Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/cpu.h>
 104#include	<linux/__KEEPIDENTS__BD.h>
 105#include	<linux/__KEEPIDENTS__BE.h>
 106#include	<linux/rcupdate.h>
 107#include	<linux/__KEEPIDENTS__BF.h>
 108#include	<linux/__KEEPIDENTS__BG.h>
 109#include	<linux/__KEEPIDENTS__BH.h>
 110#include	<linux/kmemleak.h>
 111#include	<linux/__KEEPIDENTS__BI.h>
 112#include	<linux/__KEEPIDENTS__BJ.h>
 113#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 114#include	<linux/__KEEPIDENTS__CC.h>
 115#include	<linux/reciprocal_div.h>
 116#include	<linux/debugobjects.h>
 
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 119#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 120
 121#include	<net/__KEEPIDENTS__CG.h>
 122
 123#include	<asm/cacheflush.h>
 124#include	<asm/tlbflush.h>
 125#include	<asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include	"internal.h"
 130
 131#include	"slab.h"
 132
 133/*
 134 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *		  0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS	- 1 to collect stats for /proc/slabinfo.
 138 *		  0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define	DEBUG		1
 145#define	STATS		1
 146#define	FORCED_DEBUG	1
 147#else
 148#define	DEBUG		0
 149#define	STATS		0
 150#define	FORCED_DEBUG	0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define	BYTES_PER_WORD		sizeof(void *)
 155#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 
 
 
 
 166#else
 167typedef unsigned short freelist_idx_t;
 
 
 
 
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185	unsigned int avail;
 186	unsigned int limit;
 187	unsigned int batchcount;
 188	unsigned int touched;
 
 189	void *entry[];	/*
 190			 * Must have this definition in here for the proper
 191			 * alignment of array_cache. Also simplifies accessing
 192			 * the entries.
 193			 */
 194};
 195
 196struct alien_cache {
 197	spinlock_t lock;
 198	struct array_cache ac;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define	CACHE_CACHE 0
 207#define	SIZE_NODE (MAX_NUMNODES)
 
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210			struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212			int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218						void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220				struct kmem_cache_node *n, struct page *page,
 221				void **list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228	INIT_LIST_HEAD(&parent->slabs_full);
 229	INIT_LIST_HEAD(&parent->slabs_partial);
 230	INIT_LIST_HEAD(&parent->slabs_free);
 231	parent->total_slabs = 0;
 232	parent->free_slabs = 0;
 233	parent->shared = NULL;
 234	parent->alien = NULL;
 235	parent->colour_next = 0;
 236	spin_lock_init(&parent->list_lock);
 237	parent->free_objects = 0;
 238	parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 242	do {								\
 243		INIT_LIST_HEAD(listp);					\
 244		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 245	} while (0)
 246
 247#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 248	do {								\
 249	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 252	} while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 255#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 256#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT	16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC		(2*HZ)
 268#define REAPTIMEOUT_NODE	(4*HZ)
 269
 270#if STATS
 271#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 272#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 273#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 274#define	STATS_INC_GROWN(x)	((x)->grown++)
 275#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 276#define	STATS_SET_HIGH(x)						\
 277	do {								\
 278		if ((x)->num_active > (x)->high_mark)			\
 279			(x)->high_mark = (x)->num_active;		\
 280	} while (0)
 281#define	STATS_INC_ERR(x)	((x)->errors++)
 282#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 283#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define	STATS_SET_FREEABLE(x, i)					\
 286	do {								\
 287		if ((x)->max_freeable < i)				\
 288			(x)->max_freeable = i;				\
 289	} while (0)
 290#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 294#else
 295#define	STATS_INC_ACTIVE(x)	do { } while (0)
 296#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 297#define	STATS_INC_ALLOCED(x)	do { } while (0)
 298#define	STATS_INC_GROWN(x)	do { } while (0)
 299#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 300#define	STATS_SET_HIGH(x)	do { } while (0)
 301#define	STATS_INC_ERR(x)	do { } while (0)
 302#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 303#define	STATS_INC_NODEFREES(x)	do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 308#define STATS_INC_FREEHIT(x)	do { } while (0)
 309#define STATS_INC_FREEMISS(x)	do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0		: objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 * 		the end of an object is aligned with the end of the real
 319 * 		allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 * 		redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *					[BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329	return cachep->obj_offset;
 330}
 331
 
 
 
 
 
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335	return (unsigned long long*) (objp + obj_offset(cachep) -
 336				      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342	if (cachep->flags & SLAB_STORE_USER)
 343		return (unsigned long long *)(objp + cachep->size -
 344					      sizeof(unsigned long long) -
 345					      REDZONE_ALIGN);
 346	return (unsigned long long *) (objp + cachep->size -
 347				       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)			0
 
 359#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365#ifdef CONFIG_DEBUG_SLAB_LEAK
 366
 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
 368{
 369	return atomic_read(&cachep->store_user_clean) == 1;
 370}
 371
 372static inline void set_store_user_clean(struct kmem_cache *cachep)
 373{
 374	atomic_set(&cachep->store_user_clean, 1);
 375}
 376
 377static inline void set_store_user_dirty(struct kmem_cache *cachep)
 378{
 379	if (is_store_user_clean(cachep))
 380		atomic_set(&cachep->store_user_clean, 0);
 381}
 382
 383#else
 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 385
 386#endif
 387
 388/*
 389 * Do not go above this order unless 0 objects fit into the slab or
 390 * overridden on the command line.
 391 */
 392#define	SLAB_MAX_ORDER_HI	1
 393#define	SLAB_MAX_ORDER_LO	0
 394static int slab_max_order = SLAB_MAX_ORDER_LO;
 395static bool slab_max_order_set __initdata;
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397static inline struct kmem_cache *virt_to_cache(const void *obj)
 398{
 399	struct page *page = virt_to_head_page(obj);
 400	return page->slab_cache;
 401}
 402
 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 
 
 
 
 
 
 404				 unsigned int idx)
 405{
 406	return page->s_mem + cache->size * idx;
 407}
 408
 409/*
 410 * We want to avoid an expensive divide : (offset / cache->size)
 411 *   Using the fact that size is a constant for a particular cache,
 412 *   we can replace (offset / cache->size) by
 413 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 414 */
 415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 416					const struct page *page, void *obj)
 417{
 418	u32 offset = (obj - page->s_mem);
 419	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 420}
 421
 422#define BOOT_CPUCACHE_ENTRIES	1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423/* internal cache of cache description objs */
 424static struct kmem_cache kmem_cache_boot = {
 
 
 425	.batchcount = 1,
 426	.limit = BOOT_CPUCACHE_ENTRIES,
 427	.shared = 1,
 428	.size = sizeof(struct kmem_cache),
 429	.name = "kmem_cache",
 430};
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 433
 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 435{
 436	return this_cpu_ptr(cachep->cpu_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437}
 438
 439/*
 440 * Calculate the number of objects and left-over bytes for a given buffer size.
 441 */
 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 443		slab_flags_t flags, size_t *left_over)
 
 444{
 445	unsigned int num;
 
 446	size_t slab_size = PAGE_SIZE << gfporder;
 447
 448	/*
 449	 * The slab management structure can be either off the slab or
 450	 * on it. For the latter case, the memory allocated for a
 451	 * slab is used for:
 452	 *
 
 
 
 453	 * - @buffer_size bytes for each object
 454	 * - One freelist_idx_t for each object
 455	 *
 456	 * We don't need to consider alignment of freelist because
 457	 * freelist will be at the end of slab page. The objects will be
 458	 * at the correct alignment.
 459	 *
 460	 * If the slab management structure is off the slab, then the
 461	 * alignment will already be calculated into the size. Because
 462	 * the slabs are all pages aligned, the objects will be at the
 463	 * correct alignment when allocated.
 464	 */
 465	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 466		num = slab_size / buffer_size;
 467		*left_over = slab_size % buffer_size;
 
 
 
 468	} else {
 469		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 470		*left_over = slab_size %
 471			(buffer_size + sizeof(freelist_idx_t));
 472	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474	return num;
 
 
 
 475}
 476
 477#if DEBUG
 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 479
 480static void __slab_error(const char *function, struct kmem_cache *cachep,
 481			char *msg)
 482{
 483	pr_err("slab error in %s(): cache `%s': %s\n",
 484	       function, cachep->name, msg);
 485	dump_stack();
 486	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 487}
 488#endif
 489
 490/*
 491 * By default on NUMA we use alien caches to stage the freeing of
 492 * objects allocated from other nodes. This causes massive memory
 493 * inefficiencies when using fake NUMA setup to split memory into a
 494 * large number of small nodes, so it can be disabled on the command
 495 * line
 496  */
 497
 498static int use_alien_caches __read_mostly = 1;
 499static int __init noaliencache_setup(char *s)
 500{
 501	use_alien_caches = 0;
 502	return 1;
 503}
 504__setup("noaliencache", noaliencache_setup);
 505
 506static int __init slab_max_order_setup(char *str)
 507{
 508	get_option(&str, &slab_max_order);
 509	slab_max_order = slab_max_order < 0 ? 0 :
 510				min(slab_max_order, MAX_ORDER - 1);
 511	slab_max_order_set = true;
 512
 513	return 1;
 514}
 515__setup("slab_max_order=", slab_max_order_setup);
 516
 517#ifdef CONFIG_NUMA
 518/*
 519 * Special reaping functions for NUMA systems called from cache_reap().
 520 * These take care of doing round robin flushing of alien caches (containing
 521 * objects freed on different nodes from which they were allocated) and the
 522 * flushing of remote pcps by calling drain_node_pages.
 523 */
 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 525
 526static void init_reap_node(int cpu)
 527{
 528	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 529						    node_online_map);
 
 
 
 
 
 530}
 531
 532static void next_reap_node(void)
 533{
 534	int node = __this_cpu_read(slab_reap_node);
 535
 536	node = next_node_in(node, node_online_map);
 
 
 537	__this_cpu_write(slab_reap_node, node);
 538}
 539
 540#else
 541#define init_reap_node(cpu) do { } while (0)
 542#define next_reap_node(void) do { } while (0)
 543#endif
 544
 545/*
 546 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 547 * via the workqueue/eventd.
 548 * Add the CPU number into the expiration time to minimize the possibility of
 549 * the CPUs getting into lockstep and contending for the global cache chain
 550 * lock.
 551 */
 552static void start_cpu_timer(int cpu)
 553{
 554	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 555
 556	if (reap_work->work.func == NULL) {
 
 
 
 
 
 557		init_reap_node(cpu);
 558		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 559		schedule_delayed_work_on(cpu, reap_work,
 560					__round_jiffies_relative(HZ, cpu));
 561	}
 562}
 563
 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
 
 565{
 
 
 
 
 566	/*
 567	 * The array_cache structures contain pointers to free object.
 568	 * However, when such objects are allocated or transferred to another
 569	 * cache the pointers are not cleared and they could be counted as
 570	 * valid references during a kmemleak scan. Therefore, kmemleak must
 571	 * not scan such objects.
 572	 */
 573	kmemleak_no_scan(ac);
 574	if (ac) {
 575		ac->avail = 0;
 576		ac->limit = limit;
 577		ac->batchcount = batch;
 578		ac->touched = 0;
 
 579	}
 580}
 581
 582static struct array_cache *alloc_arraycache(int node, int entries,
 583					    int batchcount, gfp_t gfp)
 584{
 585	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 586	struct array_cache *ac = NULL;
 587
 588	ac = kmalloc_node(memsize, gfp, node);
 589	init_arraycache(ac, entries, batchcount);
 590	return ac;
 591}
 592
 593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 594					struct page *page, void *objp)
 595{
 596	struct kmem_cache_node *n;
 597	int page_node;
 598	LIST_HEAD(list);
 599
 600	page_node = page_to_nid(page);
 601	n = get_node(cachep, page_node);
 602
 603	spin_lock(&n->list_lock);
 604	free_block(cachep, &objp, 1, page_node, &list);
 605	spin_unlock(&n->list_lock);
 606
 607	slabs_destroy(cachep, &list);
 608}
 609
 610/*
 611 * Transfer objects in one arraycache to another.
 612 * Locking must be handled by the caller.
 613 *
 614 * Return the number of entries transferred.
 615 */
 616static int transfer_objects(struct array_cache *to,
 617		struct array_cache *from, unsigned int max)
 618{
 619	/* Figure out how many entries to transfer */
 620	int nr = min3(from->avail, max, to->limit - to->avail);
 621
 622	if (!nr)
 623		return 0;
 624
 625	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 626			sizeof(void *) *nr);
 627
 628	from->avail -= nr;
 629	to->avail += nr;
 630	return nr;
 631}
 632
 633#ifndef CONFIG_NUMA
 634
 635#define drain_alien_cache(cachep, alien) do { } while (0)
 636#define reap_alien(cachep, n) do { } while (0)
 637
 638static inline struct alien_cache **alloc_alien_cache(int node,
 639						int limit, gfp_t gfp)
 640{
 641	return NULL;
 642}
 643
 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
 645{
 646}
 647
 648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 649{
 650	return 0;
 651}
 652
 653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 654		gfp_t flags)
 655{
 656	return NULL;
 657}
 658
 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 660		 gfp_t flags, int nodeid)
 661{
 662	return NULL;
 663}
 664
 665static inline gfp_t gfp_exact_node(gfp_t flags)
 666{
 667	return flags & ~__GFP_NOFAIL;
 668}
 669
 670#else	/* CONFIG_NUMA */
 671
 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 674
 675static struct alien_cache *__alloc_alien_cache(int node, int entries,
 676						int batch, gfp_t gfp)
 677{
 678	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 679	struct alien_cache *alc = NULL;
 680
 681	alc = kmalloc_node(memsize, gfp, node);
 682	init_arraycache(&alc->ac, entries, batch);
 683	spin_lock_init(&alc->lock);
 684	return alc;
 685}
 686
 687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 688{
 689	struct alien_cache **alc_ptr;
 690	size_t memsize = sizeof(void *) * nr_node_ids;
 691	int i;
 692
 693	if (limit > 1)
 694		limit = 12;
 695	alc_ptr = kzalloc_node(memsize, gfp, node);
 696	if (!alc_ptr)
 697		return NULL;
 698
 699	for_each_node(i) {
 700		if (i == node || !node_online(i))
 701			continue;
 702		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 703		if (!alc_ptr[i]) {
 704			for (i--; i >= 0; i--)
 705				kfree(alc_ptr[i]);
 706			kfree(alc_ptr);
 707			return NULL;
 708		}
 709	}
 710	return alc_ptr;
 711}
 712
 713static void free_alien_cache(struct alien_cache **alc_ptr)
 714{
 715	int i;
 716
 717	if (!alc_ptr)
 718		return;
 719	for_each_node(i)
 720	    kfree(alc_ptr[i]);
 721	kfree(alc_ptr);
 722}
 723
 724static void __drain_alien_cache(struct kmem_cache *cachep,
 725				struct array_cache *ac, int node,
 726				struct list_head *list)
 727{
 728	struct kmem_cache_node *n = get_node(cachep, node);
 729
 730	if (ac->avail) {
 731		spin_lock(&n->list_lock);
 732		/*
 733		 * Stuff objects into the remote nodes shared array first.
 734		 * That way we could avoid the overhead of putting the objects
 735		 * into the free lists and getting them back later.
 736		 */
 737		if (n->shared)
 738			transfer_objects(n->shared, ac, ac->limit);
 739
 740		free_block(cachep, ac->entry, ac->avail, node, list);
 741		ac->avail = 0;
 742		spin_unlock(&n->list_lock);
 743	}
 744}
 745
 746/*
 747 * Called from cache_reap() to regularly drain alien caches round robin.
 748 */
 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 750{
 751	int node = __this_cpu_read(slab_reap_node);
 752
 753	if (n->alien) {
 754		struct alien_cache *alc = n->alien[node];
 755		struct array_cache *ac;
 756
 757		if (alc) {
 758			ac = &alc->ac;
 759			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 760				LIST_HEAD(list);
 761
 762				__drain_alien_cache(cachep, ac, node, &list);
 763				spin_unlock_irq(&alc->lock);
 764				slabs_destroy(cachep, &list);
 765			}
 766		}
 767	}
 768}
 769
 770static void drain_alien_cache(struct kmem_cache *cachep,
 771				struct alien_cache **alien)
 772{
 773	int i = 0;
 774	struct alien_cache *alc;
 775	struct array_cache *ac;
 776	unsigned long flags;
 777
 778	for_each_online_node(i) {
 779		alc = alien[i];
 780		if (alc) {
 781			LIST_HEAD(list);
 782
 783			ac = &alc->ac;
 784			spin_lock_irqsave(&alc->lock, flags);
 785			__drain_alien_cache(cachep, ac, i, &list);
 786			spin_unlock_irqrestore(&alc->lock, flags);
 787			slabs_destroy(cachep, &list);
 788		}
 789	}
 790}
 791
 792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 793				int node, int page_node)
 794{
 795	struct kmem_cache_node *n;
 796	struct alien_cache *alien = NULL;
 797	struct array_cache *ac;
 798	LIST_HEAD(list);
 
 
 
 
 
 
 
 
 
 
 799
 800	n = get_node(cachep, node);
 801	STATS_INC_NODEFREES(cachep);
 802	if (n->alien && n->alien[page_node]) {
 803		alien = n->alien[page_node];
 804		ac = &alien->ac;
 805		spin_lock(&alien->lock);
 806		if (unlikely(ac->avail == ac->limit)) {
 807			STATS_INC_ACOVERFLOW(cachep);
 808			__drain_alien_cache(cachep, ac, page_node, &list);
 809		}
 810		ac->entry[ac->avail++] = objp;
 811		spin_unlock(&alien->lock);
 812		slabs_destroy(cachep, &list);
 813	} else {
 814		n = get_node(cachep, page_node);
 815		spin_lock(&n->list_lock);
 816		free_block(cachep, &objp, 1, page_node, &list);
 817		spin_unlock(&n->list_lock);
 818		slabs_destroy(cachep, &list);
 819	}
 820	return 1;
 821}
 822
 823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 824{
 825	int page_node = page_to_nid(virt_to_page(objp));
 826	int node = numa_mem_id();
 827	/*
 828	 * Make sure we are not freeing a object from another node to the array
 829	 * cache on this cpu.
 830	 */
 831	if (likely(node == page_node))
 832		return 0;
 833
 834	return __cache_free_alien(cachep, objp, node, page_node);
 835}
 836
 837/*
 838 * Construct gfp mask to allocate from a specific node but do not reclaim or
 839 * warn about failures.
 840 */
 841static inline gfp_t gfp_exact_node(gfp_t flags)
 842{
 843	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 844}
 845#endif
 846
 847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 848{
 849	struct kmem_cache_node *n;
 850
 851	/*
 852	 * Set up the kmem_cache_node for cpu before we can
 853	 * begin anything. Make sure some other cpu on this
 854	 * node has not already allocated this
 855	 */
 856	n = get_node(cachep, node);
 857	if (n) {
 858		spin_lock_irq(&n->list_lock);
 859		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 860				cachep->num;
 861		spin_unlock_irq(&n->list_lock);
 862
 863		return 0;
 864	}
 865
 866	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 867	if (!n)
 868		return -ENOMEM;
 869
 870	kmem_cache_node_init(n);
 871	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 872		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 873
 874	n->free_limit =
 875		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 876
 877	/*
 878	 * The kmem_cache_nodes don't come and go as CPUs
 879	 * come and go.  slab_mutex is sufficient
 880	 * protection here.
 881	 */
 882	cachep->node[node] = n;
 883
 884	return 0;
 885}
 886
 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 888/*
 889 * Allocates and initializes node for a node on each slab cache, used for
 890 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 891 * will be allocated off-node since memory is not yet online for the new node.
 892 * When hotplugging memory or a cpu, existing node are not replaced if
 893 * already in use.
 894 *
 895 * Must hold slab_mutex.
 896 */
 897static int init_cache_node_node(int node)
 898{
 899	int ret;
 900	struct kmem_cache *cachep;
 
 
 901
 902	list_for_each_entry(cachep, &slab_caches, list) {
 903		ret = init_cache_node(cachep, node, GFP_KERNEL);
 904		if (ret)
 905			return ret;
 906	}
 907
 908	return 0;
 909}
 910#endif
 911
 912static int setup_kmem_cache_node(struct kmem_cache *cachep,
 913				int node, gfp_t gfp, bool force_change)
 914{
 915	int ret = -ENOMEM;
 916	struct kmem_cache_node *n;
 917	struct array_cache *old_shared = NULL;
 918	struct array_cache *new_shared = NULL;
 919	struct alien_cache **new_alien = NULL;
 920	LIST_HEAD(list);
 921
 922	if (use_alien_caches) {
 923		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 924		if (!new_alien)
 925			goto fail;
 926	}
 927
 928	if (cachep->shared) {
 929		new_shared = alloc_arraycache(node,
 930			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 931		if (!new_shared)
 932			goto fail;
 933	}
 934
 935	ret = init_cache_node(cachep, node, gfp);
 936	if (ret)
 937		goto fail;
 938
 939	n = get_node(cachep, node);
 940	spin_lock_irq(&n->list_lock);
 941	if (n->shared && force_change) {
 942		free_block(cachep, n->shared->entry,
 943				n->shared->avail, node, &list);
 944		n->shared->avail = 0;
 945	}
 946
 947	if (!n->shared || force_change) {
 948		old_shared = n->shared;
 949		n->shared = new_shared;
 950		new_shared = NULL;
 951	}
 
 
 952
 953	if (!n->alien) {
 954		n->alien = new_alien;
 955		new_alien = NULL;
 
 
 956	}
 957
 958	spin_unlock_irq(&n->list_lock);
 959	slabs_destroy(cachep, &list);
 960
 961	/*
 962	 * To protect lockless access to n->shared during irq disabled context.
 963	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 964	 * guaranteed to be valid until irq is re-enabled, because it will be
 965	 * freed after synchronize_sched().
 966	 */
 967	if (old_shared && force_change)
 968		synchronize_sched();
 969
 970fail:
 971	kfree(old_shared);
 972	kfree(new_shared);
 973	free_alien_cache(new_alien);
 974
 975	return ret;
 976}
 977
 978#ifdef CONFIG_SMP
 979
 980static void cpuup_canceled(long cpu)
 981{
 982	struct kmem_cache *cachep;
 983	struct kmem_cache_node *n = NULL;
 984	int node = cpu_to_mem(cpu);
 985	const struct cpumask *mask = cpumask_of_node(node);
 986
 987	list_for_each_entry(cachep, &slab_caches, list) {
 988		struct array_cache *nc;
 989		struct array_cache *shared;
 990		struct alien_cache **alien;
 991		LIST_HEAD(list);
 992
 993		n = get_node(cachep, node);
 994		if (!n)
 995			continue;
 996
 997		spin_lock_irq(&n->list_lock);
 998
 999		/* Free limit for this kmem_cache_node */
1000		n->free_limit -= cachep->batchcount;
1001
1002		/* cpu is dead; no one can alloc from it. */
1003		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004		if (nc) {
1005			free_block(cachep, nc->entry, nc->avail, node, &list);
1006			nc->avail = 0;
1007		}
 
 
 
 
 
 
 
 
1008
1009		if (!cpumask_empty(mask)) {
1010			spin_unlock_irq(&n->list_lock);
1011			goto free_slab;
1012		}
1013
1014		shared = n->shared;
1015		if (shared) {
1016			free_block(cachep, shared->entry,
1017				   shared->avail, node, &list);
1018			n->shared = NULL;
1019		}
1020
1021		alien = n->alien;
1022		n->alien = NULL;
1023
1024		spin_unlock_irq(&n->list_lock);
1025
1026		kfree(shared);
1027		if (alien) {
1028			drain_alien_cache(cachep, alien);
1029			free_alien_cache(alien);
1030		}
1031
1032free_slab:
1033		slabs_destroy(cachep, &list);
1034	}
1035	/*
1036	 * In the previous loop, all the objects were freed to
1037	 * the respective cache's slabs,  now we can go ahead and
1038	 * shrink each nodelist to its limit.
1039	 */
1040	list_for_each_entry(cachep, &slab_caches, list) {
1041		n = get_node(cachep, node);
1042		if (!n)
1043			continue;
1044		drain_freelist(cachep, n, INT_MAX);
1045	}
1046}
1047
1048static int cpuup_prepare(long cpu)
1049{
1050	struct kmem_cache *cachep;
 
1051	int node = cpu_to_mem(cpu);
1052	int err;
1053
1054	/*
1055	 * We need to do this right in the beginning since
1056	 * alloc_arraycache's are going to use this list.
1057	 * kmalloc_node allows us to add the slab to the right
1058	 * kmem_cache_node and not this cpu's kmem_cache_node
1059	 */
1060	err = init_cache_node_node(node);
1061	if (err < 0)
1062		goto bad;
1063
1064	/*
1065	 * Now we can go ahead with allocating the shared arrays and
1066	 * array caches
1067	 */
1068	list_for_each_entry(cachep, &slab_caches, list) {
1069		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070		if (err)
 
 
 
 
 
1071			goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072	}
 
1073
1074	return 0;
1075bad:
1076	cpuup_canceled(cpu);
1077	return -ENOMEM;
1078}
1079
1080int slab_prepare_cpu(unsigned int cpu)
 
1081{
1082	int err;
1083
1084	mutex_lock(&slab_mutex);
1085	err = cpuup_prepare(cpu);
1086	mutex_unlock(&slab_mutex);
1087	return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down.  The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102	mutex_lock(&slab_mutex);
1103	cpuup_canceled(cpu);
1104	mutex_unlock(&slab_mutex);
1105	return 0;
1106}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107#endif
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111	start_cpu_timer(cpu);
1112	return 0;
 
 
 
1113}
1114
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117	/*
1118	 * Shutdown cache reaper. Note that the slab_mutex is held so
1119	 * that if cache_reap() is invoked it cannot do anything
1120	 * expensive but will only modify reap_work and reschedule the
1121	 * timer.
1122	 */
1123	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124	/* Now the cache_reaper is guaranteed to be not running. */
1125	per_cpu(slab_reap_work, cpu).work.func = NULL;
1126	return 0;
1127}
1128
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137static int __meminit drain_cache_node_node(int node)
1138{
1139	struct kmem_cache *cachep;
1140	int ret = 0;
1141
1142	list_for_each_entry(cachep, &slab_caches, list) {
1143		struct kmem_cache_node *n;
1144
1145		n = get_node(cachep, node);
1146		if (!n)
1147			continue;
1148
1149		drain_freelist(cachep, n, INT_MAX);
1150
1151		if (!list_empty(&n->slabs_full) ||
1152		    !list_empty(&n->slabs_partial)) {
1153			ret = -EBUSY;
1154			break;
1155		}
1156	}
1157	return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161					unsigned long action, void *arg)
1162{
1163	struct memory_notify *mnb = arg;
1164	int ret = 0;
1165	int nid;
1166
1167	nid = mnb->status_change_nid;
1168	if (nid < 0)
1169		goto out;
1170
1171	switch (action) {
1172	case MEM_GOING_ONLINE:
1173		mutex_lock(&slab_mutex);
1174		ret = init_cache_node_node(nid);
1175		mutex_unlock(&slab_mutex);
1176		break;
1177	case MEM_GOING_OFFLINE:
1178		mutex_lock(&slab_mutex);
1179		ret = drain_cache_node_node(nid);
1180		mutex_unlock(&slab_mutex);
1181		break;
1182	case MEM_ONLINE:
1183	case MEM_OFFLINE:
1184	case MEM_CANCEL_ONLINE:
1185	case MEM_CANCEL_OFFLINE:
1186		break;
1187	}
1188out:
1189	return notifier_from_errno(ret);
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193/*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197				int nodeid)
1198{
1199	struct kmem_cache_node *ptr;
1200
1201	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202	BUG_ON(!ptr);
1203
1204	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205	/*
1206	 * Do not assume that spinlocks can be initialized via memcpy:
1207	 */
1208	spin_lock_init(&ptr->list_lock);
1209
1210	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211	cachep->node[nodeid] = ptr;
1212}
1213
1214/*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218static void __init set_up_node(struct kmem_cache *cachep, int index)
1219{
1220	int node;
1221
1222	for_each_online_node(node) {
1223		cachep->node[node] = &init_kmem_cache_node[index + node];
1224		cachep->node[node]->next_reap = jiffies +
1225		    REAPTIMEOUT_NODE +
1226		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227	}
1228}
1229
1230/*
1231 * Initialisation.  Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234void __init kmem_cache_init(void)
1235{
 
 
 
1236	int i;
 
 
1237
1238	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239					sizeof(struct rcu_head));
1240	kmem_cache = &kmem_cache_boot;
1241
1242	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243		use_alien_caches = 0;
1244
1245	for (i = 0; i < NUM_INIT_LISTS; i++)
1246		kmem_cache_node_init(&init_kmem_cache_node[i]);
 
 
 
 
1247
1248	/*
1249	 * Fragmentation resistance on low memory - only use bigger
1250	 * page orders on machines with more than 32MB of memory if
1251	 * not overridden on the command line.
1252	 */
1253	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254		slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256	/* Bootstrap is tricky, because several objects are allocated
1257	 * from caches that do not exist yet:
1258	 * 1) initialize the kmem_cache cache: it contains the struct
1259	 *    kmem_cache structures of all caches, except kmem_cache itself:
1260	 *    kmem_cache is statically allocated.
1261	 *    Initially an __init data area is used for the head array and the
1262	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263	 *    array at the end of the bootstrap.
1264	 * 2) Create the first kmalloc cache.
1265	 *    The struct kmem_cache for the new cache is allocated normally.
1266	 *    An __init data area is used for the head array.
1267	 * 3) Create the remaining kmalloc caches, with minimally sized
1268	 *    head arrays.
1269	 * 4) Replace the __init data head arrays for kmem_cache and the first
1270	 *    kmalloc cache with kmalloc allocated arrays.
1271	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272	 *    the other cache's with kmalloc allocated memory.
1273	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274	 */
1275
1276	/* 1) create the kmem_cache */
 
 
 
 
 
 
 
1277
1278	/*
1279	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280	 */
1281	create_boot_cache(kmem_cache, "kmem_cache",
1282		offsetof(struct kmem_cache, node) +
1283				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284				  SLAB_HWCACHE_ALIGN, 0, 0);
1285	list_add(&kmem_cache->list, &slab_caches);
1286	memcg_link_cache(kmem_cache);
1287	slab_state = PARTIAL;
1288
1289	/*
1290	 * Initialize the caches that provide memory for the  kmem_cache_node
1291	 * structures first.  Without this, further allocations will bug.
1292	 */
1293	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294				kmalloc_info[INDEX_NODE].name,
1295				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1296				0, kmalloc_size(INDEX_NODE));
1297	slab_state = PARTIAL_NODE;
1298	setup_kmalloc_cache_index_table();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299
1300	slab_early_init = 0;
1301
1302	/* 5) Replace the bootstrap kmem_cache_node */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	{
1304		int nid;
1305
1306		for_each_online_node(nid) {
1307			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
 
 
 
1308
1309			init_list(kmalloc_caches[INDEX_NODE],
1310					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
 
 
1311		}
1312	}
1313
1314	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1315}
1316
1317void __init kmem_cache_init_late(void)
1318{
1319	struct kmem_cache *cachep;
1320
 
 
 
 
 
1321	/* 6) resize the head arrays to their final sizes */
1322	mutex_lock(&slab_mutex);
1323	list_for_each_entry(cachep, &slab_caches, list)
1324		if (enable_cpucache(cachep, GFP_NOWAIT))
1325			BUG();
1326	mutex_unlock(&slab_mutex);
1327
1328	/* Done! */
1329	slab_state = FULL;
 
 
 
 
 
 
1330
1331#ifdef CONFIG_NUMA
1332	/*
1333	 * Register a memory hotplug callback that initializes and frees
1334	 * node.
1335	 */
1336	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
1339	/*
1340	 * The reap timers are started later, with a module init call: That part
1341	 * of the kernel is not yet operational.
1342	 */
1343}
1344
1345static int __init cpucache_init(void)
1346{
1347	int ret;
1348
1349	/*
1350	 * Register the timers that return unneeded pages to the page allocator
1351	 */
1352	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353				slab_online_cpu, slab_offline_cpu);
1354	WARN_ON(ret < 0);
1355
1356	return 0;
1357}
1358__initcall(cpucache_init);
1359
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
1363#if DEBUG
1364	struct kmem_cache_node *n;
1365	unsigned long flags;
1366	int node;
1367	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368				      DEFAULT_RATELIMIT_BURST);
1369
1370	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371		return;
1372
1373	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374		nodeid, gfpflags, &gfpflags);
1375	pr_warn("  cache: %s, object size: %d, order: %d\n",
1376		cachep->name, cachep->size, cachep->gfporder);
 
1377
1378	for_each_kmem_cache_node(cachep, node, n) {
1379		unsigned long total_slabs, free_slabs, free_objs;
 
1380
1381		spin_lock_irqsave(&n->list_lock, flags);
1382		total_slabs = n->total_slabs;
1383		free_slabs = n->free_slabs;
1384		free_objs = n->free_objects;
1385		spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388			node, total_slabs - free_slabs, total_slabs,
1389			(total_slabs * cachep->num) - free_objs,
1390			total_slabs * cachep->num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391	}
1392#endif
1393}
1394
1395/*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404								int nodeid)
1405{
1406	struct page *page;
1407	int nr_pages;
 
1408
1409	flags |= cachep->allocflags;
 
 
 
 
 
 
1410
1411	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1412	if (!page) {
1413		slab_out_of_memory(cachep, flags, nodeid);
1414		return NULL;
1415	}
1416
1417	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1418		__free_pages(page, cachep->gfporder);
 
 
1419		return NULL;
1420	}
1421
1422	nr_pages = (1 << cachep->gfporder);
1423	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1424		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
 
1425	else
1426		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
 
 
 
1427
1428	__SetPageSlab(page);
1429	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1430	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1431		SetPageSlabPfmemalloc(page);
1432
1433	return page;
 
 
 
 
 
 
1434}
1435
1436/*
1437 * Interface to system's page release.
1438 */
1439static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1440{
1441	int order = cachep->gfporder;
1442	unsigned long nr_freed = (1 << order);
 
 
 
1443
1444	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1445		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
 
1446	else
1447		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1448
1449	BUG_ON(!PageSlab(page));
1450	__ClearPageSlabPfmemalloc(page);
1451	__ClearPageSlab(page);
1452	page_mapcount_reset(page);
1453	page->mapping = NULL;
1454
1455	if (current->reclaim_state)
1456		current->reclaim_state->reclaimed_slab += nr_freed;
1457	memcg_uncharge_slab(page, order, cachep);
1458	__free_pages(page, order);
1459}
1460
1461static void kmem_rcu_free(struct rcu_head *head)
1462{
1463	struct kmem_cache *cachep;
1464	struct page *page;
1465
1466	page = container_of(head, struct page, rcu_head);
1467	cachep = page->slab_cache;
1468
1469	kmem_freepages(cachep, page);
 
 
1470}
1471
1472#if DEBUG
1473static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1474{
1475	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1476		(cachep->size % PAGE_SIZE) == 0)
1477		return true;
1478
1479	return false;
1480}
1481
1482#ifdef CONFIG_DEBUG_PAGEALLOC
1483static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1484			    unsigned long caller)
1485{
1486	int size = cachep->object_size;
1487
1488	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1489
1490	if (size < 5 * sizeof(unsigned long))
1491		return;
1492
1493	*addr++ = 0x12345678;
1494	*addr++ = caller;
1495	*addr++ = smp_processor_id();
1496	size -= 3 * sizeof(unsigned long);
1497	{
1498		unsigned long *sptr = &caller;
1499		unsigned long svalue;
1500
1501		while (!kstack_end(sptr)) {
1502			svalue = *sptr++;
1503			if (kernel_text_address(svalue)) {
1504				*addr++ = svalue;
1505				size -= sizeof(unsigned long);
1506				if (size <= sizeof(unsigned long))
1507					break;
1508			}
1509		}
1510
1511	}
1512	*addr++ = 0x87654321;
1513}
1514
1515static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516				int map, unsigned long caller)
1517{
1518	if (!is_debug_pagealloc_cache(cachep))
1519		return;
1520
1521	if (caller)
1522		store_stackinfo(cachep, objp, caller);
1523
1524	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1525}
1526
1527#else
1528static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1529				int map, unsigned long caller) {}
1530
1531#endif
1532
1533static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1534{
1535	int size = cachep->object_size;
1536	addr = &((char *)addr)[obj_offset(cachep)];
1537
1538	memset(addr, val, size);
1539	*(unsigned char *)(addr + size - 1) = POISON_END;
1540}
1541
1542static void dump_line(char *data, int offset, int limit)
1543{
1544	int i;
1545	unsigned char error = 0;
1546	int bad_count = 0;
1547
1548	pr_err("%03x: ", offset);
1549	for (i = 0; i < limit; i++) {
1550		if (data[offset + i] != POISON_FREE) {
1551			error = data[offset + i];
1552			bad_count++;
1553		}
1554	}
1555	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1556			&data[offset], limit, 1);
1557
1558	if (bad_count == 1) {
1559		error ^= POISON_FREE;
1560		if (!(error & (error - 1))) {
1561			pr_err("Single bit error detected. Probably bad RAM.\n");
 
1562#ifdef CONFIG_X86
1563			pr_err("Run memtest86+ or a similar memory test tool.\n");
 
1564#else
1565			pr_err("Run a memory test tool.\n");
1566#endif
1567		}
1568	}
1569}
1570#endif
1571
1572#if DEBUG
1573
1574static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1575{
1576	int i, size;
1577	char *realobj;
1578
1579	if (cachep->flags & SLAB_RED_ZONE) {
1580		pr_err("Redzone: 0x%llx/0x%llx\n",
1581		       *dbg_redzone1(cachep, objp),
1582		       *dbg_redzone2(cachep, objp));
1583	}
1584
1585	if (cachep->flags & SLAB_STORE_USER)
1586		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 
 
 
 
 
1587	realobj = (char *)objp + obj_offset(cachep);
1588	size = cachep->object_size;
1589	for (i = 0; i < size && lines; i += 16, lines--) {
1590		int limit;
1591		limit = 16;
1592		if (i + limit > size)
1593			limit = size - i;
1594		dump_line(realobj, i, limit);
1595	}
1596}
1597
1598static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1599{
1600	char *realobj;
1601	int size, i;
1602	int lines = 0;
1603
1604	if (is_debug_pagealloc_cache(cachep))
1605		return;
1606
1607	realobj = (char *)objp + obj_offset(cachep);
1608	size = cachep->object_size;
1609
1610	for (i = 0; i < size; i++) {
1611		char exp = POISON_FREE;
1612		if (i == size - 1)
1613			exp = POISON_END;
1614		if (realobj[i] != exp) {
1615			int limit;
1616			/* Mismatch ! */
1617			/* Print header */
1618			if (lines == 0) {
1619				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1620				       print_tainted(), cachep->name,
1621				       realobj, size);
1622				print_objinfo(cachep, objp, 0);
1623			}
1624			/* Hexdump the affected line */
1625			i = (i / 16) * 16;
1626			limit = 16;
1627			if (i + limit > size)
1628				limit = size - i;
1629			dump_line(realobj, i, limit);
1630			i += 16;
1631			lines++;
1632			/* Limit to 5 lines */
1633			if (lines > 5)
1634				break;
1635		}
1636	}
1637	if (lines != 0) {
1638		/* Print some data about the neighboring objects, if they
1639		 * exist:
1640		 */
1641		struct page *page = virt_to_head_page(objp);
1642		unsigned int objnr;
1643
1644		objnr = obj_to_index(cachep, page, objp);
1645		if (objnr) {
1646			objp = index_to_obj(cachep, page, objnr - 1);
1647			realobj = (char *)objp + obj_offset(cachep);
1648			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
 
1649			print_objinfo(cachep, objp, 2);
1650		}
1651		if (objnr + 1 < cachep->num) {
1652			objp = index_to_obj(cachep, page, objnr + 1);
1653			realobj = (char *)objp + obj_offset(cachep);
1654			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
 
1655			print_objinfo(cachep, objp, 2);
1656		}
1657	}
1658}
1659#endif
1660
1661#if DEBUG
1662static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1663						struct page *page)
1664{
1665	int i;
1666
1667	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1668		poison_obj(cachep, page->freelist - obj_offset(cachep),
1669			POISON_FREE);
1670	}
1671
1672	for (i = 0; i < cachep->num; i++) {
1673		void *objp = index_to_obj(cachep, page, i);
1674
1675		if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
 
1676			check_poison_obj(cachep, objp);
1677			slab_kernel_map(cachep, objp, 1, 0);
1678		}
1679		if (cachep->flags & SLAB_RED_ZONE) {
1680			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1681				slab_error(cachep, "start of a freed object was overwritten");
 
1682			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1683				slab_error(cachep, "end of a freed object was overwritten");
 
1684		}
1685	}
1686}
1687#else
1688static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1689						struct page *page)
1690{
1691}
1692#endif
1693
1694/**
1695 * slab_destroy - destroy and release all objects in a slab
1696 * @cachep: cache pointer being destroyed
1697 * @page: page pointer being destroyed
1698 *
1699 * Destroy all the objs in a slab page, and release the mem back to the system.
1700 * Before calling the slab page must have been unlinked from the cache. The
1701 * kmem_cache_node ->list_lock is not held/needed.
1702 */
1703static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1704{
1705	void *freelist;
1706
1707	freelist = page->freelist;
1708	slab_destroy_debugcheck(cachep, page);
1709	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1710		call_rcu(&page->rcu_head, kmem_rcu_free);
1711	else
1712		kmem_freepages(cachep, page);
1713
1714	/*
1715	 * From now on, we don't use freelist
1716	 * although actual page can be freed in rcu context
1717	 */
1718	if (OFF_SLAB(cachep))
1719		kmem_cache_free(cachep->freelist_cache, freelist);
 
 
 
1720}
1721
1722static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1723{
1724	struct page *page, *n;
 
 
 
 
1725
1726	list_for_each_entry_safe(page, n, list, lru) {
1727		list_del(&page->lru);
1728		slab_destroy(cachep, page);
 
 
 
 
 
1729	}
 
1730}
1731
 
1732/**
1733 * calculate_slab_order - calculate size (page order) of slabs
1734 * @cachep: pointer to the cache that is being created
1735 * @size: size of objects to be created in this cache.
 
1736 * @flags: slab allocation flags
1737 *
1738 * Also calculates the number of objects per slab.
1739 *
1740 * This could be made much more intelligent.  For now, try to avoid using
1741 * high order pages for slabs.  When the gfp() functions are more friendly
1742 * towards high-order requests, this should be changed.
1743 */
1744static size_t calculate_slab_order(struct kmem_cache *cachep,
1745				size_t size, slab_flags_t flags)
1746{
 
1747	size_t left_over = 0;
1748	int gfporder;
1749
1750	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1751		unsigned int num;
1752		size_t remainder;
1753
1754		num = cache_estimate(gfporder, size, flags, &remainder);
1755		if (!num)
1756			continue;
1757
1758		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1759		if (num > SLAB_OBJ_MAX_NUM)
1760			break;
1761
1762		if (flags & CFLGS_OFF_SLAB) {
1763			struct kmem_cache *freelist_cache;
1764			size_t freelist_size;
1765
1766			freelist_size = num * sizeof(freelist_idx_t);
1767			freelist_cache = kmalloc_slab(freelist_size, 0u);
1768			if (!freelist_cache)
1769				continue;
1770
1771			/*
1772			 * Needed to avoid possible looping condition
1773			 * in cache_grow_begin()
 
1774			 */
1775			if (OFF_SLAB(freelist_cache))
1776				continue;
1777
1778			/* check if off slab has enough benefit */
1779			if (freelist_cache->size > cachep->size / 2)
1780				continue;
1781		}
1782
1783		/* Found something acceptable - save it away */
1784		cachep->num = num;
1785		cachep->gfporder = gfporder;
1786		left_over = remainder;
1787
1788		/*
1789		 * A VFS-reclaimable slab tends to have most allocations
1790		 * as GFP_NOFS and we really don't want to have to be allocating
1791		 * higher-order pages when we are unable to shrink dcache.
1792		 */
1793		if (flags & SLAB_RECLAIM_ACCOUNT)
1794			break;
1795
1796		/*
1797		 * Large number of objects is good, but very large slabs are
1798		 * currently bad for the gfp()s.
1799		 */
1800		if (gfporder >= slab_max_order)
1801			break;
1802
1803		/*
1804		 * Acceptable internal fragmentation?
1805		 */
1806		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1807			break;
1808	}
1809	return left_over;
1810}
1811
1812static struct array_cache __percpu *alloc_kmem_cache_cpus(
1813		struct kmem_cache *cachep, int entries, int batchcount)
1814{
1815	int cpu;
1816	size_t size;
1817	struct array_cache __percpu *cpu_cache;
1818
1819	size = sizeof(void *) * entries + sizeof(struct array_cache);
1820	cpu_cache = __alloc_percpu(size, sizeof(void *));
1821
1822	if (!cpu_cache)
1823		return NULL;
1824
1825	for_each_possible_cpu(cpu) {
1826		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1827				entries, batchcount);
1828	}
1829
1830	return cpu_cache;
1831}
1832
1833static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1834{
1835	if (slab_state >= FULL)
1836		return enable_cpucache(cachep, gfp);
1837
1838	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1839	if (!cachep->cpu_cache)
1840		return 1;
 
 
 
 
1841
1842	if (slab_state == DOWN) {
1843		/* Creation of first cache (kmem_cache). */
1844		set_up_node(kmem_cache, CACHE_CACHE);
1845	} else if (slab_state == PARTIAL) {
1846		/* For kmem_cache_node */
1847		set_up_node(cachep, SIZE_NODE);
 
 
 
 
1848	} else {
1849		int node;
 
1850
1851		for_each_online_node(node) {
1852			cachep->node[node] = kmalloc_node(
1853				sizeof(struct kmem_cache_node), gfp, node);
1854			BUG_ON(!cachep->node[node]);
1855			kmem_cache_node_init(cachep->node[node]);
 
 
 
 
 
 
 
1856		}
1857	}
1858
1859	cachep->node[numa_mem_id()]->next_reap =
1860			jiffies + REAPTIMEOUT_NODE +
1861			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1862
1863	cpu_cache_get(cachep)->avail = 0;
1864	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1865	cpu_cache_get(cachep)->batchcount = 1;
1866	cpu_cache_get(cachep)->touched = 0;
1867	cachep->batchcount = 1;
1868	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1869	return 0;
1870}
1871
1872slab_flags_t kmem_cache_flags(unsigned int object_size,
1873	slab_flags_t flags, const char *name,
1874	void (*ctor)(void *))
1875{
1876	return flags;
1877}
1878
1879struct kmem_cache *
1880__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1881		   slab_flags_t flags, void (*ctor)(void *))
1882{
1883	struct kmem_cache *cachep;
1884
1885	cachep = find_mergeable(size, align, flags, name, ctor);
1886	if (cachep) {
1887		cachep->refcount++;
1888
1889		/*
1890		 * Adjust the object sizes so that we clear
1891		 * the complete object on kzalloc.
1892		 */
1893		cachep->object_size = max_t(int, cachep->object_size, size);
1894	}
1895	return cachep;
1896}
1897
1898static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1899			size_t size, slab_flags_t flags)
1900{
1901	size_t left;
1902
1903	cachep->num = 0;
1904
1905	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1906		return false;
1907
1908	left = calculate_slab_order(cachep, size,
1909			flags | CFLGS_OBJFREELIST_SLAB);
1910	if (!cachep->num)
1911		return false;
1912
1913	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1914		return false;
1915
1916	cachep->colour = left / cachep->colour_off;
1917
1918	return true;
1919}
1920
1921static bool set_off_slab_cache(struct kmem_cache *cachep,
1922			size_t size, slab_flags_t flags)
1923{
1924	size_t left;
1925
1926	cachep->num = 0;
1927
1928	/*
1929	 * Always use on-slab management when SLAB_NOLEAKTRACE
1930	 * to avoid recursive calls into kmemleak.
1931	 */
1932	if (flags & SLAB_NOLEAKTRACE)
1933		return false;
1934
1935	/*
1936	 * Size is large, assume best to place the slab management obj
1937	 * off-slab (should allow better packing of objs).
1938	 */
1939	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1940	if (!cachep->num)
1941		return false;
1942
1943	/*
1944	 * If the slab has been placed off-slab, and we have enough space then
1945	 * move it on-slab. This is at the expense of any extra colouring.
1946	 */
1947	if (left >= cachep->num * sizeof(freelist_idx_t))
1948		return false;
1949
1950	cachep->colour = left / cachep->colour_off;
1951
1952	return true;
1953}
1954
1955static bool set_on_slab_cache(struct kmem_cache *cachep,
1956			size_t size, slab_flags_t flags)
1957{
1958	size_t left;
1959
1960	cachep->num = 0;
1961
1962	left = calculate_slab_order(cachep, size, flags);
1963	if (!cachep->num)
1964		return false;
1965
1966	cachep->colour = left / cachep->colour_off;
1967
1968	return true;
1969}
1970
1971/**
1972 * __kmem_cache_create - Create a cache.
1973 * @cachep: cache management descriptor
 
 
1974 * @flags: SLAB flags
 
1975 *
1976 * Returns a ptr to the cache on success, NULL on failure.
1977 * Cannot be called within a int, but can be interrupted.
1978 * The @ctor is run when new pages are allocated by the cache.
1979 *
 
 
 
1980 * The flags are
1981 *
1982 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1983 * to catch references to uninitialised memory.
1984 *
1985 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1986 * for buffer overruns.
1987 *
1988 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1989 * cacheline.  This can be beneficial if you're counting cycles as closely
1990 * as davem.
1991 */
1992int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 
 
1993{
1994	size_t ralign = BYTES_PER_WORD;
 
1995	gfp_t gfp;
1996	int err;
1997	unsigned int size = cachep->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998
1999#if DEBUG
 
2000#if FORCED_DEBUG
2001	/*
2002	 * Enable redzoning and last user accounting, except for caches with
2003	 * large objects, if the increased size would increase the object size
2004	 * above the next power of two: caches with object sizes just above a
2005	 * power of two have a significant amount of internal fragmentation.
2006	 */
2007	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2008						2 * sizeof(unsigned long long)))
2009		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2010	if (!(flags & SLAB_TYPESAFE_BY_RCU))
2011		flags |= SLAB_POISON;
2012#endif
 
 
2013#endif
 
 
 
 
 
2014
2015	/*
2016	 * Check that size is in terms of words.  This is needed to avoid
2017	 * unaligned accesses for some archs when redzoning is used, and makes
2018	 * sure any on-slab bufctl's are also correctly aligned.
2019	 */
2020	size = ALIGN(size, BYTES_PER_WORD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021
2022	if (flags & SLAB_RED_ZONE) {
2023		ralign = REDZONE_ALIGN;
2024		/* If redzoning, ensure that the second redzone is suitably
2025		 * aligned, by adjusting the object size accordingly. */
2026		size = ALIGN(size, REDZONE_ALIGN);
 
2027	}
2028
 
 
 
 
2029	/* 3) caller mandated alignment */
2030	if (ralign < cachep->align) {
2031		ralign = cachep->align;
2032	}
2033	/* disable debug if necessary */
2034	if (ralign > __alignof__(unsigned long long))
2035		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2036	/*
2037	 * 4) Store it.
2038	 */
2039	cachep->align = ralign;
2040	cachep->colour_off = cache_line_size();
2041	/* Offset must be a multiple of the alignment. */
2042	if (cachep->colour_off < cachep->align)
2043		cachep->colour_off = cachep->align;
2044
2045	if (slab_is_available())
2046		gfp = GFP_KERNEL;
2047	else
2048		gfp = GFP_NOWAIT;
2049
 
 
 
 
 
 
2050#if DEBUG
 
2051
2052	/*
2053	 * Both debugging options require word-alignment which is calculated
2054	 * into align above.
2055	 */
2056	if (flags & SLAB_RED_ZONE) {
2057		/* add space for red zone words */
2058		cachep->obj_offset += sizeof(unsigned long long);
2059		size += 2 * sizeof(unsigned long long);
2060	}
2061	if (flags & SLAB_STORE_USER) {
2062		/* user store requires one word storage behind the end of
2063		 * the real object. But if the second red zone needs to be
2064		 * aligned to 64 bits, we must allow that much space.
2065		 */
2066		if (flags & SLAB_RED_ZONE)
2067			size += REDZONE_ALIGN;
2068		else
2069			size += BYTES_PER_WORD;
2070	}
 
 
 
 
 
 
 
2071#endif
2072
2073	kasan_cache_create(cachep, &size, &flags);
2074
2075	size = ALIGN(size, cachep->align);
2076	/*
2077	 * We should restrict the number of objects in a slab to implement
2078	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
 
 
2079	 */
2080	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2081		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
 
 
 
 
 
2082
2083#if DEBUG
2084	/*
2085	 * To activate debug pagealloc, off-slab management is necessary
2086	 * requirement. In early phase of initialization, small sized slab
2087	 * doesn't get initialized so it would not be possible. So, we need
2088	 * to check size >= 256. It guarantees that all necessary small
2089	 * sized slab is initialized in current slab initialization sequence.
2090	 */
2091	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2092		size >= 256 && cachep->object_size > cache_line_size()) {
2093		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2094			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2095
2096			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2097				flags |= CFLGS_OFF_SLAB;
2098				cachep->obj_offset += tmp_size - size;
2099				size = tmp_size;
2100				goto done;
2101			}
2102		}
2103	}
2104#endif
2105
2106	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2107		flags |= CFLGS_OBJFREELIST_SLAB;
2108		goto done;
2109	}
2110
2111	if (set_off_slab_cache(cachep, size, flags)) {
2112		flags |= CFLGS_OFF_SLAB;
2113		goto done;
 
 
 
2114	}
 
 
2115
2116	if (set_on_slab_cache(cachep, size, flags))
2117		goto done;
 
 
 
 
 
 
2118
2119	return -E2BIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
2120
2121done:
2122	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
 
 
 
 
2123	cachep->flags = flags;
2124	cachep->allocflags = __GFP_COMP;
2125	if (flags & SLAB_CACHE_DMA)
2126		cachep->allocflags |= GFP_DMA;
2127	if (flags & SLAB_RECLAIM_ACCOUNT)
2128		cachep->allocflags |= __GFP_RECLAIMABLE;
2129	cachep->size = size;
2130	cachep->reciprocal_buffer_size = reciprocal_value(size);
2131
2132#if DEBUG
2133	/*
2134	 * If we're going to use the generic kernel_map_pages()
2135	 * poisoning, then it's going to smash the contents of
2136	 * the redzone and userword anyhow, so switch them off.
2137	 */
2138	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2139		(cachep->flags & SLAB_POISON) &&
2140		is_debug_pagealloc_cache(cachep))
2141		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2142#endif
 
 
2143
2144	if (OFF_SLAB(cachep)) {
2145		cachep->freelist_cache =
2146			kmalloc_slab(cachep->freelist_size, 0u);
 
2147	}
2148
2149	err = setup_cpu_cache(cachep, gfp);
2150	if (err) {
2151		__kmem_cache_release(cachep);
2152		return err;
 
 
 
 
2153	}
2154
2155	return 0;
 
 
 
 
 
 
 
 
 
 
2156}
 
2157
2158#if DEBUG
2159static void check_irq_off(void)
2160{
2161	BUG_ON(!irqs_disabled());
2162}
2163
2164static void check_irq_on(void)
2165{
2166	BUG_ON(irqs_disabled());
2167}
2168
2169static void check_mutex_acquired(void)
2170{
2171	BUG_ON(!mutex_is_locked(&slab_mutex));
2172}
2173
2174static void check_spinlock_acquired(struct kmem_cache *cachep)
2175{
2176#ifdef CONFIG_SMP
2177	check_irq_off();
2178	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2179#endif
2180}
2181
2182static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2183{
2184#ifdef CONFIG_SMP
2185	check_irq_off();
2186	assert_spin_locked(&get_node(cachep, node)->list_lock);
2187#endif
2188}
2189
2190#else
2191#define check_irq_off()	do { } while(0)
2192#define check_irq_on()	do { } while(0)
2193#define check_mutex_acquired()	do { } while(0)
2194#define check_spinlock_acquired(x) do { } while(0)
2195#define check_spinlock_acquired_node(x, y) do { } while(0)
2196#endif
2197
2198static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2199				int node, bool free_all, struct list_head *list)
2200{
2201	int tofree;
2202
2203	if (!ac || !ac->avail)
2204		return;
2205
2206	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2207	if (tofree > ac->avail)
2208		tofree = (ac->avail + 1) / 2;
2209
2210	free_block(cachep, ac->entry, tofree, node, list);
2211	ac->avail -= tofree;
2212	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2213}
2214
2215static void do_drain(void *arg)
2216{
2217	struct kmem_cache *cachep = arg;
2218	struct array_cache *ac;
2219	int node = numa_mem_id();
2220	struct kmem_cache_node *n;
2221	LIST_HEAD(list);
2222
2223	check_irq_off();
2224	ac = cpu_cache_get(cachep);
2225	n = get_node(cachep, node);
2226	spin_lock(&n->list_lock);
2227	free_block(cachep, ac->entry, ac->avail, node, &list);
2228	spin_unlock(&n->list_lock);
2229	slabs_destroy(cachep, &list);
2230	ac->avail = 0;
2231}
2232
2233static void drain_cpu_caches(struct kmem_cache *cachep)
2234{
2235	struct kmem_cache_node *n;
2236	int node;
2237	LIST_HEAD(list);
2238
2239	on_each_cpu(do_drain, cachep, 1);
2240	check_irq_on();
2241	for_each_kmem_cache_node(cachep, node, n)
2242		if (n->alien)
2243			drain_alien_cache(cachep, n->alien);
2244
2245	for_each_kmem_cache_node(cachep, node, n) {
2246		spin_lock_irq(&n->list_lock);
2247		drain_array_locked(cachep, n->shared, node, true, &list);
2248		spin_unlock_irq(&n->list_lock);
2249
2250		slabs_destroy(cachep, &list);
 
 
 
2251	}
2252}
2253
2254/*
2255 * Remove slabs from the list of free slabs.
2256 * Specify the number of slabs to drain in tofree.
2257 *
2258 * Returns the actual number of slabs released.
2259 */
2260static int drain_freelist(struct kmem_cache *cache,
2261			struct kmem_cache_node *n, int tofree)
2262{
2263	struct list_head *p;
2264	int nr_freed;
2265	struct page *page;
2266
2267	nr_freed = 0;
2268	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2269
2270		spin_lock_irq(&n->list_lock);
2271		p = n->slabs_free.prev;
2272		if (p == &n->slabs_free) {
2273			spin_unlock_irq(&n->list_lock);
2274			goto out;
2275		}
2276
2277		page = list_entry(p, struct page, lru);
2278		list_del(&page->lru);
2279		n->free_slabs--;
2280		n->total_slabs--;
 
2281		/*
2282		 * Safe to drop the lock. The slab is no longer linked
2283		 * to the cache.
2284		 */
2285		n->free_objects -= cache->num;
2286		spin_unlock_irq(&n->list_lock);
2287		slab_destroy(cache, page);
2288		nr_freed++;
2289	}
2290out:
2291	return nr_freed;
2292}
2293
2294bool __kmem_cache_empty(struct kmem_cache *s)
2295{
2296	int node;
2297	struct kmem_cache_node *n;
2298
2299	for_each_kmem_cache_node(s, node, n)
2300		if (!list_empty(&n->slabs_full) ||
2301		    !list_empty(&n->slabs_partial))
2302			return false;
2303	return true;
2304}
2305
2306int __kmem_cache_shrink(struct kmem_cache *cachep)
2307{
2308	int ret = 0;
2309	int node;
2310	struct kmem_cache_node *n;
2311
2312	drain_cpu_caches(cachep);
2313
2314	check_irq_on();
2315	for_each_kmem_cache_node(cachep, node, n) {
2316		drain_freelist(cachep, n, INT_MAX);
 
 
 
 
2317
2318		ret += !list_empty(&n->slabs_full) ||
2319			!list_empty(&n->slabs_partial);
2320	}
2321	return (ret ? 1 : 0);
2322}
2323
2324#ifdef CONFIG_MEMCG
2325void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
 
 
 
 
 
 
2326{
2327	__kmem_cache_shrink(cachep);
2328}
2329#endif
2330
2331int __kmem_cache_shutdown(struct kmem_cache *cachep)
2332{
2333	return __kmem_cache_shrink(cachep);
 
 
 
2334}
 
2335
2336void __kmem_cache_release(struct kmem_cache *cachep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337{
2338	int i;
2339	struct kmem_cache_node *n;
2340
2341	cache_random_seq_destroy(cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
2342
2343	free_percpu(cachep->cpu_cache);
 
2344
2345	/* NUMA: free the node structures */
2346	for_each_kmem_cache_node(cachep, i, n) {
2347		kfree(n->shared);
2348		free_alien_cache(n->alien);
2349		kfree(n);
2350		cachep->node[i] = NULL;
2351	}
2352}
 
2353
2354/*
2355 * Get the memory for a slab management obj.
2356 *
2357 * For a slab cache when the slab descriptor is off-slab, the
2358 * slab descriptor can't come from the same cache which is being created,
2359 * Because if it is the case, that means we defer the creation of
2360 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2361 * And we eventually call down to __kmem_cache_create(), which
2362 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2363 * This is a "chicken-and-egg" problem.
2364 *
2365 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2366 * which are all initialized during kmem_cache_init().
2367 */
2368static void *alloc_slabmgmt(struct kmem_cache *cachep,
2369				   struct page *page, int colour_off,
2370				   gfp_t local_flags, int nodeid)
2371{
2372	void *freelist;
2373	void *addr = page_address(page);
2374
2375	page->s_mem = addr + colour_off;
2376	page->active = 0;
2377
2378	if (OBJFREELIST_SLAB(cachep))
2379		freelist = NULL;
2380	else if (OFF_SLAB(cachep)) {
2381		/* Slab management obj is off-slab. */
2382		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2383					      local_flags, nodeid);
2384		if (!freelist)
 
 
 
 
 
 
 
 
2385			return NULL;
2386	} else {
2387		/* We will use last bytes at the slab for freelist */
2388		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2389				cachep->freelist_size;
2390	}
2391
2392	return freelist;
 
 
 
 
2393}
2394
2395static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2396{
2397	return ((freelist_idx_t *)page->freelist)[idx];
2398}
2399
2400static inline void set_free_obj(struct page *page,
2401					unsigned int idx, freelist_idx_t val)
2402{
2403	((freelist_idx_t *)(page->freelist))[idx] = val;
2404}
2405
2406static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2407{
2408#if DEBUG
2409	int i;
2410
2411	for (i = 0; i < cachep->num; i++) {
2412		void *objp = index_to_obj(cachep, page, i);
2413
 
 
 
2414		if (cachep->flags & SLAB_STORE_USER)
2415			*dbg_userword(cachep, objp) = NULL;
2416
2417		if (cachep->flags & SLAB_RED_ZONE) {
2418			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2419			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2420		}
2421		/*
2422		 * Constructors are not allowed to allocate memory from the same
2423		 * cache which they are a constructor for.  Otherwise, deadlock.
2424		 * They must also be threaded.
2425		 */
2426		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2427			kasan_unpoison_object_data(cachep,
2428						   objp + obj_offset(cachep));
2429			cachep->ctor(objp + obj_offset(cachep));
2430			kasan_poison_object_data(
2431				cachep, objp + obj_offset(cachep));
2432		}
2433
2434		if (cachep->flags & SLAB_RED_ZONE) {
2435			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2436				slab_error(cachep, "constructor overwrote the end of an object");
 
2437			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2438				slab_error(cachep, "constructor overwrote the start of an object");
 
2439		}
2440		/* need to poison the objs? */
2441		if (cachep->flags & SLAB_POISON) {
2442			poison_obj(cachep, objp, POISON_FREE);
2443			slab_kernel_map(cachep, objp, 0, 0);
2444		}
2445	}
 
2446#endif
2447}
2448
2449#ifdef CONFIG_SLAB_FREELIST_RANDOM
2450/* Hold information during a freelist initialization */
2451union freelist_init_state {
2452	struct {
2453		unsigned int pos;
2454		unsigned int *list;
2455		unsigned int count;
2456	};
2457	struct rnd_state rnd_state;
2458};
2459
2460/*
2461 * Initialize the state based on the randomization methode available.
2462 * return true if the pre-computed list is available, false otherwize.
2463 */
2464static bool freelist_state_initialize(union freelist_init_state *state,
2465				struct kmem_cache *cachep,
2466				unsigned int count)
2467{
2468	bool ret;
2469	unsigned int rand;
2470
2471	/* Use best entropy available to define a random shift */
2472	rand = get_random_int();
2473
2474	/* Use a random state if the pre-computed list is not available */
2475	if (!cachep->random_seq) {
2476		prandom_seed_state(&state->rnd_state, rand);
2477		ret = false;
2478	} else {
2479		state->list = cachep->random_seq;
2480		state->count = count;
2481		state->pos = rand % count;
2482		ret = true;
2483	}
2484	return ret;
2485}
2486
2487/* Get the next entry on the list and randomize it using a random shift */
2488static freelist_idx_t next_random_slot(union freelist_init_state *state)
2489{
2490	if (state->pos >= state->count)
2491		state->pos = 0;
2492	return state->list[state->pos++];
2493}
2494
2495/* Swap two freelist entries */
2496static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2497{
2498	swap(((freelist_idx_t *)page->freelist)[a],
2499		((freelist_idx_t *)page->freelist)[b]);
2500}
2501
2502/*
2503 * Shuffle the freelist initialization state based on pre-computed lists.
2504 * return true if the list was successfully shuffled, false otherwise.
2505 */
2506static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2507{
2508	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2509	union freelist_init_state state;
2510	bool precomputed;
2511
2512	if (count < 2)
2513		return false;
2514
2515	precomputed = freelist_state_initialize(&state, cachep, count);
2516
2517	/* Take a random entry as the objfreelist */
2518	if (OBJFREELIST_SLAB(cachep)) {
2519		if (!precomputed)
2520			objfreelist = count - 1;
2521		else
2522			objfreelist = next_random_slot(&state);
2523		page->freelist = index_to_obj(cachep, page, objfreelist) +
2524						obj_offset(cachep);
2525		count--;
2526	}
2527
2528	/*
2529	 * On early boot, generate the list dynamically.
2530	 * Later use a pre-computed list for speed.
2531	 */
2532	if (!precomputed) {
2533		for (i = 0; i < count; i++)
2534			set_free_obj(page, i, i);
2535
2536		/* Fisher-Yates shuffle */
2537		for (i = count - 1; i > 0; i--) {
2538			rand = prandom_u32_state(&state.rnd_state);
2539			rand %= (i + 1);
2540			swap_free_obj(page, i, rand);
2541		}
2542	} else {
2543		for (i = 0; i < count; i++)
2544			set_free_obj(page, i, next_random_slot(&state));
2545	}
2546
2547	if (OBJFREELIST_SLAB(cachep))
2548		set_free_obj(page, cachep->num - 1, objfreelist);
2549
2550	return true;
2551}
2552#else
2553static inline bool shuffle_freelist(struct kmem_cache *cachep,
2554				struct page *page)
2555{
2556	return false;
2557}
2558#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2559
2560static void cache_init_objs(struct kmem_cache *cachep,
2561			    struct page *page)
2562{
2563	int i;
2564	void *objp;
2565	bool shuffled;
2566
2567	cache_init_objs_debug(cachep, page);
2568
2569	/* Try to randomize the freelist if enabled */
2570	shuffled = shuffle_freelist(cachep, page);
2571
2572	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2573		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2574						obj_offset(cachep);
2575	}
2576
2577	for (i = 0; i < cachep->num; i++) {
2578		objp = index_to_obj(cachep, page, i);
2579		kasan_init_slab_obj(cachep, objp);
2580
2581		/* constructor could break poison info */
2582		if (DEBUG == 0 && cachep->ctor) {
2583			kasan_unpoison_object_data(cachep, objp);
2584			cachep->ctor(objp);
2585			kasan_poison_object_data(cachep, objp);
2586		}
2587
2588		if (!shuffled)
2589			set_free_obj(page, i, i);
2590	}
2591}
2592
2593static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
 
2594{
2595	void *objp;
2596
2597	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2598	page->active++;
2599
 
 
2600#if DEBUG
2601	if (cachep->flags & SLAB_STORE_USER)
2602		set_store_user_dirty(cachep);
2603#endif
 
2604
2605	return objp;
2606}
2607
2608static void slab_put_obj(struct kmem_cache *cachep,
2609			struct page *page, void *objp)
2610{
2611	unsigned int objnr = obj_to_index(cachep, page, objp);
 
2612#if DEBUG
2613	unsigned int i;
 
2614
2615	/* Verify double free bug */
2616	for (i = page->active; i < cachep->num; i++) {
2617		if (get_free_obj(page, i) == objnr) {
2618			pr_err("slab: double free detected in cache '%s', objp %px\n",
2619			       cachep->name, objp);
2620			BUG();
2621		}
2622	}
2623#endif
2624	page->active--;
2625	if (!page->freelist)
2626		page->freelist = objp + obj_offset(cachep);
2627
2628	set_free_obj(page, page->active, objnr);
2629}
2630
2631/*
2632 * Map pages beginning at addr to the given cache and slab. This is required
2633 * for the slab allocator to be able to lookup the cache and slab of a
2634 * virtual address for kfree, ksize, and slab debugging.
2635 */
2636static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2637			   void *freelist)
2638{
2639	page->slab_cache = cache;
2640	page->freelist = freelist;
 
 
 
 
 
 
 
 
 
 
 
 
2641}
2642
2643/*
2644 * Grow (by 1) the number of slabs within a cache.  This is called by
2645 * kmem_cache_alloc() when there are no active objs left in a cache.
2646 */
2647static struct page *cache_grow_begin(struct kmem_cache *cachep,
2648				gfp_t flags, int nodeid)
2649{
2650	void *freelist;
2651	size_t offset;
2652	gfp_t local_flags;
2653	int page_node;
2654	struct kmem_cache_node *n;
2655	struct page *page;
2656
2657	/*
2658	 * Be lazy and only check for valid flags here,  keeping it out of the
2659	 * critical path in kmem_cache_alloc().
2660	 */
2661	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2662		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2663		flags &= ~GFP_SLAB_BUG_MASK;
2664		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2665				invalid_mask, &invalid_mask, flags, &flags);
2666		dump_stack();
2667	}
2668	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2669
 
2670	check_irq_off();
2671	if (gfpflags_allow_blocking(local_flags))
 
 
 
 
 
 
 
 
 
 
 
 
2672		local_irq_enable();
2673
2674	/*
 
 
 
 
 
 
 
 
2675	 * Get mem for the objs.  Attempt to allocate a physical page from
2676	 * 'nodeid'.
2677	 */
2678	page = kmem_getpages(cachep, local_flags, nodeid);
2679	if (!page)
 
2680		goto failed;
2681
2682	page_node = page_to_nid(page);
2683	n = get_node(cachep, page_node);
2684
2685	/* Get colour for the slab, and cal the next value. */
2686	n->colour_next++;
2687	if (n->colour_next >= cachep->colour)
2688		n->colour_next = 0;
2689
2690	offset = n->colour_next;
2691	if (offset >= cachep->colour)
2692		offset = 0;
2693
2694	offset *= cachep->colour_off;
2695
2696	/* Get slab management. */
2697	freelist = alloc_slabmgmt(cachep, page, offset,
2698			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2699	if (OFF_SLAB(cachep) && !freelist)
2700		goto opps1;
2701
2702	slab_map_pages(cachep, page, freelist);
2703
2704	kasan_poison_slab(page);
2705	cache_init_objs(cachep, page);
2706
2707	if (gfpflags_allow_blocking(local_flags))
2708		local_irq_disable();
 
 
2709
2710	return page;
2711
 
 
 
 
2712opps1:
2713	kmem_freepages(cachep, page);
2714failed:
2715	if (gfpflags_allow_blocking(local_flags))
2716		local_irq_disable();
2717	return NULL;
2718}
2719
2720static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2721{
2722	struct kmem_cache_node *n;
2723	void *list = NULL;
2724
2725	check_irq_off();
2726
2727	if (!page)
2728		return;
2729
2730	INIT_LIST_HEAD(&page->lru);
2731	n = get_node(cachep, page_to_nid(page));
2732
2733	spin_lock(&n->list_lock);
2734	n->total_slabs++;
2735	if (!page->active) {
2736		list_add_tail(&page->lru, &(n->slabs_free));
2737		n->free_slabs++;
2738	} else
2739		fixup_slab_list(cachep, n, page, &list);
2740
2741	STATS_INC_GROWN(cachep);
2742	n->free_objects += cachep->num - page->active;
2743	spin_unlock(&n->list_lock);
2744
2745	fixup_objfreelist_debug(cachep, &list);
2746}
2747
2748#if DEBUG
2749
2750/*
2751 * Perform extra freeing checks:
2752 * - detect bad pointers.
2753 * - POISON/RED_ZONE checking
2754 */
2755static void kfree_debugcheck(const void *objp)
2756{
2757	if (!virt_addr_valid(objp)) {
2758		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2759		       (unsigned long)objp);
2760		BUG();
2761	}
2762}
2763
2764static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2765{
2766	unsigned long long redzone1, redzone2;
2767
2768	redzone1 = *dbg_redzone1(cache, obj);
2769	redzone2 = *dbg_redzone2(cache, obj);
2770
2771	/*
2772	 * Redzone is ok.
2773	 */
2774	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2775		return;
2776
2777	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2778		slab_error(cache, "double free detected");
2779	else
2780		slab_error(cache, "memory outside object was overwritten");
2781
2782	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2783	       obj, redzone1, redzone2);
2784}
2785
2786static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2787				   unsigned long caller)
2788{
2789	unsigned int objnr;
2790	struct page *page;
 
 
2791
2792	BUG_ON(virt_to_cache(objp) != cachep);
2793
2794	objp -= obj_offset(cachep);
2795	kfree_debugcheck(objp);
2796	page = virt_to_head_page(objp);
2797
 
 
2798	if (cachep->flags & SLAB_RED_ZONE) {
2799		verify_redzone_free(cachep, objp);
2800		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2801		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2802	}
2803	if (cachep->flags & SLAB_STORE_USER) {
2804		set_store_user_dirty(cachep);
2805		*dbg_userword(cachep, objp) = (void *)caller;
2806	}
2807
2808	objnr = obj_to_index(cachep, page, objp);
2809
2810	BUG_ON(objnr >= cachep->num);
2811	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2812
 
 
 
2813	if (cachep->flags & SLAB_POISON) {
2814		poison_obj(cachep, objp, POISON_FREE);
2815		slab_kernel_map(cachep, objp, 0, caller);
2816	}
2817	return objp;
2818}
2819
 
 
2820#else
2821#define kfree_debugcheck(x) do { } while(0)
2822#define cache_free_debugcheck(x,objp,z) (objp)
2823#endif
2824
2825static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2826						void **list)
2827{
2828#if DEBUG
2829	void *next = *list;
2830	void *objp;
2831
2832	while (next) {
2833		objp = next - obj_offset(cachep);
2834		next = *(void **)next;
2835		poison_obj(cachep, objp, POISON_FREE);
2836	}
2837#endif
2838}
2839
2840static inline void fixup_slab_list(struct kmem_cache *cachep,
2841				struct kmem_cache_node *n, struct page *page,
2842				void **list)
2843{
2844	/* move slabp to correct slabp list: */
2845	list_del(&page->lru);
2846	if (page->active == cachep->num) {
2847		list_add(&page->lru, &n->slabs_full);
2848		if (OBJFREELIST_SLAB(cachep)) {
2849#if DEBUG
2850			/* Poisoning will be done without holding the lock */
2851			if (cachep->flags & SLAB_POISON) {
2852				void **objp = page->freelist;
2853
2854				*objp = *list;
2855				*list = objp;
2856			}
2857#endif
2858			page->freelist = NULL;
2859		}
2860	} else
2861		list_add(&page->lru, &n->slabs_partial);
2862}
2863
2864/* Try to find non-pfmemalloc slab if needed */
2865static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2866					struct page *page, bool pfmemalloc)
2867{
2868	if (!page)
2869		return NULL;
2870
2871	if (pfmemalloc)
2872		return page;
2873
2874	if (!PageSlabPfmemalloc(page))
2875		return page;
2876
2877	/* No need to keep pfmemalloc slab if we have enough free objects */
2878	if (n->free_objects > n->free_limit) {
2879		ClearPageSlabPfmemalloc(page);
2880		return page;
2881	}
2882
2883	/* Move pfmemalloc slab to the end of list to speed up next search */
2884	list_del(&page->lru);
2885	if (!page->active) {
2886		list_add_tail(&page->lru, &n->slabs_free);
2887		n->free_slabs++;
2888	} else
2889		list_add_tail(&page->lru, &n->slabs_partial);
2890
2891	list_for_each_entry(page, &n->slabs_partial, lru) {
2892		if (!PageSlabPfmemalloc(page))
2893			return page;
2894	}
2895
2896	n->free_touched = 1;
2897	list_for_each_entry(page, &n->slabs_free, lru) {
2898		if (!PageSlabPfmemalloc(page)) {
2899			n->free_slabs--;
2900			return page;
2901		}
2902	}
2903
2904	return NULL;
2905}
2906
2907static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2908{
2909	struct page *page;
2910
2911	assert_spin_locked(&n->list_lock);
2912	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2913	if (!page) {
2914		n->free_touched = 1;
2915		page = list_first_entry_or_null(&n->slabs_free, struct page,
2916						lru);
2917		if (page)
2918			n->free_slabs--;
2919	}
2920
2921	if (sk_memalloc_socks())
2922		page = get_valid_first_slab(n, page, pfmemalloc);
2923
2924	return page;
2925}
2926
2927static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2928				struct kmem_cache_node *n, gfp_t flags)
2929{
2930	struct page *page;
2931	void *obj;
2932	void *list = NULL;
2933
2934	if (!gfp_pfmemalloc_allowed(flags))
2935		return NULL;
2936
2937	spin_lock(&n->list_lock);
2938	page = get_first_slab(n, true);
2939	if (!page) {
2940		spin_unlock(&n->list_lock);
2941		return NULL;
2942	}
2943
2944	obj = slab_get_obj(cachep, page);
2945	n->free_objects--;
2946
2947	fixup_slab_list(cachep, n, page, &list);
2948
2949	spin_unlock(&n->list_lock);
2950	fixup_objfreelist_debug(cachep, &list);
2951
2952	return obj;
2953}
2954
2955/*
2956 * Slab list should be fixed up by fixup_slab_list() for existing slab
2957 * or cache_grow_end() for new slab
2958 */
2959static __always_inline int alloc_block(struct kmem_cache *cachep,
2960		struct array_cache *ac, struct page *page, int batchcount)
2961{
2962	/*
2963	 * There must be at least one object available for
2964	 * allocation.
2965	 */
2966	BUG_ON(page->active >= cachep->num);
2967
2968	while (page->active < cachep->num && batchcount--) {
2969		STATS_INC_ALLOCED(cachep);
2970		STATS_INC_ACTIVE(cachep);
2971		STATS_SET_HIGH(cachep);
2972
2973		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2974	}
2975
2976	return batchcount;
2977}
 
 
 
 
 
2978
2979static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2980{
2981	int batchcount;
2982	struct kmem_cache_node *n;
2983	struct array_cache *ac, *shared;
2984	int node;
2985	void *list = NULL;
2986	struct page *page;
2987
 
2988	check_irq_off();
2989	node = numa_mem_id();
2990
2991	ac = cpu_cache_get(cachep);
2992	batchcount = ac->batchcount;
2993	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2994		/*
2995		 * If there was little recent activity on this cache, then
2996		 * perform only a partial refill.  Otherwise we could generate
2997		 * refill bouncing.
2998		 */
2999		batchcount = BATCHREFILL_LIMIT;
3000	}
3001	n = get_node(cachep, node);
3002
3003	BUG_ON(ac->avail > 0 || !n);
3004	shared = READ_ONCE(n->shared);
3005	if (!n->free_objects && (!shared || !shared->avail))
3006		goto direct_grow;
3007
3008	spin_lock(&n->list_lock);
3009	shared = READ_ONCE(n->shared);
3010
3011	/* See if we can refill from the shared array */
3012	if (shared && transfer_objects(ac, shared, batchcount)) {
3013		shared->touched = 1;
3014		goto alloc_done;
3015	}
3016
3017	while (batchcount > 0) {
 
 
3018		/* Get slab alloc is to come from. */
3019		page = get_first_slab(n, false);
3020		if (!page)
3021			goto must_grow;
 
 
 
 
3022
 
 
3023		check_spinlock_acquired(cachep);
3024
3025		batchcount = alloc_block(cachep, ac, page, batchcount);
3026		fixup_slab_list(cachep, n, page, &list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3027	}
3028
3029must_grow:
3030	n->free_objects -= ac->avail;
3031alloc_done:
3032	spin_unlock(&n->list_lock);
3033	fixup_objfreelist_debug(cachep, &list);
3034
3035direct_grow:
3036	if (unlikely(!ac->avail)) {
3037		/* Check if we can use obj in pfmemalloc slab */
3038		if (sk_memalloc_socks()) {
3039			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3040
3041			if (obj)
3042				return obj;
3043		}
3044
3045		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3046
3047		/*
3048		 * cache_grow_begin() can reenable interrupts,
3049		 * then ac could change.
3050		 */
3051		ac = cpu_cache_get(cachep);
3052		if (!ac->avail && page)
3053			alloc_block(cachep, ac, page, batchcount);
3054		cache_grow_end(cachep, page);
3055
3056		if (!ac->avail)
3057			return NULL;
 
 
 
3058	}
3059	ac->touched = 1;
3060
3061	return ac->entry[--ac->avail];
3062}
3063
3064static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3065						gfp_t flags)
3066{
3067	might_sleep_if(gfpflags_allow_blocking(flags));
 
 
 
3068}
3069
3070#if DEBUG
3071static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3072				gfp_t flags, void *objp, unsigned long caller)
3073{
3074	if (!objp)
3075		return objp;
3076	if (cachep->flags & SLAB_POISON) {
 
 
 
 
 
 
 
3077		check_poison_obj(cachep, objp);
3078		slab_kernel_map(cachep, objp, 1, 0);
3079		poison_obj(cachep, objp, POISON_INUSE);
3080	}
3081	if (cachep->flags & SLAB_STORE_USER)
3082		*dbg_userword(cachep, objp) = (void *)caller;
3083
3084	if (cachep->flags & SLAB_RED_ZONE) {
3085		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3087			slab_error(cachep, "double free, or memory outside object was overwritten");
3088			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089			       objp, *dbg_redzone1(cachep, objp),
3090			       *dbg_redzone2(cachep, objp));
 
 
3091		}
3092		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094	}
 
 
 
 
3095
 
 
 
 
 
3096	objp += obj_offset(cachep);
3097	if (cachep->ctor && cachep->flags & SLAB_POISON)
3098		cachep->ctor(objp);
3099	if (ARCH_SLAB_MINALIGN &&
3100	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3101		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102		       objp, (int)ARCH_SLAB_MINALIGN);
3103	}
3104	return objp;
3105}
3106#else
3107#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3108#endif
3109
 
 
 
 
 
 
 
 
3110static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3111{
3112	void *objp;
3113	struct array_cache *ac;
3114
3115	check_irq_off();
3116
3117	ac = cpu_cache_get(cachep);
3118	if (likely(ac->avail)) {
 
3119		ac->touched = 1;
3120		objp = ac->entry[--ac->avail];
3121
3122		STATS_INC_ALLOCHIT(cachep);
3123		goto out;
 
 
 
 
 
3124	}
3125
3126	STATS_INC_ALLOCMISS(cachep);
3127	objp = cache_alloc_refill(cachep, flags);
3128	/*
3129	 * the 'ac' may be updated by cache_alloc_refill(),
3130	 * and kmemleak_erase() requires its correct value.
3131	 */
3132	ac = cpu_cache_get(cachep);
3133
3134out:
3135	/*
3136	 * To avoid a false negative, if an object that is in one of the
3137	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3138	 * treat the array pointers as a reference to the object.
3139	 */
3140	if (objp)
3141		kmemleak_erase(&ac->entry[ac->avail]);
3142	return objp;
3143}
3144
3145#ifdef CONFIG_NUMA
3146/*
3147 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3148 *
3149 * If we are in_interrupt, then process context, including cpusets and
3150 * mempolicy, may not apply and should not be used for allocation policy.
3151 */
3152static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3153{
3154	int nid_alloc, nid_here;
3155
3156	if (in_interrupt() || (flags & __GFP_THISNODE))
3157		return NULL;
3158	nid_alloc = nid_here = numa_mem_id();
3159	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3160		nid_alloc = cpuset_slab_spread_node();
3161	else if (current->mempolicy)
3162		nid_alloc = mempolicy_slab_node();
3163	if (nid_alloc != nid_here)
3164		return ____cache_alloc_node(cachep, flags, nid_alloc);
3165	return NULL;
3166}
3167
3168/*
3169 * Fallback function if there was no memory available and no objects on a
3170 * certain node and fall back is permitted. First we scan all the
3171 * available node for available objects. If that fails then we
3172 * perform an allocation without specifying a node. This allows the page
3173 * allocator to do its reclaim / fallback magic. We then insert the
3174 * slab into the proper nodelist and then allocate from it.
3175 */
3176static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3177{
3178	struct zonelist *zonelist;
 
3179	struct zoneref *z;
3180	struct zone *zone;
3181	enum zone_type high_zoneidx = gfp_zone(flags);
3182	void *obj = NULL;
3183	struct page *page;
3184	int nid;
3185	unsigned int cpuset_mems_cookie;
3186
3187	if (flags & __GFP_THISNODE)
3188		return NULL;
3189
 
 
3190retry_cpuset:
3191	cpuset_mems_cookie = read_mems_allowed_begin();
3192	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3193
3194retry:
3195	/*
3196	 * Look through allowed nodes for objects available
3197	 * from existing per node queues.
3198	 */
3199	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200		nid = zone_to_nid(zone);
3201
3202		if (cpuset_zone_allowed(zone, flags) &&
3203			get_node(cache, nid) &&
3204			get_node(cache, nid)->free_objects) {
3205				obj = ____cache_alloc_node(cache,
3206					gfp_exact_node(flags), nid);
3207				if (obj)
3208					break;
3209		}
3210	}
3211
3212	if (!obj) {
3213		/*
3214		 * This allocation will be performed within the constraints
3215		 * of the current cpuset / memory policy requirements.
3216		 * We may trigger various forms of reclaim on the allowed
3217		 * set and go into memory reserves if necessary.
3218		 */
3219		page = cache_grow_begin(cache, flags, numa_mem_id());
3220		cache_grow_end(cache, page);
3221		if (page) {
3222			nid = page_to_nid(page);
3223			obj = ____cache_alloc_node(cache,
3224				gfp_exact_node(flags), nid);
3225
3226			/*
3227			 * Another processor may allocate the objects in
3228			 * the slab since we are not holding any locks.
3229			 */
3230			if (!obj)
3231				goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
3232		}
3233	}
3234
3235	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3236		goto retry_cpuset;
3237	return obj;
3238}
3239
3240/*
3241 * A interface to enable slab creation on nodeid
3242 */
3243static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244				int nodeid)
3245{
3246	struct page *page;
3247	struct kmem_cache_node *n;
3248	void *obj = NULL;
3249	void *list = NULL;
 
3250
3251	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3252	n = get_node(cachep, nodeid);
3253	BUG_ON(!n);
3254
 
3255	check_irq_off();
3256	spin_lock(&n->list_lock);
3257	page = get_first_slab(n, false);
3258	if (!page)
3259		goto must_grow;
 
 
 
 
3260
 
3261	check_spinlock_acquired_node(cachep, nodeid);
 
3262
3263	STATS_INC_NODEALLOCS(cachep);
3264	STATS_INC_ACTIVE(cachep);
3265	STATS_SET_HIGH(cachep);
3266
3267	BUG_ON(page->active == cachep->num);
3268
3269	obj = slab_get_obj(cachep, page);
3270	n->free_objects--;
 
 
 
3271
3272	fixup_slab_list(cachep, n, page, &list);
 
 
 
3273
3274	spin_unlock(&n->list_lock);
3275	fixup_objfreelist_debug(cachep, &list);
3276	return obj;
3277
3278must_grow:
3279	spin_unlock(&n->list_lock);
3280	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3281	if (page) {
3282		/* This slab isn't counted yet so don't update free_objects */
3283		obj = slab_get_obj(cachep, page);
3284	}
3285	cache_grow_end(cachep, page);
3286
3287	return obj ? obj : fallback_alloc(cachep, flags);
 
 
 
3288}
3289
 
 
 
 
 
 
 
 
 
 
 
 
3290static __always_inline void *
3291slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3292		   unsigned long caller)
3293{
3294	unsigned long save_flags;
3295	void *ptr;
3296	int slab_node = numa_mem_id();
3297
3298	flags &= gfp_allowed_mask;
3299	cachep = slab_pre_alloc_hook(cachep, flags);
3300	if (unlikely(!cachep))
 
 
3301		return NULL;
3302
3303	cache_alloc_debugcheck_before(cachep, flags);
3304	local_irq_save(save_flags);
3305
3306	if (nodeid == NUMA_NO_NODE)
3307		nodeid = slab_node;
3308
3309	if (unlikely(!get_node(cachep, nodeid))) {
3310		/* Node not bootstrapped yet */
3311		ptr = fallback_alloc(cachep, flags);
3312		goto out;
3313	}
3314
3315	if (nodeid == slab_node) {
3316		/*
3317		 * Use the locally cached objects if possible.
3318		 * However ____cache_alloc does not allow fallback
3319		 * to other nodes. It may fail while we still have
3320		 * objects on other nodes available.
3321		 */
3322		ptr = ____cache_alloc(cachep, flags);
3323		if (ptr)
3324			goto out;
3325	}
3326	/* ___cache_alloc_node can fall back to other nodes */
3327	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3328  out:
3329	local_irq_restore(save_flags);
3330	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
 
 
3331
3332	if (unlikely(flags & __GFP_ZERO) && ptr)
3333		memset(ptr, 0, cachep->object_size);
 
 
 
3334
3335	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3336	return ptr;
3337}
3338
3339static __always_inline void *
3340__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3341{
3342	void *objp;
3343
3344	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3345		objp = alternate_node_alloc(cache, flags);
3346		if (objp)
3347			goto out;
3348	}
3349	objp = ____cache_alloc(cache, flags);
3350
3351	/*
3352	 * We may just have run out of memory on the local node.
3353	 * ____cache_alloc_node() knows how to locate memory on other nodes
3354	 */
3355	if (!objp)
3356		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3357
3358  out:
3359	return objp;
3360}
3361#else
3362
3363static __always_inline void *
3364__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3365{
3366	return ____cache_alloc(cachep, flags);
3367}
3368
3369#endif /* CONFIG_NUMA */
3370
3371static __always_inline void *
3372slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3373{
3374	unsigned long save_flags;
3375	void *objp;
3376
3377	flags &= gfp_allowed_mask;
3378	cachep = slab_pre_alloc_hook(cachep, flags);
3379	if (unlikely(!cachep))
 
 
3380		return NULL;
3381
3382	cache_alloc_debugcheck_before(cachep, flags);
3383	local_irq_save(save_flags);
3384	objp = __do_cache_alloc(cachep, flags);
3385	local_irq_restore(save_flags);
3386	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
 
 
3387	prefetchw(objp);
3388
3389	if (unlikely(flags & __GFP_ZERO) && objp)
3390		memset(objp, 0, cachep->object_size);
 
 
 
3391
3392	slab_post_alloc_hook(cachep, flags, 1, &objp);
3393	return objp;
3394}
3395
3396/*
3397 * Caller needs to acquire correct kmem_cache_node's list_lock
3398 * @list: List of detached free slabs should be freed by caller
3399 */
3400static void free_block(struct kmem_cache *cachep, void **objpp,
3401			int nr_objects, int node, struct list_head *list)
3402{
3403	int i;
3404	struct kmem_cache_node *n = get_node(cachep, node);
3405	struct page *page;
3406
3407	n->free_objects += nr_objects;
3408
3409	for (i = 0; i < nr_objects; i++) {
3410		void *objp;
3411		struct page *page;
3412
3413		objp = objpp[i];
3414
3415		page = virt_to_head_page(objp);
3416		list_del(&page->lru);
 
3417		check_spinlock_acquired_node(cachep, node);
3418		slab_put_obj(cachep, page, objp);
 
3419		STATS_DEC_ACTIVE(cachep);
 
 
3420
3421		/* fixup slab chains */
3422		if (page->active == 0) {
3423			list_add(&page->lru, &n->slabs_free);
3424			n->free_slabs++;
 
 
 
 
 
 
 
 
 
 
3425		} else {
3426			/* Unconditionally move a slab to the end of the
3427			 * partial list on free - maximum time for the
3428			 * other objects to be freed, too.
3429			 */
3430			list_add_tail(&page->lru, &n->slabs_partial);
3431		}
3432	}
3433
3434	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3435		n->free_objects -= cachep->num;
3436
3437		page = list_last_entry(&n->slabs_free, struct page, lru);
3438		list_move(&page->lru, list);
3439		n->free_slabs--;
3440		n->total_slabs--;
3441	}
3442}
3443
3444static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3445{
3446	int batchcount;
3447	struct kmem_cache_node *n;
3448	int node = numa_mem_id();
3449	LIST_HEAD(list);
3450
3451	batchcount = ac->batchcount;
3452
 
 
3453	check_irq_off();
3454	n = get_node(cachep, node);
3455	spin_lock(&n->list_lock);
3456	if (n->shared) {
3457		struct array_cache *shared_array = n->shared;
3458		int max = shared_array->limit - shared_array->avail;
3459		if (max) {
3460			if (batchcount > max)
3461				batchcount = max;
3462			memcpy(&(shared_array->entry[shared_array->avail]),
3463			       ac->entry, sizeof(void *) * batchcount);
3464			shared_array->avail += batchcount;
3465			goto free_done;
3466		}
3467	}
3468
3469	free_block(cachep, ac->entry, batchcount, node, &list);
3470free_done:
3471#if STATS
3472	{
3473		int i = 0;
3474		struct page *page;
 
 
 
 
3475
3476		list_for_each_entry(page, &n->slabs_free, lru) {
3477			BUG_ON(page->active);
3478
3479			i++;
 
3480		}
3481		STATS_SET_FREEABLE(cachep, i);
3482	}
3483#endif
3484	spin_unlock(&n->list_lock);
3485	slabs_destroy(cachep, &list);
3486	ac->avail -= batchcount;
3487	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3488}
3489
3490/*
3491 * Release an obj back to its cache. If the obj has a constructed state, it must
3492 * be in this state _before_ it is released.  Called with disabled ints.
3493 */
3494static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3495					 unsigned long caller)
3496{
3497	/* Put the object into the quarantine, don't touch it for now. */
3498	if (kasan_slab_free(cachep, objp, _RET_IP_))
3499		return;
3500
3501	___cache_free(cachep, objp, caller);
3502}
3503
3504void ___cache_free(struct kmem_cache *cachep, void *objp,
3505		unsigned long caller)
3506{
3507	struct array_cache *ac = cpu_cache_get(cachep);
3508
3509	check_irq_off();
3510	kmemleak_free_recursive(objp, cachep->flags);
3511	objp = cache_free_debugcheck(cachep, objp, caller);
3512
 
 
3513	/*
3514	 * Skip calling cache_free_alien() when the platform is not numa.
3515	 * This will avoid cache misses that happen while accessing slabp (which
3516	 * is per page memory  reference) to get nodeid. Instead use a global
3517	 * variable to skip the call, which is mostly likely to be present in
3518	 * the cache.
3519	 */
3520	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3521		return;
3522
3523	if (ac->avail < ac->limit) {
3524		STATS_INC_FREEHIT(cachep);
3525	} else {
3526		STATS_INC_FREEMISS(cachep);
3527		cache_flusharray(cachep, ac);
3528	}
3529
3530	if (sk_memalloc_socks()) {
3531		struct page *page = virt_to_head_page(objp);
3532
3533		if (unlikely(PageSlabPfmemalloc(page))) {
3534			cache_free_pfmemalloc(cachep, page, objp);
3535			return;
3536		}
3537	}
3538
3539	ac->entry[ac->avail++] = objp;
3540}
3541
3542/**
3543 * kmem_cache_alloc - Allocate an object
3544 * @cachep: The cache to allocate from.
3545 * @flags: See kmalloc().
3546 *
3547 * Allocate an object from this cache.  The flags are only relevant
3548 * if the cache has no available objects.
3549 */
3550void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3551{
3552	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3553
3554	kasan_slab_alloc(cachep, ret, flags);
3555	trace_kmem_cache_alloc(_RET_IP_, ret,
3556			       cachep->object_size, cachep->size, flags);
3557
3558	return ret;
3559}
3560EXPORT_SYMBOL(kmem_cache_alloc);
3561
3562static __always_inline void
3563cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3564				  size_t size, void **p, unsigned long caller)
3565{
3566	size_t i;
3567
3568	for (i = 0; i < size; i++)
3569		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3570}
3571
3572int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3573			  void **p)
3574{
3575	size_t i;
3576
3577	s = slab_pre_alloc_hook(s, flags);
3578	if (!s)
3579		return 0;
3580
3581	cache_alloc_debugcheck_before(s, flags);
3582
3583	local_irq_disable();
3584	for (i = 0; i < size; i++) {
3585		void *objp = __do_cache_alloc(s, flags);
3586
3587		if (unlikely(!objp))
3588			goto error;
3589		p[i] = objp;
3590	}
3591	local_irq_enable();
3592
3593	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3594
3595	/* Clear memory outside IRQ disabled section */
3596	if (unlikely(flags & __GFP_ZERO))
3597		for (i = 0; i < size; i++)
3598			memset(p[i], 0, s->object_size);
3599
3600	slab_post_alloc_hook(s, flags, size, p);
3601	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3602	return size;
3603error:
3604	local_irq_enable();
3605	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3606	slab_post_alloc_hook(s, flags, i, p);
3607	__kmem_cache_free_bulk(s, i, p);
3608	return 0;
3609}
3610EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3611
3612#ifdef CONFIG_TRACING
3613void *
3614kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3615{
3616	void *ret;
3617
3618	ret = slab_alloc(cachep, flags, _RET_IP_);
3619
3620	kasan_kmalloc(cachep, ret, size, flags);
3621	trace_kmalloc(_RET_IP_, ret,
3622		      size, cachep->size, flags);
3623	return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_trace);
3626#endif
3627
3628#ifdef CONFIG_NUMA
3629/**
3630 * kmem_cache_alloc_node - Allocate an object on the specified node
3631 * @cachep: The cache to allocate from.
3632 * @flags: See kmalloc().
3633 * @nodeid: node number of the target node.
3634 *
3635 * Identical to kmem_cache_alloc but it will allocate memory on the given
3636 * node, which can improve the performance for cpu bound structures.
3637 *
3638 * Fallback to other node is possible if __GFP_THISNODE is not set.
3639 */
3640void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3641{
3642	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
 
3643
3644	kasan_slab_alloc(cachep, ret, flags);
3645	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3646				    cachep->object_size, cachep->size,
3647				    flags, nodeid);
3648
3649	return ret;
3650}
3651EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
3653#ifdef CONFIG_TRACING
3654void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
 
3655				  gfp_t flags,
3656				  int nodeid,
3657				  size_t size)
3658{
3659	void *ret;
3660
3661	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663	kasan_kmalloc(cachep, ret, size, flags);
3664	trace_kmalloc_node(_RET_IP_, ret,
3665			   size, cachep->size,
3666			   flags, nodeid);
3667	return ret;
3668}
3669EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3670#endif
3671
3672static __always_inline void *
3673__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3674{
3675	struct kmem_cache *cachep;
3676	void *ret;
3677
3678	cachep = kmalloc_slab(size, flags);
3679	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3680		return cachep;
3681	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3682	kasan_kmalloc(cachep, ret, size, flags);
3683
3684	return ret;
3685}
3686
 
3687void *__kmalloc_node(size_t size, gfp_t flags, int node)
3688{
3689	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 
3690}
3691EXPORT_SYMBOL(__kmalloc_node);
3692
3693void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3694		int node, unsigned long caller)
3695{
3696	return __do_kmalloc_node(size, flags, node, caller);
3697}
3698EXPORT_SYMBOL(__kmalloc_node_track_caller);
 
 
 
 
 
 
 
3699#endif /* CONFIG_NUMA */
3700
3701/**
3702 * __do_kmalloc - allocate memory
3703 * @size: how many bytes of memory are required.
3704 * @flags: the type of memory to allocate (see kmalloc).
3705 * @caller: function caller for debug tracking of the caller
3706 */
3707static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708					  unsigned long caller)
3709{
3710	struct kmem_cache *cachep;
3711	void *ret;
3712
3713	cachep = kmalloc_slab(size, flags);
 
 
 
 
 
3714	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3715		return cachep;
3716	ret = slab_alloc(cachep, flags, caller);
3717
3718	kasan_kmalloc(cachep, ret, size, flags);
3719	trace_kmalloc(caller, ret,
3720		      size, cachep->size, flags);
3721
3722	return ret;
3723}
3724
 
 
3725void *__kmalloc(size_t size, gfp_t flags)
3726{
3727	return __do_kmalloc(size, flags, _RET_IP_);
3728}
3729EXPORT_SYMBOL(__kmalloc);
3730
3731void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3732{
3733	return __do_kmalloc(size, flags, caller);
3734}
3735EXPORT_SYMBOL(__kmalloc_track_caller);
3736
 
 
 
 
 
 
 
 
3737/**
3738 * kmem_cache_free - Deallocate an object
3739 * @cachep: The cache the allocation was from.
3740 * @objp: The previously allocated object.
3741 *
3742 * Free an object which was previously allocated from this
3743 * cache.
3744 */
3745void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3746{
3747	unsigned long flags;
3748	cachep = cache_from_obj(cachep, objp);
3749	if (!cachep)
3750		return;
3751
3752	local_irq_save(flags);
3753	debug_check_no_locks_freed(objp, cachep->object_size);
3754	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3755		debug_check_no_obj_freed(objp, cachep->object_size);
3756	__cache_free(cachep, objp, _RET_IP_);
3757	local_irq_restore(flags);
3758
3759	trace_kmem_cache_free(_RET_IP_, objp);
3760}
3761EXPORT_SYMBOL(kmem_cache_free);
3762
3763void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3764{
3765	struct kmem_cache *s;
3766	size_t i;
3767
3768	local_irq_disable();
3769	for (i = 0; i < size; i++) {
3770		void *objp = p[i];
3771
3772		if (!orig_s) /* called via kfree_bulk */
3773			s = virt_to_cache(objp);
3774		else
3775			s = cache_from_obj(orig_s, objp);
3776
3777		debug_check_no_locks_freed(objp, s->object_size);
3778		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3779			debug_check_no_obj_freed(objp, s->object_size);
3780
3781		__cache_free(s, objp, _RET_IP_);
3782	}
3783	local_irq_enable();
3784
3785	/* FIXME: add tracing */
3786}
3787EXPORT_SYMBOL(kmem_cache_free_bulk);
3788
3789/**
3790 * kfree - free previously allocated memory
3791 * @objp: pointer returned by kmalloc.
3792 *
3793 * If @objp is NULL, no operation is performed.
3794 *
3795 * Don't free memory not originally allocated by kmalloc()
3796 * or you will run into trouble.
3797 */
3798void kfree(const void *objp)
3799{
3800	struct kmem_cache *c;
3801	unsigned long flags;
3802
3803	trace_kfree(_RET_IP_, objp);
3804
3805	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3806		return;
3807	local_irq_save(flags);
3808	kfree_debugcheck(objp);
3809	c = virt_to_cache(objp);
3810	debug_check_no_locks_freed(objp, c->object_size);
3811
3812	debug_check_no_obj_freed(objp, c->object_size);
3813	__cache_free(c, (void *)objp, _RET_IP_);
3814	local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL(kfree);
3817
 
 
 
 
 
 
3818/*
3819 * This initializes kmem_cache_node or resizes various caches for all nodes.
3820 */
3821static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3822{
3823	int ret;
3824	int node;
3825	struct kmem_cache_node *n;
 
 
3826
3827	for_each_online_node(node) {
3828		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3829		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3830			goto fail;
 
3831
 
 
 
 
 
 
 
 
3832	}
3833
3834	return 0;
3835
3836fail:
3837	if (!cachep->list.next) {
3838		/* Cache is not active yet. Roll back what we did */
3839		node--;
3840		while (node >= 0) {
3841			n = get_node(cachep, node);
3842			if (n) {
3843				kfree(n->shared);
3844				free_alien_cache(n->alien);
3845				kfree(n);
3846				cachep->node[node] = NULL;
 
3847			}
3848			node--;
3849		}
3850	}
3851	return -ENOMEM;
3852}
3853
3854/* Always called with the slab_mutex held */
3855static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856				int batchcount, int shared, gfp_t gfp)
3857{
3858	struct array_cache __percpu *cpu_cache, *prev;
3859	int cpu;
3860
3861	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3862	if (!cpu_cache)
3863		return -ENOMEM;
3864
3865	prev = cachep->cpu_cache;
3866	cachep->cpu_cache = cpu_cache;
3867	/*
3868	 * Without a previous cpu_cache there's no need to synchronize remote
3869	 * cpus, so skip the IPIs.
3870	 */
3871	if (prev)
3872		kick_all_cpus_sync();
3873
3874	check_irq_on();
3875	cachep->batchcount = batchcount;
3876	cachep->limit = limit;
3877	cachep->shared = shared;
3878
3879	if (!prev)
3880		goto setup_node;
 
 
3881
3882	for_each_online_cpu(cpu) {
3883		LIST_HEAD(list);
3884		int node;
3885		struct kmem_cache_node *n;
3886		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3887
3888		node = cpu_to_mem(cpu);
3889		n = get_node(cachep, node);
3890		spin_lock_irq(&n->list_lock);
3891		free_block(cachep, ac->entry, ac->avail, node, &list);
3892		spin_unlock_irq(&n->list_lock);
3893		slabs_destroy(cachep, &list);
3894	}
3895	free_percpu(prev);
3896
3897setup_node:
3898	return setup_kmem_cache_nodes(cachep, gfp);
3899}
3900
 
3901static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3902				int batchcount, int shared, gfp_t gfp)
3903{
3904	int ret;
3905	struct kmem_cache *c;
3906
3907	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
 
 
 
3908
3909	if (slab_state < FULL)
3910		return ret;
 
 
 
 
 
 
 
 
 
3911
3912	if ((ret < 0) || !is_root_cache(cachep))
3913		return ret;
3914
3915	lockdep_assert_held(&slab_mutex);
3916	for_each_memcg_cache(c, cachep) {
3917		/* return value determined by the root cache only */
3918		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919	}
3920
3921	return ret;
 
 
 
 
 
 
 
 
 
 
3922}
3923
3924/* Called with slab_mutex held always */
3925static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3926{
3927	int err;
3928	int limit = 0;
3929	int shared = 0;
3930	int batchcount = 0;
3931
3932	err = cache_random_seq_create(cachep, cachep->num, gfp);
3933	if (err)
3934		goto end;
3935
3936	if (!is_root_cache(cachep)) {
3937		struct kmem_cache *root = memcg_root_cache(cachep);
3938		limit = root->limit;
3939		shared = root->shared;
3940		batchcount = root->batchcount;
3941	}
3942
3943	if (limit && shared && batchcount)
3944		goto skip_setup;
3945	/*
3946	 * The head array serves three purposes:
3947	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3948	 * - reduce the number of spinlock operations.
3949	 * - reduce the number of linked list operations on the slab and
3950	 *   bufctl chains: array operations are cheaper.
3951	 * The numbers are guessed, we should auto-tune as described by
3952	 * Bonwick.
3953	 */
3954	if (cachep->size > 131072)
3955		limit = 1;
3956	else if (cachep->size > PAGE_SIZE)
3957		limit = 8;
3958	else if (cachep->size > 1024)
3959		limit = 24;
3960	else if (cachep->size > 256)
3961		limit = 54;
3962	else
3963		limit = 120;
3964
3965	/*
3966	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3967	 * allocation behaviour: Most allocs on one cpu, most free operations
3968	 * on another cpu. For these cases, an efficient object passing between
3969	 * cpus is necessary. This is provided by a shared array. The array
3970	 * replaces Bonwick's magazine layer.
3971	 * On uniprocessor, it's functionally equivalent (but less efficient)
3972	 * to a larger limit. Thus disabled by default.
3973	 */
3974	shared = 0;
3975	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3976		shared = 8;
3977
3978#if DEBUG
3979	/*
3980	 * With debugging enabled, large batchcount lead to excessively long
3981	 * periods with disabled local interrupts. Limit the batchcount
3982	 */
3983	if (limit > 32)
3984		limit = 32;
3985#endif
3986	batchcount = (limit + 1) / 2;
3987skip_setup:
3988	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3989end:
3990	if (err)
3991		pr_err("enable_cpucache failed for %s, error %d\n",
3992		       cachep->name, -err);
3993	return err;
3994}
3995
3996/*
3997 * Drain an array if it contains any elements taking the node lock only if
3998 * necessary. Note that the node listlock also protects the array_cache
3999 * if drain_array() is used on the shared array.
4000 */
4001static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4002			 struct array_cache *ac, int node)
4003{
4004	LIST_HEAD(list);
4005
4006	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4007	check_mutex_acquired();
4008
4009	if (!ac || !ac->avail)
4010		return;
4011
4012	if (ac->touched) {
4013		ac->touched = 0;
4014		return;
 
 
 
 
 
 
 
 
 
 
 
4015	}
4016
4017	spin_lock_irq(&n->list_lock);
4018	drain_array_locked(cachep, ac, node, false, &list);
4019	spin_unlock_irq(&n->list_lock);
4020
4021	slabs_destroy(cachep, &list);
4022}
4023
4024/**
4025 * cache_reap - Reclaim memory from caches.
4026 * @w: work descriptor
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
4035 */
4036static void cache_reap(struct work_struct *w)
4037{
4038	struct kmem_cache *searchp;
4039	struct kmem_cache_node *n;
4040	int node = numa_mem_id();
4041	struct delayed_work *work = to_delayed_work(w);
4042
4043	if (!mutex_trylock(&slab_mutex))
4044		/* Give up. Setup the next iteration. */
4045		goto out;
4046
4047	list_for_each_entry(searchp, &slab_caches, list) {
4048		check_irq_on();
4049
4050		/*
4051		 * We only take the node lock if absolutely necessary and we
4052		 * have established with reasonable certainty that
4053		 * we can do some work if the lock was obtained.
4054		 */
4055		n = get_node(searchp, node);
4056
4057		reap_alien(searchp, n);
4058
4059		drain_array(searchp, n, cpu_cache_get(searchp), node);
4060
4061		/*
4062		 * These are racy checks but it does not matter
4063		 * if we skip one check or scan twice.
4064		 */
4065		if (time_after(n->next_reap, jiffies))
4066			goto next;
4067
4068		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4069
4070		drain_array(searchp, n, n->shared, node);
4071
4072		if (n->free_touched)
4073			n->free_touched = 0;
4074		else {
4075			int freed;
4076
4077			freed = drain_freelist(searchp, n, (n->free_limit +
4078				5 * searchp->num - 1) / (5 * searchp->num));
4079			STATS_ADD_REAPED(searchp, freed);
4080		}
4081next:
4082		cond_resched();
4083	}
4084	check_irq_on();
4085	mutex_unlock(&slab_mutex);
4086	next_reap_node();
4087out:
4088	/* Set up the next iteration */
4089	schedule_delayed_work_on(smp_processor_id(), work,
4090				round_jiffies_relative(REAPTIMEOUT_AC));
4091}
4092
4093void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
 
 
4094{
4095	unsigned long active_objs, num_objs, active_slabs;
4096	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097	unsigned long free_slabs = 0;
4098	int node;
4099	struct kmem_cache_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4100
4101	for_each_kmem_cache_node(cachep, node, n) {
4102		check_irq_on();
4103		spin_lock_irq(&n->list_lock);
 
 
 
 
 
 
 
4104
4105		total_slabs += n->total_slabs;
4106		free_slabs += n->free_slabs;
4107		free_objs += n->free_objects;
4108
4109		if (n->shared)
4110			shared_avail += n->shared->avail;
4111
4112		spin_unlock_irq(&n->list_lock);
4113	}
4114	num_objs = total_slabs * cachep->num;
4115	active_slabs = total_slabs - free_slabs;
4116	active_objs = num_objs - free_objs;
4117
4118	sinfo->active_objs = active_objs;
4119	sinfo->num_objs = num_objs;
4120	sinfo->active_slabs = active_slabs;
4121	sinfo->num_slabs = total_slabs;
4122	sinfo->shared_avail = shared_avail;
4123	sinfo->limit = cachep->limit;
4124	sinfo->batchcount = cachep->batchcount;
4125	sinfo->shared = cachep->shared;
4126	sinfo->objects_per_slab = cachep->num;
4127	sinfo->cache_order = cachep->gfporder;
4128}
4129
4130void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4132#if STATS
4133	{			/* node stats */
4134		unsigned long high = cachep->high_mark;
4135		unsigned long allocs = cachep->num_allocations;
4136		unsigned long grown = cachep->grown;
4137		unsigned long reaped = cachep->reaped;
4138		unsigned long errors = cachep->errors;
4139		unsigned long max_freeable = cachep->max_freeable;
4140		unsigned long node_allocs = cachep->node_allocs;
4141		unsigned long node_frees = cachep->node_frees;
4142		unsigned long overflows = cachep->node_overflow;
4143
4144		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
 
4145			   allocs, high, grown,
4146			   reaped, errors, max_freeable, node_allocs,
4147			   node_frees, overflows);
4148	}
4149	/* cpu stats */
4150	{
4151		unsigned long allochit = atomic_read(&cachep->allochit);
4152		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153		unsigned long freehit = atomic_read(&cachep->freehit);
4154		unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4157			   allochit, allocmiss, freehit, freemiss);
4158	}
4159#endif
 
 
4160}
4161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162#define MAX_SLABINFO_WRITE 128
4163/**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
4170ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4171		       size_t count, loff_t *ppos)
4172{
4173	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4174	int limit, batchcount, shared, res;
4175	struct kmem_cache *cachep;
4176
4177	if (count > MAX_SLABINFO_WRITE)
4178		return -EINVAL;
4179	if (copy_from_user(&kbuf, buffer, count))
4180		return -EFAULT;
4181	kbuf[MAX_SLABINFO_WRITE] = '\0';
4182
4183	tmp = strchr(kbuf, ' ');
4184	if (!tmp)
4185		return -EINVAL;
4186	*tmp = '\0';
4187	tmp++;
4188	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189		return -EINVAL;
4190
4191	/* Find the cache in the chain of caches. */
4192	mutex_lock(&slab_mutex);
4193	res = -EINVAL;
4194	list_for_each_entry(cachep, &slab_caches, list) {
4195		if (!strcmp(cachep->name, kbuf)) {
4196			if (limit < 1 || batchcount < 1 ||
4197					batchcount > limit || shared < 0) {
4198				res = 0;
4199			} else {
4200				res = do_tune_cpucache(cachep, limit,
4201						       batchcount, shared,
4202						       GFP_KERNEL);
4203			}
4204			break;
4205		}
4206	}
4207	mutex_unlock(&slab_mutex);
4208	if (res >= 0)
4209		res = count;
4210	return res;
4211}
4212
 
 
 
 
 
 
 
 
 
 
 
 
 
4213#ifdef CONFIG_DEBUG_SLAB_LEAK
4214
 
 
 
 
 
 
4215static inline int add_caller(unsigned long *n, unsigned long v)
4216{
4217	unsigned long *p;
4218	int l;
4219	if (!v)
4220		return 1;
4221	l = n[1];
4222	p = n + 2;
4223	while (l) {
4224		int i = l/2;
4225		unsigned long *q = p + 2 * i;
4226		if (*q == v) {
4227			q[1]++;
4228			return 1;
4229		}
4230		if (*q > v) {
4231			l = i;
4232		} else {
4233			p = q + 2;
4234			l -= i + 1;
4235		}
4236	}
4237	if (++n[1] == n[0])
4238		return 0;
4239	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240	p[0] = v;
4241	p[1] = 1;
4242	return 1;
4243}
4244
4245static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246						struct page *page)
4247{
4248	void *p;
4249	int i, j;
4250	unsigned long v;
4251
4252	if (n[0] == n[1])
4253		return;
4254	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255		bool active = true;
4256
4257		for (j = page->active; j < c->num; j++) {
4258			if (get_free_obj(page, j) == i) {
4259				active = false;
4260				break;
4261			}
4262		}
4263
4264		if (!active)
4265			continue;
4266
4267		/*
4268		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269		 * mapping is established when actual object allocation and
4270		 * we could mistakenly access the unmapped object in the cpu
4271		 * cache.
4272		 */
4273		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274			continue;
4275
4276		if (!add_caller(n, v))
4277			return;
4278	}
4279}
4280
4281static void show_symbol(struct seq_file *m, unsigned long address)
4282{
4283#ifdef CONFIG_KALLSYMS
4284	unsigned long offset, size;
4285	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286
4287	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289		if (modname[0])
4290			seq_printf(m, " [%s]", modname);
4291		return;
4292	}
4293#endif
4294	seq_printf(m, "%px", (void *)address);
4295}
4296
4297static int leaks_show(struct seq_file *m, void *p)
4298{
4299	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4300	struct page *page;
4301	struct kmem_cache_node *n;
4302	const char *name;
4303	unsigned long *x = m->private;
4304	int node;
4305	int i;
4306
4307	if (!(cachep->flags & SLAB_STORE_USER))
4308		return 0;
4309	if (!(cachep->flags & SLAB_RED_ZONE))
4310		return 0;
4311
4312	/*
4313	 * Set store_user_clean and start to grab stored user information
4314	 * for all objects on this cache. If some alloc/free requests comes
4315	 * during the processing, information would be wrong so restart
4316	 * whole processing.
4317	 */
4318	do {
4319		set_store_user_clean(cachep);
4320		drain_cpu_caches(cachep);
4321
4322		x[1] = 0;
4323
4324		for_each_kmem_cache_node(cachep, node, n) {
4325
4326			check_irq_on();
4327			spin_lock_irq(&n->list_lock);
4328
4329			list_for_each_entry(page, &n->slabs_full, lru)
4330				handle_slab(x, cachep, page);
4331			list_for_each_entry(page, &n->slabs_partial, lru)
4332				handle_slab(x, cachep, page);
4333			spin_unlock_irq(&n->list_lock);
4334		}
4335	} while (!is_store_user_clean(cachep));
4336
 
 
 
 
 
 
4337	name = cachep->name;
4338	if (x[0] == x[1]) {
4339		/* Increase the buffer size */
4340		mutex_unlock(&slab_mutex);
4341		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4342		if (!m->private) {
4343			/* Too bad, we are really out */
4344			m->private = x;
4345			mutex_lock(&slab_mutex);
4346			return -ENOMEM;
4347		}
4348		*(unsigned long *)m->private = x[0] * 2;
4349		kfree(x);
4350		mutex_lock(&slab_mutex);
4351		/* Now make sure this entry will be retried */
4352		m->count = m->size;
4353		return 0;
4354	}
4355	for (i = 0; i < x[1]; i++) {
4356		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4357		show_symbol(m, x[2*i+2]);
4358		seq_putc(m, '\n');
4359	}
4360
4361	return 0;
4362}
4363
4364static const struct seq_operations slabstats_op = {
4365	.start = slab_start,
4366	.next = slab_next,
4367	.stop = slab_stop,
4368	.show = leaks_show,
4369};
4370
4371static int slabstats_open(struct inode *inode, struct file *file)
4372{
4373	unsigned long *n;
4374
4375	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4376	if (!n)
4377		return -ENOMEM;
4378
4379	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4380
4381	return 0;
 
 
 
 
4382}
4383
4384static const struct file_operations proc_slabstats_operations = {
4385	.open		= slabstats_open,
4386	.read		= seq_read,
4387	.llseek		= seq_lseek,
4388	.release	= seq_release_private,
4389};
4390#endif
4391
4392static int __init slab_proc_init(void)
4393{
 
4394#ifdef CONFIG_DEBUG_SLAB_LEAK
4395	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4396#endif
4397	return 0;
4398}
4399module_init(slab_proc_init);
4400
4401#ifdef CONFIG_HARDENED_USERCOPY
4402/*
4403 * Rejects incorrectly sized objects and objects that are to be copied
4404 * to/from userspace but do not fall entirely within the containing slab
4405 * cache's usercopy region.
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4411			 bool to_user)
4412{
4413	struct kmem_cache *cachep;
4414	unsigned int objnr;
4415	unsigned long offset;
4416
4417	/* Find and validate object. */
4418	cachep = page->slab_cache;
4419	objnr = obj_to_index(cachep, page, (void *)ptr);
4420	BUG_ON(objnr >= cachep->num);
4421
4422	/* Find offset within object. */
4423	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4424
4425	/* Allow address range falling entirely within usercopy region. */
4426	if (offset >= cachep->useroffset &&
4427	    offset - cachep->useroffset <= cachep->usersize &&
4428	    n <= cachep->useroffset - offset + cachep->usersize)
4429		return;
4430
4431	/*
4432	 * If the copy is still within the allocated object, produce
4433	 * a warning instead of rejecting the copy. This is intended
4434	 * to be a temporary method to find any missing usercopy
4435	 * whitelists.
4436	 */
4437	if (usercopy_fallback &&
4438	    offset <= cachep->object_size &&
4439	    n <= cachep->object_size - offset) {
4440		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4441		return;
4442	}
4443
4444	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4445}
4446#endif /* CONFIG_HARDENED_USERCOPY */
4447
4448/**
4449 * ksize - get the actual amount of memory allocated for a given object
4450 * @objp: Pointer to the object
4451 *
4452 * kmalloc may internally round up allocations and return more memory
4453 * than requested. ksize() can be used to determine the actual amount of
4454 * memory allocated. The caller may use this additional memory, even though
4455 * a smaller amount of memory was initially specified with the kmalloc call.
4456 * The caller must guarantee that objp points to a valid object previously
4457 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4458 * must not be freed during the duration of the call.
4459 */
4460size_t ksize(const void *objp)
4461{
4462	size_t size;
4463
4464	BUG_ON(!objp);
4465	if (unlikely(objp == ZERO_SIZE_PTR))
4466		return 0;
4467
4468	size = virt_to_cache(objp)->object_size;
4469	/* We assume that ksize callers could use the whole allocated area,
4470	 * so we need to unpoison this area.
4471	 */
4472	kasan_unpoison_shadow(objp, size);
4473
4474	return size;
4475}
4476EXPORT_SYMBOL(ksize);
v3.5.6
 
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 
 
 
 119
 120#include	<asm/cacheflush.h>
 121#include	<asm/tlbflush.h>
 122#include	<asm/page.h>
 123
 124#include <trace/events/kmem.h>
 125
 
 
 
 
 126/*
 127 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 128 *		  0 for faster, smaller code (especially in the critical paths).
 129 *
 130 * STATS	- 1 to collect stats for /proc/slabinfo.
 131 *		  0 for faster, smaller code (especially in the critical paths).
 132 *
 133 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 134 */
 135
 136#ifdef CONFIG_DEBUG_SLAB
 137#define	DEBUG		1
 138#define	STATS		1
 139#define	FORCED_DEBUG	1
 140#else
 141#define	DEBUG		0
 142#define	STATS		0
 143#define	FORCED_DEBUG	0
 144#endif
 145
 146/* Shouldn't this be in a header file somewhere? */
 147#define	BYTES_PER_WORD		sizeof(void *)
 148#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 149
 150#ifndef ARCH_KMALLOC_FLAGS
 151#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 152#endif
 153
 154/* Legal flag mask for kmem_cache_create(). */
 155#if DEBUG
 156# define CREATE_MASK	(SLAB_RED_ZONE | \
 157			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
 158			 SLAB_CACHE_DMA | \
 159			 SLAB_STORE_USER | \
 160			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 161			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 162			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 163#else
 164# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
 165			 SLAB_CACHE_DMA | \
 166			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 167			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 168			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 169#endif
 170
 171/*
 172 * kmem_bufctl_t:
 173 *
 174 * Bufctl's are used for linking objs within a slab
 175 * linked offsets.
 176 *
 177 * This implementation relies on "struct page" for locating the cache &
 178 * slab an object belongs to.
 179 * This allows the bufctl structure to be small (one int), but limits
 180 * the number of objects a slab (not a cache) can contain when off-slab
 181 * bufctls are used. The limit is the size of the largest general cache
 182 * that does not use off-slab slabs.
 183 * For 32bit archs with 4 kB pages, is this 56.
 184 * This is not serious, as it is only for large objects, when it is unwise
 185 * to have too many per slab.
 186 * Note: This limit can be raised by introducing a general cache whose size
 187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 188 */
 189
 190typedef unsigned int kmem_bufctl_t;
 191#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
 192#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
 193#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
 194#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
 195
 196/*
 197 * struct slab_rcu
 198 *
 199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 200 * arrange for kmem_freepages to be called via RCU.  This is useful if
 201 * we need to approach a kernel structure obliquely, from its address
 202 * obtained without the usual locking.  We can lock the structure to
 203 * stabilize it and check it's still at the given address, only if we
 204 * can be sure that the memory has not been meanwhile reused for some
 205 * other kind of object (which our subsystem's lock might corrupt).
 206 *
 207 * rcu_read_lock before reading the address, then rcu_read_unlock after
 208 * taking the spinlock within the structure expected at that address.
 209 */
 210struct slab_rcu {
 211	struct rcu_head head;
 212	struct kmem_cache *cachep;
 213	void *addr;
 214};
 215
 216/*
 217 * struct slab
 218 *
 219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 220 * for a slab, or allocated from an general cache.
 221 * Slabs are chained into three list: fully used, partial, fully free slabs.
 222 */
 223struct slab {
 224	union {
 225		struct {
 226			struct list_head list;
 227			unsigned long colouroff;
 228			void *s_mem;		/* including colour offset */
 229			unsigned int inuse;	/* num of objs active in slab */
 230			kmem_bufctl_t free;
 231			unsigned short nodeid;
 232		};
 233		struct slab_rcu __slab_cover_slab_rcu;
 234	};
 235};
 236
 237/*
 238 * struct array_cache
 239 *
 240 * Purpose:
 241 * - LIFO ordering, to hand out cache-warm objects from _alloc
 242 * - reduce the number of linked list operations
 243 * - reduce spinlock operations
 244 *
 245 * The limit is stored in the per-cpu structure to reduce the data cache
 246 * footprint.
 247 *
 248 */
 249struct array_cache {
 250	unsigned int avail;
 251	unsigned int limit;
 252	unsigned int batchcount;
 253	unsigned int touched;
 254	spinlock_t lock;
 255	void *entry[];	/*
 256			 * Must have this definition in here for the proper
 257			 * alignment of array_cache. Also simplifies accessing
 258			 * the entries.
 259			 */
 260};
 261
 262/*
 263 * bootstrap: The caches do not work without cpuarrays anymore, but the
 264 * cpuarrays are allocated from the generic caches...
 265 */
 266#define BOOT_CPUCACHE_ENTRIES	1
 267struct arraycache_init {
 268	struct array_cache cache;
 269	void *entries[BOOT_CPUCACHE_ENTRIES];
 270};
 271
 272/*
 273 * The slab lists for all objects.
 274 */
 275struct kmem_list3 {
 276	struct list_head slabs_partial;	/* partial list first, better asm code */
 277	struct list_head slabs_full;
 278	struct list_head slabs_free;
 279	unsigned long free_objects;
 280	unsigned int free_limit;
 281	unsigned int colour_next;	/* Per-node cache coloring */
 282	spinlock_t list_lock;
 283	struct array_cache *shared;	/* shared per node */
 284	struct array_cache **alien;	/* on other nodes */
 285	unsigned long next_reap;	/* updated without locking */
 286	int free_touched;		/* updated without locking */
 287};
 288
 289/*
 290 * Need this for bootstrapping a per node allocator.
 291 */
 292#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 293static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 294#define	CACHE_CACHE 0
 295#define	SIZE_AC MAX_NUMNODES
 296#define	SIZE_L3 (2 * MAX_NUMNODES)
 297
 298static int drain_freelist(struct kmem_cache *cache,
 299			struct kmem_list3 *l3, int tofree);
 300static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 301			int node);
 
 302static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 303static void cache_reap(struct work_struct *unused);
 304
 305/*
 306 * This function must be completely optimized away if a constant is passed to
 307 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
 308 */
 309static __always_inline int index_of(const size_t size)
 310{
 311	extern void __bad_size(void);
 312
 313	if (__builtin_constant_p(size)) {
 314		int i = 0;
 315
 316#define CACHE(x) \
 317	if (size <=x) \
 318		return i; \
 319	else \
 320		i++;
 321#include <linux/kmalloc_sizes.h>
 322#undef CACHE
 323		__bad_size();
 324	} else
 325		__bad_size();
 326	return 0;
 327}
 328
 329static int slab_early_init = 1;
 330
 331#define INDEX_AC index_of(sizeof(struct arraycache_init))
 332#define INDEX_L3 index_of(sizeof(struct kmem_list3))
 333
 334static void kmem_list3_init(struct kmem_list3 *parent)
 335{
 336	INIT_LIST_HEAD(&parent->slabs_full);
 337	INIT_LIST_HEAD(&parent->slabs_partial);
 338	INIT_LIST_HEAD(&parent->slabs_free);
 
 
 339	parent->shared = NULL;
 340	parent->alien = NULL;
 341	parent->colour_next = 0;
 342	spin_lock_init(&parent->list_lock);
 343	parent->free_objects = 0;
 344	parent->free_touched = 0;
 345}
 346
 347#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 348	do {								\
 349		INIT_LIST_HEAD(listp);					\
 350		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
 351	} while (0)
 352
 353#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 354	do {								\
 355	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 356	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 357	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 358	} while (0)
 359
 360#define CFLGS_OFF_SLAB		(0x80000000UL)
 
 
 361#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 362
 363#define BATCHREFILL_LIMIT	16
 364/*
 365 * Optimization question: fewer reaps means less probability for unnessary
 366 * cpucache drain/refill cycles.
 367 *
 368 * OTOH the cpuarrays can contain lots of objects,
 369 * which could lock up otherwise freeable slabs.
 370 */
 371#define REAPTIMEOUT_CPUC	(2*HZ)
 372#define REAPTIMEOUT_LIST3	(4*HZ)
 373
 374#if STATS
 375#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 376#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 377#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 378#define	STATS_INC_GROWN(x)	((x)->grown++)
 379#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 380#define	STATS_SET_HIGH(x)						\
 381	do {								\
 382		if ((x)->num_active > (x)->high_mark)			\
 383			(x)->high_mark = (x)->num_active;		\
 384	} while (0)
 385#define	STATS_INC_ERR(x)	((x)->errors++)
 386#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 387#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 388#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 389#define	STATS_SET_FREEABLE(x, i)					\
 390	do {								\
 391		if ((x)->max_freeable < i)				\
 392			(x)->max_freeable = i;				\
 393	} while (0)
 394#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 395#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 396#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 397#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 398#else
 399#define	STATS_INC_ACTIVE(x)	do { } while (0)
 400#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 401#define	STATS_INC_ALLOCED(x)	do { } while (0)
 402#define	STATS_INC_GROWN(x)	do { } while (0)
 403#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 404#define	STATS_SET_HIGH(x)	do { } while (0)
 405#define	STATS_INC_ERR(x)	do { } while (0)
 406#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 407#define	STATS_INC_NODEFREES(x)	do { } while (0)
 408#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 409#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 410#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 411#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 412#define STATS_INC_FREEHIT(x)	do { } while (0)
 413#define STATS_INC_FREEMISS(x)	do { } while (0)
 414#endif
 415
 416#if DEBUG
 417
 418/*
 419 * memory layout of objects:
 420 * 0		: objp
 421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 422 * 		the end of an object is aligned with the end of the real
 423 * 		allocation. Catches writes behind the end of the allocation.
 424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 425 * 		redzone word.
 426 * cachep->obj_offset: The real object.
 427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 429 *					[BYTES_PER_WORD long]
 430 */
 431static int obj_offset(struct kmem_cache *cachep)
 432{
 433	return cachep->obj_offset;
 434}
 435
 436static int obj_size(struct kmem_cache *cachep)
 437{
 438	return cachep->obj_size;
 439}
 440
 441static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 442{
 443	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 444	return (unsigned long long*) (objp + obj_offset(cachep) -
 445				      sizeof(unsigned long long));
 446}
 447
 448static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 449{
 450	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 451	if (cachep->flags & SLAB_STORE_USER)
 452		return (unsigned long long *)(objp + cachep->buffer_size -
 453					      sizeof(unsigned long long) -
 454					      REDZONE_ALIGN);
 455	return (unsigned long long *) (objp + cachep->buffer_size -
 456				       sizeof(unsigned long long));
 457}
 458
 459static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 460{
 461	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 462	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 463}
 464
 465#else
 466
 467#define obj_offset(x)			0
 468#define obj_size(cachep)		(cachep->buffer_size)
 469#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 470#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 471#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 472
 473#endif
 474
 475#ifdef CONFIG_TRACING
 476size_t slab_buffer_size(struct kmem_cache *cachep)
 
 
 
 
 
 
 
 
 
 
 
 477{
 478	return cachep->buffer_size;
 
 479}
 480EXPORT_SYMBOL(slab_buffer_size);
 
 
 
 481#endif
 482
 483/*
 484 * Do not go above this order unless 0 objects fit into the slab or
 485 * overridden on the command line.
 486 */
 487#define	SLAB_MAX_ORDER_HI	1
 488#define	SLAB_MAX_ORDER_LO	0
 489static int slab_max_order = SLAB_MAX_ORDER_LO;
 490static bool slab_max_order_set __initdata;
 491
 492/*
 493 * Functions for storing/retrieving the cachep and or slab from the page
 494 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 495 * these are used to find the cache which an obj belongs to.
 496 */
 497static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 498{
 499	page->lru.next = (struct list_head *)cache;
 500}
 501
 502static inline struct kmem_cache *page_get_cache(struct page *page)
 503{
 504	page = compound_head(page);
 505	BUG_ON(!PageSlab(page));
 506	return (struct kmem_cache *)page->lru.next;
 507}
 508
 509static inline void page_set_slab(struct page *page, struct slab *slab)
 510{
 511	page->lru.prev = (struct list_head *)slab;
 512}
 513
 514static inline struct slab *page_get_slab(struct page *page)
 515{
 516	BUG_ON(!PageSlab(page));
 517	return (struct slab *)page->lru.prev;
 518}
 519
 520static inline struct kmem_cache *virt_to_cache(const void *obj)
 521{
 522	struct page *page = virt_to_head_page(obj);
 523	return page_get_cache(page);
 524}
 525
 526static inline struct slab *virt_to_slab(const void *obj)
 527{
 528	struct page *page = virt_to_head_page(obj);
 529	return page_get_slab(page);
 530}
 531
 532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
 533				 unsigned int idx)
 534{
 535	return slab->s_mem + cache->buffer_size * idx;
 536}
 537
 538/*
 539 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 540 *   Using the fact that buffer_size is a constant for a particular cache,
 541 *   we can replace (offset / cache->buffer_size) by
 542 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 543 */
 544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 545					const struct slab *slab, void *obj)
 546{
 547	u32 offset = (obj - slab->s_mem);
 548	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 549}
 550
 551/*
 552 * These are the default caches for kmalloc. Custom caches can have other sizes.
 553 */
 554struct cache_sizes malloc_sizes[] = {
 555#define CACHE(x) { .cs_size = (x) },
 556#include <linux/kmalloc_sizes.h>
 557	CACHE(ULONG_MAX)
 558#undef CACHE
 559};
 560EXPORT_SYMBOL(malloc_sizes);
 561
 562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
 563struct cache_names {
 564	char *name;
 565	char *name_dma;
 566};
 567
 568static struct cache_names __initdata cache_names[] = {
 569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 570#include <linux/kmalloc_sizes.h>
 571	{NULL,}
 572#undef CACHE
 573};
 574
 575static struct arraycache_init initarray_cache __initdata =
 576    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 577static struct arraycache_init initarray_generic =
 578    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 579
 580/* internal cache of cache description objs */
 581static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
 582static struct kmem_cache cache_cache = {
 583	.nodelists = cache_cache_nodelists,
 584	.batchcount = 1,
 585	.limit = BOOT_CPUCACHE_ENTRIES,
 586	.shared = 1,
 587	.buffer_size = sizeof(struct kmem_cache),
 588	.name = "kmem_cache",
 589};
 590
 591#define BAD_ALIEN_MAGIC 0x01020304ul
 592
 593/*
 594 * chicken and egg problem: delay the per-cpu array allocation
 595 * until the general caches are up.
 596 */
 597static enum {
 598	NONE,
 599	PARTIAL_AC,
 600	PARTIAL_L3,
 601	EARLY,
 602	LATE,
 603	FULL
 604} g_cpucache_up;
 605
 606/*
 607 * used by boot code to determine if it can use slab based allocator
 608 */
 609int slab_is_available(void)
 610{
 611	return g_cpucache_up >= EARLY;
 612}
 613
 614#ifdef CONFIG_LOCKDEP
 615
 616/*
 617 * Slab sometimes uses the kmalloc slabs to store the slab headers
 618 * for other slabs "off slab".
 619 * The locking for this is tricky in that it nests within the locks
 620 * of all other slabs in a few places; to deal with this special
 621 * locking we put on-slab caches into a separate lock-class.
 622 *
 623 * We set lock class for alien array caches which are up during init.
 624 * The lock annotation will be lost if all cpus of a node goes down and
 625 * then comes back up during hotplug
 626 */
 627static struct lock_class_key on_slab_l3_key;
 628static struct lock_class_key on_slab_alc_key;
 629
 630static struct lock_class_key debugobj_l3_key;
 631static struct lock_class_key debugobj_alc_key;
 632
 633static void slab_set_lock_classes(struct kmem_cache *cachep,
 634		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
 635		int q)
 636{
 637	struct array_cache **alc;
 638	struct kmem_list3 *l3;
 639	int r;
 640
 641	l3 = cachep->nodelists[q];
 642	if (!l3)
 643		return;
 644
 645	lockdep_set_class(&l3->list_lock, l3_key);
 646	alc = l3->alien;
 647	/*
 648	 * FIXME: This check for BAD_ALIEN_MAGIC
 649	 * should go away when common slab code is taught to
 650	 * work even without alien caches.
 651	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 652	 * for alloc_alien_cache,
 653	 */
 654	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 655		return;
 656	for_each_node(r) {
 657		if (alc[r])
 658			lockdep_set_class(&alc[r]->lock, alc_key);
 659	}
 660}
 661
 662static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 663{
 664	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
 665}
 666
 667static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 668{
 669	int node;
 670
 671	for_each_online_node(node)
 672		slab_set_debugobj_lock_classes_node(cachep, node);
 673}
 674
 675static void init_node_lock_keys(int q)
 676{
 677	struct cache_sizes *s = malloc_sizes;
 678
 679	if (g_cpucache_up < LATE)
 680		return;
 681
 682	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
 683		struct kmem_list3 *l3;
 684
 685		l3 = s->cs_cachep->nodelists[q];
 686		if (!l3 || OFF_SLAB(s->cs_cachep))
 687			continue;
 688
 689		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
 690				&on_slab_alc_key, q);
 691	}
 692}
 693
 694static inline void init_lock_keys(void)
 695{
 696	int node;
 697
 698	for_each_node(node)
 699		init_node_lock_keys(node);
 700}
 701#else
 702static void init_node_lock_keys(int q)
 703{
 704}
 705
 706static inline void init_lock_keys(void)
 707{
 708}
 709
 710static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 711{
 712}
 713
 714static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 715{
 716}
 717#endif
 718
 719/*
 720 * Guard access to the cache-chain.
 721 */
 722static DEFINE_MUTEX(cache_chain_mutex);
 723static struct list_head cache_chain;
 724
 725static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 726
 727static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 728{
 729	return cachep->array[smp_processor_id()];
 730}
 731
 732static inline struct kmem_cache *__find_general_cachep(size_t size,
 733							gfp_t gfpflags)
 734{
 735	struct cache_sizes *csizep = malloc_sizes;
 736
 737#if DEBUG
 738	/* This happens if someone tries to call
 739	 * kmem_cache_create(), or __kmalloc(), before
 740	 * the generic caches are initialized.
 741	 */
 742	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
 743#endif
 744	if (!size)
 745		return ZERO_SIZE_PTR;
 746
 747	while (size > csizep->cs_size)
 748		csizep++;
 749
 750	/*
 751	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
 752	 * has cs_{dma,}cachep==NULL. Thus no special case
 753	 * for large kmalloc calls required.
 754	 */
 755#ifdef CONFIG_ZONE_DMA
 756	if (unlikely(gfpflags & GFP_DMA))
 757		return csizep->cs_dmacachep;
 758#endif
 759	return csizep->cs_cachep;
 760}
 761
 762static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 763{
 764	return __find_general_cachep(size, gfpflags);
 765}
 766
 767static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 768{
 769	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 770}
 771
 772/*
 773 * Calculate the number of objects and left-over bytes for a given buffer size.
 774 */
 775static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 776			   size_t align, int flags, size_t *left_over,
 777			   unsigned int *num)
 778{
 779	int nr_objs;
 780	size_t mgmt_size;
 781	size_t slab_size = PAGE_SIZE << gfporder;
 782
 783	/*
 784	 * The slab management structure can be either off the slab or
 785	 * on it. For the latter case, the memory allocated for a
 786	 * slab is used for:
 787	 *
 788	 * - The struct slab
 789	 * - One kmem_bufctl_t for each object
 790	 * - Padding to respect alignment of @align
 791	 * - @buffer_size bytes for each object
 
 
 
 
 
 792	 *
 793	 * If the slab management structure is off the slab, then the
 794	 * alignment will already be calculated into the size. Because
 795	 * the slabs are all pages aligned, the objects will be at the
 796	 * correct alignment when allocated.
 797	 */
 798	if (flags & CFLGS_OFF_SLAB) {
 799		mgmt_size = 0;
 800		nr_objs = slab_size / buffer_size;
 801
 802		if (nr_objs > SLAB_LIMIT)
 803			nr_objs = SLAB_LIMIT;
 804	} else {
 805		/*
 806		 * Ignore padding for the initial guess. The padding
 807		 * is at most @align-1 bytes, and @buffer_size is at
 808		 * least @align. In the worst case, this result will
 809		 * be one greater than the number of objects that fit
 810		 * into the memory allocation when taking the padding
 811		 * into account.
 812		 */
 813		nr_objs = (slab_size - sizeof(struct slab)) /
 814			  (buffer_size + sizeof(kmem_bufctl_t));
 815
 816		/*
 817		 * This calculated number will be either the right
 818		 * amount, or one greater than what we want.
 819		 */
 820		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
 821		       > slab_size)
 822			nr_objs--;
 823
 824		if (nr_objs > SLAB_LIMIT)
 825			nr_objs = SLAB_LIMIT;
 826
 827		mgmt_size = slab_mgmt_size(nr_objs, align);
 828	}
 829	*num = nr_objs;
 830	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 831}
 832
 
 833#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 834
 835static void __slab_error(const char *function, struct kmem_cache *cachep,
 836			char *msg)
 837{
 838	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 839	       function, cachep->name, msg);
 840	dump_stack();
 
 841}
 
 842
 843/*
 844 * By default on NUMA we use alien caches to stage the freeing of
 845 * objects allocated from other nodes. This causes massive memory
 846 * inefficiencies when using fake NUMA setup to split memory into a
 847 * large number of small nodes, so it can be disabled on the command
 848 * line
 849  */
 850
 851static int use_alien_caches __read_mostly = 1;
 852static int __init noaliencache_setup(char *s)
 853{
 854	use_alien_caches = 0;
 855	return 1;
 856}
 857__setup("noaliencache", noaliencache_setup);
 858
 859static int __init slab_max_order_setup(char *str)
 860{
 861	get_option(&str, &slab_max_order);
 862	slab_max_order = slab_max_order < 0 ? 0 :
 863				min(slab_max_order, MAX_ORDER - 1);
 864	slab_max_order_set = true;
 865
 866	return 1;
 867}
 868__setup("slab_max_order=", slab_max_order_setup);
 869
 870#ifdef CONFIG_NUMA
 871/*
 872 * Special reaping functions for NUMA systems called from cache_reap().
 873 * These take care of doing round robin flushing of alien caches (containing
 874 * objects freed on different nodes from which they were allocated) and the
 875 * flushing of remote pcps by calling drain_node_pages.
 876 */
 877static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 878
 879static void init_reap_node(int cpu)
 880{
 881	int node;
 882
 883	node = next_node(cpu_to_mem(cpu), node_online_map);
 884	if (node == MAX_NUMNODES)
 885		node = first_node(node_online_map);
 886
 887	per_cpu(slab_reap_node, cpu) = node;
 888}
 889
 890static void next_reap_node(void)
 891{
 892	int node = __this_cpu_read(slab_reap_node);
 893
 894	node = next_node(node, node_online_map);
 895	if (unlikely(node >= MAX_NUMNODES))
 896		node = first_node(node_online_map);
 897	__this_cpu_write(slab_reap_node, node);
 898}
 899
 900#else
 901#define init_reap_node(cpu) do { } while (0)
 902#define next_reap_node(void) do { } while (0)
 903#endif
 904
 905/*
 906 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 907 * via the workqueue/eventd.
 908 * Add the CPU number into the expiration time to minimize the possibility of
 909 * the CPUs getting into lockstep and contending for the global cache chain
 910 * lock.
 911 */
 912static void __cpuinit start_cpu_timer(int cpu)
 913{
 914	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 915
 916	/*
 917	 * When this gets called from do_initcalls via cpucache_init(),
 918	 * init_workqueues() has already run, so keventd will be setup
 919	 * at that time.
 920	 */
 921	if (keventd_up() && reap_work->work.func == NULL) {
 922		init_reap_node(cpu);
 923		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
 924		schedule_delayed_work_on(cpu, reap_work,
 925					__round_jiffies_relative(HZ, cpu));
 926	}
 927}
 928
 929static struct array_cache *alloc_arraycache(int node, int entries,
 930					    int batchcount, gfp_t gfp)
 931{
 932	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 933	struct array_cache *nc = NULL;
 934
 935	nc = kmalloc_node(memsize, gfp, node);
 936	/*
 937	 * The array_cache structures contain pointers to free object.
 938	 * However, when such objects are allocated or transferred to another
 939	 * cache the pointers are not cleared and they could be counted as
 940	 * valid references during a kmemleak scan. Therefore, kmemleak must
 941	 * not scan such objects.
 942	 */
 943	kmemleak_no_scan(nc);
 944	if (nc) {
 945		nc->avail = 0;
 946		nc->limit = entries;
 947		nc->batchcount = batchcount;
 948		nc->touched = 0;
 949		spin_lock_init(&nc->lock);
 950	}
 951	return nc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952}
 953
 954/*
 955 * Transfer objects in one arraycache to another.
 956 * Locking must be handled by the caller.
 957 *
 958 * Return the number of entries transferred.
 959 */
 960static int transfer_objects(struct array_cache *to,
 961		struct array_cache *from, unsigned int max)
 962{
 963	/* Figure out how many entries to transfer */
 964	int nr = min3(from->avail, max, to->limit - to->avail);
 965
 966	if (!nr)
 967		return 0;
 968
 969	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 970			sizeof(void *) *nr);
 971
 972	from->avail -= nr;
 973	to->avail += nr;
 974	return nr;
 975}
 976
 977#ifndef CONFIG_NUMA
 978
 979#define drain_alien_cache(cachep, alien) do { } while (0)
 980#define reap_alien(cachep, l3) do { } while (0)
 981
 982static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 
 983{
 984	return (struct array_cache **)BAD_ALIEN_MAGIC;
 985}
 986
 987static inline void free_alien_cache(struct array_cache **ac_ptr)
 988{
 989}
 990
 991static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 992{
 993	return 0;
 994}
 995
 996static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 997		gfp_t flags)
 998{
 999	return NULL;
1000}
1001
1002static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1003		 gfp_t flags, int nodeid)
1004{
1005	return NULL;
1006}
1007
 
 
 
 
 
1008#else	/* CONFIG_NUMA */
1009
1010static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1011static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1012
1013static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 
1014{
1015	struct array_cache **ac_ptr;
1016	int memsize = sizeof(void *) * nr_node_ids;
 
 
 
 
 
 
 
 
 
 
 
1017	int i;
1018
1019	if (limit > 1)
1020		limit = 12;
1021	ac_ptr = kzalloc_node(memsize, gfp, node);
1022	if (ac_ptr) {
1023		for_each_node(i) {
1024			if (i == node || !node_online(i))
1025				continue;
1026			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1027			if (!ac_ptr[i]) {
1028				for (i--; i >= 0; i--)
1029					kfree(ac_ptr[i]);
1030				kfree(ac_ptr);
1031				return NULL;
1032			}
 
1033		}
1034	}
1035	return ac_ptr;
1036}
1037
1038static void free_alien_cache(struct array_cache **ac_ptr)
1039{
1040	int i;
1041
1042	if (!ac_ptr)
1043		return;
1044	for_each_node(i)
1045	    kfree(ac_ptr[i]);
1046	kfree(ac_ptr);
1047}
1048
1049static void __drain_alien_cache(struct kmem_cache *cachep,
1050				struct array_cache *ac, int node)
 
1051{
1052	struct kmem_list3 *rl3 = cachep->nodelists[node];
1053
1054	if (ac->avail) {
1055		spin_lock(&rl3->list_lock);
1056		/*
1057		 * Stuff objects into the remote nodes shared array first.
1058		 * That way we could avoid the overhead of putting the objects
1059		 * into the free lists and getting them back later.
1060		 */
1061		if (rl3->shared)
1062			transfer_objects(rl3->shared, ac, ac->limit);
1063
1064		free_block(cachep, ac->entry, ac->avail, node);
1065		ac->avail = 0;
1066		spin_unlock(&rl3->list_lock);
1067	}
1068}
1069
1070/*
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1072 */
1073static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1074{
1075	int node = __this_cpu_read(slab_reap_node);
1076
1077	if (l3->alien) {
1078		struct array_cache *ac = l3->alien[node];
1079
1080		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1081			__drain_alien_cache(cachep, ac, node);
1082			spin_unlock_irq(&ac->lock);
 
 
 
 
 
 
 
1083		}
1084	}
1085}
1086
1087static void drain_alien_cache(struct kmem_cache *cachep,
1088				struct array_cache **alien)
1089{
1090	int i = 0;
 
1091	struct array_cache *ac;
1092	unsigned long flags;
1093
1094	for_each_online_node(i) {
1095		ac = alien[i];
1096		if (ac) {
1097			spin_lock_irqsave(&ac->lock, flags);
1098			__drain_alien_cache(cachep, ac, i);
1099			spin_unlock_irqrestore(&ac->lock, flags);
 
 
 
 
1100		}
1101	}
1102}
1103
1104static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 
1105{
1106	struct slab *slabp = virt_to_slab(objp);
1107	int nodeid = slabp->nodeid;
1108	struct kmem_list3 *l3;
1109	struct array_cache *alien = NULL;
1110	int node;
1111
1112	node = numa_mem_id();
1113
1114	/*
1115	 * Make sure we are not freeing a object from another node to the array
1116	 * cache on this cpu.
1117	 */
1118	if (likely(slabp->nodeid == node))
1119		return 0;
1120
1121	l3 = cachep->nodelists[node];
1122	STATS_INC_NODEFREES(cachep);
1123	if (l3->alien && l3->alien[nodeid]) {
1124		alien = l3->alien[nodeid];
 
1125		spin_lock(&alien->lock);
1126		if (unlikely(alien->avail == alien->limit)) {
1127			STATS_INC_ACOVERFLOW(cachep);
1128			__drain_alien_cache(cachep, alien, nodeid);
1129		}
1130		alien->entry[alien->avail++] = objp;
1131		spin_unlock(&alien->lock);
 
1132	} else {
1133		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1134		free_block(cachep, &objp, 1, nodeid);
1135		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
 
 
1136	}
1137	return 1;
1138}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139#endif
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141/*
1142 * Allocates and initializes nodelists for a node on each slab cache, used for
1143 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1144 * will be allocated off-node since memory is not yet online for the new node.
1145 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1146 * already in use.
1147 *
1148 * Must hold cache_chain_mutex.
1149 */
1150static int init_cache_nodelists_node(int node)
1151{
 
1152	struct kmem_cache *cachep;
1153	struct kmem_list3 *l3;
1154	const int memsize = sizeof(struct kmem_list3);
1155
1156	list_for_each_entry(cachep, &cache_chain, next) {
1157		/*
1158		 * Set up the size64 kmemlist for cpu before we can
1159		 * begin anything. Make sure some other cpu on this
1160		 * node has not already allocated this
1161		 */
1162		if (!cachep->nodelists[node]) {
1163			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1164			if (!l3)
1165				return -ENOMEM;
1166			kmem_list3_init(l3);
1167			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1168			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169
1170			/*
1171			 * The l3s don't come and go as CPUs come and
1172			 * go.  cache_chain_mutex is sufficient
1173			 * protection here.
1174			 */
1175			cachep->nodelists[node] = l3;
1176		}
1177
1178		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1179		cachep->nodelists[node]->free_limit =
1180			(1 + nr_cpus_node(node)) *
1181			cachep->batchcount + cachep->num;
1182		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1183	}
1184	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
1186
1187static void __cpuinit cpuup_canceled(long cpu)
 
 
1188{
1189	struct kmem_cache *cachep;
1190	struct kmem_list3 *l3 = NULL;
1191	int node = cpu_to_mem(cpu);
1192	const struct cpumask *mask = cpumask_of_node(node);
1193
1194	list_for_each_entry(cachep, &cache_chain, next) {
1195		struct array_cache *nc;
1196		struct array_cache *shared;
1197		struct array_cache **alien;
 
 
 
 
 
 
 
 
 
 
1198
1199		/* cpu is dead; no one can alloc from it. */
1200		nc = cachep->array[cpu];
1201		cachep->array[cpu] = NULL;
1202		l3 = cachep->nodelists[node];
1203
1204		if (!l3)
1205			goto free_array_cache;
1206
1207		spin_lock_irq(&l3->list_lock);
1208
1209		/* Free limit for this kmem_list3 */
1210		l3->free_limit -= cachep->batchcount;
1211		if (nc)
1212			free_block(cachep, nc->entry, nc->avail, node);
1213
1214		if (!cpumask_empty(mask)) {
1215			spin_unlock_irq(&l3->list_lock);
1216			goto free_array_cache;
1217		}
1218
1219		shared = l3->shared;
1220		if (shared) {
1221			free_block(cachep, shared->entry,
1222				   shared->avail, node);
1223			l3->shared = NULL;
1224		}
1225
1226		alien = l3->alien;
1227		l3->alien = NULL;
1228
1229		spin_unlock_irq(&l3->list_lock);
1230
1231		kfree(shared);
1232		if (alien) {
1233			drain_alien_cache(cachep, alien);
1234			free_alien_cache(alien);
1235		}
1236free_array_cache:
1237		kfree(nc);
 
1238	}
1239	/*
1240	 * In the previous loop, all the objects were freed to
1241	 * the respective cache's slabs,  now we can go ahead and
1242	 * shrink each nodelist to its limit.
1243	 */
1244	list_for_each_entry(cachep, &cache_chain, next) {
1245		l3 = cachep->nodelists[node];
1246		if (!l3)
1247			continue;
1248		drain_freelist(cachep, l3, l3->free_objects);
1249	}
1250}
1251
1252static int __cpuinit cpuup_prepare(long cpu)
1253{
1254	struct kmem_cache *cachep;
1255	struct kmem_list3 *l3 = NULL;
1256	int node = cpu_to_mem(cpu);
1257	int err;
1258
1259	/*
1260	 * We need to do this right in the beginning since
1261	 * alloc_arraycache's are going to use this list.
1262	 * kmalloc_node allows us to add the slab to the right
1263	 * kmem_list3 and not this cpu's kmem_list3
1264	 */
1265	err = init_cache_nodelists_node(node);
1266	if (err < 0)
1267		goto bad;
1268
1269	/*
1270	 * Now we can go ahead with allocating the shared arrays and
1271	 * array caches
1272	 */
1273	list_for_each_entry(cachep, &cache_chain, next) {
1274		struct array_cache *nc;
1275		struct array_cache *shared = NULL;
1276		struct array_cache **alien = NULL;
1277
1278		nc = alloc_arraycache(node, cachep->limit,
1279					cachep->batchcount, GFP_KERNEL);
1280		if (!nc)
1281			goto bad;
1282		if (cachep->shared) {
1283			shared = alloc_arraycache(node,
1284				cachep->shared * cachep->batchcount,
1285				0xbaadf00d, GFP_KERNEL);
1286			if (!shared) {
1287				kfree(nc);
1288				goto bad;
1289			}
1290		}
1291		if (use_alien_caches) {
1292			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1293			if (!alien) {
1294				kfree(shared);
1295				kfree(nc);
1296				goto bad;
1297			}
1298		}
1299		cachep->array[cpu] = nc;
1300		l3 = cachep->nodelists[node];
1301		BUG_ON(!l3);
1302
1303		spin_lock_irq(&l3->list_lock);
1304		if (!l3->shared) {
1305			/*
1306			 * We are serialised from CPU_DEAD or
1307			 * CPU_UP_CANCELLED by the cpucontrol lock
1308			 */
1309			l3->shared = shared;
1310			shared = NULL;
1311		}
1312#ifdef CONFIG_NUMA
1313		if (!l3->alien) {
1314			l3->alien = alien;
1315			alien = NULL;
1316		}
1317#endif
1318		spin_unlock_irq(&l3->list_lock);
1319		kfree(shared);
1320		free_alien_cache(alien);
1321		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1322			slab_set_debugobj_lock_classes_node(cachep, node);
1323	}
1324	init_node_lock_keys(node);
1325
1326	return 0;
1327bad:
1328	cpuup_canceled(cpu);
1329	return -ENOMEM;
1330}
1331
1332static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1333				    unsigned long action, void *hcpu)
1334{
1335	long cpu = (long)hcpu;
1336	int err = 0;
 
 
 
 
 
1337
1338	switch (action) {
1339	case CPU_UP_PREPARE:
1340	case CPU_UP_PREPARE_FROZEN:
1341		mutex_lock(&cache_chain_mutex);
1342		err = cpuup_prepare(cpu);
1343		mutex_unlock(&cache_chain_mutex);
1344		break;
1345	case CPU_ONLINE:
1346	case CPU_ONLINE_FROZEN:
1347		start_cpu_timer(cpu);
1348		break;
1349#ifdef CONFIG_HOTPLUG_CPU
1350  	case CPU_DOWN_PREPARE:
1351  	case CPU_DOWN_PREPARE_FROZEN:
1352		/*
1353		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1354		 * held so that if cache_reap() is invoked it cannot do
1355		 * anything expensive but will only modify reap_work
1356		 * and reschedule the timer.
1357		*/
1358		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1359		/* Now the cache_reaper is guaranteed to be not running. */
1360		per_cpu(slab_reap_work, cpu).work.func = NULL;
1361  		break;
1362  	case CPU_DOWN_FAILED:
1363  	case CPU_DOWN_FAILED_FROZEN:
1364		start_cpu_timer(cpu);
1365  		break;
1366	case CPU_DEAD:
1367	case CPU_DEAD_FROZEN:
1368		/*
1369		 * Even if all the cpus of a node are down, we don't free the
1370		 * kmem_list3 of any cache. This to avoid a race between
1371		 * cpu_down, and a kmalloc allocation from another cpu for
1372		 * memory from the node of the cpu going down.  The list3
1373		 * structure is usually allocated from kmem_cache_create() and
1374		 * gets destroyed at kmem_cache_destroy().
1375		 */
1376		/* fall through */
1377#endif
1378	case CPU_UP_CANCELED:
1379	case CPU_UP_CANCELED_FROZEN:
1380		mutex_lock(&cache_chain_mutex);
1381		cpuup_canceled(cpu);
1382		mutex_unlock(&cache_chain_mutex);
1383		break;
1384	}
1385	return notifier_from_errno(err);
1386}
1387
1388static struct notifier_block __cpuinitdata cpucache_notifier = {
1389	&cpuup_callback, NULL, 0
1390};
 
 
 
 
 
 
 
 
 
 
1391
1392#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1393/*
1394 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1395 * Returns -EBUSY if all objects cannot be drained so that the node is not
1396 * removed.
1397 *
1398 * Must hold cache_chain_mutex.
1399 */
1400static int __meminit drain_cache_nodelists_node(int node)
1401{
1402	struct kmem_cache *cachep;
1403	int ret = 0;
1404
1405	list_for_each_entry(cachep, &cache_chain, next) {
1406		struct kmem_list3 *l3;
1407
1408		l3 = cachep->nodelists[node];
1409		if (!l3)
1410			continue;
1411
1412		drain_freelist(cachep, l3, l3->free_objects);
1413
1414		if (!list_empty(&l3->slabs_full) ||
1415		    !list_empty(&l3->slabs_partial)) {
1416			ret = -EBUSY;
1417			break;
1418		}
1419	}
1420	return ret;
1421}
1422
1423static int __meminit slab_memory_callback(struct notifier_block *self,
1424					unsigned long action, void *arg)
1425{
1426	struct memory_notify *mnb = arg;
1427	int ret = 0;
1428	int nid;
1429
1430	nid = mnb->status_change_nid;
1431	if (nid < 0)
1432		goto out;
1433
1434	switch (action) {
1435	case MEM_GOING_ONLINE:
1436		mutex_lock(&cache_chain_mutex);
1437		ret = init_cache_nodelists_node(nid);
1438		mutex_unlock(&cache_chain_mutex);
1439		break;
1440	case MEM_GOING_OFFLINE:
1441		mutex_lock(&cache_chain_mutex);
1442		ret = drain_cache_nodelists_node(nid);
1443		mutex_unlock(&cache_chain_mutex);
1444		break;
1445	case MEM_ONLINE:
1446	case MEM_OFFLINE:
1447	case MEM_CANCEL_ONLINE:
1448	case MEM_CANCEL_OFFLINE:
1449		break;
1450	}
1451out:
1452	return notifier_from_errno(ret);
1453}
1454#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1455
1456/*
1457 * swap the static kmem_list3 with kmalloced memory
1458 */
1459static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1460				int nodeid)
1461{
1462	struct kmem_list3 *ptr;
1463
1464	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1465	BUG_ON(!ptr);
1466
1467	memcpy(ptr, list, sizeof(struct kmem_list3));
1468	/*
1469	 * Do not assume that spinlocks can be initialized via memcpy:
1470	 */
1471	spin_lock_init(&ptr->list_lock);
1472
1473	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1474	cachep->nodelists[nodeid] = ptr;
1475}
1476
1477/*
1478 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1479 * size of kmem_list3.
1480 */
1481static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1482{
1483	int node;
1484
1485	for_each_online_node(node) {
1486		cachep->nodelists[node] = &initkmem_list3[index + node];
1487		cachep->nodelists[node]->next_reap = jiffies +
1488		    REAPTIMEOUT_LIST3 +
1489		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1490	}
1491}
1492
1493/*
1494 * Initialisation.  Called after the page allocator have been initialised and
1495 * before smp_init().
1496 */
1497void __init kmem_cache_init(void)
1498{
1499	size_t left_over;
1500	struct cache_sizes *sizes;
1501	struct cache_names *names;
1502	int i;
1503	int order;
1504	int node;
1505
1506	if (num_possible_nodes() == 1)
 
 
 
 
1507		use_alien_caches = 0;
1508
1509	for (i = 0; i < NUM_INIT_LISTS; i++) {
1510		kmem_list3_init(&initkmem_list3[i]);
1511		if (i < MAX_NUMNODES)
1512			cache_cache.nodelists[i] = NULL;
1513	}
1514	set_up_list3s(&cache_cache, CACHE_CACHE);
1515
1516	/*
1517	 * Fragmentation resistance on low memory - only use bigger
1518	 * page orders on machines with more than 32MB of memory if
1519	 * not overridden on the command line.
1520	 */
1521	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1522		slab_max_order = SLAB_MAX_ORDER_HI;
1523
1524	/* Bootstrap is tricky, because several objects are allocated
1525	 * from caches that do not exist yet:
1526	 * 1) initialize the cache_cache cache: it contains the struct
1527	 *    kmem_cache structures of all caches, except cache_cache itself:
1528	 *    cache_cache is statically allocated.
1529	 *    Initially an __init data area is used for the head array and the
1530	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1531	 *    array at the end of the bootstrap.
1532	 * 2) Create the first kmalloc cache.
1533	 *    The struct kmem_cache for the new cache is allocated normally.
1534	 *    An __init data area is used for the head array.
1535	 * 3) Create the remaining kmalloc caches, with minimally sized
1536	 *    head arrays.
1537	 * 4) Replace the __init data head arrays for cache_cache and the first
1538	 *    kmalloc cache with kmalloc allocated arrays.
1539	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1540	 *    the other cache's with kmalloc allocated memory.
1541	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1542	 */
1543
1544	node = numa_mem_id();
1545
1546	/* 1) create the cache_cache */
1547	INIT_LIST_HEAD(&cache_chain);
1548	list_add(&cache_cache.next, &cache_chain);
1549	cache_cache.colour_off = cache_line_size();
1550	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1551	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1552
1553	/*
1554	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1555	 */
1556	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1557				  nr_node_ids * sizeof(struct kmem_list3 *);
1558#if DEBUG
1559	cache_cache.obj_size = cache_cache.buffer_size;
1560#endif
1561	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1562					cache_line_size());
1563	cache_cache.reciprocal_buffer_size =
1564		reciprocal_value(cache_cache.buffer_size);
1565
1566	for (order = 0; order < MAX_ORDER; order++) {
1567		cache_estimate(order, cache_cache.buffer_size,
1568			cache_line_size(), 0, &left_over, &cache_cache.num);
1569		if (cache_cache.num)
1570			break;
1571	}
1572	BUG_ON(!cache_cache.num);
1573	cache_cache.gfporder = order;
1574	cache_cache.colour = left_over / cache_cache.colour_off;
1575	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1576				      sizeof(struct slab), cache_line_size());
1577
1578	/* 2+3) create the kmalloc caches */
1579	sizes = malloc_sizes;
1580	names = cache_names;
1581
1582	/*
1583	 * Initialize the caches that provide memory for the array cache and the
1584	 * kmem_list3 structures first.  Without this, further allocations will
1585	 * bug.
1586	 */
1587
1588	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1589					sizes[INDEX_AC].cs_size,
1590					ARCH_KMALLOC_MINALIGN,
1591					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1592					NULL);
1593
1594	if (INDEX_AC != INDEX_L3) {
1595		sizes[INDEX_L3].cs_cachep =
1596			kmem_cache_create(names[INDEX_L3].name,
1597				sizes[INDEX_L3].cs_size,
1598				ARCH_KMALLOC_MINALIGN,
1599				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1600				NULL);
1601	}
1602
1603	slab_early_init = 0;
1604
1605	while (sizes->cs_size != ULONG_MAX) {
1606		/*
1607		 * For performance, all the general caches are L1 aligned.
1608		 * This should be particularly beneficial on SMP boxes, as it
1609		 * eliminates "false sharing".
1610		 * Note for systems short on memory removing the alignment will
1611		 * allow tighter packing of the smaller caches.
1612		 */
1613		if (!sizes->cs_cachep) {
1614			sizes->cs_cachep = kmem_cache_create(names->name,
1615					sizes->cs_size,
1616					ARCH_KMALLOC_MINALIGN,
1617					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1618					NULL);
1619		}
1620#ifdef CONFIG_ZONE_DMA
1621		sizes->cs_dmacachep = kmem_cache_create(
1622					names->name_dma,
1623					sizes->cs_size,
1624					ARCH_KMALLOC_MINALIGN,
1625					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1626						SLAB_PANIC,
1627					NULL);
1628#endif
1629		sizes++;
1630		names++;
1631	}
1632	/* 4) Replace the bootstrap head arrays */
1633	{
1634		struct array_cache *ptr;
1635
1636		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1637
1638		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1639		memcpy(ptr, cpu_cache_get(&cache_cache),
1640		       sizeof(struct arraycache_init));
1641		/*
1642		 * Do not assume that spinlocks can be initialized via memcpy:
1643		 */
1644		spin_lock_init(&ptr->lock);
1645
1646		cache_cache.array[smp_processor_id()] = ptr;
1647
1648		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1649
1650		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1651		       != &initarray_generic.cache);
1652		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1653		       sizeof(struct arraycache_init));
1654		/*
1655		 * Do not assume that spinlocks can be initialized via memcpy:
1656		 */
1657		spin_lock_init(&ptr->lock);
1658
1659		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1660		    ptr;
1661	}
1662	/* 5) Replace the bootstrap kmem_list3's */
1663	{
1664		int nid;
1665
1666		for_each_online_node(nid) {
1667			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1668
1669			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1670				  &initkmem_list3[SIZE_AC + nid], nid);
1671
1672			if (INDEX_AC != INDEX_L3) {
1673				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1674					  &initkmem_list3[SIZE_L3 + nid], nid);
1675			}
1676		}
1677	}
1678
1679	g_cpucache_up = EARLY;
1680}
1681
1682void __init kmem_cache_init_late(void)
1683{
1684	struct kmem_cache *cachep;
1685
1686	g_cpucache_up = LATE;
1687
1688	/* Annotate slab for lockdep -- annotate the malloc caches */
1689	init_lock_keys();
1690
1691	/* 6) resize the head arrays to their final sizes */
1692	mutex_lock(&cache_chain_mutex);
1693	list_for_each_entry(cachep, &cache_chain, next)
1694		if (enable_cpucache(cachep, GFP_NOWAIT))
1695			BUG();
1696	mutex_unlock(&cache_chain_mutex);
1697
1698	/* Done! */
1699	g_cpucache_up = FULL;
1700
1701	/*
1702	 * Register a cpu startup notifier callback that initializes
1703	 * cpu_cache_get for all new cpus
1704	 */
1705	register_cpu_notifier(&cpucache_notifier);
1706
1707#ifdef CONFIG_NUMA
1708	/*
1709	 * Register a memory hotplug callback that initializes and frees
1710	 * nodelists.
1711	 */
1712	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1713#endif
1714
1715	/*
1716	 * The reap timers are started later, with a module init call: That part
1717	 * of the kernel is not yet operational.
1718	 */
1719}
1720
1721static int __init cpucache_init(void)
1722{
1723	int cpu;
1724
1725	/*
1726	 * Register the timers that return unneeded pages to the page allocator
1727	 */
1728	for_each_online_cpu(cpu)
1729		start_cpu_timer(cpu);
 
 
1730	return 0;
1731}
1732__initcall(cpucache_init);
1733
1734static noinline void
1735slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1736{
1737	struct kmem_list3 *l3;
1738	struct slab *slabp;
1739	unsigned long flags;
1740	int node;
 
 
 
 
 
1741
1742	printk(KERN_WARNING
1743		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1744		nodeid, gfpflags);
1745	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1746		cachep->name, cachep->buffer_size, cachep->gfporder);
1747
1748	for_each_online_node(node) {
1749		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1750		unsigned long active_slabs = 0, num_slabs = 0;
1751
1752		l3 = cachep->nodelists[node];
1753		if (!l3)
1754			continue;
 
 
1755
1756		spin_lock_irqsave(&l3->list_lock, flags);
1757		list_for_each_entry(slabp, &l3->slabs_full, list) {
1758			active_objs += cachep->num;
1759			active_slabs++;
1760		}
1761		list_for_each_entry(slabp, &l3->slabs_partial, list) {
1762			active_objs += slabp->inuse;
1763			active_slabs++;
1764		}
1765		list_for_each_entry(slabp, &l3->slabs_free, list)
1766			num_slabs++;
1767
1768		free_objects += l3->free_objects;
1769		spin_unlock_irqrestore(&l3->list_lock, flags);
1770
1771		num_slabs += active_slabs;
1772		num_objs = num_slabs * cachep->num;
1773		printk(KERN_WARNING
1774			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1775			node, active_slabs, num_slabs, active_objs, num_objs,
1776			free_objects);
1777	}
 
1778}
1779
1780/*
1781 * Interface to system's page allocator. No need to hold the cache-lock.
 
1782 *
1783 * If we requested dmaable memory, we will get it. Even if we
1784 * did not request dmaable memory, we might get it, but that
1785 * would be relatively rare and ignorable.
1786 */
1787static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
1788{
1789	struct page *page;
1790	int nr_pages;
1791	int i;
1792
1793#ifndef CONFIG_MMU
1794	/*
1795	 * Nommu uses slab's for process anonymous memory allocations, and thus
1796	 * requires __GFP_COMP to properly refcount higher order allocations
1797	 */
1798	flags |= __GFP_COMP;
1799#endif
1800
1801	flags |= cachep->gfpflags;
1802	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1803		flags |= __GFP_RECLAIMABLE;
 
 
1804
1805	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1806	if (!page) {
1807		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1808			slab_out_of_memory(cachep, flags, nodeid);
1809		return NULL;
1810	}
1811
1812	nr_pages = (1 << cachep->gfporder);
1813	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1814		add_zone_page_state(page_zone(page),
1815			NR_SLAB_RECLAIMABLE, nr_pages);
1816	else
1817		add_zone_page_state(page_zone(page),
1818			NR_SLAB_UNRECLAIMABLE, nr_pages);
1819	for (i = 0; i < nr_pages; i++)
1820		__SetPageSlab(page + i);
1821
1822	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1823		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
 
 
1824
1825		if (cachep->ctor)
1826			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1827		else
1828			kmemcheck_mark_unallocated_pages(page, nr_pages);
1829	}
1830
1831	return page_address(page);
1832}
1833
1834/*
1835 * Interface to system's page release.
1836 */
1837static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1838{
1839	unsigned long i = (1 << cachep->gfporder);
1840	struct page *page = virt_to_page(addr);
1841	const unsigned long nr_freed = i;
1842
1843	kmemcheck_free_shadow(page, cachep->gfporder);
1844
1845	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1846		sub_zone_page_state(page_zone(page),
1847				NR_SLAB_RECLAIMABLE, nr_freed);
1848	else
1849		sub_zone_page_state(page_zone(page),
1850				NR_SLAB_UNRECLAIMABLE, nr_freed);
1851	while (i--) {
1852		BUG_ON(!PageSlab(page));
1853		__ClearPageSlab(page);
1854		page++;
1855	}
 
1856	if (current->reclaim_state)
1857		current->reclaim_state->reclaimed_slab += nr_freed;
1858	free_pages((unsigned long)addr, cachep->gfporder);
 
1859}
1860
1861static void kmem_rcu_free(struct rcu_head *head)
1862{
1863	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1864	struct kmem_cache *cachep = slab_rcu->cachep;
 
 
 
1865
1866	kmem_freepages(cachep, slab_rcu->addr);
1867	if (OFF_SLAB(cachep))
1868		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1869}
1870
1871#if DEBUG
 
 
 
 
 
 
 
 
1872
1873#ifdef CONFIG_DEBUG_PAGEALLOC
1874static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1875			    unsigned long caller)
1876{
1877	int size = obj_size(cachep);
1878
1879	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1880
1881	if (size < 5 * sizeof(unsigned long))
1882		return;
1883
1884	*addr++ = 0x12345678;
1885	*addr++ = caller;
1886	*addr++ = smp_processor_id();
1887	size -= 3 * sizeof(unsigned long);
1888	{
1889		unsigned long *sptr = &caller;
1890		unsigned long svalue;
1891
1892		while (!kstack_end(sptr)) {
1893			svalue = *sptr++;
1894			if (kernel_text_address(svalue)) {
1895				*addr++ = svalue;
1896				size -= sizeof(unsigned long);
1897				if (size <= sizeof(unsigned long))
1898					break;
1899			}
1900		}
1901
1902	}
1903	*addr++ = 0x87654321;
1904}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1905#endif
1906
1907static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1908{
1909	int size = obj_size(cachep);
1910	addr = &((char *)addr)[obj_offset(cachep)];
1911
1912	memset(addr, val, size);
1913	*(unsigned char *)(addr + size - 1) = POISON_END;
1914}
1915
1916static void dump_line(char *data, int offset, int limit)
1917{
1918	int i;
1919	unsigned char error = 0;
1920	int bad_count = 0;
1921
1922	printk(KERN_ERR "%03x: ", offset);
1923	for (i = 0; i < limit; i++) {
1924		if (data[offset + i] != POISON_FREE) {
1925			error = data[offset + i];
1926			bad_count++;
1927		}
1928	}
1929	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1930			&data[offset], limit, 1);
1931
1932	if (bad_count == 1) {
1933		error ^= POISON_FREE;
1934		if (!(error & (error - 1))) {
1935			printk(KERN_ERR "Single bit error detected. Probably "
1936					"bad RAM.\n");
1937#ifdef CONFIG_X86
1938			printk(KERN_ERR "Run memtest86+ or a similar memory "
1939					"test tool.\n");
1940#else
1941			printk(KERN_ERR "Run a memory test tool.\n");
1942#endif
1943		}
1944	}
1945}
1946#endif
1947
1948#if DEBUG
1949
1950static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1951{
1952	int i, size;
1953	char *realobj;
1954
1955	if (cachep->flags & SLAB_RED_ZONE) {
1956		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1957			*dbg_redzone1(cachep, objp),
1958			*dbg_redzone2(cachep, objp));
1959	}
1960
1961	if (cachep->flags & SLAB_STORE_USER) {
1962		printk(KERN_ERR "Last user: [<%p>]",
1963			*dbg_userword(cachep, objp));
1964		print_symbol("(%s)",
1965				(unsigned long)*dbg_userword(cachep, objp));
1966		printk("\n");
1967	}
1968	realobj = (char *)objp + obj_offset(cachep);
1969	size = obj_size(cachep);
1970	for (i = 0; i < size && lines; i += 16, lines--) {
1971		int limit;
1972		limit = 16;
1973		if (i + limit > size)
1974			limit = size - i;
1975		dump_line(realobj, i, limit);
1976	}
1977}
1978
1979static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1980{
1981	char *realobj;
1982	int size, i;
1983	int lines = 0;
1984
 
 
 
1985	realobj = (char *)objp + obj_offset(cachep);
1986	size = obj_size(cachep);
1987
1988	for (i = 0; i < size; i++) {
1989		char exp = POISON_FREE;
1990		if (i == size - 1)
1991			exp = POISON_END;
1992		if (realobj[i] != exp) {
1993			int limit;
1994			/* Mismatch ! */
1995			/* Print header */
1996			if (lines == 0) {
1997				printk(KERN_ERR
1998					"Slab corruption (%s): %s start=%p, len=%d\n",
1999					print_tainted(), cachep->name, realobj, size);
2000				print_objinfo(cachep, objp, 0);
2001			}
2002			/* Hexdump the affected line */
2003			i = (i / 16) * 16;
2004			limit = 16;
2005			if (i + limit > size)
2006				limit = size - i;
2007			dump_line(realobj, i, limit);
2008			i += 16;
2009			lines++;
2010			/* Limit to 5 lines */
2011			if (lines > 5)
2012				break;
2013		}
2014	}
2015	if (lines != 0) {
2016		/* Print some data about the neighboring objects, if they
2017		 * exist:
2018		 */
2019		struct slab *slabp = virt_to_slab(objp);
2020		unsigned int objnr;
2021
2022		objnr = obj_to_index(cachep, slabp, objp);
2023		if (objnr) {
2024			objp = index_to_obj(cachep, slabp, objnr - 1);
2025			realobj = (char *)objp + obj_offset(cachep);
2026			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2027			       realobj, size);
2028			print_objinfo(cachep, objp, 2);
2029		}
2030		if (objnr + 1 < cachep->num) {
2031			objp = index_to_obj(cachep, slabp, objnr + 1);
2032			realobj = (char *)objp + obj_offset(cachep);
2033			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2034			       realobj, size);
2035			print_objinfo(cachep, objp, 2);
2036		}
2037	}
2038}
2039#endif
2040
2041#if DEBUG
2042static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
 
2043{
2044	int i;
 
 
 
 
 
 
2045	for (i = 0; i < cachep->num; i++) {
2046		void *objp = index_to_obj(cachep, slabp, i);
2047
2048		if (cachep->flags & SLAB_POISON) {
2049#ifdef CONFIG_DEBUG_PAGEALLOC
2050			if (cachep->buffer_size % PAGE_SIZE == 0 &&
2051					OFF_SLAB(cachep))
2052				kernel_map_pages(virt_to_page(objp),
2053					cachep->buffer_size / PAGE_SIZE, 1);
2054			else
2055				check_poison_obj(cachep, objp);
2056#else
2057			check_poison_obj(cachep, objp);
2058#endif
2059		}
2060		if (cachep->flags & SLAB_RED_ZONE) {
2061			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2062				slab_error(cachep, "start of a freed object "
2063					   "was overwritten");
2064			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2065				slab_error(cachep, "end of a freed object "
2066					   "was overwritten");
2067		}
2068	}
2069}
2070#else
2071static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
 
2072{
2073}
2074#endif
2075
2076/**
2077 * slab_destroy - destroy and release all objects in a slab
2078 * @cachep: cache pointer being destroyed
2079 * @slabp: slab pointer being destroyed
2080 *
2081 * Destroy all the objs in a slab, and release the mem back to the system.
2082 * Before calling the slab must have been unlinked from the cache.  The
2083 * cache-lock is not held/needed.
2084 */
2085static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2086{
2087	void *addr = slabp->s_mem - slabp->colouroff;
2088
2089	slab_destroy_debugcheck(cachep, slabp);
2090	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2091		struct slab_rcu *slab_rcu;
 
 
 
2092
2093		slab_rcu = (struct slab_rcu *)slabp;
2094		slab_rcu->cachep = cachep;
2095		slab_rcu->addr = addr;
2096		call_rcu(&slab_rcu->head, kmem_rcu_free);
2097	} else {
2098		kmem_freepages(cachep, addr);
2099		if (OFF_SLAB(cachep))
2100			kmem_cache_free(cachep->slabp_cache, slabp);
2101	}
2102}
2103
2104static void __kmem_cache_destroy(struct kmem_cache *cachep)
2105{
2106	int i;
2107	struct kmem_list3 *l3;
2108
2109	for_each_online_cpu(i)
2110	    kfree(cachep->array[i]);
2111
2112	/* NUMA: free the list3 structures */
2113	for_each_online_node(i) {
2114		l3 = cachep->nodelists[i];
2115		if (l3) {
2116			kfree(l3->shared);
2117			free_alien_cache(l3->alien);
2118			kfree(l3);
2119		}
2120	}
2121	kmem_cache_free(&cache_cache, cachep);
2122}
2123
2124
2125/**
2126 * calculate_slab_order - calculate size (page order) of slabs
2127 * @cachep: pointer to the cache that is being created
2128 * @size: size of objects to be created in this cache.
2129 * @align: required alignment for the objects.
2130 * @flags: slab allocation flags
2131 *
2132 * Also calculates the number of objects per slab.
2133 *
2134 * This could be made much more intelligent.  For now, try to avoid using
2135 * high order pages for slabs.  When the gfp() functions are more friendly
2136 * towards high-order requests, this should be changed.
2137 */
2138static size_t calculate_slab_order(struct kmem_cache *cachep,
2139			size_t size, size_t align, unsigned long flags)
2140{
2141	unsigned long offslab_limit;
2142	size_t left_over = 0;
2143	int gfporder;
2144
2145	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2146		unsigned int num;
2147		size_t remainder;
2148
2149		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2150		if (!num)
2151			continue;
2152
 
 
 
 
2153		if (flags & CFLGS_OFF_SLAB) {
 
 
 
 
 
 
 
 
2154			/*
2155			 * Max number of objs-per-slab for caches which
2156			 * use off-slab slabs. Needed to avoid a possible
2157			 * looping condition in cache_grow().
2158			 */
2159			offslab_limit = size - sizeof(struct slab);
2160			offslab_limit /= sizeof(kmem_bufctl_t);
2161
2162 			if (num > offslab_limit)
2163				break;
 
2164		}
2165
2166		/* Found something acceptable - save it away */
2167		cachep->num = num;
2168		cachep->gfporder = gfporder;
2169		left_over = remainder;
2170
2171		/*
2172		 * A VFS-reclaimable slab tends to have most allocations
2173		 * as GFP_NOFS and we really don't want to have to be allocating
2174		 * higher-order pages when we are unable to shrink dcache.
2175		 */
2176		if (flags & SLAB_RECLAIM_ACCOUNT)
2177			break;
2178
2179		/*
2180		 * Large number of objects is good, but very large slabs are
2181		 * currently bad for the gfp()s.
2182		 */
2183		if (gfporder >= slab_max_order)
2184			break;
2185
2186		/*
2187		 * Acceptable internal fragmentation?
2188		 */
2189		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2190			break;
2191	}
2192	return left_over;
2193}
2194
2195static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
 
2196{
2197	if (g_cpucache_up == FULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198		return enable_cpucache(cachep, gfp);
2199
2200	if (g_cpucache_up == NONE) {
2201		/*
2202		 * Note: the first kmem_cache_create must create the cache
2203		 * that's used by kmalloc(24), otherwise the creation of
2204		 * further caches will BUG().
2205		 */
2206		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2207
2208		/*
2209		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2210		 * the first cache, then we need to set up all its list3s,
2211		 * otherwise the creation of further caches will BUG().
2212		 */
2213		set_up_list3s(cachep, SIZE_AC);
2214		if (INDEX_AC == INDEX_L3)
2215			g_cpucache_up = PARTIAL_L3;
2216		else
2217			g_cpucache_up = PARTIAL_AC;
2218	} else {
2219		cachep->array[smp_processor_id()] =
2220			kmalloc(sizeof(struct arraycache_init), gfp);
2221
2222		if (g_cpucache_up == PARTIAL_AC) {
2223			set_up_list3s(cachep, SIZE_L3);
2224			g_cpucache_up = PARTIAL_L3;
2225		} else {
2226			int node;
2227			for_each_online_node(node) {
2228				cachep->nodelists[node] =
2229				    kmalloc_node(sizeof(struct kmem_list3),
2230						gfp, node);
2231				BUG_ON(!cachep->nodelists[node]);
2232				kmem_list3_init(cachep->nodelists[node]);
2233			}
2234		}
2235	}
2236	cachep->nodelists[numa_mem_id()]->next_reap =
2237			jiffies + REAPTIMEOUT_LIST3 +
2238			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
2239
2240	cpu_cache_get(cachep)->avail = 0;
2241	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2242	cpu_cache_get(cachep)->batchcount = 1;
2243	cpu_cache_get(cachep)->touched = 0;
2244	cachep->batchcount = 1;
2245	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2246	return 0;
2247}
2248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249/**
2250 * kmem_cache_create - Create a cache.
2251 * @name: A string which is used in /proc/slabinfo to identify this cache.
2252 * @size: The size of objects to be created in this cache.
2253 * @align: The required alignment for the objects.
2254 * @flags: SLAB flags
2255 * @ctor: A constructor for the objects.
2256 *
2257 * Returns a ptr to the cache on success, NULL on failure.
2258 * Cannot be called within a int, but can be interrupted.
2259 * The @ctor is run when new pages are allocated by the cache.
2260 *
2261 * @name must be valid until the cache is destroyed. This implies that
2262 * the module calling this has to destroy the cache before getting unloaded.
2263 *
2264 * The flags are
2265 *
2266 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2267 * to catch references to uninitialised memory.
2268 *
2269 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2270 * for buffer overruns.
2271 *
2272 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2273 * cacheline.  This can be beneficial if you're counting cycles as closely
2274 * as davem.
2275 */
2276struct kmem_cache *
2277kmem_cache_create (const char *name, size_t size, size_t align,
2278	unsigned long flags, void (*ctor)(void *))
2279{
2280	size_t left_over, slab_size, ralign;
2281	struct kmem_cache *cachep = NULL, *pc;
2282	gfp_t gfp;
2283
2284	/*
2285	 * Sanity checks... these are all serious usage bugs.
2286	 */
2287	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2288	    size > KMALLOC_MAX_SIZE) {
2289		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2290				name);
2291		BUG();
2292	}
2293
2294	/*
2295	 * We use cache_chain_mutex to ensure a consistent view of
2296	 * cpu_online_mask as well.  Please see cpuup_callback
2297	 */
2298	if (slab_is_available()) {
2299		get_online_cpus();
2300		mutex_lock(&cache_chain_mutex);
2301	}
2302
2303	list_for_each_entry(pc, &cache_chain, next) {
2304		char tmp;
2305		int res;
2306
2307		/*
2308		 * This happens when the module gets unloaded and doesn't
2309		 * destroy its slab cache and no-one else reuses the vmalloc
2310		 * area of the module.  Print a warning.
2311		 */
2312		res = probe_kernel_address(pc->name, tmp);
2313		if (res) {
2314			printk(KERN_ERR
2315			       "SLAB: cache with size %d has lost its name\n",
2316			       pc->buffer_size);
2317			continue;
2318		}
2319
2320		if (!strcmp(pc->name, name)) {
2321			printk(KERN_ERR
2322			       "kmem_cache_create: duplicate cache %s\n", name);
2323			dump_stack();
2324			goto oops;
2325		}
2326	}
2327
2328#if DEBUG
2329	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2330#if FORCED_DEBUG
2331	/*
2332	 * Enable redzoning and last user accounting, except for caches with
2333	 * large objects, if the increased size would increase the object size
2334	 * above the next power of two: caches with object sizes just above a
2335	 * power of two have a significant amount of internal fragmentation.
2336	 */
2337	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2338						2 * sizeof(unsigned long long)))
2339		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2340	if (!(flags & SLAB_DESTROY_BY_RCU))
2341		flags |= SLAB_POISON;
2342#endif
2343	if (flags & SLAB_DESTROY_BY_RCU)
2344		BUG_ON(flags & SLAB_POISON);
2345#endif
2346	/*
2347	 * Always checks flags, a caller might be expecting debug support which
2348	 * isn't available.
2349	 */
2350	BUG_ON(flags & ~CREATE_MASK);
2351
2352	/*
2353	 * Check that size is in terms of words.  This is needed to avoid
2354	 * unaligned accesses for some archs when redzoning is used, and makes
2355	 * sure any on-slab bufctl's are also correctly aligned.
2356	 */
2357	if (size & (BYTES_PER_WORD - 1)) {
2358		size += (BYTES_PER_WORD - 1);
2359		size &= ~(BYTES_PER_WORD - 1);
2360	}
2361
2362	/* calculate the final buffer alignment: */
2363
2364	/* 1) arch recommendation: can be overridden for debug */
2365	if (flags & SLAB_HWCACHE_ALIGN) {
2366		/*
2367		 * Default alignment: as specified by the arch code.  Except if
2368		 * an object is really small, then squeeze multiple objects into
2369		 * one cacheline.
2370		 */
2371		ralign = cache_line_size();
2372		while (size <= ralign / 2)
2373			ralign /= 2;
2374	} else {
2375		ralign = BYTES_PER_WORD;
2376	}
2377
2378	/*
2379	 * Redzoning and user store require word alignment or possibly larger.
2380	 * Note this will be overridden by architecture or caller mandated
2381	 * alignment if either is greater than BYTES_PER_WORD.
2382	 */
2383	if (flags & SLAB_STORE_USER)
2384		ralign = BYTES_PER_WORD;
2385
2386	if (flags & SLAB_RED_ZONE) {
2387		ralign = REDZONE_ALIGN;
2388		/* If redzoning, ensure that the second redzone is suitably
2389		 * aligned, by adjusting the object size accordingly. */
2390		size += REDZONE_ALIGN - 1;
2391		size &= ~(REDZONE_ALIGN - 1);
2392	}
2393
2394	/* 2) arch mandated alignment */
2395	if (ralign < ARCH_SLAB_MINALIGN) {
2396		ralign = ARCH_SLAB_MINALIGN;
2397	}
2398	/* 3) caller mandated alignment */
2399	if (ralign < align) {
2400		ralign = align;
2401	}
2402	/* disable debug if necessary */
2403	if (ralign > __alignof__(unsigned long long))
2404		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2405	/*
2406	 * 4) Store it.
2407	 */
2408	align = ralign;
 
 
 
 
2409
2410	if (slab_is_available())
2411		gfp = GFP_KERNEL;
2412	else
2413		gfp = GFP_NOWAIT;
2414
2415	/* Get cache's description obj. */
2416	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2417	if (!cachep)
2418		goto oops;
2419
2420	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2421#if DEBUG
2422	cachep->obj_size = size;
2423
2424	/*
2425	 * Both debugging options require word-alignment which is calculated
2426	 * into align above.
2427	 */
2428	if (flags & SLAB_RED_ZONE) {
2429		/* add space for red zone words */
2430		cachep->obj_offset += sizeof(unsigned long long);
2431		size += 2 * sizeof(unsigned long long);
2432	}
2433	if (flags & SLAB_STORE_USER) {
2434		/* user store requires one word storage behind the end of
2435		 * the real object. But if the second red zone needs to be
2436		 * aligned to 64 bits, we must allow that much space.
2437		 */
2438		if (flags & SLAB_RED_ZONE)
2439			size += REDZONE_ALIGN;
2440		else
2441			size += BYTES_PER_WORD;
2442	}
2443#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2444	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2445	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2446		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2447		size = PAGE_SIZE;
2448	}
2449#endif
2450#endif
2451
 
 
 
2452	/*
2453	 * Determine if the slab management is 'on' or 'off' slab.
2454	 * (bootstrapping cannot cope with offslab caches so don't do
2455	 * it too early on. Always use on-slab management when
2456	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2457	 */
2458	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2459	    !(flags & SLAB_NOLEAKTRACE))
2460		/*
2461		 * Size is large, assume best to place the slab management obj
2462		 * off-slab (should allow better packing of objs).
2463		 */
2464		flags |= CFLGS_OFF_SLAB;
2465
2466	size = ALIGN(size, align);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467
2468	left_over = calculate_slab_order(cachep, size, align, flags);
 
 
 
2469
2470	if (!cachep->num) {
2471		printk(KERN_ERR
2472		       "kmem_cache_create: couldn't create cache %s.\n", name);
2473		kmem_cache_free(&cache_cache, cachep);
2474		cachep = NULL;
2475		goto oops;
2476	}
2477	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2478			  + sizeof(struct slab), align);
2479
2480	/*
2481	 * If the slab has been placed off-slab, and we have enough space then
2482	 * move it on-slab. This is at the expense of any extra colouring.
2483	 */
2484	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2485		flags &= ~CFLGS_OFF_SLAB;
2486		left_over -= slab_size;
2487	}
2488
2489	if (flags & CFLGS_OFF_SLAB) {
2490		/* really off slab. No need for manual alignment */
2491		slab_size =
2492		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2493
2494#ifdef CONFIG_PAGE_POISONING
2495		/* If we're going to use the generic kernel_map_pages()
2496		 * poisoning, then it's going to smash the contents of
2497		 * the redzone and userword anyhow, so switch them off.
2498		 */
2499		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2500			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2501#endif
2502	}
2503
2504	cachep->colour_off = cache_line_size();
2505	/* Offset must be a multiple of the alignment. */
2506	if (cachep->colour_off < align)
2507		cachep->colour_off = align;
2508	cachep->colour = left_over / cachep->colour_off;
2509	cachep->slab_size = slab_size;
2510	cachep->flags = flags;
2511	cachep->gfpflags = 0;
2512	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2513		cachep->gfpflags |= GFP_DMA;
2514	cachep->buffer_size = size;
 
 
2515	cachep->reciprocal_buffer_size = reciprocal_value(size);
2516
2517	if (flags & CFLGS_OFF_SLAB) {
2518		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2519		/*
2520		 * This is a possibility for one of the malloc_sizes caches.
2521		 * But since we go off slab only for object size greater than
2522		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2523		 * this should not happen at all.
2524		 * But leave a BUG_ON for some lucky dude.
2525		 */
2526		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2527	}
2528	cachep->ctor = ctor;
2529	cachep->name = name;
2530
2531	if (setup_cpu_cache(cachep, gfp)) {
2532		__kmem_cache_destroy(cachep);
2533		cachep = NULL;
2534		goto oops;
2535	}
2536
2537	if (flags & SLAB_DEBUG_OBJECTS) {
2538		/*
2539		 * Would deadlock through slab_destroy()->call_rcu()->
2540		 * debug_object_activate()->kmem_cache_alloc().
2541		 */
2542		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2543
2544		slab_set_debugobj_lock_classes(cachep);
2545	}
2546
2547	/* cache setup completed, link it into the list */
2548	list_add(&cachep->next, &cache_chain);
2549oops:
2550	if (!cachep && (flags & SLAB_PANIC))
2551		panic("kmem_cache_create(): failed to create slab `%s'\n",
2552		      name);
2553	if (slab_is_available()) {
2554		mutex_unlock(&cache_chain_mutex);
2555		put_online_cpus();
2556	}
2557	return cachep;
2558}
2559EXPORT_SYMBOL(kmem_cache_create);
2560
2561#if DEBUG
2562static void check_irq_off(void)
2563{
2564	BUG_ON(!irqs_disabled());
2565}
2566
2567static void check_irq_on(void)
2568{
2569	BUG_ON(irqs_disabled());
2570}
2571
 
 
 
 
 
2572static void check_spinlock_acquired(struct kmem_cache *cachep)
2573{
2574#ifdef CONFIG_SMP
2575	check_irq_off();
2576	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2577#endif
2578}
2579
2580static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2581{
2582#ifdef CONFIG_SMP
2583	check_irq_off();
2584	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2585#endif
2586}
2587
2588#else
2589#define check_irq_off()	do { } while(0)
2590#define check_irq_on()	do { } while(0)
 
2591#define check_spinlock_acquired(x) do { } while(0)
2592#define check_spinlock_acquired_node(x, y) do { } while(0)
2593#endif
2594
2595static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2596			struct array_cache *ac,
2597			int force, int node);
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599static void do_drain(void *arg)
2600{
2601	struct kmem_cache *cachep = arg;
2602	struct array_cache *ac;
2603	int node = numa_mem_id();
 
 
2604
2605	check_irq_off();
2606	ac = cpu_cache_get(cachep);
2607	spin_lock(&cachep->nodelists[node]->list_lock);
2608	free_block(cachep, ac->entry, ac->avail, node);
2609	spin_unlock(&cachep->nodelists[node]->list_lock);
 
 
2610	ac->avail = 0;
2611}
2612
2613static void drain_cpu_caches(struct kmem_cache *cachep)
2614{
2615	struct kmem_list3 *l3;
2616	int node;
 
2617
2618	on_each_cpu(do_drain, cachep, 1);
2619	check_irq_on();
2620	for_each_online_node(node) {
2621		l3 = cachep->nodelists[node];
2622		if (l3 && l3->alien)
2623			drain_alien_cache(cachep, l3->alien);
2624	}
 
 
 
2625
2626	for_each_online_node(node) {
2627		l3 = cachep->nodelists[node];
2628		if (l3)
2629			drain_array(cachep, l3, l3->shared, 1, node);
2630	}
2631}
2632
2633/*
2634 * Remove slabs from the list of free slabs.
2635 * Specify the number of slabs to drain in tofree.
2636 *
2637 * Returns the actual number of slabs released.
2638 */
2639static int drain_freelist(struct kmem_cache *cache,
2640			struct kmem_list3 *l3, int tofree)
2641{
2642	struct list_head *p;
2643	int nr_freed;
2644	struct slab *slabp;
2645
2646	nr_freed = 0;
2647	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2648
2649		spin_lock_irq(&l3->list_lock);
2650		p = l3->slabs_free.prev;
2651		if (p == &l3->slabs_free) {
2652			spin_unlock_irq(&l3->list_lock);
2653			goto out;
2654		}
2655
2656		slabp = list_entry(p, struct slab, list);
2657#if DEBUG
2658		BUG_ON(slabp->inuse);
2659#endif
2660		list_del(&slabp->list);
2661		/*
2662		 * Safe to drop the lock. The slab is no longer linked
2663		 * to the cache.
2664		 */
2665		l3->free_objects -= cache->num;
2666		spin_unlock_irq(&l3->list_lock);
2667		slab_destroy(cache, slabp);
2668		nr_freed++;
2669	}
2670out:
2671	return nr_freed;
2672}
2673
2674/* Called with cache_chain_mutex held to protect against cpu hotplug */
2675static int __cache_shrink(struct kmem_cache *cachep)
 
 
 
 
 
 
 
 
 
 
 
2676{
2677	int ret = 0, i = 0;
2678	struct kmem_list3 *l3;
 
2679
2680	drain_cpu_caches(cachep);
2681
2682	check_irq_on();
2683	for_each_online_node(i) {
2684		l3 = cachep->nodelists[i];
2685		if (!l3)
2686			continue;
2687
2688		drain_freelist(cachep, l3, l3->free_objects);
2689
2690		ret += !list_empty(&l3->slabs_full) ||
2691			!list_empty(&l3->slabs_partial);
2692	}
2693	return (ret ? 1 : 0);
2694}
2695
2696/**
2697 * kmem_cache_shrink - Shrink a cache.
2698 * @cachep: The cache to shrink.
2699 *
2700 * Releases as many slabs as possible for a cache.
2701 * To help debugging, a zero exit status indicates all slabs were released.
2702 */
2703int kmem_cache_shrink(struct kmem_cache *cachep)
2704{
2705	int ret;
2706	BUG_ON(!cachep || in_interrupt());
 
2707
2708	get_online_cpus();
2709	mutex_lock(&cache_chain_mutex);
2710	ret = __cache_shrink(cachep);
2711	mutex_unlock(&cache_chain_mutex);
2712	put_online_cpus();
2713	return ret;
2714}
2715EXPORT_SYMBOL(kmem_cache_shrink);
2716
2717/**
2718 * kmem_cache_destroy - delete a cache
2719 * @cachep: the cache to destroy
2720 *
2721 * Remove a &struct kmem_cache object from the slab cache.
2722 *
2723 * It is expected this function will be called by a module when it is
2724 * unloaded.  This will remove the cache completely, and avoid a duplicate
2725 * cache being allocated each time a module is loaded and unloaded, if the
2726 * module doesn't have persistent in-kernel storage across loads and unloads.
2727 *
2728 * The cache must be empty before calling this function.
2729 *
2730 * The caller must guarantee that no one will allocate memory from the cache
2731 * during the kmem_cache_destroy().
2732 */
2733void kmem_cache_destroy(struct kmem_cache *cachep)
2734{
2735	BUG_ON(!cachep || in_interrupt());
 
2736
2737	/* Find the cache in the chain of caches. */
2738	get_online_cpus();
2739	mutex_lock(&cache_chain_mutex);
2740	/*
2741	 * the chain is never empty, cache_cache is never destroyed
2742	 */
2743	list_del(&cachep->next);
2744	if (__cache_shrink(cachep)) {
2745		slab_error(cachep, "Can't free all objects");
2746		list_add(&cachep->next, &cache_chain);
2747		mutex_unlock(&cache_chain_mutex);
2748		put_online_cpus();
2749		return;
2750	}
2751
2752	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2753		rcu_barrier();
2754
2755	__kmem_cache_destroy(cachep);
2756	mutex_unlock(&cache_chain_mutex);
2757	put_online_cpus();
 
 
 
 
2758}
2759EXPORT_SYMBOL(kmem_cache_destroy);
2760
2761/*
2762 * Get the memory for a slab management obj.
2763 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2764 * always come from malloc_sizes caches.  The slab descriptor cannot
2765 * come from the same cache which is getting created because,
2766 * when we are searching for an appropriate cache for these
2767 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2768 * If we are creating a malloc_sizes cache here it would not be visible to
2769 * kmem_find_general_cachep till the initialization is complete.
2770 * Hence we cannot have slabp_cache same as the original cache.
2771 */
2772static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2773				   int colour_off, gfp_t local_flags,
2774				   int nodeid)
2775{
2776	struct slab *slabp;
2777
2778	if (OFF_SLAB(cachep)) {
 
 
 
 
 
 
 
 
 
2779		/* Slab management obj is off-slab. */
2780		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2781					      local_flags, nodeid);
2782		/*
2783		 * If the first object in the slab is leaked (it's allocated
2784		 * but no one has a reference to it), we want to make sure
2785		 * kmemleak does not treat the ->s_mem pointer as a reference
2786		 * to the object. Otherwise we will not report the leak.
2787		 */
2788		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2789				   local_flags);
2790		if (!slabp)
2791			return NULL;
2792	} else {
2793		slabp = objp + colour_off;
2794		colour_off += cachep->slab_size;
 
2795	}
2796	slabp->inuse = 0;
2797	slabp->colouroff = colour_off;
2798	slabp->s_mem = objp + colour_off;
2799	slabp->nodeid = nodeid;
2800	slabp->free = 0;
2801	return slabp;
2802}
2803
2804static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2805{
2806	return (kmem_bufctl_t *) (slabp + 1);
2807}
2808
2809static void cache_init_objs(struct kmem_cache *cachep,
2810			    struct slab *slabp)
 
 
 
 
 
2811{
 
2812	int i;
2813
2814	for (i = 0; i < cachep->num; i++) {
2815		void *objp = index_to_obj(cachep, slabp, i);
2816#if DEBUG
2817		/* need to poison the objs? */
2818		if (cachep->flags & SLAB_POISON)
2819			poison_obj(cachep, objp, POISON_FREE);
2820		if (cachep->flags & SLAB_STORE_USER)
2821			*dbg_userword(cachep, objp) = NULL;
2822
2823		if (cachep->flags & SLAB_RED_ZONE) {
2824			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2825			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2826		}
2827		/*
2828		 * Constructors are not allowed to allocate memory from the same
2829		 * cache which they are a constructor for.  Otherwise, deadlock.
2830		 * They must also be threaded.
2831		 */
2832		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
 
 
2833			cachep->ctor(objp + obj_offset(cachep));
 
 
 
2834
2835		if (cachep->flags & SLAB_RED_ZONE) {
2836			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2837				slab_error(cachep, "constructor overwrote the"
2838					   " end of an object");
2839			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2840				slab_error(cachep, "constructor overwrote the"
2841					   " start of an object");
2842		}
2843		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2844			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2845			kernel_map_pages(virt_to_page(objp),
2846					 cachep->buffer_size / PAGE_SIZE, 0);
2847#else
2848		if (cachep->ctor)
2849			cachep->ctor(objp);
2850#endif
2851		slab_bufctl(slabp)[i] = i + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2852	}
2853	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
 
 
 
 
 
 
 
 
2854}
2855
2856static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
 
2857{
2858	if (CONFIG_ZONE_DMA_FLAG) {
2859		if (flags & GFP_DMA)
2860			BUG_ON(!(cachep->gfpflags & GFP_DMA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		else
2862			BUG_ON(cachep->gfpflags & GFP_DMA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863	}
2864}
2865
2866static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2867				int nodeid)
2868{
2869	void *objp = index_to_obj(cachep, slabp, slabp->free);
2870	kmem_bufctl_t next;
 
 
2871
2872	slabp->inuse++;
2873	next = slab_bufctl(slabp)[slabp->free];
2874#if DEBUG
2875	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2876	WARN_ON(slabp->nodeid != nodeid);
2877#endif
2878	slabp->free = next;
2879
2880	return objp;
2881}
2882
2883static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2884				void *objp, int nodeid)
2885{
2886	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2887
2888#if DEBUG
2889	/* Verify that the slab belongs to the intended node */
2890	WARN_ON(slabp->nodeid != nodeid);
2891
2892	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2893		printk(KERN_ERR "slab: double free detected in cache "
2894				"'%s', objp %p\n", cachep->name, objp);
2895		BUG();
 
 
 
2896	}
2897#endif
2898	slab_bufctl(slabp)[objnr] = slabp->free;
2899	slabp->free = objnr;
2900	slabp->inuse--;
 
 
2901}
2902
2903/*
2904 * Map pages beginning at addr to the given cache and slab. This is required
2905 * for the slab allocator to be able to lookup the cache and slab of a
2906 * virtual address for kfree, ksize, and slab debugging.
2907 */
2908static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2909			   void *addr)
2910{
2911	int nr_pages;
2912	struct page *page;
2913
2914	page = virt_to_page(addr);
2915
2916	nr_pages = 1;
2917	if (likely(!PageCompound(page)))
2918		nr_pages <<= cache->gfporder;
2919
2920	do {
2921		page_set_cache(page, cache);
2922		page_set_slab(page, slab);
2923		page++;
2924	} while (--nr_pages);
2925}
2926
2927/*
2928 * Grow (by 1) the number of slabs within a cache.  This is called by
2929 * kmem_cache_alloc() when there are no active objs left in a cache.
2930 */
2931static int cache_grow(struct kmem_cache *cachep,
2932		gfp_t flags, int nodeid, void *objp)
2933{
2934	struct slab *slabp;
2935	size_t offset;
2936	gfp_t local_flags;
2937	struct kmem_list3 *l3;
 
 
2938
2939	/*
2940	 * Be lazy and only check for valid flags here,  keeping it out of the
2941	 * critical path in kmem_cache_alloc().
2942	 */
2943	BUG_ON(flags & GFP_SLAB_BUG_MASK);
 
 
 
 
 
 
2944	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2945
2946	/* Take the l3 list lock to change the colour_next on this node */
2947	check_irq_off();
2948	l3 = cachep->nodelists[nodeid];
2949	spin_lock(&l3->list_lock);
2950
2951	/* Get colour for the slab, and cal the next value. */
2952	offset = l3->colour_next;
2953	l3->colour_next++;
2954	if (l3->colour_next >= cachep->colour)
2955		l3->colour_next = 0;
2956	spin_unlock(&l3->list_lock);
2957
2958	offset *= cachep->colour_off;
2959
2960	if (local_flags & __GFP_WAIT)
2961		local_irq_enable();
2962
2963	/*
2964	 * The test for missing atomic flag is performed here, rather than
2965	 * the more obvious place, simply to reduce the critical path length
2966	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2967	 * will eventually be caught here (where it matters).
2968	 */
2969	kmem_flagcheck(cachep, flags);
2970
2971	/*
2972	 * Get mem for the objs.  Attempt to allocate a physical page from
2973	 * 'nodeid'.
2974	 */
2975	if (!objp)
2976		objp = kmem_getpages(cachep, local_flags, nodeid);
2977	if (!objp)
2978		goto failed;
2979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980	/* Get slab management. */
2981	slabp = alloc_slabmgmt(cachep, objp, offset,
2982			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2983	if (!slabp)
2984		goto opps1;
2985
2986	slab_map_pages(cachep, slabp, objp);
2987
2988	cache_init_objs(cachep, slabp);
 
2989
2990	if (local_flags & __GFP_WAIT)
2991		local_irq_disable();
2992	check_irq_off();
2993	spin_lock(&l3->list_lock);
2994
2995	/* Make slab active. */
2996	list_add_tail(&slabp->list, &(l3->slabs_free));
2997	STATS_INC_GROWN(cachep);
2998	l3->free_objects += cachep->num;
2999	spin_unlock(&l3->list_lock);
3000	return 1;
3001opps1:
3002	kmem_freepages(cachep, objp);
3003failed:
3004	if (local_flags & __GFP_WAIT)
3005		local_irq_disable();
3006	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007}
3008
3009#if DEBUG
3010
3011/*
3012 * Perform extra freeing checks:
3013 * - detect bad pointers.
3014 * - POISON/RED_ZONE checking
3015 */
3016static void kfree_debugcheck(const void *objp)
3017{
3018	if (!virt_addr_valid(objp)) {
3019		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3020		       (unsigned long)objp);
3021		BUG();
3022	}
3023}
3024
3025static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3026{
3027	unsigned long long redzone1, redzone2;
3028
3029	redzone1 = *dbg_redzone1(cache, obj);
3030	redzone2 = *dbg_redzone2(cache, obj);
3031
3032	/*
3033	 * Redzone is ok.
3034	 */
3035	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3036		return;
3037
3038	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3039		slab_error(cache, "double free detected");
3040	else
3041		slab_error(cache, "memory outside object was overwritten");
3042
3043	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3044			obj, redzone1, redzone2);
3045}
3046
3047static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3048				   void *caller)
3049{
 
3050	struct page *page;
3051	unsigned int objnr;
3052	struct slab *slabp;
3053
3054	BUG_ON(virt_to_cache(objp) != cachep);
3055
3056	objp -= obj_offset(cachep);
3057	kfree_debugcheck(objp);
3058	page = virt_to_head_page(objp);
3059
3060	slabp = page_get_slab(page);
3061
3062	if (cachep->flags & SLAB_RED_ZONE) {
3063		verify_redzone_free(cachep, objp);
3064		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
3065		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
3066	}
3067	if (cachep->flags & SLAB_STORE_USER)
3068		*dbg_userword(cachep, objp) = caller;
 
 
3069
3070	objnr = obj_to_index(cachep, slabp, objp);
3071
3072	BUG_ON(objnr >= cachep->num);
3073	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3074
3075#ifdef CONFIG_DEBUG_SLAB_LEAK
3076	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3077#endif
3078	if (cachep->flags & SLAB_POISON) {
3079#ifdef CONFIG_DEBUG_PAGEALLOC
3080		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3081			store_stackinfo(cachep, objp, (unsigned long)caller);
3082			kernel_map_pages(virt_to_page(objp),
3083					 cachep->buffer_size / PAGE_SIZE, 0);
3084		} else {
3085			poison_obj(cachep, objp, POISON_FREE);
3086		}
3087#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088		poison_obj(cachep, objp, POISON_FREE);
 
3089#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090	}
3091	return objp;
 
 
 
 
3092}
3093
3094static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
 
3095{
3096	kmem_bufctl_t i;
3097	int entries = 0;
 
 
 
 
3098
3099	/* Check slab's freelist to see if this obj is there. */
3100	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3101		entries++;
3102		if (entries > cachep->num || i >= cachep->num)
3103			goto bad;
3104	}
3105	if (entries != cachep->num - slabp->inuse) {
3106bad:
3107		printk(KERN_ERR "slab: Internal list corruption detected in "
3108			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3109			cachep->name, cachep->num, slabp, slabp->inuse,
3110			print_tainted());
3111		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3112			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3113			1);
3114		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3115	}
 
 
3116}
3117#else
3118#define kfree_debugcheck(x) do { } while(0)
3119#define cache_free_debugcheck(x,objp,z) (objp)
3120#define check_slabp(x,y) do { } while(0)
3121#endif
3122
3123static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3124{
3125	int batchcount;
3126	struct kmem_list3 *l3;
3127	struct array_cache *ac;
3128	int node;
 
 
3129
3130retry:
3131	check_irq_off();
3132	node = numa_mem_id();
 
3133	ac = cpu_cache_get(cachep);
3134	batchcount = ac->batchcount;
3135	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3136		/*
3137		 * If there was little recent activity on this cache, then
3138		 * perform only a partial refill.  Otherwise we could generate
3139		 * refill bouncing.
3140		 */
3141		batchcount = BATCHREFILL_LIMIT;
3142	}
3143	l3 = cachep->nodelists[node];
 
 
 
 
 
3144
3145	BUG_ON(ac->avail > 0 || !l3);
3146	spin_lock(&l3->list_lock);
3147
3148	/* See if we can refill from the shared array */
3149	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3150		l3->shared->touched = 1;
3151		goto alloc_done;
3152	}
3153
3154	while (batchcount > 0) {
3155		struct list_head *entry;
3156		struct slab *slabp;
3157		/* Get slab alloc is to come from. */
3158		entry = l3->slabs_partial.next;
3159		if (entry == &l3->slabs_partial) {
3160			l3->free_touched = 1;
3161			entry = l3->slabs_free.next;
3162			if (entry == &l3->slabs_free)
3163				goto must_grow;
3164		}
3165
3166		slabp = list_entry(entry, struct slab, list);
3167		check_slabp(cachep, slabp);
3168		check_spinlock_acquired(cachep);
3169
3170		/*
3171		 * The slab was either on partial or free list so
3172		 * there must be at least one object available for
3173		 * allocation.
3174		 */
3175		BUG_ON(slabp->inuse >= cachep->num);
3176
3177		while (slabp->inuse < cachep->num && batchcount--) {
3178			STATS_INC_ALLOCED(cachep);
3179			STATS_INC_ACTIVE(cachep);
3180			STATS_SET_HIGH(cachep);
3181
3182			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3183							    node);
3184		}
3185		check_slabp(cachep, slabp);
3186
3187		/* move slabp to correct slabp list: */
3188		list_del(&slabp->list);
3189		if (slabp->free == BUFCTL_END)
3190			list_add(&slabp->list, &l3->slabs_full);
3191		else
3192			list_add(&slabp->list, &l3->slabs_partial);
3193	}
3194
3195must_grow:
3196	l3->free_objects -= ac->avail;
3197alloc_done:
3198	spin_unlock(&l3->list_lock);
 
3199
 
3200	if (unlikely(!ac->avail)) {
3201		int x;
3202		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
 
 
 
 
 
3203
3204		/* cache_grow can reenable interrupts, then ac could change. */
 
 
 
 
 
3205		ac = cpu_cache_get(cachep);
3206		if (!x && ac->avail == 0)	/* no objects in sight? abort */
 
 
 
 
3207			return NULL;
3208
3209		if (!ac->avail)		/* objects refilled by interrupt? */
3210			goto retry;
3211	}
3212	ac->touched = 1;
 
3213	return ac->entry[--ac->avail];
3214}
3215
3216static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3217						gfp_t flags)
3218{
3219	might_sleep_if(flags & __GFP_WAIT);
3220#if DEBUG
3221	kmem_flagcheck(cachep, flags);
3222#endif
3223}
3224
3225#if DEBUG
3226static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3227				gfp_t flags, void *objp, void *caller)
3228{
3229	if (!objp)
3230		return objp;
3231	if (cachep->flags & SLAB_POISON) {
3232#ifdef CONFIG_DEBUG_PAGEALLOC
3233		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3234			kernel_map_pages(virt_to_page(objp),
3235					 cachep->buffer_size / PAGE_SIZE, 1);
3236		else
3237			check_poison_obj(cachep, objp);
3238#else
3239		check_poison_obj(cachep, objp);
3240#endif
3241		poison_obj(cachep, objp, POISON_INUSE);
3242	}
3243	if (cachep->flags & SLAB_STORE_USER)
3244		*dbg_userword(cachep, objp) = caller;
3245
3246	if (cachep->flags & SLAB_RED_ZONE) {
3247		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3248				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3249			slab_error(cachep, "double free, or memory outside"
3250						" object was overwritten");
3251			printk(KERN_ERR
3252				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3253				objp, *dbg_redzone1(cachep, objp),
3254				*dbg_redzone2(cachep, objp));
3255		}
3256		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3257		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3258	}
3259#ifdef CONFIG_DEBUG_SLAB_LEAK
3260	{
3261		struct slab *slabp;
3262		unsigned objnr;
3263
3264		slabp = page_get_slab(virt_to_head_page(objp));
3265		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3266		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3267	}
3268#endif
3269	objp += obj_offset(cachep);
3270	if (cachep->ctor && cachep->flags & SLAB_POISON)
3271		cachep->ctor(objp);
3272	if (ARCH_SLAB_MINALIGN &&
3273	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3274		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3275		       objp, (int)ARCH_SLAB_MINALIGN);
3276	}
3277	return objp;
3278}
3279#else
3280#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3281#endif
3282
3283static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3284{
3285	if (cachep == &cache_cache)
3286		return false;
3287
3288	return should_failslab(obj_size(cachep), flags, cachep->flags);
3289}
3290
3291static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3292{
3293	void *objp;
3294	struct array_cache *ac;
3295
3296	check_irq_off();
3297
3298	ac = cpu_cache_get(cachep);
3299	if (likely(ac->avail)) {
3300		STATS_INC_ALLOCHIT(cachep);
3301		ac->touched = 1;
3302		objp = ac->entry[--ac->avail];
3303	} else {
3304		STATS_INC_ALLOCMISS(cachep);
3305		objp = cache_alloc_refill(cachep, flags);
3306		/*
3307		 * the 'ac' may be updated by cache_alloc_refill(),
3308		 * and kmemleak_erase() requires its correct value.
3309		 */
3310		ac = cpu_cache_get(cachep);
3311	}
 
 
 
 
 
 
 
 
 
 
3312	/*
3313	 * To avoid a false negative, if an object that is in one of the
3314	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3315	 * treat the array pointers as a reference to the object.
3316	 */
3317	if (objp)
3318		kmemleak_erase(&ac->entry[ac->avail]);
3319	return objp;
3320}
3321
3322#ifdef CONFIG_NUMA
3323/*
3324 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3325 *
3326 * If we are in_interrupt, then process context, including cpusets and
3327 * mempolicy, may not apply and should not be used for allocation policy.
3328 */
3329static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3330{
3331	int nid_alloc, nid_here;
3332
3333	if (in_interrupt() || (flags & __GFP_THISNODE))
3334		return NULL;
3335	nid_alloc = nid_here = numa_mem_id();
3336	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3337		nid_alloc = cpuset_slab_spread_node();
3338	else if (current->mempolicy)
3339		nid_alloc = slab_node(current->mempolicy);
3340	if (nid_alloc != nid_here)
3341		return ____cache_alloc_node(cachep, flags, nid_alloc);
3342	return NULL;
3343}
3344
3345/*
3346 * Fallback function if there was no memory available and no objects on a
3347 * certain node and fall back is permitted. First we scan all the
3348 * available nodelists for available objects. If that fails then we
3349 * perform an allocation without specifying a node. This allows the page
3350 * allocator to do its reclaim / fallback magic. We then insert the
3351 * slab into the proper nodelist and then allocate from it.
3352 */
3353static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3354{
3355	struct zonelist *zonelist;
3356	gfp_t local_flags;
3357	struct zoneref *z;
3358	struct zone *zone;
3359	enum zone_type high_zoneidx = gfp_zone(flags);
3360	void *obj = NULL;
 
3361	int nid;
3362	unsigned int cpuset_mems_cookie;
3363
3364	if (flags & __GFP_THISNODE)
3365		return NULL;
3366
3367	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3368
3369retry_cpuset:
3370	cpuset_mems_cookie = get_mems_allowed();
3371	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3372
3373retry:
3374	/*
3375	 * Look through allowed nodes for objects available
3376	 * from existing per node queues.
3377	 */
3378	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3379		nid = zone_to_nid(zone);
3380
3381		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3382			cache->nodelists[nid] &&
3383			cache->nodelists[nid]->free_objects) {
3384				obj = ____cache_alloc_node(cache,
3385					flags | GFP_THISNODE, nid);
3386				if (obj)
3387					break;
3388		}
3389	}
3390
3391	if (!obj) {
3392		/*
3393		 * This allocation will be performed within the constraints
3394		 * of the current cpuset / memory policy requirements.
3395		 * We may trigger various forms of reclaim on the allowed
3396		 * set and go into memory reserves if necessary.
3397		 */
3398		if (local_flags & __GFP_WAIT)
3399			local_irq_enable();
3400		kmem_flagcheck(cache, flags);
3401		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3402		if (local_flags & __GFP_WAIT)
3403			local_irq_disable();
3404		if (obj) {
3405			/*
3406			 * Insert into the appropriate per node queues
 
3407			 */
3408			nid = page_to_nid(virt_to_page(obj));
3409			if (cache_grow(cache, flags, nid, obj)) {
3410				obj = ____cache_alloc_node(cache,
3411					flags | GFP_THISNODE, nid);
3412				if (!obj)
3413					/*
3414					 * Another processor may allocate the
3415					 * objects in the slab since we are
3416					 * not holding any locks.
3417					 */
3418					goto retry;
3419			} else {
3420				/* cache_grow already freed obj */
3421				obj = NULL;
3422			}
3423		}
3424	}
3425
3426	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3427		goto retry_cpuset;
3428	return obj;
3429}
3430
3431/*
3432 * A interface to enable slab creation on nodeid
3433 */
3434static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3435				int nodeid)
3436{
3437	struct list_head *entry;
3438	struct slab *slabp;
3439	struct kmem_list3 *l3;
3440	void *obj;
3441	int x;
3442
3443	l3 = cachep->nodelists[nodeid];
3444	BUG_ON(!l3);
 
3445
3446retry:
3447	check_irq_off();
3448	spin_lock(&l3->list_lock);
3449	entry = l3->slabs_partial.next;
3450	if (entry == &l3->slabs_partial) {
3451		l3->free_touched = 1;
3452		entry = l3->slabs_free.next;
3453		if (entry == &l3->slabs_free)
3454			goto must_grow;
3455	}
3456
3457	slabp = list_entry(entry, struct slab, list);
3458	check_spinlock_acquired_node(cachep, nodeid);
3459	check_slabp(cachep, slabp);
3460
3461	STATS_INC_NODEALLOCS(cachep);
3462	STATS_INC_ACTIVE(cachep);
3463	STATS_SET_HIGH(cachep);
3464
3465	BUG_ON(slabp->inuse == cachep->num);
3466
3467	obj = slab_get_obj(cachep, slabp, nodeid);
3468	check_slabp(cachep, slabp);
3469	l3->free_objects--;
3470	/* move slabp to correct slabp list: */
3471	list_del(&slabp->list);
3472
3473	if (slabp->free == BUFCTL_END)
3474		list_add(&slabp->list, &l3->slabs_full);
3475	else
3476		list_add(&slabp->list, &l3->slabs_partial);
3477
3478	spin_unlock(&l3->list_lock);
3479	goto done;
 
3480
3481must_grow:
3482	spin_unlock(&l3->list_lock);
3483	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3484	if (x)
3485		goto retry;
 
 
 
3486
3487	return fallback_alloc(cachep, flags);
3488
3489done:
3490	return obj;
3491}
3492
3493/**
3494 * kmem_cache_alloc_node - Allocate an object on the specified node
3495 * @cachep: The cache to allocate from.
3496 * @flags: See kmalloc().
3497 * @nodeid: node number of the target node.
3498 * @caller: return address of caller, used for debug information
3499 *
3500 * Identical to kmem_cache_alloc but it will allocate memory on the given
3501 * node, which can improve the performance for cpu bound structures.
3502 *
3503 * Fallback to other node is possible if __GFP_THISNODE is not set.
3504 */
3505static __always_inline void *
3506__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3507		   void *caller)
3508{
3509	unsigned long save_flags;
3510	void *ptr;
3511	int slab_node = numa_mem_id();
3512
3513	flags &= gfp_allowed_mask;
3514
3515	lockdep_trace_alloc(flags);
3516
3517	if (slab_should_failslab(cachep, flags))
3518		return NULL;
3519
3520	cache_alloc_debugcheck_before(cachep, flags);
3521	local_irq_save(save_flags);
3522
3523	if (nodeid == NUMA_NO_NODE)
3524		nodeid = slab_node;
3525
3526	if (unlikely(!cachep->nodelists[nodeid])) {
3527		/* Node not bootstrapped yet */
3528		ptr = fallback_alloc(cachep, flags);
3529		goto out;
3530	}
3531
3532	if (nodeid == slab_node) {
3533		/*
3534		 * Use the locally cached objects if possible.
3535		 * However ____cache_alloc does not allow fallback
3536		 * to other nodes. It may fail while we still have
3537		 * objects on other nodes available.
3538		 */
3539		ptr = ____cache_alloc(cachep, flags);
3540		if (ptr)
3541			goto out;
3542	}
3543	/* ___cache_alloc_node can fall back to other nodes */
3544	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3545  out:
3546	local_irq_restore(save_flags);
3547	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3548	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3549				 flags);
3550
3551	if (likely(ptr))
3552		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3553
3554	if (unlikely((flags & __GFP_ZERO) && ptr))
3555		memset(ptr, 0, obj_size(cachep));
3556
 
3557	return ptr;
3558}
3559
3560static __always_inline void *
3561__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3562{
3563	void *objp;
3564
3565	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3566		objp = alternate_node_alloc(cache, flags);
3567		if (objp)
3568			goto out;
3569	}
3570	objp = ____cache_alloc(cache, flags);
3571
3572	/*
3573	 * We may just have run out of memory on the local node.
3574	 * ____cache_alloc_node() knows how to locate memory on other nodes
3575	 */
3576	if (!objp)
3577		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3578
3579  out:
3580	return objp;
3581}
3582#else
3583
3584static __always_inline void *
3585__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3586{
3587	return ____cache_alloc(cachep, flags);
3588}
3589
3590#endif /* CONFIG_NUMA */
3591
3592static __always_inline void *
3593__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3594{
3595	unsigned long save_flags;
3596	void *objp;
3597
3598	flags &= gfp_allowed_mask;
3599
3600	lockdep_trace_alloc(flags);
3601
3602	if (slab_should_failslab(cachep, flags))
3603		return NULL;
3604
3605	cache_alloc_debugcheck_before(cachep, flags);
3606	local_irq_save(save_flags);
3607	objp = __do_cache_alloc(cachep, flags);
3608	local_irq_restore(save_flags);
3609	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3610	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3611				 flags);
3612	prefetchw(objp);
3613
3614	if (likely(objp))
3615		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3616
3617	if (unlikely((flags & __GFP_ZERO) && objp))
3618		memset(objp, 0, obj_size(cachep));
3619
 
3620	return objp;
3621}
3622
3623/*
3624 * Caller needs to acquire correct kmem_list's list_lock
 
3625 */
3626static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3627		       int node)
3628{
3629	int i;
3630	struct kmem_list3 *l3;
 
 
 
3631
3632	for (i = 0; i < nr_objects; i++) {
3633		void *objp = objpp[i];
3634		struct slab *slabp;
 
 
3635
3636		slabp = virt_to_slab(objp);
3637		l3 = cachep->nodelists[node];
3638		list_del(&slabp->list);
3639		check_spinlock_acquired_node(cachep, node);
3640		check_slabp(cachep, slabp);
3641		slab_put_obj(cachep, slabp, objp, node);
3642		STATS_DEC_ACTIVE(cachep);
3643		l3->free_objects++;
3644		check_slabp(cachep, slabp);
3645
3646		/* fixup slab chains */
3647		if (slabp->inuse == 0) {
3648			if (l3->free_objects > l3->free_limit) {
3649				l3->free_objects -= cachep->num;
3650				/* No need to drop any previously held
3651				 * lock here, even if we have a off-slab slab
3652				 * descriptor it is guaranteed to come from
3653				 * a different cache, refer to comments before
3654				 * alloc_slabmgmt.
3655				 */
3656				slab_destroy(cachep, slabp);
3657			} else {
3658				list_add(&slabp->list, &l3->slabs_free);
3659			}
3660		} else {
3661			/* Unconditionally move a slab to the end of the
3662			 * partial list on free - maximum time for the
3663			 * other objects to be freed, too.
3664			 */
3665			list_add_tail(&slabp->list, &l3->slabs_partial);
3666		}
3667	}
 
 
 
 
 
 
 
 
 
3668}
3669
3670static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3671{
3672	int batchcount;
3673	struct kmem_list3 *l3;
3674	int node = numa_mem_id();
 
3675
3676	batchcount = ac->batchcount;
3677#if DEBUG
3678	BUG_ON(!batchcount || batchcount > ac->avail);
3679#endif
3680	check_irq_off();
3681	l3 = cachep->nodelists[node];
3682	spin_lock(&l3->list_lock);
3683	if (l3->shared) {
3684		struct array_cache *shared_array = l3->shared;
3685		int max = shared_array->limit - shared_array->avail;
3686		if (max) {
3687			if (batchcount > max)
3688				batchcount = max;
3689			memcpy(&(shared_array->entry[shared_array->avail]),
3690			       ac->entry, sizeof(void *) * batchcount);
3691			shared_array->avail += batchcount;
3692			goto free_done;
3693		}
3694	}
3695
3696	free_block(cachep, ac->entry, batchcount, node);
3697free_done:
3698#if STATS
3699	{
3700		int i = 0;
3701		struct list_head *p;
3702
3703		p = l3->slabs_free.next;
3704		while (p != &(l3->slabs_free)) {
3705			struct slab *slabp;
3706
3707			slabp = list_entry(p, struct slab, list);
3708			BUG_ON(slabp->inuse);
3709
3710			i++;
3711			p = p->next;
3712		}
3713		STATS_SET_FREEABLE(cachep, i);
3714	}
3715#endif
3716	spin_unlock(&l3->list_lock);
 
3717	ac->avail -= batchcount;
3718	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3719}
3720
3721/*
3722 * Release an obj back to its cache. If the obj has a constructed state, it must
3723 * be in this state _before_ it is released.  Called with disabled ints.
3724 */
3725static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3726    void *caller)
 
 
 
 
 
 
 
 
 
 
3727{
3728	struct array_cache *ac = cpu_cache_get(cachep);
3729
3730	check_irq_off();
3731	kmemleak_free_recursive(objp, cachep->flags);
3732	objp = cache_free_debugcheck(cachep, objp, caller);
3733
3734	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3735
3736	/*
3737	 * Skip calling cache_free_alien() when the platform is not numa.
3738	 * This will avoid cache misses that happen while accessing slabp (which
3739	 * is per page memory  reference) to get nodeid. Instead use a global
3740	 * variable to skip the call, which is mostly likely to be present in
3741	 * the cache.
3742	 */
3743	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3744		return;
3745
3746	if (likely(ac->avail < ac->limit)) {
3747		STATS_INC_FREEHIT(cachep);
3748	} else {
3749		STATS_INC_FREEMISS(cachep);
3750		cache_flusharray(cachep, ac);
3751	}
3752
 
 
 
 
 
 
 
 
 
3753	ac->entry[ac->avail++] = objp;
3754}
3755
3756/**
3757 * kmem_cache_alloc - Allocate an object
3758 * @cachep: The cache to allocate from.
3759 * @flags: See kmalloc().
3760 *
3761 * Allocate an object from this cache.  The flags are only relevant
3762 * if the cache has no available objects.
3763 */
3764void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3765{
3766	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3767
 
3768	trace_kmem_cache_alloc(_RET_IP_, ret,
3769			       obj_size(cachep), cachep->buffer_size, flags);
3770
3771	return ret;
3772}
3773EXPORT_SYMBOL(kmem_cache_alloc);
3774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3775#ifdef CONFIG_TRACING
3776void *
3777kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3778{
3779	void *ret;
3780
3781	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3782
 
3783	trace_kmalloc(_RET_IP_, ret,
3784		      size, slab_buffer_size(cachep), flags);
3785	return ret;
3786}
3787EXPORT_SYMBOL(kmem_cache_alloc_trace);
3788#endif
3789
3790#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
3791void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3792{
3793	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3794				       __builtin_return_address(0));
3795
 
3796	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3797				    obj_size(cachep), cachep->buffer_size,
3798				    flags, nodeid);
3799
3800	return ret;
3801}
3802EXPORT_SYMBOL(kmem_cache_alloc_node);
3803
3804#ifdef CONFIG_TRACING
3805void *kmem_cache_alloc_node_trace(size_t size,
3806				  struct kmem_cache *cachep,
3807				  gfp_t flags,
3808				  int nodeid)
 
3809{
3810	void *ret;
3811
3812	ret = __cache_alloc_node(cachep, flags, nodeid,
3813				  __builtin_return_address(0));
 
3814	trace_kmalloc_node(_RET_IP_, ret,
3815			   size, slab_buffer_size(cachep),
3816			   flags, nodeid);
3817	return ret;
3818}
3819EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3820#endif
3821
3822static __always_inline void *
3823__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3824{
3825	struct kmem_cache *cachep;
 
3826
3827	cachep = kmem_find_general_cachep(size, flags);
3828	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3829		return cachep;
3830	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
 
 
 
3831}
3832
3833#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3834void *__kmalloc_node(size_t size, gfp_t flags, int node)
3835{
3836	return __do_kmalloc_node(size, flags, node,
3837			__builtin_return_address(0));
3838}
3839EXPORT_SYMBOL(__kmalloc_node);
3840
3841void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3842		int node, unsigned long caller)
3843{
3844	return __do_kmalloc_node(size, flags, node, (void *)caller);
3845}
3846EXPORT_SYMBOL(__kmalloc_node_track_caller);
3847#else
3848void *__kmalloc_node(size_t size, gfp_t flags, int node)
3849{
3850	return __do_kmalloc_node(size, flags, node, NULL);
3851}
3852EXPORT_SYMBOL(__kmalloc_node);
3853#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3854#endif /* CONFIG_NUMA */
3855
3856/**
3857 * __do_kmalloc - allocate memory
3858 * @size: how many bytes of memory are required.
3859 * @flags: the type of memory to allocate (see kmalloc).
3860 * @caller: function caller for debug tracking of the caller
3861 */
3862static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3863					  void *caller)
3864{
3865	struct kmem_cache *cachep;
3866	void *ret;
3867
3868	/* If you want to save a few bytes .text space: replace
3869	 * __ with kmem_.
3870	 * Then kmalloc uses the uninlined functions instead of the inline
3871	 * functions.
3872	 */
3873	cachep = __find_general_cachep(size, flags);
3874	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3875		return cachep;
3876	ret = __cache_alloc(cachep, flags, caller);
3877
3878	trace_kmalloc((unsigned long) caller, ret,
3879		      size, cachep->buffer_size, flags);
 
3880
3881	return ret;
3882}
3883
3884
3885#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3886void *__kmalloc(size_t size, gfp_t flags)
3887{
3888	return __do_kmalloc(size, flags, __builtin_return_address(0));
3889}
3890EXPORT_SYMBOL(__kmalloc);
3891
3892void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3893{
3894	return __do_kmalloc(size, flags, (void *)caller);
3895}
3896EXPORT_SYMBOL(__kmalloc_track_caller);
3897
3898#else
3899void *__kmalloc(size_t size, gfp_t flags)
3900{
3901	return __do_kmalloc(size, flags, NULL);
3902}
3903EXPORT_SYMBOL(__kmalloc);
3904#endif
3905
3906/**
3907 * kmem_cache_free - Deallocate an object
3908 * @cachep: The cache the allocation was from.
3909 * @objp: The previously allocated object.
3910 *
3911 * Free an object which was previously allocated from this
3912 * cache.
3913 */
3914void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3915{
3916	unsigned long flags;
 
 
 
3917
3918	local_irq_save(flags);
3919	debug_check_no_locks_freed(objp, obj_size(cachep));
3920	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3921		debug_check_no_obj_freed(objp, obj_size(cachep));
3922	__cache_free(cachep, objp, __builtin_return_address(0));
3923	local_irq_restore(flags);
3924
3925	trace_kmem_cache_free(_RET_IP_, objp);
3926}
3927EXPORT_SYMBOL(kmem_cache_free);
3928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3929/**
3930 * kfree - free previously allocated memory
3931 * @objp: pointer returned by kmalloc.
3932 *
3933 * If @objp is NULL, no operation is performed.
3934 *
3935 * Don't free memory not originally allocated by kmalloc()
3936 * or you will run into trouble.
3937 */
3938void kfree(const void *objp)
3939{
3940	struct kmem_cache *c;
3941	unsigned long flags;
3942
3943	trace_kfree(_RET_IP_, objp);
3944
3945	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3946		return;
3947	local_irq_save(flags);
3948	kfree_debugcheck(objp);
3949	c = virt_to_cache(objp);
3950	debug_check_no_locks_freed(objp, obj_size(c));
3951	debug_check_no_obj_freed(objp, obj_size(c));
3952	__cache_free(c, (void *)objp, __builtin_return_address(0));
 
3953	local_irq_restore(flags);
3954}
3955EXPORT_SYMBOL(kfree);
3956
3957unsigned int kmem_cache_size(struct kmem_cache *cachep)
3958{
3959	return obj_size(cachep);
3960}
3961EXPORT_SYMBOL(kmem_cache_size);
3962
3963/*
3964 * This initializes kmem_list3 or resizes various caches for all nodes.
3965 */
3966static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3967{
 
3968	int node;
3969	struct kmem_list3 *l3;
3970	struct array_cache *new_shared;
3971	struct array_cache **new_alien = NULL;
3972
3973	for_each_online_node(node) {
3974
3975                if (use_alien_caches) {
3976                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3977                        if (!new_alien)
3978                                goto fail;
3979                }
3980
3981		new_shared = NULL;
3982		if (cachep->shared) {
3983			new_shared = alloc_arraycache(node,
3984				cachep->shared*cachep->batchcount,
3985					0xbaadf00d, gfp);
3986			if (!new_shared) {
3987				free_alien_cache(new_alien);
3988				goto fail;
3989			}
3990		}
3991
3992		l3 = cachep->nodelists[node];
3993		if (l3) {
3994			struct array_cache *shared = l3->shared;
3995
3996			spin_lock_irq(&l3->list_lock);
3997
3998			if (shared)
3999				free_block(cachep, shared->entry,
4000						shared->avail, node);
4001
4002			l3->shared = new_shared;
4003			if (!l3->alien) {
4004				l3->alien = new_alien;
4005				new_alien = NULL;
4006			}
4007			l3->free_limit = (1 + nr_cpus_node(node)) *
4008					cachep->batchcount + cachep->num;
4009			spin_unlock_irq(&l3->list_lock);
4010			kfree(shared);
4011			free_alien_cache(new_alien);
4012			continue;
4013		}
4014		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4015		if (!l3) {
4016			free_alien_cache(new_alien);
4017			kfree(new_shared);
4018			goto fail;
4019		}
4020
4021		kmem_list3_init(l3);
4022		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4023				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4024		l3->shared = new_shared;
4025		l3->alien = new_alien;
4026		l3->free_limit = (1 + nr_cpus_node(node)) *
4027					cachep->batchcount + cachep->num;
4028		cachep->nodelists[node] = l3;
4029	}
 
4030	return 0;
4031
4032fail:
4033	if (!cachep->next.next) {
4034		/* Cache is not active yet. Roll back what we did */
4035		node--;
4036		while (node >= 0) {
4037			if (cachep->nodelists[node]) {
4038				l3 = cachep->nodelists[node];
4039
4040				kfree(l3->shared);
4041				free_alien_cache(l3->alien);
4042				kfree(l3);
4043				cachep->nodelists[node] = NULL;
4044			}
4045			node--;
4046		}
4047	}
4048	return -ENOMEM;
4049}
4050
4051struct ccupdate_struct {
4052	struct kmem_cache *cachep;
4053	struct array_cache *new[0];
4054};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055
4056static void do_ccupdate_local(void *info)
4057{
4058	struct ccupdate_struct *new = info;
4059	struct array_cache *old;
4060
4061	check_irq_off();
4062	old = cpu_cache_get(new->cachep);
 
 
 
 
 
 
 
 
 
 
 
 
4063
4064	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4065	new->new[smp_processor_id()] = old;
4066}
4067
4068/* Always called with the cache_chain_mutex held */
4069static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4070				int batchcount, int shared, gfp_t gfp)
4071{
4072	struct ccupdate_struct *new;
4073	int i;
4074
4075	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4076		      gfp);
4077	if (!new)
4078		return -ENOMEM;
4079
4080	for_each_online_cpu(i) {
4081		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4082						batchcount, gfp);
4083		if (!new->new[i]) {
4084			for (i--; i >= 0; i--)
4085				kfree(new->new[i]);
4086			kfree(new);
4087			return -ENOMEM;
4088		}
4089	}
4090	new->cachep = cachep;
4091
4092	on_each_cpu(do_ccupdate_local, (void *)new, 1);
 
4093
4094	check_irq_on();
4095	cachep->batchcount = batchcount;
4096	cachep->limit = limit;
4097	cachep->shared = shared;
 
4098
4099	for_each_online_cpu(i) {
4100		struct array_cache *ccold = new->new[i];
4101		if (!ccold)
4102			continue;
4103		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4104		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4105		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4106		kfree(ccold);
4107	}
4108	kfree(new);
4109	return alloc_kmemlist(cachep, gfp);
4110}
4111
4112/* Called with cache_chain_mutex held always */
4113static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4114{
4115	int err;
4116	int limit, shared;
 
 
 
 
 
 
 
 
 
 
 
 
 
4117
 
 
4118	/*
4119	 * The head array serves three purposes:
4120	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4121	 * - reduce the number of spinlock operations.
4122	 * - reduce the number of linked list operations on the slab and
4123	 *   bufctl chains: array operations are cheaper.
4124	 * The numbers are guessed, we should auto-tune as described by
4125	 * Bonwick.
4126	 */
4127	if (cachep->buffer_size > 131072)
4128		limit = 1;
4129	else if (cachep->buffer_size > PAGE_SIZE)
4130		limit = 8;
4131	else if (cachep->buffer_size > 1024)
4132		limit = 24;
4133	else if (cachep->buffer_size > 256)
4134		limit = 54;
4135	else
4136		limit = 120;
4137
4138	/*
4139	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4140	 * allocation behaviour: Most allocs on one cpu, most free operations
4141	 * on another cpu. For these cases, an efficient object passing between
4142	 * cpus is necessary. This is provided by a shared array. The array
4143	 * replaces Bonwick's magazine layer.
4144	 * On uniprocessor, it's functionally equivalent (but less efficient)
4145	 * to a larger limit. Thus disabled by default.
4146	 */
4147	shared = 0;
4148	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4149		shared = 8;
4150
4151#if DEBUG
4152	/*
4153	 * With debugging enabled, large batchcount lead to excessively long
4154	 * periods with disabled local interrupts. Limit the batchcount
4155	 */
4156	if (limit > 32)
4157		limit = 32;
4158#endif
4159	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
 
 
 
4160	if (err)
4161		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4162		       cachep->name, -err);
4163	return err;
4164}
4165
4166/*
4167 * Drain an array if it contains any elements taking the l3 lock only if
4168 * necessary. Note that the l3 listlock also protects the array_cache
4169 * if drain_array() is used on the shared array.
4170 */
4171static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4172			 struct array_cache *ac, int force, int node)
4173{
4174	int tofree;
 
 
 
4175
4176	if (!ac || !ac->avail)
4177		return;
4178	if (ac->touched && !force) {
 
4179		ac->touched = 0;
4180	} else {
4181		spin_lock_irq(&l3->list_lock);
4182		if (ac->avail) {
4183			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4184			if (tofree > ac->avail)
4185				tofree = (ac->avail + 1) / 2;
4186			free_block(cachep, ac->entry, tofree, node);
4187			ac->avail -= tofree;
4188			memmove(ac->entry, &(ac->entry[tofree]),
4189				sizeof(void *) * ac->avail);
4190		}
4191		spin_unlock_irq(&l3->list_lock);
4192	}
 
 
 
 
 
 
4193}
4194
4195/**
4196 * cache_reap - Reclaim memory from caches.
4197 * @w: work descriptor
4198 *
4199 * Called from workqueue/eventd every few seconds.
4200 * Purpose:
4201 * - clear the per-cpu caches for this CPU.
4202 * - return freeable pages to the main free memory pool.
4203 *
4204 * If we cannot acquire the cache chain mutex then just give up - we'll try
4205 * again on the next iteration.
4206 */
4207static void cache_reap(struct work_struct *w)
4208{
4209	struct kmem_cache *searchp;
4210	struct kmem_list3 *l3;
4211	int node = numa_mem_id();
4212	struct delayed_work *work = to_delayed_work(w);
4213
4214	if (!mutex_trylock(&cache_chain_mutex))
4215		/* Give up. Setup the next iteration. */
4216		goto out;
4217
4218	list_for_each_entry(searchp, &cache_chain, next) {
4219		check_irq_on();
4220
4221		/*
4222		 * We only take the l3 lock if absolutely necessary and we
4223		 * have established with reasonable certainty that
4224		 * we can do some work if the lock was obtained.
4225		 */
4226		l3 = searchp->nodelists[node];
4227
4228		reap_alien(searchp, l3);
4229
4230		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4231
4232		/*
4233		 * These are racy checks but it does not matter
4234		 * if we skip one check or scan twice.
4235		 */
4236		if (time_after(l3->next_reap, jiffies))
4237			goto next;
4238
4239		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4240
4241		drain_array(searchp, l3, l3->shared, 0, node);
4242
4243		if (l3->free_touched)
4244			l3->free_touched = 0;
4245		else {
4246			int freed;
4247
4248			freed = drain_freelist(searchp, l3, (l3->free_limit +
4249				5 * searchp->num - 1) / (5 * searchp->num));
4250			STATS_ADD_REAPED(searchp, freed);
4251		}
4252next:
4253		cond_resched();
4254	}
4255	check_irq_on();
4256	mutex_unlock(&cache_chain_mutex);
4257	next_reap_node();
4258out:
4259	/* Set up the next iteration */
4260	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
 
4261}
4262
4263#ifdef CONFIG_SLABINFO
4264
4265static void print_slabinfo_header(struct seq_file *m)
4266{
4267	/*
4268	 * Output format version, so at least we can change it
4269	 * without _too_ many complaints.
4270	 */
4271#if STATS
4272	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4273#else
4274	seq_puts(m, "slabinfo - version: 2.1\n");
4275#endif
4276	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4277		 "<objperslab> <pagesperslab>");
4278	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4279	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4280#if STATS
4281	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4282		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4283	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4284#endif
4285	seq_putc(m, '\n');
4286}
4287
4288static void *s_start(struct seq_file *m, loff_t *pos)
4289{
4290	loff_t n = *pos;
4291
4292	mutex_lock(&cache_chain_mutex);
4293	if (!n)
4294		print_slabinfo_header(m);
4295
4296	return seq_list_start(&cache_chain, *pos);
4297}
4298
4299static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4300{
4301	return seq_list_next(p, &cache_chain, pos);
4302}
4303
4304static void s_stop(struct seq_file *m, void *p)
4305{
4306	mutex_unlock(&cache_chain_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4307}
4308
4309static int s_show(struct seq_file *m, void *p)
4310{
4311	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4312	struct slab *slabp;
4313	unsigned long active_objs;
4314	unsigned long num_objs;
4315	unsigned long active_slabs = 0;
4316	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4317	const char *name;
4318	char *error = NULL;
4319	int node;
4320	struct kmem_list3 *l3;
4321
4322	active_objs = 0;
4323	num_slabs = 0;
4324	for_each_online_node(node) {
4325		l3 = cachep->nodelists[node];
4326		if (!l3)
4327			continue;
4328
4329		check_irq_on();
4330		spin_lock_irq(&l3->list_lock);
4331
4332		list_for_each_entry(slabp, &l3->slabs_full, list) {
4333			if (slabp->inuse != cachep->num && !error)
4334				error = "slabs_full accounting error";
4335			active_objs += cachep->num;
4336			active_slabs++;
4337		}
4338		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4339			if (slabp->inuse == cachep->num && !error)
4340				error = "slabs_partial inuse accounting error";
4341			if (!slabp->inuse && !error)
4342				error = "slabs_partial/inuse accounting error";
4343			active_objs += slabp->inuse;
4344			active_slabs++;
4345		}
4346		list_for_each_entry(slabp, &l3->slabs_free, list) {
4347			if (slabp->inuse && !error)
4348				error = "slabs_free/inuse accounting error";
4349			num_slabs++;
4350		}
4351		free_objects += l3->free_objects;
4352		if (l3->shared)
4353			shared_avail += l3->shared->avail;
4354
4355		spin_unlock_irq(&l3->list_lock);
4356	}
4357	num_slabs += active_slabs;
4358	num_objs = num_slabs * cachep->num;
4359	if (num_objs - active_objs != free_objects && !error)
4360		error = "free_objects accounting error";
4361
4362	name = cachep->name;
4363	if (error)
4364		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4365
4366	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4367		   name, active_objs, num_objs, cachep->buffer_size,
4368		   cachep->num, (1 << cachep->gfporder));
4369	seq_printf(m, " : tunables %4u %4u %4u",
4370		   cachep->limit, cachep->batchcount, cachep->shared);
4371	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4372		   active_slabs, num_slabs, shared_avail);
4373#if STATS
4374	{			/* list3 stats */
4375		unsigned long high = cachep->high_mark;
4376		unsigned long allocs = cachep->num_allocations;
4377		unsigned long grown = cachep->grown;
4378		unsigned long reaped = cachep->reaped;
4379		unsigned long errors = cachep->errors;
4380		unsigned long max_freeable = cachep->max_freeable;
4381		unsigned long node_allocs = cachep->node_allocs;
4382		unsigned long node_frees = cachep->node_frees;
4383		unsigned long overflows = cachep->node_overflow;
4384
4385		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4386			   "%4lu %4lu %4lu %4lu %4lu",
4387			   allocs, high, grown,
4388			   reaped, errors, max_freeable, node_allocs,
4389			   node_frees, overflows);
4390	}
4391	/* cpu stats */
4392	{
4393		unsigned long allochit = atomic_read(&cachep->allochit);
4394		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4395		unsigned long freehit = atomic_read(&cachep->freehit);
4396		unsigned long freemiss = atomic_read(&cachep->freemiss);
4397
4398		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4399			   allochit, allocmiss, freehit, freemiss);
4400	}
4401#endif
4402	seq_putc(m, '\n');
4403	return 0;
4404}
4405
4406/*
4407 * slabinfo_op - iterator that generates /proc/slabinfo
4408 *
4409 * Output layout:
4410 * cache-name
4411 * num-active-objs
4412 * total-objs
4413 * object size
4414 * num-active-slabs
4415 * total-slabs
4416 * num-pages-per-slab
4417 * + further values on SMP and with statistics enabled
4418 */
4419
4420static const struct seq_operations slabinfo_op = {
4421	.start = s_start,
4422	.next = s_next,
4423	.stop = s_stop,
4424	.show = s_show,
4425};
4426
4427#define MAX_SLABINFO_WRITE 128
4428/**
4429 * slabinfo_write - Tuning for the slab allocator
4430 * @file: unused
4431 * @buffer: user buffer
4432 * @count: data length
4433 * @ppos: unused
4434 */
4435static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4436		       size_t count, loff_t *ppos)
4437{
4438	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4439	int limit, batchcount, shared, res;
4440	struct kmem_cache *cachep;
4441
4442	if (count > MAX_SLABINFO_WRITE)
4443		return -EINVAL;
4444	if (copy_from_user(&kbuf, buffer, count))
4445		return -EFAULT;
4446	kbuf[MAX_SLABINFO_WRITE] = '\0';
4447
4448	tmp = strchr(kbuf, ' ');
4449	if (!tmp)
4450		return -EINVAL;
4451	*tmp = '\0';
4452	tmp++;
4453	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4454		return -EINVAL;
4455
4456	/* Find the cache in the chain of caches. */
4457	mutex_lock(&cache_chain_mutex);
4458	res = -EINVAL;
4459	list_for_each_entry(cachep, &cache_chain, next) {
4460		if (!strcmp(cachep->name, kbuf)) {
4461			if (limit < 1 || batchcount < 1 ||
4462					batchcount > limit || shared < 0) {
4463				res = 0;
4464			} else {
4465				res = do_tune_cpucache(cachep, limit,
4466						       batchcount, shared,
4467						       GFP_KERNEL);
4468			}
4469			break;
4470		}
4471	}
4472	mutex_unlock(&cache_chain_mutex);
4473	if (res >= 0)
4474		res = count;
4475	return res;
4476}
4477
4478static int slabinfo_open(struct inode *inode, struct file *file)
4479{
4480	return seq_open(file, &slabinfo_op);
4481}
4482
4483static const struct file_operations proc_slabinfo_operations = {
4484	.open		= slabinfo_open,
4485	.read		= seq_read,
4486	.write		= slabinfo_write,
4487	.llseek		= seq_lseek,
4488	.release	= seq_release,
4489};
4490
4491#ifdef CONFIG_DEBUG_SLAB_LEAK
4492
4493static void *leaks_start(struct seq_file *m, loff_t *pos)
4494{
4495	mutex_lock(&cache_chain_mutex);
4496	return seq_list_start(&cache_chain, *pos);
4497}
4498
4499static inline int add_caller(unsigned long *n, unsigned long v)
4500{
4501	unsigned long *p;
4502	int l;
4503	if (!v)
4504		return 1;
4505	l = n[1];
4506	p = n + 2;
4507	while (l) {
4508		int i = l/2;
4509		unsigned long *q = p + 2 * i;
4510		if (*q == v) {
4511			q[1]++;
4512			return 1;
4513		}
4514		if (*q > v) {
4515			l = i;
4516		} else {
4517			p = q + 2;
4518			l -= i + 1;
4519		}
4520	}
4521	if (++n[1] == n[0])
4522		return 0;
4523	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4524	p[0] = v;
4525	p[1] = 1;
4526	return 1;
4527}
4528
4529static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
 
4530{
4531	void *p;
4532	int i;
 
 
4533	if (n[0] == n[1])
4534		return;
4535	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4536		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4537			continue;
4538		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
 
4539			return;
4540	}
4541}
4542
4543static void show_symbol(struct seq_file *m, unsigned long address)
4544{
4545#ifdef CONFIG_KALLSYMS
4546	unsigned long offset, size;
4547	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4548
4549	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4550		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4551		if (modname[0])
4552			seq_printf(m, " [%s]", modname);
4553		return;
4554	}
4555#endif
4556	seq_printf(m, "%p", (void *)address);
4557}
4558
4559static int leaks_show(struct seq_file *m, void *p)
4560{
4561	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4562	struct slab *slabp;
4563	struct kmem_list3 *l3;
4564	const char *name;
4565	unsigned long *n = m->private;
4566	int node;
4567	int i;
4568
4569	if (!(cachep->flags & SLAB_STORE_USER))
4570		return 0;
4571	if (!(cachep->flags & SLAB_RED_ZONE))
4572		return 0;
4573
4574	/* OK, we can do it */
 
 
 
 
 
 
 
 
4575
4576	n[1] = 0;
4577
4578	for_each_online_node(node) {
4579		l3 = cachep->nodelists[node];
4580		if (!l3)
4581			continue;
4582
4583		check_irq_on();
4584		spin_lock_irq(&l3->list_lock);
 
 
 
 
 
4585
4586		list_for_each_entry(slabp, &l3->slabs_full, list)
4587			handle_slab(n, cachep, slabp);
4588		list_for_each_entry(slabp, &l3->slabs_partial, list)
4589			handle_slab(n, cachep, slabp);
4590		spin_unlock_irq(&l3->list_lock);
4591	}
4592	name = cachep->name;
4593	if (n[0] == n[1]) {
4594		/* Increase the buffer size */
4595		mutex_unlock(&cache_chain_mutex);
4596		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4597		if (!m->private) {
4598			/* Too bad, we are really out */
4599			m->private = n;
4600			mutex_lock(&cache_chain_mutex);
4601			return -ENOMEM;
4602		}
4603		*(unsigned long *)m->private = n[0] * 2;
4604		kfree(n);
4605		mutex_lock(&cache_chain_mutex);
4606		/* Now make sure this entry will be retried */
4607		m->count = m->size;
4608		return 0;
4609	}
4610	for (i = 0; i < n[1]; i++) {
4611		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4612		show_symbol(m, n[2*i+2]);
4613		seq_putc(m, '\n');
4614	}
4615
4616	return 0;
4617}
4618
4619static const struct seq_operations slabstats_op = {
4620	.start = leaks_start,
4621	.next = s_next,
4622	.stop = s_stop,
4623	.show = leaks_show,
4624};
4625
4626static int slabstats_open(struct inode *inode, struct file *file)
4627{
4628	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4629	int ret = -ENOMEM;
4630	if (n) {
4631		ret = seq_open(file, &slabstats_op);
4632		if (!ret) {
4633			struct seq_file *m = file->private_data;
4634			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4635			m->private = n;
4636			n = NULL;
4637		}
4638		kfree(n);
4639	}
4640	return ret;
4641}
4642
4643static const struct file_operations proc_slabstats_operations = {
4644	.open		= slabstats_open,
4645	.read		= seq_read,
4646	.llseek		= seq_lseek,
4647	.release	= seq_release_private,
4648};
4649#endif
4650
4651static int __init slab_proc_init(void)
4652{
4653	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4654#ifdef CONFIG_DEBUG_SLAB_LEAK
4655	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4656#endif
4657	return 0;
4658}
4659module_init(slab_proc_init);
4660#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4661
4662/**
4663 * ksize - get the actual amount of memory allocated for a given object
4664 * @objp: Pointer to the object
4665 *
4666 * kmalloc may internally round up allocations and return more memory
4667 * than requested. ksize() can be used to determine the actual amount of
4668 * memory allocated. The caller may use this additional memory, even though
4669 * a smaller amount of memory was initially specified with the kmalloc call.
4670 * The caller must guarantee that objp points to a valid object previously
4671 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4672 * must not be freed during the duration of the call.
4673 */
4674size_t ksize(const void *objp)
4675{
 
 
4676	BUG_ON(!objp);
4677	if (unlikely(objp == ZERO_SIZE_PTR))
4678		return 0;
4679
4680	return obj_size(virt_to_cache(objp));
 
 
 
 
 
 
4681}
4682EXPORT_SYMBOL(ksize);