_bh(&ilb->lock);
2051 st->offset = 0;
2052 if (++st->bucket < INET_LHTABLE_SIZE) {
2053 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054 spin_lock_bh(&ilb->lock);
2055 sk = sk_nulls_head(&ilb->head);
2056 goto get_sk;
2057 }
2058 cur = NULL;
2059out:
2060 return cur;
2061}
2062
2063static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064{
2065 struct tcp_iter_state *st = seq->private;
2066 void *rc;
2067
2068 st->bucket = 0;
2069 st->offset = 0;
2070 rc = listening_get_next(seq, NULL);
2071
2072 while (rc && *pos) {
2073 rc = listening_get_next(seq, rc);
2074 --*pos;
2075 }
2076 return rc;
2077}
2078
2079static inline bool empty_bucket(struct tcp_iter_state *st)
2080{
2081 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083}
2084
2085/*
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2088 */
2089static void *established_get_first(struct seq_file *seq)
2090{
2091 struct tcp_iter_state *st = seq->private;
2092 struct net *net = seq_file_net(seq);
2093 void *rc = NULL;
2094
2095 st->offset = 0;
2096 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097 struct sock *sk;
2098 struct hlist_nulls_node *node;
2099 struct inet_timewait_sock *tw;
2100 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2101
2102 /* Lockless fast path for the common case of empty buckets */
2103 if (empty_bucket(st))
2104 continue;
2105
2106 spin_lock_bh(lock);
2107 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108 if (sk->sk_family != st->family ||
2109 !net_eq(sock_net(sk), net)) {
2110 continue;
2111 }
2112 rc = sk;
2113 goto out;
2114 }
2115 st->state = TCP_SEQ_STATE_TIME_WAIT;
2116 inet_twsk_for_each(tw, node,
2117 &tcp_hashinfo.ehash[st->bucket].twchain) {
2118 if (tw->tw_family != st->family ||
2119 !net_eq(twsk_net(tw), net)) {
2120 continue;
2121 }
2122 rc = tw;
2123 goto out;
2124 }
2125 spin_unlock_bh(lock);
2126 st->state = TCP_SEQ_STATE_ESTABLISHED;
2127 }
2128out:
2129 return rc;
2130}
2131
2132static void *established_get_next(struct seq_file *seq, void *cur)
2133{
2134 struct sock *sk = cur;
2135 struct inet_timewait_sock *tw;
2136 struct hlist_nulls_node *node;
2137 struct tcp_iter_state *st = seq->private;
2138 struct net *net = seq_file_net(seq);
2139
2140 ++st->num;
2141 ++st->offset;
2142
2143 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144 tw = cur;
2145 tw = tw_next(tw);
2146get_tw:
2147 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148 tw = tw_next(tw);
2149 }
2150 if (tw) {
2151 cur = tw;
2152 goto out;
2153 }
2154 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155 st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157 /* Look for next non empty bucket */
2158 st->offset = 0;
2159 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160 empty_bucket(st))
2161 ;
2162 if (st->bucket > tcp_hashinfo.ehash_mask)
2163 return NULL;
2164
2165 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167 } else
2168 sk = sk_nulls_next(sk);
2169
2170 sk_nulls_for_each_from(sk, node) {
2171 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172 goto found;
2173 }
2174
2175 st->state = TCP_SEQ_STATE_TIME_WAIT;
2176 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177 goto get_tw;
2178found:
2179 cur = sk;
2180out:
2181 return cur;
2182}
2183
2184static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185{
2186 struct tcp_iter_state *st = seq->private;
2187 void *rc;
2188
2189 st->bucket = 0;
2190 rc = established_get_first(seq);
2191
2192 while (rc && pos) {
2193 rc = established_get_next(seq, rc);
2194 --pos;
2195 }
2196 return rc;
2197}
2198
2199static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200{
2201 void *rc;
2202 struct tcp_iter_state *st = seq->private;
2203
2204 st->state = TCP_SEQ_STATE_LISTENING;
2205 rc = listening_get_idx(seq, &pos);
2206
2207 if (!rc) {
2208 st->state = TCP_SEQ_STATE_ESTABLISHED;
2209 rc = established_get_idx(seq, pos);
2210 }
2211
2212 return rc;
2213}
2214
2215static void *tcp_seek_last_pos(struct seq_file *seq)
2216{
2217 struct tcp_iter_state *st = seq->private;
2218 int offset = st->offset;
2219 int orig_num = st->num;
2220 void *rc = NULL;
2221
2222 switch (st->state) {
2223 case TCP_SEQ_STATE_OPENREQ:
2224 case TCP_SEQ_STATE_LISTENING:
2225 if (st->bucket >= INET_LHTABLE_SIZE)
2226 break;
2227 st->state = TCP_SEQ_STATE_LISTENING;
2228 rc = listening_get_next(seq, NULL);
2229 while (offset-- && rc)
2230 rc = listening_get_next(seq, rc);
2231 if (rc)
2232 break;
2233 st->bucket = 0;
2234 /* Fallthrough */
2235 case TCP_SEQ_STATE_ESTABLISHED:
2236 case TCP_SEQ_STATE_TIME_WAIT:
2237 st->state = TCP_SEQ_STATE_ESTABLISHED;
2238 if (st->bucket > tcp_hashinfo.ehash_mask)
2239 break;
2240 rc = established_get_first(seq);
2241 while (offset-- && rc)
2242 rc = established_get_next(seq, rc);
2243 }
2244
2245 st->num = orig_num;
2246
2247 return rc;
2248}
2249
2250static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251{
2252 struct tcp_iter_state *st = seq->private;
2253 void *rc;
2254
2255 if (*pos && *pos == st->last_pos) {
2256 rc = tcp_seek_last_pos(seq);
2257 if (rc)
2258 goto out;
2259 }
2260
2261 st->state = TCP_SEQ_STATE_LISTENING;
2262 st->num = 0;
2263 st->bucket = 0;
2264 st->offset = 0;
2265 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267out:
2268 st->last_pos = *pos;
2269 return rc;
2270}
2271
2272static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274 struct tcp_iter_state *st = seq->private;
2275 void *rc = NULL;
2276
2277 if (v == SEQ_START_TOKEN) {
2278 rc = tcp_get_idx(seq, 0);
2279 goto out;
2280 }
2281
2282 switch (st->state) {
2283 case TCP_SEQ_STATE_OPENREQ:
2284 case TCP_SEQ_STATE_LISTENING:
2285 rc = listening_get_next(seq, v);
2286 if (!rc) {
2287 st->state = TCP_SEQ_STATE_ESTABLISHED;
2288 st->bucket = 0;
2289 st->offset = 0;
2290 rc = established_get_first(seq);
2291 }
2292 break;
2293 case TCP_SEQ_STATE_ESTABLISHED:
2294 case TCP_SEQ_STATE_TIME_WAIT:
2295 rc = established_get_next(seq, v);
2296 break;
2297 }
2298out:
2299 ++*pos;
2300 st->last_pos = *pos;
2301 return rc;
2302}
2303
2304static void tcp_seq_stop(struct seq_file *seq, void *v)
2305{
2306 struct tcp_iter_state *st = seq->private;
2307
2308 switch (st->state) {
2309 case TCP_SEQ_STATE_OPENREQ:
2310 if (v) {
2311 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313 }
2314 case TCP_SEQ_STATE_LISTENING:
2315 if (v != SEQ_START_TOKEN)
2316 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317 break;
2318 case TCP_SEQ_STATE_TIME_WAIT:
2319 case TCP_SEQ_STATE_ESTABLISHED:
2320 if (v)
2321 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322 break;
2323 }
2324}
2325
2326int tcp_seq_open(struct inode *inode, struct file *file)
2327{
2328 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329 struct tcp_iter_state *s;
2330 int err;
2331
2332 err = seq_open_net(inode, file, &afinfo->seq_ops,
2333 sizeof(struct tcp_iter_state));
2334 if (err < 0)
2335 return err;
2336
2337 s = ((struct seq_file *)file->private_data)->private;
2338 s->family = afinfo->family;
2339 s->last_pos = 0;
2340 return 0;
2341}
2342EXPORT_SYMBOL(tcp_seq_open);
2343
2344int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345{
2346 int rc = 0;
2347 struct proc_dir_entry *p;
2348
2349 afinfo->seq_ops.start = tcp_seq_start;
2350 afinfo->seq_ops.next = tcp_seq_next;
2351 afinfo->seq_ops.stop = tcp_seq_stop;
2352
2353 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354 afinfo->seq_fops, afinfo);
2355 if (!p)
2356 rc = -ENOMEM;
2357 return rc;
2358}
2359EXPORT_SYMBOL(tcp_proc_register);
2360
2361void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362{
2363 proc_net_remove(net, afinfo->name);
2364}
2365EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368 struct seq_file *f, int i, int uid, int *len)
2369{
2370 const struct inet_request_sock *ireq = inet_rsk(req);
2371 int ttd = req->expires - jiffies;
2372
2373 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375 i,
2376 ireq->loc_addr,
2377 ntohs(inet_sk(sk)->inet_sport),
2378 ireq->rmt_addr,
2379 ntohs(ireq->rmt_port),
2380 TCP_SYN_RECV,
2381 0, 0, /* could print option size, but that is af dependent. */
2382 1, /* timers active (only the expire timer) */
2383 jiffies_to_clock_t(ttd),
2384 req->retrans,
2385 uid,
2386 0, /* non standard timer */
2387 0, /* open_requests have no inode */
2388 atomic_read(&sk->sk_refcnt),
2389 req,
2390 len);
2391}
2392
2393static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394{
2395 int timer_active;
2396 unsigned long timer_expires;
2397 const struct tcp_sock *tp = tcp_sk(sk);
2398 const struct inet_connection_sock *icsk = inet_csk(sk);
2399 const struct inet_sock *inet = inet_sk(sk);
2400 __be32 dest = inet->inet_daddr;
2401 __be32 src = inet->inet_rcv_saddr;
2402 __u16 destp = ntohs(inet->inet_dport);
2403 __u16 srcp = ntohs(inet->inet_sport);
2404 int rx_queue;
2405
2406 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407 timer_active = 1;
2408 timer_expires = icsk->icsk_timeout;
2409 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410 timer_active = 4;
2411 timer_expires = icsk->icsk_timeout;
2412 } else if (timer_pending(&sk->sk_timer)) {
2413 timer_active = 2;
2414 timer_expires = sk->sk_timer.expires;
2415 } else {
2416 timer_active = 0;
2417 timer_expires = jiffies;
2418 }
2419
2420 if (sk->sk_state == TCP_LISTEN)
2421 rx_queue = sk->sk_ack_backlog;
2422 else
2423 /*
2424 * because we dont lock socket, we might find a transient negative value
2425 */
2426 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430 i, src, srcp, dest, destp, sk->sk_state,
2431 tp->write_seq - tp->snd_una,
2432 rx_queue,
2433 timer_active,
2434 jiffies_to_clock_t(timer_expires - jiffies),
2435 icsk->icsk_retransmits,
2436 sock_i_uid(sk),
2437 icsk->icsk_probes_out,
2438 sock_i_ino(sk),
2439 atomic_read(&sk->sk_refcnt), sk,
2440 jiffies_to_clock_t(icsk->icsk_rto),
2441 jiffies_to_clock_t(icsk->icsk_ack.ato),
2442 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443 tp->snd_cwnd,
2444 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445 len);
2446}
2447
2448static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449 struct seq_file *f, int i, int *len)
2450{
2451 __be32 dest, src;
2452 __u16 destp, srcp;
2453 int ttd = tw->tw_ttd - jiffies;
2454
2455 if (ttd < 0)
2456 ttd = 0;
2457
2458 dest = tw->tw_daddr;
2459 src = tw->tw_rcv_saddr;
2460 destp = ntohs(tw->tw_dport);
2461 srcp = ntohs(tw->tw_sport);
2462
2463 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467 atomic_read(&tw->tw_refcnt), tw, len);
2468}
2469
2470#define TMPSZ 150
2471
2472static int tcp4_seq_show(struct seq_file *seq, void *v)
2473{
2474 struct tcp_iter_state *st;
2475 int len;
2476
2477 if (v == SEQ_START_TOKEN) {
2478 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479 " sl local_address rem_address st tx_queue "
2480 "rx_queue tr tm->when retrnsmt uid timeout "
2481 "inode");
2482 goto out;
2483 }
2484 st = seq->private;
2485
2486 switch (st->state) {
2487 case TCP_SEQ_STATE_LISTENING:
2488 case TCP_SEQ_STATE_ESTABLISHED:
2489 get_tcp4_sock(v, seq, st->num, &len);
2490 break;
2491 case TCP_SEQ_STATE_OPENREQ:
2492 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493 break;
2494 case TCP_SEQ_STATE_TIME_WAIT:
2495 get_timewait4_sock(v, seq, st->num, &len);
2496 break;
2497 }
2498 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499out:
2500 return 0;
2501}
2502
2503static const struct file_operations tcp_afinfo_seq_fops = {
2504 .owner = THIS_MODULE,
2505 .open = tcp_seq_open,
2506 .read = seq_read,
2507 .llseek = seq_lseek,
2508 .release = seq_release_net
2509};
2510
2511static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512 .name = "tcp",
2513 .family = AF_INET,
2514 .seq_fops = &tcp_afinfo_seq_fops,
2515 .seq_ops = {
2516 .show = tcp4_seq_show,
2517 },
2518};
2519
2520static int __net_init tcp4_proc_init_net(struct net *net)
2521{
2522 return tcp_proc_register(net, &tcp4_seq_afinfo);
2523}
2524
2525static void __net_exit tcp4_proc_exit_net(struct net *net)
2526{
2527 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528}
2529
2530static struct pernet_operations tcp4_net_ops = {
2531 .init = tcp4_proc_init_net,
2532 .exit = tcp4_proc_exit_net,
2533};
2534
2535int __init tcp4_proc_init(void)
2536{
2537 return register_pernet_subsys(&tcp4_net_ops);
2538}
2539
2540void tcp4_proc_exit(void)
2541{
2542 unregister_pernet_subsys(&tcp4_net_ops);
2543}
2544#endif /* CONFIG_PROC_FS */
2545
2546struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547{
2548 const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550 switch (skb->ip_summed) {
2551 case CHECKSUM_COMPLETE:
2552 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553 skb->csum)) {
2554 skb->ip_summed = CHECKSUM_UNNECESSARY;
2555 break;
2556 }
2557
2558 /* fall through */
2559 case CHECKSUM_NONE:
2560 NAPI_GRO_CB(skb)->flush = 1;
2561 return NULL;
2562 }
2563
2564 return tcp_gro_receive(head, skb);
2565}
2566
2567int tcp4_gro_complete(struct sk_buff *skb)
2568{
2569 const struct iphdr *iph = ip_hdr(skb);
2570 struct tcphdr *th = tcp_hdr(skb);
2571
2572 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573 iph->saddr, iph->daddr, 0);
2574 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576 return tcp_gro_complete(skb);
2577}
2578
2579struct proto tcp_prot = {
2580 .name = "TCP",
2581 .owner = THIS_MODULE,
2582 .close = tcp_close,
2583 .connect = tcp_v4_connect,
2584 .disconnect = tcp_disconnect,
2585 .accept = inet_csk_accept,
2586 .ioctl = tcp_ioctl,
2587 .init = tcp_v4_init_sock,
2588 .destroy = tcp_v4_destroy_sock,
2589 .shutdown = tcp_shutdown,
2590 .setsockopt = tcp_setsockopt,
2591 .getsockopt = tcp_getsockopt,
2592 .recvmsg = tcp_recvmsg,
2593 .sendmsg = tcp_sendmsg,
2594 .sendpage = tcp_sendpage,
2595 .backlog_rcv = tcp_v4_do_rcv,
2596 .hash = inet_hash,
2597 .unhash = inet_unhash,
2598 .get_port = inet_csk_get_port,
2599 .enter_memory_pressure = tcp_enter_memory_pressure,
2600 .sockets_allocated = &tcp_sockets_allocated,
2601 .orphan_count = &tcp_orphan_count,
2602 .memory_allocated = &tcp_memory_allocated,
2603 .memory_pressure = &tcp_memory_pressure,
2604 .sysctl_wmem = sysctl_tcp_wmem,
2605 .sysctl_rmem = sysctl_tcp_rmem,
2606 .max_header = MAX_TCP_HEADER,
2607 .obj_size = sizeof(struct tcp_sock),
2608 .slab_flags = SLAB_DESTROY_BY_RCU,
2609 .twsk_prot = &tcp_timewait_sock_ops,
2610 .rsk_prot = &tcp_request_sock_ops,
2611 .h.hashinfo = &tcp_hashinfo,
2612 .no_autobind = true,
2613#ifdef CONFIG_COMPAT
2614 .compat_setsockopt = compat_tcp_setsockopt,
2615 .compat_getsockopt = compat_tcp_getsockopt,
2616#endif
2617#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618 .init_cgroup = tcp_init_cgroup,
2619 .destroy_cgroup = tcp_destroy_cgroup,
2620 .proto_cgroup = tcp_proto_cgroup,
2621#endif
2622};
2623EXPORT_SYMBOL(tcp_prot);
2624
2625static int __net_init tcp_sk_init(struct net *net)
2626{
2627 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2629}
2630
2631static void __net_exit tcp_sk_exit(struct net *net)
2632{
2633 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2634}
2635
2636static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637{
2638 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2639}
2640
2641static struct pernet_operations __net_initdata tcp_sk_ops = {
2642 .init = tcp_sk_init,
2643 .exit = tcp_sk_exit,
2644 .exit_batch = tcp_sk_exit_batch,
2645};
2646
2647void __init tcp_v4_init(void)
2648{
2649 inet_hashinfo_init(&tcp_hashinfo);
2650 if (register_pernet_subsys(&tcp_sk_ops))
2651 panic("Failed to create the TCP control socket.\n");
2652}