Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129
 130struct mempolicy *get_task_policy(struct task_struct *p)
 
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 210		return 0;
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = tmp;
 
 
 
 
 
 
 
 
 
 
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 404};
 405
 406static void migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 431static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 432				unsigned long end, struct mm_walk *walk)
 433{
 434	int ret = 0;
 435	struct page *page;
 436	struct queue_pages *qp = walk->private;
 437	unsigned long flags;
 438
 439	if (unlikely(is_pmd_migration_entry(*pmd))) {
 440		ret = 1;
 441		goto unlock;
 442	}
 443	page = pmd_page(*pmd);
 444	if (is_huge_zero_page(page)) {
 445		spin_unlock(ptl);
 446		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 447		goto out;
 448	}
 449	if (!queue_pages_required(page, qp)) {
 450		ret = 1;
 451		goto unlock;
 452	}
 453
 454	ret = 1;
 455	flags = qp->flags;
 456	/* go to thp migration */
 457	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 458		migrate_page_add(page, qp->pagelist, flags);
 459unlock:
 460	spin_unlock(ptl);
 461out:
 462	return ret;
 463}
 464
 465/*
 466 * Scan through pages checking if pages follow certain conditions,
 467 * and move them to the pagelist if they do.
 468 */
 469static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 470			unsigned long end, struct mm_walk *walk)
 471{
 472	struct vm_area_struct *vma = walk->vma;
 473	struct page *page;
 474	struct queue_pages *qp = walk->private;
 475	unsigned long flags = qp->flags;
 476	int ret;
 477	pte_t *pte;
 478	spinlock_t *ptl;
 479
 480	ptl = pmd_trans_huge_lock(pmd, vma);
 481	if (ptl) {
 482		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 483		if (ret)
 484			return 0;
 485	}
 486
 487	if (pmd_trans_unstable(pmd))
 488		return 0;
 489
 490	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 491	for (; addr != end; pte++, addr += PAGE_SIZE) {
 492		if (!pte_present(*pte))
 493			continue;
 494		page = vm_normal_page(vma, addr, *pte);
 495		if (!page)
 496			continue;
 497		/*
 498		 * vm_normal_page() filters out zero pages, but there might
 499		 * still be PageReserved pages to skip, perhaps in a VDSO.
 
 500		 */
 501		if (PageReserved(page))
 502			continue;
 503		if (!queue_pages_required(page, qp))
 
 504			continue;
 505		migrate_page_add(page, qp->pagelist, flags);
 506	}
 507	pte_unmap_unlock(pte - 1, ptl);
 508	cond_resched();
 509	return 0;
 510}
 511
 512static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 513			       unsigned long addr, unsigned long end,
 514			       struct mm_walk *walk)
 515{
 516#ifdef CONFIG_HUGETLB_PAGE
 517	struct queue_pages *qp = walk->private;
 518	unsigned long flags = qp->flags;
 519	struct page *page;
 520	spinlock_t *ptl;
 521	pte_t entry;
 522
 523	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 524	entry = huge_ptep_get(pte);
 525	if (!pte_present(entry))
 526		goto unlock;
 527	page = pte_page(entry);
 528	if (!queue_pages_required(page, qp))
 529		goto unlock;
 530	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 531	if (flags & (MPOL_MF_MOVE_ALL) ||
 532	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 533		isolate_huge_page(page, qp->pagelist);
 534unlock:
 535	spin_unlock(ptl);
 536#else
 537	BUG();
 538#endif
 539	return 0;
 540}
 541
 542#ifdef CONFIG_NUMA_BALANCING
 543/*
 544 * This is used to mark a range of virtual addresses to be inaccessible.
 545 * These are later cleared by a NUMA hinting fault. Depending on these
 546 * faults, pages may be migrated for better NUMA placement.
 547 *
 548 * This is assuming that NUMA faults are handled using PROT_NONE. If
 549 * an architecture makes a different choice, it will need further
 550 * changes to the core.
 551 */
 552unsigned long change_prot_numa(struct vm_area_struct *vma,
 553			unsigned long addr, unsigned long end)
 554{
 555	int nr_updated;
 556
 557	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 558	if (nr_updated)
 559		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 560
 561	return nr_updated;
 562}
 563#else
 564static unsigned long change_prot_numa(struct vm_area_struct *vma,
 565			unsigned long addr, unsigned long end)
 566{
 567	return 0;
 568}
 569#endif /* CONFIG_NUMA_BALANCING */
 570
 571static int queue_pages_test_walk(unsigned long start, unsigned long end,
 572				struct mm_walk *walk)
 573{
 574	struct vm_area_struct *vma = walk->vma;
 575	struct queue_pages *qp = walk->private;
 576	unsigned long endvma = vma->vm_end;
 577	unsigned long flags = qp->flags;
 578
 579	if (!vma_migratable(vma))
 580		return 1;
 581
 582	if (endvma > end)
 583		endvma = end;
 584	if (vma->vm_start > start)
 585		start = vma->vm_start;
 586
 587	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 588		if (!vma->vm_next && vma->vm_end < end)
 589			return -EFAULT;
 590		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 591			return -EFAULT;
 592	}
 593
 594	qp->prev = vma;
 595
 596	if (flags & MPOL_MF_LAZY) {
 597		/* Similar to task_numa_work, skip inaccessible VMAs */
 598		if (!is_vm_hugetlb_page(vma) &&
 599			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 600			!(vma->vm_flags & VM_MIXEDMAP))
 601			change_prot_numa(vma, start, endvma);
 602		return 1;
 603	}
 604
 605	/* queue pages from current vma */
 606	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 607		return 0;
 608	return 1;
 609}
 610
 611/*
 612 * Walk through page tables and collect pages to be migrated.
 613 *
 614 * If pages found in a given range are on a set of nodes (determined by
 615 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 616 * passed via @private.)
 617 */
 618static int
 619queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 620		nodemask_t *nodes, unsigned long flags,
 621		struct list_head *pagelist)
 622{
 623	struct queue_pages qp = {
 624		.pagelist = pagelist,
 625		.flags = flags,
 626		.nmask = nodes,
 627		.prev = NULL,
 628	};
 629	struct mm_walk queue_pages_walk = {
 630		.hugetlb_entry = queue_pages_hugetlb,
 631		.pmd_entry = queue_pages_pte_range,
 632		.test_walk = queue_pages_test_walk,
 633		.mm = mm,
 634		.private = &qp,
 635	};
 636
 637	return walk_page_range(start, end, &queue_pages_walk);
 638}
 639
 640/*
 641 * Apply policy to a single VMA
 642 * This must be called with the mmap_sem held for writing.
 643 */
 644static int vma_replace_policy(struct vm_area_struct *vma,
 645						struct mempolicy *pol)
 
 
 646{
 647	int err;
 648	struct mempolicy *old;
 649	struct mempolicy *new;
 650
 651	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 652		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 653		 vma->vm_ops, vma->vm_file,
 654		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 655
 656	new = mpol_dup(pol);
 657	if (IS_ERR(new))
 658		return PTR_ERR(new);
 659
 660	if (vma->vm_ops && vma->vm_ops->set_policy) {
 661		err = vma->vm_ops->set_policy(vma, new);
 662		if (err)
 663			goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664	}
 665
 666	old = vma->vm_policy;
 667	vma->vm_policy = new; /* protected by mmap_sem */
 668	mpol_put(old);
 669
 670	return 0;
 671 err_out:
 672	mpol_put(new);
 673	return err;
 674}
 675
 676/* Step 2: apply policy to a range and do splits. */
 677static int mbind_range(struct mm_struct *mm, unsigned long start,
 678		       unsigned long end, struct mempolicy *new_pol)
 679{
 680	struct vm_area_struct *next;
 681	struct vm_area_struct *prev;
 682	struct vm_area_struct *vma;
 683	int err = 0;
 684	pgoff_t pgoff;
 685	unsigned long vmstart;
 686	unsigned long vmend;
 687
 688	vma = find_vma(mm, start);
 689	if (!vma || vma->vm_start > start)
 690		return -EFAULT;
 691
 692	prev = vma->vm_prev;
 693	if (start > vma->vm_start)
 694		prev = vma;
 695
 696	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 697		next = vma->vm_next;
 698		vmstart = max(start, vma->vm_start);
 699		vmend   = min(end, vma->vm_end);
 700
 701		if (mpol_equal(vma_policy(vma), new_pol))
 702			continue;
 703
 704		pgoff = vma->vm_pgoff +
 705			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 706		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 707				 vma->anon_vma, vma->vm_file, pgoff,
 708				 new_pol, vma->vm_userfaultfd_ctx);
 709		if (prev) {
 710			vma = prev;
 711			next = vma->vm_next;
 712			if (mpol_equal(vma_policy(vma), new_pol))
 713				continue;
 714			/* vma_merge() joined vma && vma->next, case 8 */
 715			goto replace;
 716		}
 717		if (vma->vm_start != vmstart) {
 718			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 719			if (err)
 720				goto out;
 721		}
 722		if (vma->vm_end != vmend) {
 723			err = split_vma(vma->vm_mm, vma, vmend, 0);
 724			if (err)
 725				goto out;
 726		}
 727 replace:
 728		err = vma_replace_policy(vma, new_pol);
 729		if (err)
 730			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 731	}
 732
 733 out:
 734	return err;
 735}
 736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737/* Set the process memory policy */
 738static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 739			     nodemask_t *nodes)
 740{
 741	struct mempolicy *new, *old;
 
 742	NODEMASK_SCRATCH(scratch);
 743	int ret;
 744
 745	if (!scratch)
 746		return -ENOMEM;
 747
 748	new = mpol_new(mode, flags, nodes);
 749	if (IS_ERR(new)) {
 750		ret = PTR_ERR(new);
 751		goto out;
 752	}
 753
 
 
 
 
 
 
 
 754	task_lock(current);
 755	ret = mpol_set_nodemask(new, nodes, scratch);
 756	if (ret) {
 757		task_unlock(current);
 
 
 758		mpol_put(new);
 759		goto out;
 760	}
 761	old = current->mempolicy;
 762	current->mempolicy = new;
 763	if (new && new->mode == MPOL_INTERLEAVE)
 764		current->il_prev = MAX_NUMNODES-1;
 
 
 765	task_unlock(current);
 
 
 
 766	mpol_put(old);
 767	ret = 0;
 768out:
 769	NODEMASK_SCRATCH_FREE(scratch);
 770	return ret;
 771}
 772
 773/*
 774 * Return nodemask for policy for get_mempolicy() query
 775 *
 776 * Called with task's alloc_lock held
 777 */
 778static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 779{
 780	nodes_clear(*nodes);
 781	if (p == &default_policy)
 782		return;
 783
 784	switch (p->mode) {
 785	case MPOL_BIND:
 786		/* Fall through */
 787	case MPOL_INTERLEAVE:
 788		*nodes = p->v.nodes;
 789		break;
 790	case MPOL_PREFERRED:
 791		if (!(p->flags & MPOL_F_LOCAL))
 792			node_set(p->v.preferred_node, *nodes);
 793		/* else return empty node mask for local allocation */
 794		break;
 795	default:
 796		BUG();
 797	}
 798}
 799
 800static int lookup_node(unsigned long addr)
 801{
 802	struct page *p;
 803	int err;
 804
 805	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
 806	if (err >= 0) {
 807		err = page_to_nid(p);
 808		put_page(p);
 809	}
 810	return err;
 811}
 812
 813/* Retrieve NUMA policy */
 814static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 815			     unsigned long addr, unsigned long flags)
 816{
 817	int err;
 818	struct mm_struct *mm = current->mm;
 819	struct vm_area_struct *vma = NULL;
 820	struct mempolicy *pol = current->mempolicy;
 821
 822	if (flags &
 823		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 824		return -EINVAL;
 825
 826	if (flags & MPOL_F_MEMS_ALLOWED) {
 827		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 828			return -EINVAL;
 829		*policy = 0;	/* just so it's initialized */
 830		task_lock(current);
 831		*nmask  = cpuset_current_mems_allowed;
 832		task_unlock(current);
 833		return 0;
 834	}
 835
 836	if (flags & MPOL_F_ADDR) {
 837		/*
 838		 * Do NOT fall back to task policy if the
 839		 * vma/shared policy at addr is NULL.  We
 840		 * want to return MPOL_DEFAULT in this case.
 841		 */
 842		down_read(&mm->mmap_sem);
 843		vma = find_vma_intersection(mm, addr, addr+1);
 844		if (!vma) {
 845			up_read(&mm->mmap_sem);
 846			return -EFAULT;
 847		}
 848		if (vma->vm_ops && vma->vm_ops->get_policy)
 849			pol = vma->vm_ops->get_policy(vma, addr);
 850		else
 851			pol = vma->vm_policy;
 852	} else if (addr)
 853		return -EINVAL;
 854
 855	if (!pol)
 856		pol = &default_policy;	/* indicates default behavior */
 857
 858	if (flags & MPOL_F_NODE) {
 859		if (flags & MPOL_F_ADDR) {
 860			err = lookup_node(addr);
 861			if (err < 0)
 862				goto out;
 863			*policy = err;
 864		} else if (pol == current->mempolicy &&
 865				pol->mode == MPOL_INTERLEAVE) {
 866			*policy = next_node_in(current->il_prev, pol->v.nodes);
 867		} else {
 868			err = -EINVAL;
 869			goto out;
 870		}
 871	} else {
 872		*policy = pol == &default_policy ? MPOL_DEFAULT :
 873						pol->mode;
 874		/*
 875		 * Internal mempolicy flags must be masked off before exposing
 876		 * the policy to userspace.
 877		 */
 878		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 879	}
 880
 
 
 
 
 
 881	err = 0;
 882	if (nmask) {
 883		if (mpol_store_user_nodemask(pol)) {
 884			*nmask = pol->w.user_nodemask;
 885		} else {
 886			task_lock(current);
 887			get_policy_nodemask(pol, nmask);
 888			task_unlock(current);
 889		}
 890	}
 891
 892 out:
 893	mpol_cond_put(pol);
 894	if (vma)
 895		up_read(&current->mm->mmap_sem);
 896	return err;
 897}
 898
 899#ifdef CONFIG_MIGRATION
 900/*
 901 * page migration, thp tail pages can be passed.
 902 */
 903static void migrate_page_add(struct page *page, struct list_head *pagelist,
 904				unsigned long flags)
 905{
 906	struct page *head = compound_head(page);
 907	/*
 908	 * Avoid migrating a page that is shared with others.
 909	 */
 910	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 911		if (!isolate_lru_page(head)) {
 912			list_add_tail(&head->lru, pagelist);
 913			mod_node_page_state(page_pgdat(head),
 914				NR_ISOLATED_ANON + page_is_file_cache(head),
 915				hpage_nr_pages(head));
 916		}
 917	}
 918}
 919
 920/* page allocation callback for NUMA node migration */
 921struct page *alloc_new_node_page(struct page *page, unsigned long node)
 922{
 923	if (PageHuge(page))
 924		return alloc_huge_page_node(page_hstate(compound_head(page)),
 925					node);
 926	else if (PageTransHuge(page)) {
 927		struct page *thp;
 928
 929		thp = alloc_pages_node(node,
 930			(GFP_TRANSHUGE | __GFP_THISNODE),
 931			HPAGE_PMD_ORDER);
 932		if (!thp)
 933			return NULL;
 934		prep_transhuge_page(thp);
 935		return thp;
 936	} else
 937		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 938						    __GFP_THISNODE, 0);
 939}
 940
 941/*
 942 * Migrate pages from one node to a target node.
 943 * Returns error or the number of pages not migrated.
 944 */
 945static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 946			   int flags)
 947{
 948	nodemask_t nmask;
 949	LIST_HEAD(pagelist);
 950	int err = 0;
 
 951
 952	nodes_clear(nmask);
 953	node_set(source, nmask);
 954
 955	/*
 956	 * This does not "check" the range but isolates all pages that
 957	 * need migration.  Between passing in the full user address
 958	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 959	 */
 960	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
 961	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 962			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 
 
 963
 964	if (!list_empty(&pagelist)) {
 965		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
 966					MIGRATE_SYNC, MR_SYSCALL);
 967		if (err)
 968			putback_movable_pages(&pagelist);
 969	}
 970
 971	return err;
 972}
 973
 974/*
 975 * Move pages between the two nodesets so as to preserve the physical
 976 * layout as much as possible.
 977 *
 978 * Returns the number of page that could not be moved.
 979 */
 980int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 981		     const nodemask_t *to, int flags)
 982{
 983	int busy = 0;
 984	int err;
 985	nodemask_t tmp;
 986
 987	err = migrate_prep();
 988	if (err)
 989		return err;
 990
 991	down_read(&mm->mmap_sem);
 992
 
 
 
 
 993	/*
 994	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 995	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 996	 * bit in 'tmp', and return that <source, dest> pair for migration.
 997	 * The pair of nodemasks 'to' and 'from' define the map.
 998	 *
 999	 * If no pair of bits is found that way, fallback to picking some
1000	 * pair of 'source' and 'dest' bits that are not the same.  If the
1001	 * 'source' and 'dest' bits are the same, this represents a node
1002	 * that will be migrating to itself, so no pages need move.
1003	 *
1004	 * If no bits are left in 'tmp', or if all remaining bits left
1005	 * in 'tmp' correspond to the same bit in 'to', return false
1006	 * (nothing left to migrate).
1007	 *
1008	 * This lets us pick a pair of nodes to migrate between, such that
1009	 * if possible the dest node is not already occupied by some other
1010	 * source node, minimizing the risk of overloading the memory on a
1011	 * node that would happen if we migrated incoming memory to a node
1012	 * before migrating outgoing memory source that same node.
1013	 *
1014	 * A single scan of tmp is sufficient.  As we go, we remember the
1015	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1016	 * that not only moved, but what's better, moved to an empty slot
1017	 * (d is not set in tmp), then we break out then, with that pair.
1018	 * Otherwise when we finish scanning from_tmp, we at least have the
1019	 * most recent <s, d> pair that moved.  If we get all the way through
1020	 * the scan of tmp without finding any node that moved, much less
1021	 * moved to an empty node, then there is nothing left worth migrating.
1022	 */
1023
1024	tmp = *from;
1025	while (!nodes_empty(tmp)) {
1026		int s,d;
1027		int source = NUMA_NO_NODE;
1028		int dest = 0;
1029
1030		for_each_node_mask(s, tmp) {
1031
1032			/*
1033			 * do_migrate_pages() tries to maintain the relative
1034			 * node relationship of the pages established between
1035			 * threads and memory areas.
1036                         *
1037			 * However if the number of source nodes is not equal to
1038			 * the number of destination nodes we can not preserve
1039			 * this node relative relationship.  In that case, skip
1040			 * copying memory from a node that is in the destination
1041			 * mask.
1042			 *
1043			 * Example: [2,3,4] -> [3,4,5] moves everything.
1044			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1045			 */
1046
1047			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1048						(node_isset(s, *to)))
1049				continue;
1050
1051			d = node_remap(s, *from, *to);
1052			if (s == d)
1053				continue;
1054
1055			source = s;	/* Node moved. Memorize */
1056			dest = d;
1057
1058			/* dest not in remaining from nodes? */
1059			if (!node_isset(dest, tmp))
1060				break;
1061		}
1062		if (source == NUMA_NO_NODE)
1063			break;
1064
1065		node_clear(source, tmp);
1066		err = migrate_to_node(mm, source, dest, flags);
1067		if (err > 0)
1068			busy += err;
1069		if (err < 0)
1070			break;
1071	}
 
1072	up_read(&mm->mmap_sem);
1073	if (err < 0)
1074		return err;
1075	return busy;
1076
1077}
1078
1079/*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start by assuming the page is mapped by the same vma as contains @start.
1082 * Search forward from there, if not.  N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086static struct page *new_page(struct page *page, unsigned long start)
1087{
1088	struct vm_area_struct *vma;
1089	unsigned long uninitialized_var(address);
1090
1091	vma = find_vma(current->mm, start);
1092	while (vma) {
1093		address = page_address_in_vma(page, vma);
1094		if (address != -EFAULT)
1095			break;
1096		vma = vma->vm_next;
1097	}
1098
1099	if (PageHuge(page)) {
1100		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1101				vma, address);
1102	} else if (PageTransHuge(page)) {
1103		struct page *thp;
1104
1105		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1106					 HPAGE_PMD_ORDER);
1107		if (!thp)
1108			return NULL;
1109		prep_transhuge_page(thp);
1110		return thp;
1111	}
1112	/*
1113	 * if !vma, alloc_page_vma() will use task or system default policy
1114	 */
1115	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1116			vma, address);
1117}
1118#else
1119
1120static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121				unsigned long flags)
1122{
1123}
1124
1125int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126		     const nodemask_t *to, int flags)
1127{
1128	return -ENOSYS;
1129}
1130
1131static struct page *new_page(struct page *page, unsigned long start)
1132{
1133	return NULL;
1134}
1135#endif
1136
1137static long do_mbind(unsigned long start, unsigned long len,
1138		     unsigned short mode, unsigned short mode_flags,
1139		     nodemask_t *nmask, unsigned long flags)
1140{
 
1141	struct mm_struct *mm = current->mm;
1142	struct mempolicy *new;
1143	unsigned long end;
1144	int err;
1145	LIST_HEAD(pagelist);
1146
1147	if (flags & ~(unsigned long)MPOL_MF_VALID)
 
1148		return -EINVAL;
1149	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150		return -EPERM;
1151
1152	if (start & ~PAGE_MASK)
1153		return -EINVAL;
1154
1155	if (mode == MPOL_DEFAULT)
1156		flags &= ~MPOL_MF_STRICT;
1157
1158	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159	end = start + len;
1160
1161	if (end < start)
1162		return -EINVAL;
1163	if (end == start)
1164		return 0;
1165
1166	new = mpol_new(mode, mode_flags, nmask);
1167	if (IS_ERR(new))
1168		return PTR_ERR(new);
1169
1170	if (flags & MPOL_MF_LAZY)
1171		new->flags |= MPOL_F_MOF;
1172
1173	/*
1174	 * If we are using the default policy then operation
1175	 * on discontinuous address spaces is okay after all
1176	 */
1177	if (!new)
1178		flags |= MPOL_MF_DISCONTIG_OK;
1179
1180	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181		 start, start + len, mode, mode_flags,
1182		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183
1184	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185
1186		err = migrate_prep();
1187		if (err)
1188			goto mpol_out;
1189	}
1190	{
1191		NODEMASK_SCRATCH(scratch);
1192		if (scratch) {
1193			down_write(&mm->mmap_sem);
1194			task_lock(current);
1195			err = mpol_set_nodemask(new, nmask, scratch);
1196			task_unlock(current);
1197			if (err)
1198				up_write(&mm->mmap_sem);
1199		} else
1200			err = -ENOMEM;
1201		NODEMASK_SCRATCH_FREE(scratch);
1202	}
1203	if (err)
1204		goto mpol_out;
1205
1206	err = queue_pages_range(mm, start, end, nmask,
1207			  flags | MPOL_MF_INVERT, &pagelist);
1208	if (!err)
1209		err = mbind_range(mm, start, end, new);
1210
1211	if (!err) {
 
1212		int nr_failed = 0;
1213
 
 
1214		if (!list_empty(&pagelist)) {
1215			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218			if (nr_failed)
1219				putback_movable_pages(&pagelist);
1220		}
1221
1222		if (nr_failed && (flags & MPOL_MF_STRICT))
1223			err = -EIO;
1224	} else
1225		putback_movable_pages(&pagelist);
1226
1227	up_write(&mm->mmap_sem);
1228 mpol_out:
1229	mpol_put(new);
1230	return err;
1231}
1232
1233/*
1234 * User space interface with variable sized bitmaps for nodelists.
1235 */
1236
1237/* Copy a node mask from user space. */
1238static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239		     unsigned long maxnode)
1240{
1241	unsigned long k;
1242	unsigned long t;
1243	unsigned long nlongs;
1244	unsigned long endmask;
1245
1246	--maxnode;
1247	nodes_clear(*nodes);
1248	if (maxnode == 0 || !nmask)
1249		return 0;
1250	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251		return -EINVAL;
1252
1253	nlongs = BITS_TO_LONGS(maxnode);
1254	if ((maxnode % BITS_PER_LONG) == 0)
1255		endmask = ~0UL;
1256	else
1257		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258
1259	/*
1260	 * When the user specified more nodes than supported just check
1261	 * if the non supported part is all zero.
1262	 *
1263	 * If maxnode have more longs than MAX_NUMNODES, check
1264	 * the bits in that area first. And then go through to
1265	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1266	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1267	 */
1268	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
 
 
1269		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
 
1270			if (get_user(t, nmask + k))
1271				return -EFAULT;
1272			if (k == nlongs - 1) {
1273				if (t & endmask)
1274					return -EINVAL;
1275			} else if (t)
1276				return -EINVAL;
1277		}
1278		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279		endmask = ~0UL;
1280	}
1281
1282	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283		unsigned long valid_mask = endmask;
1284
1285		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286		if (get_user(t, nmask + nlongs - 1))
1287			return -EFAULT;
1288		if (t & valid_mask)
1289			return -EINVAL;
1290	}
1291
1292	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293		return -EFAULT;
1294	nodes_addr(*nodes)[nlongs-1] &= endmask;
1295	return 0;
1296}
1297
1298/* Copy a kernel node mask to user space */
1299static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300			      nodemask_t *nodes)
1301{
1302	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1304
1305	if (copy > nbytes) {
1306		if (copy > PAGE_SIZE)
1307			return -EINVAL;
1308		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309			return -EFAULT;
1310		copy = nbytes;
1311	}
1312	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313}
1314
1315static long kernel_mbind(unsigned long start, unsigned long len,
1316			 unsigned long mode, const unsigned long __user *nmask,
1317			 unsigned long maxnode, unsigned int flags)
1318{
1319	nodemask_t nodes;
1320	int err;
1321	unsigned short mode_flags;
1322
1323	mode_flags = mode & MPOL_MODE_FLAGS;
1324	mode &= ~MPOL_MODE_FLAGS;
1325	if (mode >= MPOL_MAX)
1326		return -EINVAL;
1327	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328	    (mode_flags & MPOL_F_RELATIVE_NODES))
1329		return -EINVAL;
1330	err = get_nodes(&nodes, nmask, maxnode);
1331	if (err)
1332		return err;
1333	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1334}
1335
1336SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1337		unsigned long, mode, const unsigned long __user *, nmask,
1338		unsigned long, maxnode, unsigned int, flags)
1339{
1340	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1341}
1342
1343/* Set the process memory policy */
1344static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1345				 unsigned long maxnode)
1346{
1347	int err;
1348	nodemask_t nodes;
1349	unsigned short flags;
1350
1351	flags = mode & MPOL_MODE_FLAGS;
1352	mode &= ~MPOL_MODE_FLAGS;
1353	if ((unsigned int)mode >= MPOL_MAX)
1354		return -EINVAL;
1355	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356		return -EINVAL;
1357	err = get_nodes(&nodes, nmask, maxnode);
1358	if (err)
1359		return err;
1360	return do_set_mempolicy(mode, flags, &nodes);
1361}
1362
1363SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364		unsigned long, maxnode)
1365{
1366	return kernel_set_mempolicy(mode, nmask, maxnode);
1367}
1368
1369static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1370				const unsigned long __user *old_nodes,
1371				const unsigned long __user *new_nodes)
1372{
 
1373	struct mm_struct *mm = NULL;
1374	struct task_struct *task;
1375	nodemask_t task_nodes;
1376	int err;
1377	nodemask_t *old;
1378	nodemask_t *new;
1379	NODEMASK_SCRATCH(scratch);
1380
1381	if (!scratch)
1382		return -ENOMEM;
1383
1384	old = &scratch->mask1;
1385	new = &scratch->mask2;
1386
1387	err = get_nodes(old, old_nodes, maxnode);
1388	if (err)
1389		goto out;
1390
1391	err = get_nodes(new, new_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	/* Find the mm_struct */
1396	rcu_read_lock();
1397	task = pid ? find_task_by_vpid(pid) : current;
1398	if (!task) {
1399		rcu_read_unlock();
1400		err = -ESRCH;
1401		goto out;
1402	}
1403	get_task_struct(task);
1404
1405	err = -EINVAL;
1406
1407	/*
1408	 * Check if this process has the right to modify the specified process.
1409	 * Use the regular "ptrace_may_access()" checks.
 
 
1410	 */
1411	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
1412		rcu_read_unlock();
1413		err = -EPERM;
1414		goto out_put;
1415	}
1416	rcu_read_unlock();
1417
1418	task_nodes = cpuset_mems_allowed(task);
1419	/* Is the user allowed to access the target nodes? */
1420	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1421		err = -EPERM;
1422		goto out_put;
1423	}
1424
1425	task_nodes = cpuset_mems_allowed(current);
1426	nodes_and(*new, *new, task_nodes);
1427	if (nodes_empty(*new))
1428		goto out_put;
1429
1430	nodes_and(*new, *new, node_states[N_MEMORY]);
1431	if (nodes_empty(*new))
1432		goto out_put;
 
1433
1434	err = security_task_movememory(task);
1435	if (err)
1436		goto out_put;
1437
1438	mm = get_task_mm(task);
1439	put_task_struct(task);
1440
1441	if (!mm) {
1442		err = -EINVAL;
1443		goto out;
1444	}
1445
1446	err = do_migrate_pages(mm, old, new,
1447		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448
1449	mmput(mm);
1450out:
1451	NODEMASK_SCRATCH_FREE(scratch);
1452
1453	return err;
1454
1455out_put:
1456	put_task_struct(task);
1457	goto out;
1458
1459}
1460
1461SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1462		const unsigned long __user *, old_nodes,
1463		const unsigned long __user *, new_nodes)
1464{
1465	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1466}
1467
1468
1469/* Retrieve NUMA policy */
1470static int kernel_get_mempolicy(int __user *policy,
1471				unsigned long __user *nmask,
1472				unsigned long maxnode,
1473				unsigned long addr,
1474				unsigned long flags)
1475{
1476	int err;
1477	int uninitialized_var(pval);
1478	nodemask_t nodes;
1479
1480	if (nmask != NULL && maxnode < MAX_NUMNODES)
1481		return -EINVAL;
1482
1483	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484
1485	if (err)
1486		return err;
1487
1488	if (policy && put_user(pval, policy))
1489		return -EFAULT;
1490
1491	if (nmask)
1492		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493
1494	return err;
1495}
1496
1497SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498		unsigned long __user *, nmask, unsigned long, maxnode,
1499		unsigned long, addr, unsigned long, flags)
1500{
1501	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1502}
1503
1504#ifdef CONFIG_COMPAT
1505
1506COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1507		       compat_ulong_t __user *, nmask,
1508		       compat_ulong_t, maxnode,
1509		       compat_ulong_t, addr, compat_ulong_t, flags)
1510{
1511	long err;
1512	unsigned long __user *nm = NULL;
1513	unsigned long nr_bits, alloc_size;
1514	DECLARE_BITMAP(bm, MAX_NUMNODES);
1515
1516	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518
1519	if (nmask)
1520		nm = compat_alloc_user_space(alloc_size);
1521
1522	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1523
1524	if (!err && nmask) {
1525		unsigned long copy_size;
1526		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1527		err = copy_from_user(bm, nm, copy_size);
1528		/* ensure entire bitmap is zeroed */
1529		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1530		err |= compat_put_bitmap(nmask, bm, nr_bits);
1531	}
1532
1533	return err;
1534}
1535
1536COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1537		       compat_ulong_t, maxnode)
1538{
 
1539	unsigned long __user *nm = NULL;
1540	unsigned long nr_bits, alloc_size;
1541	DECLARE_BITMAP(bm, MAX_NUMNODES);
1542
1543	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545
1546	if (nmask) {
1547		if (compat_get_bitmap(bm, nmask, nr_bits))
1548			return -EFAULT;
1549		nm = compat_alloc_user_space(alloc_size);
1550		if (copy_to_user(nm, bm, alloc_size))
1551			return -EFAULT;
1552	}
1553
1554	return kernel_set_mempolicy(mode, nm, nr_bits+1);
 
 
 
1555}
1556
1557COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1558		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1559		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1560{
 
1561	unsigned long __user *nm = NULL;
1562	unsigned long nr_bits, alloc_size;
1563	nodemask_t bm;
1564
1565	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568	if (nmask) {
1569		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1570			return -EFAULT;
1571		nm = compat_alloc_user_space(alloc_size);
1572		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1573			return -EFAULT;
1574	}
1575
1576	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1577}
1578
1579COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1580		       compat_ulong_t, maxnode,
1581		       const compat_ulong_t __user *, old_nodes,
1582		       const compat_ulong_t __user *, new_nodes)
1583{
1584	unsigned long __user *old = NULL;
1585	unsigned long __user *new = NULL;
1586	nodemask_t tmp_mask;
1587	unsigned long nr_bits;
1588	unsigned long size;
1589
1590	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1591	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592	if (old_nodes) {
1593		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1594			return -EFAULT;
1595		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1596		if (new_nodes)
1597			new = old + size / sizeof(unsigned long);
1598		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1599			return -EFAULT;
1600	}
1601	if (new_nodes) {
1602		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1603			return -EFAULT;
1604		if (new == NULL)
1605			new = compat_alloc_user_space(size);
1606		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1607			return -EFAULT;
1608	}
1609	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1610}
1611
1612#endif /* CONFIG_COMPAT */
1613
1614struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1615						unsigned long addr)
1616{
1617	struct mempolicy *pol = NULL;
1618
1619	if (vma) {
1620		if (vma->vm_ops && vma->vm_ops->get_policy) {
1621			pol = vma->vm_ops->get_policy(vma, addr);
1622		} else if (vma->vm_policy) {
1623			pol = vma->vm_policy;
1624
1625			/*
1626			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1627			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1628			 * count on these policies which will be dropped by
1629			 * mpol_cond_put() later
1630			 */
1631			if (mpol_needs_cond_ref(pol))
1632				mpol_get(pol);
1633		}
1634	}
1635
1636	return pol;
1637}
1638
1639/*
1640 * get_vma_policy(@vma, @addr)
1641 * @vma: virtual memory area whose policy is sought
1642 * @addr: address in @vma for shared policy lookup
 
1643 *
1644 * Returns effective policy for a VMA at specified address.
1645 * Falls back to current->mempolicy or system default policy, as necessary.
 
 
 
1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647 * count--added by the get_policy() vm_op, as appropriate--to protect against
1648 * freeing by another task.  It is the caller's responsibility to free the
1649 * extra reference for shared policies.
1650 */
1651static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1652						unsigned long addr)
1653{
1654	struct mempolicy *pol = __get_vma_policy(vma, addr);
1655
1656	if (!pol)
1657		pol = get_task_policy(current);
1658
1659	return pol;
1660}
1661
1662bool vma_policy_mof(struct vm_area_struct *vma)
1663{
1664	struct mempolicy *pol;
1665
1666	if (vma->vm_ops && vma->vm_ops->get_policy) {
1667		bool ret = false;
1668
1669		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1670		if (pol && (pol->flags & MPOL_F_MOF))
1671			ret = true;
1672		mpol_cond_put(pol);
1673
1674		return ret;
1675	}
1676
1677	pol = vma->vm_policy;
1678	if (!pol)
1679		pol = get_task_policy(current);
1680
1681	return pol->flags & MPOL_F_MOF;
1682}
1683
1684static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1685{
1686	enum zone_type dynamic_policy_zone = policy_zone;
1687
1688	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1689
1690	/*
1691	 * if policy->v.nodes has movable memory only,
1692	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1693	 *
1694	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1695	 * so if the following test faile, it implies
1696	 * policy->v.nodes has movable memory only.
1697	 */
1698	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1699		dynamic_policy_zone = ZONE_MOVABLE;
1700
1701	return zone >= dynamic_policy_zone;
1702}
1703
1704/*
1705 * Return a nodemask representing a mempolicy for filtering nodes for
1706 * page allocation
1707 */
1708static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1709{
1710	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1711	if (unlikely(policy->mode == MPOL_BIND) &&
1712			apply_policy_zone(policy, gfp_zone(gfp)) &&
1713			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1714		return &policy->v.nodes;
1715
1716	return NULL;
1717}
1718
1719/* Return the node id preferred by the given mempolicy, or the given id */
1720static int policy_node(gfp_t gfp, struct mempolicy *policy,
1721								int nd)
1722{
1723	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1724		nd = policy->v.preferred_node;
1725	else {
 
 
 
1726		/*
1727		 * __GFP_THISNODE shouldn't even be used with the bind policy
1728		 * because we might easily break the expectation to stay on the
1729		 * requested node and not break the policy.
 
1730		 */
1731		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1732	}
1733
1734	return nd;
1735}
1736
1737/* Do dynamic interleaving for a process */
1738static unsigned interleave_nodes(struct mempolicy *policy)
1739{
1740	unsigned next;
1741	struct task_struct *me = current;
1742
1743	next = next_node_in(me->il_prev, policy->v.nodes);
 
 
 
1744	if (next < MAX_NUMNODES)
1745		me->il_prev = next;
1746	return next;
1747}
1748
1749/*
1750 * Depending on the memory policy provide a node from which to allocate the
1751 * next slab entry.
 
 
 
 
1752 */
1753unsigned int mempolicy_slab_node(void)
1754{
1755	struct mempolicy *policy;
1756	int node = numa_mem_id();
1757
1758	if (in_interrupt())
1759		return node;
1760
1761	policy = current->mempolicy;
1762	if (!policy || policy->flags & MPOL_F_LOCAL)
1763		return node;
1764
1765	switch (policy->mode) {
1766	case MPOL_PREFERRED:
1767		/*
1768		 * handled MPOL_F_LOCAL above
1769		 */
1770		return policy->v.preferred_node;
1771
1772	case MPOL_INTERLEAVE:
1773		return interleave_nodes(policy);
1774
1775	case MPOL_BIND: {
1776		struct zoneref *z;
1777
1778		/*
1779		 * Follow bind policy behavior and start allocation at the
1780		 * first node.
1781		 */
1782		struct zonelist *zonelist;
 
1783		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1785		z = first_zones_zonelist(zonelist, highest_zoneidx,
1786							&policy->v.nodes);
1787		return z->zone ? z->zone->node : node;
 
1788	}
1789
1790	default:
1791		BUG();
1792	}
1793}
1794
1795/*
1796 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1797 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1798 * number of present nodes.
1799 */
1800static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1801{
1802	unsigned nnodes = nodes_weight(pol->v.nodes);
1803	unsigned target;
1804	int i;
1805	int nid;
1806
1807	if (!nnodes)
1808		return numa_node_id();
1809	target = (unsigned int)n % nnodes;
1810	nid = first_node(pol->v.nodes);
1811	for (i = 0; i < target; i++)
1812		nid = next_node(nid, pol->v.nodes);
 
 
1813	return nid;
1814}
1815
1816/* Determine a node number for interleave */
1817static inline unsigned interleave_nid(struct mempolicy *pol,
1818		 struct vm_area_struct *vma, unsigned long addr, int shift)
1819{
1820	if (vma) {
1821		unsigned long off;
1822
1823		/*
1824		 * for small pages, there is no difference between
1825		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826		 * for huge pages, since vm_pgoff is in units of small
1827		 * pages, we need to shift off the always 0 bits to get
1828		 * a useful offset.
1829		 */
1830		BUG_ON(shift < PAGE_SHIFT);
1831		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832		off += (addr - vma->vm_start) >> shift;
1833		return offset_il_node(pol, off);
1834	} else
1835		return interleave_nodes(pol);
1836}
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838#ifdef CONFIG_HUGETLBFS
1839/*
1840 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1841 * @vma: virtual memory area whose policy is sought
1842 * @addr: address in @vma for shared policy lookup and interleave policy
1843 * @gfp_flags: for requested zone
1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846 *
1847 * Returns a nid suitable for a huge page allocation and a pointer
1848 * to the struct mempolicy for conditional unref after allocation.
1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850 * @nodemask for filtering the zonelist.
1851 *
1852 * Must be protected by read_mems_allowed_begin()
1853 */
1854int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1855				struct mempolicy **mpol, nodemask_t **nodemask)
 
1856{
1857	int nid;
1858
1859	*mpol = get_vma_policy(vma, addr);
1860	*nodemask = NULL;	/* assume !MPOL_BIND */
1861
1862	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1863		nid = interleave_nid(*mpol, vma, addr,
1864					huge_page_shift(hstate_vma(vma)));
1865	} else {
1866		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1867		if ((*mpol)->mode == MPOL_BIND)
1868			*nodemask = &(*mpol)->v.nodes;
1869	}
1870	return nid;
1871}
1872
1873/*
1874 * init_nodemask_of_mempolicy
1875 *
1876 * If the current task's mempolicy is "default" [NULL], return 'false'
1877 * to indicate default policy.  Otherwise, extract the policy nodemask
1878 * for 'bind' or 'interleave' policy into the argument nodemask, or
1879 * initialize the argument nodemask to contain the single node for
1880 * 'preferred' or 'local' policy and return 'true' to indicate presence
1881 * of non-default mempolicy.
1882 *
1883 * We don't bother with reference counting the mempolicy [mpol_get/put]
1884 * because the current task is examining it's own mempolicy and a task's
1885 * mempolicy is only ever changed by the task itself.
1886 *
1887 * N.B., it is the caller's responsibility to free a returned nodemask.
1888 */
1889bool init_nodemask_of_mempolicy(nodemask_t *mask)
1890{
1891	struct mempolicy *mempolicy;
1892	int nid;
1893
1894	if (!(mask && current->mempolicy))
1895		return false;
1896
1897	task_lock(current);
1898	mempolicy = current->mempolicy;
1899	switch (mempolicy->mode) {
1900	case MPOL_PREFERRED:
1901		if (mempolicy->flags & MPOL_F_LOCAL)
1902			nid = numa_node_id();
1903		else
1904			nid = mempolicy->v.preferred_node;
1905		init_nodemask_of_node(mask, nid);
1906		break;
1907
1908	case MPOL_BIND:
1909		/* Fall through */
1910	case MPOL_INTERLEAVE:
1911		*mask =  mempolicy->v.nodes;
1912		break;
1913
1914	default:
1915		BUG();
1916	}
1917	task_unlock(current);
1918
1919	return true;
1920}
1921#endif
1922
1923/*
1924 * mempolicy_nodemask_intersects
1925 *
1926 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1927 * policy.  Otherwise, check for intersection between mask and the policy
1928 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1929 * policy, always return true since it may allocate elsewhere on fallback.
1930 *
1931 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1932 */
1933bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1934					const nodemask_t *mask)
1935{
1936	struct mempolicy *mempolicy;
1937	bool ret = true;
1938
1939	if (!mask)
1940		return ret;
1941	task_lock(tsk);
1942	mempolicy = tsk->mempolicy;
1943	if (!mempolicy)
1944		goto out;
1945
1946	switch (mempolicy->mode) {
1947	case MPOL_PREFERRED:
1948		/*
1949		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1950		 * allocate from, they may fallback to other nodes when oom.
1951		 * Thus, it's possible for tsk to have allocated memory from
1952		 * nodes in mask.
1953		 */
1954		break;
1955	case MPOL_BIND:
1956	case MPOL_INTERLEAVE:
1957		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1958		break;
1959	default:
1960		BUG();
1961	}
1962out:
1963	task_unlock(tsk);
1964	return ret;
1965}
1966
1967/* Allocate a page in interleaved policy.
1968   Own path because it needs to do special accounting. */
1969static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1970					unsigned nid)
1971{
 
1972	struct page *page;
1973
1974	page = __alloc_pages(gfp, order, nid);
1975	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1976	if (!static_branch_likely(&vm_numa_stat_key))
1977		return page;
1978	if (page && page_to_nid(page) == nid) {
1979		preempt_disable();
1980		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1981		preempt_enable();
1982	}
1983	return page;
1984}
1985
1986/**
1987 * 	alloc_pages_vma	- Allocate a page for a VMA.
1988 *
1989 * 	@gfp:
1990 *      %GFP_USER    user allocation.
1991 *      %GFP_KERNEL  kernel allocations,
1992 *      %GFP_HIGHMEM highmem/user allocations,
1993 *      %GFP_FS      allocation should not call back into a file system.
1994 *      %GFP_ATOMIC  don't sleep.
1995 *
1996 *	@order:Order of the GFP allocation.
1997 * 	@vma:  Pointer to VMA or NULL if not available.
1998 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1999 *	@node: Which node to prefer for allocation (modulo policy).
2000 *	@hugepage: for hugepages try only the preferred node if possible
2001 *
2002 * 	This function allocates a page from the kernel page pool and applies
2003 *	a NUMA policy associated with the VMA or the current process.
2004 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2005 *	mm_struct of the VMA to prevent it from going away. Should be used for
2006 *	all allocations for pages that will be mapped into user space. Returns
2007 *	NULL when no page can be allocated.
 
 
2008 */
2009struct page *
2010alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2011		unsigned long addr, int node, bool hugepage)
2012{
2013	struct mempolicy *pol;
 
2014	struct page *page;
2015	int preferred_nid;
2016	nodemask_t *nmask;
2017
2018	pol = get_vma_policy(vma, addr);
 
 
2019
2020	if (pol->mode == MPOL_INTERLEAVE) {
2021		unsigned nid;
2022
2023		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2024		mpol_cond_put(pol);
2025		page = alloc_page_interleave(gfp, order, nid);
2026		goto out;
2027	}
2028
2029	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2030		int hpage_node = node;
2031
 
 
 
 
2032		/*
2033		 * For hugepage allocation and non-interleave policy which
2034		 * allows the current node (or other explicitly preferred
2035		 * node) we only try to allocate from the current/preferred
2036		 * node and don't fall back to other nodes, as the cost of
2037		 * remote accesses would likely offset THP benefits.
2038		 *
2039		 * If the policy is interleave, or does not allow the current
2040		 * node in its nodemask, we allocate the standard way.
2041		 */
2042		if (pol->mode == MPOL_PREFERRED &&
2043						!(pol->flags & MPOL_F_LOCAL))
2044			hpage_node = pol->v.preferred_node;
2045
2046		nmask = policy_nodemask(gfp, pol);
2047		if (!nmask || node_isset(hpage_node, *nmask)) {
2048			mpol_cond_put(pol);
2049			page = __alloc_pages_node(hpage_node,
2050						gfp | __GFP_THISNODE, order);
2051			goto out;
2052		}
2053	}
2054
2055	nmask = policy_nodemask(gfp, pol);
2056	preferred_nid = policy_node(gfp, pol, node);
2057	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2058	mpol_cond_put(pol);
2059out:
 
2060	return page;
2061}
2062
2063/**
2064 * 	alloc_pages_current - Allocate pages.
2065 *
2066 *	@gfp:
2067 *		%GFP_USER   user allocation,
2068 *      	%GFP_KERNEL kernel allocation,
2069 *      	%GFP_HIGHMEM highmem allocation,
2070 *      	%GFP_FS     don't call back into a file system.
2071 *      	%GFP_ATOMIC don't sleep.
2072 *	@order: Power of two of allocation size in pages. 0 is a single page.
2073 *
2074 *	Allocate a page from the kernel page pool.  When not in
2075 *	interrupt context and apply the current process NUMA policy.
2076 *	Returns NULL when no page can be allocated.
 
 
 
 
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = &default_policy;
2081	struct page *page;
 
2082
2083	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2084		pol = get_task_policy(current);
 
 
 
2085
2086	/*
2087	 * No reference counting needed for current->mempolicy
2088	 * nor system default_policy
2089	 */
2090	if (pol->mode == MPOL_INTERLEAVE)
2091		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092	else
2093		page = __alloc_pages_nodemask(gfp, order,
2094				policy_node(gfp, pol, numa_node_id()),
2095				policy_nodemask(gfp, pol));
2096
 
 
 
2097	return page;
2098}
2099EXPORT_SYMBOL(alloc_pages_current);
2100
2101int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102{
2103	struct mempolicy *pol = mpol_dup(vma_policy(src));
2104
2105	if (IS_ERR(pol))
2106		return PTR_ERR(pol);
2107	dst->vm_policy = pol;
2108	return 0;
2109}
2110
2111/*
2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114 * with the mems_allowed returned by cpuset_mems_allowed().  This
2115 * keeps mempolicies cpuset relative after its cpuset moves.  See
2116 * further kernel/cpuset.c update_nodemask().
2117 *
2118 * current's mempolicy may be rebinded by the other task(the task that changes
2119 * cpuset's mems), so we needn't do rebind work for current task.
2120 */
2121
2122/* Slow path of a mempolicy duplicate */
2123struct mempolicy *__mpol_dup(struct mempolicy *old)
2124{
2125	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126
2127	if (!new)
2128		return ERR_PTR(-ENOMEM);
2129
2130	/* task's mempolicy is protected by alloc_lock */
2131	if (old == current->mempolicy) {
2132		task_lock(current);
2133		*new = *old;
2134		task_unlock(current);
2135	} else
2136		*new = *old;
2137
 
2138	if (current_cpuset_is_being_rebound()) {
2139		nodemask_t mems = cpuset_mems_allowed(current);
2140		mpol_rebind_policy(new, &mems);
 
 
 
2141	}
 
2142	atomic_set(&new->refcnt, 1);
2143	return new;
2144}
2145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146/* Slow path of a mempolicy comparison */
2147bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2148{
2149	if (!a || !b)
2150		return false;
2151	if (a->mode != b->mode)
2152		return false;
2153	if (a->flags != b->flags)
2154		return false;
2155	if (mpol_store_user_nodemask(a))
2156		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2157			return false;
2158
2159	switch (a->mode) {
2160	case MPOL_BIND:
2161		/* Fall through */
2162	case MPOL_INTERLEAVE:
2163		return !!nodes_equal(a->v.nodes, b->v.nodes);
2164	case MPOL_PREFERRED:
2165		/* a's ->flags is the same as b's */
2166		if (a->flags & MPOL_F_LOCAL)
2167			return true;
2168		return a->v.preferred_node == b->v.preferred_node;
2169	default:
2170		BUG();
2171		return false;
2172	}
2173}
2174
2175/*
2176 * Shared memory backing store policy support.
2177 *
2178 * Remember policies even when nobody has shared memory mapped.
2179 * The policies are kept in Red-Black tree linked from the inode.
2180 * They are protected by the sp->lock rwlock, which should be held
2181 * for any accesses to the tree.
2182 */
2183
2184/*
2185 * lookup first element intersecting start-end.  Caller holds sp->lock for
2186 * reading or for writing
2187 */
2188static struct sp_node *
2189sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190{
2191	struct rb_node *n = sp->root.rb_node;
2192
2193	while (n) {
2194		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195
2196		if (start >= p->end)
2197			n = n->rb_right;
2198		else if (end <= p->start)
2199			n = n->rb_left;
2200		else
2201			break;
2202	}
2203	if (!n)
2204		return NULL;
2205	for (;;) {
2206		struct sp_node *w = NULL;
2207		struct rb_node *prev = rb_prev(n);
2208		if (!prev)
2209			break;
2210		w = rb_entry(prev, struct sp_node, nd);
2211		if (w->end <= start)
2212			break;
2213		n = prev;
2214	}
2215	return rb_entry(n, struct sp_node, nd);
2216}
2217
2218/*
2219 * Insert a new shared policy into the list.  Caller holds sp->lock for
2220 * writing.
2221 */
2222static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223{
2224	struct rb_node **p = &sp->root.rb_node;
2225	struct rb_node *parent = NULL;
2226	struct sp_node *nd;
2227
2228	while (*p) {
2229		parent = *p;
2230		nd = rb_entry(parent, struct sp_node, nd);
2231		if (new->start < nd->start)
2232			p = &(*p)->rb_left;
2233		else if (new->end > nd->end)
2234			p = &(*p)->rb_right;
2235		else
2236			BUG();
2237	}
2238	rb_link_node(&new->nd, parent, p);
2239	rb_insert_color(&new->nd, &sp->root);
2240	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241		 new->policy ? new->policy->mode : 0);
2242}
2243
2244/* Find shared policy intersecting idx */
2245struct mempolicy *
2246mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247{
2248	struct mempolicy *pol = NULL;
2249	struct sp_node *sn;
2250
2251	if (!sp->root.rb_node)
2252		return NULL;
2253	read_lock(&sp->lock);
2254	sn = sp_lookup(sp, idx, idx+1);
2255	if (sn) {
2256		mpol_get(sn->policy);
2257		pol = sn->policy;
2258	}
2259	read_unlock(&sp->lock);
2260	return pol;
2261}
2262
2263static void sp_free(struct sp_node *n)
2264{
2265	mpol_put(n->policy);
2266	kmem_cache_free(sn_cache, n);
2267}
2268
2269/**
2270 * mpol_misplaced - check whether current page node is valid in policy
2271 *
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2275 *
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2277 * node id.
2278 *
2279 * Returns:
2280 *	-1	- not misplaced, page is in the right node
2281 *	node	- node id where the page should be
2282 *
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
2285 */
2286int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287{
2288	struct mempolicy *pol;
2289	struct zoneref *z;
2290	int curnid = page_to_nid(page);
2291	unsigned long pgoff;
2292	int thiscpu = raw_smp_processor_id();
2293	int thisnid = cpu_to_node(thiscpu);
2294	int polnid = -1;
2295	int ret = -1;
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		pgoff = vma->vm_pgoff;
2304		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2305		polnid = offset_il_node(pol, pgoff);
2306		break;
2307
2308	case MPOL_PREFERRED:
2309		if (pol->flags & MPOL_F_LOCAL)
2310			polnid = numa_node_id();
2311		else
2312			polnid = pol->v.preferred_node;
2313		break;
2314
2315	case MPOL_BIND:
2316
2317		/*
2318		 * allows binding to multiple nodes.
2319		 * use current page if in policy nodemask,
2320		 * else select nearest allowed node, if any.
2321		 * If no allowed nodes, use current [!misplaced].
2322		 */
2323		if (node_isset(curnid, pol->v.nodes))
2324			goto out;
2325		z = first_zones_zonelist(
2326				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2327				gfp_zone(GFP_HIGHUSER),
2328				&pol->v.nodes);
2329		polnid = z->zone->node;
2330		break;
2331
2332	default:
2333		BUG();
2334	}
2335
2336	/* Migrate the page towards the node whose CPU is referencing it */
2337	if (pol->flags & MPOL_F_MORON) {
2338		polnid = thisnid;
2339
2340		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2341			goto out;
2342	}
2343
2344	if (curnid != polnid)
2345		ret = polnid;
2346out:
2347	mpol_cond_put(pol);
2348
2349	return ret;
2350}
2351
2352/*
2353 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2354 * dropped after task->mempolicy is set to NULL so that any allocation done as
2355 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2356 * policy.
2357 */
2358void mpol_put_task_policy(struct task_struct *task)
2359{
2360	struct mempolicy *pol;
2361
2362	task_lock(task);
2363	pol = task->mempolicy;
2364	task->mempolicy = NULL;
2365	task_unlock(task);
2366	mpol_put(pol);
2367}
2368
2369static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2370{
2371	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2372	rb_erase(&n->nd, &sp->root);
2373	sp_free(n);
2374}
2375
2376static void sp_node_init(struct sp_node *node, unsigned long start,
2377			unsigned long end, struct mempolicy *pol)
2378{
2379	node->start = start;
2380	node->end = end;
2381	node->policy = pol;
2382}
2383
2384static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2385				struct mempolicy *pol)
2386{
2387	struct sp_node *n;
2388	struct mempolicy *newpol;
2389
2390	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2391	if (!n)
2392		return NULL;
2393
2394	newpol = mpol_dup(pol);
2395	if (IS_ERR(newpol)) {
2396		kmem_cache_free(sn_cache, n);
2397		return NULL;
2398	}
2399	newpol->flags |= MPOL_F_SHARED;
2400	sp_node_init(n, start, end, newpol);
2401
2402	return n;
2403}
2404
2405/* Replace a policy range. */
2406static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2407				 unsigned long end, struct sp_node *new)
2408{
2409	struct sp_node *n;
2410	struct sp_node *n_new = NULL;
2411	struct mempolicy *mpol_new = NULL;
2412	int ret = 0;
2413
2414restart:
2415	write_lock(&sp->lock);
2416	n = sp_lookup(sp, start, end);
2417	/* Take care of old policies in the same range. */
2418	while (n && n->start < end) {
2419		struct rb_node *next = rb_next(&n->nd);
2420		if (n->start >= start) {
2421			if (n->end <= end)
2422				sp_delete(sp, n);
2423			else
2424				n->start = end;
2425		} else {
2426			/* Old policy spanning whole new range. */
2427			if (n->end > end) {
2428				if (!n_new)
2429					goto alloc_new;
2430
2431				*mpol_new = *n->policy;
2432				atomic_set(&mpol_new->refcnt, 1);
2433				sp_node_init(n_new, end, n->end, mpol_new);
 
2434				n->end = start;
2435				sp_insert(sp, n_new);
2436				n_new = NULL;
2437				mpol_new = NULL;
2438				break;
2439			} else
2440				n->end = start;
2441		}
2442		if (!next)
2443			break;
2444		n = rb_entry(next, struct sp_node, nd);
2445	}
2446	if (new)
2447		sp_insert(sp, new);
2448	write_unlock(&sp->lock);
2449	ret = 0;
2450
2451err_out:
2452	if (mpol_new)
2453		mpol_put(mpol_new);
2454	if (n_new)
2455		kmem_cache_free(sn_cache, n_new);
2456
2457	return ret;
2458
2459alloc_new:
2460	write_unlock(&sp->lock);
2461	ret = -ENOMEM;
2462	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2463	if (!n_new)
2464		goto err_out;
2465	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2466	if (!mpol_new)
2467		goto err_out;
2468	goto restart;
2469}
2470
2471/**
2472 * mpol_shared_policy_init - initialize shared policy for inode
2473 * @sp: pointer to inode shared policy
2474 * @mpol:  struct mempolicy to install
2475 *
2476 * Install non-NULL @mpol in inode's shared policy rb-tree.
2477 * On entry, the current task has a reference on a non-NULL @mpol.
2478 * This must be released on exit.
2479 * This is called at get_inode() calls and we can use GFP_KERNEL.
2480 */
2481void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2482{
2483	int ret;
2484
2485	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2486	rwlock_init(&sp->lock);
2487
2488	if (mpol) {
2489		struct vm_area_struct pvma;
2490		struct mempolicy *new;
2491		NODEMASK_SCRATCH(scratch);
2492
2493		if (!scratch)
2494			goto put_mpol;
2495		/* contextualize the tmpfs mount point mempolicy */
2496		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2497		if (IS_ERR(new))
2498			goto free_scratch; /* no valid nodemask intersection */
2499
2500		task_lock(current);
2501		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2502		task_unlock(current);
2503		if (ret)
2504			goto put_new;
2505
2506		/* Create pseudo-vma that contains just the policy */
2507		memset(&pvma, 0, sizeof(struct vm_area_struct));
2508		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2509		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2510
2511put_new:
2512		mpol_put(new);			/* drop initial ref */
2513free_scratch:
2514		NODEMASK_SCRATCH_FREE(scratch);
2515put_mpol:
2516		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2517	}
2518}
2519
2520int mpol_set_shared_policy(struct shared_policy *info,
2521			struct vm_area_struct *vma, struct mempolicy *npol)
2522{
2523	int err;
2524	struct sp_node *new = NULL;
2525	unsigned long sz = vma_pages(vma);
2526
2527	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2528		 vma->vm_pgoff,
2529		 sz, npol ? npol->mode : -1,
2530		 npol ? npol->flags : -1,
2531		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2532
2533	if (npol) {
2534		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2535		if (!new)
2536			return -ENOMEM;
2537	}
2538	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2539	if (err && new)
2540		sp_free(new);
2541	return err;
2542}
2543
2544/* Free a backing policy store on inode delete. */
2545void mpol_free_shared_policy(struct shared_policy *p)
2546{
2547	struct sp_node *n;
2548	struct rb_node *next;
2549
2550	if (!p->root.rb_node)
2551		return;
2552	write_lock(&p->lock);
2553	next = rb_first(&p->root);
2554	while (next) {
2555		n = rb_entry(next, struct sp_node, nd);
2556		next = rb_next(&n->nd);
2557		sp_delete(p, n);
2558	}
2559	write_unlock(&p->lock);
2560}
2561
2562#ifdef CONFIG_NUMA_BALANCING
2563static int __initdata numabalancing_override;
2564
2565static void __init check_numabalancing_enable(void)
2566{
2567	bool numabalancing_default = false;
2568
2569	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2570		numabalancing_default = true;
2571
2572	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2573	if (numabalancing_override)
2574		set_numabalancing_state(numabalancing_override == 1);
2575
2576	if (num_online_nodes() > 1 && !numabalancing_override) {
2577		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2578			numabalancing_default ? "Enabling" : "Disabling");
2579		set_numabalancing_state(numabalancing_default);
2580	}
 
2581}
2582
2583static int __init setup_numabalancing(char *str)
2584{
2585	int ret = 0;
2586	if (!str)
2587		goto out;
2588
2589	if (!strcmp(str, "enable")) {
2590		numabalancing_override = 1;
2591		ret = 1;
2592	} else if (!strcmp(str, "disable")) {
2593		numabalancing_override = -1;
2594		ret = 1;
2595	}
2596out:
2597	if (!ret)
2598		pr_warn("Unable to parse numa_balancing=\n");
2599
2600	return ret;
2601}
2602__setup("numa_balancing=", setup_numabalancing);
2603#else
2604static inline void __init check_numabalancing_enable(void)
2605{
2606}
2607#endif /* CONFIG_NUMA_BALANCING */
2608
2609/* assumes fs == KERNEL_DS */
2610void __init numa_policy_init(void)
2611{
2612	nodemask_t interleave_nodes;
2613	unsigned long largest = 0;
2614	int nid, prefer = 0;
2615
2616	policy_cache = kmem_cache_create("numa_policy",
2617					 sizeof(struct mempolicy),
2618					 0, SLAB_PANIC, NULL);
2619
2620	sn_cache = kmem_cache_create("shared_policy_node",
2621				     sizeof(struct sp_node),
2622				     0, SLAB_PANIC, NULL);
2623
2624	for_each_node(nid) {
2625		preferred_node_policy[nid] = (struct mempolicy) {
2626			.refcnt = ATOMIC_INIT(1),
2627			.mode = MPOL_PREFERRED,
2628			.flags = MPOL_F_MOF | MPOL_F_MORON,
2629			.v = { .preferred_node = nid, },
2630		};
2631	}
2632
2633	/*
2634	 * Set interleaving policy for system init. Interleaving is only
2635	 * enabled across suitably sized nodes (default is >= 16MB), or
2636	 * fall back to the largest node if they're all smaller.
2637	 */
2638	nodes_clear(interleave_nodes);
2639	for_each_node_state(nid, N_MEMORY) {
2640		unsigned long total_pages = node_present_pages(nid);
2641
2642		/* Preserve the largest node */
2643		if (largest < total_pages) {
2644			largest = total_pages;
2645			prefer = nid;
2646		}
2647
2648		/* Interleave this node? */
2649		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2650			node_set(nid, interleave_nodes);
2651	}
2652
2653	/* All too small, use the largest */
2654	if (unlikely(nodes_empty(interleave_nodes)))
2655		node_set(prefer, interleave_nodes);
2656
2657	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2658		pr_err("%s: interleaving failed\n", __func__);
2659
2660	check_numabalancing_enable();
2661}
2662
2663/* Reset policy of current process to default */
2664void numa_default_policy(void)
2665{
2666	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2667}
2668
2669/*
2670 * Parse and format mempolicy from/to strings
2671 */
2672
2673/*
2674 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
 
2675 */
 
2676static const char * const policy_modes[] =
2677{
2678	[MPOL_DEFAULT]    = "default",
2679	[MPOL_PREFERRED]  = "prefer",
2680	[MPOL_BIND]       = "bind",
2681	[MPOL_INTERLEAVE] = "interleave",
2682	[MPOL_LOCAL]      = "local",
2683};
2684
2685
2686#ifdef CONFIG_TMPFS
2687/**
2688 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2689 * @str:  string containing mempolicy to parse
2690 * @mpol:  pointer to struct mempolicy pointer, returned on success.
 
2691 *
2692 * Format of input:
2693 *	<mode>[=<flags>][:<nodelist>]
2694 *
 
 
 
 
 
 
 
2695 * On success, returns 0, else 1
2696 */
2697int mpol_parse_str(char *str, struct mempolicy **mpol)
2698{
2699	struct mempolicy *new = NULL;
2700	unsigned short mode;
2701	unsigned short mode_flags;
2702	nodemask_t nodes;
2703	char *nodelist = strchr(str, ':');
2704	char *flags = strchr(str, '=');
2705	int err = 1;
2706
2707	if (nodelist) {
2708		/* NUL-terminate mode or flags string */
2709		*nodelist++ = '\0';
2710		if (nodelist_parse(nodelist, nodes))
2711			goto out;
2712		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2713			goto out;
2714	} else
2715		nodes_clear(nodes);
2716
2717	if (flags)
2718		*flags++ = '\0';	/* terminate mode string */
2719
2720	for (mode = 0; mode < MPOL_MAX; mode++) {
2721		if (!strcmp(str, policy_modes[mode])) {
2722			break;
2723		}
2724	}
2725	if (mode >= MPOL_MAX)
2726		goto out;
2727
2728	switch (mode) {
2729	case MPOL_PREFERRED:
2730		/*
2731		 * Insist on a nodelist of one node only
2732		 */
2733		if (nodelist) {
2734			char *rest = nodelist;
2735			while (isdigit(*rest))
2736				rest++;
2737			if (*rest)
2738				goto out;
2739		}
2740		break;
2741	case MPOL_INTERLEAVE:
2742		/*
2743		 * Default to online nodes with memory if no nodelist
2744		 */
2745		if (!nodelist)
2746			nodes = node_states[N_MEMORY];
2747		break;
2748	case MPOL_LOCAL:
2749		/*
2750		 * Don't allow a nodelist;  mpol_new() checks flags
2751		 */
2752		if (nodelist)
2753			goto out;
2754		mode = MPOL_PREFERRED;
2755		break;
2756	case MPOL_DEFAULT:
2757		/*
2758		 * Insist on a empty nodelist
2759		 */
2760		if (!nodelist)
2761			err = 0;
2762		goto out;
2763	case MPOL_BIND:
2764		/*
2765		 * Insist on a nodelist
2766		 */
2767		if (!nodelist)
2768			goto out;
2769	}
2770
2771	mode_flags = 0;
2772	if (flags) {
2773		/*
2774		 * Currently, we only support two mutually exclusive
2775		 * mode flags.
2776		 */
2777		if (!strcmp(flags, "static"))
2778			mode_flags |= MPOL_F_STATIC_NODES;
2779		else if (!strcmp(flags, "relative"))
2780			mode_flags |= MPOL_F_RELATIVE_NODES;
2781		else
2782			goto out;
2783	}
2784
2785	new = mpol_new(mode, mode_flags, &nodes);
2786	if (IS_ERR(new))
2787		goto out;
2788
2789	/*
2790	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792	 */
2793	if (mode != MPOL_PREFERRED)
2794		new->v.nodes = nodes;
2795	else if (nodelist)
2796		new->v.preferred_node = first_node(nodes);
2797	else
2798		new->flags |= MPOL_F_LOCAL;
2799
2800	/*
2801	 * Save nodes for contextualization: this will be used to "clone"
2802	 * the mempolicy in a specific context [cpuset] at a later time.
2803	 */
2804	new->w.user_nodemask = nodes;
2805
 
2806	err = 0;
2807
2808out:
2809	/* Restore string for error message */
2810	if (nodelist)
2811		*--nodelist = ':';
2812	if (flags)
2813		*--flags = '=';
2814	if (!err)
2815		*mpol = new;
2816	return err;
2817}
2818#endif /* CONFIG_TMPFS */
2819
2820/**
2821 * mpol_to_str - format a mempolicy structure for printing
2822 * @buffer:  to contain formatted mempolicy string
2823 * @maxlen:  length of @buffer
2824 * @pol:  pointer to mempolicy to be formatted
 
2825 *
2826 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2827 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828 * longest flag, "relative", and to display at least a few node ids.
2829 */
2830void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831{
2832	char *p = buffer;
2833	nodemask_t nodes = NODE_MASK_NONE;
2834	unsigned short mode = MPOL_DEFAULT;
2835	unsigned short flags = 0;
 
2836
2837	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
 
 
 
 
 
 
 
2838		mode = pol->mode;
2839		flags = pol->flags;
2840	}
2841
2842	switch (mode) {
2843	case MPOL_DEFAULT:
 
2844		break;
 
2845	case MPOL_PREFERRED:
 
2846		if (flags & MPOL_F_LOCAL)
2847			mode = MPOL_LOCAL;
2848		else
2849			node_set(pol->v.preferred_node, nodes);
2850		break;
 
2851	case MPOL_BIND:
 
2852	case MPOL_INTERLEAVE:
2853		nodes = pol->v.nodes;
 
 
 
2854		break;
 
2855	default:
2856		WARN_ON_ONCE(1);
2857		snprintf(p, maxlen, "unknown");
2858		return;
2859	}
2860
2861	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
 
 
 
 
 
2862
2863	if (flags & MPOL_MODE_FLAGS) {
2864		p += snprintf(p, buffer + maxlen - p, "=");
 
 
2865
2866		/*
2867		 * Currently, the only defined flags are mutually exclusive
2868		 */
2869		if (flags & MPOL_F_STATIC_NODES)
2870			p += snprintf(p, buffer + maxlen - p, "static");
2871		else if (flags & MPOL_F_RELATIVE_NODES)
2872			p += snprintf(p, buffer + maxlen - p, "relative");
2873	}
2874
2875	if (!nodes_empty(nodes))
2876		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877			       nodemask_pr_args(&nodes));
 
 
 
 
2878}
v3.5.6
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
 
 
 
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
 
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
 
 
 
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96#include <linux/random.h>
  97
  98#include "internal.h"
  99
 100/* Internal flags */
 101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114static struct mempolicy default_policy = {
 115	.refcnt = ATOMIC_INIT(1), /* never free it */
 116	.mode = MPOL_PREFERRED,
 117	.flags = MPOL_F_LOCAL,
 118};
 119
 120static const struct mempolicy_operations {
 121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122	/*
 123	 * If read-side task has no lock to protect task->mempolicy, write-side
 124	 * task will rebind the task->mempolicy by two step. The first step is
 125	 * setting all the newly nodes, and the second step is cleaning all the
 126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 127	 * page.
 128	 * If we have a lock to protect task->mempolicy in read-side, we do
 129	 * rebind directly.
 130	 *
 131	 * step:
 132	 * 	MPOL_REBIND_ONCE - do rebind work at once
 133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135	 */
 136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137			enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143	int nd, k;
 
 144
 145	for_each_node_mask(nd, *nodemask) {
 146		struct zone *z;
 147
 148		for (k = 0; k <= policy_zone; k++) {
 149			z = &NODE_DATA(nd)->node_zones[k];
 150			if (z->present_pages > 0)
 151				return 1;
 152		}
 
 153	}
 154
 155	return 0;
 156}
 157
 
 
 
 
 
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160	return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164				   const nodemask_t *rel)
 165{
 166	nodemask_t tmp;
 167	nodes_fold(tmp, *orig, nodes_weight(*rel));
 168	nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173	if (nodes_empty(*nodes))
 174		return -EINVAL;
 175	pol->v.nodes = *nodes;
 176	return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181	if (!nodes)
 182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 183	else if (nodes_empty(*nodes))
 184		return -EINVAL;			/*  no allowed nodes */
 185	else
 186		pol->v.preferred_node = first_node(*nodes);
 187	return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192	if (!is_valid_nodemask(nodes))
 193		return -EINVAL;
 194	pol->v.nodes = *nodes;
 195	return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210	int ret;
 211
 212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213	if (pol == NULL)
 214		return 0;
 215	/* Check N_HIGH_MEMORY */
 216	nodes_and(nsc->mask1,
 217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219	VM_BUG_ON(!nodes);
 220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221		nodes = NULL;	/* explicit local allocation */
 222	else {
 223		if (pol->flags & MPOL_F_RELATIVE_NODES)
 224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225		else
 226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228		if (mpol_store_user_nodemask(pol))
 229			pol->w.user_nodemask = *nodes;
 230		else
 231			pol->w.cpuset_mems_allowed =
 232						cpuset_current_mems_allowed;
 233	}
 234
 235	if (nodes)
 236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237	else
 238		ret = mpol_ops[pol->mode].create(pol, NULL);
 239	return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247				  nodemask_t *nodes)
 248{
 249	struct mempolicy *policy;
 250
 251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254	if (mode == MPOL_DEFAULT) {
 255		if (nodes && !nodes_empty(*nodes))
 256			return ERR_PTR(-EINVAL);
 257		return NULL;	/* simply delete any existing policy */
 258	}
 259	VM_BUG_ON(!nodes);
 260
 261	/*
 262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264	 * All other modes require a valid pointer to a non-empty nodemask.
 265	 */
 266	if (mode == MPOL_PREFERRED) {
 267		if (nodes_empty(*nodes)) {
 268			if (((flags & MPOL_F_STATIC_NODES) ||
 269			     (flags & MPOL_F_RELATIVE_NODES)))
 270				return ERR_PTR(-EINVAL);
 271		}
 
 
 
 
 
 
 272	} else if (nodes_empty(*nodes))
 273		return ERR_PTR(-EINVAL);
 274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275	if (!policy)
 276		return ERR_PTR(-ENOMEM);
 277	atomic_set(&policy->refcnt, 1);
 278	policy->mode = mode;
 279	policy->flags = flags;
 280
 281	return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287	if (!atomic_dec_and_test(&p->refcnt))
 288		return;
 289	kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293				enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 * 	MPOL_REBIND_ONCE  - do rebind work at once
 300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304				 enum mpol_rebind_step step)
 305{
 306	nodemask_t tmp;
 307
 308	if (pol->flags & MPOL_F_STATIC_NODES)
 309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312	else {
 313		/*
 314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315		 * result
 316		 */
 317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318			nodes_remap(tmp, pol->v.nodes,
 319					pol->w.cpuset_mems_allowed, *nodes);
 320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321		} else if (step == MPOL_REBIND_STEP2) {
 322			tmp = pol->w.cpuset_mems_allowed;
 323			pol->w.cpuset_mems_allowed = *nodes;
 324		} else
 325			BUG();
 326	}
 327
 328	if (nodes_empty(tmp))
 329		tmp = *nodes;
 330
 331	if (step == MPOL_REBIND_STEP1)
 332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334		pol->v.nodes = tmp;
 335	else
 336		BUG();
 337
 338	if (!node_isset(current->il_next, tmp)) {
 339		current->il_next = next_node(current->il_next, tmp);
 340		if (current->il_next >= MAX_NUMNODES)
 341			current->il_next = first_node(tmp);
 342		if (current->il_next >= MAX_NUMNODES)
 343			current->il_next = numa_node_id();
 344	}
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348				  const nodemask_t *nodes,
 349				  enum mpol_rebind_step step)
 350{
 351	nodemask_t tmp;
 352
 353	if (pol->flags & MPOL_F_STATIC_NODES) {
 354		int node = first_node(pol->w.user_nodemask);
 355
 356		if (node_isset(node, *nodes)) {
 357			pol->v.preferred_node = node;
 358			pol->flags &= ~MPOL_F_LOCAL;
 359		} else
 360			pol->flags |= MPOL_F_LOCAL;
 361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363		pol->v.preferred_node = first_node(tmp);
 364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366						   pol->w.cpuset_mems_allowed,
 367						   *nodes);
 368		pol->w.cpuset_mems_allowed = *nodes;
 369	}
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 * 	MPOL_REBIND_ONCE  - do rebind work at once
 385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389				enum mpol_rebind_step step)
 390{
 391	if (!pol)
 392		return;
 393	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395		return;
 396
 397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398		return;
 399
 400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401		BUG();
 402
 403	if (step == MPOL_REBIND_STEP1)
 404		pol->flags |= MPOL_F_REBINDING;
 405	else if (step == MPOL_REBIND_STEP2)
 406		pol->flags &= ~MPOL_F_REBINDING;
 407	else if (step >= MPOL_REBIND_NSTEP)
 408		BUG();
 409
 410	mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421			enum mpol_rebind_step step)
 422{
 423	mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434	struct vm_area_struct *vma;
 435
 436	down_write(&mm->mmap_sem);
 437	for (vma = mm->mmap; vma; vma = vma->vm_next)
 438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439	up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443	[MPOL_DEFAULT] = {
 444		.rebind = mpol_rebind_default,
 445	},
 446	[MPOL_INTERLEAVE] = {
 447		.create = mpol_new_interleave,
 448		.rebind = mpol_rebind_nodemask,
 449	},
 450	[MPOL_PREFERRED] = {
 451		.create = mpol_new_preferred,
 452		.rebind = mpol_rebind_preferred,
 453	},
 454	[MPOL_BIND] = {
 455		.create = mpol_new_bind,
 456		.rebind = mpol_rebind_nodemask,
 457	},
 458};
 459
 460static void migrate_page_add(struct page *page, struct list_head *pagelist,
 461				unsigned long flags);
 462
 463/* Scan through pages checking if pages follow certain conditions. */
 464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 465		unsigned long addr, unsigned long end,
 466		const nodemask_t *nodes, unsigned long flags,
 467		void *private)
 
 
 
 
 
 
 
 
 
 
 468{
 469	pte_t *orig_pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470	pte_t *pte;
 471	spinlock_t *ptl;
 472
 473	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 474	do {
 475		struct page *page;
 476		int nid;
 
 
 
 
 
 477
 
 
 478		if (!pte_present(*pte))
 479			continue;
 480		page = vm_normal_page(vma, addr, *pte);
 481		if (!page)
 482			continue;
 483		/*
 484		 * vm_normal_page() filters out zero pages, but there might
 485		 * still be PageReserved pages to skip, perhaps in a VDSO.
 486		 * And we cannot move PageKsm pages sensibly or safely yet.
 487		 */
 488		if (PageReserved(page) || PageKsm(page))
 489			continue;
 490		nid = page_to_nid(page);
 491		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 492			continue;
 
 
 
 
 
 
 493
 494		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 495			migrate_page_add(page, private, flags);
 496		else
 497			break;
 498	} while (pte++, addr += PAGE_SIZE, addr != end);
 499	pte_unmap_unlock(orig_pte, ptl);
 500	return addr != end;
 501}
 502
 503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 504		unsigned long addr, unsigned long end,
 505		const nodemask_t *nodes, unsigned long flags,
 506		void *private)
 507{
 508	pmd_t *pmd;
 509	unsigned long next;
 510
 511	pmd = pmd_offset(pud, addr);
 512	do {
 513		next = pmd_addr_end(addr, end);
 514		split_huge_page_pmd(vma->vm_mm, pmd);
 515		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 516			continue;
 517		if (check_pte_range(vma, pmd, addr, next, nodes,
 518				    flags, private))
 519			return -EIO;
 520	} while (pmd++, addr = next, addr != end);
 521	return 0;
 522}
 523
 524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 525		unsigned long addr, unsigned long end,
 526		const nodemask_t *nodes, unsigned long flags,
 527		void *private)
 528{
 529	pud_t *pud;
 530	unsigned long next;
 531
 532	pud = pud_offset(pgd, addr);
 533	do {
 534		next = pud_addr_end(addr, end);
 535		if (pud_none_or_clear_bad(pud))
 536			continue;
 537		if (check_pmd_range(vma, pud, addr, next, nodes,
 538				    flags, private))
 539			return -EIO;
 540	} while (pud++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 541	return 0;
 542}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544static inline int check_pgd_range(struct vm_area_struct *vma,
 545		unsigned long addr, unsigned long end,
 546		const nodemask_t *nodes, unsigned long flags,
 547		void *private)
 548{
 549	pgd_t *pgd;
 550	unsigned long next;
 551
 552	pgd = pgd_offset(vma->vm_mm, addr);
 553	do {
 554		next = pgd_addr_end(addr, end);
 555		if (pgd_none_or_clear_bad(pgd))
 556			continue;
 557		if (check_pud_range(vma, pgd, addr, next, nodes,
 558				    flags, private))
 559			return -EIO;
 560	} while (pgd++, addr = next, addr != end);
 561	return 0;
 
 
 
 
 
 
 
 
 
 562}
 563
 564/*
 565 * Check if all pages in a range are on a set of nodes.
 566 * If pagelist != NULL then isolate pages from the LRU and
 567 * put them on the pagelist.
 568 */
 569static struct vm_area_struct *
 570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 571		const nodemask_t *nodes, unsigned long flags, void *private)
 572{
 573	int err;
 574	struct vm_area_struct *first, *vma, *prev;
 
 575
 
 
 
 
 576
 577	first = find_vma(mm, start);
 578	if (!first)
 579		return ERR_PTR(-EFAULT);
 580	prev = NULL;
 581	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 582		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 583			if (!vma->vm_next && vma->vm_end < end)
 584				return ERR_PTR(-EFAULT);
 585			if (prev && prev->vm_end < vma->vm_start)
 586				return ERR_PTR(-EFAULT);
 587		}
 588		if (!is_vm_hugetlb_page(vma) &&
 589		    ((flags & MPOL_MF_STRICT) ||
 590		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 591				vma_migratable(vma)))) {
 592			unsigned long endvma = vma->vm_end;
 593
 594			if (endvma > end)
 595				endvma = end;
 596			if (vma->vm_start > start)
 597				start = vma->vm_start;
 598			err = check_pgd_range(vma, start, endvma, nodes,
 599						flags, private);
 600			if (err) {
 601				first = ERR_PTR(err);
 602				break;
 603			}
 604		}
 605		prev = vma;
 606	}
 607	return first;
 
 
 
 
 
 
 
 
 608}
 609
 610/* Step 2: apply policy to a range and do splits. */
 611static int mbind_range(struct mm_struct *mm, unsigned long start,
 612		       unsigned long end, struct mempolicy *new_pol)
 613{
 614	struct vm_area_struct *next;
 615	struct vm_area_struct *prev;
 616	struct vm_area_struct *vma;
 617	int err = 0;
 618	pgoff_t pgoff;
 619	unsigned long vmstart;
 620	unsigned long vmend;
 621
 622	vma = find_vma(mm, start);
 623	if (!vma || vma->vm_start > start)
 624		return -EFAULT;
 625
 626	prev = vma->vm_prev;
 627	if (start > vma->vm_start)
 628		prev = vma;
 629
 630	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 631		next = vma->vm_next;
 632		vmstart = max(start, vma->vm_start);
 633		vmend   = min(end, vma->vm_end);
 634
 635		if (mpol_equal(vma_policy(vma), new_pol))
 636			continue;
 637
 638		pgoff = vma->vm_pgoff +
 639			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 640		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 641				  vma->anon_vma, vma->vm_file, pgoff,
 642				  new_pol);
 643		if (prev) {
 644			vma = prev;
 645			next = vma->vm_next;
 646			continue;
 
 
 
 647		}
 648		if (vma->vm_start != vmstart) {
 649			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 650			if (err)
 651				goto out;
 652		}
 653		if (vma->vm_end != vmend) {
 654			err = split_vma(vma->vm_mm, vma, vmend, 0);
 655			if (err)
 656				goto out;
 657		}
 658
 659		/*
 660		 * Apply policy to a single VMA. The reference counting of
 661		 * policy for vma_policy linkages has already been handled by
 662		 * vma_merge and split_vma as necessary. If this is a shared
 663		 * policy then ->set_policy will increment the reference count
 664		 * for an sp node.
 665		 */
 666		pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 667			vma->vm_start, vma->vm_end, vma->vm_pgoff,
 668			vma->vm_ops, vma->vm_file,
 669			vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 670		if (vma->vm_ops && vma->vm_ops->set_policy) {
 671			err = vma->vm_ops->set_policy(vma, new_pol);
 672			if (err)
 673				goto out;
 674		}
 675	}
 676
 677 out:
 678	return err;
 679}
 680
 681/*
 682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 683 * mempolicy.  Allows more rapid checking of this (combined perhaps
 684 * with other PF_* flag bits) on memory allocation hot code paths.
 685 *
 686 * If called from outside this file, the task 'p' should -only- be
 687 * a newly forked child not yet visible on the task list, because
 688 * manipulating the task flags of a visible task is not safe.
 689 *
 690 * The above limitation is why this routine has the funny name
 691 * mpol_fix_fork_child_flag().
 692 *
 693 * It is also safe to call this with a task pointer of current,
 694 * which the static wrapper mpol_set_task_struct_flag() does,
 695 * for use within this file.
 696 */
 697
 698void mpol_fix_fork_child_flag(struct task_struct *p)
 699{
 700	if (p->mempolicy)
 701		p->flags |= PF_MEMPOLICY;
 702	else
 703		p->flags &= ~PF_MEMPOLICY;
 704}
 705
 706static void mpol_set_task_struct_flag(void)
 707{
 708	mpol_fix_fork_child_flag(current);
 709}
 710
 711/* Set the process memory policy */
 712static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 713			     nodemask_t *nodes)
 714{
 715	struct mempolicy *new, *old;
 716	struct mm_struct *mm = current->mm;
 717	NODEMASK_SCRATCH(scratch);
 718	int ret;
 719
 720	if (!scratch)
 721		return -ENOMEM;
 722
 723	new = mpol_new(mode, flags, nodes);
 724	if (IS_ERR(new)) {
 725		ret = PTR_ERR(new);
 726		goto out;
 727	}
 728	/*
 729	 * prevent changing our mempolicy while show_numa_maps()
 730	 * is using it.
 731	 * Note:  do_set_mempolicy() can be called at init time
 732	 * with no 'mm'.
 733	 */
 734	if (mm)
 735		down_write(&mm->mmap_sem);
 736	task_lock(current);
 737	ret = mpol_set_nodemask(new, nodes, scratch);
 738	if (ret) {
 739		task_unlock(current);
 740		if (mm)
 741			up_write(&mm->mmap_sem);
 742		mpol_put(new);
 743		goto out;
 744	}
 745	old = current->mempolicy;
 746	current->mempolicy = new;
 747	mpol_set_task_struct_flag();
 748	if (new && new->mode == MPOL_INTERLEAVE &&
 749	    nodes_weight(new->v.nodes))
 750		current->il_next = first_node(new->v.nodes);
 751	task_unlock(current);
 752	if (mm)
 753		up_write(&mm->mmap_sem);
 754
 755	mpol_put(old);
 756	ret = 0;
 757out:
 758	NODEMASK_SCRATCH_FREE(scratch);
 759	return ret;
 760}
 761
 762/*
 763 * Return nodemask for policy for get_mempolicy() query
 764 *
 765 * Called with task's alloc_lock held
 766 */
 767static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 768{
 769	nodes_clear(*nodes);
 770	if (p == &default_policy)
 771		return;
 772
 773	switch (p->mode) {
 774	case MPOL_BIND:
 775		/* Fall through */
 776	case MPOL_INTERLEAVE:
 777		*nodes = p->v.nodes;
 778		break;
 779	case MPOL_PREFERRED:
 780		if (!(p->flags & MPOL_F_LOCAL))
 781			node_set(p->v.preferred_node, *nodes);
 782		/* else return empty node mask for local allocation */
 783		break;
 784	default:
 785		BUG();
 786	}
 787}
 788
 789static int lookup_node(struct mm_struct *mm, unsigned long addr)
 790{
 791	struct page *p;
 792	int err;
 793
 794	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 795	if (err >= 0) {
 796		err = page_to_nid(p);
 797		put_page(p);
 798	}
 799	return err;
 800}
 801
 802/* Retrieve NUMA policy */
 803static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 804			     unsigned long addr, unsigned long flags)
 805{
 806	int err;
 807	struct mm_struct *mm = current->mm;
 808	struct vm_area_struct *vma = NULL;
 809	struct mempolicy *pol = current->mempolicy;
 810
 811	if (flags &
 812		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 813		return -EINVAL;
 814
 815	if (flags & MPOL_F_MEMS_ALLOWED) {
 816		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 817			return -EINVAL;
 818		*policy = 0;	/* just so it's initialized */
 819		task_lock(current);
 820		*nmask  = cpuset_current_mems_allowed;
 821		task_unlock(current);
 822		return 0;
 823	}
 824
 825	if (flags & MPOL_F_ADDR) {
 826		/*
 827		 * Do NOT fall back to task policy if the
 828		 * vma/shared policy at addr is NULL.  We
 829		 * want to return MPOL_DEFAULT in this case.
 830		 */
 831		down_read(&mm->mmap_sem);
 832		vma = find_vma_intersection(mm, addr, addr+1);
 833		if (!vma) {
 834			up_read(&mm->mmap_sem);
 835			return -EFAULT;
 836		}
 837		if (vma->vm_ops && vma->vm_ops->get_policy)
 838			pol = vma->vm_ops->get_policy(vma, addr);
 839		else
 840			pol = vma->vm_policy;
 841	} else if (addr)
 842		return -EINVAL;
 843
 844	if (!pol)
 845		pol = &default_policy;	/* indicates default behavior */
 846
 847	if (flags & MPOL_F_NODE) {
 848		if (flags & MPOL_F_ADDR) {
 849			err = lookup_node(mm, addr);
 850			if (err < 0)
 851				goto out;
 852			*policy = err;
 853		} else if (pol == current->mempolicy &&
 854				pol->mode == MPOL_INTERLEAVE) {
 855			*policy = current->il_next;
 856		} else {
 857			err = -EINVAL;
 858			goto out;
 859		}
 860	} else {
 861		*policy = pol == &default_policy ? MPOL_DEFAULT :
 862						pol->mode;
 863		/*
 864		 * Internal mempolicy flags must be masked off before exposing
 865		 * the policy to userspace.
 866		 */
 867		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 868	}
 869
 870	if (vma) {
 871		up_read(&current->mm->mmap_sem);
 872		vma = NULL;
 873	}
 874
 875	err = 0;
 876	if (nmask) {
 877		if (mpol_store_user_nodemask(pol)) {
 878			*nmask = pol->w.user_nodemask;
 879		} else {
 880			task_lock(current);
 881			get_policy_nodemask(pol, nmask);
 882			task_unlock(current);
 883		}
 884	}
 885
 886 out:
 887	mpol_cond_put(pol);
 888	if (vma)
 889		up_read(&current->mm->mmap_sem);
 890	return err;
 891}
 892
 893#ifdef CONFIG_MIGRATION
 894/*
 895 * page migration
 896 */
 897static void migrate_page_add(struct page *page, struct list_head *pagelist,
 898				unsigned long flags)
 899{
 
 900	/*
 901	 * Avoid migrating a page that is shared with others.
 902	 */
 903	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 904		if (!isolate_lru_page(page)) {
 905			list_add_tail(&page->lru, pagelist);
 906			inc_zone_page_state(page, NR_ISOLATED_ANON +
 907					    page_is_file_cache(page));
 
 908		}
 909	}
 910}
 911
 912static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 
 913{
 914	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915}
 916
 917/*
 918 * Migrate pages from one node to a target node.
 919 * Returns error or the number of pages not migrated.
 920 */
 921static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 922			   int flags)
 923{
 924	nodemask_t nmask;
 925	LIST_HEAD(pagelist);
 926	int err = 0;
 927	struct vm_area_struct *vma;
 928
 929	nodes_clear(nmask);
 930	node_set(source, nmask);
 931
 932	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 
 
 
 
 
 
 933			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 934	if (IS_ERR(vma))
 935		return PTR_ERR(vma);
 936
 937	if (!list_empty(&pagelist)) {
 938		err = migrate_pages(&pagelist, new_node_page, dest,
 939							false, MIGRATE_SYNC);
 940		if (err)
 941			putback_lru_pages(&pagelist);
 942	}
 943
 944	return err;
 945}
 946
 947/*
 948 * Move pages between the two nodesets so as to preserve the physical
 949 * layout as much as possible.
 950 *
 951 * Returns the number of page that could not be moved.
 952 */
 953int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 954		     const nodemask_t *to, int flags)
 955{
 956	int busy = 0;
 957	int err;
 958	nodemask_t tmp;
 959
 960	err = migrate_prep();
 961	if (err)
 962		return err;
 963
 964	down_read(&mm->mmap_sem);
 965
 966	err = migrate_vmas(mm, from, to, flags);
 967	if (err)
 968		goto out;
 969
 970	/*
 971	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 972	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 973	 * bit in 'tmp', and return that <source, dest> pair for migration.
 974	 * The pair of nodemasks 'to' and 'from' define the map.
 975	 *
 976	 * If no pair of bits is found that way, fallback to picking some
 977	 * pair of 'source' and 'dest' bits that are not the same.  If the
 978	 * 'source' and 'dest' bits are the same, this represents a node
 979	 * that will be migrating to itself, so no pages need move.
 980	 *
 981	 * If no bits are left in 'tmp', or if all remaining bits left
 982	 * in 'tmp' correspond to the same bit in 'to', return false
 983	 * (nothing left to migrate).
 984	 *
 985	 * This lets us pick a pair of nodes to migrate between, such that
 986	 * if possible the dest node is not already occupied by some other
 987	 * source node, minimizing the risk of overloading the memory on a
 988	 * node that would happen if we migrated incoming memory to a node
 989	 * before migrating outgoing memory source that same node.
 990	 *
 991	 * A single scan of tmp is sufficient.  As we go, we remember the
 992	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 993	 * that not only moved, but what's better, moved to an empty slot
 994	 * (d is not set in tmp), then we break out then, with that pair.
 995	 * Otherwise when we finish scanning from_tmp, we at least have the
 996	 * most recent <s, d> pair that moved.  If we get all the way through
 997	 * the scan of tmp without finding any node that moved, much less
 998	 * moved to an empty node, then there is nothing left worth migrating.
 999	 */
1000
1001	tmp = *from;
1002	while (!nodes_empty(tmp)) {
1003		int s,d;
1004		int source = -1;
1005		int dest = 0;
1006
1007		for_each_node_mask(s, tmp) {
1008
1009			/*
1010			 * do_migrate_pages() tries to maintain the relative
1011			 * node relationship of the pages established between
1012			 * threads and memory areas.
1013                         *
1014			 * However if the number of source nodes is not equal to
1015			 * the number of destination nodes we can not preserve
1016			 * this node relative relationship.  In that case, skip
1017			 * copying memory from a node that is in the destination
1018			 * mask.
1019			 *
1020			 * Example: [2,3,4] -> [3,4,5] moves everything.
1021			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1022			 */
1023
1024			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1025						(node_isset(s, *to)))
1026				continue;
1027
1028			d = node_remap(s, *from, *to);
1029			if (s == d)
1030				continue;
1031
1032			source = s;	/* Node moved. Memorize */
1033			dest = d;
1034
1035			/* dest not in remaining from nodes? */
1036			if (!node_isset(dest, tmp))
1037				break;
1038		}
1039		if (source == -1)
1040			break;
1041
1042		node_clear(source, tmp);
1043		err = migrate_to_node(mm, source, dest, flags);
1044		if (err > 0)
1045			busy += err;
1046		if (err < 0)
1047			break;
1048	}
1049out:
1050	up_read(&mm->mmap_sem);
1051	if (err < 0)
1052		return err;
1053	return busy;
1054
1055}
1056
1057/*
1058 * Allocate a new page for page migration based on vma policy.
1059 * Start assuming that page is mapped by vma pointed to by @private.
1060 * Search forward from there, if not.  N.B., this assumes that the
1061 * list of pages handed to migrate_pages()--which is how we get here--
1062 * is in virtual address order.
1063 */
1064static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1065{
1066	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1067	unsigned long uninitialized_var(address);
1068
 
1069	while (vma) {
1070		address = page_address_in_vma(page, vma);
1071		if (address != -EFAULT)
1072			break;
1073		vma = vma->vm_next;
1074	}
1075
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	/*
1077	 * if !vma, alloc_page_vma() will use task or system default policy
1078	 */
1079	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
1080}
1081#else
1082
1083static void migrate_page_add(struct page *page, struct list_head *pagelist,
1084				unsigned long flags)
1085{
1086}
1087
1088int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1089		     const nodemask_t *to, int flags)
1090{
1091	return -ENOSYS;
1092}
1093
1094static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1095{
1096	return NULL;
1097}
1098#endif
1099
1100static long do_mbind(unsigned long start, unsigned long len,
1101		     unsigned short mode, unsigned short mode_flags,
1102		     nodemask_t *nmask, unsigned long flags)
1103{
1104	struct vm_area_struct *vma;
1105	struct mm_struct *mm = current->mm;
1106	struct mempolicy *new;
1107	unsigned long end;
1108	int err;
1109	LIST_HEAD(pagelist);
1110
1111	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1112				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1113		return -EINVAL;
1114	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1115		return -EPERM;
1116
1117	if (start & ~PAGE_MASK)
1118		return -EINVAL;
1119
1120	if (mode == MPOL_DEFAULT)
1121		flags &= ~MPOL_MF_STRICT;
1122
1123	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1124	end = start + len;
1125
1126	if (end < start)
1127		return -EINVAL;
1128	if (end == start)
1129		return 0;
1130
1131	new = mpol_new(mode, mode_flags, nmask);
1132	if (IS_ERR(new))
1133		return PTR_ERR(new);
1134
 
 
 
1135	/*
1136	 * If we are using the default policy then operation
1137	 * on discontinuous address spaces is okay after all
1138	 */
1139	if (!new)
1140		flags |= MPOL_MF_DISCONTIG_OK;
1141
1142	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1143		 start, start + len, mode, mode_flags,
1144		 nmask ? nodes_addr(*nmask)[0] : -1);
1145
1146	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1147
1148		err = migrate_prep();
1149		if (err)
1150			goto mpol_out;
1151	}
1152	{
1153		NODEMASK_SCRATCH(scratch);
1154		if (scratch) {
1155			down_write(&mm->mmap_sem);
1156			task_lock(current);
1157			err = mpol_set_nodemask(new, nmask, scratch);
1158			task_unlock(current);
1159			if (err)
1160				up_write(&mm->mmap_sem);
1161		} else
1162			err = -ENOMEM;
1163		NODEMASK_SCRATCH_FREE(scratch);
1164	}
1165	if (err)
1166		goto mpol_out;
1167
1168	vma = check_range(mm, start, end, nmask,
1169			  flags | MPOL_MF_INVERT, &pagelist);
 
 
1170
1171	err = PTR_ERR(vma);
1172	if (!IS_ERR(vma)) {
1173		int nr_failed = 0;
1174
1175		err = mbind_range(mm, start, end, new);
1176
1177		if (!list_empty(&pagelist)) {
1178			nr_failed = migrate_pages(&pagelist, new_vma_page,
1179						(unsigned long)vma,
1180						false, MIGRATE_SYNC);
1181			if (nr_failed)
1182				putback_lru_pages(&pagelist);
1183		}
1184
1185		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1186			err = -EIO;
1187	} else
1188		putback_lru_pages(&pagelist);
1189
1190	up_write(&mm->mmap_sem);
1191 mpol_out:
1192	mpol_put(new);
1193	return err;
1194}
1195
1196/*
1197 * User space interface with variable sized bitmaps for nodelists.
1198 */
1199
1200/* Copy a node mask from user space. */
1201static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1202		     unsigned long maxnode)
1203{
1204	unsigned long k;
 
1205	unsigned long nlongs;
1206	unsigned long endmask;
1207
1208	--maxnode;
1209	nodes_clear(*nodes);
1210	if (maxnode == 0 || !nmask)
1211		return 0;
1212	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1213		return -EINVAL;
1214
1215	nlongs = BITS_TO_LONGS(maxnode);
1216	if ((maxnode % BITS_PER_LONG) == 0)
1217		endmask = ~0UL;
1218	else
1219		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1220
1221	/* When the user specified more nodes than supported just check
1222	   if the non supported part is all zero. */
 
 
 
 
 
 
 
1223	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1224		if (nlongs > PAGE_SIZE/sizeof(long))
1225			return -EINVAL;
1226		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1227			unsigned long t;
1228			if (get_user(t, nmask + k))
1229				return -EFAULT;
1230			if (k == nlongs - 1) {
1231				if (t & endmask)
1232					return -EINVAL;
1233			} else if (t)
1234				return -EINVAL;
1235		}
1236		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1237		endmask = ~0UL;
1238	}
1239
 
 
 
 
 
 
 
 
 
 
1240	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1241		return -EFAULT;
1242	nodes_addr(*nodes)[nlongs-1] &= endmask;
1243	return 0;
1244}
1245
1246/* Copy a kernel node mask to user space */
1247static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1248			      nodemask_t *nodes)
1249{
1250	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1251	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1252
1253	if (copy > nbytes) {
1254		if (copy > PAGE_SIZE)
1255			return -EINVAL;
1256		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1257			return -EFAULT;
1258		copy = nbytes;
1259	}
1260	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1261}
1262
1263SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1264		unsigned long, mode, unsigned long __user *, nmask,
1265		unsigned long, maxnode, unsigned, flags)
1266{
1267	nodemask_t nodes;
1268	int err;
1269	unsigned short mode_flags;
1270
1271	mode_flags = mode & MPOL_MODE_FLAGS;
1272	mode &= ~MPOL_MODE_FLAGS;
1273	if (mode >= MPOL_MAX)
1274		return -EINVAL;
1275	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1276	    (mode_flags & MPOL_F_RELATIVE_NODES))
1277		return -EINVAL;
1278	err = get_nodes(&nodes, nmask, maxnode);
1279	if (err)
1280		return err;
1281	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1282}
1283
 
 
 
 
 
 
 
1284/* Set the process memory policy */
1285SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1286		unsigned long, maxnode)
1287{
1288	int err;
1289	nodemask_t nodes;
1290	unsigned short flags;
1291
1292	flags = mode & MPOL_MODE_FLAGS;
1293	mode &= ~MPOL_MODE_FLAGS;
1294	if ((unsigned int)mode >= MPOL_MAX)
1295		return -EINVAL;
1296	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1297		return -EINVAL;
1298	err = get_nodes(&nodes, nmask, maxnode);
1299	if (err)
1300		return err;
1301	return do_set_mempolicy(mode, flags, &nodes);
1302}
1303
1304SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1305		const unsigned long __user *, old_nodes,
1306		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1307{
1308	const struct cred *cred = current_cred(), *tcred;
1309	struct mm_struct *mm = NULL;
1310	struct task_struct *task;
1311	nodemask_t task_nodes;
1312	int err;
1313	nodemask_t *old;
1314	nodemask_t *new;
1315	NODEMASK_SCRATCH(scratch);
1316
1317	if (!scratch)
1318		return -ENOMEM;
1319
1320	old = &scratch->mask1;
1321	new = &scratch->mask2;
1322
1323	err = get_nodes(old, old_nodes, maxnode);
1324	if (err)
1325		goto out;
1326
1327	err = get_nodes(new, new_nodes, maxnode);
1328	if (err)
1329		goto out;
1330
1331	/* Find the mm_struct */
1332	rcu_read_lock();
1333	task = pid ? find_task_by_vpid(pid) : current;
1334	if (!task) {
1335		rcu_read_unlock();
1336		err = -ESRCH;
1337		goto out;
1338	}
1339	get_task_struct(task);
1340
1341	err = -EINVAL;
1342
1343	/*
1344	 * Check if this process has the right to modify the specified
1345	 * process. The right exists if the process has administrative
1346	 * capabilities, superuser privileges or the same
1347	 * userid as the target process.
1348	 */
1349	tcred = __task_cred(task);
1350	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1351	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1352	    !capable(CAP_SYS_NICE)) {
1353		rcu_read_unlock();
1354		err = -EPERM;
1355		goto out_put;
1356	}
1357	rcu_read_unlock();
1358
1359	task_nodes = cpuset_mems_allowed(task);
1360	/* Is the user allowed to access the target nodes? */
1361	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1362		err = -EPERM;
1363		goto out_put;
1364	}
1365
1366	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1367		err = -EINVAL;
 
 
 
 
 
1368		goto out_put;
1369	}
1370
1371	err = security_task_movememory(task);
1372	if (err)
1373		goto out_put;
1374
1375	mm = get_task_mm(task);
1376	put_task_struct(task);
1377
1378	if (!mm) {
1379		err = -EINVAL;
1380		goto out;
1381	}
1382
1383	err = do_migrate_pages(mm, old, new,
1384		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1385
1386	mmput(mm);
1387out:
1388	NODEMASK_SCRATCH_FREE(scratch);
1389
1390	return err;
1391
1392out_put:
1393	put_task_struct(task);
1394	goto out;
1395
1396}
1397
 
 
 
 
 
 
 
1398
1399/* Retrieve NUMA policy */
1400SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1401		unsigned long __user *, nmask, unsigned long, maxnode,
1402		unsigned long, addr, unsigned long, flags)
 
 
1403{
1404	int err;
1405	int uninitialized_var(pval);
1406	nodemask_t nodes;
1407
1408	if (nmask != NULL && maxnode < MAX_NUMNODES)
1409		return -EINVAL;
1410
1411	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1412
1413	if (err)
1414		return err;
1415
1416	if (policy && put_user(pval, policy))
1417		return -EFAULT;
1418
1419	if (nmask)
1420		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1421
1422	return err;
1423}
1424
 
 
 
 
 
 
 
1425#ifdef CONFIG_COMPAT
1426
1427asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1428				     compat_ulong_t __user *nmask,
1429				     compat_ulong_t maxnode,
1430				     compat_ulong_t addr, compat_ulong_t flags)
1431{
1432	long err;
1433	unsigned long __user *nm = NULL;
1434	unsigned long nr_bits, alloc_size;
1435	DECLARE_BITMAP(bm, MAX_NUMNODES);
1436
1437	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1438	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1439
1440	if (nmask)
1441		nm = compat_alloc_user_space(alloc_size);
1442
1443	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1444
1445	if (!err && nmask) {
1446		unsigned long copy_size;
1447		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1448		err = copy_from_user(bm, nm, copy_size);
1449		/* ensure entire bitmap is zeroed */
1450		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1451		err |= compat_put_bitmap(nmask, bm, nr_bits);
1452	}
1453
1454	return err;
1455}
1456
1457asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1458				     compat_ulong_t maxnode)
1459{
1460	long err = 0;
1461	unsigned long __user *nm = NULL;
1462	unsigned long nr_bits, alloc_size;
1463	DECLARE_BITMAP(bm, MAX_NUMNODES);
1464
1465	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1466	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1467
1468	if (nmask) {
1469		err = compat_get_bitmap(bm, nmask, nr_bits);
 
1470		nm = compat_alloc_user_space(alloc_size);
1471		err |= copy_to_user(nm, bm, alloc_size);
 
1472	}
1473
1474	if (err)
1475		return -EFAULT;
1476
1477	return sys_set_mempolicy(mode, nm, nr_bits+1);
1478}
1479
1480asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1481			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1482			     compat_ulong_t maxnode, compat_ulong_t flags)
1483{
1484	long err = 0;
1485	unsigned long __user *nm = NULL;
1486	unsigned long nr_bits, alloc_size;
1487	nodemask_t bm;
1488
1489	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1490	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1491
1492	if (nmask) {
1493		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
 
1494		nm = compat_alloc_user_space(alloc_size);
1495		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 
1496	}
1497
1498	if (err)
1499		return -EFAULT;
1500
1501	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502}
1503
1504#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506/*
1507 * get_vma_policy(@task, @vma, @addr)
1508 * @task - task for fallback if vma policy == default
1509 * @vma   - virtual memory area whose policy is sought
1510 * @addr  - address in @vma for shared policy lookup
1511 *
1512 * Returns effective policy for a VMA at specified address.
1513 * Falls back to @task or system default policy, as necessary.
1514 * Current or other task's task mempolicy and non-shared vma policies
1515 * are protected by the task's mmap_sem, which must be held for read by
1516 * the caller.
1517 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1518 * count--added by the get_policy() vm_op, as appropriate--to protect against
1519 * freeing by another task.  It is the caller's responsibility to free the
1520 * extra reference for shared policies.
1521 */
1522struct mempolicy *get_vma_policy(struct task_struct *task,
1523		struct vm_area_struct *vma, unsigned long addr)
1524{
1525	struct mempolicy *pol = task->mempolicy;
1526
1527	if (vma) {
1528		if (vma->vm_ops && vma->vm_ops->get_policy) {
1529			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1530									addr);
1531			if (vpol)
1532				pol = vpol;
1533		} else if (vma->vm_policy)
1534			pol = vma->vm_policy;
 
 
 
 
 
 
 
 
 
 
 
1535	}
 
 
1536	if (!pol)
1537		pol = &default_policy;
1538	return pol;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539}
1540
1541/*
1542 * Return a nodemask representing a mempolicy for filtering nodes for
1543 * page allocation
1544 */
1545static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1546{
1547	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1548	if (unlikely(policy->mode == MPOL_BIND) &&
1549			gfp_zone(gfp) >= policy_zone &&
1550			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1551		return &policy->v.nodes;
1552
1553	return NULL;
1554}
1555
1556/* Return a zonelist indicated by gfp for node representing a mempolicy */
1557static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1558	int nd)
1559{
1560	switch (policy->mode) {
1561	case MPOL_PREFERRED:
1562		if (!(policy->flags & MPOL_F_LOCAL))
1563			nd = policy->v.preferred_node;
1564		break;
1565	case MPOL_BIND:
1566		/*
1567		 * Normally, MPOL_BIND allocations are node-local within the
1568		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1569		 * current node isn't part of the mask, we use the zonelist for
1570		 * the first node in the mask instead.
1571		 */
1572		if (unlikely(gfp & __GFP_THISNODE) &&
1573				unlikely(!node_isset(nd, policy->v.nodes)))
1574			nd = first_node(policy->v.nodes);
1575		break;
1576	default:
1577		BUG();
1578	}
1579	return node_zonelist(nd, gfp);
 
1580}
1581
1582/* Do dynamic interleaving for a process */
1583static unsigned interleave_nodes(struct mempolicy *policy)
1584{
1585	unsigned nid, next;
1586	struct task_struct *me = current;
1587
1588	nid = me->il_next;
1589	next = next_node(nid, policy->v.nodes);
1590	if (next >= MAX_NUMNODES)
1591		next = first_node(policy->v.nodes);
1592	if (next < MAX_NUMNODES)
1593		me->il_next = next;
1594	return nid;
1595}
1596
1597/*
1598 * Depending on the memory policy provide a node from which to allocate the
1599 * next slab entry.
1600 * @policy must be protected by freeing by the caller.  If @policy is
1601 * the current task's mempolicy, this protection is implicit, as only the
1602 * task can change it's policy.  The system default policy requires no
1603 * such protection.
1604 */
1605unsigned slab_node(struct mempolicy *policy)
1606{
 
 
 
 
 
 
 
1607	if (!policy || policy->flags & MPOL_F_LOCAL)
1608		return numa_node_id();
1609
1610	switch (policy->mode) {
1611	case MPOL_PREFERRED:
1612		/*
1613		 * handled MPOL_F_LOCAL above
1614		 */
1615		return policy->v.preferred_node;
1616
1617	case MPOL_INTERLEAVE:
1618		return interleave_nodes(policy);
1619
1620	case MPOL_BIND: {
 
 
1621		/*
1622		 * Follow bind policy behavior and start allocation at the
1623		 * first node.
1624		 */
1625		struct zonelist *zonelist;
1626		struct zone *zone;
1627		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1628		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1629		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1630							&policy->v.nodes,
1631							&zone);
1632		return zone ? zone->node : numa_node_id();
1633	}
1634
1635	default:
1636		BUG();
1637	}
1638}
1639
1640/* Do static interleaving for a VMA with known offset. */
1641static unsigned offset_il_node(struct mempolicy *pol,
1642		struct vm_area_struct *vma, unsigned long off)
 
 
 
1643{
1644	unsigned nnodes = nodes_weight(pol->v.nodes);
1645	unsigned target;
1646	int c;
1647	int nid = -1;
1648
1649	if (!nnodes)
1650		return numa_node_id();
1651	target = (unsigned int)off % nnodes;
1652	c = 0;
1653	do {
1654		nid = next_node(nid, pol->v.nodes);
1655		c++;
1656	} while (c <= target);
1657	return nid;
1658}
1659
1660/* Determine a node number for interleave */
1661static inline unsigned interleave_nid(struct mempolicy *pol,
1662		 struct vm_area_struct *vma, unsigned long addr, int shift)
1663{
1664	if (vma) {
1665		unsigned long off;
1666
1667		/*
1668		 * for small pages, there is no difference between
1669		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1670		 * for huge pages, since vm_pgoff is in units of small
1671		 * pages, we need to shift off the always 0 bits to get
1672		 * a useful offset.
1673		 */
1674		BUG_ON(shift < PAGE_SHIFT);
1675		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1676		off += (addr - vma->vm_start) >> shift;
1677		return offset_il_node(pol, vma, off);
1678	} else
1679		return interleave_nodes(pol);
1680}
1681
1682/*
1683 * Return the bit number of a random bit set in the nodemask.
1684 * (returns -1 if nodemask is empty)
1685 */
1686int node_random(const nodemask_t *maskp)
1687{
1688	int w, bit = -1;
1689
1690	w = nodes_weight(*maskp);
1691	if (w)
1692		bit = bitmap_ord_to_pos(maskp->bits,
1693			get_random_int() % w, MAX_NUMNODES);
1694	return bit;
1695}
1696
1697#ifdef CONFIG_HUGETLBFS
1698/*
1699 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1700 * @vma = virtual memory area whose policy is sought
1701 * @addr = address in @vma for shared policy lookup and interleave policy
1702 * @gfp_flags = for requested zone
1703 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1704 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1705 *
1706 * Returns a zonelist suitable for a huge page allocation and a pointer
1707 * to the struct mempolicy for conditional unref after allocation.
1708 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1709 * @nodemask for filtering the zonelist.
1710 *
1711 * Must be protected by get_mems_allowed()
1712 */
1713struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1714				gfp_t gfp_flags, struct mempolicy **mpol,
1715				nodemask_t **nodemask)
1716{
1717	struct zonelist *zl;
1718
1719	*mpol = get_vma_policy(current, vma, addr);
1720	*nodemask = NULL;	/* assume !MPOL_BIND */
1721
1722	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1723		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1724				huge_page_shift(hstate_vma(vma))), gfp_flags);
1725	} else {
1726		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1727		if ((*mpol)->mode == MPOL_BIND)
1728			*nodemask = &(*mpol)->v.nodes;
1729	}
1730	return zl;
1731}
1732
1733/*
1734 * init_nodemask_of_mempolicy
1735 *
1736 * If the current task's mempolicy is "default" [NULL], return 'false'
1737 * to indicate default policy.  Otherwise, extract the policy nodemask
1738 * for 'bind' or 'interleave' policy into the argument nodemask, or
1739 * initialize the argument nodemask to contain the single node for
1740 * 'preferred' or 'local' policy and return 'true' to indicate presence
1741 * of non-default mempolicy.
1742 *
1743 * We don't bother with reference counting the mempolicy [mpol_get/put]
1744 * because the current task is examining it's own mempolicy and a task's
1745 * mempolicy is only ever changed by the task itself.
1746 *
1747 * N.B., it is the caller's responsibility to free a returned nodemask.
1748 */
1749bool init_nodemask_of_mempolicy(nodemask_t *mask)
1750{
1751	struct mempolicy *mempolicy;
1752	int nid;
1753
1754	if (!(mask && current->mempolicy))
1755		return false;
1756
1757	task_lock(current);
1758	mempolicy = current->mempolicy;
1759	switch (mempolicy->mode) {
1760	case MPOL_PREFERRED:
1761		if (mempolicy->flags & MPOL_F_LOCAL)
1762			nid = numa_node_id();
1763		else
1764			nid = mempolicy->v.preferred_node;
1765		init_nodemask_of_node(mask, nid);
1766		break;
1767
1768	case MPOL_BIND:
1769		/* Fall through */
1770	case MPOL_INTERLEAVE:
1771		*mask =  mempolicy->v.nodes;
1772		break;
1773
1774	default:
1775		BUG();
1776	}
1777	task_unlock(current);
1778
1779	return true;
1780}
1781#endif
1782
1783/*
1784 * mempolicy_nodemask_intersects
1785 *
1786 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1787 * policy.  Otherwise, check for intersection between mask and the policy
1788 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1789 * policy, always return true since it may allocate elsewhere on fallback.
1790 *
1791 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1792 */
1793bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1794					const nodemask_t *mask)
1795{
1796	struct mempolicy *mempolicy;
1797	bool ret = true;
1798
1799	if (!mask)
1800		return ret;
1801	task_lock(tsk);
1802	mempolicy = tsk->mempolicy;
1803	if (!mempolicy)
1804		goto out;
1805
1806	switch (mempolicy->mode) {
1807	case MPOL_PREFERRED:
1808		/*
1809		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1810		 * allocate from, they may fallback to other nodes when oom.
1811		 * Thus, it's possible for tsk to have allocated memory from
1812		 * nodes in mask.
1813		 */
1814		break;
1815	case MPOL_BIND:
1816	case MPOL_INTERLEAVE:
1817		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1818		break;
1819	default:
1820		BUG();
1821	}
1822out:
1823	task_unlock(tsk);
1824	return ret;
1825}
1826
1827/* Allocate a page in interleaved policy.
1828   Own path because it needs to do special accounting. */
1829static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1830					unsigned nid)
1831{
1832	struct zonelist *zl;
1833	struct page *page;
1834
1835	zl = node_zonelist(nid, gfp);
1836	page = __alloc_pages(gfp, order, zl);
1837	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1838		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
1839	return page;
1840}
1841
1842/**
1843 * 	alloc_pages_vma	- Allocate a page for a VMA.
1844 *
1845 * 	@gfp:
1846 *      %GFP_USER    user allocation.
1847 *      %GFP_KERNEL  kernel allocations,
1848 *      %GFP_HIGHMEM highmem/user allocations,
1849 *      %GFP_FS      allocation should not call back into a file system.
1850 *      %GFP_ATOMIC  don't sleep.
1851 *
1852 *	@order:Order of the GFP allocation.
1853 * 	@vma:  Pointer to VMA or NULL if not available.
1854 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 
 
1855 *
1856 * 	This function allocates a page from the kernel page pool and applies
1857 *	a NUMA policy associated with the VMA or the current process.
1858 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1859 *	mm_struct of the VMA to prevent it from going away. Should be used for
1860 *	all allocations for pages that will be mapped into
1861 * 	user space. Returns NULL when no page can be allocated.
1862 *
1863 *	Should be called with the mm_sem of the vma hold.
1864 */
1865struct page *
1866alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1867		unsigned long addr, int node)
1868{
1869	struct mempolicy *pol;
1870	struct zonelist *zl;
1871	struct page *page;
1872	unsigned int cpuset_mems_cookie;
 
1873
1874retry_cpuset:
1875	pol = get_vma_policy(current, vma, addr);
1876	cpuset_mems_cookie = get_mems_allowed();
1877
1878	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1879		unsigned nid;
1880
1881		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1882		mpol_cond_put(pol);
1883		page = alloc_page_interleave(gfp, order, nid);
1884		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1885			goto retry_cpuset;
 
 
 
1886
1887		return page;
1888	}
1889	zl = policy_zonelist(gfp, pol, node);
1890	if (unlikely(mpol_needs_cond_ref(pol))) {
1891		/*
1892		 * slow path: ref counted shared policy
 
 
 
 
 
 
 
1893		 */
1894		struct page *page =  __alloc_pages_nodemask(gfp, order,
1895						zl, policy_nodemask(gfp, pol));
1896		__mpol_put(pol);
1897		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1898			goto retry_cpuset;
1899		return page;
 
 
 
 
 
1900	}
1901	/*
1902	 * fast path:  default or task policy
1903	 */
1904	page = __alloc_pages_nodemask(gfp, order, zl,
1905				      policy_nodemask(gfp, pol));
1906	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1907		goto retry_cpuset;
1908	return page;
1909}
1910
1911/**
1912 * 	alloc_pages_current - Allocate pages.
1913 *
1914 *	@gfp:
1915 *		%GFP_USER   user allocation,
1916 *      	%GFP_KERNEL kernel allocation,
1917 *      	%GFP_HIGHMEM highmem allocation,
1918 *      	%GFP_FS     don't call back into a file system.
1919 *      	%GFP_ATOMIC don't sleep.
1920 *	@order: Power of two of allocation size in pages. 0 is a single page.
1921 *
1922 *	Allocate a page from the kernel page pool.  When not in
1923 *	interrupt context and apply the current process NUMA policy.
1924 *	Returns NULL when no page can be allocated.
1925 *
1926 *	Don't call cpuset_update_task_memory_state() unless
1927 *	1) it's ok to take cpuset_sem (can WAIT), and
1928 *	2) allocating for current task (not interrupt).
1929 */
1930struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1931{
1932	struct mempolicy *pol = current->mempolicy;
1933	struct page *page;
1934	unsigned int cpuset_mems_cookie;
1935
1936	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1937		pol = &default_policy;
1938
1939retry_cpuset:
1940	cpuset_mems_cookie = get_mems_allowed();
1941
1942	/*
1943	 * No reference counting needed for current->mempolicy
1944	 * nor system default_policy
1945	 */
1946	if (pol->mode == MPOL_INTERLEAVE)
1947		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1948	else
1949		page = __alloc_pages_nodemask(gfp, order,
1950				policy_zonelist(gfp, pol, numa_node_id()),
1951				policy_nodemask(gfp, pol));
1952
1953	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1954		goto retry_cpuset;
1955
1956	return page;
1957}
1958EXPORT_SYMBOL(alloc_pages_current);
1959
 
 
 
 
 
 
 
 
 
 
1960/*
1961 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1962 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1963 * with the mems_allowed returned by cpuset_mems_allowed().  This
1964 * keeps mempolicies cpuset relative after its cpuset moves.  See
1965 * further kernel/cpuset.c update_nodemask().
1966 *
1967 * current's mempolicy may be rebinded by the other task(the task that changes
1968 * cpuset's mems), so we needn't do rebind work for current task.
1969 */
1970
1971/* Slow path of a mempolicy duplicate */
1972struct mempolicy *__mpol_dup(struct mempolicy *old)
1973{
1974	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1975
1976	if (!new)
1977		return ERR_PTR(-ENOMEM);
1978
1979	/* task's mempolicy is protected by alloc_lock */
1980	if (old == current->mempolicy) {
1981		task_lock(current);
1982		*new = *old;
1983		task_unlock(current);
1984	} else
1985		*new = *old;
1986
1987	rcu_read_lock();
1988	if (current_cpuset_is_being_rebound()) {
1989		nodemask_t mems = cpuset_mems_allowed(current);
1990		if (new->flags & MPOL_F_REBINDING)
1991			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1992		else
1993			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1994	}
1995	rcu_read_unlock();
1996	atomic_set(&new->refcnt, 1);
1997	return new;
1998}
1999
2000/*
2001 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2002 * eliminate the * MPOL_F_* flags that require conditional ref and
2003 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
2004 * after return.  Use the returned value.
2005 *
2006 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2007 * policy lookup, even if the policy needs/has extra ref on lookup.
2008 * shmem_readahead needs this.
2009 */
2010struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2011						struct mempolicy *frompol)
2012{
2013	if (!mpol_needs_cond_ref(frompol))
2014		return frompol;
2015
2016	*tompol = *frompol;
2017	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
2018	__mpol_put(frompol);
2019	return tompol;
2020}
2021
2022/* Slow path of a mempolicy comparison */
2023bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2024{
2025	if (!a || !b)
2026		return false;
2027	if (a->mode != b->mode)
2028		return false;
2029	if (a->flags != b->flags)
2030		return false;
2031	if (mpol_store_user_nodemask(a))
2032		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2033			return false;
2034
2035	switch (a->mode) {
2036	case MPOL_BIND:
2037		/* Fall through */
2038	case MPOL_INTERLEAVE:
2039		return !!nodes_equal(a->v.nodes, b->v.nodes);
2040	case MPOL_PREFERRED:
 
 
 
2041		return a->v.preferred_node == b->v.preferred_node;
2042	default:
2043		BUG();
2044		return false;
2045	}
2046}
2047
2048/*
2049 * Shared memory backing store policy support.
2050 *
2051 * Remember policies even when nobody has shared memory mapped.
2052 * The policies are kept in Red-Black tree linked from the inode.
2053 * They are protected by the sp->lock spinlock, which should be held
2054 * for any accesses to the tree.
2055 */
2056
2057/* lookup first element intersecting start-end */
2058/* Caller holds sp->lock */
 
 
2059static struct sp_node *
2060sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2061{
2062	struct rb_node *n = sp->root.rb_node;
2063
2064	while (n) {
2065		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2066
2067		if (start >= p->end)
2068			n = n->rb_right;
2069		else if (end <= p->start)
2070			n = n->rb_left;
2071		else
2072			break;
2073	}
2074	if (!n)
2075		return NULL;
2076	for (;;) {
2077		struct sp_node *w = NULL;
2078		struct rb_node *prev = rb_prev(n);
2079		if (!prev)
2080			break;
2081		w = rb_entry(prev, struct sp_node, nd);
2082		if (w->end <= start)
2083			break;
2084		n = prev;
2085	}
2086	return rb_entry(n, struct sp_node, nd);
2087}
2088
2089/* Insert a new shared policy into the list. */
2090/* Caller holds sp->lock */
 
 
2091static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2092{
2093	struct rb_node **p = &sp->root.rb_node;
2094	struct rb_node *parent = NULL;
2095	struct sp_node *nd;
2096
2097	while (*p) {
2098		parent = *p;
2099		nd = rb_entry(parent, struct sp_node, nd);
2100		if (new->start < nd->start)
2101			p = &(*p)->rb_left;
2102		else if (new->end > nd->end)
2103			p = &(*p)->rb_right;
2104		else
2105			BUG();
2106	}
2107	rb_link_node(&new->nd, parent, p);
2108	rb_insert_color(&new->nd, &sp->root);
2109	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2110		 new->policy ? new->policy->mode : 0);
2111}
2112
2113/* Find shared policy intersecting idx */
2114struct mempolicy *
2115mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2116{
2117	struct mempolicy *pol = NULL;
2118	struct sp_node *sn;
2119
2120	if (!sp->root.rb_node)
2121		return NULL;
2122	spin_lock(&sp->lock);
2123	sn = sp_lookup(sp, idx, idx+1);
2124	if (sn) {
2125		mpol_get(sn->policy);
2126		pol = sn->policy;
2127	}
2128	spin_unlock(&sp->lock);
2129	return pol;
2130}
2131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2132static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2133{
2134	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2135	rb_erase(&n->nd, &sp->root);
2136	mpol_put(n->policy);
2137	kmem_cache_free(sn_cache, n);
 
 
 
 
 
 
 
2138}
2139
2140static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2141				struct mempolicy *pol)
2142{
2143	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 
2144
 
2145	if (!n)
2146		return NULL;
2147	n->start = start;
2148	n->end = end;
2149	mpol_get(pol);
2150	pol->flags |= MPOL_F_SHARED;	/* for unref */
2151	n->policy = pol;
 
 
 
 
2152	return n;
2153}
2154
2155/* Replace a policy range. */
2156static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2157				 unsigned long end, struct sp_node *new)
2158{
2159	struct sp_node *n, *new2 = NULL;
 
 
 
2160
2161restart:
2162	spin_lock(&sp->lock);
2163	n = sp_lookup(sp, start, end);
2164	/* Take care of old policies in the same range. */
2165	while (n && n->start < end) {
2166		struct rb_node *next = rb_next(&n->nd);
2167		if (n->start >= start) {
2168			if (n->end <= end)
2169				sp_delete(sp, n);
2170			else
2171				n->start = end;
2172		} else {
2173			/* Old policy spanning whole new range. */
2174			if (n->end > end) {
2175				if (!new2) {
2176					spin_unlock(&sp->lock);
2177					new2 = sp_alloc(end, n->end, n->policy);
2178					if (!new2)
2179						return -ENOMEM;
2180					goto restart;
2181				}
2182				n->end = start;
2183				sp_insert(sp, new2);
2184				new2 = NULL;
 
2185				break;
2186			} else
2187				n->end = start;
2188		}
2189		if (!next)
2190			break;
2191		n = rb_entry(next, struct sp_node, nd);
2192	}
2193	if (new)
2194		sp_insert(sp, new);
2195	spin_unlock(&sp->lock);
2196	if (new2) {
2197		mpol_put(new2->policy);
2198		kmem_cache_free(sn_cache, new2);
2199	}
2200	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201}
2202
2203/**
2204 * mpol_shared_policy_init - initialize shared policy for inode
2205 * @sp: pointer to inode shared policy
2206 * @mpol:  struct mempolicy to install
2207 *
2208 * Install non-NULL @mpol in inode's shared policy rb-tree.
2209 * On entry, the current task has a reference on a non-NULL @mpol.
2210 * This must be released on exit.
2211 * This is called at get_inode() calls and we can use GFP_KERNEL.
2212 */
2213void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2214{
2215	int ret;
2216
2217	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2218	spin_lock_init(&sp->lock);
2219
2220	if (mpol) {
2221		struct vm_area_struct pvma;
2222		struct mempolicy *new;
2223		NODEMASK_SCRATCH(scratch);
2224
2225		if (!scratch)
2226			goto put_mpol;
2227		/* contextualize the tmpfs mount point mempolicy */
2228		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2229		if (IS_ERR(new))
2230			goto free_scratch; /* no valid nodemask intersection */
2231
2232		task_lock(current);
2233		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2234		task_unlock(current);
2235		if (ret)
2236			goto put_new;
2237
2238		/* Create pseudo-vma that contains just the policy */
2239		memset(&pvma, 0, sizeof(struct vm_area_struct));
2240		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2241		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2242
2243put_new:
2244		mpol_put(new);			/* drop initial ref */
2245free_scratch:
2246		NODEMASK_SCRATCH_FREE(scratch);
2247put_mpol:
2248		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2249	}
2250}
2251
2252int mpol_set_shared_policy(struct shared_policy *info,
2253			struct vm_area_struct *vma, struct mempolicy *npol)
2254{
2255	int err;
2256	struct sp_node *new = NULL;
2257	unsigned long sz = vma_pages(vma);
2258
2259	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2260		 vma->vm_pgoff,
2261		 sz, npol ? npol->mode : -1,
2262		 npol ? npol->flags : -1,
2263		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2264
2265	if (npol) {
2266		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2267		if (!new)
2268			return -ENOMEM;
2269	}
2270	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2271	if (err && new)
2272		kmem_cache_free(sn_cache, new);
2273	return err;
2274}
2275
2276/* Free a backing policy store on inode delete. */
2277void mpol_free_shared_policy(struct shared_policy *p)
2278{
2279	struct sp_node *n;
2280	struct rb_node *next;
2281
2282	if (!p->root.rb_node)
2283		return;
2284	spin_lock(&p->lock);
2285	next = rb_first(&p->root);
2286	while (next) {
2287		n = rb_entry(next, struct sp_node, nd);
2288		next = rb_next(&n->nd);
2289		rb_erase(&n->nd, &p->root);
2290		mpol_put(n->policy);
2291		kmem_cache_free(sn_cache, n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292	}
2293	spin_unlock(&p->lock);
2294}
2295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296/* assumes fs == KERNEL_DS */
2297void __init numa_policy_init(void)
2298{
2299	nodemask_t interleave_nodes;
2300	unsigned long largest = 0;
2301	int nid, prefer = 0;
2302
2303	policy_cache = kmem_cache_create("numa_policy",
2304					 sizeof(struct mempolicy),
2305					 0, SLAB_PANIC, NULL);
2306
2307	sn_cache = kmem_cache_create("shared_policy_node",
2308				     sizeof(struct sp_node),
2309				     0, SLAB_PANIC, NULL);
2310
 
 
 
 
 
 
 
 
 
2311	/*
2312	 * Set interleaving policy for system init. Interleaving is only
2313	 * enabled across suitably sized nodes (default is >= 16MB), or
2314	 * fall back to the largest node if they're all smaller.
2315	 */
2316	nodes_clear(interleave_nodes);
2317	for_each_node_state(nid, N_HIGH_MEMORY) {
2318		unsigned long total_pages = node_present_pages(nid);
2319
2320		/* Preserve the largest node */
2321		if (largest < total_pages) {
2322			largest = total_pages;
2323			prefer = nid;
2324		}
2325
2326		/* Interleave this node? */
2327		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2328			node_set(nid, interleave_nodes);
2329	}
2330
2331	/* All too small, use the largest */
2332	if (unlikely(nodes_empty(interleave_nodes)))
2333		node_set(prefer, interleave_nodes);
2334
2335	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2336		printk("numa_policy_init: interleaving failed\n");
 
 
2337}
2338
2339/* Reset policy of current process to default */
2340void numa_default_policy(void)
2341{
2342	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2343}
2344
2345/*
2346 * Parse and format mempolicy from/to strings
2347 */
2348
2349/*
2350 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2351 * Used only for mpol_parse_str() and mpol_to_str()
2352 */
2353#define MPOL_LOCAL MPOL_MAX
2354static const char * const policy_modes[] =
2355{
2356	[MPOL_DEFAULT]    = "default",
2357	[MPOL_PREFERRED]  = "prefer",
2358	[MPOL_BIND]       = "bind",
2359	[MPOL_INTERLEAVE] = "interleave",
2360	[MPOL_LOCAL]      = "local"
2361};
2362
2363
2364#ifdef CONFIG_TMPFS
2365/**
2366 * mpol_parse_str - parse string to mempolicy
2367 * @str:  string containing mempolicy to parse
2368 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2369 * @no_context:  flag whether to "contextualize" the mempolicy
2370 *
2371 * Format of input:
2372 *	<mode>[=<flags>][:<nodelist>]
2373 *
2374 * if @no_context is true, save the input nodemask in w.user_nodemask in
2375 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2376 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2377 * mount option.  Note that if 'static' or 'relative' mode flags were
2378 * specified, the input nodemask will already have been saved.  Saving
2379 * it again is redundant, but safe.
2380 *
2381 * On success, returns 0, else 1
2382 */
2383int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2384{
2385	struct mempolicy *new = NULL;
2386	unsigned short mode;
2387	unsigned short uninitialized_var(mode_flags);
2388	nodemask_t nodes;
2389	char *nodelist = strchr(str, ':');
2390	char *flags = strchr(str, '=');
2391	int err = 1;
2392
2393	if (nodelist) {
2394		/* NUL-terminate mode or flags string */
2395		*nodelist++ = '\0';
2396		if (nodelist_parse(nodelist, nodes))
2397			goto out;
2398		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2399			goto out;
2400	} else
2401		nodes_clear(nodes);
2402
2403	if (flags)
2404		*flags++ = '\0';	/* terminate mode string */
2405
2406	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2407		if (!strcmp(str, policy_modes[mode])) {
2408			break;
2409		}
2410	}
2411	if (mode > MPOL_LOCAL)
2412		goto out;
2413
2414	switch (mode) {
2415	case MPOL_PREFERRED:
2416		/*
2417		 * Insist on a nodelist of one node only
2418		 */
2419		if (nodelist) {
2420			char *rest = nodelist;
2421			while (isdigit(*rest))
2422				rest++;
2423			if (*rest)
2424				goto out;
2425		}
2426		break;
2427	case MPOL_INTERLEAVE:
2428		/*
2429		 * Default to online nodes with memory if no nodelist
2430		 */
2431		if (!nodelist)
2432			nodes = node_states[N_HIGH_MEMORY];
2433		break;
2434	case MPOL_LOCAL:
2435		/*
2436		 * Don't allow a nodelist;  mpol_new() checks flags
2437		 */
2438		if (nodelist)
2439			goto out;
2440		mode = MPOL_PREFERRED;
2441		break;
2442	case MPOL_DEFAULT:
2443		/*
2444		 * Insist on a empty nodelist
2445		 */
2446		if (!nodelist)
2447			err = 0;
2448		goto out;
2449	case MPOL_BIND:
2450		/*
2451		 * Insist on a nodelist
2452		 */
2453		if (!nodelist)
2454			goto out;
2455	}
2456
2457	mode_flags = 0;
2458	if (flags) {
2459		/*
2460		 * Currently, we only support two mutually exclusive
2461		 * mode flags.
2462		 */
2463		if (!strcmp(flags, "static"))
2464			mode_flags |= MPOL_F_STATIC_NODES;
2465		else if (!strcmp(flags, "relative"))
2466			mode_flags |= MPOL_F_RELATIVE_NODES;
2467		else
2468			goto out;
2469	}
2470
2471	new = mpol_new(mode, mode_flags, &nodes);
2472	if (IS_ERR(new))
2473		goto out;
2474
2475	if (no_context) {
2476		/* save for contextualization */
2477		new->w.user_nodemask = nodes;
2478	} else {
2479		int ret;
2480		NODEMASK_SCRATCH(scratch);
2481		if (scratch) {
2482			task_lock(current);
2483			ret = mpol_set_nodemask(new, &nodes, scratch);
2484			task_unlock(current);
2485		} else
2486			ret = -ENOMEM;
2487		NODEMASK_SCRATCH_FREE(scratch);
2488		if (ret) {
2489			mpol_put(new);
2490			goto out;
2491		}
2492	}
2493	err = 0;
2494
2495out:
2496	/* Restore string for error message */
2497	if (nodelist)
2498		*--nodelist = ':';
2499	if (flags)
2500		*--flags = '=';
2501	if (!err)
2502		*mpol = new;
2503	return err;
2504}
2505#endif /* CONFIG_TMPFS */
2506
2507/**
2508 * mpol_to_str - format a mempolicy structure for printing
2509 * @buffer:  to contain formatted mempolicy string
2510 * @maxlen:  length of @buffer
2511 * @pol:  pointer to mempolicy to be formatted
2512 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2513 *
2514 * Convert a mempolicy into a string.
2515 * Returns the number of characters in buffer (if positive)
2516 * or an error (negative)
2517 */
2518int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2519{
2520	char *p = buffer;
2521	int l;
2522	nodemask_t nodes;
2523	unsigned short mode;
2524	unsigned short flags = pol ? pol->flags : 0;
2525
2526	/*
2527	 * Sanity check:  room for longest mode, flag and some nodes
2528	 */
2529	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2530
2531	if (!pol || pol == &default_policy)
2532		mode = MPOL_DEFAULT;
2533	else
2534		mode = pol->mode;
 
 
2535
2536	switch (mode) {
2537	case MPOL_DEFAULT:
2538		nodes_clear(nodes);
2539		break;
2540
2541	case MPOL_PREFERRED:
2542		nodes_clear(nodes);
2543		if (flags & MPOL_F_LOCAL)
2544			mode = MPOL_LOCAL;	/* pseudo-policy */
2545		else
2546			node_set(pol->v.preferred_node, nodes);
2547		break;
2548
2549	case MPOL_BIND:
2550		/* Fall through */
2551	case MPOL_INTERLEAVE:
2552		if (no_context)
2553			nodes = pol->w.user_nodemask;
2554		else
2555			nodes = pol->v.nodes;
2556		break;
2557
2558	default:
2559		return -EINVAL;
 
 
2560	}
2561
2562	l = strlen(policy_modes[mode]);
2563	if (buffer + maxlen < p + l + 1)
2564		return -ENOSPC;
2565
2566	strcpy(p, policy_modes[mode]);
2567	p += l;
2568
2569	if (flags & MPOL_MODE_FLAGS) {
2570		if (buffer + maxlen < p + 2)
2571			return -ENOSPC;
2572		*p++ = '=';
2573
2574		/*
2575		 * Currently, the only defined flags are mutually exclusive
2576		 */
2577		if (flags & MPOL_F_STATIC_NODES)
2578			p += snprintf(p, buffer + maxlen - p, "static");
2579		else if (flags & MPOL_F_RELATIVE_NODES)
2580			p += snprintf(p, buffer + maxlen - p, "relative");
2581	}
2582
2583	if (!nodes_empty(nodes)) {
2584		if (buffer + maxlen < p + 2)
2585			return -ENOSPC;
2586		*p++ = ':';
2587	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2588	}
2589	return p - buffer;
2590}