Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
14#include <linux/highuid.h>
15#include <linux/fs.h>
16#include <linux/kmod.h>
17#include <linux/perf_event.h>
18#include <linux/resource.h>
19#include <linux/kernel.h>
20#include <linux/workqueue.h>
21#include <linux/capability.h>
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
30#include <linux/signal.h>
31#include <linux/cn_proc.h>
32#include <linux/getcpu.h>
33#include <linux/task_io_accounting_ops.h>
34#include <linux/seccomp.h>
35#include <linux/cpu.h>
36#include <linux/personality.h>
37#include <linux/ptrace.h>
38#include <linux/fs_struct.h>
39#include <linux/file.h>
40#include <linux/mount.h>
41#include <linux/gfp.h>
42#include <linux/syscore_ops.h>
43#include <linux/version.h>
44#include <linux/ctype.h>
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
48#include <linux/kprobes.h>
49#include <linux/user_namespace.h>
50#include <linux/binfmts.h>
51
52#include <linux/sched.h>
53#include <linux/sched/autogroup.h>
54#include <linux/sched/loadavg.h>
55#include <linux/sched/stat.h>
56#include <linux/sched/mm.h>
57#include <linux/sched/coredump.h>
58#include <linux/sched/task.h>
59#include <linux/sched/cputime.h>
60#include <linux/rcupdate.h>
61#include <linux/uidgid.h>
62#include <linux/cred.h>
63
64#include <linux/nospec.h>
65
66#include <linux/kmsg_dump.h>
67/* Move somewhere else to avoid recompiling? */
68#include <generated/utsrelease.h>
69
70#include <linux/uaccess.h>
71#include <asm/io.h>
72#include <asm/unistd.h>
73
74/* Hardening for Spectre-v1 */
75#include <linux/nospec.h>
76
77#include "uid16.h"
78
79#ifndef SET_UNALIGN_CTL
80# define SET_UNALIGN_CTL(a, b) (-EINVAL)
81#endif
82#ifndef GET_UNALIGN_CTL
83# define GET_UNALIGN_CTL(a, b) (-EINVAL)
84#endif
85#ifndef SET_FPEMU_CTL
86# define SET_FPEMU_CTL(a, b) (-EINVAL)
87#endif
88#ifndef GET_FPEMU_CTL
89# define GET_FPEMU_CTL(a, b) (-EINVAL)
90#endif
91#ifndef SET_FPEXC_CTL
92# define SET_FPEXC_CTL(a, b) (-EINVAL)
93#endif
94#ifndef GET_FPEXC_CTL
95# define GET_FPEXC_CTL(a, b) (-EINVAL)
96#endif
97#ifndef GET_ENDIAN
98# define GET_ENDIAN(a, b) (-EINVAL)
99#endif
100#ifndef SET_ENDIAN
101# define SET_ENDIAN(a, b) (-EINVAL)
102#endif
103#ifndef GET_TSC_CTL
104# define GET_TSC_CTL(a) (-EINVAL)
105#endif
106#ifndef SET_TSC_CTL
107# define SET_TSC_CTL(a) (-EINVAL)
108#endif
109#ifndef MPX_ENABLE_MANAGEMENT
110# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
111#endif
112#ifndef MPX_DISABLE_MANAGEMENT
113# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
114#endif
115#ifndef GET_FP_MODE
116# define GET_FP_MODE(a) (-EINVAL)
117#endif
118#ifndef SET_FP_MODE
119# define SET_FP_MODE(a,b) (-EINVAL)
120#endif
121#ifndef SVE_SET_VL
122# define SVE_SET_VL(a) (-EINVAL)
123#endif
124#ifndef SVE_GET_VL
125# define SVE_GET_VL() (-EINVAL)
126#endif
127
128/*
129 * this is where the system-wide overflow UID and GID are defined, for
130 * architectures that now have 32-bit UID/GID but didn't in the past
131 */
132
133int overflowuid = DEFAULT_OVERFLOWUID;
134int overflowgid = DEFAULT_OVERFLOWGID;
135
136EXPORT_SYMBOL(overflowuid);
137EXPORT_SYMBOL(overflowgid);
138
139/*
140 * the same as above, but for filesystems which can only store a 16-bit
141 * UID and GID. as such, this is needed on all architectures
142 */
143
144int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
145int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
146
147EXPORT_SYMBOL(fs_overflowuid);
148EXPORT_SYMBOL(fs_overflowgid);
149
150/*
151 * Returns true if current's euid is same as p's uid or euid,
152 * or has CAP_SYS_NICE to p's user_ns.
153 *
154 * Called with rcu_read_lock, creds are safe
155 */
156static bool set_one_prio_perm(struct task_struct *p)
157{
158 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
159
160 if (uid_eq(pcred->uid, cred->euid) ||
161 uid_eq(pcred->euid, cred->euid))
162 return true;
163 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
164 return true;
165 return false;
166}
167
168/*
169 * set the priority of a task
170 * - the caller must hold the RCU read lock
171 */
172static int set_one_prio(struct task_struct *p, int niceval, int error)
173{
174 int no_nice;
175
176 if (!set_one_prio_perm(p)) {
177 error = -EPERM;
178 goto out;
179 }
180 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
181 error = -EACCES;
182 goto out;
183 }
184 no_nice = security_task_setnice(p, niceval);
185 if (no_nice) {
186 error = no_nice;
187 goto out;
188 }
189 if (error == -ESRCH)
190 error = 0;
191 set_user_nice(p, niceval);
192out:
193 return error;
194}
195
196SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
197{
198 struct task_struct *g, *p;
199 struct user_struct *user;
200 const struct cred *cred = current_cred();
201 int error = -EINVAL;
202 struct pid *pgrp;
203 kuid_t uid;
204
205 if (which > PRIO_USER || which < PRIO_PROCESS)
206 goto out;
207
208 /* normalize: avoid signed division (rounding problems) */
209 error = -ESRCH;
210 if (niceval < MIN_NICE)
211 niceval = MIN_NICE;
212 if (niceval > MAX_NICE)
213 niceval = MAX_NICE;
214
215 rcu_read_lock();
216 read_lock(&tasklist_lock);
217 switch (which) {
218 case PRIO_PROCESS:
219 if (who)
220 p = find_task_by_vpid(who);
221 else
222 p = current;
223 if (p)
224 error = set_one_prio(p, niceval, error);
225 break;
226 case PRIO_PGRP:
227 if (who)
228 pgrp = find_vpid(who);
229 else
230 pgrp = task_pgrp(current);
231 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
232 error = set_one_prio(p, niceval, error);
233 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
234 break;
235 case PRIO_USER:
236 uid = make_kuid(cred->user_ns, who);
237 user = cred->user;
238 if (!who)
239 uid = cred->uid;
240 else if (!uid_eq(uid, cred->uid)) {
241 user = find_user(uid);
242 if (!user)
243 goto out_unlock; /* No processes for this user */
244 }
245 do_each_thread(g, p) {
246 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
247 error = set_one_prio(p, niceval, error);
248 } while_each_thread(g, p);
249 if (!uid_eq(uid, cred->uid))
250 free_uid(user); /* For find_user() */
251 break;
252 }
253out_unlock:
254 read_unlock(&tasklist_lock);
255 rcu_read_unlock();
256out:
257 return error;
258}
259
260/*
261 * Ugh. To avoid negative return values, "getpriority()" will
262 * not return the normal nice-value, but a negated value that
263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
264 * to stay compatible.
265 */
266SYSCALL_DEFINE2(getpriority, int, which, int, who)
267{
268 struct task_struct *g, *p;
269 struct user_struct *user;
270 const struct cred *cred = current_cred();
271 long niceval, retval = -ESRCH;
272 struct pid *pgrp;
273 kuid_t uid;
274
275 if (which > PRIO_USER || which < PRIO_PROCESS)
276 return -EINVAL;
277
278 rcu_read_lock();
279 read_lock(&tasklist_lock);
280 switch (which) {
281 case PRIO_PROCESS:
282 if (who)
283 p = find_task_by_vpid(who);
284 else
285 p = current;
286 if (p) {
287 niceval = nice_to_rlimit(task_nice(p));
288 if (niceval > retval)
289 retval = niceval;
290 }
291 break;
292 case PRIO_PGRP:
293 if (who)
294 pgrp = find_vpid(who);
295 else
296 pgrp = task_pgrp(current);
297 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
302 break;
303 case PRIO_USER:
304 uid = make_kuid(cred->user_ns, who);
305 user = cred->user;
306 if (!who)
307 uid = cred->uid;
308 else if (!uid_eq(uid, cred->uid)) {
309 user = find_user(uid);
310 if (!user)
311 goto out_unlock; /* No processes for this user */
312 }
313 do_each_thread(g, p) {
314 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
315 niceval = nice_to_rlimit(task_nice(p));
316 if (niceval > retval)
317 retval = niceval;
318 }
319 } while_each_thread(g, p);
320 if (!uid_eq(uid, cred->uid))
321 free_uid(user); /* for find_user() */
322 break;
323 }
324out_unlock:
325 read_unlock(&tasklist_lock);
326 rcu_read_unlock();
327
328 return retval;
329}
330
331/*
332 * Unprivileged users may change the real gid to the effective gid
333 * or vice versa. (BSD-style)
334 *
335 * If you set the real gid at all, or set the effective gid to a value not
336 * equal to the real gid, then the saved gid is set to the new effective gid.
337 *
338 * This makes it possible for a setgid program to completely drop its
339 * privileges, which is often a useful assertion to make when you are doing
340 * a security audit over a program.
341 *
342 * The general idea is that a program which uses just setregid() will be
343 * 100% compatible with BSD. A program which uses just setgid() will be
344 * 100% compatible with POSIX with saved IDs.
345 *
346 * SMP: There are not races, the GIDs are checked only by filesystem
347 * operations (as far as semantic preservation is concerned).
348 */
349#ifdef CONFIG_MULTIUSER
350long __sys_setregid(gid_t rgid, gid_t egid)
351{
352 struct user_namespace *ns = current_user_ns();
353 const struct cred *old;
354 struct cred *new;
355 int retval;
356 kgid_t krgid, kegid;
357
358 krgid = make_kgid(ns, rgid);
359 kegid = make_kgid(ns, egid);
360
361 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
362 return -EINVAL;
363 if ((egid != (gid_t) -1) && !gid_valid(kegid))
364 return -EINVAL;
365
366 new = prepare_creds();
367 if (!new)
368 return -ENOMEM;
369 old = current_cred();
370
371 retval = -EPERM;
372 if (rgid != (gid_t) -1) {
373 if (gid_eq(old->gid, krgid) ||
374 gid_eq(old->egid, krgid) ||
375 ns_capable(old->user_ns, CAP_SETGID))
376 new->gid = krgid;
377 else
378 goto error;
379 }
380 if (egid != (gid_t) -1) {
381 if (gid_eq(old->gid, kegid) ||
382 gid_eq(old->egid, kegid) ||
383 gid_eq(old->sgid, kegid) ||
384 ns_capable(old->user_ns, CAP_SETGID))
385 new->egid = kegid;
386 else
387 goto error;
388 }
389
390 if (rgid != (gid_t) -1 ||
391 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
392 new->sgid = new->egid;
393 new->fsgid = new->egid;
394
395 return commit_creds(new);
396
397error:
398 abort_creds(new);
399 return retval;
400}
401
402SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
403{
404 return __sys_setregid(rgid, egid);
405}
406
407/*
408 * setgid() is implemented like SysV w/ SAVED_IDS
409 *
410 * SMP: Same implicit races as above.
411 */
412long __sys_setgid(gid_t gid)
413{
414 struct user_namespace *ns = current_user_ns();
415 const struct cred *old;
416 struct cred *new;
417 int retval;
418 kgid_t kgid;
419
420 kgid = make_kgid(ns, gid);
421 if (!gid_valid(kgid))
422 return -EINVAL;
423
424 new = prepare_creds();
425 if (!new)
426 return -ENOMEM;
427 old = current_cred();
428
429 retval = -EPERM;
430 if (ns_capable(old->user_ns, CAP_SETGID))
431 new->gid = new->egid = new->sgid = new->fsgid = kgid;
432 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
433 new->egid = new->fsgid = kgid;
434 else
435 goto error;
436
437 return commit_creds(new);
438
439error:
440 abort_creds(new);
441 return retval;
442}
443
444SYSCALL_DEFINE1(setgid, gid_t, gid)
445{
446 return __sys_setgid(gid);
447}
448
449/*
450 * change the user struct in a credentials set to match the new UID
451 */
452static int set_user(struct cred *new)
453{
454 struct user_struct *new_user;
455
456 new_user = alloc_uid(new->uid);
457 if (!new_user)
458 return -EAGAIN;
459
460 /*
461 * We don't fail in case of NPROC limit excess here because too many
462 * poorly written programs don't check set*uid() return code, assuming
463 * it never fails if called by root. We may still enforce NPROC limit
464 * for programs doing set*uid()+execve() by harmlessly deferring the
465 * failure to the execve() stage.
466 */
467 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
468 new_user != INIT_USER)
469 current->flags |= PF_NPROC_EXCEEDED;
470 else
471 current->flags &= ~PF_NPROC_EXCEEDED;
472
473 free_uid(new->user);
474 new->user = new_user;
475 return 0;
476}
477
478/*
479 * Unprivileged users may change the real uid to the effective uid
480 * or vice versa. (BSD-style)
481 *
482 * If you set the real uid at all, or set the effective uid to a value not
483 * equal to the real uid, then the saved uid is set to the new effective uid.
484 *
485 * This makes it possible for a setuid program to completely drop its
486 * privileges, which is often a useful assertion to make when you are doing
487 * a security audit over a program.
488 *
489 * The general idea is that a program which uses just setreuid() will be
490 * 100% compatible with BSD. A program which uses just setuid() will be
491 * 100% compatible with POSIX with saved IDs.
492 */
493long __sys_setreuid(uid_t ruid, uid_t euid)
494{
495 struct user_namespace *ns = current_user_ns();
496 const struct cred *old;
497 struct cred *new;
498 int retval;
499 kuid_t kruid, keuid;
500
501 kruid = make_kuid(ns, ruid);
502 keuid = make_kuid(ns, euid);
503
504 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
505 return -EINVAL;
506 if ((euid != (uid_t) -1) && !uid_valid(keuid))
507 return -EINVAL;
508
509 new = prepare_creds();
510 if (!new)
511 return -ENOMEM;
512 old = current_cred();
513
514 retval = -EPERM;
515 if (ruid != (uid_t) -1) {
516 new->uid = kruid;
517 if (!uid_eq(old->uid, kruid) &&
518 !uid_eq(old->euid, kruid) &&
519 !ns_capable(old->user_ns, CAP_SETUID))
520 goto error;
521 }
522
523 if (euid != (uid_t) -1) {
524 new->euid = keuid;
525 if (!uid_eq(old->uid, keuid) &&
526 !uid_eq(old->euid, keuid) &&
527 !uid_eq(old->suid, keuid) &&
528 !ns_capable(old->user_ns, CAP_SETUID))
529 goto error;
530 }
531
532 if (!uid_eq(new->uid, old->uid)) {
533 retval = set_user(new);
534 if (retval < 0)
535 goto error;
536 }
537 if (ruid != (uid_t) -1 ||
538 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
539 new->suid = new->euid;
540 new->fsuid = new->euid;
541
542 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
543 if (retval < 0)
544 goto error;
545
546 return commit_creds(new);
547
548error:
549 abort_creds(new);
550 return retval;
551}
552
553SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
554{
555 return __sys_setreuid(ruid, euid);
556}
557
558/*
559 * setuid() is implemented like SysV with SAVED_IDS
560 *
561 * Note that SAVED_ID's is deficient in that a setuid root program
562 * like sendmail, for example, cannot set its uid to be a normal
563 * user and then switch back, because if you're root, setuid() sets
564 * the saved uid too. If you don't like this, blame the bright people
565 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
566 * will allow a root program to temporarily drop privileges and be able to
567 * regain them by swapping the real and effective uid.
568 */
569long __sys_setuid(uid_t uid)
570{
571 struct user_namespace *ns = current_user_ns();
572 const struct cred *old;
573 struct cred *new;
574 int retval;
575 kuid_t kuid;
576
577 kuid = make_kuid(ns, uid);
578 if (!uid_valid(kuid))
579 return -EINVAL;
580
581 new = prepare_creds();
582 if (!new)
583 return -ENOMEM;
584 old = current_cred();
585
586 retval = -EPERM;
587 if (ns_capable(old->user_ns, CAP_SETUID)) {
588 new->suid = new->uid = kuid;
589 if (!uid_eq(kuid, old->uid)) {
590 retval = set_user(new);
591 if (retval < 0)
592 goto error;
593 }
594 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
595 goto error;
596 }
597
598 new->fsuid = new->euid = kuid;
599
600 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
601 if (retval < 0)
602 goto error;
603
604 return commit_creds(new);
605
606error:
607 abort_creds(new);
608 return retval;
609}
610
611SYSCALL_DEFINE1(setuid, uid_t, uid)
612{
613 return __sys_setuid(uid);
614}
615
616
617/*
618 * This function implements a generic ability to update ruid, euid,
619 * and suid. This allows you to implement the 4.4 compatible seteuid().
620 */
621long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
622{
623 struct user_namespace *ns = current_user_ns();
624 const struct cred *old;
625 struct cred *new;
626 int retval;
627 kuid_t kruid, keuid, ksuid;
628
629 kruid = make_kuid(ns, ruid);
630 keuid = make_kuid(ns, euid);
631 ksuid = make_kuid(ns, suid);
632
633 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
634 return -EINVAL;
635
636 if ((euid != (uid_t) -1) && !uid_valid(keuid))
637 return -EINVAL;
638
639 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
640 return -EINVAL;
641
642 new = prepare_creds();
643 if (!new)
644 return -ENOMEM;
645
646 old = current_cred();
647
648 retval = -EPERM;
649 if (!ns_capable(old->user_ns, CAP_SETUID)) {
650 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
651 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
652 goto error;
653 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
654 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
655 goto error;
656 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
657 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
658 goto error;
659 }
660
661 if (ruid != (uid_t) -1) {
662 new->uid = kruid;
663 if (!uid_eq(kruid, old->uid)) {
664 retval = set_user(new);
665 if (retval < 0)
666 goto error;
667 }
668 }
669 if (euid != (uid_t) -1)
670 new->euid = keuid;
671 if (suid != (uid_t) -1)
672 new->suid = ksuid;
673 new->fsuid = new->euid;
674
675 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
676 if (retval < 0)
677 goto error;
678
679 return commit_creds(new);
680
681error:
682 abort_creds(new);
683 return retval;
684}
685
686SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
687{
688 return __sys_setresuid(ruid, euid, suid);
689}
690
691SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
692{
693 const struct cred *cred = current_cred();
694 int retval;
695 uid_t ruid, euid, suid;
696
697 ruid = from_kuid_munged(cred->user_ns, cred->uid);
698 euid = from_kuid_munged(cred->user_ns, cred->euid);
699 suid = from_kuid_munged(cred->user_ns, cred->suid);
700
701 retval = put_user(ruid, ruidp);
702 if (!retval) {
703 retval = put_user(euid, euidp);
704 if (!retval)
705 return put_user(suid, suidp);
706 }
707 return retval;
708}
709
710/*
711 * Same as above, but for rgid, egid, sgid.
712 */
713long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
714{
715 struct user_namespace *ns = current_user_ns();
716 const struct cred *old;
717 struct cred *new;
718 int retval;
719 kgid_t krgid, kegid, ksgid;
720
721 krgid = make_kgid(ns, rgid);
722 kegid = make_kgid(ns, egid);
723 ksgid = make_kgid(ns, sgid);
724
725 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
726 return -EINVAL;
727 if ((egid != (gid_t) -1) && !gid_valid(kegid))
728 return -EINVAL;
729 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
730 return -EINVAL;
731
732 new = prepare_creds();
733 if (!new)
734 return -ENOMEM;
735 old = current_cred();
736
737 retval = -EPERM;
738 if (!ns_capable(old->user_ns, CAP_SETGID)) {
739 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
740 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
741 goto error;
742 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
743 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
744 goto error;
745 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
746 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
747 goto error;
748 }
749
750 if (rgid != (gid_t) -1)
751 new->gid = krgid;
752 if (egid != (gid_t) -1)
753 new->egid = kegid;
754 if (sgid != (gid_t) -1)
755 new->sgid = ksgid;
756 new->fsgid = new->egid;
757
758 return commit_creds(new);
759
760error:
761 abort_creds(new);
762 return retval;
763}
764
765SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
766{
767 return __sys_setresgid(rgid, egid, sgid);
768}
769
770SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
771{
772 const struct cred *cred = current_cred();
773 int retval;
774 gid_t rgid, egid, sgid;
775
776 rgid = from_kgid_munged(cred->user_ns, cred->gid);
777 egid = from_kgid_munged(cred->user_ns, cred->egid);
778 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
779
780 retval = put_user(rgid, rgidp);
781 if (!retval) {
782 retval = put_user(egid, egidp);
783 if (!retval)
784 retval = put_user(sgid, sgidp);
785 }
786
787 return retval;
788}
789
790
791/*
792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
794 * whatever uid it wants to). It normally shadows "euid", except when
795 * explicitly set by setfsuid() or for access..
796 */
797long __sys_setfsuid(uid_t uid)
798{
799 const struct cred *old;
800 struct cred *new;
801 uid_t old_fsuid;
802 kuid_t kuid;
803
804 old = current_cred();
805 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
806
807 kuid = make_kuid(old->user_ns, uid);
808 if (!uid_valid(kuid))
809 return old_fsuid;
810
811 new = prepare_creds();
812 if (!new)
813 return old_fsuid;
814
815 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
816 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
817 ns_capable(old->user_ns, CAP_SETUID)) {
818 if (!uid_eq(kuid, old->fsuid)) {
819 new->fsuid = kuid;
820 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
821 goto change_okay;
822 }
823 }
824
825 abort_creds(new);
826 return old_fsuid;
827
828change_okay:
829 commit_creds(new);
830 return old_fsuid;
831}
832
833SYSCALL_DEFINE1(setfsuid, uid_t, uid)
834{
835 return __sys_setfsuid(uid);
836}
837
838/*
839 * Samma på svenska..
840 */
841long __sys_setfsgid(gid_t gid)
842{
843 const struct cred *old;
844 struct cred *new;
845 gid_t old_fsgid;
846 kgid_t kgid;
847
848 old = current_cred();
849 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
850
851 kgid = make_kgid(old->user_ns, gid);
852 if (!gid_valid(kgid))
853 return old_fsgid;
854
855 new = prepare_creds();
856 if (!new)
857 return old_fsgid;
858
859 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
860 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
861 ns_capable(old->user_ns, CAP_SETGID)) {
862 if (!gid_eq(kgid, old->fsgid)) {
863 new->fsgid = kgid;
864 goto change_okay;
865 }
866 }
867
868 abort_creds(new);
869 return old_fsgid;
870
871change_okay:
872 commit_creds(new);
873 return old_fsgid;
874}
875
876SYSCALL_DEFINE1(setfsgid, gid_t, gid)
877{
878 return __sys_setfsgid(gid);
879}
880#endif /* CONFIG_MULTIUSER */
881
882/**
883 * sys_getpid - return the thread group id of the current process
884 *
885 * Note, despite the name, this returns the tgid not the pid. The tgid and
886 * the pid are identical unless CLONE_THREAD was specified on clone() in
887 * which case the tgid is the same in all threads of the same group.
888 *
889 * This is SMP safe as current->tgid does not change.
890 */
891SYSCALL_DEFINE0(getpid)
892{
893 return task_tgid_vnr(current);
894}
895
896/* Thread ID - the internal kernel "pid" */
897SYSCALL_DEFINE0(gettid)
898{
899 return task_pid_vnr(current);
900}
901
902/*
903 * Accessing ->real_parent is not SMP-safe, it could
904 * change from under us. However, we can use a stale
905 * value of ->real_parent under rcu_read_lock(), see
906 * release_task()->call_rcu(delayed_put_task_struct).
907 */
908SYSCALL_DEFINE0(getppid)
909{
910 int pid;
911
912 rcu_read_lock();
913 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
914 rcu_read_unlock();
915
916 return pid;
917}
918
919SYSCALL_DEFINE0(getuid)
920{
921 /* Only we change this so SMP safe */
922 return from_kuid_munged(current_user_ns(), current_uid());
923}
924
925SYSCALL_DEFINE0(geteuid)
926{
927 /* Only we change this so SMP safe */
928 return from_kuid_munged(current_user_ns(), current_euid());
929}
930
931SYSCALL_DEFINE0(getgid)
932{
933 /* Only we change this so SMP safe */
934 return from_kgid_munged(current_user_ns(), current_gid());
935}
936
937SYSCALL_DEFINE0(getegid)
938{
939 /* Only we change this so SMP safe */
940 return from_kgid_munged(current_user_ns(), current_egid());
941}
942
943static void do_sys_times(struct tms *tms)
944{
945 u64 tgutime, tgstime, cutime, cstime;
946
947 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
948 cutime = current->signal->cutime;
949 cstime = current->signal->cstime;
950 tms->tms_utime = nsec_to_clock_t(tgutime);
951 tms->tms_stime = nsec_to_clock_t(tgstime);
952 tms->tms_cutime = nsec_to_clock_t(cutime);
953 tms->tms_cstime = nsec_to_clock_t(cstime);
954}
955
956SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
957{
958 if (tbuf) {
959 struct tms tmp;
960
961 do_sys_times(&tmp);
962 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
963 return -EFAULT;
964 }
965 force_successful_syscall_return();
966 return (long) jiffies_64_to_clock_t(get_jiffies_64());
967}
968
969#ifdef CONFIG_COMPAT
970static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
971{
972 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
973}
974
975COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
976{
977 if (tbuf) {
978 struct tms tms;
979 struct compat_tms tmp;
980
981 do_sys_times(&tms);
982 /* Convert our struct tms to the compat version. */
983 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
984 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
985 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
986 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
987 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
988 return -EFAULT;
989 }
990 force_successful_syscall_return();
991 return compat_jiffies_to_clock_t(jiffies);
992}
993#endif
994
995/*
996 * This needs some heavy checking ...
997 * I just haven't the stomach for it. I also don't fully
998 * understand sessions/pgrp etc. Let somebody who does explain it.
999 *
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another. -TYT, 12/12/91
1003 *
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1005 */
1006SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007{
1008 struct task_struct *p;
1009 struct task_struct *group_leader = current->group_leader;
1010 struct pid *pgrp;
1011 int err;
1012
1013 if (!pid)
1014 pid = task_pid_vnr(group_leader);
1015 if (!pgid)
1016 pgid = pid;
1017 if (pgid < 0)
1018 return -EINVAL;
1019 rcu_read_lock();
1020
1021 /* From this point forward we keep holding onto the tasklist lock
1022 * so that our parent does not change from under us. -DaveM
1023 */
1024 write_lock_irq(&tasklist_lock);
1025
1026 err = -ESRCH;
1027 p = find_task_by_vpid(pid);
1028 if (!p)
1029 goto out;
1030
1031 err = -EINVAL;
1032 if (!thread_group_leader(p))
1033 goto out;
1034
1035 if (same_thread_group(p->real_parent, group_leader)) {
1036 err = -EPERM;
1037 if (task_session(p) != task_session(group_leader))
1038 goto out;
1039 err = -EACCES;
1040 if (!(p->flags & PF_FORKNOEXEC))
1041 goto out;
1042 } else {
1043 err = -ESRCH;
1044 if (p != group_leader)
1045 goto out;
1046 }
1047
1048 err = -EPERM;
1049 if (p->signal->leader)
1050 goto out;
1051
1052 pgrp = task_pid(p);
1053 if (pgid != pid) {
1054 struct task_struct *g;
1055
1056 pgrp = find_vpid(pgid);
1057 g = pid_task(pgrp, PIDTYPE_PGID);
1058 if (!g || task_session(g) != task_session(group_leader))
1059 goto out;
1060 }
1061
1062 err = security_task_setpgid(p, pgid);
1063 if (err)
1064 goto out;
1065
1066 if (task_pgrp(p) != pgrp)
1067 change_pid(p, PIDTYPE_PGID, pgrp);
1068
1069 err = 0;
1070out:
1071 /* All paths lead to here, thus we are safe. -DaveM */
1072 write_unlock_irq(&tasklist_lock);
1073 rcu_read_unlock();
1074 return err;
1075}
1076
1077static int do_getpgid(pid_t pid)
1078{
1079 struct task_struct *p;
1080 struct pid *grp;
1081 int retval;
1082
1083 rcu_read_lock();
1084 if (!pid)
1085 grp = task_pgrp(current);
1086 else {
1087 retval = -ESRCH;
1088 p = find_task_by_vpid(pid);
1089 if (!p)
1090 goto out;
1091 grp = task_pgrp(p);
1092 if (!grp)
1093 goto out;
1094
1095 retval = security_task_getpgid(p);
1096 if (retval)
1097 goto out;
1098 }
1099 retval = pid_vnr(grp);
1100out:
1101 rcu_read_unlock();
1102 return retval;
1103}
1104
1105SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106{
1107 return do_getpgid(pid);
1108}
1109
1110#ifdef __ARCH_WANT_SYS_GETPGRP
1111
1112SYSCALL_DEFINE0(getpgrp)
1113{
1114 return do_getpgid(0);
1115}
1116
1117#endif
1118
1119SYSCALL_DEFINE1(getsid, pid_t, pid)
1120{
1121 struct task_struct *p;
1122 struct pid *sid;
1123 int retval;
1124
1125 rcu_read_lock();
1126 if (!pid)
1127 sid = task_session(current);
1128 else {
1129 retval = -ESRCH;
1130 p = find_task_by_vpid(pid);
1131 if (!p)
1132 goto out;
1133 sid = task_session(p);
1134 if (!sid)
1135 goto out;
1136
1137 retval = security_task_getsid(p);
1138 if (retval)
1139 goto out;
1140 }
1141 retval = pid_vnr(sid);
1142out:
1143 rcu_read_unlock();
1144 return retval;
1145}
1146
1147static void set_special_pids(struct pid *pid)
1148{
1149 struct task_struct *curr = current->group_leader;
1150
1151 if (task_session(curr) != pid)
1152 change_pid(curr, PIDTYPE_SID, pid);
1153
1154 if (task_pgrp(curr) != pid)
1155 change_pid(curr, PIDTYPE_PGID, pid);
1156}
1157
1158int ksys_setsid(void)
1159{
1160 struct task_struct *group_leader = current->group_leader;
1161 struct pid *sid = task_pid(group_leader);
1162 pid_t session = pid_vnr(sid);
1163 int err = -EPERM;
1164
1165 write_lock_irq(&tasklist_lock);
1166 /* Fail if I am already a session leader */
1167 if (group_leader->signal->leader)
1168 goto out;
1169
1170 /* Fail if a process group id already exists that equals the
1171 * proposed session id.
1172 */
1173 if (pid_task(sid, PIDTYPE_PGID))
1174 goto out;
1175
1176 group_leader->signal->leader = 1;
1177 set_special_pids(sid);
1178
1179 proc_clear_tty(group_leader);
1180
1181 err = session;
1182out:
1183 write_unlock_irq(&tasklist_lock);
1184 if (err > 0) {
1185 proc_sid_connector(group_leader);
1186 sched_autogroup_create_attach(group_leader);
1187 }
1188 return err;
1189}
1190
1191SYSCALL_DEFINE0(setsid)
1192{
1193 return ksys_setsid();
1194}
1195
1196DECLARE_RWSEM(uts_sem);
1197
1198#ifdef COMPAT_UTS_MACHINE
1199#define override_architecture(name) \
1200 (personality(current->personality) == PER_LINUX32 && \
1201 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202 sizeof(COMPAT_UTS_MACHINE)))
1203#else
1204#define override_architecture(name) 0
1205#endif
1206
1207/*
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1211 */
1212static int override_release(char __user *release, size_t len)
1213{
1214 int ret = 0;
1215
1216 if (current->personality & UNAME26) {
1217 const char *rest = UTS_RELEASE;
1218 char buf[65] = { 0 };
1219 int ndots = 0;
1220 unsigned v;
1221 size_t copy;
1222
1223 while (*rest) {
1224 if (*rest == '.' && ++ndots >= 3)
1225 break;
1226 if (!isdigit(*rest) && *rest != '.')
1227 break;
1228 rest++;
1229 }
1230 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1231 copy = clamp_t(size_t, len, 1, sizeof(buf));
1232 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1233 ret = copy_to_user(release, buf, copy + 1);
1234 }
1235 return ret;
1236}
1237
1238SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1239{
1240 int errno = 0;
1241
1242 down_read(&uts_sem);
1243 if (copy_to_user(name, utsname(), sizeof *name))
1244 errno = -EFAULT;
1245 up_read(&uts_sem);
1246
1247 if (!errno && override_release(name->release, sizeof(name->release)))
1248 errno = -EFAULT;
1249 if (!errno && override_architecture(name))
1250 errno = -EFAULT;
1251 return errno;
1252}
1253
1254#ifdef __ARCH_WANT_SYS_OLD_UNAME
1255/*
1256 * Old cruft
1257 */
1258SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1259{
1260 int error = 0;
1261
1262 if (!name)
1263 return -EFAULT;
1264
1265 down_read(&uts_sem);
1266 if (copy_to_user(name, utsname(), sizeof(*name)))
1267 error = -EFAULT;
1268 up_read(&uts_sem);
1269
1270 if (!error && override_release(name->release, sizeof(name->release)))
1271 error = -EFAULT;
1272 if (!error && override_architecture(name))
1273 error = -EFAULT;
1274 return error;
1275}
1276
1277SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1278{
1279 int error;
1280
1281 if (!name)
1282 return -EFAULT;
1283 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1284 return -EFAULT;
1285
1286 down_read(&uts_sem);
1287 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1288 __OLD_UTS_LEN);
1289 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1290 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1291 __OLD_UTS_LEN);
1292 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1293 error |= __copy_to_user(&name->release, &utsname()->release,
1294 __OLD_UTS_LEN);
1295 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1296 error |= __copy_to_user(&name->version, &utsname()->version,
1297 __OLD_UTS_LEN);
1298 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1299 error |= __copy_to_user(&name->machine, &utsname()->machine,
1300 __OLD_UTS_LEN);
1301 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1302 up_read(&uts_sem);
1303
1304 if (!error && override_architecture(name))
1305 error = -EFAULT;
1306 if (!error && override_release(name->release, sizeof(name->release)))
1307 error = -EFAULT;
1308 return error ? -EFAULT : 0;
1309}
1310#endif
1311
1312SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1313{
1314 int errno;
1315 char tmp[__NEW_UTS_LEN];
1316
1317 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1318 return -EPERM;
1319
1320 if (len < 0 || len > __NEW_UTS_LEN)
1321 return -EINVAL;
1322 down_write(&uts_sem);
1323 errno = -EFAULT;
1324 if (!copy_from_user(tmp, name, len)) {
1325 struct new_utsname *u = utsname();
1326
1327 memcpy(u->nodename, tmp, len);
1328 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1329 errno = 0;
1330 uts_proc_notify(UTS_PROC_HOSTNAME);
1331 }
1332 up_write(&uts_sem);
1333 return errno;
1334}
1335
1336#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1337
1338SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1339{
1340 int i, errno;
1341 struct new_utsname *u;
1342
1343 if (len < 0)
1344 return -EINVAL;
1345 down_read(&uts_sem);
1346 u = utsname();
1347 i = 1 + strlen(u->nodename);
1348 if (i > len)
1349 i = len;
1350 errno = 0;
1351 if (copy_to_user(name, u->nodename, i))
1352 errno = -EFAULT;
1353 up_read(&uts_sem);
1354 return errno;
1355}
1356
1357#endif
1358
1359/*
1360 * Only setdomainname; getdomainname can be implemented by calling
1361 * uname()
1362 */
1363SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1364{
1365 int errno;
1366 char tmp[__NEW_UTS_LEN];
1367
1368 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1369 return -EPERM;
1370 if (len < 0 || len > __NEW_UTS_LEN)
1371 return -EINVAL;
1372
1373 down_write(&uts_sem);
1374 errno = -EFAULT;
1375 if (!copy_from_user(tmp, name, len)) {
1376 struct new_utsname *u = utsname();
1377
1378 memcpy(u->domainname, tmp, len);
1379 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1380 errno = 0;
1381 uts_proc_notify(UTS_PROC_DOMAINNAME);
1382 }
1383 up_write(&uts_sem);
1384 return errno;
1385}
1386
1387SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1388{
1389 struct rlimit value;
1390 int ret;
1391
1392 ret = do_prlimit(current, resource, NULL, &value);
1393 if (!ret)
1394 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1395
1396 return ret;
1397}
1398
1399#ifdef CONFIG_COMPAT
1400
1401COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1402 struct compat_rlimit __user *, rlim)
1403{
1404 struct rlimit r;
1405 struct compat_rlimit r32;
1406
1407 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1408 return -EFAULT;
1409
1410 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1411 r.rlim_cur = RLIM_INFINITY;
1412 else
1413 r.rlim_cur = r32.rlim_cur;
1414 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1415 r.rlim_max = RLIM_INFINITY;
1416 else
1417 r.rlim_max = r32.rlim_max;
1418 return do_prlimit(current, resource, &r, NULL);
1419}
1420
1421COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1422 struct compat_rlimit __user *, rlim)
1423{
1424 struct rlimit r;
1425 int ret;
1426
1427 ret = do_prlimit(current, resource, NULL, &r);
1428 if (!ret) {
1429 struct compat_rlimit r32;
1430 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1431 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1432 else
1433 r32.rlim_cur = r.rlim_cur;
1434 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1435 r32.rlim_max = COMPAT_RLIM_INFINITY;
1436 else
1437 r32.rlim_max = r.rlim_max;
1438
1439 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1440 return -EFAULT;
1441 }
1442 return ret;
1443}
1444
1445#endif
1446
1447#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1448
1449/*
1450 * Back compatibility for getrlimit. Needed for some apps.
1451 */
1452SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1453 struct rlimit __user *, rlim)
1454{
1455 struct rlimit x;
1456 if (resource >= RLIM_NLIMITS)
1457 return -EINVAL;
1458
1459 resource = array_index_nospec(resource, RLIM_NLIMITS);
1460 task_lock(current->group_leader);
1461 x = current->signal->rlim[resource];
1462 task_unlock(current->group_leader);
1463 if (x.rlim_cur > 0x7FFFFFFF)
1464 x.rlim_cur = 0x7FFFFFFF;
1465 if (x.rlim_max > 0x7FFFFFFF)
1466 x.rlim_max = 0x7FFFFFFF;
1467 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1468}
1469
1470#ifdef CONFIG_COMPAT
1471COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1472 struct compat_rlimit __user *, rlim)
1473{
1474 struct rlimit r;
1475
1476 if (resource >= RLIM_NLIMITS)
1477 return -EINVAL;
1478
1479 resource = array_index_nospec(resource, RLIM_NLIMITS);
1480 task_lock(current->group_leader);
1481 r = current->signal->rlim[resource];
1482 task_unlock(current->group_leader);
1483 if (r.rlim_cur > 0x7FFFFFFF)
1484 r.rlim_cur = 0x7FFFFFFF;
1485 if (r.rlim_max > 0x7FFFFFFF)
1486 r.rlim_max = 0x7FFFFFFF;
1487
1488 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1489 put_user(r.rlim_max, &rlim->rlim_max))
1490 return -EFAULT;
1491 return 0;
1492}
1493#endif
1494
1495#endif
1496
1497static inline bool rlim64_is_infinity(__u64 rlim64)
1498{
1499#if BITS_PER_LONG < 64
1500 return rlim64 >= ULONG_MAX;
1501#else
1502 return rlim64 == RLIM64_INFINITY;
1503#endif
1504}
1505
1506static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1507{
1508 if (rlim->rlim_cur == RLIM_INFINITY)
1509 rlim64->rlim_cur = RLIM64_INFINITY;
1510 else
1511 rlim64->rlim_cur = rlim->rlim_cur;
1512 if (rlim->rlim_max == RLIM_INFINITY)
1513 rlim64->rlim_max = RLIM64_INFINITY;
1514 else
1515 rlim64->rlim_max = rlim->rlim_max;
1516}
1517
1518static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1519{
1520 if (rlim64_is_infinity(rlim64->rlim_cur))
1521 rlim->rlim_cur = RLIM_INFINITY;
1522 else
1523 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1524 if (rlim64_is_infinity(rlim64->rlim_max))
1525 rlim->rlim_max = RLIM_INFINITY;
1526 else
1527 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1528}
1529
1530/* make sure you are allowed to change @tsk limits before calling this */
1531int do_prlimit(struct task_struct *tsk, unsigned int resource,
1532 struct rlimit *new_rlim, struct rlimit *old_rlim)
1533{
1534 struct rlimit *rlim;
1535 int retval = 0;
1536
1537 if (resource >= RLIM_NLIMITS)
1538 return -EINVAL;
1539 if (new_rlim) {
1540 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1541 return -EINVAL;
1542 if (resource == RLIMIT_NOFILE &&
1543 new_rlim->rlim_max > sysctl_nr_open)
1544 return -EPERM;
1545 }
1546
1547 /* protect tsk->signal and tsk->sighand from disappearing */
1548 read_lock(&tasklist_lock);
1549 if (!tsk->sighand) {
1550 retval = -ESRCH;
1551 goto out;
1552 }
1553
1554 rlim = tsk->signal->rlim + resource;
1555 task_lock(tsk->group_leader);
1556 if (new_rlim) {
1557 /* Keep the capable check against init_user_ns until
1558 cgroups can contain all limits */
1559 if (new_rlim->rlim_max > rlim->rlim_max &&
1560 !capable(CAP_SYS_RESOURCE))
1561 retval = -EPERM;
1562 if (!retval)
1563 retval = security_task_setrlimit(tsk, resource, new_rlim);
1564 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1565 /*
1566 * The caller is asking for an immediate RLIMIT_CPU
1567 * expiry. But we use the zero value to mean "it was
1568 * never set". So let's cheat and make it one second
1569 * instead
1570 */
1571 new_rlim->rlim_cur = 1;
1572 }
1573 }
1574 if (!retval) {
1575 if (old_rlim)
1576 *old_rlim = *rlim;
1577 if (new_rlim)
1578 *rlim = *new_rlim;
1579 }
1580 task_unlock(tsk->group_leader);
1581
1582 /*
1583 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1584 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1585 * very long-standing error, and fixing it now risks breakage of
1586 * applications, so we live with it
1587 */
1588 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1589 new_rlim->rlim_cur != RLIM_INFINITY &&
1590 IS_ENABLED(CONFIG_POSIX_TIMERS))
1591 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1592out:
1593 read_unlock(&tasklist_lock);
1594 return retval;
1595}
1596
1597/* rcu lock must be held */
1598static int check_prlimit_permission(struct task_struct *task,
1599 unsigned int flags)
1600{
1601 const struct cred *cred = current_cred(), *tcred;
1602 bool id_match;
1603
1604 if (current == task)
1605 return 0;
1606
1607 tcred = __task_cred(task);
1608 id_match = (uid_eq(cred->uid, tcred->euid) &&
1609 uid_eq(cred->uid, tcred->suid) &&
1610 uid_eq(cred->uid, tcred->uid) &&
1611 gid_eq(cred->gid, tcred->egid) &&
1612 gid_eq(cred->gid, tcred->sgid) &&
1613 gid_eq(cred->gid, tcred->gid));
1614 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1615 return -EPERM;
1616
1617 return security_task_prlimit(cred, tcred, flags);
1618}
1619
1620SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1621 const struct rlimit64 __user *, new_rlim,
1622 struct rlimit64 __user *, old_rlim)
1623{
1624 struct rlimit64 old64, new64;
1625 struct rlimit old, new;
1626 struct task_struct *tsk;
1627 unsigned int checkflags = 0;
1628 int ret;
1629
1630 if (old_rlim)
1631 checkflags |= LSM_PRLIMIT_READ;
1632
1633 if (new_rlim) {
1634 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1635 return -EFAULT;
1636 rlim64_to_rlim(&new64, &new);
1637 checkflags |= LSM_PRLIMIT_WRITE;
1638 }
1639
1640 rcu_read_lock();
1641 tsk = pid ? find_task_by_vpid(pid) : current;
1642 if (!tsk) {
1643 rcu_read_unlock();
1644 return -ESRCH;
1645 }
1646 ret = check_prlimit_permission(tsk, checkflags);
1647 if (ret) {
1648 rcu_read_unlock();
1649 return ret;
1650 }
1651 get_task_struct(tsk);
1652 rcu_read_unlock();
1653
1654 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1655 old_rlim ? &old : NULL);
1656
1657 if (!ret && old_rlim) {
1658 rlim_to_rlim64(&old, &old64);
1659 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1660 ret = -EFAULT;
1661 }
1662
1663 put_task_struct(tsk);
1664 return ret;
1665}
1666
1667SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1668{
1669 struct rlimit new_rlim;
1670
1671 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1672 return -EFAULT;
1673 return do_prlimit(current, resource, &new_rlim, NULL);
1674}
1675
1676/*
1677 * It would make sense to put struct rusage in the task_struct,
1678 * except that would make the task_struct be *really big*. After
1679 * task_struct gets moved into malloc'ed memory, it would
1680 * make sense to do this. It will make moving the rest of the information
1681 * a lot simpler! (Which we're not doing right now because we're not
1682 * measuring them yet).
1683 *
1684 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1685 * races with threads incrementing their own counters. But since word
1686 * reads are atomic, we either get new values or old values and we don't
1687 * care which for the sums. We always take the siglock to protect reading
1688 * the c* fields from p->signal from races with exit.c updating those
1689 * fields when reaping, so a sample either gets all the additions of a
1690 * given child after it's reaped, or none so this sample is before reaping.
1691 *
1692 * Locking:
1693 * We need to take the siglock for CHILDEREN, SELF and BOTH
1694 * for the cases current multithreaded, non-current single threaded
1695 * non-current multithreaded. Thread traversal is now safe with
1696 * the siglock held.
1697 * Strictly speaking, we donot need to take the siglock if we are current and
1698 * single threaded, as no one else can take our signal_struct away, no one
1699 * else can reap the children to update signal->c* counters, and no one else
1700 * can race with the signal-> fields. If we do not take any lock, the
1701 * signal-> fields could be read out of order while another thread was just
1702 * exiting. So we should place a read memory barrier when we avoid the lock.
1703 * On the writer side, write memory barrier is implied in __exit_signal
1704 * as __exit_signal releases the siglock spinlock after updating the signal->
1705 * fields. But we don't do this yet to keep things simple.
1706 *
1707 */
1708
1709static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1710{
1711 r->ru_nvcsw += t->nvcsw;
1712 r->ru_nivcsw += t->nivcsw;
1713 r->ru_minflt += t->min_flt;
1714 r->ru_majflt += t->maj_flt;
1715 r->ru_inblock += task_io_get_inblock(t);
1716 r->ru_oublock += task_io_get_oublock(t);
1717}
1718
1719void getrusage(struct task_struct *p, int who, struct rusage *r)
1720{
1721 struct task_struct *t;
1722 unsigned long flags;
1723 u64 tgutime, tgstime, utime, stime;
1724 unsigned long maxrss = 0;
1725
1726 memset((char *)r, 0, sizeof (*r));
1727 utime = stime = 0;
1728
1729 if (who == RUSAGE_THREAD) {
1730 task_cputime_adjusted(current, &utime, &stime);
1731 accumulate_thread_rusage(p, r);
1732 maxrss = p->signal->maxrss;
1733 goto out;
1734 }
1735
1736 if (!lock_task_sighand(p, &flags))
1737 return;
1738
1739 switch (who) {
1740 case RUSAGE_BOTH:
1741 case RUSAGE_CHILDREN:
1742 utime = p->signal->cutime;
1743 stime = p->signal->cstime;
1744 r->ru_nvcsw = p->signal->cnvcsw;
1745 r->ru_nivcsw = p->signal->cnivcsw;
1746 r->ru_minflt = p->signal->cmin_flt;
1747 r->ru_majflt = p->signal->cmaj_flt;
1748 r->ru_inblock = p->signal->cinblock;
1749 r->ru_oublock = p->signal->coublock;
1750 maxrss = p->signal->cmaxrss;
1751
1752 if (who == RUSAGE_CHILDREN)
1753 break;
1754
1755 case RUSAGE_SELF:
1756 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1757 utime += tgutime;
1758 stime += tgstime;
1759 r->ru_nvcsw += p->signal->nvcsw;
1760 r->ru_nivcsw += p->signal->nivcsw;
1761 r->ru_minflt += p->signal->min_flt;
1762 r->ru_majflt += p->signal->maj_flt;
1763 r->ru_inblock += p->signal->inblock;
1764 r->ru_oublock += p->signal->oublock;
1765 if (maxrss < p->signal->maxrss)
1766 maxrss = p->signal->maxrss;
1767 t = p;
1768 do {
1769 accumulate_thread_rusage(t, r);
1770 } while_each_thread(p, t);
1771 break;
1772
1773 default:
1774 BUG();
1775 }
1776 unlock_task_sighand(p, &flags);
1777
1778out:
1779 r->ru_utime = ns_to_timeval(utime);
1780 r->ru_stime = ns_to_timeval(stime);
1781
1782 if (who != RUSAGE_CHILDREN) {
1783 struct mm_struct *mm = get_task_mm(p);
1784
1785 if (mm) {
1786 setmax_mm_hiwater_rss(&maxrss, mm);
1787 mmput(mm);
1788 }
1789 }
1790 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1791}
1792
1793SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1794{
1795 struct rusage r;
1796
1797 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1798 who != RUSAGE_THREAD)
1799 return -EINVAL;
1800
1801 getrusage(current, who, &r);
1802 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1803}
1804
1805#ifdef CONFIG_COMPAT
1806COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1807{
1808 struct rusage r;
1809
1810 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1811 who != RUSAGE_THREAD)
1812 return -EINVAL;
1813
1814 getrusage(current, who, &r);
1815 return put_compat_rusage(&r, ru);
1816}
1817#endif
1818
1819SYSCALL_DEFINE1(umask, int, mask)
1820{
1821 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1822 return mask;
1823}
1824
1825static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1826{
1827 struct fd exe;
1828 struct file *old_exe, *exe_file;
1829 struct inode *inode;
1830 int err;
1831
1832 exe = fdget(fd);
1833 if (!exe.file)
1834 return -EBADF;
1835
1836 inode = file_inode(exe.file);
1837
1838 /*
1839 * Because the original mm->exe_file points to executable file, make
1840 * sure that this one is executable as well, to avoid breaking an
1841 * overall picture.
1842 */
1843 err = -EACCES;
1844 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1845 goto exit;
1846
1847 err = inode_permission(inode, MAY_EXEC);
1848 if (err)
1849 goto exit;
1850
1851 /*
1852 * Forbid mm->exe_file change if old file still mapped.
1853 */
1854 exe_file = get_mm_exe_file(mm);
1855 err = -EBUSY;
1856 if (exe_file) {
1857 struct vm_area_struct *vma;
1858
1859 down_read(&mm->mmap_sem);
1860 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1861 if (!vma->vm_file)
1862 continue;
1863 if (path_equal(&vma->vm_file->f_path,
1864 &exe_file->f_path))
1865 goto exit_err;
1866 }
1867
1868 up_read(&mm->mmap_sem);
1869 fput(exe_file);
1870 }
1871
1872 err = 0;
1873 /* set the new file, lockless */
1874 get_file(exe.file);
1875 old_exe = xchg(&mm->exe_file, exe.file);
1876 if (old_exe)
1877 fput(old_exe);
1878exit:
1879 fdput(exe);
1880 return err;
1881exit_err:
1882 up_read(&mm->mmap_sem);
1883 fput(exe_file);
1884 goto exit;
1885}
1886
1887/*
1888 * WARNING: we don't require any capability here so be very careful
1889 * in what is allowed for modification from userspace.
1890 */
1891static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1892{
1893 unsigned long mmap_max_addr = TASK_SIZE;
1894 struct mm_struct *mm = current->mm;
1895 int error = -EINVAL, i;
1896
1897 static const unsigned char offsets[] = {
1898 offsetof(struct prctl_mm_map, start_code),
1899 offsetof(struct prctl_mm_map, end_code),
1900 offsetof(struct prctl_mm_map, start_data),
1901 offsetof(struct prctl_mm_map, end_data),
1902 offsetof(struct prctl_mm_map, start_brk),
1903 offsetof(struct prctl_mm_map, brk),
1904 offsetof(struct prctl_mm_map, start_stack),
1905 offsetof(struct prctl_mm_map, arg_start),
1906 offsetof(struct prctl_mm_map, arg_end),
1907 offsetof(struct prctl_mm_map, env_start),
1908 offsetof(struct prctl_mm_map, env_end),
1909 };
1910
1911 /*
1912 * Make sure the members are not somewhere outside
1913 * of allowed address space.
1914 */
1915 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1916 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1917
1918 if ((unsigned long)val >= mmap_max_addr ||
1919 (unsigned long)val < mmap_min_addr)
1920 goto out;
1921 }
1922
1923 /*
1924 * Make sure the pairs are ordered.
1925 */
1926#define __prctl_check_order(__m1, __op, __m2) \
1927 ((unsigned long)prctl_map->__m1 __op \
1928 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1929 error = __prctl_check_order(start_code, <, end_code);
1930 error |= __prctl_check_order(start_data, <, end_data);
1931 error |= __prctl_check_order(start_brk, <=, brk);
1932 error |= __prctl_check_order(arg_start, <=, arg_end);
1933 error |= __prctl_check_order(env_start, <=, env_end);
1934 if (error)
1935 goto out;
1936#undef __prctl_check_order
1937
1938 error = -EINVAL;
1939
1940 /*
1941 * @brk should be after @end_data in traditional maps.
1942 */
1943 if (prctl_map->start_brk <= prctl_map->end_data ||
1944 prctl_map->brk <= prctl_map->end_data)
1945 goto out;
1946
1947 /*
1948 * Neither we should allow to override limits if they set.
1949 */
1950 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1951 prctl_map->start_brk, prctl_map->end_data,
1952 prctl_map->start_data))
1953 goto out;
1954
1955 /*
1956 * Someone is trying to cheat the auxv vector.
1957 */
1958 if (prctl_map->auxv_size) {
1959 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1960 goto out;
1961 }
1962
1963 /*
1964 * Finally, make sure the caller has the rights to
1965 * change /proc/pid/exe link: only local sys admin should
1966 * be allowed to.
1967 */
1968 if (prctl_map->exe_fd != (u32)-1) {
1969 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1970 goto out;
1971 }
1972
1973 error = 0;
1974out:
1975 return error;
1976}
1977
1978#ifdef CONFIG_CHECKPOINT_RESTORE
1979static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1980{
1981 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1982 unsigned long user_auxv[AT_VECTOR_SIZE];
1983 struct mm_struct *mm = current->mm;
1984 int error;
1985
1986 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1987 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1988
1989 if (opt == PR_SET_MM_MAP_SIZE)
1990 return put_user((unsigned int)sizeof(prctl_map),
1991 (unsigned int __user *)addr);
1992
1993 if (data_size != sizeof(prctl_map))
1994 return -EINVAL;
1995
1996 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1997 return -EFAULT;
1998
1999 error = validate_prctl_map(&prctl_map);
2000 if (error)
2001 return error;
2002
2003 if (prctl_map.auxv_size) {
2004 memset(user_auxv, 0, sizeof(user_auxv));
2005 if (copy_from_user(user_auxv,
2006 (const void __user *)prctl_map.auxv,
2007 prctl_map.auxv_size))
2008 return -EFAULT;
2009
2010 /* Last entry must be AT_NULL as specification requires */
2011 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2012 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2013 }
2014
2015 if (prctl_map.exe_fd != (u32)-1) {
2016 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2017 if (error)
2018 return error;
2019 }
2020
2021 down_write(&mm->mmap_sem);
2022
2023 /*
2024 * We don't validate if these members are pointing to
2025 * real present VMAs because application may have correspond
2026 * VMAs already unmapped and kernel uses these members for statistics
2027 * output in procfs mostly, except
2028 *
2029 * - @start_brk/@brk which are used in do_brk but kernel lookups
2030 * for VMAs when updating these memvers so anything wrong written
2031 * here cause kernel to swear at userspace program but won't lead
2032 * to any problem in kernel itself
2033 */
2034
2035 mm->start_code = prctl_map.start_code;
2036 mm->end_code = prctl_map.end_code;
2037 mm->start_data = prctl_map.start_data;
2038 mm->end_data = prctl_map.end_data;
2039 mm->start_brk = prctl_map.start_brk;
2040 mm->brk = prctl_map.brk;
2041 mm->start_stack = prctl_map.start_stack;
2042 mm->arg_start = prctl_map.arg_start;
2043 mm->arg_end = prctl_map.arg_end;
2044 mm->env_start = prctl_map.env_start;
2045 mm->env_end = prctl_map.env_end;
2046
2047 /*
2048 * Note this update of @saved_auxv is lockless thus
2049 * if someone reads this member in procfs while we're
2050 * updating -- it may get partly updated results. It's
2051 * known and acceptable trade off: we leave it as is to
2052 * not introduce additional locks here making the kernel
2053 * more complex.
2054 */
2055 if (prctl_map.auxv_size)
2056 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2057
2058 up_write(&mm->mmap_sem);
2059 return 0;
2060}
2061#endif /* CONFIG_CHECKPOINT_RESTORE */
2062
2063static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2064 unsigned long len)
2065{
2066 /*
2067 * This doesn't move the auxiliary vector itself since it's pinned to
2068 * mm_struct, but it permits filling the vector with new values. It's
2069 * up to the caller to provide sane values here, otherwise userspace
2070 * tools which use this vector might be unhappy.
2071 */
2072 unsigned long user_auxv[AT_VECTOR_SIZE];
2073
2074 if (len > sizeof(user_auxv))
2075 return -EINVAL;
2076
2077 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2078 return -EFAULT;
2079
2080 /* Make sure the last entry is always AT_NULL */
2081 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2082 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2083
2084 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2085
2086 task_lock(current);
2087 memcpy(mm->saved_auxv, user_auxv, len);
2088 task_unlock(current);
2089
2090 return 0;
2091}
2092
2093static int prctl_set_mm(int opt, unsigned long addr,
2094 unsigned long arg4, unsigned long arg5)
2095{
2096 struct mm_struct *mm = current->mm;
2097 struct prctl_mm_map prctl_map;
2098 struct vm_area_struct *vma;
2099 int error;
2100
2101 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2102 opt != PR_SET_MM_MAP &&
2103 opt != PR_SET_MM_MAP_SIZE)))
2104 return -EINVAL;
2105
2106#ifdef CONFIG_CHECKPOINT_RESTORE
2107 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2108 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2109#endif
2110
2111 if (!capable(CAP_SYS_RESOURCE))
2112 return -EPERM;
2113
2114 if (opt == PR_SET_MM_EXE_FILE)
2115 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2116
2117 if (opt == PR_SET_MM_AUXV)
2118 return prctl_set_auxv(mm, addr, arg4);
2119
2120 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2121 return -EINVAL;
2122
2123 error = -EINVAL;
2124
2125 down_write(&mm->mmap_sem);
2126 vma = find_vma(mm, addr);
2127
2128 prctl_map.start_code = mm->start_code;
2129 prctl_map.end_code = mm->end_code;
2130 prctl_map.start_data = mm->start_data;
2131 prctl_map.end_data = mm->end_data;
2132 prctl_map.start_brk = mm->start_brk;
2133 prctl_map.brk = mm->brk;
2134 prctl_map.start_stack = mm->start_stack;
2135 prctl_map.arg_start = mm->arg_start;
2136 prctl_map.arg_end = mm->arg_end;
2137 prctl_map.env_start = mm->env_start;
2138 prctl_map.env_end = mm->env_end;
2139 prctl_map.auxv = NULL;
2140 prctl_map.auxv_size = 0;
2141 prctl_map.exe_fd = -1;
2142
2143 switch (opt) {
2144 case PR_SET_MM_START_CODE:
2145 prctl_map.start_code = addr;
2146 break;
2147 case PR_SET_MM_END_CODE:
2148 prctl_map.end_code = addr;
2149 break;
2150 case PR_SET_MM_START_DATA:
2151 prctl_map.start_data = addr;
2152 break;
2153 case PR_SET_MM_END_DATA:
2154 prctl_map.end_data = addr;
2155 break;
2156 case PR_SET_MM_START_STACK:
2157 prctl_map.start_stack = addr;
2158 break;
2159 case PR_SET_MM_START_BRK:
2160 prctl_map.start_brk = addr;
2161 break;
2162 case PR_SET_MM_BRK:
2163 prctl_map.brk = addr;
2164 break;
2165 case PR_SET_MM_ARG_START:
2166 prctl_map.arg_start = addr;
2167 break;
2168 case PR_SET_MM_ARG_END:
2169 prctl_map.arg_end = addr;
2170 break;
2171 case PR_SET_MM_ENV_START:
2172 prctl_map.env_start = addr;
2173 break;
2174 case PR_SET_MM_ENV_END:
2175 prctl_map.env_end = addr;
2176 break;
2177 default:
2178 goto out;
2179 }
2180
2181 error = validate_prctl_map(&prctl_map);
2182 if (error)
2183 goto out;
2184
2185 switch (opt) {
2186 /*
2187 * If command line arguments and environment
2188 * are placed somewhere else on stack, we can
2189 * set them up here, ARG_START/END to setup
2190 * command line argumets and ENV_START/END
2191 * for environment.
2192 */
2193 case PR_SET_MM_START_STACK:
2194 case PR_SET_MM_ARG_START:
2195 case PR_SET_MM_ARG_END:
2196 case PR_SET_MM_ENV_START:
2197 case PR_SET_MM_ENV_END:
2198 if (!vma) {
2199 error = -EFAULT;
2200 goto out;
2201 }
2202 }
2203
2204 mm->start_code = prctl_map.start_code;
2205 mm->end_code = prctl_map.end_code;
2206 mm->start_data = prctl_map.start_data;
2207 mm->end_data = prctl_map.end_data;
2208 mm->start_brk = prctl_map.start_brk;
2209 mm->brk = prctl_map.brk;
2210 mm->start_stack = prctl_map.start_stack;
2211 mm->arg_start = prctl_map.arg_start;
2212 mm->arg_end = prctl_map.arg_end;
2213 mm->env_start = prctl_map.env_start;
2214 mm->env_end = prctl_map.env_end;
2215
2216 error = 0;
2217out:
2218 up_write(&mm->mmap_sem);
2219 return error;
2220}
2221
2222#ifdef CONFIG_CHECKPOINT_RESTORE
2223static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2224{
2225 return put_user(me->clear_child_tid, tid_addr);
2226}
2227#else
2228static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2229{
2230 return -EINVAL;
2231}
2232#endif
2233
2234static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2235{
2236 /*
2237 * If task has has_child_subreaper - all its decendants
2238 * already have these flag too and new decendants will
2239 * inherit it on fork, skip them.
2240 *
2241 * If we've found child_reaper - skip descendants in
2242 * it's subtree as they will never get out pidns.
2243 */
2244 if (p->signal->has_child_subreaper ||
2245 is_child_reaper(task_pid(p)))
2246 return 0;
2247
2248 p->signal->has_child_subreaper = 1;
2249 return 1;
2250}
2251
2252int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2253{
2254 return -EINVAL;
2255}
2256
2257int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2258 unsigned long ctrl)
2259{
2260 return -EINVAL;
2261}
2262
2263SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2264 unsigned long, arg4, unsigned long, arg5)
2265{
2266 struct task_struct *me = current;
2267 unsigned char comm[sizeof(me->comm)];
2268 long error;
2269
2270 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2271 if (error != -ENOSYS)
2272 return error;
2273
2274 error = 0;
2275 switch (option) {
2276 case PR_SET_PDEATHSIG:
2277 if (!valid_signal(arg2)) {
2278 error = -EINVAL;
2279 break;
2280 }
2281 me->pdeath_signal = arg2;
2282 break;
2283 case PR_GET_PDEATHSIG:
2284 error = put_user(me->pdeath_signal, (int __user *)arg2);
2285 break;
2286 case PR_GET_DUMPABLE:
2287 error = get_dumpable(me->mm);
2288 break;
2289 case PR_SET_DUMPABLE:
2290 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2291 error = -EINVAL;
2292 break;
2293 }
2294 set_dumpable(me->mm, arg2);
2295 break;
2296
2297 case PR_SET_UNALIGN:
2298 error = SET_UNALIGN_CTL(me, arg2);
2299 break;
2300 case PR_GET_UNALIGN:
2301 error = GET_UNALIGN_CTL(me, arg2);
2302 break;
2303 case PR_SET_FPEMU:
2304 error = SET_FPEMU_CTL(me, arg2);
2305 break;
2306 case PR_GET_FPEMU:
2307 error = GET_FPEMU_CTL(me, arg2);
2308 break;
2309 case PR_SET_FPEXC:
2310 error = SET_FPEXC_CTL(me, arg2);
2311 break;
2312 case PR_GET_FPEXC:
2313 error = GET_FPEXC_CTL(me, arg2);
2314 break;
2315 case PR_GET_TIMING:
2316 error = PR_TIMING_STATISTICAL;
2317 break;
2318 case PR_SET_TIMING:
2319 if (arg2 != PR_TIMING_STATISTICAL)
2320 error = -EINVAL;
2321 break;
2322 case PR_SET_NAME:
2323 comm[sizeof(me->comm) - 1] = 0;
2324 if (strncpy_from_user(comm, (char __user *)arg2,
2325 sizeof(me->comm) - 1) < 0)
2326 return -EFAULT;
2327 set_task_comm(me, comm);
2328 proc_comm_connector(me);
2329 break;
2330 case PR_GET_NAME:
2331 get_task_comm(comm, me);
2332 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2333 return -EFAULT;
2334 break;
2335 case PR_GET_ENDIAN:
2336 error = GET_ENDIAN(me, arg2);
2337 break;
2338 case PR_SET_ENDIAN:
2339 error = SET_ENDIAN(me, arg2);
2340 break;
2341 case PR_GET_SECCOMP:
2342 error = prctl_get_seccomp();
2343 break;
2344 case PR_SET_SECCOMP:
2345 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2346 break;
2347 case PR_GET_TSC:
2348 error = GET_TSC_CTL(arg2);
2349 break;
2350 case PR_SET_TSC:
2351 error = SET_TSC_CTL(arg2);
2352 break;
2353 case PR_TASK_PERF_EVENTS_DISABLE:
2354 error = perf_event_task_disable();
2355 break;
2356 case PR_TASK_PERF_EVENTS_ENABLE:
2357 error = perf_event_task_enable();
2358 break;
2359 case PR_GET_TIMERSLACK:
2360 if (current->timer_slack_ns > ULONG_MAX)
2361 error = ULONG_MAX;
2362 else
2363 error = current->timer_slack_ns;
2364 break;
2365 case PR_SET_TIMERSLACK:
2366 if (arg2 <= 0)
2367 current->timer_slack_ns =
2368 current->default_timer_slack_ns;
2369 else
2370 current->timer_slack_ns = arg2;
2371 break;
2372 case PR_MCE_KILL:
2373 if (arg4 | arg5)
2374 return -EINVAL;
2375 switch (arg2) {
2376 case PR_MCE_KILL_CLEAR:
2377 if (arg3 != 0)
2378 return -EINVAL;
2379 current->flags &= ~PF_MCE_PROCESS;
2380 break;
2381 case PR_MCE_KILL_SET:
2382 current->flags |= PF_MCE_PROCESS;
2383 if (arg3 == PR_MCE_KILL_EARLY)
2384 current->flags |= PF_MCE_EARLY;
2385 else if (arg3 == PR_MCE_KILL_LATE)
2386 current->flags &= ~PF_MCE_EARLY;
2387 else if (arg3 == PR_MCE_KILL_DEFAULT)
2388 current->flags &=
2389 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2390 else
2391 return -EINVAL;
2392 break;
2393 default:
2394 return -EINVAL;
2395 }
2396 break;
2397 case PR_MCE_KILL_GET:
2398 if (arg2 | arg3 | arg4 | arg5)
2399 return -EINVAL;
2400 if (current->flags & PF_MCE_PROCESS)
2401 error = (current->flags & PF_MCE_EARLY) ?
2402 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2403 else
2404 error = PR_MCE_KILL_DEFAULT;
2405 break;
2406 case PR_SET_MM:
2407 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2408 break;
2409 case PR_GET_TID_ADDRESS:
2410 error = prctl_get_tid_address(me, (int __user **)arg2);
2411 break;
2412 case PR_SET_CHILD_SUBREAPER:
2413 me->signal->is_child_subreaper = !!arg2;
2414 if (!arg2)
2415 break;
2416
2417 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2418 break;
2419 case PR_GET_CHILD_SUBREAPER:
2420 error = put_user(me->signal->is_child_subreaper,
2421 (int __user *)arg2);
2422 break;
2423 case PR_SET_NO_NEW_PRIVS:
2424 if (arg2 != 1 || arg3 || arg4 || arg5)
2425 return -EINVAL;
2426
2427 task_set_no_new_privs(current);
2428 break;
2429 case PR_GET_NO_NEW_PRIVS:
2430 if (arg2 || arg3 || arg4 || arg5)
2431 return -EINVAL;
2432 return task_no_new_privs(current) ? 1 : 0;
2433 case PR_GET_THP_DISABLE:
2434 if (arg2 || arg3 || arg4 || arg5)
2435 return -EINVAL;
2436 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2437 break;
2438 case PR_SET_THP_DISABLE:
2439 if (arg3 || arg4 || arg5)
2440 return -EINVAL;
2441 if (down_write_killable(&me->mm->mmap_sem))
2442 return -EINTR;
2443 if (arg2)
2444 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2445 else
2446 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2447 up_write(&me->mm->mmap_sem);
2448 break;
2449 case PR_MPX_ENABLE_MANAGEMENT:
2450 if (arg2 || arg3 || arg4 || arg5)
2451 return -EINVAL;
2452 error = MPX_ENABLE_MANAGEMENT();
2453 break;
2454 case PR_MPX_DISABLE_MANAGEMENT:
2455 if (arg2 || arg3 || arg4 || arg5)
2456 return -EINVAL;
2457 error = MPX_DISABLE_MANAGEMENT();
2458 break;
2459 case PR_SET_FP_MODE:
2460 error = SET_FP_MODE(me, arg2);
2461 break;
2462 case PR_GET_FP_MODE:
2463 error = GET_FP_MODE(me);
2464 break;
2465 case PR_SVE_SET_VL:
2466 error = SVE_SET_VL(arg2);
2467 break;
2468 case PR_SVE_GET_VL:
2469 error = SVE_GET_VL();
2470 break;
2471 case PR_GET_SPECULATION_CTRL:
2472 if (arg3 || arg4 || arg5)
2473 return -EINVAL;
2474 error = arch_prctl_spec_ctrl_get(me, arg2);
2475 break;
2476 case PR_SET_SPECULATION_CTRL:
2477 if (arg4 || arg5)
2478 return -EINVAL;
2479 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2480 break;
2481 default:
2482 error = -EINVAL;
2483 break;
2484 }
2485 return error;
2486}
2487
2488SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2489 struct getcpu_cache __user *, unused)
2490{
2491 int err = 0;
2492 int cpu = raw_smp_processor_id();
2493
2494 if (cpup)
2495 err |= put_user(cpu, cpup);
2496 if (nodep)
2497 err |= put_user(cpu_to_node(cpu), nodep);
2498 return err ? -EFAULT : 0;
2499}
2500
2501/**
2502 * do_sysinfo - fill in sysinfo struct
2503 * @info: pointer to buffer to fill
2504 */
2505static int do_sysinfo(struct sysinfo *info)
2506{
2507 unsigned long mem_total, sav_total;
2508 unsigned int mem_unit, bitcount;
2509 struct timespec tp;
2510
2511 memset(info, 0, sizeof(struct sysinfo));
2512
2513 get_monotonic_boottime(&tp);
2514 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2515
2516 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2517
2518 info->procs = nr_threads;
2519
2520 si_meminfo(info);
2521 si_swapinfo(info);
2522
2523 /*
2524 * If the sum of all the available memory (i.e. ram + swap)
2525 * is less than can be stored in a 32 bit unsigned long then
2526 * we can be binary compatible with 2.2.x kernels. If not,
2527 * well, in that case 2.2.x was broken anyways...
2528 *
2529 * -Erik Andersen <andersee@debian.org>
2530 */
2531
2532 mem_total = info->totalram + info->totalswap;
2533 if (mem_total < info->totalram || mem_total < info->totalswap)
2534 goto out;
2535 bitcount = 0;
2536 mem_unit = info->mem_unit;
2537 while (mem_unit > 1) {
2538 bitcount++;
2539 mem_unit >>= 1;
2540 sav_total = mem_total;
2541 mem_total <<= 1;
2542 if (mem_total < sav_total)
2543 goto out;
2544 }
2545
2546 /*
2547 * If mem_total did not overflow, multiply all memory values by
2548 * info->mem_unit and set it to 1. This leaves things compatible
2549 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2550 * kernels...
2551 */
2552
2553 info->mem_unit = 1;
2554 info->totalram <<= bitcount;
2555 info->freeram <<= bitcount;
2556 info->sharedram <<= bitcount;
2557 info->bufferram <<= bitcount;
2558 info->totalswap <<= bitcount;
2559 info->freeswap <<= bitcount;
2560 info->totalhigh <<= bitcount;
2561 info->freehigh <<= bitcount;
2562
2563out:
2564 return 0;
2565}
2566
2567SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2568{
2569 struct sysinfo val;
2570
2571 do_sysinfo(&val);
2572
2573 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2574 return -EFAULT;
2575
2576 return 0;
2577}
2578
2579#ifdef CONFIG_COMPAT
2580struct compat_sysinfo {
2581 s32 uptime;
2582 u32 loads[3];
2583 u32 totalram;
2584 u32 freeram;
2585 u32 sharedram;
2586 u32 bufferram;
2587 u32 totalswap;
2588 u32 freeswap;
2589 u16 procs;
2590 u16 pad;
2591 u32 totalhigh;
2592 u32 freehigh;
2593 u32 mem_unit;
2594 char _f[20-2*sizeof(u32)-sizeof(int)];
2595};
2596
2597COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2598{
2599 struct sysinfo s;
2600
2601 do_sysinfo(&s);
2602
2603 /* Check to see if any memory value is too large for 32-bit and scale
2604 * down if needed
2605 */
2606 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2607 int bitcount = 0;
2608
2609 while (s.mem_unit < PAGE_SIZE) {
2610 s.mem_unit <<= 1;
2611 bitcount++;
2612 }
2613
2614 s.totalram >>= bitcount;
2615 s.freeram >>= bitcount;
2616 s.sharedram >>= bitcount;
2617 s.bufferram >>= bitcount;
2618 s.totalswap >>= bitcount;
2619 s.freeswap >>= bitcount;
2620 s.totalhigh >>= bitcount;
2621 s.freehigh >>= bitcount;
2622 }
2623
2624 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2625 __put_user(s.uptime, &info->uptime) ||
2626 __put_user(s.loads[0], &info->loads[0]) ||
2627 __put_user(s.loads[1], &info->loads[1]) ||
2628 __put_user(s.loads[2], &info->loads[2]) ||
2629 __put_user(s.totalram, &info->totalram) ||
2630 __put_user(s.freeram, &info->freeram) ||
2631 __put_user(s.sharedram, &info->sharedram) ||
2632 __put_user(s.bufferram, &info->bufferram) ||
2633 __put_user(s.totalswap, &info->totalswap) ||
2634 __put_user(s.freeswap, &info->freeswap) ||
2635 __put_user(s.procs, &info->procs) ||
2636 __put_user(s.totalhigh, &info->totalhigh) ||
2637 __put_user(s.freehigh, &info->freehigh) ||
2638 __put_user(s.mem_unit, &info->mem_unit))
2639 return -EFAULT;
2640
2641 return 0;
2642}
2643#endif /* CONFIG_COMPAT */
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/kexec.h>
20#include <linux/workqueue.h>
21#include <linux/capability.h>
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
30#include <linux/signal.h>
31#include <linux/cn_proc.h>
32#include <linux/getcpu.h>
33#include <linux/task_io_accounting_ops.h>
34#include <linux/seccomp.h>
35#include <linux/cpu.h>
36#include <linux/personality.h>
37#include <linux/ptrace.h>
38#include <linux/fs_struct.h>
39#include <linux/file.h>
40#include <linux/mount.h>
41#include <linux/gfp.h>
42#include <linux/syscore_ops.h>
43#include <linux/version.h>
44#include <linux/ctype.h>
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
48#include <linux/kprobes.h>
49#include <linux/user_namespace.h>
50
51#include <linux/kmsg_dump.h>
52/* Move somewhere else to avoid recompiling? */
53#include <generated/utsrelease.h>
54
55#include <asm/uaccess.h>
56#include <asm/io.h>
57#include <asm/unistd.h>
58
59#ifndef SET_UNALIGN_CTL
60# define SET_UNALIGN_CTL(a,b) (-EINVAL)
61#endif
62#ifndef GET_UNALIGN_CTL
63# define GET_UNALIGN_CTL(a,b) (-EINVAL)
64#endif
65#ifndef SET_FPEMU_CTL
66# define SET_FPEMU_CTL(a,b) (-EINVAL)
67#endif
68#ifndef GET_FPEMU_CTL
69# define GET_FPEMU_CTL(a,b) (-EINVAL)
70#endif
71#ifndef SET_FPEXC_CTL
72# define SET_FPEXC_CTL(a,b) (-EINVAL)
73#endif
74#ifndef GET_FPEXC_CTL
75# define GET_FPEXC_CTL(a,b) (-EINVAL)
76#endif
77#ifndef GET_ENDIAN
78# define GET_ENDIAN(a,b) (-EINVAL)
79#endif
80#ifndef SET_ENDIAN
81# define SET_ENDIAN(a,b) (-EINVAL)
82#endif
83#ifndef GET_TSC_CTL
84# define GET_TSC_CTL(a) (-EINVAL)
85#endif
86#ifndef SET_TSC_CTL
87# define SET_TSC_CTL(a) (-EINVAL)
88#endif
89
90/*
91 * this is where the system-wide overflow UID and GID are defined, for
92 * architectures that now have 32-bit UID/GID but didn't in the past
93 */
94
95int overflowuid = DEFAULT_OVERFLOWUID;
96int overflowgid = DEFAULT_OVERFLOWGID;
97
98EXPORT_SYMBOL(overflowuid);
99EXPORT_SYMBOL(overflowgid);
100
101/*
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
104 */
105
106int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108
109EXPORT_SYMBOL(fs_overflowuid);
110EXPORT_SYMBOL(fs_overflowgid);
111
112/*
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114 */
115
116int C_A_D = 1;
117struct pid *cad_pid;
118EXPORT_SYMBOL(cad_pid);
119
120/*
121 * If set, this is used for preparing the system to power off.
122 */
123
124void (*pm_power_off_prepare)(void);
125
126/*
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
129 *
130 * Called with rcu_read_lock, creds are safe
131 */
132static bool set_one_prio_perm(struct task_struct *p)
133{
134 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135
136 if (uid_eq(pcred->uid, cred->euid) ||
137 uid_eq(pcred->euid, cred->euid))
138 return true;
139 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
140 return true;
141 return false;
142}
143
144/*
145 * set the priority of a task
146 * - the caller must hold the RCU read lock
147 */
148static int set_one_prio(struct task_struct *p, int niceval, int error)
149{
150 int no_nice;
151
152 if (!set_one_prio_perm(p)) {
153 error = -EPERM;
154 goto out;
155 }
156 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
157 error = -EACCES;
158 goto out;
159 }
160 no_nice = security_task_setnice(p, niceval);
161 if (no_nice) {
162 error = no_nice;
163 goto out;
164 }
165 if (error == -ESRCH)
166 error = 0;
167 set_user_nice(p, niceval);
168out:
169 return error;
170}
171
172SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
173{
174 struct task_struct *g, *p;
175 struct user_struct *user;
176 const struct cred *cred = current_cred();
177 int error = -EINVAL;
178 struct pid *pgrp;
179 kuid_t uid;
180
181 if (which > PRIO_USER || which < PRIO_PROCESS)
182 goto out;
183
184 /* normalize: avoid signed division (rounding problems) */
185 error = -ESRCH;
186 if (niceval < -20)
187 niceval = -20;
188 if (niceval > 19)
189 niceval = 19;
190
191 rcu_read_lock();
192 read_lock(&tasklist_lock);
193 switch (which) {
194 case PRIO_PROCESS:
195 if (who)
196 p = find_task_by_vpid(who);
197 else
198 p = current;
199 if (p)
200 error = set_one_prio(p, niceval, error);
201 break;
202 case PRIO_PGRP:
203 if (who)
204 pgrp = find_vpid(who);
205 else
206 pgrp = task_pgrp(current);
207 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208 error = set_one_prio(p, niceval, error);
209 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210 break;
211 case PRIO_USER:
212 uid = make_kuid(cred->user_ns, who);
213 user = cred->user;
214 if (!who)
215 uid = cred->uid;
216 else if (!uid_eq(uid, cred->uid) &&
217 !(user = find_user(uid)))
218 goto out_unlock; /* No processes for this user */
219
220 do_each_thread(g, p) {
221 if (uid_eq(task_uid(p), uid))
222 error = set_one_prio(p, niceval, error);
223 } while_each_thread(g, p);
224 if (!uid_eq(uid, cred->uid))
225 free_uid(user); /* For find_user() */
226 break;
227 }
228out_unlock:
229 read_unlock(&tasklist_lock);
230 rcu_read_unlock();
231out:
232 return error;
233}
234
235/*
236 * Ugh. To avoid negative return values, "getpriority()" will
237 * not return the normal nice-value, but a negated value that
238 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
239 * to stay compatible.
240 */
241SYSCALL_DEFINE2(getpriority, int, which, int, who)
242{
243 struct task_struct *g, *p;
244 struct user_struct *user;
245 const struct cred *cred = current_cred();
246 long niceval, retval = -ESRCH;
247 struct pid *pgrp;
248 kuid_t uid;
249
250 if (which > PRIO_USER || which < PRIO_PROCESS)
251 return -EINVAL;
252
253 rcu_read_lock();
254 read_lock(&tasklist_lock);
255 switch (which) {
256 case PRIO_PROCESS:
257 if (who)
258 p = find_task_by_vpid(who);
259 else
260 p = current;
261 if (p) {
262 niceval = 20 - task_nice(p);
263 if (niceval > retval)
264 retval = niceval;
265 }
266 break;
267 case PRIO_PGRP:
268 if (who)
269 pgrp = find_vpid(who);
270 else
271 pgrp = task_pgrp(current);
272 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
273 niceval = 20 - task_nice(p);
274 if (niceval > retval)
275 retval = niceval;
276 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
277 break;
278 case PRIO_USER:
279 uid = make_kuid(cred->user_ns, who);
280 user = cred->user;
281 if (!who)
282 uid = cred->uid;
283 else if (!uid_eq(uid, cred->uid) &&
284 !(user = find_user(uid)))
285 goto out_unlock; /* No processes for this user */
286
287 do_each_thread(g, p) {
288 if (uid_eq(task_uid(p), uid)) {
289 niceval = 20 - task_nice(p);
290 if (niceval > retval)
291 retval = niceval;
292 }
293 } while_each_thread(g, p);
294 if (!uid_eq(uid, cred->uid))
295 free_uid(user); /* for find_user() */
296 break;
297 }
298out_unlock:
299 read_unlock(&tasklist_lock);
300 rcu_read_unlock();
301
302 return retval;
303}
304
305/**
306 * emergency_restart - reboot the system
307 *
308 * Without shutting down any hardware or taking any locks
309 * reboot the system. This is called when we know we are in
310 * trouble so this is our best effort to reboot. This is
311 * safe to call in interrupt context.
312 */
313void emergency_restart(void)
314{
315 kmsg_dump(KMSG_DUMP_EMERG);
316 machine_emergency_restart();
317}
318EXPORT_SYMBOL_GPL(emergency_restart);
319
320void kernel_restart_prepare(char *cmd)
321{
322 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
323 system_state = SYSTEM_RESTART;
324 usermodehelper_disable();
325 device_shutdown();
326 syscore_shutdown();
327}
328
329/**
330 * register_reboot_notifier - Register function to be called at reboot time
331 * @nb: Info about notifier function to be called
332 *
333 * Registers a function with the list of functions
334 * to be called at reboot time.
335 *
336 * Currently always returns zero, as blocking_notifier_chain_register()
337 * always returns zero.
338 */
339int register_reboot_notifier(struct notifier_block *nb)
340{
341 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
342}
343EXPORT_SYMBOL(register_reboot_notifier);
344
345/**
346 * unregister_reboot_notifier - Unregister previously registered reboot notifier
347 * @nb: Hook to be unregistered
348 *
349 * Unregisters a previously registered reboot
350 * notifier function.
351 *
352 * Returns zero on success, or %-ENOENT on failure.
353 */
354int unregister_reboot_notifier(struct notifier_block *nb)
355{
356 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
357}
358EXPORT_SYMBOL(unregister_reboot_notifier);
359
360/**
361 * kernel_restart - reboot the system
362 * @cmd: pointer to buffer containing command to execute for restart
363 * or %NULL
364 *
365 * Shutdown everything and perform a clean reboot.
366 * This is not safe to call in interrupt context.
367 */
368void kernel_restart(char *cmd)
369{
370 kernel_restart_prepare(cmd);
371 if (!cmd)
372 printk(KERN_EMERG "Restarting system.\n");
373 else
374 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
375 kmsg_dump(KMSG_DUMP_RESTART);
376 machine_restart(cmd);
377}
378EXPORT_SYMBOL_GPL(kernel_restart);
379
380static void kernel_shutdown_prepare(enum system_states state)
381{
382 blocking_notifier_call_chain(&reboot_notifier_list,
383 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
384 system_state = state;
385 usermodehelper_disable();
386 device_shutdown();
387}
388/**
389 * kernel_halt - halt the system
390 *
391 * Shutdown everything and perform a clean system halt.
392 */
393void kernel_halt(void)
394{
395 kernel_shutdown_prepare(SYSTEM_HALT);
396 syscore_shutdown();
397 printk(KERN_EMERG "System halted.\n");
398 kmsg_dump(KMSG_DUMP_HALT);
399 machine_halt();
400}
401
402EXPORT_SYMBOL_GPL(kernel_halt);
403
404/**
405 * kernel_power_off - power_off the system
406 *
407 * Shutdown everything and perform a clean system power_off.
408 */
409void kernel_power_off(void)
410{
411 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
412 if (pm_power_off_prepare)
413 pm_power_off_prepare();
414 disable_nonboot_cpus();
415 syscore_shutdown();
416 printk(KERN_EMERG "Power down.\n");
417 kmsg_dump(KMSG_DUMP_POWEROFF);
418 machine_power_off();
419}
420EXPORT_SYMBOL_GPL(kernel_power_off);
421
422static DEFINE_MUTEX(reboot_mutex);
423
424/*
425 * Reboot system call: for obvious reasons only root may call it,
426 * and even root needs to set up some magic numbers in the registers
427 * so that some mistake won't make this reboot the whole machine.
428 * You can also set the meaning of the ctrl-alt-del-key here.
429 *
430 * reboot doesn't sync: do that yourself before calling this.
431 */
432SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
433 void __user *, arg)
434{
435 char buffer[256];
436 int ret = 0;
437
438 /* We only trust the superuser with rebooting the system. */
439 if (!capable(CAP_SYS_BOOT))
440 return -EPERM;
441
442 /* For safety, we require "magic" arguments. */
443 if (magic1 != LINUX_REBOOT_MAGIC1 ||
444 (magic2 != LINUX_REBOOT_MAGIC2 &&
445 magic2 != LINUX_REBOOT_MAGIC2A &&
446 magic2 != LINUX_REBOOT_MAGIC2B &&
447 magic2 != LINUX_REBOOT_MAGIC2C))
448 return -EINVAL;
449
450 /*
451 * If pid namespaces are enabled and the current task is in a child
452 * pid_namespace, the command is handled by reboot_pid_ns() which will
453 * call do_exit().
454 */
455 ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
456 if (ret)
457 return ret;
458
459 /* Instead of trying to make the power_off code look like
460 * halt when pm_power_off is not set do it the easy way.
461 */
462 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
463 cmd = LINUX_REBOOT_CMD_HALT;
464
465 mutex_lock(&reboot_mutex);
466 switch (cmd) {
467 case LINUX_REBOOT_CMD_RESTART:
468 kernel_restart(NULL);
469 break;
470
471 case LINUX_REBOOT_CMD_CAD_ON:
472 C_A_D = 1;
473 break;
474
475 case LINUX_REBOOT_CMD_CAD_OFF:
476 C_A_D = 0;
477 break;
478
479 case LINUX_REBOOT_CMD_HALT:
480 kernel_halt();
481 do_exit(0);
482 panic("cannot halt");
483
484 case LINUX_REBOOT_CMD_POWER_OFF:
485 kernel_power_off();
486 do_exit(0);
487 break;
488
489 case LINUX_REBOOT_CMD_RESTART2:
490 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
491 ret = -EFAULT;
492 break;
493 }
494 buffer[sizeof(buffer) - 1] = '\0';
495
496 kernel_restart(buffer);
497 break;
498
499#ifdef CONFIG_KEXEC
500 case LINUX_REBOOT_CMD_KEXEC:
501 ret = kernel_kexec();
502 break;
503#endif
504
505#ifdef CONFIG_HIBERNATION
506 case LINUX_REBOOT_CMD_SW_SUSPEND:
507 ret = hibernate();
508 break;
509#endif
510
511 default:
512 ret = -EINVAL;
513 break;
514 }
515 mutex_unlock(&reboot_mutex);
516 return ret;
517}
518
519static void deferred_cad(struct work_struct *dummy)
520{
521 kernel_restart(NULL);
522}
523
524/*
525 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
526 * As it's called within an interrupt, it may NOT sync: the only choice
527 * is whether to reboot at once, or just ignore the ctrl-alt-del.
528 */
529void ctrl_alt_del(void)
530{
531 static DECLARE_WORK(cad_work, deferred_cad);
532
533 if (C_A_D)
534 schedule_work(&cad_work);
535 else
536 kill_cad_pid(SIGINT, 1);
537}
538
539/*
540 * Unprivileged users may change the real gid to the effective gid
541 * or vice versa. (BSD-style)
542 *
543 * If you set the real gid at all, or set the effective gid to a value not
544 * equal to the real gid, then the saved gid is set to the new effective gid.
545 *
546 * This makes it possible for a setgid program to completely drop its
547 * privileges, which is often a useful assertion to make when you are doing
548 * a security audit over a program.
549 *
550 * The general idea is that a program which uses just setregid() will be
551 * 100% compatible with BSD. A program which uses just setgid() will be
552 * 100% compatible with POSIX with saved IDs.
553 *
554 * SMP: There are not races, the GIDs are checked only by filesystem
555 * operations (as far as semantic preservation is concerned).
556 */
557SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
558{
559 struct user_namespace *ns = current_user_ns();
560 const struct cred *old;
561 struct cred *new;
562 int retval;
563 kgid_t krgid, kegid;
564
565 krgid = make_kgid(ns, rgid);
566 kegid = make_kgid(ns, egid);
567
568 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
569 return -EINVAL;
570 if ((egid != (gid_t) -1) && !gid_valid(kegid))
571 return -EINVAL;
572
573 new = prepare_creds();
574 if (!new)
575 return -ENOMEM;
576 old = current_cred();
577
578 retval = -EPERM;
579 if (rgid != (gid_t) -1) {
580 if (gid_eq(old->gid, krgid) ||
581 gid_eq(old->egid, krgid) ||
582 nsown_capable(CAP_SETGID))
583 new->gid = krgid;
584 else
585 goto error;
586 }
587 if (egid != (gid_t) -1) {
588 if (gid_eq(old->gid, kegid) ||
589 gid_eq(old->egid, kegid) ||
590 gid_eq(old->sgid, kegid) ||
591 nsown_capable(CAP_SETGID))
592 new->egid = kegid;
593 else
594 goto error;
595 }
596
597 if (rgid != (gid_t) -1 ||
598 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
599 new->sgid = new->egid;
600 new->fsgid = new->egid;
601
602 return commit_creds(new);
603
604error:
605 abort_creds(new);
606 return retval;
607}
608
609/*
610 * setgid() is implemented like SysV w/ SAVED_IDS
611 *
612 * SMP: Same implicit races as above.
613 */
614SYSCALL_DEFINE1(setgid, gid_t, gid)
615{
616 struct user_namespace *ns = current_user_ns();
617 const struct cred *old;
618 struct cred *new;
619 int retval;
620 kgid_t kgid;
621
622 kgid = make_kgid(ns, gid);
623 if (!gid_valid(kgid))
624 return -EINVAL;
625
626 new = prepare_creds();
627 if (!new)
628 return -ENOMEM;
629 old = current_cred();
630
631 retval = -EPERM;
632 if (nsown_capable(CAP_SETGID))
633 new->gid = new->egid = new->sgid = new->fsgid = kgid;
634 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
635 new->egid = new->fsgid = kgid;
636 else
637 goto error;
638
639 return commit_creds(new);
640
641error:
642 abort_creds(new);
643 return retval;
644}
645
646/*
647 * change the user struct in a credentials set to match the new UID
648 */
649static int set_user(struct cred *new)
650{
651 struct user_struct *new_user;
652
653 new_user = alloc_uid(new->uid);
654 if (!new_user)
655 return -EAGAIN;
656
657 /*
658 * We don't fail in case of NPROC limit excess here because too many
659 * poorly written programs don't check set*uid() return code, assuming
660 * it never fails if called by root. We may still enforce NPROC limit
661 * for programs doing set*uid()+execve() by harmlessly deferring the
662 * failure to the execve() stage.
663 */
664 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
665 new_user != INIT_USER)
666 current->flags |= PF_NPROC_EXCEEDED;
667 else
668 current->flags &= ~PF_NPROC_EXCEEDED;
669
670 free_uid(new->user);
671 new->user = new_user;
672 return 0;
673}
674
675/*
676 * Unprivileged users may change the real uid to the effective uid
677 * or vice versa. (BSD-style)
678 *
679 * If you set the real uid at all, or set the effective uid to a value not
680 * equal to the real uid, then the saved uid is set to the new effective uid.
681 *
682 * This makes it possible for a setuid program to completely drop its
683 * privileges, which is often a useful assertion to make when you are doing
684 * a security audit over a program.
685 *
686 * The general idea is that a program which uses just setreuid() will be
687 * 100% compatible with BSD. A program which uses just setuid() will be
688 * 100% compatible with POSIX with saved IDs.
689 */
690SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
691{
692 struct user_namespace *ns = current_user_ns();
693 const struct cred *old;
694 struct cred *new;
695 int retval;
696 kuid_t kruid, keuid;
697
698 kruid = make_kuid(ns, ruid);
699 keuid = make_kuid(ns, euid);
700
701 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
702 return -EINVAL;
703 if ((euid != (uid_t) -1) && !uid_valid(keuid))
704 return -EINVAL;
705
706 new = prepare_creds();
707 if (!new)
708 return -ENOMEM;
709 old = current_cred();
710
711 retval = -EPERM;
712 if (ruid != (uid_t) -1) {
713 new->uid = kruid;
714 if (!uid_eq(old->uid, kruid) &&
715 !uid_eq(old->euid, kruid) &&
716 !nsown_capable(CAP_SETUID))
717 goto error;
718 }
719
720 if (euid != (uid_t) -1) {
721 new->euid = keuid;
722 if (!uid_eq(old->uid, keuid) &&
723 !uid_eq(old->euid, keuid) &&
724 !uid_eq(old->suid, keuid) &&
725 !nsown_capable(CAP_SETUID))
726 goto error;
727 }
728
729 if (!uid_eq(new->uid, old->uid)) {
730 retval = set_user(new);
731 if (retval < 0)
732 goto error;
733 }
734 if (ruid != (uid_t) -1 ||
735 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
736 new->suid = new->euid;
737 new->fsuid = new->euid;
738
739 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
740 if (retval < 0)
741 goto error;
742
743 return commit_creds(new);
744
745error:
746 abort_creds(new);
747 return retval;
748}
749
750/*
751 * setuid() is implemented like SysV with SAVED_IDS
752 *
753 * Note that SAVED_ID's is deficient in that a setuid root program
754 * like sendmail, for example, cannot set its uid to be a normal
755 * user and then switch back, because if you're root, setuid() sets
756 * the saved uid too. If you don't like this, blame the bright people
757 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
758 * will allow a root program to temporarily drop privileges and be able to
759 * regain them by swapping the real and effective uid.
760 */
761SYSCALL_DEFINE1(setuid, uid_t, uid)
762{
763 struct user_namespace *ns = current_user_ns();
764 const struct cred *old;
765 struct cred *new;
766 int retval;
767 kuid_t kuid;
768
769 kuid = make_kuid(ns, uid);
770 if (!uid_valid(kuid))
771 return -EINVAL;
772
773 new = prepare_creds();
774 if (!new)
775 return -ENOMEM;
776 old = current_cred();
777
778 retval = -EPERM;
779 if (nsown_capable(CAP_SETUID)) {
780 new->suid = new->uid = kuid;
781 if (!uid_eq(kuid, old->uid)) {
782 retval = set_user(new);
783 if (retval < 0)
784 goto error;
785 }
786 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
787 goto error;
788 }
789
790 new->fsuid = new->euid = kuid;
791
792 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
793 if (retval < 0)
794 goto error;
795
796 return commit_creds(new);
797
798error:
799 abort_creds(new);
800 return retval;
801}
802
803
804/*
805 * This function implements a generic ability to update ruid, euid,
806 * and suid. This allows you to implement the 4.4 compatible seteuid().
807 */
808SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
809{
810 struct user_namespace *ns = current_user_ns();
811 const struct cred *old;
812 struct cred *new;
813 int retval;
814 kuid_t kruid, keuid, ksuid;
815
816 kruid = make_kuid(ns, ruid);
817 keuid = make_kuid(ns, euid);
818 ksuid = make_kuid(ns, suid);
819
820 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
821 return -EINVAL;
822
823 if ((euid != (uid_t) -1) && !uid_valid(keuid))
824 return -EINVAL;
825
826 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
827 return -EINVAL;
828
829 new = prepare_creds();
830 if (!new)
831 return -ENOMEM;
832
833 old = current_cred();
834
835 retval = -EPERM;
836 if (!nsown_capable(CAP_SETUID)) {
837 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
838 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
839 goto error;
840 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
841 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
842 goto error;
843 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
844 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
845 goto error;
846 }
847
848 if (ruid != (uid_t) -1) {
849 new->uid = kruid;
850 if (!uid_eq(kruid, old->uid)) {
851 retval = set_user(new);
852 if (retval < 0)
853 goto error;
854 }
855 }
856 if (euid != (uid_t) -1)
857 new->euid = keuid;
858 if (suid != (uid_t) -1)
859 new->suid = ksuid;
860 new->fsuid = new->euid;
861
862 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
863 if (retval < 0)
864 goto error;
865
866 return commit_creds(new);
867
868error:
869 abort_creds(new);
870 return retval;
871}
872
873SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
874{
875 const struct cred *cred = current_cred();
876 int retval;
877 uid_t ruid, euid, suid;
878
879 ruid = from_kuid_munged(cred->user_ns, cred->uid);
880 euid = from_kuid_munged(cred->user_ns, cred->euid);
881 suid = from_kuid_munged(cred->user_ns, cred->suid);
882
883 if (!(retval = put_user(ruid, ruidp)) &&
884 !(retval = put_user(euid, euidp)))
885 retval = put_user(suid, suidp);
886
887 return retval;
888}
889
890/*
891 * Same as above, but for rgid, egid, sgid.
892 */
893SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
894{
895 struct user_namespace *ns = current_user_ns();
896 const struct cred *old;
897 struct cred *new;
898 int retval;
899 kgid_t krgid, kegid, ksgid;
900
901 krgid = make_kgid(ns, rgid);
902 kegid = make_kgid(ns, egid);
903 ksgid = make_kgid(ns, sgid);
904
905 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
906 return -EINVAL;
907 if ((egid != (gid_t) -1) && !gid_valid(kegid))
908 return -EINVAL;
909 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
910 return -EINVAL;
911
912 new = prepare_creds();
913 if (!new)
914 return -ENOMEM;
915 old = current_cred();
916
917 retval = -EPERM;
918 if (!nsown_capable(CAP_SETGID)) {
919 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
920 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
921 goto error;
922 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
923 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
924 goto error;
925 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
926 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
927 goto error;
928 }
929
930 if (rgid != (gid_t) -1)
931 new->gid = krgid;
932 if (egid != (gid_t) -1)
933 new->egid = kegid;
934 if (sgid != (gid_t) -1)
935 new->sgid = ksgid;
936 new->fsgid = new->egid;
937
938 return commit_creds(new);
939
940error:
941 abort_creds(new);
942 return retval;
943}
944
945SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
946{
947 const struct cred *cred = current_cred();
948 int retval;
949 gid_t rgid, egid, sgid;
950
951 rgid = from_kgid_munged(cred->user_ns, cred->gid);
952 egid = from_kgid_munged(cred->user_ns, cred->egid);
953 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
954
955 if (!(retval = put_user(rgid, rgidp)) &&
956 !(retval = put_user(egid, egidp)))
957 retval = put_user(sgid, sgidp);
958
959 return retval;
960}
961
962
963/*
964 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
965 * is used for "access()" and for the NFS daemon (letting nfsd stay at
966 * whatever uid it wants to). It normally shadows "euid", except when
967 * explicitly set by setfsuid() or for access..
968 */
969SYSCALL_DEFINE1(setfsuid, uid_t, uid)
970{
971 const struct cred *old;
972 struct cred *new;
973 uid_t old_fsuid;
974 kuid_t kuid;
975
976 old = current_cred();
977 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
978
979 kuid = make_kuid(old->user_ns, uid);
980 if (!uid_valid(kuid))
981 return old_fsuid;
982
983 new = prepare_creds();
984 if (!new)
985 return old_fsuid;
986
987 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
988 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
989 nsown_capable(CAP_SETUID)) {
990 if (!uid_eq(kuid, old->fsuid)) {
991 new->fsuid = kuid;
992 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
993 goto change_okay;
994 }
995 }
996
997 abort_creds(new);
998 return old_fsuid;
999
1000change_okay:
1001 commit_creds(new);
1002 return old_fsuid;
1003}
1004
1005/*
1006 * Samma på svenska..
1007 */
1008SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1009{
1010 const struct cred *old;
1011 struct cred *new;
1012 gid_t old_fsgid;
1013 kgid_t kgid;
1014
1015 old = current_cred();
1016 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1017
1018 kgid = make_kgid(old->user_ns, gid);
1019 if (!gid_valid(kgid))
1020 return old_fsgid;
1021
1022 new = prepare_creds();
1023 if (!new)
1024 return old_fsgid;
1025
1026 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1027 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1028 nsown_capable(CAP_SETGID)) {
1029 if (!gid_eq(kgid, old->fsgid)) {
1030 new->fsgid = kgid;
1031 goto change_okay;
1032 }
1033 }
1034
1035 abort_creds(new);
1036 return old_fsgid;
1037
1038change_okay:
1039 commit_creds(new);
1040 return old_fsgid;
1041}
1042
1043void do_sys_times(struct tms *tms)
1044{
1045 cputime_t tgutime, tgstime, cutime, cstime;
1046
1047 spin_lock_irq(¤t->sighand->siglock);
1048 thread_group_times(current, &tgutime, &tgstime);
1049 cutime = current->signal->cutime;
1050 cstime = current->signal->cstime;
1051 spin_unlock_irq(¤t->sighand->siglock);
1052 tms->tms_utime = cputime_to_clock_t(tgutime);
1053 tms->tms_stime = cputime_to_clock_t(tgstime);
1054 tms->tms_cutime = cputime_to_clock_t(cutime);
1055 tms->tms_cstime = cputime_to_clock_t(cstime);
1056}
1057
1058SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1059{
1060 if (tbuf) {
1061 struct tms tmp;
1062
1063 do_sys_times(&tmp);
1064 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1065 return -EFAULT;
1066 }
1067 force_successful_syscall_return();
1068 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1069}
1070
1071/*
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1075 *
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another. -TYT, 12/12/91
1079 *
1080 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1081 * LBT 04.03.94
1082 */
1083SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1084{
1085 struct task_struct *p;
1086 struct task_struct *group_leader = current->group_leader;
1087 struct pid *pgrp;
1088 int err;
1089
1090 if (!pid)
1091 pid = task_pid_vnr(group_leader);
1092 if (!pgid)
1093 pgid = pid;
1094 if (pgid < 0)
1095 return -EINVAL;
1096 rcu_read_lock();
1097
1098 /* From this point forward we keep holding onto the tasklist lock
1099 * so that our parent does not change from under us. -DaveM
1100 */
1101 write_lock_irq(&tasklist_lock);
1102
1103 err = -ESRCH;
1104 p = find_task_by_vpid(pid);
1105 if (!p)
1106 goto out;
1107
1108 err = -EINVAL;
1109 if (!thread_group_leader(p))
1110 goto out;
1111
1112 if (same_thread_group(p->real_parent, group_leader)) {
1113 err = -EPERM;
1114 if (task_session(p) != task_session(group_leader))
1115 goto out;
1116 err = -EACCES;
1117 if (p->did_exec)
1118 goto out;
1119 } else {
1120 err = -ESRCH;
1121 if (p != group_leader)
1122 goto out;
1123 }
1124
1125 err = -EPERM;
1126 if (p->signal->leader)
1127 goto out;
1128
1129 pgrp = task_pid(p);
1130 if (pgid != pid) {
1131 struct task_struct *g;
1132
1133 pgrp = find_vpid(pgid);
1134 g = pid_task(pgrp, PIDTYPE_PGID);
1135 if (!g || task_session(g) != task_session(group_leader))
1136 goto out;
1137 }
1138
1139 err = security_task_setpgid(p, pgid);
1140 if (err)
1141 goto out;
1142
1143 if (task_pgrp(p) != pgrp)
1144 change_pid(p, PIDTYPE_PGID, pgrp);
1145
1146 err = 0;
1147out:
1148 /* All paths lead to here, thus we are safe. -DaveM */
1149 write_unlock_irq(&tasklist_lock);
1150 rcu_read_unlock();
1151 return err;
1152}
1153
1154SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155{
1156 struct task_struct *p;
1157 struct pid *grp;
1158 int retval;
1159
1160 rcu_read_lock();
1161 if (!pid)
1162 grp = task_pgrp(current);
1163 else {
1164 retval = -ESRCH;
1165 p = find_task_by_vpid(pid);
1166 if (!p)
1167 goto out;
1168 grp = task_pgrp(p);
1169 if (!grp)
1170 goto out;
1171
1172 retval = security_task_getpgid(p);
1173 if (retval)
1174 goto out;
1175 }
1176 retval = pid_vnr(grp);
1177out:
1178 rcu_read_unlock();
1179 return retval;
1180}
1181
1182#ifdef __ARCH_WANT_SYS_GETPGRP
1183
1184SYSCALL_DEFINE0(getpgrp)
1185{
1186 return sys_getpgid(0);
1187}
1188
1189#endif
1190
1191SYSCALL_DEFINE1(getsid, pid_t, pid)
1192{
1193 struct task_struct *p;
1194 struct pid *sid;
1195 int retval;
1196
1197 rcu_read_lock();
1198 if (!pid)
1199 sid = task_session(current);
1200 else {
1201 retval = -ESRCH;
1202 p = find_task_by_vpid(pid);
1203 if (!p)
1204 goto out;
1205 sid = task_session(p);
1206 if (!sid)
1207 goto out;
1208
1209 retval = security_task_getsid(p);
1210 if (retval)
1211 goto out;
1212 }
1213 retval = pid_vnr(sid);
1214out:
1215 rcu_read_unlock();
1216 return retval;
1217}
1218
1219SYSCALL_DEFINE0(setsid)
1220{
1221 struct task_struct *group_leader = current->group_leader;
1222 struct pid *sid = task_pid(group_leader);
1223 pid_t session = pid_vnr(sid);
1224 int err = -EPERM;
1225
1226 write_lock_irq(&tasklist_lock);
1227 /* Fail if I am already a session leader */
1228 if (group_leader->signal->leader)
1229 goto out;
1230
1231 /* Fail if a process group id already exists that equals the
1232 * proposed session id.
1233 */
1234 if (pid_task(sid, PIDTYPE_PGID))
1235 goto out;
1236
1237 group_leader->signal->leader = 1;
1238 __set_special_pids(sid);
1239
1240 proc_clear_tty(group_leader);
1241
1242 err = session;
1243out:
1244 write_unlock_irq(&tasklist_lock);
1245 if (err > 0) {
1246 proc_sid_connector(group_leader);
1247 sched_autogroup_create_attach(group_leader);
1248 }
1249 return err;
1250}
1251
1252DECLARE_RWSEM(uts_sem);
1253
1254#ifdef COMPAT_UTS_MACHINE
1255#define override_architecture(name) \
1256 (personality(current->personality) == PER_LINUX32 && \
1257 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1258 sizeof(COMPAT_UTS_MACHINE)))
1259#else
1260#define override_architecture(name) 0
1261#endif
1262
1263/*
1264 * Work around broken programs that cannot handle "Linux 3.0".
1265 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1266 */
1267static int override_release(char __user *release, int len)
1268{
1269 int ret = 0;
1270 char buf[65];
1271
1272 if (current->personality & UNAME26) {
1273 char *rest = UTS_RELEASE;
1274 int ndots = 0;
1275 unsigned v;
1276
1277 while (*rest) {
1278 if (*rest == '.' && ++ndots >= 3)
1279 break;
1280 if (!isdigit(*rest) && *rest != '.')
1281 break;
1282 rest++;
1283 }
1284 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1285 snprintf(buf, len, "2.6.%u%s", v, rest);
1286 ret = copy_to_user(release, buf, len);
1287 }
1288 return ret;
1289}
1290
1291SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1292{
1293 int errno = 0;
1294
1295 down_read(&uts_sem);
1296 if (copy_to_user(name, utsname(), sizeof *name))
1297 errno = -EFAULT;
1298 up_read(&uts_sem);
1299
1300 if (!errno && override_release(name->release, sizeof(name->release)))
1301 errno = -EFAULT;
1302 if (!errno && override_architecture(name))
1303 errno = -EFAULT;
1304 return errno;
1305}
1306
1307#ifdef __ARCH_WANT_SYS_OLD_UNAME
1308/*
1309 * Old cruft
1310 */
1311SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1312{
1313 int error = 0;
1314
1315 if (!name)
1316 return -EFAULT;
1317
1318 down_read(&uts_sem);
1319 if (copy_to_user(name, utsname(), sizeof(*name)))
1320 error = -EFAULT;
1321 up_read(&uts_sem);
1322
1323 if (!error && override_release(name->release, sizeof(name->release)))
1324 error = -EFAULT;
1325 if (!error && override_architecture(name))
1326 error = -EFAULT;
1327 return error;
1328}
1329
1330SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1331{
1332 int error;
1333
1334 if (!name)
1335 return -EFAULT;
1336 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1337 return -EFAULT;
1338
1339 down_read(&uts_sem);
1340 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1341 __OLD_UTS_LEN);
1342 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1343 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1344 __OLD_UTS_LEN);
1345 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1346 error |= __copy_to_user(&name->release, &utsname()->release,
1347 __OLD_UTS_LEN);
1348 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1349 error |= __copy_to_user(&name->version, &utsname()->version,
1350 __OLD_UTS_LEN);
1351 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1352 error |= __copy_to_user(&name->machine, &utsname()->machine,
1353 __OLD_UTS_LEN);
1354 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1355 up_read(&uts_sem);
1356
1357 if (!error && override_architecture(name))
1358 error = -EFAULT;
1359 if (!error && override_release(name->release, sizeof(name->release)))
1360 error = -EFAULT;
1361 return error ? -EFAULT : 0;
1362}
1363#endif
1364
1365SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1366{
1367 int errno;
1368 char tmp[__NEW_UTS_LEN];
1369
1370 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1371 return -EPERM;
1372
1373 if (len < 0 || len > __NEW_UTS_LEN)
1374 return -EINVAL;
1375 down_write(&uts_sem);
1376 errno = -EFAULT;
1377 if (!copy_from_user(tmp, name, len)) {
1378 struct new_utsname *u = utsname();
1379
1380 memcpy(u->nodename, tmp, len);
1381 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1382 errno = 0;
1383 uts_proc_notify(UTS_PROC_HOSTNAME);
1384 }
1385 up_write(&uts_sem);
1386 return errno;
1387}
1388
1389#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1390
1391SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1392{
1393 int i, errno;
1394 struct new_utsname *u;
1395
1396 if (len < 0)
1397 return -EINVAL;
1398 down_read(&uts_sem);
1399 u = utsname();
1400 i = 1 + strlen(u->nodename);
1401 if (i > len)
1402 i = len;
1403 errno = 0;
1404 if (copy_to_user(name, u->nodename, i))
1405 errno = -EFAULT;
1406 up_read(&uts_sem);
1407 return errno;
1408}
1409
1410#endif
1411
1412/*
1413 * Only setdomainname; getdomainname can be implemented by calling
1414 * uname()
1415 */
1416SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1417{
1418 int errno;
1419 char tmp[__NEW_UTS_LEN];
1420
1421 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1422 return -EPERM;
1423 if (len < 0 || len > __NEW_UTS_LEN)
1424 return -EINVAL;
1425
1426 down_write(&uts_sem);
1427 errno = -EFAULT;
1428 if (!copy_from_user(tmp, name, len)) {
1429 struct new_utsname *u = utsname();
1430
1431 memcpy(u->domainname, tmp, len);
1432 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1433 errno = 0;
1434 uts_proc_notify(UTS_PROC_DOMAINNAME);
1435 }
1436 up_write(&uts_sem);
1437 return errno;
1438}
1439
1440SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1441{
1442 struct rlimit value;
1443 int ret;
1444
1445 ret = do_prlimit(current, resource, NULL, &value);
1446 if (!ret)
1447 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1448
1449 return ret;
1450}
1451
1452#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1453
1454/*
1455 * Back compatibility for getrlimit. Needed for some apps.
1456 */
1457
1458SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1459 struct rlimit __user *, rlim)
1460{
1461 struct rlimit x;
1462 if (resource >= RLIM_NLIMITS)
1463 return -EINVAL;
1464
1465 task_lock(current->group_leader);
1466 x = current->signal->rlim[resource];
1467 task_unlock(current->group_leader);
1468 if (x.rlim_cur > 0x7FFFFFFF)
1469 x.rlim_cur = 0x7FFFFFFF;
1470 if (x.rlim_max > 0x7FFFFFFF)
1471 x.rlim_max = 0x7FFFFFFF;
1472 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1473}
1474
1475#endif
1476
1477static inline bool rlim64_is_infinity(__u64 rlim64)
1478{
1479#if BITS_PER_LONG < 64
1480 return rlim64 >= ULONG_MAX;
1481#else
1482 return rlim64 == RLIM64_INFINITY;
1483#endif
1484}
1485
1486static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1487{
1488 if (rlim->rlim_cur == RLIM_INFINITY)
1489 rlim64->rlim_cur = RLIM64_INFINITY;
1490 else
1491 rlim64->rlim_cur = rlim->rlim_cur;
1492 if (rlim->rlim_max == RLIM_INFINITY)
1493 rlim64->rlim_max = RLIM64_INFINITY;
1494 else
1495 rlim64->rlim_max = rlim->rlim_max;
1496}
1497
1498static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1499{
1500 if (rlim64_is_infinity(rlim64->rlim_cur))
1501 rlim->rlim_cur = RLIM_INFINITY;
1502 else
1503 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1504 if (rlim64_is_infinity(rlim64->rlim_max))
1505 rlim->rlim_max = RLIM_INFINITY;
1506 else
1507 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1508}
1509
1510/* make sure you are allowed to change @tsk limits before calling this */
1511int do_prlimit(struct task_struct *tsk, unsigned int resource,
1512 struct rlimit *new_rlim, struct rlimit *old_rlim)
1513{
1514 struct rlimit *rlim;
1515 int retval = 0;
1516
1517 if (resource >= RLIM_NLIMITS)
1518 return -EINVAL;
1519 if (new_rlim) {
1520 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1521 return -EINVAL;
1522 if (resource == RLIMIT_NOFILE &&
1523 new_rlim->rlim_max > sysctl_nr_open)
1524 return -EPERM;
1525 }
1526
1527 /* protect tsk->signal and tsk->sighand from disappearing */
1528 read_lock(&tasklist_lock);
1529 if (!tsk->sighand) {
1530 retval = -ESRCH;
1531 goto out;
1532 }
1533
1534 rlim = tsk->signal->rlim + resource;
1535 task_lock(tsk->group_leader);
1536 if (new_rlim) {
1537 /* Keep the capable check against init_user_ns until
1538 cgroups can contain all limits */
1539 if (new_rlim->rlim_max > rlim->rlim_max &&
1540 !capable(CAP_SYS_RESOURCE))
1541 retval = -EPERM;
1542 if (!retval)
1543 retval = security_task_setrlimit(tsk->group_leader,
1544 resource, new_rlim);
1545 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1546 /*
1547 * The caller is asking for an immediate RLIMIT_CPU
1548 * expiry. But we use the zero value to mean "it was
1549 * never set". So let's cheat and make it one second
1550 * instead
1551 */
1552 new_rlim->rlim_cur = 1;
1553 }
1554 }
1555 if (!retval) {
1556 if (old_rlim)
1557 *old_rlim = *rlim;
1558 if (new_rlim)
1559 *rlim = *new_rlim;
1560 }
1561 task_unlock(tsk->group_leader);
1562
1563 /*
1564 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1565 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1566 * very long-standing error, and fixing it now risks breakage of
1567 * applications, so we live with it
1568 */
1569 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1570 new_rlim->rlim_cur != RLIM_INFINITY)
1571 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1572out:
1573 read_unlock(&tasklist_lock);
1574 return retval;
1575}
1576
1577/* rcu lock must be held */
1578static int check_prlimit_permission(struct task_struct *task)
1579{
1580 const struct cred *cred = current_cred(), *tcred;
1581
1582 if (current == task)
1583 return 0;
1584
1585 tcred = __task_cred(task);
1586 if (uid_eq(cred->uid, tcred->euid) &&
1587 uid_eq(cred->uid, tcred->suid) &&
1588 uid_eq(cred->uid, tcred->uid) &&
1589 gid_eq(cred->gid, tcred->egid) &&
1590 gid_eq(cred->gid, tcred->sgid) &&
1591 gid_eq(cred->gid, tcred->gid))
1592 return 0;
1593 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1594 return 0;
1595
1596 return -EPERM;
1597}
1598
1599SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1600 const struct rlimit64 __user *, new_rlim,
1601 struct rlimit64 __user *, old_rlim)
1602{
1603 struct rlimit64 old64, new64;
1604 struct rlimit old, new;
1605 struct task_struct *tsk;
1606 int ret;
1607
1608 if (new_rlim) {
1609 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1610 return -EFAULT;
1611 rlim64_to_rlim(&new64, &new);
1612 }
1613
1614 rcu_read_lock();
1615 tsk = pid ? find_task_by_vpid(pid) : current;
1616 if (!tsk) {
1617 rcu_read_unlock();
1618 return -ESRCH;
1619 }
1620 ret = check_prlimit_permission(tsk);
1621 if (ret) {
1622 rcu_read_unlock();
1623 return ret;
1624 }
1625 get_task_struct(tsk);
1626 rcu_read_unlock();
1627
1628 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1629 old_rlim ? &old : NULL);
1630
1631 if (!ret && old_rlim) {
1632 rlim_to_rlim64(&old, &old64);
1633 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1634 ret = -EFAULT;
1635 }
1636
1637 put_task_struct(tsk);
1638 return ret;
1639}
1640
1641SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1642{
1643 struct rlimit new_rlim;
1644
1645 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1646 return -EFAULT;
1647 return do_prlimit(current, resource, &new_rlim, NULL);
1648}
1649
1650/*
1651 * It would make sense to put struct rusage in the task_struct,
1652 * except that would make the task_struct be *really big*. After
1653 * task_struct gets moved into malloc'ed memory, it would
1654 * make sense to do this. It will make moving the rest of the information
1655 * a lot simpler! (Which we're not doing right now because we're not
1656 * measuring them yet).
1657 *
1658 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1659 * races with threads incrementing their own counters. But since word
1660 * reads are atomic, we either get new values or old values and we don't
1661 * care which for the sums. We always take the siglock to protect reading
1662 * the c* fields from p->signal from races with exit.c updating those
1663 * fields when reaping, so a sample either gets all the additions of a
1664 * given child after it's reaped, or none so this sample is before reaping.
1665 *
1666 * Locking:
1667 * We need to take the siglock for CHILDEREN, SELF and BOTH
1668 * for the cases current multithreaded, non-current single threaded
1669 * non-current multithreaded. Thread traversal is now safe with
1670 * the siglock held.
1671 * Strictly speaking, we donot need to take the siglock if we are current and
1672 * single threaded, as no one else can take our signal_struct away, no one
1673 * else can reap the children to update signal->c* counters, and no one else
1674 * can race with the signal-> fields. If we do not take any lock, the
1675 * signal-> fields could be read out of order while another thread was just
1676 * exiting. So we should place a read memory barrier when we avoid the lock.
1677 * On the writer side, write memory barrier is implied in __exit_signal
1678 * as __exit_signal releases the siglock spinlock after updating the signal->
1679 * fields. But we don't do this yet to keep things simple.
1680 *
1681 */
1682
1683static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1684{
1685 r->ru_nvcsw += t->nvcsw;
1686 r->ru_nivcsw += t->nivcsw;
1687 r->ru_minflt += t->min_flt;
1688 r->ru_majflt += t->maj_flt;
1689 r->ru_inblock += task_io_get_inblock(t);
1690 r->ru_oublock += task_io_get_oublock(t);
1691}
1692
1693static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1694{
1695 struct task_struct *t;
1696 unsigned long flags;
1697 cputime_t tgutime, tgstime, utime, stime;
1698 unsigned long maxrss = 0;
1699
1700 memset((char *) r, 0, sizeof *r);
1701 utime = stime = 0;
1702
1703 if (who == RUSAGE_THREAD) {
1704 task_times(current, &utime, &stime);
1705 accumulate_thread_rusage(p, r);
1706 maxrss = p->signal->maxrss;
1707 goto out;
1708 }
1709
1710 if (!lock_task_sighand(p, &flags))
1711 return;
1712
1713 switch (who) {
1714 case RUSAGE_BOTH:
1715 case RUSAGE_CHILDREN:
1716 utime = p->signal->cutime;
1717 stime = p->signal->cstime;
1718 r->ru_nvcsw = p->signal->cnvcsw;
1719 r->ru_nivcsw = p->signal->cnivcsw;
1720 r->ru_minflt = p->signal->cmin_flt;
1721 r->ru_majflt = p->signal->cmaj_flt;
1722 r->ru_inblock = p->signal->cinblock;
1723 r->ru_oublock = p->signal->coublock;
1724 maxrss = p->signal->cmaxrss;
1725
1726 if (who == RUSAGE_CHILDREN)
1727 break;
1728
1729 case RUSAGE_SELF:
1730 thread_group_times(p, &tgutime, &tgstime);
1731 utime += tgutime;
1732 stime += tgstime;
1733 r->ru_nvcsw += p->signal->nvcsw;
1734 r->ru_nivcsw += p->signal->nivcsw;
1735 r->ru_minflt += p->signal->min_flt;
1736 r->ru_majflt += p->signal->maj_flt;
1737 r->ru_inblock += p->signal->inblock;
1738 r->ru_oublock += p->signal->oublock;
1739 if (maxrss < p->signal->maxrss)
1740 maxrss = p->signal->maxrss;
1741 t = p;
1742 do {
1743 accumulate_thread_rusage(t, r);
1744 t = next_thread(t);
1745 } while (t != p);
1746 break;
1747
1748 default:
1749 BUG();
1750 }
1751 unlock_task_sighand(p, &flags);
1752
1753out:
1754 cputime_to_timeval(utime, &r->ru_utime);
1755 cputime_to_timeval(stime, &r->ru_stime);
1756
1757 if (who != RUSAGE_CHILDREN) {
1758 struct mm_struct *mm = get_task_mm(p);
1759 if (mm) {
1760 setmax_mm_hiwater_rss(&maxrss, mm);
1761 mmput(mm);
1762 }
1763 }
1764 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1765}
1766
1767int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1768{
1769 struct rusage r;
1770 k_getrusage(p, who, &r);
1771 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1772}
1773
1774SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1775{
1776 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1777 who != RUSAGE_THREAD)
1778 return -EINVAL;
1779 return getrusage(current, who, ru);
1780}
1781
1782SYSCALL_DEFINE1(umask, int, mask)
1783{
1784 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1785 return mask;
1786}
1787
1788#ifdef CONFIG_CHECKPOINT_RESTORE
1789static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1790{
1791 struct file *exe_file;
1792 struct dentry *dentry;
1793 int err;
1794
1795 exe_file = fget(fd);
1796 if (!exe_file)
1797 return -EBADF;
1798
1799 dentry = exe_file->f_path.dentry;
1800
1801 /*
1802 * Because the original mm->exe_file points to executable file, make
1803 * sure that this one is executable as well, to avoid breaking an
1804 * overall picture.
1805 */
1806 err = -EACCES;
1807 if (!S_ISREG(dentry->d_inode->i_mode) ||
1808 exe_file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1809 goto exit;
1810
1811 err = inode_permission(dentry->d_inode, MAY_EXEC);
1812 if (err)
1813 goto exit;
1814
1815 down_write(&mm->mmap_sem);
1816
1817 /*
1818 * Forbid mm->exe_file change if old file still mapped.
1819 */
1820 err = -EBUSY;
1821 if (mm->exe_file) {
1822 struct vm_area_struct *vma;
1823
1824 for (vma = mm->mmap; vma; vma = vma->vm_next)
1825 if (vma->vm_file &&
1826 path_equal(&vma->vm_file->f_path,
1827 &mm->exe_file->f_path))
1828 goto exit_unlock;
1829 }
1830
1831 /*
1832 * The symlink can be changed only once, just to disallow arbitrary
1833 * transitions malicious software might bring in. This means one
1834 * could make a snapshot over all processes running and monitor
1835 * /proc/pid/exe changes to notice unusual activity if needed.
1836 */
1837 err = -EPERM;
1838 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1839 goto exit_unlock;
1840
1841 err = 0;
1842 set_mm_exe_file(mm, exe_file);
1843exit_unlock:
1844 up_write(&mm->mmap_sem);
1845
1846exit:
1847 fput(exe_file);
1848 return err;
1849}
1850
1851static int prctl_set_mm(int opt, unsigned long addr,
1852 unsigned long arg4, unsigned long arg5)
1853{
1854 unsigned long rlim = rlimit(RLIMIT_DATA);
1855 struct mm_struct *mm = current->mm;
1856 struct vm_area_struct *vma;
1857 int error;
1858
1859 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1860 return -EINVAL;
1861
1862 if (!capable(CAP_SYS_RESOURCE))
1863 return -EPERM;
1864
1865 if (opt == PR_SET_MM_EXE_FILE)
1866 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1867
1868 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1869 return -EINVAL;
1870
1871 error = -EINVAL;
1872
1873 down_read(&mm->mmap_sem);
1874 vma = find_vma(mm, addr);
1875
1876 switch (opt) {
1877 case PR_SET_MM_START_CODE:
1878 mm->start_code = addr;
1879 break;
1880 case PR_SET_MM_END_CODE:
1881 mm->end_code = addr;
1882 break;
1883 case PR_SET_MM_START_DATA:
1884 mm->start_data = addr;
1885 break;
1886 case PR_SET_MM_END_DATA:
1887 mm->end_data = addr;
1888 break;
1889
1890 case PR_SET_MM_START_BRK:
1891 if (addr <= mm->end_data)
1892 goto out;
1893
1894 if (rlim < RLIM_INFINITY &&
1895 (mm->brk - addr) +
1896 (mm->end_data - mm->start_data) > rlim)
1897 goto out;
1898
1899 mm->start_brk = addr;
1900 break;
1901
1902 case PR_SET_MM_BRK:
1903 if (addr <= mm->end_data)
1904 goto out;
1905
1906 if (rlim < RLIM_INFINITY &&
1907 (addr - mm->start_brk) +
1908 (mm->end_data - mm->start_data) > rlim)
1909 goto out;
1910
1911 mm->brk = addr;
1912 break;
1913
1914 /*
1915 * If command line arguments and environment
1916 * are placed somewhere else on stack, we can
1917 * set them up here, ARG_START/END to setup
1918 * command line argumets and ENV_START/END
1919 * for environment.
1920 */
1921 case PR_SET_MM_START_STACK:
1922 case PR_SET_MM_ARG_START:
1923 case PR_SET_MM_ARG_END:
1924 case PR_SET_MM_ENV_START:
1925 case PR_SET_MM_ENV_END:
1926 if (!vma) {
1927 error = -EFAULT;
1928 goto out;
1929 }
1930 if (opt == PR_SET_MM_START_STACK)
1931 mm->start_stack = addr;
1932 else if (opt == PR_SET_MM_ARG_START)
1933 mm->arg_start = addr;
1934 else if (opt == PR_SET_MM_ARG_END)
1935 mm->arg_end = addr;
1936 else if (opt == PR_SET_MM_ENV_START)
1937 mm->env_start = addr;
1938 else if (opt == PR_SET_MM_ENV_END)
1939 mm->env_end = addr;
1940 break;
1941
1942 /*
1943 * This doesn't move auxiliary vector itself
1944 * since it's pinned to mm_struct, but allow
1945 * to fill vector with new values. It's up
1946 * to a caller to provide sane values here
1947 * otherwise user space tools which use this
1948 * vector might be unhappy.
1949 */
1950 case PR_SET_MM_AUXV: {
1951 unsigned long user_auxv[AT_VECTOR_SIZE];
1952
1953 if (arg4 > sizeof(user_auxv))
1954 goto out;
1955 up_read(&mm->mmap_sem);
1956
1957 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1958 return -EFAULT;
1959
1960 /* Make sure the last entry is always AT_NULL */
1961 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1962 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1963
1964 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1965
1966 task_lock(current);
1967 memcpy(mm->saved_auxv, user_auxv, arg4);
1968 task_unlock(current);
1969
1970 return 0;
1971 }
1972 default:
1973 goto out;
1974 }
1975
1976 error = 0;
1977out:
1978 up_read(&mm->mmap_sem);
1979 return error;
1980}
1981
1982static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1983{
1984 return put_user(me->clear_child_tid, tid_addr);
1985}
1986
1987#else /* CONFIG_CHECKPOINT_RESTORE */
1988static int prctl_set_mm(int opt, unsigned long addr,
1989 unsigned long arg4, unsigned long arg5)
1990{
1991 return -EINVAL;
1992}
1993static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1994{
1995 return -EINVAL;
1996}
1997#endif
1998
1999SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2000 unsigned long, arg4, unsigned long, arg5)
2001{
2002 struct task_struct *me = current;
2003 unsigned char comm[sizeof(me->comm)];
2004 long error;
2005
2006 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2007 if (error != -ENOSYS)
2008 return error;
2009
2010 error = 0;
2011 switch (option) {
2012 case PR_SET_PDEATHSIG:
2013 if (!valid_signal(arg2)) {
2014 error = -EINVAL;
2015 break;
2016 }
2017 me->pdeath_signal = arg2;
2018 error = 0;
2019 break;
2020 case PR_GET_PDEATHSIG:
2021 error = put_user(me->pdeath_signal, (int __user *)arg2);
2022 break;
2023 case PR_GET_DUMPABLE:
2024 error = get_dumpable(me->mm);
2025 break;
2026 case PR_SET_DUMPABLE:
2027 if (arg2 < 0 || arg2 > 1) {
2028 error = -EINVAL;
2029 break;
2030 }
2031 set_dumpable(me->mm, arg2);
2032 error = 0;
2033 break;
2034
2035 case PR_SET_UNALIGN:
2036 error = SET_UNALIGN_CTL(me, arg2);
2037 break;
2038 case PR_GET_UNALIGN:
2039 error = GET_UNALIGN_CTL(me, arg2);
2040 break;
2041 case PR_SET_FPEMU:
2042 error = SET_FPEMU_CTL(me, arg2);
2043 break;
2044 case PR_GET_FPEMU:
2045 error = GET_FPEMU_CTL(me, arg2);
2046 break;
2047 case PR_SET_FPEXC:
2048 error = SET_FPEXC_CTL(me, arg2);
2049 break;
2050 case PR_GET_FPEXC:
2051 error = GET_FPEXC_CTL(me, arg2);
2052 break;
2053 case PR_GET_TIMING:
2054 error = PR_TIMING_STATISTICAL;
2055 break;
2056 case PR_SET_TIMING:
2057 if (arg2 != PR_TIMING_STATISTICAL)
2058 error = -EINVAL;
2059 else
2060 error = 0;
2061 break;
2062
2063 case PR_SET_NAME:
2064 comm[sizeof(me->comm)-1] = 0;
2065 if (strncpy_from_user(comm, (char __user *)arg2,
2066 sizeof(me->comm) - 1) < 0)
2067 return -EFAULT;
2068 set_task_comm(me, comm);
2069 proc_comm_connector(me);
2070 return 0;
2071 case PR_GET_NAME:
2072 get_task_comm(comm, me);
2073 if (copy_to_user((char __user *)arg2, comm,
2074 sizeof(comm)))
2075 return -EFAULT;
2076 return 0;
2077 case PR_GET_ENDIAN:
2078 error = GET_ENDIAN(me, arg2);
2079 break;
2080 case PR_SET_ENDIAN:
2081 error = SET_ENDIAN(me, arg2);
2082 break;
2083
2084 case PR_GET_SECCOMP:
2085 error = prctl_get_seccomp();
2086 break;
2087 case PR_SET_SECCOMP:
2088 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2089 break;
2090 case PR_GET_TSC:
2091 error = GET_TSC_CTL(arg2);
2092 break;
2093 case PR_SET_TSC:
2094 error = SET_TSC_CTL(arg2);
2095 break;
2096 case PR_TASK_PERF_EVENTS_DISABLE:
2097 error = perf_event_task_disable();
2098 break;
2099 case PR_TASK_PERF_EVENTS_ENABLE:
2100 error = perf_event_task_enable();
2101 break;
2102 case PR_GET_TIMERSLACK:
2103 error = current->timer_slack_ns;
2104 break;
2105 case PR_SET_TIMERSLACK:
2106 if (arg2 <= 0)
2107 current->timer_slack_ns =
2108 current->default_timer_slack_ns;
2109 else
2110 current->timer_slack_ns = arg2;
2111 error = 0;
2112 break;
2113 case PR_MCE_KILL:
2114 if (arg4 | arg5)
2115 return -EINVAL;
2116 switch (arg2) {
2117 case PR_MCE_KILL_CLEAR:
2118 if (arg3 != 0)
2119 return -EINVAL;
2120 current->flags &= ~PF_MCE_PROCESS;
2121 break;
2122 case PR_MCE_KILL_SET:
2123 current->flags |= PF_MCE_PROCESS;
2124 if (arg3 == PR_MCE_KILL_EARLY)
2125 current->flags |= PF_MCE_EARLY;
2126 else if (arg3 == PR_MCE_KILL_LATE)
2127 current->flags &= ~PF_MCE_EARLY;
2128 else if (arg3 == PR_MCE_KILL_DEFAULT)
2129 current->flags &=
2130 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2131 else
2132 return -EINVAL;
2133 break;
2134 default:
2135 return -EINVAL;
2136 }
2137 error = 0;
2138 break;
2139 case PR_MCE_KILL_GET:
2140 if (arg2 | arg3 | arg4 | arg5)
2141 return -EINVAL;
2142 if (current->flags & PF_MCE_PROCESS)
2143 error = (current->flags & PF_MCE_EARLY) ?
2144 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2145 else
2146 error = PR_MCE_KILL_DEFAULT;
2147 break;
2148 case PR_SET_MM:
2149 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2150 break;
2151 case PR_GET_TID_ADDRESS:
2152 error = prctl_get_tid_address(me, (int __user **)arg2);
2153 break;
2154 case PR_SET_CHILD_SUBREAPER:
2155 me->signal->is_child_subreaper = !!arg2;
2156 error = 0;
2157 break;
2158 case PR_GET_CHILD_SUBREAPER:
2159 error = put_user(me->signal->is_child_subreaper,
2160 (int __user *) arg2);
2161 break;
2162 case PR_SET_NO_NEW_PRIVS:
2163 if (arg2 != 1 || arg3 || arg4 || arg5)
2164 return -EINVAL;
2165
2166 current->no_new_privs = 1;
2167 break;
2168 case PR_GET_NO_NEW_PRIVS:
2169 if (arg2 || arg3 || arg4 || arg5)
2170 return -EINVAL;
2171 return current->no_new_privs ? 1 : 0;
2172 default:
2173 error = -EINVAL;
2174 break;
2175 }
2176 return error;
2177}
2178
2179SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2180 struct getcpu_cache __user *, unused)
2181{
2182 int err = 0;
2183 int cpu = raw_smp_processor_id();
2184 if (cpup)
2185 err |= put_user(cpu, cpup);
2186 if (nodep)
2187 err |= put_user(cpu_to_node(cpu), nodep);
2188 return err ? -EFAULT : 0;
2189}
2190
2191char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2192
2193static void argv_cleanup(struct subprocess_info *info)
2194{
2195 argv_free(info->argv);
2196}
2197
2198/**
2199 * orderly_poweroff - Trigger an orderly system poweroff
2200 * @force: force poweroff if command execution fails
2201 *
2202 * This may be called from any context to trigger a system shutdown.
2203 * If the orderly shutdown fails, it will force an immediate shutdown.
2204 */
2205int orderly_poweroff(bool force)
2206{
2207 int argc;
2208 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2209 static char *envp[] = {
2210 "HOME=/",
2211 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2212 NULL
2213 };
2214 int ret = -ENOMEM;
2215
2216 if (argv == NULL) {
2217 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2218 __func__, poweroff_cmd);
2219 goto out;
2220 }
2221
2222 ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_NO_WAIT,
2223 NULL, argv_cleanup, NULL);
2224out:
2225 if (likely(!ret))
2226 return 0;
2227
2228 if (ret == -ENOMEM)
2229 argv_free(argv);
2230
2231 if (force) {
2232 printk(KERN_WARNING "Failed to start orderly shutdown: "
2233 "forcing the issue\n");
2234
2235 /* I guess this should try to kick off some daemon to
2236 sync and poweroff asap. Or not even bother syncing
2237 if we're doing an emergency shutdown? */
2238 emergency_sync();
2239 kernel_power_off();
2240 }
2241
2242 return ret;
2243}
2244EXPORT_SYMBOL_GPL(orderly_poweroff);