Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  84
  85/*
  86 * connection states
  87 */
  88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  94
  95/*
  96 * ceph_connection flag bits
  97 */
  98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  99				       * messages on errors */
 100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 101#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
 102#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
 103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 104
 105static bool con_flag_valid(unsigned long con_flag)
 106{
 107	switch (con_flag) {
 108	case CON_FLAG_LOSSYTX:
 109	case CON_FLAG_KEEPALIVE_PENDING:
 110	case CON_FLAG_WRITE_PENDING:
 111	case CON_FLAG_SOCK_CLOSED:
 112	case CON_FLAG_BACKOFF:
 113		return true;
 114	default:
 115		return false;
 116	}
 117}
 118
 119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 120{
 121	BUG_ON(!con_flag_valid(con_flag));
 122
 123	clear_bit(con_flag, &con->flags);
 124}
 125
 126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 127{
 128	BUG_ON(!con_flag_valid(con_flag));
 129
 130	set_bit(con_flag, &con->flags);
 131}
 132
 133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 134{
 135	BUG_ON(!con_flag_valid(con_flag));
 136
 137	return test_bit(con_flag, &con->flags);
 138}
 139
 140static bool con_flag_test_and_clear(struct ceph_connection *con,
 141					unsigned long con_flag)
 142{
 143	BUG_ON(!con_flag_valid(con_flag));
 144
 145	return test_and_clear_bit(con_flag, &con->flags);
 146}
 147
 148static bool con_flag_test_and_set(struct ceph_connection *con,
 149					unsigned long con_flag)
 150{
 151	BUG_ON(!con_flag_valid(con_flag));
 152
 153	return test_and_set_bit(con_flag, &con->flags);
 154}
 155
 156/* Slab caches for frequently-allocated structures */
 157
 158static struct kmem_cache	*ceph_msg_cache;
 159static struct kmem_cache	*ceph_msg_data_cache;
 160
 161/* static tag bytes (protocol control messages) */
 162static char tag_msg = CEPH_MSGR_TAG_MSG;
 163static char tag_ack = CEPH_MSGR_TAG_ACK;
 164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 165static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 166
 167#ifdef CONFIG_LOCKDEP
 168static struct lock_class_key socket_class;
 169#endif
 170
 171/*
 172 * When skipping (ignoring) a block of input we read it into a "skip
 173 * buffer," which is this many bytes in size.
 174 */
 175#define SKIP_BUF_SIZE	1024
 176
 177static void queue_con(struct ceph_connection *con);
 178static void cancel_con(struct ceph_connection *con);
 179static void ceph_con_workfn(struct work_struct *);
 180static void con_fault(struct ceph_connection *con);
 181
 182/*
 183 * Nicely render a sockaddr as a string.  An array of formatted
 184 * strings is used, to approximate reentrancy.
 185 */
 186#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 187#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 188#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 189#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 190
 191static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 192static atomic_t addr_str_seq = ATOMIC_INIT(0);
 193
 194static struct page *zero_page;		/* used in certain error cases */
 195
 196const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 197{
 198	int i;
 199	char *s;
 200	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 201	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 202
 203	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 204	s = addr_str[i];
 205
 206	switch (ss->ss_family) {
 207	case AF_INET:
 208		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 209			 ntohs(in4->sin_port));
 210		break;
 211
 212	case AF_INET6:
 213		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 214			 ntohs(in6->sin6_port));
 215		break;
 216
 217	default:
 218		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 219			 ss->ss_family);
 220	}
 221
 222	return s;
 223}
 224EXPORT_SYMBOL(ceph_pr_addr);
 225
 226static void encode_my_addr(struct ceph_messenger *msgr)
 227{
 228	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 229	ceph_encode_addr(&msgr->my_enc_addr);
 230}
 231
 232/*
 233 * work queue for all reading and writing to/from the socket.
 234 */
 235static struct workqueue_struct *ceph_msgr_wq;
 236
 237static int ceph_msgr_slab_init(void)
 238{
 239	BUG_ON(ceph_msg_cache);
 240	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 241	if (!ceph_msg_cache)
 242		return -ENOMEM;
 243
 244	BUG_ON(ceph_msg_data_cache);
 245	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 246	if (ceph_msg_data_cache)
 247		return 0;
 248
 249	kmem_cache_destroy(ceph_msg_cache);
 250	ceph_msg_cache = NULL;
 251
 252	return -ENOMEM;
 253}
 254
 255static void ceph_msgr_slab_exit(void)
 256{
 257	BUG_ON(!ceph_msg_data_cache);
 258	kmem_cache_destroy(ceph_msg_data_cache);
 259	ceph_msg_data_cache = NULL;
 260
 261	BUG_ON(!ceph_msg_cache);
 262	kmem_cache_destroy(ceph_msg_cache);
 263	ceph_msg_cache = NULL;
 264}
 265
 266static void _ceph_msgr_exit(void)
 267{
 268	if (ceph_msgr_wq) {
 269		destroy_workqueue(ceph_msgr_wq);
 270		ceph_msgr_wq = NULL;
 271	}
 272
 273	BUG_ON(zero_page == NULL);
 274	put_page(zero_page);
 
 275	zero_page = NULL;
 276
 277	ceph_msgr_slab_exit();
 278}
 279
 280int __init ceph_msgr_init(void)
 281{
 282	if (ceph_msgr_slab_init())
 283		return -ENOMEM;
 284
 285	BUG_ON(zero_page != NULL);
 286	zero_page = ZERO_PAGE(0);
 287	get_page(zero_page);
 288
 289	/*
 290	 * The number of active work items is limited by the number of
 291	 * connections, so leave @max_active at default.
 292	 */
 293	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 294	if (ceph_msgr_wq)
 295		return 0;
 296
 297	pr_err("msgr_init failed to create workqueue\n");
 298	_ceph_msgr_exit();
 299
 300	return -ENOMEM;
 301}
 
 302
 303void ceph_msgr_exit(void)
 304{
 305	BUG_ON(ceph_msgr_wq == NULL);
 306
 307	_ceph_msgr_exit();
 308}
 
 309
 310void ceph_msgr_flush(void)
 311{
 312	flush_workqueue(ceph_msgr_wq);
 313}
 314EXPORT_SYMBOL(ceph_msgr_flush);
 315
 316/* Connection socket state transition functions */
 317
 318static void con_sock_state_init(struct ceph_connection *con)
 319{
 320	int old_state;
 321
 322	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 323	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 324		printk("%s: unexpected old state %d\n", __func__, old_state);
 325	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 326	     CON_SOCK_STATE_CLOSED);
 327}
 328
 329static void con_sock_state_connecting(struct ceph_connection *con)
 330{
 331	int old_state;
 332
 333	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 334	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CONNECTING);
 338}
 339
 340static void con_sock_state_connected(struct ceph_connection *con)
 341{
 342	int old_state;
 343
 344	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 345	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 346		printk("%s: unexpected old state %d\n", __func__, old_state);
 347	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 348	     CON_SOCK_STATE_CONNECTED);
 349}
 350
 351static void con_sock_state_closing(struct ceph_connection *con)
 352{
 353	int old_state;
 354
 355	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 356	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 357			old_state != CON_SOCK_STATE_CONNECTED &&
 358			old_state != CON_SOCK_STATE_CLOSING))
 359		printk("%s: unexpected old state %d\n", __func__, old_state);
 360	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 361	     CON_SOCK_STATE_CLOSING);
 362}
 363
 364static void con_sock_state_closed(struct ceph_connection *con)
 365{
 366	int old_state;
 367
 368	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 369	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 370		    old_state != CON_SOCK_STATE_CLOSING &&
 371		    old_state != CON_SOCK_STATE_CONNECTING &&
 372		    old_state != CON_SOCK_STATE_CLOSED))
 373		printk("%s: unexpected old state %d\n", __func__, old_state);
 374	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 375	     CON_SOCK_STATE_CLOSED);
 376}
 377
 378/*
 379 * socket callback functions
 380 */
 381
 382/* data available on socket, or listen socket received a connect */
 383static void ceph_sock_data_ready(struct sock *sk)
 384{
 385	struct ceph_connection *con = sk->sk_user_data;
 386	if (atomic_read(&con->msgr->stopping)) {
 387		return;
 388	}
 389
 390	if (sk->sk_state != TCP_CLOSE_WAIT) {
 391		dout("%s on %p state = %lu, queueing work\n", __func__,
 392		     con, con->state);
 393		queue_con(con);
 394	}
 395}
 396
 397/* socket has buffer space for writing */
 398static void ceph_sock_write_space(struct sock *sk)
 399{
 400	struct ceph_connection *con = sk->sk_user_data;
 401
 402	/* only queue to workqueue if there is data we want to write,
 403	 * and there is sufficient space in the socket buffer to accept
 404	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 405	 * doesn't get called again until try_write() fills the socket
 406	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 407	 * and net/core/stream.c:sk_stream_write_space().
 408	 */
 409	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 410		if (sk_stream_is_writeable(sk)) {
 411			dout("%s %p queueing write work\n", __func__, con);
 412			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 413			queue_con(con);
 414		}
 415	} else {
 416		dout("%s %p nothing to write\n", __func__, con);
 417	}
 418}
 419
 420/* socket's state has changed */
 421static void ceph_sock_state_change(struct sock *sk)
 422{
 423	struct ceph_connection *con = sk->sk_user_data;
 424
 425	dout("%s %p state = %lu sk_state = %u\n", __func__,
 426	     con, con->state, sk->sk_state);
 427
 
 
 
 428	switch (sk->sk_state) {
 429	case TCP_CLOSE:
 430		dout("%s TCP_CLOSE\n", __func__);
 431		/* fall through */
 432	case TCP_CLOSE_WAIT:
 433		dout("%s TCP_CLOSE_WAIT\n", __func__);
 434		con_sock_state_closing(con);
 435		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 436		queue_con(con);
 
 
 
 
 437		break;
 438	case TCP_ESTABLISHED:
 439		dout("%s TCP_ESTABLISHED\n", __func__);
 440		con_sock_state_connected(con);
 441		queue_con(con);
 442		break;
 443	default:	/* Everything else is uninteresting */
 444		break;
 445	}
 446}
 447
 448/*
 449 * set up socket callbacks
 450 */
 451static void set_sock_callbacks(struct socket *sock,
 452			       struct ceph_connection *con)
 453{
 454	struct sock *sk = sock->sk;
 455	sk->sk_user_data = con;
 456	sk->sk_data_ready = ceph_sock_data_ready;
 457	sk->sk_write_space = ceph_sock_write_space;
 458	sk->sk_state_change = ceph_sock_state_change;
 459}
 460
 461
 462/*
 463 * socket helpers
 464 */
 465
 466/*
 467 * initiate connection to a remote socket.
 468 */
 469static int ceph_tcp_connect(struct ceph_connection *con)
 470{
 471	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 472	struct socket *sock;
 473	unsigned int noio_flag;
 474	int ret;
 475
 476	BUG_ON(con->sock);
 477
 478	/* sock_create_kern() allocates with GFP_KERNEL */
 479	noio_flag = memalloc_noio_save();
 480	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 481			       SOCK_STREAM, IPPROTO_TCP, &sock);
 482	memalloc_noio_restore(noio_flag);
 483	if (ret)
 484		return ret;
 485	sock->sk->sk_allocation = GFP_NOFS;
 486
 487#ifdef CONFIG_LOCKDEP
 488	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 489#endif
 490
 491	set_sock_callbacks(sock, con);
 492
 493	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 494
 495	con_sock_state_connecting(con);
 496	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 497				 O_NONBLOCK);
 498	if (ret == -EINPROGRESS) {
 499		dout("connect %s EINPROGRESS sk_state = %u\n",
 500		     ceph_pr_addr(&con->peer_addr.in_addr),
 501		     sock->sk->sk_state);
 502	} else if (ret < 0) {
 503		pr_err("connect %s error %d\n",
 504		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 505		sock_release(sock);
 506		return ret;
 507	}
 508
 509	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 510		int optval = 1;
 511
 512		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 513					(char *)&optval, sizeof(optval));
 514		if (ret)
 515			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 516			       ret);
 517	}
 518
 519	con->sock = sock;
 
 520	return 0;
 521}
 522
 523static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 524{
 525	struct kvec iov = {buf, len};
 526	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 527	int r;
 528
 529	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
 530	r = sock_recvmsg(sock, &msg, msg.msg_flags);
 531	if (r == -EAGAIN)
 532		r = 0;
 533	return r;
 534}
 535
 536static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 537		     int page_offset, size_t length)
 538{
 539	struct bio_vec bvec = {
 540		.bv_page = page,
 541		.bv_offset = page_offset,
 542		.bv_len = length
 543	};
 544	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 545	int r;
 546
 547	BUG_ON(page_offset + length > PAGE_SIZE);
 548	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
 549	r = sock_recvmsg(sock, &msg, msg.msg_flags);
 550	if (r == -EAGAIN)
 551		r = 0;
 552	return r;
 553}
 554
 555/*
 556 * write something.  @more is true if caller will be sending more data
 557 * shortly.
 558 */
 559static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 560		     size_t kvlen, size_t len, int more)
 561{
 562	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 563	int r;
 564
 565	if (more)
 566		msg.msg_flags |= MSG_MORE;
 567	else
 568		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 569
 570	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 571	if (r == -EAGAIN)
 572		r = 0;
 573	return r;
 574}
 575
 576static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 577		     int offset, size_t size, bool more)
 578{
 579	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 580	int ret;
 581
 582	ret = kernel_sendpage(sock, page, offset, size, flags);
 583	if (ret == -EAGAIN)
 584		ret = 0;
 585
 586	return ret;
 587}
 588
 589static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 590		     int offset, size_t size, bool more)
 591{
 592	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 593	struct bio_vec bvec;
 594	int ret;
 595
 596	/* sendpage cannot properly handle pages with page_count == 0,
 597	 * we need to fallback to sendmsg if that's the case */
 598	if (page_count(page) >= 1)
 599		return __ceph_tcp_sendpage(sock, page, offset, size, more);
 600
 601	bvec.bv_page = page;
 602	bvec.bv_offset = offset;
 603	bvec.bv_len = size;
 604
 605	if (more)
 606		msg.msg_flags |= MSG_MORE;
 607	else
 608		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 609
 610	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
 611	ret = sock_sendmsg(sock, &msg);
 612	if (ret == -EAGAIN)
 613		ret = 0;
 614
 615	return ret;
 616}
 617
 618/*
 619 * Shutdown/close the socket for the given connection.
 620 */
 621static int con_close_socket(struct ceph_connection *con)
 622{
 623	int rc = 0;
 624
 625	dout("con_close_socket on %p sock %p\n", con, con->sock);
 626	if (con->sock) {
 627		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 628		sock_release(con->sock);
 629		con->sock = NULL;
 630	}
 631
 632	/*
 633	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 634	 * independent of the connection mutex, and we could have
 635	 * received a socket close event before we had the chance to
 636	 * shut the socket down.
 637	 */
 638	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 639
 640	con_sock_state_closed(con);
 641	return rc;
 642}
 643
 644/*
 645 * Reset a connection.  Discard all incoming and outgoing messages
 646 * and clear *_seq state.
 647 */
 648static void ceph_msg_remove(struct ceph_msg *msg)
 649{
 650	list_del_init(&msg->list_head);
 651
 652	ceph_msg_put(msg);
 653}
 654static void ceph_msg_remove_list(struct list_head *head)
 655{
 656	while (!list_empty(head)) {
 657		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 658							list_head);
 659		ceph_msg_remove(msg);
 660	}
 661}
 662
 663static void reset_connection(struct ceph_connection *con)
 664{
 665	/* reset connection, out_queue, msg_ and connect_seq */
 666	/* discard existing out_queue and msg_seq */
 667	dout("reset_connection %p\n", con);
 668	ceph_msg_remove_list(&con->out_queue);
 669	ceph_msg_remove_list(&con->out_sent);
 670
 671	if (con->in_msg) {
 672		BUG_ON(con->in_msg->con != con);
 673		ceph_msg_put(con->in_msg);
 674		con->in_msg = NULL;
 675	}
 676
 677	con->connect_seq = 0;
 678	con->out_seq = 0;
 679	if (con->out_msg) {
 680		BUG_ON(con->out_msg->con != con);
 681		ceph_msg_put(con->out_msg);
 682		con->out_msg = NULL;
 683	}
 684	con->in_seq = 0;
 685	con->in_seq_acked = 0;
 686
 687	con->out_skip = 0;
 688}
 689
 690/*
 691 * mark a peer down.  drop any open connections.
 692 */
 693void ceph_con_close(struct ceph_connection *con)
 694{
 695	mutex_lock(&con->mutex);
 696	dout("con_close %p peer %s\n", con,
 697	     ceph_pr_addr(&con->peer_addr.in_addr));
 698	con->state = CON_STATE_CLOSED;
 699
 700	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
 701	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 702	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 703	con_flag_clear(con, CON_FLAG_BACKOFF);
 704
 705	reset_connection(con);
 706	con->peer_global_seq = 0;
 707	cancel_con(con);
 708	con_close_socket(con);
 709	mutex_unlock(&con->mutex);
 
 710}
 711EXPORT_SYMBOL(ceph_con_close);
 712
 713/*
 714 * Reopen a closed connection, with a new peer address.
 715 */
 716void ceph_con_open(struct ceph_connection *con,
 717		   __u8 entity_type, __u64 entity_num,
 718		   struct ceph_entity_addr *addr)
 719{
 720	mutex_lock(&con->mutex);
 721	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 722
 723	WARN_ON(con->state != CON_STATE_CLOSED);
 724	con->state = CON_STATE_PREOPEN;
 725
 726	con->peer_name.type = (__u8) entity_type;
 727	con->peer_name.num = cpu_to_le64(entity_num);
 728
 729	memcpy(&con->peer_addr, addr, sizeof(*addr));
 730	con->delay = 0;      /* reset backoff memory */
 731	mutex_unlock(&con->mutex);
 732	queue_con(con);
 733}
 734EXPORT_SYMBOL(ceph_con_open);
 735
 736/*
 737 * return true if this connection ever successfully opened
 738 */
 739bool ceph_con_opened(struct ceph_connection *con)
 740{
 741	return con->connect_seq > 0;
 742}
 743
 744/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745 * initialize a new connection.
 746 */
 747void ceph_con_init(struct ceph_connection *con, void *private,
 748	const struct ceph_connection_operations *ops,
 749	struct ceph_messenger *msgr)
 750{
 751	dout("con_init %p\n", con);
 752	memset(con, 0, sizeof(*con));
 753	con->private = private;
 754	con->ops = ops;
 755	con->msgr = msgr;
 756
 757	con_sock_state_init(con);
 758
 759	mutex_init(&con->mutex);
 760	INIT_LIST_HEAD(&con->out_queue);
 761	INIT_LIST_HEAD(&con->out_sent);
 762	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 763
 764	con->state = CON_STATE_CLOSED;
 765}
 766EXPORT_SYMBOL(ceph_con_init);
 767
 768
 769/*
 770 * We maintain a global counter to order connection attempts.  Get
 771 * a unique seq greater than @gt.
 772 */
 773static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 774{
 775	u32 ret;
 776
 777	spin_lock(&msgr->global_seq_lock);
 778	if (msgr->global_seq < gt)
 779		msgr->global_seq = gt;
 780	ret = ++msgr->global_seq;
 781	spin_unlock(&msgr->global_seq_lock);
 782	return ret;
 783}
 784
 785static void con_out_kvec_reset(struct ceph_connection *con)
 786{
 787	BUG_ON(con->out_skip);
 788
 789	con->out_kvec_left = 0;
 790	con->out_kvec_bytes = 0;
 791	con->out_kvec_cur = &con->out_kvec[0];
 792}
 793
 794static void con_out_kvec_add(struct ceph_connection *con,
 795				size_t size, void *data)
 796{
 797	int index = con->out_kvec_left;
 798
 799	BUG_ON(con->out_skip);
 800	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 801
 802	con->out_kvec[index].iov_len = size;
 803	con->out_kvec[index].iov_base = data;
 804	con->out_kvec_left++;
 805	con->out_kvec_bytes += size;
 806}
 807
 808/*
 809 * Chop off a kvec from the end.  Return residual number of bytes for
 810 * that kvec, i.e. how many bytes would have been written if the kvec
 811 * hadn't been nuked.
 812 */
 813static int con_out_kvec_skip(struct ceph_connection *con)
 814{
 815	int off = con->out_kvec_cur - con->out_kvec;
 816	int skip = 0;
 817
 818	if (con->out_kvec_bytes > 0) {
 819		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 820		BUG_ON(con->out_kvec_bytes < skip);
 821		BUG_ON(!con->out_kvec_left);
 822		con->out_kvec_bytes -= skip;
 823		con->out_kvec_left--;
 824	}
 825
 826	return skip;
 827}
 828
 829#ifdef CONFIG_BLOCK
 830
 831/*
 832 * For a bio data item, a piece is whatever remains of the next
 833 * entry in the current bio iovec, or the first entry in the next
 834 * bio in the list.
 835 */
 836static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 837					size_t length)
 838{
 839	struct ceph_msg_data *data = cursor->data;
 840	struct ceph_bio_iter *it = &cursor->bio_iter;
 841
 842	cursor->resid = min_t(size_t, length, data->bio_length);
 843	*it = data->bio_pos;
 844	if (cursor->resid < it->iter.bi_size)
 845		it->iter.bi_size = cursor->resid;
 846
 847	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 848	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 849}
 850
 851static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 852						size_t *page_offset,
 853						size_t *length)
 854{
 855	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 856					   cursor->bio_iter.iter);
 857
 858	*page_offset = bv.bv_offset;
 859	*length = bv.bv_len;
 860	return bv.bv_page;
 861}
 862
 863static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 864					size_t bytes)
 865{
 866	struct ceph_bio_iter *it = &cursor->bio_iter;
 867
 868	BUG_ON(bytes > cursor->resid);
 869	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 870	cursor->resid -= bytes;
 871	bio_advance_iter(it->bio, &it->iter, bytes);
 872
 873	if (!cursor->resid) {
 874		BUG_ON(!cursor->last_piece);
 875		return false;   /* no more data */
 876	}
 877
 878	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
 879		return false;	/* more bytes to process in this segment */
 880
 881	if (!it->iter.bi_size) {
 882		it->bio = it->bio->bi_next;
 883		it->iter = it->bio->bi_iter;
 884		if (cursor->resid < it->iter.bi_size)
 885			it->iter.bi_size = cursor->resid;
 886	}
 887
 888	BUG_ON(cursor->last_piece);
 889	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 890	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 891	return true;
 892}
 893#endif /* CONFIG_BLOCK */
 894
 895static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 896					size_t length)
 897{
 898	struct ceph_msg_data *data = cursor->data;
 899	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 900
 901	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 902	cursor->bvec_iter = data->bvec_pos.iter;
 903	cursor->bvec_iter.bi_size = cursor->resid;
 904
 905	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 906	cursor->last_piece =
 907	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 908}
 909
 910static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 911						size_t *page_offset,
 912						size_t *length)
 913{
 914	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 915					   cursor->bvec_iter);
 916
 917	*page_offset = bv.bv_offset;
 918	*length = bv.bv_len;
 919	return bv.bv_page;
 920}
 921
 922static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 923					size_t bytes)
 924{
 925	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 926
 927	BUG_ON(bytes > cursor->resid);
 928	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 929	cursor->resid -= bytes;
 930	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 931
 932	if (!cursor->resid) {
 933		BUG_ON(!cursor->last_piece);
 934		return false;   /* no more data */
 935	}
 936
 937	if (!bytes || cursor->bvec_iter.bi_bvec_done)
 938		return false;	/* more bytes to process in this segment */
 939
 940	BUG_ON(cursor->last_piece);
 941	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 942	cursor->last_piece =
 943	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 944	return true;
 945}
 946
 947/*
 948 * For a page array, a piece comes from the first page in the array
 949 * that has not already been fully consumed.
 950 */
 951static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 952					size_t length)
 953{
 954	struct ceph_msg_data *data = cursor->data;
 955	int page_count;
 956
 957	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 958
 959	BUG_ON(!data->pages);
 960	BUG_ON(!data->length);
 961
 962	cursor->resid = min(length, data->length);
 963	page_count = calc_pages_for(data->alignment, (u64)data->length);
 964	cursor->page_offset = data->alignment & ~PAGE_MASK;
 965	cursor->page_index = 0;
 966	BUG_ON(page_count > (int)USHRT_MAX);
 967	cursor->page_count = (unsigned short)page_count;
 968	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 969	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 970}
 971
 972static struct page *
 973ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 974					size_t *page_offset, size_t *length)
 975{
 976	struct ceph_msg_data *data = cursor->data;
 977
 978	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 979
 980	BUG_ON(cursor->page_index >= cursor->page_count);
 981	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 982
 983	*page_offset = cursor->page_offset;
 984	if (cursor->last_piece)
 985		*length = cursor->resid;
 986	else
 987		*length = PAGE_SIZE - *page_offset;
 988
 989	return data->pages[cursor->page_index];
 990}
 991
 992static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 993						size_t bytes)
 994{
 995	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 996
 997	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 998
 999	/* Advance the cursor page offset */
1000
1001	cursor->resid -= bytes;
1002	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003	if (!bytes || cursor->page_offset)
1004		return false;	/* more bytes to process in the current page */
1005
1006	if (!cursor->resid)
1007		return false;   /* no more data */
1008
1009	/* Move on to the next page; offset is already at 0 */
1010
1011	BUG_ON(cursor->page_index >= cursor->page_count);
1012	cursor->page_index++;
1013	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014
1015	return true;
1016}
1017
1018/*
1019 * For a pagelist, a piece is whatever remains to be consumed in the
1020 * first page in the list, or the front of the next page.
1021 */
1022static void
1023ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024					size_t length)
1025{
1026	struct ceph_msg_data *data = cursor->data;
1027	struct ceph_pagelist *pagelist;
1028	struct page *page;
1029
1030	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031
1032	pagelist = data->pagelist;
1033	BUG_ON(!pagelist);
1034
1035	if (!length)
1036		return;		/* pagelist can be assigned but empty */
1037
1038	BUG_ON(list_empty(&pagelist->head));
1039	page = list_first_entry(&pagelist->head, struct page, lru);
1040
1041	cursor->resid = min(length, pagelist->length);
1042	cursor->page = page;
1043	cursor->offset = 0;
1044	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045}
1046
1047static struct page *
1048ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049				size_t *page_offset, size_t *length)
1050{
1051	struct ceph_msg_data *data = cursor->data;
1052	struct ceph_pagelist *pagelist;
1053
1054	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055
1056	pagelist = data->pagelist;
1057	BUG_ON(!pagelist);
1058
1059	BUG_ON(!cursor->page);
1060	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061
1062	/* offset of first page in pagelist is always 0 */
1063	*page_offset = cursor->offset & ~PAGE_MASK;
1064	if (cursor->last_piece)
1065		*length = cursor->resid;
1066	else
1067		*length = PAGE_SIZE - *page_offset;
1068
1069	return cursor->page;
1070}
1071
1072static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073						size_t bytes)
1074{
1075	struct ceph_msg_data *data = cursor->data;
1076	struct ceph_pagelist *pagelist;
1077
1078	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079
1080	pagelist = data->pagelist;
1081	BUG_ON(!pagelist);
1082
1083	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085
1086	/* Advance the cursor offset */
1087
1088	cursor->resid -= bytes;
1089	cursor->offset += bytes;
1090	/* offset of first page in pagelist is always 0 */
1091	if (!bytes || cursor->offset & ~PAGE_MASK)
1092		return false;	/* more bytes to process in the current page */
1093
1094	if (!cursor->resid)
1095		return false;   /* no more data */
1096
1097	/* Move on to the next page */
1098
1099	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100	cursor->page = list_next_entry(cursor->page, lru);
1101	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102
1103	return true;
1104}
1105
1106/*
1107 * Message data is handled (sent or received) in pieces, where each
1108 * piece resides on a single page.  The network layer might not
1109 * consume an entire piece at once.  A data item's cursor keeps
1110 * track of which piece is next to process and how much remains to
1111 * be processed in that piece.  It also tracks whether the current
1112 * piece is the last one in the data item.
1113 */
1114static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115{
1116	size_t length = cursor->total_resid;
1117
1118	switch (cursor->data->type) {
1119	case CEPH_MSG_DATA_PAGELIST:
1120		ceph_msg_data_pagelist_cursor_init(cursor, length);
1121		break;
1122	case CEPH_MSG_DATA_PAGES:
1123		ceph_msg_data_pages_cursor_init(cursor, length);
1124		break;
1125#ifdef CONFIG_BLOCK
1126	case CEPH_MSG_DATA_BIO:
1127		ceph_msg_data_bio_cursor_init(cursor, length);
1128		break;
1129#endif /* CONFIG_BLOCK */
1130	case CEPH_MSG_DATA_BVECS:
1131		ceph_msg_data_bvecs_cursor_init(cursor, length);
1132		break;
1133	case CEPH_MSG_DATA_NONE:
1134	default:
1135		/* BUG(); */
1136		break;
1137	}
1138	cursor->need_crc = true;
1139}
1140
1141static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1142{
1143	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144	struct ceph_msg_data *data;
1145
1146	BUG_ON(!length);
1147	BUG_ON(length > msg->data_length);
1148	BUG_ON(list_empty(&msg->data));
1149
1150	cursor->data_head = &msg->data;
1151	cursor->total_resid = length;
1152	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153	cursor->data = data;
1154
1155	__ceph_msg_data_cursor_init(cursor);
1156}
1157
1158/*
1159 * Return the page containing the next piece to process for a given
1160 * data item, and supply the page offset and length of that piece.
1161 * Indicate whether this is the last piece in this data item.
1162 */
1163static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164					size_t *page_offset, size_t *length,
1165					bool *last_piece)
1166{
1167	struct page *page;
1168
1169	switch (cursor->data->type) {
1170	case CEPH_MSG_DATA_PAGELIST:
1171		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172		break;
1173	case CEPH_MSG_DATA_PAGES:
1174		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175		break;
1176#ifdef CONFIG_BLOCK
1177	case CEPH_MSG_DATA_BIO:
1178		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179		break;
1180#endif /* CONFIG_BLOCK */
1181	case CEPH_MSG_DATA_BVECS:
1182		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183		break;
1184	case CEPH_MSG_DATA_NONE:
1185	default:
1186		page = NULL;
1187		break;
1188	}
1189
1190	BUG_ON(!page);
1191	BUG_ON(*page_offset + *length > PAGE_SIZE);
1192	BUG_ON(!*length);
1193	BUG_ON(*length > cursor->resid);
1194	if (last_piece)
1195		*last_piece = cursor->last_piece;
1196
1197	return page;
1198}
1199
1200/*
1201 * Returns true if the result moves the cursor on to the next piece
1202 * of the data item.
1203 */
1204static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205				  size_t bytes)
1206{
1207	bool new_piece;
1208
1209	BUG_ON(bytes > cursor->resid);
1210	switch (cursor->data->type) {
1211	case CEPH_MSG_DATA_PAGELIST:
1212		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213		break;
1214	case CEPH_MSG_DATA_PAGES:
1215		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216		break;
1217#ifdef CONFIG_BLOCK
1218	case CEPH_MSG_DATA_BIO:
1219		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220		break;
1221#endif /* CONFIG_BLOCK */
1222	case CEPH_MSG_DATA_BVECS:
1223		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224		break;
1225	case CEPH_MSG_DATA_NONE:
1226	default:
1227		BUG();
1228		break;
1229	}
1230	cursor->total_resid -= bytes;
1231
1232	if (!cursor->resid && cursor->total_resid) {
1233		WARN_ON(!cursor->last_piece);
1234		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235		cursor->data = list_next_entry(cursor->data, links);
1236		__ceph_msg_data_cursor_init(cursor);
1237		new_piece = true;
1238	}
1239	cursor->need_crc = new_piece;
1240}
1241
1242static size_t sizeof_footer(struct ceph_connection *con)
1243{
1244	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245	    sizeof(struct ceph_msg_footer) :
1246	    sizeof(struct ceph_msg_footer_old);
1247}
1248
1249static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250{
1251	BUG_ON(!msg);
1252	BUG_ON(!data_len);
1253
1254	/* Initialize data cursor */
1255
1256	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257}
1258
1259/*
1260 * Prepare footer for currently outgoing message, and finish things
1261 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1262 */
1263static void prepare_write_message_footer(struct ceph_connection *con)
1264{
1265	struct ceph_msg *m = con->out_msg;
1266
1267	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268
1269	dout("prepare_write_message_footer %p\n", con);
1270	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272		if (con->ops->sign_message)
1273			con->ops->sign_message(m);
1274		else
1275			m->footer.sig = 0;
1276	} else {
1277		m->old_footer.flags = m->footer.flags;
1278	}
1279	con->out_more = m->more_to_follow;
1280	con->out_msg_done = true;
1281}
1282
1283/*
1284 * Prepare headers for the next outgoing message.
1285 */
1286static void prepare_write_message(struct ceph_connection *con)
1287{
1288	struct ceph_msg *m;
1289	u32 crc;
1290
1291	con_out_kvec_reset(con);
 
1292	con->out_msg_done = false;
1293
1294	/* Sneak an ack in there first?  If we can get it into the same
1295	 * TCP packet that's a good thing. */
1296	if (con->in_seq > con->in_seq_acked) {
1297		con->in_seq_acked = con->in_seq;
1298		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301			&con->out_temp_ack);
1302	}
1303
1304	BUG_ON(list_empty(&con->out_queue));
1305	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306	con->out_msg = m;
1307	BUG_ON(m->con != con);
1308
1309	/* put message on sent list */
1310	ceph_msg_get(m);
1311	list_move_tail(&m->list_head, &con->out_sent);
1312
1313	/*
1314	 * only assign outgoing seq # if we haven't sent this message
1315	 * yet.  if it is requeued, resend with it's original seq.
1316	 */
1317	if (m->needs_out_seq) {
1318		m->hdr.seq = cpu_to_le64(++con->out_seq);
1319		m->needs_out_seq = false;
1320
1321		if (con->ops->reencode_message)
1322			con->ops->reencode_message(m);
1323	}
 
 
 
 
1324
1325	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1327	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328	     m->data_length);
1329	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331
1332	/* tag + hdr + front + middle */
1333	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336
1337	if (m->middle)
1338		con_out_kvec_add(con, m->middle->vec.iov_len,
1339			m->middle->vec.iov_base);
1340
1341	/* fill in hdr crc and finalize hdr */
1342	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343	con->out_msg->hdr.crc = cpu_to_le32(crc);
1344	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345
1346	/* fill in front and middle crc, footer */
1347	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349	if (m->middle) {
1350		crc = crc32c(0, m->middle->vec.iov_base,
1351				m->middle->vec.iov_len);
1352		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353	} else
1354		con->out_msg->footer.middle_crc = 0;
1355	dout("%s front_crc %u middle_crc %u\n", __func__,
 
1356	     le32_to_cpu(con->out_msg->footer.front_crc),
1357	     le32_to_cpu(con->out_msg->footer.middle_crc));
1358	con->out_msg->footer.flags = 0;
1359
1360	/* is there a data payload? */
1361	con->out_msg->footer.data_crc = 0;
1362	if (m->data_length) {
1363		prepare_message_data(con->out_msg, m->data_length);
 
 
 
 
 
 
1364		con->out_more = 1;  /* data + footer will follow */
1365	} else {
1366		/* no, queue up footer too and be done */
1367		prepare_write_message_footer(con);
1368	}
1369
1370	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371}
1372
1373/*
1374 * Prepare an ack.
1375 */
1376static void prepare_write_ack(struct ceph_connection *con)
1377{
1378	dout("prepare_write_ack %p %llu -> %llu\n", con,
1379	     con->in_seq_acked, con->in_seq);
1380	con->in_seq_acked = con->in_seq;
1381
1382	con_out_kvec_reset(con);
1383
1384	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385
1386	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388				&con->out_temp_ack);
1389
1390	con->out_more = 1;  /* more will follow.. eventually.. */
1391	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392}
1393
1394/*
1395 * Prepare to share the seq during handshake
1396 */
1397static void prepare_write_seq(struct ceph_connection *con)
1398{
1399	dout("prepare_write_seq %p %llu -> %llu\n", con,
1400	     con->in_seq_acked, con->in_seq);
1401	con->in_seq_acked = con->in_seq;
1402
1403	con_out_kvec_reset(con);
1404
1405	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407			 &con->out_temp_ack);
1408
1409	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410}
1411
1412/*
1413 * Prepare to write keepalive byte.
1414 */
1415static void prepare_write_keepalive(struct ceph_connection *con)
1416{
1417	dout("prepare_write_keepalive %p\n", con);
1418	con_out_kvec_reset(con);
1419	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420		struct timespec now;
1421
1422		ktime_get_real_ts(&now);
1423		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1425		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426				 &con->out_temp_keepalive2);
1427	} else {
1428		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429	}
1430	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431}
1432
1433/*
1434 * Connection negotiation.
1435 */
1436
1437static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1438						int *auth_proto)
1439{
1440	struct ceph_auth_handshake *auth;
1441
1442	if (!con->ops->get_authorizer) {
1443		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1444		con->out_connect.authorizer_len = 0;
 
1445		return NULL;
1446	}
1447
 
 
 
 
1448	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
 
 
 
1449	if (IS_ERR(auth))
1450		return auth;
 
 
1451
1452	con->auth_reply_buf = auth->authorizer_reply_buf;
1453	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
 
 
1454	return auth;
1455}
1456
1457/*
1458 * We connected to a peer and are saying hello.
1459 */
1460static void prepare_write_banner(struct ceph_connection *con)
1461{
1462	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1463	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1464					&con->msgr->my_enc_addr);
1465
1466	con->out_more = 0;
1467	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1468}
1469
1470static int prepare_write_connect(struct ceph_connection *con)
1471{
1472	unsigned int global_seq = get_global_seq(con->msgr, 0);
1473	int proto;
1474	int auth_proto;
1475	struct ceph_auth_handshake *auth;
1476
1477	switch (con->peer_name.type) {
1478	case CEPH_ENTITY_TYPE_MON:
1479		proto = CEPH_MONC_PROTOCOL;
1480		break;
1481	case CEPH_ENTITY_TYPE_OSD:
1482		proto = CEPH_OSDC_PROTOCOL;
1483		break;
1484	case CEPH_ENTITY_TYPE_MDS:
1485		proto = CEPH_MDSC_PROTOCOL;
1486		break;
1487	default:
1488		BUG();
1489	}
1490
1491	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1492	     con->connect_seq, global_seq, proto);
1493
1494	con->out_connect.features =
1495	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1496	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1497	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1498	con->out_connect.global_seq = cpu_to_le32(global_seq);
1499	con->out_connect.protocol_version = cpu_to_le32(proto);
1500	con->out_connect.flags = 0;
1501
1502	auth_proto = CEPH_AUTH_UNKNOWN;
1503	auth = get_connect_authorizer(con, &auth_proto);
1504	if (IS_ERR(auth))
1505		return PTR_ERR(auth);
1506
1507	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1508	con->out_connect.authorizer_len = auth ?
1509		cpu_to_le32(auth->authorizer_buf_len) : 0;
1510
1511	con_out_kvec_add(con, sizeof (con->out_connect),
1512					&con->out_connect);
1513	if (auth && auth->authorizer_buf_len)
1514		con_out_kvec_add(con, auth->authorizer_buf_len,
1515					auth->authorizer_buf);
1516
1517	con->out_more = 0;
1518	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1519
1520	return 0;
1521}
1522
1523/*
1524 * write as much of pending kvecs to the socket as we can.
1525 *  1 -> done
1526 *  0 -> socket full, but more to do
1527 * <0 -> error
1528 */
1529static int write_partial_kvec(struct ceph_connection *con)
1530{
1531	int ret;
1532
1533	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1534	while (con->out_kvec_bytes > 0) {
1535		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1536				       con->out_kvec_left, con->out_kvec_bytes,
1537				       con->out_more);
1538		if (ret <= 0)
1539			goto out;
1540		con->out_kvec_bytes -= ret;
1541		if (con->out_kvec_bytes == 0)
1542			break;            /* done */
1543
1544		/* account for full iov entries consumed */
1545		while (ret >= con->out_kvec_cur->iov_len) {
1546			BUG_ON(!con->out_kvec_left);
1547			ret -= con->out_kvec_cur->iov_len;
1548			con->out_kvec_cur++;
1549			con->out_kvec_left--;
1550		}
1551		/* and for a partially-consumed entry */
1552		if (ret) {
1553			con->out_kvec_cur->iov_len -= ret;
1554			con->out_kvec_cur->iov_base += ret;
1555		}
1556	}
1557	con->out_kvec_left = 0;
 
1558	ret = 1;
1559out:
1560	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1561	     con->out_kvec_bytes, con->out_kvec_left, ret);
1562	return ret;  /* done! */
1563}
1564
1565static u32 ceph_crc32c_page(u32 crc, struct page *page,
1566				unsigned int page_offset,
1567				unsigned int length)
1568{
1569	char *kaddr;
1570
1571	kaddr = kmap(page);
1572	BUG_ON(kaddr == NULL);
1573	crc = crc32c(crc, kaddr + page_offset, length);
1574	kunmap(page);
 
 
 
 
 
 
 
 
1575
1576	return crc;
 
 
1577}
 
 
1578/*
1579 * Write as much message data payload as we can.  If we finish, queue
1580 * up the footer.
1581 *  1 -> done, footer is now queued in out_kvec[].
1582 *  0 -> socket full, but more to do
1583 * <0 -> error
1584 */
1585static int write_partial_message_data(struct ceph_connection *con)
1586{
1587	struct ceph_msg *msg = con->out_msg;
1588	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1589	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1590	u32 crc;
 
 
 
 
 
 
 
 
1591
1592	dout("%s %p msg %p\n", __func__, con, msg);
 
 
 
1593
1594	if (list_empty(&msg->data))
1595		return -EINVAL;
 
 
1596
1597	/*
1598	 * Iterate through each page that contains data to be
1599	 * written, and send as much as possible for each.
1600	 *
1601	 * If we are calculating the data crc (the default), we will
1602	 * need to map the page.  If we have no pages, they have
1603	 * been revoked, so use the zero page.
1604	 */
1605	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1606	while (cursor->total_resid) {
1607		struct page *page;
1608		size_t page_offset;
1609		size_t length;
1610		bool last_piece;
1611		int ret;
1612
1613		if (!cursor->resid) {
1614			ceph_msg_data_advance(cursor, 0);
1615			continue;
1616		}
1617
1618		page = ceph_msg_data_next(cursor, &page_offset, &length,
1619					  &last_piece);
1620		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1621					length, !last_piece);
1622		if (ret <= 0) {
1623			if (do_datacrc)
1624				msg->footer.data_crc = cpu_to_le32(crc);
1625
1626			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627		}
1628		if (do_datacrc && cursor->need_crc)
1629			crc = ceph_crc32c_page(crc, page, page_offset, length);
1630		ceph_msg_data_advance(cursor, (size_t)ret);
1631	}
1632
1633	dout("%s %p msg %p done\n", __func__, con, msg);
1634
1635	/* prepare and queue up footer, too */
1636	if (do_datacrc)
1637		msg->footer.data_crc = cpu_to_le32(crc);
1638	else
1639		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1640	con_out_kvec_reset(con);
1641	prepare_write_message_footer(con);
1642
1643	return 1;	/* must return > 0 to indicate success */
 
1644}
1645
1646/*
1647 * write some zeros
1648 */
1649static int write_partial_skip(struct ceph_connection *con)
1650{
1651	int ret;
1652
1653	dout("%s %p %d left\n", __func__, con, con->out_skip);
1654	while (con->out_skip > 0) {
1655		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1656
1657		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1658		if (ret <= 0)
1659			goto out;
1660		con->out_skip -= ret;
1661	}
1662	ret = 1;
1663out:
1664	return ret;
1665}
1666
1667/*
1668 * Prepare to read connection handshake, or an ack.
1669 */
1670static void prepare_read_banner(struct ceph_connection *con)
1671{
1672	dout("prepare_read_banner %p\n", con);
1673	con->in_base_pos = 0;
1674}
1675
1676static void prepare_read_connect(struct ceph_connection *con)
1677{
1678	dout("prepare_read_connect %p\n", con);
1679	con->in_base_pos = 0;
1680}
1681
1682static void prepare_read_ack(struct ceph_connection *con)
1683{
1684	dout("prepare_read_ack %p\n", con);
1685	con->in_base_pos = 0;
1686}
1687
1688static void prepare_read_seq(struct ceph_connection *con)
1689{
1690	dout("prepare_read_seq %p\n", con);
1691	con->in_base_pos = 0;
1692	con->in_tag = CEPH_MSGR_TAG_SEQ;
1693}
1694
1695static void prepare_read_tag(struct ceph_connection *con)
1696{
1697	dout("prepare_read_tag %p\n", con);
1698	con->in_base_pos = 0;
1699	con->in_tag = CEPH_MSGR_TAG_READY;
1700}
1701
1702static void prepare_read_keepalive_ack(struct ceph_connection *con)
1703{
1704	dout("prepare_read_keepalive_ack %p\n", con);
1705	con->in_base_pos = 0;
1706}
1707
1708/*
1709 * Prepare to read a message.
1710 */
1711static int prepare_read_message(struct ceph_connection *con)
1712{
1713	dout("prepare_read_message %p\n", con);
1714	BUG_ON(con->in_msg != NULL);
1715	con->in_base_pos = 0;
1716	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1717	return 0;
1718}
1719
1720
1721static int read_partial(struct ceph_connection *con,
1722			int end, int size, void *object)
1723{
1724	while (con->in_base_pos < end) {
1725		int left = end - con->in_base_pos;
1726		int have = size - left;
1727		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1728		if (ret <= 0)
1729			return ret;
1730		con->in_base_pos += ret;
1731	}
1732	return 1;
1733}
1734
1735
1736/*
1737 * Read all or part of the connect-side handshake on a new connection
1738 */
1739static int read_partial_banner(struct ceph_connection *con)
1740{
1741	int size;
1742	int end;
1743	int ret;
1744
1745	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1746
1747	/* peer's banner */
1748	size = strlen(CEPH_BANNER);
1749	end = size;
1750	ret = read_partial(con, end, size, con->in_banner);
1751	if (ret <= 0)
1752		goto out;
1753
1754	size = sizeof (con->actual_peer_addr);
1755	end += size;
1756	ret = read_partial(con, end, size, &con->actual_peer_addr);
1757	if (ret <= 0)
1758		goto out;
1759
1760	size = sizeof (con->peer_addr_for_me);
1761	end += size;
1762	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1763	if (ret <= 0)
1764		goto out;
1765
1766out:
1767	return ret;
1768}
1769
1770static int read_partial_connect(struct ceph_connection *con)
1771{
1772	int size;
1773	int end;
1774	int ret;
1775
1776	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1777
1778	size = sizeof (con->in_reply);
1779	end = size;
1780	ret = read_partial(con, end, size, &con->in_reply);
1781	if (ret <= 0)
1782		goto out;
1783
1784	size = le32_to_cpu(con->in_reply.authorizer_len);
1785	end += size;
1786	ret = read_partial(con, end, size, con->auth_reply_buf);
1787	if (ret <= 0)
1788		goto out;
1789
1790	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1791	     con, (int)con->in_reply.tag,
1792	     le32_to_cpu(con->in_reply.connect_seq),
1793	     le32_to_cpu(con->in_reply.global_seq));
1794out:
1795	return ret;
1796
1797}
1798
1799/*
1800 * Verify the hello banner looks okay.
1801 */
1802static int verify_hello(struct ceph_connection *con)
1803{
1804	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1805		pr_err("connect to %s got bad banner\n",
1806		       ceph_pr_addr(&con->peer_addr.in_addr));
1807		con->error_msg = "protocol error, bad banner";
1808		return -1;
1809	}
1810	return 0;
1811}
1812
1813static bool addr_is_blank(struct sockaddr_storage *ss)
1814{
1815	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1816	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1817
1818	switch (ss->ss_family) {
1819	case AF_INET:
1820		return addr->s_addr == htonl(INADDR_ANY);
1821	case AF_INET6:
1822		return ipv6_addr_any(addr6);
1823	default:
1824		return true;
 
 
1825	}
 
1826}
1827
1828static int addr_port(struct sockaddr_storage *ss)
1829{
1830	switch (ss->ss_family) {
1831	case AF_INET:
1832		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1833	case AF_INET6:
1834		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1835	}
1836	return 0;
1837}
1838
1839static void addr_set_port(struct sockaddr_storage *ss, int p)
1840{
1841	switch (ss->ss_family) {
1842	case AF_INET:
1843		((struct sockaddr_in *)ss)->sin_port = htons(p);
1844		break;
1845	case AF_INET6:
1846		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1847		break;
1848	}
1849}
1850
1851/*
1852 * Unlike other *_pton function semantics, zero indicates success.
1853 */
1854static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1855		char delim, const char **ipend)
1856{
1857	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1858	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1859
1860	memset(ss, 0, sizeof(*ss));
1861
1862	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1863		ss->ss_family = AF_INET;
1864		return 0;
1865	}
1866
1867	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1868		ss->ss_family = AF_INET6;
1869		return 0;
1870	}
1871
1872	return -EINVAL;
1873}
1874
1875/*
1876 * Extract hostname string and resolve using kernel DNS facility.
1877 */
1878#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1879static int ceph_dns_resolve_name(const char *name, size_t namelen,
1880		struct sockaddr_storage *ss, char delim, const char **ipend)
1881{
1882	const char *end, *delim_p;
1883	char *colon_p, *ip_addr = NULL;
1884	int ip_len, ret;
1885
1886	/*
1887	 * The end of the hostname occurs immediately preceding the delimiter or
1888	 * the port marker (':') where the delimiter takes precedence.
1889	 */
1890	delim_p = memchr(name, delim, namelen);
1891	colon_p = memchr(name, ':', namelen);
1892
1893	if (delim_p && colon_p)
1894		end = delim_p < colon_p ? delim_p : colon_p;
1895	else if (!delim_p && colon_p)
1896		end = colon_p;
1897	else {
1898		end = delim_p;
1899		if (!end) /* case: hostname:/ */
1900			end = name + namelen;
1901	}
1902
1903	if (end <= name)
1904		return -EINVAL;
1905
1906	/* do dns_resolve upcall */
1907	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1908	if (ip_len > 0)
1909		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1910	else
1911		ret = -ESRCH;
1912
1913	kfree(ip_addr);
1914
1915	*ipend = end;
1916
1917	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1918			ret, ret ? "failed" : ceph_pr_addr(ss));
1919
1920	return ret;
1921}
1922#else
1923static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1924		struct sockaddr_storage *ss, char delim, const char **ipend)
1925{
1926	return -EINVAL;
1927}
1928#endif
1929
1930/*
1931 * Parse a server name (IP or hostname). If a valid IP address is not found
1932 * then try to extract a hostname to resolve using userspace DNS upcall.
1933 */
1934static int ceph_parse_server_name(const char *name, size_t namelen,
1935			struct sockaddr_storage *ss, char delim, const char **ipend)
1936{
1937	int ret;
1938
1939	ret = ceph_pton(name, namelen, ss, delim, ipend);
1940	if (ret)
1941		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1942
1943	return ret;
1944}
1945
1946/*
1947 * Parse an ip[:port] list into an addr array.  Use the default
1948 * monitor port if a port isn't specified.
1949 */
1950int ceph_parse_ips(const char *c, const char *end,
1951		   struct ceph_entity_addr *addr,
1952		   int max_count, int *count)
1953{
1954	int i, ret = -EINVAL;
1955	const char *p = c;
1956
1957	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1958	for (i = 0; i < max_count; i++) {
1959		const char *ipend;
1960		struct sockaddr_storage *ss = &addr[i].in_addr;
1961		int port;
1962		char delim = ',';
1963
1964		if (*p == '[') {
1965			delim = ']';
1966			p++;
1967		}
1968
1969		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1970		if (ret)
1971			goto bad;
1972		ret = -EINVAL;
1973
1974		p = ipend;
1975
1976		if (delim == ']') {
1977			if (*p != ']') {
1978				dout("missing matching ']'\n");
1979				goto bad;
1980			}
1981			p++;
1982		}
1983
1984		/* port? */
1985		if (p < end && *p == ':') {
1986			port = 0;
1987			p++;
1988			while (p < end && *p >= '0' && *p <= '9') {
1989				port = (port * 10) + (*p - '0');
1990				p++;
1991			}
1992			if (port == 0)
1993				port = CEPH_MON_PORT;
1994			else if (port > 65535)
1995				goto bad;
1996		} else {
1997			port = CEPH_MON_PORT;
1998		}
1999
2000		addr_set_port(ss, port);
2001
2002		dout("parse_ips got %s\n", ceph_pr_addr(ss));
2003
2004		if (p == end)
2005			break;
2006		if (*p != ',')
2007			goto bad;
2008		p++;
2009	}
2010
2011	if (p != end)
2012		goto bad;
2013
2014	if (count)
2015		*count = i + 1;
2016	return 0;
2017
2018bad:
2019	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2020	return ret;
2021}
2022EXPORT_SYMBOL(ceph_parse_ips);
2023
2024static int process_banner(struct ceph_connection *con)
2025{
2026	dout("process_banner on %p\n", con);
2027
2028	if (verify_hello(con) < 0)
2029		return -1;
2030
2031	ceph_decode_addr(&con->actual_peer_addr);
2032	ceph_decode_addr(&con->peer_addr_for_me);
2033
2034	/*
2035	 * Make sure the other end is who we wanted.  note that the other
2036	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2037	 * them the benefit of the doubt.
2038	 */
2039	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2040		   sizeof(con->peer_addr)) != 0 &&
2041	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2042	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2043		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2044			ceph_pr_addr(&con->peer_addr.in_addr),
2045			(int)le32_to_cpu(con->peer_addr.nonce),
2046			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2047			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2048		con->error_msg = "wrong peer at address";
2049		return -1;
2050	}
2051
2052	/*
2053	 * did we learn our address?
2054	 */
2055	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2056		int port = addr_port(&con->msgr->inst.addr.in_addr);
2057
2058		memcpy(&con->msgr->inst.addr.in_addr,
2059		       &con->peer_addr_for_me.in_addr,
2060		       sizeof(con->peer_addr_for_me.in_addr));
2061		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2062		encode_my_addr(con->msgr);
2063		dout("process_banner learned my addr is %s\n",
2064		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2065	}
2066
 
 
2067	return 0;
2068}
2069
 
 
 
 
 
 
 
 
 
 
 
2070static int process_connect(struct ceph_connection *con)
2071{
2072	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2073	u64 req_feat = from_msgr(con->msgr)->required_features;
2074	u64 server_feat = le64_to_cpu(con->in_reply.features);
2075	int ret;
2076
2077	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2078
2079	if (con->auth_reply_buf) {
2080		/*
2081		 * Any connection that defines ->get_authorizer()
2082		 * should also define ->verify_authorizer_reply().
2083		 * See get_connect_authorizer().
2084		 */
2085		ret = con->ops->verify_authorizer_reply(con);
2086		if (ret < 0) {
2087			con->error_msg = "bad authorize reply";
2088			return ret;
2089		}
2090	}
2091
2092	switch (con->in_reply.tag) {
2093	case CEPH_MSGR_TAG_FEATURES:
2094		pr_err("%s%lld %s feature set mismatch,"
2095		       " my %llx < server's %llx, missing %llx\n",
2096		       ENTITY_NAME(con->peer_name),
2097		       ceph_pr_addr(&con->peer_addr.in_addr),
2098		       sup_feat, server_feat, server_feat & ~sup_feat);
2099		con->error_msg = "missing required protocol features";
2100		reset_connection(con);
2101		return -1;
2102
2103	case CEPH_MSGR_TAG_BADPROTOVER:
2104		pr_err("%s%lld %s protocol version mismatch,"
2105		       " my %d != server's %d\n",
2106		       ENTITY_NAME(con->peer_name),
2107		       ceph_pr_addr(&con->peer_addr.in_addr),
2108		       le32_to_cpu(con->out_connect.protocol_version),
2109		       le32_to_cpu(con->in_reply.protocol_version));
2110		con->error_msg = "protocol version mismatch";
2111		reset_connection(con);
2112		return -1;
2113
2114	case CEPH_MSGR_TAG_BADAUTHORIZER:
2115		con->auth_retry++;
2116		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2117		     con->auth_retry);
2118		if (con->auth_retry == 2) {
2119			con->error_msg = "connect authorization failure";
2120			return -1;
2121		}
2122		con_out_kvec_reset(con);
 
2123		ret = prepare_write_connect(con);
2124		if (ret < 0)
2125			return ret;
2126		prepare_read_connect(con);
2127		break;
2128
2129	case CEPH_MSGR_TAG_RESETSESSION:
2130		/*
2131		 * If we connected with a large connect_seq but the peer
2132		 * has no record of a session with us (no connection, or
2133		 * connect_seq == 0), they will send RESETSESION to indicate
2134		 * that they must have reset their session, and may have
2135		 * dropped messages.
2136		 */
2137		dout("process_connect got RESET peer seq %u\n",
2138		     le32_to_cpu(con->in_reply.connect_seq));
2139		pr_err("%s%lld %s connection reset\n",
2140		       ENTITY_NAME(con->peer_name),
2141		       ceph_pr_addr(&con->peer_addr.in_addr));
2142		reset_connection(con);
2143		con_out_kvec_reset(con);
2144		ret = prepare_write_connect(con);
2145		if (ret < 0)
2146			return ret;
2147		prepare_read_connect(con);
2148
2149		/* Tell ceph about it. */
2150		mutex_unlock(&con->mutex);
2151		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2152		if (con->ops->peer_reset)
2153			con->ops->peer_reset(con);
2154		mutex_lock(&con->mutex);
2155		if (con->state != CON_STATE_NEGOTIATING)
 
2156			return -EAGAIN;
2157		break;
2158
2159	case CEPH_MSGR_TAG_RETRY_SESSION:
2160		/*
2161		 * If we sent a smaller connect_seq than the peer has, try
2162		 * again with a larger value.
2163		 */
2164		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2165		     le32_to_cpu(con->out_connect.connect_seq),
2166		     le32_to_cpu(con->in_reply.connect_seq));
2167		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2168		con_out_kvec_reset(con);
2169		ret = prepare_write_connect(con);
2170		if (ret < 0)
2171			return ret;
2172		prepare_read_connect(con);
2173		break;
2174
2175	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2176		/*
2177		 * If we sent a smaller global_seq than the peer has, try
2178		 * again with a larger value.
2179		 */
2180		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2181		     con->peer_global_seq,
2182		     le32_to_cpu(con->in_reply.global_seq));
2183		get_global_seq(con->msgr,
2184			       le32_to_cpu(con->in_reply.global_seq));
2185		con_out_kvec_reset(con);
2186		ret = prepare_write_connect(con);
2187		if (ret < 0)
2188			return ret;
2189		prepare_read_connect(con);
2190		break;
2191
2192	case CEPH_MSGR_TAG_SEQ:
2193	case CEPH_MSGR_TAG_READY:
2194		if (req_feat & ~server_feat) {
2195			pr_err("%s%lld %s protocol feature mismatch,"
2196			       " my required %llx > server's %llx, need %llx\n",
2197			       ENTITY_NAME(con->peer_name),
2198			       ceph_pr_addr(&con->peer_addr.in_addr),
2199			       req_feat, server_feat, req_feat & ~server_feat);
2200			con->error_msg = "missing required protocol features";
2201			reset_connection(con);
2202			return -1;
2203		}
2204
2205		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2206		con->state = CON_STATE_OPEN;
2207		con->auth_retry = 0;    /* we authenticated; clear flag */
2208		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2209		con->connect_seq++;
2210		con->peer_features = server_feat;
2211		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2212		     con->peer_global_seq,
2213		     le32_to_cpu(con->in_reply.connect_seq),
2214		     con->connect_seq);
2215		WARN_ON(con->connect_seq !=
2216			le32_to_cpu(con->in_reply.connect_seq));
2217
2218		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2219			con_flag_set(con, CON_FLAG_LOSSYTX);
2220
2221		con->delay = 0;      /* reset backoff memory */
2222
2223		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2224			prepare_write_seq(con);
2225			prepare_read_seq(con);
2226		} else {
2227			prepare_read_tag(con);
2228		}
2229		break;
2230
2231	case CEPH_MSGR_TAG_WAIT:
2232		/*
2233		 * If there is a connection race (we are opening
2234		 * connections to each other), one of us may just have
2235		 * to WAIT.  This shouldn't happen if we are the
2236		 * client.
2237		 */
 
2238		con->error_msg = "protocol error, got WAIT as client";
2239		return -1;
2240
2241	default:
 
2242		con->error_msg = "protocol error, garbage tag during connect";
2243		return -1;
2244	}
2245	return 0;
2246}
2247
2248
2249/*
2250 * read (part of) an ack
2251 */
2252static int read_partial_ack(struct ceph_connection *con)
2253{
2254	int size = sizeof (con->in_temp_ack);
2255	int end = size;
2256
2257	return read_partial(con, end, size, &con->in_temp_ack);
2258}
2259
 
2260/*
2261 * We can finally discard anything that's been acked.
2262 */
2263static void process_ack(struct ceph_connection *con)
2264{
2265	struct ceph_msg *m;
2266	u64 ack = le64_to_cpu(con->in_temp_ack);
2267	u64 seq;
2268	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2269	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2270
2271	/*
2272	 * In the reconnect case, con_fault() has requeued messages
2273	 * in out_sent. We should cleanup old messages according to
2274	 * the reconnect seq.
2275	 */
2276	while (!list_empty(list)) {
2277		m = list_first_entry(list, struct ceph_msg, list_head);
2278		if (reconnect && m->needs_out_seq)
2279			break;
2280		seq = le64_to_cpu(m->hdr.seq);
2281		if (seq > ack)
2282			break;
2283		dout("got ack for seq %llu type %d at %p\n", seq,
2284		     le16_to_cpu(m->hdr.type), m);
2285		m->ack_stamp = jiffies;
2286		ceph_msg_remove(m);
2287	}
2288
2289	prepare_read_tag(con);
2290}
2291
2292
 
 
2293static int read_partial_message_section(struct ceph_connection *con,
2294					struct kvec *section,
2295					unsigned int sec_len, u32 *crc)
2296{
2297	int ret, left;
2298
2299	BUG_ON(!section);
2300
2301	while (section->iov_len < sec_len) {
2302		BUG_ON(section->iov_base == NULL);
2303		left = sec_len - section->iov_len;
2304		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2305				       section->iov_len, left);
2306		if (ret <= 0)
2307			return ret;
2308		section->iov_len += ret;
2309	}
2310	if (section->iov_len == sec_len)
2311		*crc = crc32c(0, section->iov_base, section->iov_len);
2312
2313	return 1;
2314}
2315
2316static int read_partial_msg_data(struct ceph_connection *con)
 
 
 
 
 
 
 
2317{
2318	struct ceph_msg *msg = con->in_msg;
2319	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2320	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2321	struct page *page;
2322	size_t page_offset;
2323	size_t length;
2324	u32 crc = 0;
2325	int ret;
 
2326
2327	BUG_ON(!msg);
2328	if (list_empty(&msg->data))
2329		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	if (do_datacrc)
2332		crc = con->in_data_crc;
2333	while (cursor->total_resid) {
2334		if (!cursor->resid) {
2335			ceph_msg_data_advance(cursor, 0);
2336			continue;
2337		}
2338
2339		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341		if (ret <= 0) {
2342			if (do_datacrc)
2343				con->in_data_crc = crc;
 
 
 
2344
2345			return ret;
2346		}
2347
2348		if (do_datacrc)
2349			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350		ceph_msg_data_advance(cursor, (size_t)ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351	}
2352	if (do_datacrc)
2353		con->in_data_crc = crc;
2354
2355	return 1;	/* must return > 0 to indicate success */
2356}
 
2357
2358/*
2359 * read (part of) a message.
2360 */
2361static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362
2363static int read_partial_message(struct ceph_connection *con)
2364{
2365	struct ceph_msg *m = con->in_msg;
2366	int size;
2367	int end;
2368	int ret;
2369	unsigned int front_len, middle_len, data_len;
2370	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372	u64 seq;
2373	u32 crc;
2374
2375	dout("read_partial_message con %p msg %p\n", con, m);
2376
2377	/* header */
2378	size = sizeof (con->in_hdr);
2379	end = size;
2380	ret = read_partial(con, end, size, &con->in_hdr);
2381	if (ret <= 0)
2382		return ret;
2383
2384	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
 
2387		       crc, con->in_hdr.crc);
2388		return -EBADMSG;
2389	}
2390
2391	front_len = le32_to_cpu(con->in_hdr.front_len);
2392	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393		return -EIO;
2394	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396		return -EIO;
2397	data_len = le32_to_cpu(con->in_hdr.data_len);
2398	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399		return -EIO;
2400
2401	/* verify seq# */
2402	seq = le64_to_cpu(con->in_hdr.seq);
2403	if ((s64)seq - (s64)con->in_seq < 1) {
2404		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405			ENTITY_NAME(con->peer_name),
2406			ceph_pr_addr(&con->peer_addr.in_addr),
2407			seq, con->in_seq + 1);
2408		con->in_base_pos = -front_len - middle_len - data_len -
2409			sizeof_footer(con);
2410		con->in_tag = CEPH_MSGR_TAG_READY;
2411		return 1;
2412	} else if ((s64)seq - (s64)con->in_seq > 1) {
2413		pr_err("read_partial_message bad seq %lld expected %lld\n",
2414		       seq, con->in_seq + 1);
2415		con->error_msg = "bad message sequence # for incoming message";
2416		return -EBADE;
2417	}
2418
2419	/* allocate message? */
2420	if (!con->in_msg) {
2421		int skip = 0;
2422
2423		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424		     front_len, data_len);
2425		ret = ceph_con_in_msg_alloc(con, &skip);
2426		if (ret < 0)
2427			return ret;
2428
2429		BUG_ON(!con->in_msg ^ skip);
2430		if (skip) {
2431			/* skip this message */
2432			dout("alloc_msg said skip message\n");
 
2433			con->in_base_pos = -front_len - middle_len - data_len -
2434				sizeof_footer(con);
2435			con->in_tag = CEPH_MSGR_TAG_READY;
2436			con->in_seq++;
2437			return 1;
 
 
 
 
 
2438		}
2439
2440		BUG_ON(!con->in_msg);
2441		BUG_ON(con->in_msg->con != con);
2442		m = con->in_msg;
2443		m->front.iov_len = 0;    /* haven't read it yet */
2444		if (m->middle)
2445			m->middle->vec.iov_len = 0;
2446
2447		/* prepare for data payload, if any */
2448
2449		if (data_len)
2450			prepare_message_data(con->in_msg, data_len);
 
 
2451	}
2452
2453	/* front */
2454	ret = read_partial_message_section(con, &m->front, front_len,
2455					   &con->in_front_crc);
2456	if (ret <= 0)
2457		return ret;
2458
2459	/* middle */
2460	if (m->middle) {
2461		ret = read_partial_message_section(con, &m->middle->vec,
2462						   middle_len,
2463						   &con->in_middle_crc);
2464		if (ret <= 0)
2465			return ret;
2466	}
 
 
 
 
2467
2468	/* (page) data */
2469	if (data_len) {
2470		ret = read_partial_msg_data(con);
2471		if (ret <= 0)
2472			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473	}
2474
2475	/* footer */
2476	size = sizeof_footer(con);
2477	end += size;
2478	ret = read_partial(con, end, size, &m->footer);
2479	if (ret <= 0)
2480		return ret;
2481
2482	if (!need_sign) {
2483		m->footer.flags = m->old_footer.flags;
2484		m->footer.sig = 0;
2485	}
2486
2487	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488	     m, front_len, m->footer.front_crc, middle_len,
2489	     m->footer.middle_crc, data_len, m->footer.data_crc);
2490
2491	/* crc ok? */
2492	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494		       m, con->in_front_crc, m->footer.front_crc);
2495		return -EBADMSG;
2496	}
2497	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499		       m, con->in_middle_crc, m->footer.middle_crc);
2500		return -EBADMSG;
2501	}
2502	if (do_datacrc &&
2503	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507		return -EBADMSG;
2508	}
2509
2510	if (need_sign && con->ops->check_message_signature &&
2511	    con->ops->check_message_signature(m)) {
2512		pr_err("read_partial_message %p signature check failed\n", m);
2513		return -EBADMSG;
2514	}
2515
2516	return 1; /* done! */
2517}
2518
2519/*
2520 * Process message.  This happens in the worker thread.  The callback should
2521 * be careful not to do anything that waits on other incoming messages or it
2522 * may deadlock.
2523 */
2524static void process_message(struct ceph_connection *con)
2525{
2526	struct ceph_msg *msg = con->in_msg;
2527
2528	BUG_ON(con->in_msg->con != con);
2529	con->in_msg = NULL;
2530
2531	/* if first message, set peer_name */
2532	if (con->peer_name.type == 0)
2533		con->peer_name = msg->hdr.src;
2534
2535	con->in_seq++;
2536	mutex_unlock(&con->mutex);
2537
2538	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539	     msg, le64_to_cpu(msg->hdr.seq),
2540	     ENTITY_NAME(msg->hdr.src),
2541	     le16_to_cpu(msg->hdr.type),
2542	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543	     le32_to_cpu(msg->hdr.front_len),
2544	     le32_to_cpu(msg->hdr.data_len),
2545	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546	con->ops->dispatch(con, msg);
2547
2548	mutex_lock(&con->mutex);
2549}
2550
2551static int read_keepalive_ack(struct ceph_connection *con)
2552{
2553	struct ceph_timespec ceph_ts;
2554	size_t size = sizeof(ceph_ts);
2555	int ret = read_partial(con, size, size, &ceph_ts);
2556	if (ret <= 0)
2557		return ret;
2558	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2559	prepare_read_tag(con);
2560	return 1;
2561}
2562
 
2563/*
2564 * Write something to the socket.  Called in a worker thread when the
2565 * socket appears to be writeable and we have something ready to send.
2566 */
2567static int try_write(struct ceph_connection *con)
2568{
2569	int ret = 1;
2570
2571	dout("try_write start %p state %lu\n", con, con->state);
2572	if (con->state != CON_STATE_PREOPEN &&
2573	    con->state != CON_STATE_CONNECTING &&
2574	    con->state != CON_STATE_NEGOTIATING &&
2575	    con->state != CON_STATE_OPEN)
2576		return 0;
2577
2578more:
2579	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2580
2581	/* open the socket first? */
2582	if (con->state == CON_STATE_PREOPEN) {
2583		BUG_ON(con->sock);
2584		con->state = CON_STATE_CONNECTING;
2585
2586		con_out_kvec_reset(con);
2587		prepare_write_banner(con);
 
 
 
2588		prepare_read_banner(con);
 
 
2589
2590		BUG_ON(con->in_msg);
2591		con->in_tag = CEPH_MSGR_TAG_READY;
2592		dout("try_write initiating connect on %p new state %lu\n",
2593		     con, con->state);
2594		ret = ceph_tcp_connect(con);
2595		if (ret < 0) {
2596			con->error_msg = "connect error";
2597			goto out;
2598		}
2599	}
2600
2601more_kvec:
2602	BUG_ON(!con->sock);
2603
2604	/* kvec data queued? */
2605	if (con->out_kvec_left) {
2606		ret = write_partial_kvec(con);
2607		if (ret <= 0)
2608			goto out;
2609	}
2610	if (con->out_skip) {
2611		ret = write_partial_skip(con);
2612		if (ret <= 0)
2613			goto out;
2614	}
2615
2616	/* msg pages? */
2617	if (con->out_msg) {
2618		if (con->out_msg_done) {
2619			ceph_msg_put(con->out_msg);
2620			con->out_msg = NULL;   /* we're done with this one */
2621			goto do_next;
2622		}
2623
2624		ret = write_partial_message_data(con);
2625		if (ret == 1)
2626			goto more_kvec;  /* we need to send the footer, too! */
2627		if (ret == 0)
2628			goto out;
2629		if (ret < 0) {
2630			dout("try_write write_partial_message_data err %d\n",
2631			     ret);
2632			goto out;
2633		}
2634	}
2635
2636do_next:
2637	if (con->state == CON_STATE_OPEN) {
2638		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2639			prepare_write_keepalive(con);
2640			goto more;
2641		}
2642		/* is anything else pending? */
2643		if (!list_empty(&con->out_queue)) {
2644			prepare_write_message(con);
2645			goto more;
2646		}
2647		if (con->in_seq > con->in_seq_acked) {
2648			prepare_write_ack(con);
2649			goto more;
2650		}
 
 
 
 
2651	}
2652
2653	/* Nothing to do! */
2654	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2655	dout("try_write nothing else to write.\n");
2656	ret = 0;
2657out:
2658	dout("try_write done on %p ret %d\n", con, ret);
2659	return ret;
2660}
2661
2662
2663
2664/*
2665 * Read what we can from the socket.
2666 */
2667static int try_read(struct ceph_connection *con)
2668{
2669	int ret = -1;
2670
2671more:
2672	dout("try_read start on %p state %lu\n", con, con->state);
2673	if (con->state != CON_STATE_CONNECTING &&
2674	    con->state != CON_STATE_NEGOTIATING &&
2675	    con->state != CON_STATE_OPEN)
2676		return 0;
2677
2678	BUG_ON(!con->sock);
2679
 
2680	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2681	     con->in_base_pos);
2682
2683	if (con->state == CON_STATE_CONNECTING) {
2684		dout("try_read connecting\n");
2685		ret = read_partial_banner(con);
2686		if (ret <= 0)
2687			goto out;
2688		ret = process_banner(con);
2689		if (ret < 0)
2690			goto out;
2691
2692		con->state = CON_STATE_NEGOTIATING;
2693
2694		/*
2695		 * Received banner is good, exchange connection info.
2696		 * Do not reset out_kvec, as sending our banner raced
2697		 * with receiving peer banner after connect completed.
2698		 */
2699		ret = prepare_write_connect(con);
2700		if (ret < 0)
2701			goto out;
2702		prepare_read_connect(con);
2703
2704		/* Send connection info before awaiting response */
2705		goto out;
2706	}
2707
2708	if (con->state == CON_STATE_NEGOTIATING) {
2709		dout("try_read negotiating\n");
 
 
 
 
 
 
 
 
2710		ret = read_partial_connect(con);
2711		if (ret <= 0)
2712			goto out;
2713		ret = process_connect(con);
2714		if (ret < 0)
2715			goto out;
2716		goto more;
2717	}
2718
2719	WARN_ON(con->state != CON_STATE_OPEN);
2720
2721	if (con->in_base_pos < 0) {
2722		/*
2723		 * skipping + discarding content.
2724		 *
2725		 * FIXME: there must be a better way to do this!
2726		 */
2727		static char buf[SKIP_BUF_SIZE];
2728		int skip = min((int) sizeof (buf), -con->in_base_pos);
2729
2730		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2731		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2732		if (ret <= 0)
2733			goto out;
2734		con->in_base_pos += ret;
2735		if (con->in_base_pos)
2736			goto more;
2737	}
2738	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2739		/*
2740		 * what's next?
2741		 */
2742		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2743		if (ret <= 0)
2744			goto out;
2745		dout("try_read got tag %d\n", (int)con->in_tag);
2746		switch (con->in_tag) {
2747		case CEPH_MSGR_TAG_MSG:
2748			prepare_read_message(con);
2749			break;
2750		case CEPH_MSGR_TAG_ACK:
2751			prepare_read_ack(con);
2752			break;
2753		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2754			prepare_read_keepalive_ack(con);
2755			break;
2756		case CEPH_MSGR_TAG_CLOSE:
2757			con_close_socket(con);
2758			con->state = CON_STATE_CLOSED;
2759			goto out;
2760		default:
2761			goto bad_tag;
2762		}
2763	}
2764	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2765		ret = read_partial_message(con);
2766		if (ret <= 0) {
2767			switch (ret) {
2768			case -EBADMSG:
2769				con->error_msg = "bad crc/signature";
2770				/* fall through */
2771			case -EBADE:
2772				ret = -EIO;
2773				break;
2774			case -EIO:
2775				con->error_msg = "io error";
2776				break;
2777			}
2778			goto out;
2779		}
2780		if (con->in_tag == CEPH_MSGR_TAG_READY)
2781			goto more;
2782		process_message(con);
2783		if (con->state == CON_STATE_OPEN)
2784			prepare_read_tag(con);
2785		goto more;
2786	}
2787	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2788	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2789		/*
2790		 * the final handshake seq exchange is semantically
2791		 * equivalent to an ACK
2792		 */
2793		ret = read_partial_ack(con);
2794		if (ret <= 0)
2795			goto out;
2796		process_ack(con);
2797		goto more;
2798	}
2799	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2800		ret = read_keepalive_ack(con);
2801		if (ret <= 0)
2802			goto out;
2803		goto more;
2804	}
2805
2806out:
2807	dout("try_read done on %p ret %d\n", con, ret);
2808	return ret;
2809
2810bad_tag:
2811	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2812	con->error_msg = "protocol error, garbage tag";
2813	ret = -1;
2814	goto out;
2815}
2816
2817
2818/*
2819 * Atomically queue work on a connection after the specified delay.
2820 * Bump @con reference to avoid races with connection teardown.
2821 * Returns 0 if work was queued, or an error code otherwise.
2822 */
2823static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2824{
2825	if (!con->ops->get(con)) {
2826		dout("%s %p ref count 0\n", __func__, con);
2827		return -ENOENT;
2828	}
2829
2830	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2831		dout("%s %p - already queued\n", __func__, con);
2832		con->ops->put(con);
2833		return -EBUSY;
2834	}
2835
2836	dout("%s %p %lu\n", __func__, con, delay);
2837	return 0;
2838}
2839
2840static void queue_con(struct ceph_connection *con)
2841{
2842	(void) queue_con_delay(con, 0);
2843}
2844
2845static void cancel_con(struct ceph_connection *con)
2846{
2847	if (cancel_delayed_work(&con->work)) {
2848		dout("%s %p\n", __func__, con);
2849		con->ops->put(con);
2850	}
2851}
2852
2853static bool con_sock_closed(struct ceph_connection *con)
2854{
2855	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2856		return false;
2857
2858#define CASE(x)								\
2859	case CON_STATE_ ## x:						\
2860		con->error_msg = "socket closed (con state " #x ")";	\
2861		break;
2862
2863	switch (con->state) {
2864	CASE(CLOSED);
2865	CASE(PREOPEN);
2866	CASE(CONNECTING);
2867	CASE(NEGOTIATING);
2868	CASE(OPEN);
2869	CASE(STANDBY);
2870	default:
2871		pr_warn("%s con %p unrecognized state %lu\n",
2872			__func__, con, con->state);
2873		con->error_msg = "unrecognized con state";
2874		BUG();
2875		break;
2876	}
2877#undef CASE
2878
2879	return true;
2880}
2881
2882static bool con_backoff(struct ceph_connection *con)
2883{
2884	int ret;
2885
2886	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2887		return false;
2888
2889	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2890	if (ret) {
2891		dout("%s: con %p FAILED to back off %lu\n", __func__,
2892			con, con->delay);
2893		BUG_ON(ret == -ENOENT);
2894		con_flag_set(con, CON_FLAG_BACKOFF);
2895	}
2896
2897	return true;
2898}
2899
2900/* Finish fault handling; con->mutex must *not* be held here */
2901
2902static void con_fault_finish(struct ceph_connection *con)
2903{
2904	dout("%s %p\n", __func__, con);
2905
2906	/*
2907	 * in case we faulted due to authentication, invalidate our
2908	 * current tickets so that we can get new ones.
2909	 */
2910	if (con->auth_retry) {
2911		dout("auth_retry %d, invalidating\n", con->auth_retry);
2912		if (con->ops->invalidate_authorizer)
2913			con->ops->invalidate_authorizer(con);
2914		con->auth_retry = 0;
2915	}
2916
2917	if (con->ops->fault)
2918		con->ops->fault(con);
2919}
2920
2921/*
2922 * Do some work on a connection.  Drop a connection ref when we're done.
2923 */
2924static void ceph_con_workfn(struct work_struct *work)
2925{
2926	struct ceph_connection *con = container_of(work, struct ceph_connection,
2927						   work.work);
2928	bool fault;
2929
2930	mutex_lock(&con->mutex);
2931	while (true) {
2932		int ret;
2933
2934		if ((fault = con_sock_closed(con))) {
2935			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2936			break;
2937		}
2938		if (con_backoff(con)) {
2939			dout("%s: con %p BACKOFF\n", __func__, con);
2940			break;
2941		}
2942		if (con->state == CON_STATE_STANDBY) {
2943			dout("%s: con %p STANDBY\n", __func__, con);
2944			break;
2945		}
2946		if (con->state == CON_STATE_CLOSED) {
2947			dout("%s: con %p CLOSED\n", __func__, con);
2948			BUG_ON(con->sock);
2949			break;
2950		}
2951		if (con->state == CON_STATE_PREOPEN) {
2952			dout("%s: con %p PREOPEN\n", __func__, con);
2953			BUG_ON(con->sock);
2954		}
 
2955
2956		ret = try_read(con);
2957		if (ret < 0) {
2958			if (ret == -EAGAIN)
2959				continue;
2960			if (!con->error_msg)
2961				con->error_msg = "socket error on read";
2962			fault = true;
2963			break;
2964		}
 
 
 
 
 
2965
2966		ret = try_write(con);
2967		if (ret < 0) {
2968			if (ret == -EAGAIN)
2969				continue;
2970			if (!con->error_msg)
2971				con->error_msg = "socket error on write";
2972			fault = true;
2973		}
2974
2975		break;	/* If we make it to here, we're done */
2976	}
2977	if (fault)
2978		con_fault(con);
2979	mutex_unlock(&con->mutex);
2980
2981	if (fault)
2982		con_fault_finish(con);
 
 
 
2983
 
 
 
2984	con->ops->put(con);
 
 
 
 
 
 
2985}
2986
 
2987/*
2988 * Generic error/fault handler.  A retry mechanism is used with
2989 * exponential backoff
2990 */
2991static void con_fault(struct ceph_connection *con)
2992{
 
 
2993	dout("fault %p state %lu to peer %s\n",
2994	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2995
2996	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2997		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2998	con->error_msg = NULL;
2999
3000	WARN_ON(con->state != CON_STATE_CONNECTING &&
3001	       con->state != CON_STATE_NEGOTIATING &&
3002	       con->state != CON_STATE_OPEN);
3003
3004	con_close_socket(con);
 
 
3005
3006	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3007		dout("fault on LOSSYTX channel, marking CLOSED\n");
3008		con->state = CON_STATE_CLOSED;
3009		return;
3010	}
3011
3012	if (con->in_msg) {
3013		BUG_ON(con->in_msg->con != con);
3014		ceph_msg_put(con->in_msg);
3015		con->in_msg = NULL;
3016	}
3017
3018	/* Requeue anything that hasn't been acked */
3019	list_splice_init(&con->out_sent, &con->out_queue);
3020
3021	/* If there are no messages queued or keepalive pending, place
3022	 * the connection in a STANDBY state */
3023	if (list_empty(&con->out_queue) &&
3024	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3025		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3026		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3027		con->state = CON_STATE_STANDBY;
3028	} else {
3029		/* retry after a delay. */
3030		con->state = CON_STATE_PREOPEN;
3031		if (con->delay == 0)
3032			con->delay = BASE_DELAY_INTERVAL;
3033		else if (con->delay < MAX_DELAY_INTERVAL)
3034			con->delay *= 2;
3035		con_flag_set(con, CON_FLAG_BACKOFF);
3036		queue_con(con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037	}
 
 
 
3038}
3039
3040
3041
3042/*
3043 * initialize a new messenger instance
3044 */
3045void ceph_messenger_init(struct ceph_messenger *msgr,
3046			 struct ceph_entity_addr *myaddr)
 
3047{
 
 
 
 
 
 
 
 
 
3048	spin_lock_init(&msgr->global_seq_lock);
3049
3050	if (myaddr)
3051		msgr->inst.addr = *myaddr;
3052
3053	/* select a random nonce */
3054	msgr->inst.addr.type = 0;
3055	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3056	encode_my_addr(msgr);
3057
3058	atomic_set(&msgr->stopping, 0);
3059	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3060
3061	dout("%s %p\n", __func__, msgr);
3062}
3063EXPORT_SYMBOL(ceph_messenger_init);
3064
3065void ceph_messenger_fini(struct ceph_messenger *msgr)
3066{
3067	put_net(read_pnet(&msgr->net));
3068}
3069EXPORT_SYMBOL(ceph_messenger_fini);
3070
3071static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3072{
3073	if (msg->con)
3074		msg->con->ops->put(msg->con);
3075
3076	msg->con = con ? con->ops->get(con) : NULL;
3077	BUG_ON(msg->con != con);
3078}
 
3079
3080static void clear_standby(struct ceph_connection *con)
3081{
3082	/* come back from STANDBY? */
3083	if (con->state == CON_STATE_STANDBY) {
 
3084		dout("clear_standby %p and ++connect_seq\n", con);
3085		con->state = CON_STATE_PREOPEN;
3086		con->connect_seq++;
3087		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3088		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
 
3089	}
3090}
3091
3092/*
3093 * Queue up an outgoing message on the given connection.
3094 */
3095void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3096{
3097	/* set src+dst */
3098	msg->hdr.src = con->msgr->inst.name;
3099	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3100	msg->needs_out_seq = true;
3101
3102	mutex_lock(&con->mutex);
3103
3104	if (con->state == CON_STATE_CLOSED) {
3105		dout("con_send %p closed, dropping %p\n", con, msg);
3106		ceph_msg_put(msg);
3107		mutex_unlock(&con->mutex);
3108		return;
3109	}
3110
3111	msg_con_set(msg, con);
 
 
 
3112
 
 
 
 
3113	BUG_ON(!list_empty(&msg->list_head));
3114	list_add_tail(&msg->list_head, &con->out_queue);
3115	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3116	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3117	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3118	     le32_to_cpu(msg->hdr.front_len),
3119	     le32_to_cpu(msg->hdr.middle_len),
3120	     le32_to_cpu(msg->hdr.data_len));
3121
3122	clear_standby(con);
3123	mutex_unlock(&con->mutex);
3124
3125	/* if there wasn't anything waiting to send before, queue
3126	 * new work */
3127	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
 
3128		queue_con(con);
3129}
3130EXPORT_SYMBOL(ceph_con_send);
3131
3132/*
3133 * Revoke a message that was previously queued for send
3134 */
3135void ceph_msg_revoke(struct ceph_msg *msg)
3136{
3137	struct ceph_connection *con = msg->con;
3138
3139	if (!con) {
3140		dout("%s msg %p null con\n", __func__, msg);
3141		return;		/* Message not in our possession */
3142	}
3143
3144	mutex_lock(&con->mutex);
3145	if (!list_empty(&msg->list_head)) {
3146		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3147		list_del_init(&msg->list_head);
3148		msg->hdr.seq = 0;
3149
3150		ceph_msg_put(msg);
 
3151	}
3152	if (con->out_msg == msg) {
3153		BUG_ON(con->out_skip);
3154		/* footer */
3155		if (con->out_msg_done) {
3156			con->out_skip += con_out_kvec_skip(con);
3157		} else {
3158			BUG_ON(!msg->data_length);
3159			con->out_skip += sizeof_footer(con);
3160		}
3161		/* data, middle, front */
3162		if (msg->data_length)
3163			con->out_skip += msg->cursor.total_resid;
3164		if (msg->middle)
3165			con->out_skip += con_out_kvec_skip(con);
3166		con->out_skip += con_out_kvec_skip(con);
3167
3168		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3169		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3170		msg->hdr.seq = 0;
3171		con->out_msg = NULL;
 
 
 
 
3172		ceph_msg_put(msg);
 
3173	}
3174
3175	mutex_unlock(&con->mutex);
3176}
3177
3178/*
3179 * Revoke a message that we may be reading data into
3180 */
3181void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3182{
3183	struct ceph_connection *con = msg->con;
3184
3185	if (!con) {
3186		dout("%s msg %p null con\n", __func__, msg);
3187		return;		/* Message not in our possession */
3188	}
3189
3190	mutex_lock(&con->mutex);
3191	if (con->in_msg == msg) {
3192		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3193		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3194		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3195
3196		/* skip rest of message */
3197		dout("%s %p msg %p revoked\n", __func__, con, msg);
3198		con->in_base_pos = con->in_base_pos -
3199				sizeof(struct ceph_msg_header) -
3200				front_len -
3201				middle_len -
3202				data_len -
3203				sizeof(struct ceph_msg_footer);
3204		ceph_msg_put(con->in_msg);
3205		con->in_msg = NULL;
3206		con->in_tag = CEPH_MSGR_TAG_READY;
3207		con->in_seq++;
3208	} else {
3209		dout("%s %p in_msg %p msg %p no-op\n",
3210		     __func__, con, con->in_msg, msg);
3211	}
3212	mutex_unlock(&con->mutex);
3213}
3214
3215/*
3216 * Queue a keepalive byte to ensure the tcp connection is alive.
3217 */
3218void ceph_con_keepalive(struct ceph_connection *con)
3219{
3220	dout("con_keepalive %p\n", con);
3221	mutex_lock(&con->mutex);
3222	clear_standby(con);
3223	mutex_unlock(&con->mutex);
3224	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3225	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3226		queue_con(con);
3227}
3228EXPORT_SYMBOL(ceph_con_keepalive);
3229
3230bool ceph_con_keepalive_expired(struct ceph_connection *con,
3231			       unsigned long interval)
3232{
3233	if (interval > 0 &&
3234	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3235		struct timespec now;
3236		struct timespec ts;
3237		ktime_get_real_ts(&now);
3238		jiffies_to_timespec(interval, &ts);
3239		ts = timespec_add(con->last_keepalive_ack, ts);
3240		return timespec_compare(&now, &ts) >= 0;
3241	}
3242	return false;
3243}
3244
3245static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3246{
3247	struct ceph_msg_data *data;
3248
3249	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3250		return NULL;
3251
3252	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3253	if (!data)
3254		return NULL;
3255
3256	data->type = type;
3257	INIT_LIST_HEAD(&data->links);
3258
3259	return data;
3260}
3261
3262static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3263{
3264	if (!data)
3265		return;
3266
3267	WARN_ON(!list_empty(&data->links));
3268	if (data->type == CEPH_MSG_DATA_PAGELIST)
3269		ceph_pagelist_release(data->pagelist);
3270	kmem_cache_free(ceph_msg_data_cache, data);
3271}
3272
3273void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3274		size_t length, size_t alignment)
3275{
3276	struct ceph_msg_data *data;
3277
3278	BUG_ON(!pages);
3279	BUG_ON(!length);
3280
3281	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3282	BUG_ON(!data);
3283	data->pages = pages;
3284	data->length = length;
3285	data->alignment = alignment & ~PAGE_MASK;
3286
3287	list_add_tail(&data->links, &msg->data);
3288	msg->data_length += length;
3289}
3290EXPORT_SYMBOL(ceph_msg_data_add_pages);
3291
3292void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3293				struct ceph_pagelist *pagelist)
3294{
3295	struct ceph_msg_data *data;
3296
3297	BUG_ON(!pagelist);
3298	BUG_ON(!pagelist->length);
3299
3300	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3301	BUG_ON(!data);
3302	data->pagelist = pagelist;
3303
3304	list_add_tail(&data->links, &msg->data);
3305	msg->data_length += pagelist->length;
3306}
3307EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3308
3309#ifdef	CONFIG_BLOCK
3310void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3311			   u32 length)
3312{
3313	struct ceph_msg_data *data;
3314
3315	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3316	BUG_ON(!data);
3317	data->bio_pos = *bio_pos;
3318	data->bio_length = length;
3319
3320	list_add_tail(&data->links, &msg->data);
3321	msg->data_length += length;
3322}
3323EXPORT_SYMBOL(ceph_msg_data_add_bio);
3324#endif	/* CONFIG_BLOCK */
3325
3326void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3327			     struct ceph_bvec_iter *bvec_pos)
3328{
3329	struct ceph_msg_data *data;
3330
3331	data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3332	BUG_ON(!data);
3333	data->bvec_pos = *bvec_pos;
3334
3335	list_add_tail(&data->links, &msg->data);
3336	msg->data_length += bvec_pos->iter.bi_size;
3337}
3338EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3339
3340/*
3341 * construct a new message with given type, size
3342 * the new msg has a ref count of 1.
3343 */
3344struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3345			      bool can_fail)
3346{
3347	struct ceph_msg *m;
3348
3349	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3350	if (m == NULL)
3351		goto out;
 
 
3352
 
3353	m->hdr.type = cpu_to_le16(type);
3354	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
 
3355	m->hdr.front_len = cpu_to_le32(front_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
3356
3357	INIT_LIST_HEAD(&m->list_head);
3358	kref_init(&m->kref);
3359	INIT_LIST_HEAD(&m->data);
 
 
 
 
 
 
 
 
 
3360
3361	/* front */
3362	if (front_len) {
3363		m->front.iov_base = ceph_kvmalloc(front_len, flags);
 
 
 
 
 
 
3364		if (m->front.iov_base == NULL) {
3365			dout("ceph_msg_new can't allocate %d bytes\n",
3366			     front_len);
3367			goto out2;
3368		}
3369	} else {
3370		m->front.iov_base = NULL;
3371	}
3372	m->front_alloc_len = m->front.iov_len = front_len;
3373
3374	dout("ceph_msg_new %p front %d\n", m, front_len);
3375	return m;
3376
3377out2:
3378	ceph_msg_put(m);
3379out:
3380	if (!can_fail) {
3381		pr_err("msg_new can't create type %d front %d\n", type,
3382		       front_len);
3383		WARN_ON(1);
3384	} else {
3385		dout("msg_new can't create type %d front %d\n", type,
3386		     front_len);
3387	}
3388	return NULL;
3389}
3390EXPORT_SYMBOL(ceph_msg_new);
3391
3392/*
3393 * Allocate "middle" portion of a message, if it is needed and wasn't
3394 * allocated by alloc_msg.  This allows us to read a small fixed-size
3395 * per-type header in the front and then gracefully fail (i.e.,
3396 * propagate the error to the caller based on info in the front) when
3397 * the middle is too large.
3398 */
3399static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3400{
3401	int type = le16_to_cpu(msg->hdr.type);
3402	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3403
3404	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3405	     ceph_msg_type_name(type), middle_len);
3406	BUG_ON(!middle_len);
3407	BUG_ON(msg->middle);
3408
3409	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3410	if (!msg->middle)
3411		return -ENOMEM;
3412	return 0;
3413}
3414
3415/*
3416 * Allocate a message for receiving an incoming message on a
3417 * connection, and save the result in con->in_msg.  Uses the
3418 * connection's private alloc_msg op if available.
3419 *
3420 * Returns 0 on success, or a negative error code.
3421 *
3422 * On success, if we set *skip = 1:
3423 *  - the next message should be skipped and ignored.
3424 *  - con->in_msg == NULL
3425 * or if we set *skip = 0:
3426 *  - con->in_msg is non-null.
3427 * On error (ENOMEM, EAGAIN, ...),
3428 *  - con->in_msg == NULL
3429 */
3430static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
 
 
3431{
3432	struct ceph_msg_header *hdr = &con->in_hdr;
 
3433	int middle_len = le32_to_cpu(hdr->middle_len);
3434	struct ceph_msg *msg;
3435	int ret = 0;
3436
3437	BUG_ON(con->in_msg != NULL);
3438	BUG_ON(!con->ops->alloc_msg);
3439
3440	mutex_unlock(&con->mutex);
3441	msg = con->ops->alloc_msg(con, hdr, skip);
3442	mutex_lock(&con->mutex);
3443	if (con->state != CON_STATE_OPEN) {
3444		if (msg)
3445			ceph_msg_put(msg);
3446		return -EAGAIN;
3447	}
3448	if (msg) {
3449		BUG_ON(*skip);
3450		msg_con_set(msg, con);
3451		con->in_msg = msg;
3452	} else {
3453		/*
3454		 * Null message pointer means either we should skip
3455		 * this message or we couldn't allocate memory.  The
3456		 * former is not an error.
3457		 */
3458		if (*skip)
3459			return 0;
3460
3461		con->error_msg = "error allocating memory for incoming message";
3462		return -ENOMEM;
3463	}
3464	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3465
3466	if (middle_len && !con->in_msg->middle) {
3467		ret = ceph_alloc_middle(con, con->in_msg);
3468		if (ret < 0) {
3469			ceph_msg_put(con->in_msg);
3470			con->in_msg = NULL;
3471		}
3472	}
3473
3474	return ret;
3475}
3476
3477
3478/*
3479 * Free a generically kmalloc'd message.
3480 */
3481static void ceph_msg_free(struct ceph_msg *m)
3482{
3483	dout("%s %p\n", __func__, m);
3484	kvfree(m->front.iov_base);
3485	kmem_cache_free(ceph_msg_cache, m);
 
 
 
3486}
3487
3488static void ceph_msg_release(struct kref *kref)
 
 
 
3489{
3490	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3491	struct ceph_msg_data *data, *next;
3492
3493	dout("%s %p\n", __func__, m);
3494	WARN_ON(!list_empty(&m->list_head));
3495
3496	msg_con_set(m, NULL);
3497
3498	/* drop middle, data, if any */
3499	if (m->middle) {
3500		ceph_buffer_put(m->middle);
3501		m->middle = NULL;
3502	}
 
 
3503
3504	list_for_each_entry_safe(data, next, &m->data, links) {
3505		list_del_init(&data->links);
3506		ceph_msg_data_destroy(data);
 
3507	}
3508	m->data_length = 0;
 
3509
3510	if (m->pool)
3511		ceph_msgpool_put(m->pool, m);
3512	else
3513		ceph_msg_free(m);
3514}
3515
3516struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3517{
3518	dout("%s %p (was %d)\n", __func__, msg,
3519	     kref_read(&msg->kref));
3520	kref_get(&msg->kref);
3521	return msg;
3522}
3523EXPORT_SYMBOL(ceph_msg_get);
3524
3525void ceph_msg_put(struct ceph_msg *msg)
3526{
3527	dout("%s %p (was %d)\n", __func__, msg,
3528	     kref_read(&msg->kref));
3529	kref_put(&msg->kref, ceph_msg_release);
3530}
3531EXPORT_SYMBOL(ceph_msg_put);
3532
3533void ceph_msg_dump(struct ceph_msg *msg)
3534{
3535	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3536		 msg->front_alloc_len, msg->data_length);
3537	print_hex_dump(KERN_DEBUG, "header: ",
3538		       DUMP_PREFIX_OFFSET, 16, 1,
3539		       &msg->hdr, sizeof(msg->hdr), true);
3540	print_hex_dump(KERN_DEBUG, " front: ",
3541		       DUMP_PREFIX_OFFSET, 16, 1,
3542		       msg->front.iov_base, msg->front.iov_len, true);
3543	if (msg->middle)
3544		print_hex_dump(KERN_DEBUG, "middle: ",
3545			       DUMP_PREFIX_OFFSET, 16, 1,
3546			       msg->middle->vec.iov_base,
3547			       msg->middle->vec.iov_len, true);
3548	print_hex_dump(KERN_DEBUG, "footer: ",
3549		       DUMP_PREFIX_OFFSET, 16, 1,
3550		       &msg->footer, sizeof(msg->footer), true);
3551}
3552EXPORT_SYMBOL(ceph_msg_dump);
v3.5.6
 
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
 
 
   9#include <linux/slab.h>
  10#include <linux/socket.h>
  11#include <linux/string.h>
 
  12#include <linux/bio.h>
  13#include <linux/blkdev.h>
  14#include <linux/dns_resolver.h>
  15#include <net/tcp.h>
  16
 
  17#include <linux/ceph/libceph.h>
  18#include <linux/ceph/messenger.h>
  19#include <linux/ceph/decode.h>
  20#include <linux/ceph/pagelist.h>
  21#include <linux/export.h>
  22
  23/*
  24 * Ceph uses the messenger to exchange ceph_msg messages with other
  25 * hosts in the system.  The messenger provides ordered and reliable
  26 * delivery.  We tolerate TCP disconnects by reconnecting (with
  27 * exponential backoff) in the case of a fault (disconnection, bad
  28 * crc, protocol error).  Acks allow sent messages to be discarded by
  29 * the sender.
  30 */
  31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32/* static tag bytes (protocol control messages) */
  33static char tag_msg = CEPH_MSGR_TAG_MSG;
  34static char tag_ack = CEPH_MSGR_TAG_ACK;
  35static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 
  36
  37#ifdef CONFIG_LOCKDEP
  38static struct lock_class_key socket_class;
  39#endif
  40
  41/*
  42 * When skipping (ignoring) a block of input we read it into a "skip
  43 * buffer," which is this many bytes in size.
  44 */
  45#define SKIP_BUF_SIZE	1024
  46
  47static void queue_con(struct ceph_connection *con);
  48static void con_work(struct work_struct *);
  49static void ceph_fault(struct ceph_connection *con);
 
  50
  51/*
  52 * Nicely render a sockaddr as a string.  An array of formatted
  53 * strings is used, to approximate reentrancy.
  54 */
  55#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
  56#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
  57#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
  58#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
  59
  60static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  61static atomic_t addr_str_seq = ATOMIC_INIT(0);
  62
  63static struct page *zero_page;		/* used in certain error cases */
  64
  65const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  66{
  67	int i;
  68	char *s;
  69	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  70	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  71
  72	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  73	s = addr_str[i];
  74
  75	switch (ss->ss_family) {
  76	case AF_INET:
  77		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  78			 ntohs(in4->sin_port));
  79		break;
  80
  81	case AF_INET6:
  82		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  83			 ntohs(in6->sin6_port));
  84		break;
  85
  86	default:
  87		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  88			 ss->ss_family);
  89	}
  90
  91	return s;
  92}
  93EXPORT_SYMBOL(ceph_pr_addr);
  94
  95static void encode_my_addr(struct ceph_messenger *msgr)
  96{
  97	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  98	ceph_encode_addr(&msgr->my_enc_addr);
  99}
 100
 101/*
 102 * work queue for all reading and writing to/from the socket.
 103 */
 104static struct workqueue_struct *ceph_msgr_wq;
 105
 106void _ceph_msgr_exit(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107{
 108	if (ceph_msgr_wq) {
 109		destroy_workqueue(ceph_msgr_wq);
 110		ceph_msgr_wq = NULL;
 111	}
 112
 113	BUG_ON(zero_page == NULL);
 114	kunmap(zero_page);
 115	page_cache_release(zero_page);
 116	zero_page = NULL;
 
 
 117}
 118
 119int ceph_msgr_init(void)
 120{
 
 
 
 121	BUG_ON(zero_page != NULL);
 122	zero_page = ZERO_PAGE(0);
 123	page_cache_get(zero_page);
 124
 125	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
 
 
 
 
 126	if (ceph_msgr_wq)
 127		return 0;
 128
 129	pr_err("msgr_init failed to create workqueue\n");
 130	_ceph_msgr_exit();
 131
 132	return -ENOMEM;
 133}
 134EXPORT_SYMBOL(ceph_msgr_init);
 135
 136void ceph_msgr_exit(void)
 137{
 138	BUG_ON(ceph_msgr_wq == NULL);
 139
 140	_ceph_msgr_exit();
 141}
 142EXPORT_SYMBOL(ceph_msgr_exit);
 143
 144void ceph_msgr_flush(void)
 145{
 146	flush_workqueue(ceph_msgr_wq);
 147}
 148EXPORT_SYMBOL(ceph_msgr_flush);
 149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151/*
 152 * socket callback functions
 153 */
 154
 155/* data available on socket, or listen socket received a connect */
 156static void ceph_data_ready(struct sock *sk, int count_unused)
 157{
 158	struct ceph_connection *con = sk->sk_user_data;
 
 
 
 159
 160	if (sk->sk_state != TCP_CLOSE_WAIT) {
 161		dout("ceph_data_ready on %p state = %lu, queueing work\n",
 162		     con, con->state);
 163		queue_con(con);
 164	}
 165}
 166
 167/* socket has buffer space for writing */
 168static void ceph_write_space(struct sock *sk)
 169{
 170	struct ceph_connection *con = sk->sk_user_data;
 171
 172	/* only queue to workqueue if there is data we want to write,
 173	 * and there is sufficient space in the socket buffer to accept
 174	 * more data.  clear SOCK_NOSPACE so that ceph_write_space()
 175	 * doesn't get called again until try_write() fills the socket
 176	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 177	 * and net/core/stream.c:sk_stream_write_space().
 178	 */
 179	if (test_bit(WRITE_PENDING, &con->state)) {
 180		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 181			dout("ceph_write_space %p queueing write work\n", con);
 182			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 183			queue_con(con);
 184		}
 185	} else {
 186		dout("ceph_write_space %p nothing to write\n", con);
 187	}
 188}
 189
 190/* socket's state has changed */
 191static void ceph_state_change(struct sock *sk)
 192{
 193	struct ceph_connection *con = sk->sk_user_data;
 194
 195	dout("ceph_state_change %p state = %lu sk_state = %u\n",
 196	     con, con->state, sk->sk_state);
 197
 198	if (test_bit(CLOSED, &con->state))
 199		return;
 200
 201	switch (sk->sk_state) {
 202	case TCP_CLOSE:
 203		dout("ceph_state_change TCP_CLOSE\n");
 
 204	case TCP_CLOSE_WAIT:
 205		dout("ceph_state_change TCP_CLOSE_WAIT\n");
 206		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
 207			if (test_bit(CONNECTING, &con->state))
 208				con->error_msg = "connection failed";
 209			else
 210				con->error_msg = "socket closed";
 211			queue_con(con);
 212		}
 213		break;
 214	case TCP_ESTABLISHED:
 215		dout("ceph_state_change TCP_ESTABLISHED\n");
 
 216		queue_con(con);
 217		break;
 218	default:	/* Everything else is uninteresting */
 219		break;
 220	}
 221}
 222
 223/*
 224 * set up socket callbacks
 225 */
 226static void set_sock_callbacks(struct socket *sock,
 227			       struct ceph_connection *con)
 228{
 229	struct sock *sk = sock->sk;
 230	sk->sk_user_data = con;
 231	sk->sk_data_ready = ceph_data_ready;
 232	sk->sk_write_space = ceph_write_space;
 233	sk->sk_state_change = ceph_state_change;
 234}
 235
 236
 237/*
 238 * socket helpers
 239 */
 240
 241/*
 242 * initiate connection to a remote socket.
 243 */
 244static int ceph_tcp_connect(struct ceph_connection *con)
 245{
 246	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 247	struct socket *sock;
 
 248	int ret;
 249
 250	BUG_ON(con->sock);
 251	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
 252			       IPPROTO_TCP, &sock);
 
 
 
 
 253	if (ret)
 254		return ret;
 255	sock->sk->sk_allocation = GFP_NOFS;
 256
 257#ifdef CONFIG_LOCKDEP
 258	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 259#endif
 260
 261	set_sock_callbacks(sock, con);
 262
 263	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 264
 
 265	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 266				 O_NONBLOCK);
 267	if (ret == -EINPROGRESS) {
 268		dout("connect %s EINPROGRESS sk_state = %u\n",
 269		     ceph_pr_addr(&con->peer_addr.in_addr),
 270		     sock->sk->sk_state);
 271	} else if (ret < 0) {
 272		pr_err("connect %s error %d\n",
 273		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 274		sock_release(sock);
 275		con->error_msg = "connect error";
 
 
 
 
 276
 277		return ret;
 
 
 
 
 278	}
 
 279	con->sock = sock;
 280
 281	return 0;
 282}
 283
 284static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 285{
 286	struct kvec iov = {buf, len};
 287	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 288	int r;
 289
 290	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291	if (r == -EAGAIN)
 292		r = 0;
 293	return r;
 294}
 295
 296/*
 297 * write something.  @more is true if caller will be sending more data
 298 * shortly.
 299 */
 300static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 301		     size_t kvlen, size_t len, int more)
 302{
 303	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 304	int r;
 305
 306	if (more)
 307		msg.msg_flags |= MSG_MORE;
 308	else
 309		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 310
 311	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 312	if (r == -EAGAIN)
 313		r = 0;
 314	return r;
 315}
 316
 317static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 318		     int offset, size_t size, int more)
 319{
 320	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 321	int ret;
 322
 323	ret = kernel_sendpage(sock, page, offset, size, flags);
 324	if (ret == -EAGAIN)
 325		ret = 0;
 326
 327	return ret;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331/*
 332 * Shutdown/close the socket for the given connection.
 333 */
 334static int con_close_socket(struct ceph_connection *con)
 335{
 336	int rc;
 337
 338	dout("con_close_socket on %p sock %p\n", con, con->sock);
 339	if (!con->sock)
 340		return 0;
 341	set_bit(SOCK_CLOSED, &con->state);
 342	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 343	sock_release(con->sock);
 344	con->sock = NULL;
 345	clear_bit(SOCK_CLOSED, &con->state);
 
 
 
 
 
 
 
 
 346	return rc;
 347}
 348
 349/*
 350 * Reset a connection.  Discard all incoming and outgoing messages
 351 * and clear *_seq state.
 352 */
 353static void ceph_msg_remove(struct ceph_msg *msg)
 354{
 355	list_del_init(&msg->list_head);
 
 356	ceph_msg_put(msg);
 357}
 358static void ceph_msg_remove_list(struct list_head *head)
 359{
 360	while (!list_empty(head)) {
 361		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 362							list_head);
 363		ceph_msg_remove(msg);
 364	}
 365}
 366
 367static void reset_connection(struct ceph_connection *con)
 368{
 369	/* reset connection, out_queue, msg_ and connect_seq */
 370	/* discard existing out_queue and msg_seq */
 
 371	ceph_msg_remove_list(&con->out_queue);
 372	ceph_msg_remove_list(&con->out_sent);
 373
 374	if (con->in_msg) {
 
 375		ceph_msg_put(con->in_msg);
 376		con->in_msg = NULL;
 377	}
 378
 379	con->connect_seq = 0;
 380	con->out_seq = 0;
 381	if (con->out_msg) {
 
 382		ceph_msg_put(con->out_msg);
 383		con->out_msg = NULL;
 384	}
 385	con->in_seq = 0;
 386	con->in_seq_acked = 0;
 
 
 387}
 388
 389/*
 390 * mark a peer down.  drop any open connections.
 391 */
 392void ceph_con_close(struct ceph_connection *con)
 393{
 
 394	dout("con_close %p peer %s\n", con,
 395	     ceph_pr_addr(&con->peer_addr.in_addr));
 396	set_bit(CLOSED, &con->state);  /* in case there's queued work */
 397	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
 398	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
 399	clear_bit(KEEPALIVE_PENDING, &con->state);
 400	clear_bit(WRITE_PENDING, &con->state);
 401	mutex_lock(&con->mutex);
 
 402	reset_connection(con);
 403	con->peer_global_seq = 0;
 404	cancel_delayed_work(&con->work);
 
 405	mutex_unlock(&con->mutex);
 406	queue_con(con);
 407}
 408EXPORT_SYMBOL(ceph_con_close);
 409
 410/*
 411 * Reopen a closed connection, with a new peer address.
 412 */
 413void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
 
 
 414{
 
 415	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 416	set_bit(OPENING, &con->state);
 417	clear_bit(CLOSED, &con->state);
 
 
 
 
 
 418	memcpy(&con->peer_addr, addr, sizeof(*addr));
 419	con->delay = 0;      /* reset backoff memory */
 
 420	queue_con(con);
 421}
 422EXPORT_SYMBOL(ceph_con_open);
 423
 424/*
 425 * return true if this connection ever successfully opened
 426 */
 427bool ceph_con_opened(struct ceph_connection *con)
 428{
 429	return con->connect_seq > 0;
 430}
 431
 432/*
 433 * generic get/put
 434 */
 435struct ceph_connection *ceph_con_get(struct ceph_connection *con)
 436{
 437	int nref = __atomic_add_unless(&con->nref, 1, 0);
 438
 439	dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
 440
 441	return nref ? con : NULL;
 442}
 443
 444void ceph_con_put(struct ceph_connection *con)
 445{
 446	int nref = atomic_dec_return(&con->nref);
 447
 448	BUG_ON(nref < 0);
 449	if (nref == 0) {
 450		BUG_ON(con->sock);
 451		kfree(con);
 452	}
 453	dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
 454}
 455
 456/*
 457 * initialize a new connection.
 458 */
 459void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
 
 
 460{
 461	dout("con_init %p\n", con);
 462	memset(con, 0, sizeof(*con));
 463	atomic_set(&con->nref, 1);
 
 464	con->msgr = msgr;
 
 
 
 465	mutex_init(&con->mutex);
 466	INIT_LIST_HEAD(&con->out_queue);
 467	INIT_LIST_HEAD(&con->out_sent);
 468	INIT_DELAYED_WORK(&con->work, con_work);
 
 
 469}
 470EXPORT_SYMBOL(ceph_con_init);
 471
 472
 473/*
 474 * We maintain a global counter to order connection attempts.  Get
 475 * a unique seq greater than @gt.
 476 */
 477static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 478{
 479	u32 ret;
 480
 481	spin_lock(&msgr->global_seq_lock);
 482	if (msgr->global_seq < gt)
 483		msgr->global_seq = gt;
 484	ret = ++msgr->global_seq;
 485	spin_unlock(&msgr->global_seq_lock);
 486	return ret;
 487}
 488
 489static void ceph_con_out_kvec_reset(struct ceph_connection *con)
 490{
 
 
 491	con->out_kvec_left = 0;
 492	con->out_kvec_bytes = 0;
 493	con->out_kvec_cur = &con->out_kvec[0];
 494}
 495
 496static void ceph_con_out_kvec_add(struct ceph_connection *con,
 497				size_t size, void *data)
 498{
 499	int index;
 500
 501	index = con->out_kvec_left;
 502	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 503
 504	con->out_kvec[index].iov_len = size;
 505	con->out_kvec[index].iov_base = data;
 506	con->out_kvec_left++;
 507	con->out_kvec_bytes += size;
 508}
 509
 510/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511 * Prepare footer for currently outgoing message, and finish things
 512 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
 513 */
 514static void prepare_write_message_footer(struct ceph_connection *con)
 515{
 516	struct ceph_msg *m = con->out_msg;
 517	int v = con->out_kvec_left;
 
 518
 519	dout("prepare_write_message_footer %p\n", con);
 520	con->out_kvec_is_msg = true;
 521	con->out_kvec[v].iov_base = &m->footer;
 522	con->out_kvec[v].iov_len = sizeof(m->footer);
 523	con->out_kvec_bytes += sizeof(m->footer);
 524	con->out_kvec_left++;
 
 
 
 
 525	con->out_more = m->more_to_follow;
 526	con->out_msg_done = true;
 527}
 528
 529/*
 530 * Prepare headers for the next outgoing message.
 531 */
 532static void prepare_write_message(struct ceph_connection *con)
 533{
 534	struct ceph_msg *m;
 535	u32 crc;
 536
 537	ceph_con_out_kvec_reset(con);
 538	con->out_kvec_is_msg = true;
 539	con->out_msg_done = false;
 540
 541	/* Sneak an ack in there first?  If we can get it into the same
 542	 * TCP packet that's a good thing. */
 543	if (con->in_seq > con->in_seq_acked) {
 544		con->in_seq_acked = con->in_seq;
 545		ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
 546		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
 547		ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
 548			&con->out_temp_ack);
 549	}
 550
 
 551	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
 552	con->out_msg = m;
 
 553
 554	/* put message on sent list */
 555	ceph_msg_get(m);
 556	list_move_tail(&m->list_head, &con->out_sent);
 557
 558	/*
 559	 * only assign outgoing seq # if we haven't sent this message
 560	 * yet.  if it is requeued, resend with it's original seq.
 561	 */
 562	if (m->needs_out_seq) {
 563		m->hdr.seq = cpu_to_le64(++con->out_seq);
 564		m->needs_out_seq = false;
 
 
 
 565	}
 566#ifdef CONFIG_BLOCK
 567	else
 568		m->bio_iter = NULL;
 569#endif
 570
 571	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
 572	     m, con->out_seq, le16_to_cpu(m->hdr.type),
 573	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
 574	     le32_to_cpu(m->hdr.data_len),
 575	     m->nr_pages);
 576	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
 577
 578	/* tag + hdr + front + middle */
 579	ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
 580	ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
 581	ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
 582
 583	if (m->middle)
 584		ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
 585			m->middle->vec.iov_base);
 586
 587	/* fill in crc (except data pages), footer */
 588	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
 589	con->out_msg->hdr.crc = cpu_to_le32(crc);
 590	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
 591
 
 592	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
 593	con->out_msg->footer.front_crc = cpu_to_le32(crc);
 594	if (m->middle) {
 595		crc = crc32c(0, m->middle->vec.iov_base,
 596				m->middle->vec.iov_len);
 597		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
 598	} else
 599		con->out_msg->footer.middle_crc = 0;
 600	con->out_msg->footer.data_crc = 0;
 601	dout("prepare_write_message front_crc %u data_crc %u\n",
 602	     le32_to_cpu(con->out_msg->footer.front_crc),
 603	     le32_to_cpu(con->out_msg->footer.middle_crc));
 
 604
 605	/* is there a data payload? */
 606	if (le32_to_cpu(m->hdr.data_len) > 0) {
 607		/* initialize page iterator */
 608		con->out_msg_pos.page = 0;
 609		if (m->pages)
 610			con->out_msg_pos.page_pos = m->page_alignment;
 611		else
 612			con->out_msg_pos.page_pos = 0;
 613		con->out_msg_pos.data_pos = 0;
 614		con->out_msg_pos.did_page_crc = false;
 615		con->out_more = 1;  /* data + footer will follow */
 616	} else {
 617		/* no, queue up footer too and be done */
 618		prepare_write_message_footer(con);
 619	}
 620
 621	set_bit(WRITE_PENDING, &con->state);
 622}
 623
 624/*
 625 * Prepare an ack.
 626 */
 627static void prepare_write_ack(struct ceph_connection *con)
 628{
 629	dout("prepare_write_ack %p %llu -> %llu\n", con,
 630	     con->in_seq_acked, con->in_seq);
 631	con->in_seq_acked = con->in_seq;
 632
 633	ceph_con_out_kvec_reset(con);
 634
 635	ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
 636
 637	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
 638	ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
 639				&con->out_temp_ack);
 640
 641	con->out_more = 1;  /* more will follow.. eventually.. */
 642	set_bit(WRITE_PENDING, &con->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645/*
 646 * Prepare to write keepalive byte.
 647 */
 648static void prepare_write_keepalive(struct ceph_connection *con)
 649{
 650	dout("prepare_write_keepalive %p\n", con);
 651	ceph_con_out_kvec_reset(con);
 652	ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
 653	set_bit(WRITE_PENDING, &con->state);
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656/*
 657 * Connection negotiation.
 658 */
 659
 660static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
 661						int *auth_proto)
 662{
 663	struct ceph_auth_handshake *auth;
 664
 665	if (!con->ops->get_authorizer) {
 666		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
 667		con->out_connect.authorizer_len = 0;
 668
 669		return NULL;
 670	}
 671
 672	/* Can't hold the mutex while getting authorizer */
 673
 674	mutex_unlock(&con->mutex);
 675
 676	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
 677
 678	mutex_lock(&con->mutex);
 679
 680	if (IS_ERR(auth))
 681		return auth;
 682	if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
 683		return ERR_PTR(-EAGAIN);
 684
 685	con->auth_reply_buf = auth->authorizer_reply_buf;
 686	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
 687
 688
 689	return auth;
 690}
 691
 692/*
 693 * We connected to a peer and are saying hello.
 694 */
 695static void prepare_write_banner(struct ceph_connection *con)
 696{
 697	ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
 698	ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
 699					&con->msgr->my_enc_addr);
 700
 701	con->out_more = 0;
 702	set_bit(WRITE_PENDING, &con->state);
 703}
 704
 705static int prepare_write_connect(struct ceph_connection *con)
 706{
 707	unsigned int global_seq = get_global_seq(con->msgr, 0);
 708	int proto;
 709	int auth_proto;
 710	struct ceph_auth_handshake *auth;
 711
 712	switch (con->peer_name.type) {
 713	case CEPH_ENTITY_TYPE_MON:
 714		proto = CEPH_MONC_PROTOCOL;
 715		break;
 716	case CEPH_ENTITY_TYPE_OSD:
 717		proto = CEPH_OSDC_PROTOCOL;
 718		break;
 719	case CEPH_ENTITY_TYPE_MDS:
 720		proto = CEPH_MDSC_PROTOCOL;
 721		break;
 722	default:
 723		BUG();
 724	}
 725
 726	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
 727	     con->connect_seq, global_seq, proto);
 728
 729	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
 
 730	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
 731	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
 732	con->out_connect.global_seq = cpu_to_le32(global_seq);
 733	con->out_connect.protocol_version = cpu_to_le32(proto);
 734	con->out_connect.flags = 0;
 735
 736	auth_proto = CEPH_AUTH_UNKNOWN;
 737	auth = get_connect_authorizer(con, &auth_proto);
 738	if (IS_ERR(auth))
 739		return PTR_ERR(auth);
 740
 741	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
 742	con->out_connect.authorizer_len = auth ?
 743		cpu_to_le32(auth->authorizer_buf_len) : 0;
 744
 745	ceph_con_out_kvec_add(con, sizeof (con->out_connect),
 746					&con->out_connect);
 747	if (auth && auth->authorizer_buf_len)
 748		ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
 749					auth->authorizer_buf);
 750
 751	con->out_more = 0;
 752	set_bit(WRITE_PENDING, &con->state);
 753
 754	return 0;
 755}
 756
 757/*
 758 * write as much of pending kvecs to the socket as we can.
 759 *  1 -> done
 760 *  0 -> socket full, but more to do
 761 * <0 -> error
 762 */
 763static int write_partial_kvec(struct ceph_connection *con)
 764{
 765	int ret;
 766
 767	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
 768	while (con->out_kvec_bytes > 0) {
 769		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
 770				       con->out_kvec_left, con->out_kvec_bytes,
 771				       con->out_more);
 772		if (ret <= 0)
 773			goto out;
 774		con->out_kvec_bytes -= ret;
 775		if (con->out_kvec_bytes == 0)
 776			break;            /* done */
 777
 778		/* account for full iov entries consumed */
 779		while (ret >= con->out_kvec_cur->iov_len) {
 780			BUG_ON(!con->out_kvec_left);
 781			ret -= con->out_kvec_cur->iov_len;
 782			con->out_kvec_cur++;
 783			con->out_kvec_left--;
 784		}
 785		/* and for a partially-consumed entry */
 786		if (ret) {
 787			con->out_kvec_cur->iov_len -= ret;
 788			con->out_kvec_cur->iov_base += ret;
 789		}
 790	}
 791	con->out_kvec_left = 0;
 792	con->out_kvec_is_msg = false;
 793	ret = 1;
 794out:
 795	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
 796	     con->out_kvec_bytes, con->out_kvec_left, ret);
 797	return ret;  /* done! */
 798}
 799
 800#ifdef CONFIG_BLOCK
 801static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
 802{
 803	if (!bio) {
 804		*iter = NULL;
 805		*seg = 0;
 806		return;
 807	}
 808	*iter = bio;
 809	*seg = bio->bi_idx;
 810}
 811
 812static void iter_bio_next(struct bio **bio_iter, int *seg)
 813{
 814	if (*bio_iter == NULL)
 815		return;
 816
 817	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
 818
 819	(*seg)++;
 820	if (*seg == (*bio_iter)->bi_vcnt)
 821		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
 822}
 823#endif
 824
 825/*
 826 * Write as much message data payload as we can.  If we finish, queue
 827 * up the footer.
 828 *  1 -> done, footer is now queued in out_kvec[].
 829 *  0 -> socket full, but more to do
 830 * <0 -> error
 831 */
 832static int write_partial_msg_pages(struct ceph_connection *con)
 833{
 834	struct ceph_msg *msg = con->out_msg;
 835	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
 836	size_t len;
 837	bool do_datacrc = !con->msgr->nocrc;
 838	int ret;
 839	int total_max_write;
 840	int in_trail = 0;
 841	size_t trail_len = (msg->trail ? msg->trail->length : 0);
 842
 843	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
 844	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
 845	     con->out_msg_pos.page_pos);
 846
 847#ifdef CONFIG_BLOCK
 848	if (msg->bio && !msg->bio_iter)
 849		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
 850#endif
 851
 852	while (data_len > con->out_msg_pos.data_pos) {
 853		struct page *page = NULL;
 854		int max_write = PAGE_SIZE;
 855		int bio_offset = 0;
 856
 857		total_max_write = data_len - trail_len -
 858			con->out_msg_pos.data_pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859
 860		/*
 861		 * if we are calculating the data crc (the default), we need
 862		 * to map the page.  if our pages[] has been revoked, use the
 863		 * zero page.
 864		 */
 865
 866		/* have we reached the trail part of the data? */
 867		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
 868			in_trail = 1;
 869
 870			total_max_write = data_len - con->out_msg_pos.data_pos;
 871
 872			page = list_first_entry(&msg->trail->head,
 873						struct page, lru);
 874			max_write = PAGE_SIZE;
 875		} else if (msg->pages) {
 876			page = msg->pages[con->out_msg_pos.page];
 877		} else if (msg->pagelist) {
 878			page = list_first_entry(&msg->pagelist->head,
 879						struct page, lru);
 880#ifdef CONFIG_BLOCK
 881		} else if (msg->bio) {
 882			struct bio_vec *bv;
 883
 884			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
 885			page = bv->bv_page;
 886			bio_offset = bv->bv_offset;
 887			max_write = bv->bv_len;
 888#endif
 889		} else {
 890			page = zero_page;
 891		}
 892		len = min_t(int, max_write - con->out_msg_pos.page_pos,
 893			    total_max_write);
 894
 895		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
 896			void *base;
 897			u32 crc;
 898			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
 899			char *kaddr;
 900
 901			kaddr = kmap(page);
 902			BUG_ON(kaddr == NULL);
 903			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
 904			crc = crc32c(tmpcrc, base, len);
 905			con->out_msg->footer.data_crc = cpu_to_le32(crc);
 906			con->out_msg_pos.did_page_crc = true;
 907		}
 908		ret = ceph_tcp_sendpage(con->sock, page,
 909				      con->out_msg_pos.page_pos + bio_offset,
 910				      len, 1);
 911
 912		if (do_datacrc)
 913			kunmap(page);
 914
 915		if (ret <= 0)
 916			goto out;
 917
 918		con->out_msg_pos.data_pos += ret;
 919		con->out_msg_pos.page_pos += ret;
 920		if (ret == len) {
 921			con->out_msg_pos.page_pos = 0;
 922			con->out_msg_pos.page++;
 923			con->out_msg_pos.did_page_crc = false;
 924			if (in_trail)
 925				list_move_tail(&page->lru,
 926					       &msg->trail->head);
 927			else if (msg->pagelist)
 928				list_move_tail(&page->lru,
 929					       &msg->pagelist->head);
 930#ifdef CONFIG_BLOCK
 931			else if (msg->bio)
 932				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
 933#endif
 934		}
 
 
 
 935	}
 936
 937	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
 938
 939	/* prepare and queue up footer, too */
 940	if (!do_datacrc)
 941		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
 942	ceph_con_out_kvec_reset(con);
 
 
 943	prepare_write_message_footer(con);
 944	ret = 1;
 945out:
 946	return ret;
 947}
 948
 949/*
 950 * write some zeros
 951 */
 952static int write_partial_skip(struct ceph_connection *con)
 953{
 954	int ret;
 955
 
 956	while (con->out_skip > 0) {
 957		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
 958
 959		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
 960		if (ret <= 0)
 961			goto out;
 962		con->out_skip -= ret;
 963	}
 964	ret = 1;
 965out:
 966	return ret;
 967}
 968
 969/*
 970 * Prepare to read connection handshake, or an ack.
 971 */
 972static void prepare_read_banner(struct ceph_connection *con)
 973{
 974	dout("prepare_read_banner %p\n", con);
 975	con->in_base_pos = 0;
 976}
 977
 978static void prepare_read_connect(struct ceph_connection *con)
 979{
 980	dout("prepare_read_connect %p\n", con);
 981	con->in_base_pos = 0;
 982}
 983
 984static void prepare_read_ack(struct ceph_connection *con)
 985{
 986	dout("prepare_read_ack %p\n", con);
 987	con->in_base_pos = 0;
 988}
 989
 
 
 
 
 
 
 
 990static void prepare_read_tag(struct ceph_connection *con)
 991{
 992	dout("prepare_read_tag %p\n", con);
 993	con->in_base_pos = 0;
 994	con->in_tag = CEPH_MSGR_TAG_READY;
 995}
 996
 
 
 
 
 
 
 997/*
 998 * Prepare to read a message.
 999 */
1000static int prepare_read_message(struct ceph_connection *con)
1001{
1002	dout("prepare_read_message %p\n", con);
1003	BUG_ON(con->in_msg != NULL);
1004	con->in_base_pos = 0;
1005	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1006	return 0;
1007}
1008
1009
1010static int read_partial(struct ceph_connection *con,
1011			int end, int size, void *object)
1012{
1013	while (con->in_base_pos < end) {
1014		int left = end - con->in_base_pos;
1015		int have = size - left;
1016		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1017		if (ret <= 0)
1018			return ret;
1019		con->in_base_pos += ret;
1020	}
1021	return 1;
1022}
1023
1024
1025/*
1026 * Read all or part of the connect-side handshake on a new connection
1027 */
1028static int read_partial_banner(struct ceph_connection *con)
1029{
1030	int size;
1031	int end;
1032	int ret;
1033
1034	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1035
1036	/* peer's banner */
1037	size = strlen(CEPH_BANNER);
1038	end = size;
1039	ret = read_partial(con, end, size, con->in_banner);
1040	if (ret <= 0)
1041		goto out;
1042
1043	size = sizeof (con->actual_peer_addr);
1044	end += size;
1045	ret = read_partial(con, end, size, &con->actual_peer_addr);
1046	if (ret <= 0)
1047		goto out;
1048
1049	size = sizeof (con->peer_addr_for_me);
1050	end += size;
1051	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1052	if (ret <= 0)
1053		goto out;
1054
1055out:
1056	return ret;
1057}
1058
1059static int read_partial_connect(struct ceph_connection *con)
1060{
1061	int size;
1062	int end;
1063	int ret;
1064
1065	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1066
1067	size = sizeof (con->in_reply);
1068	end = size;
1069	ret = read_partial(con, end, size, &con->in_reply);
1070	if (ret <= 0)
1071		goto out;
1072
1073	size = le32_to_cpu(con->in_reply.authorizer_len);
1074	end += size;
1075	ret = read_partial(con, end, size, con->auth_reply_buf);
1076	if (ret <= 0)
1077		goto out;
1078
1079	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1080	     con, (int)con->in_reply.tag,
1081	     le32_to_cpu(con->in_reply.connect_seq),
1082	     le32_to_cpu(con->in_reply.global_seq));
1083out:
1084	return ret;
1085
1086}
1087
1088/*
1089 * Verify the hello banner looks okay.
1090 */
1091static int verify_hello(struct ceph_connection *con)
1092{
1093	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1094		pr_err("connect to %s got bad banner\n",
1095		       ceph_pr_addr(&con->peer_addr.in_addr));
1096		con->error_msg = "protocol error, bad banner";
1097		return -1;
1098	}
1099	return 0;
1100}
1101
1102static bool addr_is_blank(struct sockaddr_storage *ss)
1103{
 
 
 
1104	switch (ss->ss_family) {
1105	case AF_INET:
1106		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1107	case AF_INET6:
1108		return
1109		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1110		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1111		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1112		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1113	}
1114	return false;
1115}
1116
1117static int addr_port(struct sockaddr_storage *ss)
1118{
1119	switch (ss->ss_family) {
1120	case AF_INET:
1121		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1122	case AF_INET6:
1123		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1124	}
1125	return 0;
1126}
1127
1128static void addr_set_port(struct sockaddr_storage *ss, int p)
1129{
1130	switch (ss->ss_family) {
1131	case AF_INET:
1132		((struct sockaddr_in *)ss)->sin_port = htons(p);
1133		break;
1134	case AF_INET6:
1135		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1136		break;
1137	}
1138}
1139
1140/*
1141 * Unlike other *_pton function semantics, zero indicates success.
1142 */
1143static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1144		char delim, const char **ipend)
1145{
1146	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1147	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1148
1149	memset(ss, 0, sizeof(*ss));
1150
1151	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1152		ss->ss_family = AF_INET;
1153		return 0;
1154	}
1155
1156	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1157		ss->ss_family = AF_INET6;
1158		return 0;
1159	}
1160
1161	return -EINVAL;
1162}
1163
1164/*
1165 * Extract hostname string and resolve using kernel DNS facility.
1166 */
1167#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1168static int ceph_dns_resolve_name(const char *name, size_t namelen,
1169		struct sockaddr_storage *ss, char delim, const char **ipend)
1170{
1171	const char *end, *delim_p;
1172	char *colon_p, *ip_addr = NULL;
1173	int ip_len, ret;
1174
1175	/*
1176	 * The end of the hostname occurs immediately preceding the delimiter or
1177	 * the port marker (':') where the delimiter takes precedence.
1178	 */
1179	delim_p = memchr(name, delim, namelen);
1180	colon_p = memchr(name, ':', namelen);
1181
1182	if (delim_p && colon_p)
1183		end = delim_p < colon_p ? delim_p : colon_p;
1184	else if (!delim_p && colon_p)
1185		end = colon_p;
1186	else {
1187		end = delim_p;
1188		if (!end) /* case: hostname:/ */
1189			end = name + namelen;
1190	}
1191
1192	if (end <= name)
1193		return -EINVAL;
1194
1195	/* do dns_resolve upcall */
1196	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1197	if (ip_len > 0)
1198		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1199	else
1200		ret = -ESRCH;
1201
1202	kfree(ip_addr);
1203
1204	*ipend = end;
1205
1206	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1207			ret, ret ? "failed" : ceph_pr_addr(ss));
1208
1209	return ret;
1210}
1211#else
1212static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1213		struct sockaddr_storage *ss, char delim, const char **ipend)
1214{
1215	return -EINVAL;
1216}
1217#endif
1218
1219/*
1220 * Parse a server name (IP or hostname). If a valid IP address is not found
1221 * then try to extract a hostname to resolve using userspace DNS upcall.
1222 */
1223static int ceph_parse_server_name(const char *name, size_t namelen,
1224			struct sockaddr_storage *ss, char delim, const char **ipend)
1225{
1226	int ret;
1227
1228	ret = ceph_pton(name, namelen, ss, delim, ipend);
1229	if (ret)
1230		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1231
1232	return ret;
1233}
1234
1235/*
1236 * Parse an ip[:port] list into an addr array.  Use the default
1237 * monitor port if a port isn't specified.
1238 */
1239int ceph_parse_ips(const char *c, const char *end,
1240		   struct ceph_entity_addr *addr,
1241		   int max_count, int *count)
1242{
1243	int i, ret = -EINVAL;
1244	const char *p = c;
1245
1246	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1247	for (i = 0; i < max_count; i++) {
1248		const char *ipend;
1249		struct sockaddr_storage *ss = &addr[i].in_addr;
1250		int port;
1251		char delim = ',';
1252
1253		if (*p == '[') {
1254			delim = ']';
1255			p++;
1256		}
1257
1258		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1259		if (ret)
1260			goto bad;
1261		ret = -EINVAL;
1262
1263		p = ipend;
1264
1265		if (delim == ']') {
1266			if (*p != ']') {
1267				dout("missing matching ']'\n");
1268				goto bad;
1269			}
1270			p++;
1271		}
1272
1273		/* port? */
1274		if (p < end && *p == ':') {
1275			port = 0;
1276			p++;
1277			while (p < end && *p >= '0' && *p <= '9') {
1278				port = (port * 10) + (*p - '0');
1279				p++;
1280			}
1281			if (port > 65535 || port == 0)
 
 
1282				goto bad;
1283		} else {
1284			port = CEPH_MON_PORT;
1285		}
1286
1287		addr_set_port(ss, port);
1288
1289		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1290
1291		if (p == end)
1292			break;
1293		if (*p != ',')
1294			goto bad;
1295		p++;
1296	}
1297
1298	if (p != end)
1299		goto bad;
1300
1301	if (count)
1302		*count = i + 1;
1303	return 0;
1304
1305bad:
1306	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1307	return ret;
1308}
1309EXPORT_SYMBOL(ceph_parse_ips);
1310
1311static int process_banner(struct ceph_connection *con)
1312{
1313	dout("process_banner on %p\n", con);
1314
1315	if (verify_hello(con) < 0)
1316		return -1;
1317
1318	ceph_decode_addr(&con->actual_peer_addr);
1319	ceph_decode_addr(&con->peer_addr_for_me);
1320
1321	/*
1322	 * Make sure the other end is who we wanted.  note that the other
1323	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1324	 * them the benefit of the doubt.
1325	 */
1326	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1327		   sizeof(con->peer_addr)) != 0 &&
1328	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1329	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1330		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1331			   ceph_pr_addr(&con->peer_addr.in_addr),
1332			   (int)le32_to_cpu(con->peer_addr.nonce),
1333			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1334			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1335		con->error_msg = "wrong peer at address";
1336		return -1;
1337	}
1338
1339	/*
1340	 * did we learn our address?
1341	 */
1342	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1343		int port = addr_port(&con->msgr->inst.addr.in_addr);
1344
1345		memcpy(&con->msgr->inst.addr.in_addr,
1346		       &con->peer_addr_for_me.in_addr,
1347		       sizeof(con->peer_addr_for_me.in_addr));
1348		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1349		encode_my_addr(con->msgr);
1350		dout("process_banner learned my addr is %s\n",
1351		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1352	}
1353
1354	set_bit(NEGOTIATING, &con->state);
1355	prepare_read_connect(con);
1356	return 0;
1357}
1358
1359static void fail_protocol(struct ceph_connection *con)
1360{
1361	reset_connection(con);
1362	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1363
1364	mutex_unlock(&con->mutex);
1365	if (con->ops->bad_proto)
1366		con->ops->bad_proto(con);
1367	mutex_lock(&con->mutex);
1368}
1369
1370static int process_connect(struct ceph_connection *con)
1371{
1372	u64 sup_feat = con->msgr->supported_features;
1373	u64 req_feat = con->msgr->required_features;
1374	u64 server_feat = le64_to_cpu(con->in_reply.features);
1375	int ret;
1376
1377	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
1379	switch (con->in_reply.tag) {
1380	case CEPH_MSGR_TAG_FEATURES:
1381		pr_err("%s%lld %s feature set mismatch,"
1382		       " my %llx < server's %llx, missing %llx\n",
1383		       ENTITY_NAME(con->peer_name),
1384		       ceph_pr_addr(&con->peer_addr.in_addr),
1385		       sup_feat, server_feat, server_feat & ~sup_feat);
1386		con->error_msg = "missing required protocol features";
1387		fail_protocol(con);
1388		return -1;
1389
1390	case CEPH_MSGR_TAG_BADPROTOVER:
1391		pr_err("%s%lld %s protocol version mismatch,"
1392		       " my %d != server's %d\n",
1393		       ENTITY_NAME(con->peer_name),
1394		       ceph_pr_addr(&con->peer_addr.in_addr),
1395		       le32_to_cpu(con->out_connect.protocol_version),
1396		       le32_to_cpu(con->in_reply.protocol_version));
1397		con->error_msg = "protocol version mismatch";
1398		fail_protocol(con);
1399		return -1;
1400
1401	case CEPH_MSGR_TAG_BADAUTHORIZER:
1402		con->auth_retry++;
1403		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1404		     con->auth_retry);
1405		if (con->auth_retry == 2) {
1406			con->error_msg = "connect authorization failure";
1407			return -1;
1408		}
1409		con->auth_retry = 1;
1410		ceph_con_out_kvec_reset(con);
1411		ret = prepare_write_connect(con);
1412		if (ret < 0)
1413			return ret;
1414		prepare_read_connect(con);
1415		break;
1416
1417	case CEPH_MSGR_TAG_RESETSESSION:
1418		/*
1419		 * If we connected with a large connect_seq but the peer
1420		 * has no record of a session with us (no connection, or
1421		 * connect_seq == 0), they will send RESETSESION to indicate
1422		 * that they must have reset their session, and may have
1423		 * dropped messages.
1424		 */
1425		dout("process_connect got RESET peer seq %u\n",
1426		     le32_to_cpu(con->in_reply.connect_seq));
1427		pr_err("%s%lld %s connection reset\n",
1428		       ENTITY_NAME(con->peer_name),
1429		       ceph_pr_addr(&con->peer_addr.in_addr));
1430		reset_connection(con);
1431		ceph_con_out_kvec_reset(con);
1432		ret = prepare_write_connect(con);
1433		if (ret < 0)
1434			return ret;
1435		prepare_read_connect(con);
1436
1437		/* Tell ceph about it. */
1438		mutex_unlock(&con->mutex);
1439		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1440		if (con->ops->peer_reset)
1441			con->ops->peer_reset(con);
1442		mutex_lock(&con->mutex);
1443		if (test_bit(CLOSED, &con->state) ||
1444		    test_bit(OPENING, &con->state))
1445			return -EAGAIN;
1446		break;
1447
1448	case CEPH_MSGR_TAG_RETRY_SESSION:
1449		/*
1450		 * If we sent a smaller connect_seq than the peer has, try
1451		 * again with a larger value.
1452		 */
1453		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1454		     le32_to_cpu(con->out_connect.connect_seq),
1455		     le32_to_cpu(con->in_reply.connect_seq));
1456		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1457		ceph_con_out_kvec_reset(con);
1458		ret = prepare_write_connect(con);
1459		if (ret < 0)
1460			return ret;
1461		prepare_read_connect(con);
1462		break;
1463
1464	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1465		/*
1466		 * If we sent a smaller global_seq than the peer has, try
1467		 * again with a larger value.
1468		 */
1469		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1470		     con->peer_global_seq,
1471		     le32_to_cpu(con->in_reply.global_seq));
1472		get_global_seq(con->msgr,
1473			       le32_to_cpu(con->in_reply.global_seq));
1474		ceph_con_out_kvec_reset(con);
1475		ret = prepare_write_connect(con);
1476		if (ret < 0)
1477			return ret;
1478		prepare_read_connect(con);
1479		break;
1480
 
1481	case CEPH_MSGR_TAG_READY:
1482		if (req_feat & ~server_feat) {
1483			pr_err("%s%lld %s protocol feature mismatch,"
1484			       " my required %llx > server's %llx, need %llx\n",
1485			       ENTITY_NAME(con->peer_name),
1486			       ceph_pr_addr(&con->peer_addr.in_addr),
1487			       req_feat, server_feat, req_feat & ~server_feat);
1488			con->error_msg = "missing required protocol features";
1489			fail_protocol(con);
1490			return -1;
1491		}
1492		clear_bit(CONNECTING, &con->state);
 
 
 
1493		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1494		con->connect_seq++;
1495		con->peer_features = server_feat;
1496		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1497		     con->peer_global_seq,
1498		     le32_to_cpu(con->in_reply.connect_seq),
1499		     con->connect_seq);
1500		WARN_ON(con->connect_seq !=
1501			le32_to_cpu(con->in_reply.connect_seq));
1502
1503		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1504			set_bit(LOSSYTX, &con->state);
 
 
1505
1506		prepare_read_tag(con);
 
 
 
 
 
1507		break;
1508
1509	case CEPH_MSGR_TAG_WAIT:
1510		/*
1511		 * If there is a connection race (we are opening
1512		 * connections to each other), one of us may just have
1513		 * to WAIT.  This shouldn't happen if we are the
1514		 * client.
1515		 */
1516		pr_err("process_connect got WAIT as client\n");
1517		con->error_msg = "protocol error, got WAIT as client";
1518		return -1;
1519
1520	default:
1521		pr_err("connect protocol error, will retry\n");
1522		con->error_msg = "protocol error, garbage tag during connect";
1523		return -1;
1524	}
1525	return 0;
1526}
1527
1528
1529/*
1530 * read (part of) an ack
1531 */
1532static int read_partial_ack(struct ceph_connection *con)
1533{
1534	int size = sizeof (con->in_temp_ack);
1535	int end = size;
1536
1537	return read_partial(con, end, size, &con->in_temp_ack);
1538}
1539
1540
1541/*
1542 * We can finally discard anything that's been acked.
1543 */
1544static void process_ack(struct ceph_connection *con)
1545{
1546	struct ceph_msg *m;
1547	u64 ack = le64_to_cpu(con->in_temp_ack);
1548	u64 seq;
 
 
1549
1550	while (!list_empty(&con->out_sent)) {
1551		m = list_first_entry(&con->out_sent, struct ceph_msg,
1552				     list_head);
 
 
 
 
 
 
1553		seq = le64_to_cpu(m->hdr.seq);
1554		if (seq > ack)
1555			break;
1556		dout("got ack for seq %llu type %d at %p\n", seq,
1557		     le16_to_cpu(m->hdr.type), m);
1558		m->ack_stamp = jiffies;
1559		ceph_msg_remove(m);
1560	}
 
1561	prepare_read_tag(con);
1562}
1563
1564
1565
1566
1567static int read_partial_message_section(struct ceph_connection *con,
1568					struct kvec *section,
1569					unsigned int sec_len, u32 *crc)
1570{
1571	int ret, left;
1572
1573	BUG_ON(!section);
1574
1575	while (section->iov_len < sec_len) {
1576		BUG_ON(section->iov_base == NULL);
1577		left = sec_len - section->iov_len;
1578		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1579				       section->iov_len, left);
1580		if (ret <= 0)
1581			return ret;
1582		section->iov_len += ret;
1583	}
1584	if (section->iov_len == sec_len)
1585		*crc = crc32c(0, section->iov_base, section->iov_len);
1586
1587	return 1;
1588}
1589
1590static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1591				struct ceph_msg_header *hdr,
1592				int *skip);
1593
1594
1595static int read_partial_message_pages(struct ceph_connection *con,
1596				      struct page **pages,
1597				      unsigned int data_len, bool do_datacrc)
1598{
1599	void *p;
 
 
 
 
 
 
1600	int ret;
1601	int left;
1602
1603	left = min((int)(data_len - con->in_msg_pos.data_pos),
1604		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1605	/* (page) data */
1606	BUG_ON(pages == NULL);
1607	p = kmap(pages[con->in_msg_pos.page]);
1608	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1609			       left);
1610	if (ret > 0 && do_datacrc)
1611		con->in_data_crc =
1612			crc32c(con->in_data_crc,
1613				  p + con->in_msg_pos.page_pos, ret);
1614	kunmap(pages[con->in_msg_pos.page]);
1615	if (ret <= 0)
1616		return ret;
1617	con->in_msg_pos.data_pos += ret;
1618	con->in_msg_pos.page_pos += ret;
1619	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1620		con->in_msg_pos.page_pos = 0;
1621		con->in_msg_pos.page++;
1622	}
1623
1624	return ret;
1625}
 
 
 
 
 
1626
1627#ifdef CONFIG_BLOCK
1628static int read_partial_message_bio(struct ceph_connection *con,
1629				    struct bio **bio_iter, int *bio_seg,
1630				    unsigned int data_len, bool do_datacrc)
1631{
1632	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1633	void *p;
1634	int ret, left;
1635
1636	if (IS_ERR(bv))
1637		return PTR_ERR(bv);
1638
1639	left = min((int)(data_len - con->in_msg_pos.data_pos),
1640		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1641
1642	p = kmap(bv->bv_page) + bv->bv_offset;
1643
1644	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1645			       left);
1646	if (ret > 0 && do_datacrc)
1647		con->in_data_crc =
1648			crc32c(con->in_data_crc,
1649				  p + con->in_msg_pos.page_pos, ret);
1650	kunmap(bv->bv_page);
1651	if (ret <= 0)
1652		return ret;
1653	con->in_msg_pos.data_pos += ret;
1654	con->in_msg_pos.page_pos += ret;
1655	if (con->in_msg_pos.page_pos == bv->bv_len) {
1656		con->in_msg_pos.page_pos = 0;
1657		iter_bio_next(bio_iter, bio_seg);
1658	}
 
 
1659
1660	return ret;
1661}
1662#endif
1663
1664/*
1665 * read (part of) a message.
1666 */
 
 
1667static int read_partial_message(struct ceph_connection *con)
1668{
1669	struct ceph_msg *m = con->in_msg;
1670	int size;
1671	int end;
1672	int ret;
1673	unsigned int front_len, middle_len, data_len;
1674	bool do_datacrc = !con->msgr->nocrc;
1675	int skip;
1676	u64 seq;
1677	u32 crc;
1678
1679	dout("read_partial_message con %p msg %p\n", con, m);
1680
1681	/* header */
1682	size = sizeof (con->in_hdr);
1683	end = size;
1684	ret = read_partial(con, end, size, &con->in_hdr);
1685	if (ret <= 0)
1686		return ret;
1687
1688	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1689	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1690		pr_err("read_partial_message bad hdr "
1691		       " crc %u != expected %u\n",
1692		       crc, con->in_hdr.crc);
1693		return -EBADMSG;
1694	}
1695
1696	front_len = le32_to_cpu(con->in_hdr.front_len);
1697	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1698		return -EIO;
1699	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1700	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1701		return -EIO;
1702	data_len = le32_to_cpu(con->in_hdr.data_len);
1703	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1704		return -EIO;
1705
1706	/* verify seq# */
1707	seq = le64_to_cpu(con->in_hdr.seq);
1708	if ((s64)seq - (s64)con->in_seq < 1) {
1709		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1710			ENTITY_NAME(con->peer_name),
1711			ceph_pr_addr(&con->peer_addr.in_addr),
1712			seq, con->in_seq + 1);
1713		con->in_base_pos = -front_len - middle_len - data_len -
1714			sizeof(m->footer);
1715		con->in_tag = CEPH_MSGR_TAG_READY;
1716		return 0;
1717	} else if ((s64)seq - (s64)con->in_seq > 1) {
1718		pr_err("read_partial_message bad seq %lld expected %lld\n",
1719		       seq, con->in_seq + 1);
1720		con->error_msg = "bad message sequence # for incoming message";
1721		return -EBADMSG;
1722	}
1723
1724	/* allocate message? */
1725	if (!con->in_msg) {
 
 
1726		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1727		     con->in_hdr.front_len, con->in_hdr.data_len);
1728		skip = 0;
1729		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
 
 
 
1730		if (skip) {
1731			/* skip this message */
1732			dout("alloc_msg said skip message\n");
1733			BUG_ON(con->in_msg);
1734			con->in_base_pos = -front_len - middle_len - data_len -
1735				sizeof(m->footer);
1736			con->in_tag = CEPH_MSGR_TAG_READY;
1737			con->in_seq++;
1738			return 0;
1739		}
1740		if (!con->in_msg) {
1741			con->error_msg =
1742				"error allocating memory for incoming message";
1743			return -ENOMEM;
1744		}
 
 
 
1745		m = con->in_msg;
1746		m->front.iov_len = 0;    /* haven't read it yet */
1747		if (m->middle)
1748			m->middle->vec.iov_len = 0;
1749
1750		con->in_msg_pos.page = 0;
1751		if (m->pages)
1752			con->in_msg_pos.page_pos = m->page_alignment;
1753		else
1754			con->in_msg_pos.page_pos = 0;
1755		con->in_msg_pos.data_pos = 0;
1756	}
1757
1758	/* front */
1759	ret = read_partial_message_section(con, &m->front, front_len,
1760					   &con->in_front_crc);
1761	if (ret <= 0)
1762		return ret;
1763
1764	/* middle */
1765	if (m->middle) {
1766		ret = read_partial_message_section(con, &m->middle->vec,
1767						   middle_len,
1768						   &con->in_middle_crc);
1769		if (ret <= 0)
1770			return ret;
1771	}
1772#ifdef CONFIG_BLOCK
1773	if (m->bio && !m->bio_iter)
1774		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1775#endif
1776
1777	/* (page) data */
1778	while (con->in_msg_pos.data_pos < data_len) {
1779		if (m->pages) {
1780			ret = read_partial_message_pages(con, m->pages,
1781						 data_len, do_datacrc);
1782			if (ret <= 0)
1783				return ret;
1784#ifdef CONFIG_BLOCK
1785		} else if (m->bio) {
1786
1787			ret = read_partial_message_bio(con,
1788						 &m->bio_iter, &m->bio_seg,
1789						 data_len, do_datacrc);
1790			if (ret <= 0)
1791				return ret;
1792#endif
1793		} else {
1794			BUG_ON(1);
1795		}
1796	}
1797
1798	/* footer */
1799	size = sizeof (m->footer);
1800	end += size;
1801	ret = read_partial(con, end, size, &m->footer);
1802	if (ret <= 0)
1803		return ret;
1804
 
 
 
 
 
1805	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1806	     m, front_len, m->footer.front_crc, middle_len,
1807	     m->footer.middle_crc, data_len, m->footer.data_crc);
1808
1809	/* crc ok? */
1810	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1811		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1812		       m, con->in_front_crc, m->footer.front_crc);
1813		return -EBADMSG;
1814	}
1815	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1816		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1817		       m, con->in_middle_crc, m->footer.middle_crc);
1818		return -EBADMSG;
1819	}
1820	if (do_datacrc &&
1821	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1822	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1823		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1824		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1825		return -EBADMSG;
1826	}
1827
 
 
 
 
 
 
1828	return 1; /* done! */
1829}
1830
1831/*
1832 * Process message.  This happens in the worker thread.  The callback should
1833 * be careful not to do anything that waits on other incoming messages or it
1834 * may deadlock.
1835 */
1836static void process_message(struct ceph_connection *con)
1837{
1838	struct ceph_msg *msg;
1839
1840	msg = con->in_msg;
1841	con->in_msg = NULL;
1842
1843	/* if first message, set peer_name */
1844	if (con->peer_name.type == 0)
1845		con->peer_name = msg->hdr.src;
1846
1847	con->in_seq++;
1848	mutex_unlock(&con->mutex);
1849
1850	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1851	     msg, le64_to_cpu(msg->hdr.seq),
1852	     ENTITY_NAME(msg->hdr.src),
1853	     le16_to_cpu(msg->hdr.type),
1854	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1855	     le32_to_cpu(msg->hdr.front_len),
1856	     le32_to_cpu(msg->hdr.data_len),
1857	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1858	con->ops->dispatch(con, msg);
1859
1860	mutex_lock(&con->mutex);
 
 
 
 
 
 
 
 
 
 
1861	prepare_read_tag(con);
 
1862}
1863
1864
1865/*
1866 * Write something to the socket.  Called in a worker thread when the
1867 * socket appears to be writeable and we have something ready to send.
1868 */
1869static int try_write(struct ceph_connection *con)
1870{
1871	int ret = 1;
1872
1873	dout("try_write start %p state %lu nref %d\n", con, con->state,
1874	     atomic_read(&con->nref));
 
 
 
 
1875
1876more:
1877	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1878
1879	/* open the socket first? */
1880	if (con->sock == NULL) {
1881		ceph_con_out_kvec_reset(con);
 
 
 
1882		prepare_write_banner(con);
1883		ret = prepare_write_connect(con);
1884		if (ret < 0)
1885			goto out;
1886		prepare_read_banner(con);
1887		set_bit(CONNECTING, &con->state);
1888		clear_bit(NEGOTIATING, &con->state);
1889
1890		BUG_ON(con->in_msg);
1891		con->in_tag = CEPH_MSGR_TAG_READY;
1892		dout("try_write initiating connect on %p new state %lu\n",
1893		     con, con->state);
1894		ret = ceph_tcp_connect(con);
1895		if (ret < 0) {
1896			con->error_msg = "connect error";
1897			goto out;
1898		}
1899	}
1900
1901more_kvec:
 
 
1902	/* kvec data queued? */
1903	if (con->out_skip) {
1904		ret = write_partial_skip(con);
1905		if (ret <= 0)
1906			goto out;
1907	}
1908	if (con->out_kvec_left) {
1909		ret = write_partial_kvec(con);
1910		if (ret <= 0)
1911			goto out;
1912	}
1913
1914	/* msg pages? */
1915	if (con->out_msg) {
1916		if (con->out_msg_done) {
1917			ceph_msg_put(con->out_msg);
1918			con->out_msg = NULL;   /* we're done with this one */
1919			goto do_next;
1920		}
1921
1922		ret = write_partial_msg_pages(con);
1923		if (ret == 1)
1924			goto more_kvec;  /* we need to send the footer, too! */
1925		if (ret == 0)
1926			goto out;
1927		if (ret < 0) {
1928			dout("try_write write_partial_msg_pages err %d\n",
1929			     ret);
1930			goto out;
1931		}
1932	}
1933
1934do_next:
1935	if (!test_bit(CONNECTING, &con->state)) {
 
 
 
 
1936		/* is anything else pending? */
1937		if (!list_empty(&con->out_queue)) {
1938			prepare_write_message(con);
1939			goto more;
1940		}
1941		if (con->in_seq > con->in_seq_acked) {
1942			prepare_write_ack(con);
1943			goto more;
1944		}
1945		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1946			prepare_write_keepalive(con);
1947			goto more;
1948		}
1949	}
1950
1951	/* Nothing to do! */
1952	clear_bit(WRITE_PENDING, &con->state);
1953	dout("try_write nothing else to write.\n");
1954	ret = 0;
1955out:
1956	dout("try_write done on %p ret %d\n", con, ret);
1957	return ret;
1958}
1959
1960
1961
1962/*
1963 * Read what we can from the socket.
1964 */
1965static int try_read(struct ceph_connection *con)
1966{
1967	int ret = -1;
1968
1969	if (!con->sock)
1970		return 0;
1971
1972	if (test_bit(STANDBY, &con->state))
 
1973		return 0;
1974
1975	dout("try_read start on %p\n", con);
1976
1977more:
1978	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1979	     con->in_base_pos);
1980
1981	/*
1982	 * process_connect and process_message drop and re-take
1983	 * con->mutex.  make sure we handle a racing close or reopen.
1984	 */
1985	if (test_bit(CLOSED, &con->state) ||
1986	    test_bit(OPENING, &con->state)) {
1987		ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988		goto out;
1989	}
1990
1991	if (test_bit(CONNECTING, &con->state)) {
1992		if (!test_bit(NEGOTIATING, &con->state)) {
1993			dout("try_read connecting\n");
1994			ret = read_partial_banner(con);
1995			if (ret <= 0)
1996				goto out;
1997			ret = process_banner(con);
1998			if (ret < 0)
1999				goto out;
2000		}
2001		ret = read_partial_connect(con);
2002		if (ret <= 0)
2003			goto out;
2004		ret = process_connect(con);
2005		if (ret < 0)
2006			goto out;
2007		goto more;
2008	}
2009
 
 
2010	if (con->in_base_pos < 0) {
2011		/*
2012		 * skipping + discarding content.
2013		 *
2014		 * FIXME: there must be a better way to do this!
2015		 */
2016		static char buf[SKIP_BUF_SIZE];
2017		int skip = min((int) sizeof (buf), -con->in_base_pos);
2018
2019		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2020		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2021		if (ret <= 0)
2022			goto out;
2023		con->in_base_pos += ret;
2024		if (con->in_base_pos)
2025			goto more;
2026	}
2027	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2028		/*
2029		 * what's next?
2030		 */
2031		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2032		if (ret <= 0)
2033			goto out;
2034		dout("try_read got tag %d\n", (int)con->in_tag);
2035		switch (con->in_tag) {
2036		case CEPH_MSGR_TAG_MSG:
2037			prepare_read_message(con);
2038			break;
2039		case CEPH_MSGR_TAG_ACK:
2040			prepare_read_ack(con);
2041			break;
 
 
 
2042		case CEPH_MSGR_TAG_CLOSE:
2043			set_bit(CLOSED, &con->state);   /* fixme */
 
2044			goto out;
2045		default:
2046			goto bad_tag;
2047		}
2048	}
2049	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2050		ret = read_partial_message(con);
2051		if (ret <= 0) {
2052			switch (ret) {
2053			case -EBADMSG:
2054				con->error_msg = "bad crc";
 
 
2055				ret = -EIO;
2056				break;
2057			case -EIO:
2058				con->error_msg = "io error";
2059				break;
2060			}
2061			goto out;
2062		}
2063		if (con->in_tag == CEPH_MSGR_TAG_READY)
2064			goto more;
2065		process_message(con);
 
 
2066		goto more;
2067	}
2068	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
 
 
 
 
 
2069		ret = read_partial_ack(con);
2070		if (ret <= 0)
2071			goto out;
2072		process_ack(con);
2073		goto more;
2074	}
 
 
 
 
 
 
2075
2076out:
2077	dout("try_read done on %p ret %d\n", con, ret);
2078	return ret;
2079
2080bad_tag:
2081	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2082	con->error_msg = "protocol error, garbage tag";
2083	ret = -1;
2084	goto out;
2085}
2086
2087
2088/*
2089 * Atomically queue work on a connection.  Bump @con reference to
2090 * avoid races with connection teardown.
 
2091 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092static void queue_con(struct ceph_connection *con)
2093{
2094	if (test_bit(DEAD, &con->state)) {
2095		dout("queue_con %p ignoring: DEAD\n",
2096		     con);
2097		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098	}
 
 
 
 
 
 
 
 
2099
2100	if (!con->ops->get(con)) {
2101		dout("queue_con %p ref count 0\n", con);
2102		return;
 
 
 
 
 
 
2103	}
2104
2105	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2106		dout("queue_con %p - already queued\n", con);
2107		con->ops->put(con);
2108	} else {
2109		dout("queue_con %p\n", con);
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	}
 
 
 
2111}
2112
2113/*
2114 * Do some work on a connection.  Drop a connection ref when we're done.
2115 */
2116static void con_work(struct work_struct *work)
2117{
2118	struct ceph_connection *con = container_of(work, struct ceph_connection,
2119						   work.work);
2120	int ret;
2121
2122	mutex_lock(&con->mutex);
2123restart:
2124	if (test_and_clear_bit(BACKOFF, &con->state)) {
2125		dout("con_work %p backing off\n", con);
2126		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2127				       round_jiffies_relative(con->delay))) {
2128			dout("con_work %p backoff %lu\n", con, con->delay);
2129			mutex_unlock(&con->mutex);
2130			return;
2131		} else {
2132			con->ops->put(con);
2133			dout("con_work %p FAILED to back off %lu\n", con,
2134			     con->delay);
 
 
 
 
 
 
 
 
 
 
 
2135		}
2136	}
2137
2138	if (test_bit(STANDBY, &con->state)) {
2139		dout("con_work %p STANDBY\n", con);
2140		goto done;
2141	}
2142	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2143		dout("con_work CLOSED\n");
2144		con_close_socket(con);
2145		goto done;
2146	}
2147	if (test_and_clear_bit(OPENING, &con->state)) {
2148		/* reopen w/ new peer */
2149		dout("con_work OPENING\n");
2150		con_close_socket(con);
2151	}
2152
2153	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2154		goto fault;
 
 
 
 
 
 
2155
2156	ret = try_read(con);
2157	if (ret == -EAGAIN)
2158		goto restart;
2159	if (ret < 0)
2160		goto fault;
2161
2162	ret = try_write(con);
2163	if (ret == -EAGAIN)
2164		goto restart;
2165	if (ret < 0)
2166		goto fault;
2167
2168done:
2169	mutex_unlock(&con->mutex);
2170done_unlocked:
2171	con->ops->put(con);
2172	return;
2173
2174fault:
2175	mutex_unlock(&con->mutex);
2176	ceph_fault(con);     /* error/fault path */
2177	goto done_unlocked;
2178}
2179
2180
2181/*
2182 * Generic error/fault handler.  A retry mechanism is used with
2183 * exponential backoff
2184 */
2185static void ceph_fault(struct ceph_connection *con)
2186{
2187	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2188	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2189	dout("fault %p state %lu to peer %s\n",
2190	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2191
2192	if (test_bit(LOSSYTX, &con->state)) {
2193		dout("fault on LOSSYTX channel\n");
2194		goto out;
2195	}
 
 
 
2196
2197	mutex_lock(&con->mutex);
2198	if (test_bit(CLOSED, &con->state))
2199		goto out_unlock;
2200
2201	con_close_socket(con);
 
 
 
 
2202
2203	if (con->in_msg) {
 
2204		ceph_msg_put(con->in_msg);
2205		con->in_msg = NULL;
2206	}
2207
2208	/* Requeue anything that hasn't been acked */
2209	list_splice_init(&con->out_sent, &con->out_queue);
2210
2211	/* If there are no messages queued or keepalive pending, place
2212	 * the connection in a STANDBY state */
2213	if (list_empty(&con->out_queue) &&
2214	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2215		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2216		clear_bit(WRITE_PENDING, &con->state);
2217		set_bit(STANDBY, &con->state);
2218	} else {
2219		/* retry after a delay. */
 
2220		if (con->delay == 0)
2221			con->delay = BASE_DELAY_INTERVAL;
2222		else if (con->delay < MAX_DELAY_INTERVAL)
2223			con->delay *= 2;
2224		con->ops->get(con);
2225		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2226				       round_jiffies_relative(con->delay))) {
2227			dout("fault queued %p delay %lu\n", con, con->delay);
2228		} else {
2229			con->ops->put(con);
2230			dout("fault failed to queue %p delay %lu, backoff\n",
2231			     con, con->delay);
2232			/*
2233			 * In many cases we see a socket state change
2234			 * while con_work is running and end up
2235			 * queuing (non-delayed) work, such that we
2236			 * can't backoff with a delay.  Set a flag so
2237			 * that when con_work restarts we schedule the
2238			 * delay then.
2239			 */
2240			set_bit(BACKOFF, &con->state);
2241		}
2242	}
2243
2244out_unlock:
2245	mutex_unlock(&con->mutex);
2246out:
2247	/*
2248	 * in case we faulted due to authentication, invalidate our
2249	 * current tickets so that we can get new ones.
2250	 */
2251	if (con->auth_retry && con->ops->invalidate_authorizer) {
2252		dout("calling invalidate_authorizer()\n");
2253		con->ops->invalidate_authorizer(con);
2254	}
2255
2256	if (con->ops->fault)
2257		con->ops->fault(con);
2258}
2259
2260
2261
2262/*
2263 * create a new messenger instance
2264 */
2265struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2266					     u32 supported_features,
2267					     u32 required_features)
2268{
2269	struct ceph_messenger *msgr;
2270
2271	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2272	if (msgr == NULL)
2273		return ERR_PTR(-ENOMEM);
2274
2275	msgr->supported_features = supported_features;
2276	msgr->required_features = required_features;
2277
2278	spin_lock_init(&msgr->global_seq_lock);
2279
2280	if (myaddr)
2281		msgr->inst.addr = *myaddr;
2282
2283	/* select a random nonce */
2284	msgr->inst.addr.type = 0;
2285	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2286	encode_my_addr(msgr);
2287
2288	dout("messenger_create %p\n", msgr);
2289	return msgr;
 
 
2290}
2291EXPORT_SYMBOL(ceph_messenger_create);
2292
2293void ceph_messenger_destroy(struct ceph_messenger *msgr)
2294{
2295	dout("destroy %p\n", msgr);
2296	kfree(msgr);
2297	dout("destroyed messenger %p\n", msgr);
 
 
 
 
 
 
 
 
2298}
2299EXPORT_SYMBOL(ceph_messenger_destroy);
2300
2301static void clear_standby(struct ceph_connection *con)
2302{
2303	/* come back from STANDBY? */
2304	if (test_and_clear_bit(STANDBY, &con->state)) {
2305		mutex_lock(&con->mutex);
2306		dout("clear_standby %p and ++connect_seq\n", con);
 
2307		con->connect_seq++;
2308		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2309		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2310		mutex_unlock(&con->mutex);
2311	}
2312}
2313
2314/*
2315 * Queue up an outgoing message on the given connection.
2316 */
2317void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2318{
2319	if (test_bit(CLOSED, &con->state)) {
 
 
 
 
 
 
 
2320		dout("con_send %p closed, dropping %p\n", con, msg);
2321		ceph_msg_put(msg);
 
2322		return;
2323	}
2324
2325	/* set src+dst */
2326	msg->hdr.src = con->msgr->inst.name;
2327
2328	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2329
2330	msg->needs_out_seq = true;
2331
2332	/* queue */
2333	mutex_lock(&con->mutex);
2334	BUG_ON(!list_empty(&msg->list_head));
2335	list_add_tail(&msg->list_head, &con->out_queue);
2336	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2337	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2338	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2339	     le32_to_cpu(msg->hdr.front_len),
2340	     le32_to_cpu(msg->hdr.middle_len),
2341	     le32_to_cpu(msg->hdr.data_len));
 
 
2342	mutex_unlock(&con->mutex);
2343
2344	/* if there wasn't anything waiting to send before, queue
2345	 * new work */
2346	clear_standby(con);
2347	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2348		queue_con(con);
2349}
2350EXPORT_SYMBOL(ceph_con_send);
2351
2352/*
2353 * Revoke a message that was previously queued for send
2354 */
2355void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2356{
 
 
 
 
 
 
 
2357	mutex_lock(&con->mutex);
2358	if (!list_empty(&msg->list_head)) {
2359		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2360		list_del_init(&msg->list_head);
 
 
2361		ceph_msg_put(msg);
2362		msg->hdr.seq = 0;
2363	}
2364	if (con->out_msg == msg) {
2365		dout("con_revoke %p msg %p - was sending\n", con, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2366		con->out_msg = NULL;
2367		if (con->out_kvec_is_msg) {
2368			con->out_skip = con->out_kvec_bytes;
2369			con->out_kvec_is_msg = false;
2370		}
2371		ceph_msg_put(msg);
2372		msg->hdr.seq = 0;
2373	}
 
2374	mutex_unlock(&con->mutex);
2375}
2376
2377/*
2378 * Revoke a message that we may be reading data into
2379 */
2380void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2381{
 
 
 
 
 
 
 
2382	mutex_lock(&con->mutex);
2383	if (con->in_msg && con->in_msg == msg) {
2384		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2385		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2386		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2387
2388		/* skip rest of message */
2389		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2390			con->in_base_pos = con->in_base_pos -
2391				sizeof(struct ceph_msg_header) -
2392				front_len -
2393				middle_len -
2394				data_len -
2395				sizeof(struct ceph_msg_footer);
2396		ceph_msg_put(con->in_msg);
2397		con->in_msg = NULL;
2398		con->in_tag = CEPH_MSGR_TAG_READY;
2399		con->in_seq++;
2400	} else {
2401		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2402		     con, con->in_msg, msg);
2403	}
2404	mutex_unlock(&con->mutex);
2405}
2406
2407/*
2408 * Queue a keepalive byte to ensure the tcp connection is alive.
2409 */
2410void ceph_con_keepalive(struct ceph_connection *con)
2411{
2412	dout("con_keepalive %p\n", con);
 
2413	clear_standby(con);
2414	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2415	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
 
2416		queue_con(con);
2417}
2418EXPORT_SYMBOL(ceph_con_keepalive);
2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420
2421/*
2422 * construct a new message with given type, size
2423 * the new msg has a ref count of 1.
2424 */
2425struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2426			      bool can_fail)
2427{
2428	struct ceph_msg *m;
2429
2430	m = kmalloc(sizeof(*m), flags);
2431	if (m == NULL)
2432		goto out;
2433	kref_init(&m->kref);
2434	INIT_LIST_HEAD(&m->list_head);
2435
2436	m->hdr.tid = 0;
2437	m->hdr.type = cpu_to_le16(type);
2438	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2439	m->hdr.version = 0;
2440	m->hdr.front_len = cpu_to_le32(front_len);
2441	m->hdr.middle_len = 0;
2442	m->hdr.data_len = 0;
2443	m->hdr.data_off = 0;
2444	m->hdr.reserved = 0;
2445	m->footer.front_crc = 0;
2446	m->footer.middle_crc = 0;
2447	m->footer.data_crc = 0;
2448	m->footer.flags = 0;
2449	m->front_max = front_len;
2450	m->front_is_vmalloc = false;
2451	m->more_to_follow = false;
2452	m->ack_stamp = 0;
2453	m->pool = NULL;
2454
2455	/* middle */
2456	m->middle = NULL;
2457
2458	/* data */
2459	m->nr_pages = 0;
2460	m->page_alignment = 0;
2461	m->pages = NULL;
2462	m->pagelist = NULL;
2463	m->bio = NULL;
2464	m->bio_iter = NULL;
2465	m->bio_seg = 0;
2466	m->trail = NULL;
2467
2468	/* front */
2469	if (front_len) {
2470		if (front_len > PAGE_CACHE_SIZE) {
2471			m->front.iov_base = __vmalloc(front_len, flags,
2472						      PAGE_KERNEL);
2473			m->front_is_vmalloc = true;
2474		} else {
2475			m->front.iov_base = kmalloc(front_len, flags);
2476		}
2477		if (m->front.iov_base == NULL) {
2478			dout("ceph_msg_new can't allocate %d bytes\n",
2479			     front_len);
2480			goto out2;
2481		}
2482	} else {
2483		m->front.iov_base = NULL;
2484	}
2485	m->front.iov_len = front_len;
2486
2487	dout("ceph_msg_new %p front %d\n", m, front_len);
2488	return m;
2489
2490out2:
2491	ceph_msg_put(m);
2492out:
2493	if (!can_fail) {
2494		pr_err("msg_new can't create type %d front %d\n", type,
2495		       front_len);
2496		WARN_ON(1);
2497	} else {
2498		dout("msg_new can't create type %d front %d\n", type,
2499		     front_len);
2500	}
2501	return NULL;
2502}
2503EXPORT_SYMBOL(ceph_msg_new);
2504
2505/*
2506 * Allocate "middle" portion of a message, if it is needed and wasn't
2507 * allocated by alloc_msg.  This allows us to read a small fixed-size
2508 * per-type header in the front and then gracefully fail (i.e.,
2509 * propagate the error to the caller based on info in the front) when
2510 * the middle is too large.
2511 */
2512static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2513{
2514	int type = le16_to_cpu(msg->hdr.type);
2515	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2516
2517	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2518	     ceph_msg_type_name(type), middle_len);
2519	BUG_ON(!middle_len);
2520	BUG_ON(msg->middle);
2521
2522	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2523	if (!msg->middle)
2524		return -ENOMEM;
2525	return 0;
2526}
2527
2528/*
2529 * Generic message allocator, for incoming messages.
 
 
 
 
 
 
 
 
 
 
 
 
2530 */
2531static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2532				struct ceph_msg_header *hdr,
2533				int *skip)
2534{
2535	int type = le16_to_cpu(hdr->type);
2536	int front_len = le32_to_cpu(hdr->front_len);
2537	int middle_len = le32_to_cpu(hdr->middle_len);
2538	struct ceph_msg *msg = NULL;
2539	int ret;
 
 
 
2540
2541	if (con->ops->alloc_msg) {
2542		mutex_unlock(&con->mutex);
2543		msg = con->ops->alloc_msg(con, hdr, skip);
2544		mutex_lock(&con->mutex);
2545		if (!msg || *skip)
2546			return NULL;
 
2547	}
2548	if (!msg) {
2549		*skip = 0;
2550		msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2551		if (!msg) {
2552			pr_err("unable to allocate msg type %d len %d\n",
2553			       type, front_len);
2554			return NULL;
2555		}
2556		msg->page_alignment = le16_to_cpu(hdr->data_off);
 
 
 
 
 
 
2557	}
2558	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2559
2560	if (middle_len && !msg->middle) {
2561		ret = ceph_alloc_middle(con, msg);
2562		if (ret < 0) {
2563			ceph_msg_put(msg);
2564			return NULL;
2565		}
2566	}
2567
2568	return msg;
2569}
2570
2571
2572/*
2573 * Free a generically kmalloc'd message.
2574 */
2575void ceph_msg_kfree(struct ceph_msg *m)
2576{
2577	dout("msg_kfree %p\n", m);
2578	if (m->front_is_vmalloc)
2579		vfree(m->front.iov_base);
2580	else
2581		kfree(m->front.iov_base);
2582	kfree(m);
2583}
2584
2585/*
2586 * Drop a msg ref.  Destroy as needed.
2587 */
2588void ceph_msg_last_put(struct kref *kref)
2589{
2590	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
 
2591
2592	dout("ceph_msg_put last one on %p\n", m);
2593	WARN_ON(!list_empty(&m->list_head));
2594
 
 
2595	/* drop middle, data, if any */
2596	if (m->middle) {
2597		ceph_buffer_put(m->middle);
2598		m->middle = NULL;
2599	}
2600	m->nr_pages = 0;
2601	m->pages = NULL;
2602
2603	if (m->pagelist) {
2604		ceph_pagelist_release(m->pagelist);
2605		kfree(m->pagelist);
2606		m->pagelist = NULL;
2607	}
2608
2609	m->trail = NULL;
2610
2611	if (m->pool)
2612		ceph_msgpool_put(m->pool, m);
2613	else
2614		ceph_msg_kfree(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2615}
2616EXPORT_SYMBOL(ceph_msg_last_put);
2617
2618void ceph_msg_dump(struct ceph_msg *msg)
2619{
2620	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2621		 msg->front_max, msg->nr_pages);
2622	print_hex_dump(KERN_DEBUG, "header: ",
2623		       DUMP_PREFIX_OFFSET, 16, 1,
2624		       &msg->hdr, sizeof(msg->hdr), true);
2625	print_hex_dump(KERN_DEBUG, " front: ",
2626		       DUMP_PREFIX_OFFSET, 16, 1,
2627		       msg->front.iov_base, msg->front.iov_len, true);
2628	if (msg->middle)
2629		print_hex_dump(KERN_DEBUG, "middle: ",
2630			       DUMP_PREFIX_OFFSET, 16, 1,
2631			       msg->middle->vec.iov_base,
2632			       msg->middle->vec.iov_len, true);
2633	print_hex_dump(KERN_DEBUG, "footer: ",
2634		       DUMP_PREFIX_OFFSET, 16, 1,
2635		       &msg->footer, sizeof(msg->footer), true);
2636}
2637EXPORT_SYMBOL(ceph_msg_dump);