Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/percpu.h>
  45#include <linux/notifier.h>
  46#include <linux/cpu.h>
  47#include <linux/mutex.h>
  48#include <linux/time.h>
  49#include <linux/kernel_stat.h>
  50#include <linux/wait.h>
  51#include <linux/kthread.h>
  52#include <linux/prefetch.h>
  53#include <linux/delay.h>
  54#include <linux/stop_machine.h>
  55
  56#include "rcutree.h"
  57#include <trace/events/rcu.h>
  58
  59#include "rcu.h"
  60
  61/* Data structures. */
  62
  63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
  64
  65#define RCU_STATE_INITIALIZER(structname) { \
  66	.level = { &structname##_state.node[0] }, \
  67	.levelcnt = { \
  68		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
  69		NUM_RCU_LVL_1, \
  70		NUM_RCU_LVL_2, \
  71		NUM_RCU_LVL_3, \
  72		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
  73	}, \
  74	.fqs_state = RCU_GP_IDLE, \
  75	.gpnum = -300, \
  76	.completed = -300, \
  77	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
  78	.orphan_nxttail = &structname##_state.orphan_nxtlist, \
  79	.orphan_donetail = &structname##_state.orphan_donelist, \
  80	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
  81	.n_force_qs = 0, \
  82	.n_force_qs_ngp = 0, \
  83	.name = #structname, \
  84}
  85
  86struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
  87DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
  88
  89struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
  90DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
  91
  92static struct rcu_state *rcu_state;
  93
  94/*
  95 * The rcu_scheduler_active variable transitions from zero to one just
  96 * before the first task is spawned.  So when this variable is zero, RCU
  97 * can assume that there is but one task, allowing RCU to (for example)
  98 * optimized synchronize_sched() to a simple barrier().  When this variable
  99 * is one, RCU must actually do all the hard work required to detect real
 100 * grace periods.  This variable is also used to suppress boot-time false
 101 * positives from lockdep-RCU error checking.
 102 */
 103int rcu_scheduler_active __read_mostly;
 104EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 105
 106/*
 107 * The rcu_scheduler_fully_active variable transitions from zero to one
 108 * during the early_initcall() processing, which is after the scheduler
 109 * is capable of creating new tasks.  So RCU processing (for example,
 110 * creating tasks for RCU priority boosting) must be delayed until after
 111 * rcu_scheduler_fully_active transitions from zero to one.  We also
 112 * currently delay invocation of any RCU callbacks until after this point.
 113 *
 114 * It might later prove better for people registering RCU callbacks during
 115 * early boot to take responsibility for these callbacks, but one step at
 116 * a time.
 117 */
 118static int rcu_scheduler_fully_active __read_mostly;
 119
 120#ifdef CONFIG_RCU_BOOST
 121
 122/*
 123 * Control variables for per-CPU and per-rcu_node kthreads.  These
 124 * handle all flavors of RCU.
 125 */
 126static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
 127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
 128DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
 129DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
 130DEFINE_PER_CPU(char, rcu_cpu_has_work);
 131
 132#endif /* #ifdef CONFIG_RCU_BOOST */
 133
 134static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 135static void invoke_rcu_core(void);
 136static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 137
 138/*
 139 * Track the rcutorture test sequence number and the update version
 140 * number within a given test.  The rcutorture_testseq is incremented
 141 * on every rcutorture module load and unload, so has an odd value
 142 * when a test is running.  The rcutorture_vernum is set to zero
 143 * when rcutorture starts and is incremented on each rcutorture update.
 144 * These variables enable correlating rcutorture output with the
 145 * RCU tracing information.
 146 */
 147unsigned long rcutorture_testseq;
 148unsigned long rcutorture_vernum;
 149
 150/* State information for rcu_barrier() and friends. */
 151
 152static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
 153static atomic_t rcu_barrier_cpu_count;
 154static DEFINE_MUTEX(rcu_barrier_mutex);
 155static struct completion rcu_barrier_completion;
 156
 157/*
 158 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 159 * permit this function to be invoked without holding the root rcu_node
 160 * structure's ->lock, but of course results can be subject to change.
 161 */
 162static int rcu_gp_in_progress(struct rcu_state *rsp)
 163{
 164	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
 165}
 166
 167/*
 168 * Note a quiescent state.  Because we do not need to know
 169 * how many quiescent states passed, just if there was at least
 170 * one since the start of the grace period, this just sets a flag.
 171 * The caller must have disabled preemption.
 172 */
 173void rcu_sched_qs(int cpu)
 174{
 175	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
 176
 177	rdp->passed_quiesce_gpnum = rdp->gpnum;
 178	barrier();
 179	if (rdp->passed_quiesce == 0)
 180		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
 181	rdp->passed_quiesce = 1;
 182}
 183
 184void rcu_bh_qs(int cpu)
 185{
 186	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
 187
 188	rdp->passed_quiesce_gpnum = rdp->gpnum;
 189	barrier();
 190	if (rdp->passed_quiesce == 0)
 191		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
 192	rdp->passed_quiesce = 1;
 193}
 194
 195/*
 196 * Note a context switch.  This is a quiescent state for RCU-sched,
 197 * and requires special handling for preemptible RCU.
 198 * The caller must have disabled preemption.
 199 */
 200void rcu_note_context_switch(int cpu)
 201{
 202	trace_rcu_utilization("Start context switch");
 203	rcu_sched_qs(cpu);
 204	rcu_preempt_note_context_switch(cpu);
 205	trace_rcu_utilization("End context switch");
 206}
 207EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 208
 209DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 210	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 211	.dynticks = ATOMIC_INIT(1),
 212};
 213
 214static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
 215static int qhimark = 10000;	/* If this many pending, ignore blimit. */
 216static int qlowmark = 100;	/* Once only this many pending, use blimit. */
 217
 218module_param(blimit, int, 0);
 219module_param(qhimark, int, 0);
 220module_param(qlowmark, int, 0);
 221
 222int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 223int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 224
 225module_param(rcu_cpu_stall_suppress, int, 0644);
 226module_param(rcu_cpu_stall_timeout, int, 0644);
 227
 228static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
 229static int rcu_pending(int cpu);
 230
 231/*
 232 * Return the number of RCU-sched batches processed thus far for debug & stats.
 233 */
 234long rcu_batches_completed_sched(void)
 235{
 236	return rcu_sched_state.completed;
 237}
 238EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 239
 240/*
 241 * Return the number of RCU BH batches processed thus far for debug & stats.
 242 */
 243long rcu_batches_completed_bh(void)
 244{
 245	return rcu_bh_state.completed;
 246}
 247EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 248
 249/*
 250 * Force a quiescent state for RCU BH.
 251 */
 252void rcu_bh_force_quiescent_state(void)
 253{
 254	force_quiescent_state(&rcu_bh_state, 0);
 255}
 256EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 257
 258/*
 259 * Record the number of times rcutorture tests have been initiated and
 260 * terminated.  This information allows the debugfs tracing stats to be
 261 * correlated to the rcutorture messages, even when the rcutorture module
 262 * is being repeatedly loaded and unloaded.  In other words, we cannot
 263 * store this state in rcutorture itself.
 264 */
 265void rcutorture_record_test_transition(void)
 266{
 267	rcutorture_testseq++;
 268	rcutorture_vernum = 0;
 269}
 270EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 271
 272/*
 273 * Record the number of writer passes through the current rcutorture test.
 274 * This is also used to correlate debugfs tracing stats with the rcutorture
 275 * messages.
 276 */
 277void rcutorture_record_progress(unsigned long vernum)
 278{
 279	rcutorture_vernum++;
 280}
 281EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 282
 283/*
 284 * Force a quiescent state for RCU-sched.
 285 */
 286void rcu_sched_force_quiescent_state(void)
 287{
 288	force_quiescent_state(&rcu_sched_state, 0);
 289}
 290EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 291
 292/*
 293 * Does the CPU have callbacks ready to be invoked?
 294 */
 295static int
 296cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 297{
 298	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
 299}
 300
 301/*
 302 * Does the current CPU require a yet-as-unscheduled grace period?
 303 */
 304static int
 305cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 306{
 307	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
 308}
 309
 310/*
 311 * Return the root node of the specified rcu_state structure.
 312 */
 313static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 314{
 315	return &rsp->node[0];
 316}
 317
 318/*
 319 * If the specified CPU is offline, tell the caller that it is in
 320 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 321 * Grace periods can end up waiting on an offline CPU when that
 322 * CPU is in the process of coming online -- it will be added to the
 323 * rcu_node bitmasks before it actually makes it online.  The same thing
 324 * can happen while a CPU is in the process of coming online.  Because this
 325 * race is quite rare, we check for it after detecting that the grace
 326 * period has been delayed rather than checking each and every CPU
 327 * each and every time we start a new grace period.
 328 */
 329static int rcu_implicit_offline_qs(struct rcu_data *rdp)
 330{
 331	/*
 332	 * If the CPU is offline for more than a jiffy, it is in a quiescent
 333	 * state.  We can trust its state not to change because interrupts
 334	 * are disabled.  The reason for the jiffy's worth of slack is to
 335	 * handle CPUs initializing on the way up and finding their way
 336	 * to the idle loop on the way down.
 337	 */
 338	if (cpu_is_offline(rdp->cpu) &&
 339	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
 340		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
 341		rdp->offline_fqs++;
 342		return 1;
 343	}
 344	return 0;
 345}
 346
 347/*
 348 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 349 *
 350 * If the new value of the ->dynticks_nesting counter now is zero,
 351 * we really have entered idle, and must do the appropriate accounting.
 352 * The caller must have disabled interrupts.
 353 */
 354static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
 355{
 356	trace_rcu_dyntick("Start", oldval, 0);
 357	if (!is_idle_task(current)) {
 358		struct task_struct *idle = idle_task(smp_processor_id());
 359
 360		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
 361		ftrace_dump(DUMP_ALL);
 362		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 363			  current->pid, current->comm,
 364			  idle->pid, idle->comm); /* must be idle task! */
 365	}
 366	rcu_prepare_for_idle(smp_processor_id());
 367	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 368	smp_mb__before_atomic_inc();  /* See above. */
 369	atomic_inc(&rdtp->dynticks);
 370	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
 371	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 372
 373	/*
 374	 * The idle task is not permitted to enter the idle loop while
 375	 * in an RCU read-side critical section.
 376	 */
 377	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 378			   "Illegal idle entry in RCU read-side critical section.");
 379	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
 380			   "Illegal idle entry in RCU-bh read-side critical section.");
 381	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
 382			   "Illegal idle entry in RCU-sched read-side critical section.");
 383}
 384
 385/**
 386 * rcu_idle_enter - inform RCU that current CPU is entering idle
 387 *
 388 * Enter idle mode, in other words, -leave- the mode in which RCU
 389 * read-side critical sections can occur.  (Though RCU read-side
 390 * critical sections can occur in irq handlers in idle, a possibility
 391 * handled by irq_enter() and irq_exit().)
 392 *
 393 * We crowbar the ->dynticks_nesting field to zero to allow for
 394 * the possibility of usermode upcalls having messed up our count
 395 * of interrupt nesting level during the prior busy period.
 396 */
 397void rcu_idle_enter(void)
 398{
 399	unsigned long flags;
 400	long long oldval;
 401	struct rcu_dynticks *rdtp;
 402
 403	local_irq_save(flags);
 404	rdtp = &__get_cpu_var(rcu_dynticks);
 405	oldval = rdtp->dynticks_nesting;
 406	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
 407	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
 408		rdtp->dynticks_nesting = 0;
 409	else
 410		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 411	rcu_idle_enter_common(rdtp, oldval);
 412	local_irq_restore(flags);
 413}
 414EXPORT_SYMBOL_GPL(rcu_idle_enter);
 415
 416/**
 417 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 418 *
 419 * Exit from an interrupt handler, which might possibly result in entering
 420 * idle mode, in other words, leaving the mode in which read-side critical
 421 * sections can occur.
 422 *
 423 * This code assumes that the idle loop never does anything that might
 424 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 425 * architecture violates this assumption, RCU will give you what you
 426 * deserve, good and hard.  But very infrequently and irreproducibly.
 427 *
 428 * Use things like work queues to work around this limitation.
 429 *
 430 * You have been warned.
 431 */
 432void rcu_irq_exit(void)
 433{
 434	unsigned long flags;
 435	long long oldval;
 436	struct rcu_dynticks *rdtp;
 437
 438	local_irq_save(flags);
 439	rdtp = &__get_cpu_var(rcu_dynticks);
 440	oldval = rdtp->dynticks_nesting;
 441	rdtp->dynticks_nesting--;
 442	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
 443	if (rdtp->dynticks_nesting)
 444		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
 445	else
 446		rcu_idle_enter_common(rdtp, oldval);
 447	local_irq_restore(flags);
 448}
 449
 450/*
 451 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 452 *
 453 * If the new value of the ->dynticks_nesting counter was previously zero,
 454 * we really have exited idle, and must do the appropriate accounting.
 455 * The caller must have disabled interrupts.
 456 */
 457static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
 458{
 459	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
 460	atomic_inc(&rdtp->dynticks);
 461	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 462	smp_mb__after_atomic_inc();  /* See above. */
 463	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 464	rcu_cleanup_after_idle(smp_processor_id());
 465	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
 466	if (!is_idle_task(current)) {
 467		struct task_struct *idle = idle_task(smp_processor_id());
 468
 469		trace_rcu_dyntick("Error on exit: not idle task",
 470				  oldval, rdtp->dynticks_nesting);
 471		ftrace_dump(DUMP_ALL);
 472		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 473			  current->pid, current->comm,
 474			  idle->pid, idle->comm); /* must be idle task! */
 475	}
 476}
 477
 478/**
 479 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 480 *
 481 * Exit idle mode, in other words, -enter- the mode in which RCU
 482 * read-side critical sections can occur.
 483 *
 484 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 485 * allow for the possibility of usermode upcalls messing up our count
 486 * of interrupt nesting level during the busy period that is just
 487 * now starting.
 488 */
 489void rcu_idle_exit(void)
 490{
 491	unsigned long flags;
 492	struct rcu_dynticks *rdtp;
 493	long long oldval;
 494
 495	local_irq_save(flags);
 496	rdtp = &__get_cpu_var(rcu_dynticks);
 497	oldval = rdtp->dynticks_nesting;
 498	WARN_ON_ONCE(oldval < 0);
 499	if (oldval & DYNTICK_TASK_NEST_MASK)
 500		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 501	else
 502		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 503	rcu_idle_exit_common(rdtp, oldval);
 504	local_irq_restore(flags);
 505}
 506EXPORT_SYMBOL_GPL(rcu_idle_exit);
 507
 508/**
 509 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 510 *
 511 * Enter an interrupt handler, which might possibly result in exiting
 512 * idle mode, in other words, entering the mode in which read-side critical
 513 * sections can occur.
 514 *
 515 * Note that the Linux kernel is fully capable of entering an interrupt
 516 * handler that it never exits, for example when doing upcalls to
 517 * user mode!  This code assumes that the idle loop never does upcalls to
 518 * user mode.  If your architecture does do upcalls from the idle loop (or
 519 * does anything else that results in unbalanced calls to the irq_enter()
 520 * and irq_exit() functions), RCU will give you what you deserve, good
 521 * and hard.  But very infrequently and irreproducibly.
 522 *
 523 * Use things like work queues to work around this limitation.
 524 *
 525 * You have been warned.
 526 */
 527void rcu_irq_enter(void)
 528{
 529	unsigned long flags;
 530	struct rcu_dynticks *rdtp;
 531	long long oldval;
 532
 533	local_irq_save(flags);
 534	rdtp = &__get_cpu_var(rcu_dynticks);
 535	oldval = rdtp->dynticks_nesting;
 536	rdtp->dynticks_nesting++;
 537	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
 538	if (oldval)
 539		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
 540	else
 541		rcu_idle_exit_common(rdtp, oldval);
 542	local_irq_restore(flags);
 543}
 544
 545/**
 546 * rcu_nmi_enter - inform RCU of entry to NMI context
 547 *
 548 * If the CPU was idle with dynamic ticks active, and there is no
 549 * irq handler running, this updates rdtp->dynticks_nmi to let the
 550 * RCU grace-period handling know that the CPU is active.
 551 */
 552void rcu_nmi_enter(void)
 553{
 554	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 555
 556	if (rdtp->dynticks_nmi_nesting == 0 &&
 557	    (atomic_read(&rdtp->dynticks) & 0x1))
 558		return;
 559	rdtp->dynticks_nmi_nesting++;
 560	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
 561	atomic_inc(&rdtp->dynticks);
 562	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 563	smp_mb__after_atomic_inc();  /* See above. */
 564	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 565}
 566
 567/**
 568 * rcu_nmi_exit - inform RCU of exit from NMI context
 569 *
 570 * If the CPU was idle with dynamic ticks active, and there is no
 571 * irq handler running, this updates rdtp->dynticks_nmi to let the
 572 * RCU grace-period handling know that the CPU is no longer active.
 573 */
 574void rcu_nmi_exit(void)
 575{
 576	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 577
 578	if (rdtp->dynticks_nmi_nesting == 0 ||
 579	    --rdtp->dynticks_nmi_nesting != 0)
 580		return;
 581	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 582	smp_mb__before_atomic_inc();  /* See above. */
 583	atomic_inc(&rdtp->dynticks);
 584	smp_mb__after_atomic_inc();  /* Force delay to next write. */
 585	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 586}
 587
 588#ifdef CONFIG_PROVE_RCU
 589
 590/**
 591 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
 592 *
 593 * If the current CPU is in its idle loop and is neither in an interrupt
 594 * or NMI handler, return true.
 595 */
 596int rcu_is_cpu_idle(void)
 597{
 598	int ret;
 599
 600	preempt_disable();
 601	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
 602	preempt_enable();
 603	return ret;
 604}
 605EXPORT_SYMBOL(rcu_is_cpu_idle);
 606
 607#ifdef CONFIG_HOTPLUG_CPU
 608
 609/*
 610 * Is the current CPU online?  Disable preemption to avoid false positives
 611 * that could otherwise happen due to the current CPU number being sampled,
 612 * this task being preempted, its old CPU being taken offline, resuming
 613 * on some other CPU, then determining that its old CPU is now offline.
 614 * It is OK to use RCU on an offline processor during initial boot, hence
 615 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 616 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 617 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 618 * offline to continue to use RCU for one jiffy after marking itself
 619 * offline in the cpu_online_mask.  This leniency is necessary given the
 620 * non-atomic nature of the online and offline processing, for example,
 621 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 622 * notifiers.
 623 *
 624 * This is also why RCU internally marks CPUs online during the
 625 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
 626 *
 627 * Disable checking if in an NMI handler because we cannot safely report
 628 * errors from NMI handlers anyway.
 629 */
 630bool rcu_lockdep_current_cpu_online(void)
 631{
 632	struct rcu_data *rdp;
 633	struct rcu_node *rnp;
 634	bool ret;
 635
 636	if (in_nmi())
 637		return 1;
 638	preempt_disable();
 639	rdp = &__get_cpu_var(rcu_sched_data);
 640	rnp = rdp->mynode;
 641	ret = (rdp->grpmask & rnp->qsmaskinit) ||
 642	      !rcu_scheduler_fully_active;
 643	preempt_enable();
 644	return ret;
 645}
 646EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 647
 648#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 649
 650#endif /* #ifdef CONFIG_PROVE_RCU */
 651
 652/**
 653 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 654 *
 655 * If the current CPU is idle or running at a first-level (not nested)
 656 * interrupt from idle, return true.  The caller must have at least
 657 * disabled preemption.
 658 */
 659int rcu_is_cpu_rrupt_from_idle(void)
 660{
 661	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
 662}
 663
 664/*
 665 * Snapshot the specified CPU's dynticks counter so that we can later
 666 * credit them with an implicit quiescent state.  Return 1 if this CPU
 667 * is in dynticks idle mode, which is an extended quiescent state.
 668 */
 669static int dyntick_save_progress_counter(struct rcu_data *rdp)
 670{
 671	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
 672	return (rdp->dynticks_snap & 0x1) == 0;
 673}
 674
 675/*
 676 * Return true if the specified CPU has passed through a quiescent
 677 * state by virtue of being in or having passed through an dynticks
 678 * idle state since the last call to dyntick_save_progress_counter()
 679 * for this same CPU.
 680 */
 681static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 682{
 683	unsigned int curr;
 684	unsigned int snap;
 685
 686	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
 687	snap = (unsigned int)rdp->dynticks_snap;
 688
 689	/*
 690	 * If the CPU passed through or entered a dynticks idle phase with
 691	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 692	 * already acknowledged the request to pass through a quiescent
 693	 * state.  Either way, that CPU cannot possibly be in an RCU
 694	 * read-side critical section that started before the beginning
 695	 * of the current RCU grace period.
 696	 */
 697	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
 698		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
 699		rdp->dynticks_fqs++;
 700		return 1;
 701	}
 702
 703	/* Go check for the CPU being offline. */
 704	return rcu_implicit_offline_qs(rdp);
 705}
 706
 707static int jiffies_till_stall_check(void)
 708{
 709	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
 710
 711	/*
 712	 * Limit check must be consistent with the Kconfig limits
 713	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 714	 */
 715	if (till_stall_check < 3) {
 716		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
 717		till_stall_check = 3;
 718	} else if (till_stall_check > 300) {
 719		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
 720		till_stall_check = 300;
 721	}
 722	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 723}
 724
 725static void record_gp_stall_check_time(struct rcu_state *rsp)
 726{
 727	rsp->gp_start = jiffies;
 728	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
 729}
 730
 731static void print_other_cpu_stall(struct rcu_state *rsp)
 732{
 733	int cpu;
 734	long delta;
 735	unsigned long flags;
 736	int ndetected;
 737	struct rcu_node *rnp = rcu_get_root(rsp);
 738
 739	/* Only let one CPU complain about others per time interval. */
 740
 741	raw_spin_lock_irqsave(&rnp->lock, flags);
 742	delta = jiffies - rsp->jiffies_stall;
 743	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 744		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 745		return;
 746	}
 747	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
 748	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 749
 750	/*
 751	 * OK, time to rat on our buddy...
 752	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 753	 * RCU CPU stall warnings.
 754	 */
 755	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
 756	       rsp->name);
 757	print_cpu_stall_info_begin();
 758	rcu_for_each_leaf_node(rsp, rnp) {
 759		raw_spin_lock_irqsave(&rnp->lock, flags);
 760		ndetected += rcu_print_task_stall(rnp);
 761		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 762		if (rnp->qsmask == 0)
 763			continue;
 764		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 765			if (rnp->qsmask & (1UL << cpu)) {
 766				print_cpu_stall_info(rsp, rnp->grplo + cpu);
 767				ndetected++;
 768			}
 769	}
 770
 771	/*
 772	 * Now rat on any tasks that got kicked up to the root rcu_node
 773	 * due to CPU offlining.
 774	 */
 775	rnp = rcu_get_root(rsp);
 776	raw_spin_lock_irqsave(&rnp->lock, flags);
 777	ndetected = rcu_print_task_stall(rnp);
 778	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 779
 780	print_cpu_stall_info_end();
 781	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
 782	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
 783	if (ndetected == 0)
 784		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
 785	else if (!trigger_all_cpu_backtrace())
 786		dump_stack();
 787
 788	/* If so configured, complain about tasks blocking the grace period. */
 789
 790	rcu_print_detail_task_stall(rsp);
 791
 792	force_quiescent_state(rsp, 0);  /* Kick them all. */
 793}
 794
 795static void print_cpu_stall(struct rcu_state *rsp)
 796{
 797	unsigned long flags;
 798	struct rcu_node *rnp = rcu_get_root(rsp);
 799
 800	/*
 801	 * OK, time to rat on ourselves...
 802	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 803	 * RCU CPU stall warnings.
 804	 */
 805	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
 806	print_cpu_stall_info_begin();
 807	print_cpu_stall_info(rsp, smp_processor_id());
 808	print_cpu_stall_info_end();
 809	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
 810	if (!trigger_all_cpu_backtrace())
 811		dump_stack();
 812
 813	raw_spin_lock_irqsave(&rnp->lock, flags);
 814	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
 815		rsp->jiffies_stall = jiffies +
 816				     3 * jiffies_till_stall_check() + 3;
 817	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 818
 819	set_need_resched();  /* kick ourselves to get things going. */
 820}
 821
 822static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 823{
 824	unsigned long j;
 825	unsigned long js;
 826	struct rcu_node *rnp;
 827
 828	if (rcu_cpu_stall_suppress)
 829		return;
 830	j = ACCESS_ONCE(jiffies);
 831	js = ACCESS_ONCE(rsp->jiffies_stall);
 832	rnp = rdp->mynode;
 833	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
 834
 835		/* We haven't checked in, so go dump stack. */
 836		print_cpu_stall(rsp);
 837
 838	} else if (rcu_gp_in_progress(rsp) &&
 839		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
 840
 841		/* They had a few time units to dump stack, so complain. */
 842		print_other_cpu_stall(rsp);
 843	}
 844}
 845
 846static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 847{
 848	rcu_cpu_stall_suppress = 1;
 849	return NOTIFY_DONE;
 850}
 851
 852/**
 853 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 854 *
 855 * Set the stall-warning timeout way off into the future, thus preventing
 856 * any RCU CPU stall-warning messages from appearing in the current set of
 857 * RCU grace periods.
 858 *
 859 * The caller must disable hard irqs.
 860 */
 861void rcu_cpu_stall_reset(void)
 862{
 863	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 864	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 865	rcu_preempt_stall_reset();
 866}
 867
 868static struct notifier_block rcu_panic_block = {
 869	.notifier_call = rcu_panic,
 870};
 871
 872static void __init check_cpu_stall_init(void)
 873{
 874	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 875}
 876
 877/*
 878 * Update CPU-local rcu_data state to record the newly noticed grace period.
 879 * This is used both when we started the grace period and when we notice
 880 * that someone else started the grace period.  The caller must hold the
 881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 882 *  and must have irqs disabled.
 883 */
 884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 885{
 886	if (rdp->gpnum != rnp->gpnum) {
 887		/*
 888		 * If the current grace period is waiting for this CPU,
 889		 * set up to detect a quiescent state, otherwise don't
 890		 * go looking for one.
 891		 */
 892		rdp->gpnum = rnp->gpnum;
 893		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
 894		if (rnp->qsmask & rdp->grpmask) {
 895			rdp->qs_pending = 1;
 896			rdp->passed_quiesce = 0;
 897		} else
 898			rdp->qs_pending = 0;
 899		zero_cpu_stall_ticks(rdp);
 900	}
 901}
 902
 903static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
 904{
 905	unsigned long flags;
 906	struct rcu_node *rnp;
 907
 908	local_irq_save(flags);
 909	rnp = rdp->mynode;
 910	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
 911	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 912		local_irq_restore(flags);
 913		return;
 914	}
 915	__note_new_gpnum(rsp, rnp, rdp);
 916	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 917}
 918
 919/*
 920 * Did someone else start a new RCU grace period start since we last
 921 * checked?  Update local state appropriately if so.  Must be called
 922 * on the CPU corresponding to rdp.
 923 */
 924static int
 925check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
 926{
 927	unsigned long flags;
 928	int ret = 0;
 929
 930	local_irq_save(flags);
 931	if (rdp->gpnum != rsp->gpnum) {
 932		note_new_gpnum(rsp, rdp);
 933		ret = 1;
 934	}
 935	local_irq_restore(flags);
 936	return ret;
 937}
 938
 939/*
 940 * Advance this CPU's callbacks, but only if the current grace period
 941 * has ended.  This may be called only from the CPU to whom the rdp
 942 * belongs.  In addition, the corresponding leaf rcu_node structure's
 943 * ->lock must be held by the caller, with irqs disabled.
 944 */
 945static void
 946__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 947{
 948	/* Did another grace period end? */
 949	if (rdp->completed != rnp->completed) {
 950
 951		/* Advance callbacks.  No harm if list empty. */
 952		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
 953		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
 954		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 955
 956		/* Remember that we saw this grace-period completion. */
 957		rdp->completed = rnp->completed;
 958		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
 959
 960		/*
 961		 * If we were in an extended quiescent state, we may have
 962		 * missed some grace periods that others CPUs handled on
 963		 * our behalf. Catch up with this state to avoid noting
 964		 * spurious new grace periods.  If another grace period
 965		 * has started, then rnp->gpnum will have advanced, so
 966		 * we will detect this later on.
 967		 */
 968		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
 969			rdp->gpnum = rdp->completed;
 970
 971		/*
 972		 * If RCU does not need a quiescent state from this CPU,
 973		 * then make sure that this CPU doesn't go looking for one.
 974		 */
 975		if ((rnp->qsmask & rdp->grpmask) == 0)
 976			rdp->qs_pending = 0;
 977	}
 978}
 979
 980/*
 981 * Advance this CPU's callbacks, but only if the current grace period
 982 * has ended.  This may be called only from the CPU to whom the rdp
 983 * belongs.
 984 */
 985static void
 986rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
 987{
 988	unsigned long flags;
 989	struct rcu_node *rnp;
 990
 991	local_irq_save(flags);
 992	rnp = rdp->mynode;
 993	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
 994	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 995		local_irq_restore(flags);
 996		return;
 997	}
 998	__rcu_process_gp_end(rsp, rnp, rdp);
 999	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000}
1001
1002/*
1003 * Do per-CPU grace-period initialization for running CPU.  The caller
1004 * must hold the lock of the leaf rcu_node structure corresponding to
1005 * this CPU.
1006 */
1007static void
1008rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1009{
1010	/* Prior grace period ended, so advance callbacks for current CPU. */
1011	__rcu_process_gp_end(rsp, rnp, rdp);
1012
1013	/*
1014	 * Because this CPU just now started the new grace period, we know
1015	 * that all of its callbacks will be covered by this upcoming grace
1016	 * period, even the ones that were registered arbitrarily recently.
1017	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1018	 *
1019	 * Other CPUs cannot be sure exactly when the grace period started.
1020	 * Therefore, their recently registered callbacks must pass through
1021	 * an additional RCU_NEXT_READY stage, so that they will be handled
1022	 * by the next RCU grace period.
1023	 */
1024	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1025	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1026
1027	/* Set state so that this CPU will detect the next quiescent state. */
1028	__note_new_gpnum(rsp, rnp, rdp);
1029}
1030
1031/*
1032 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1033 * in preparation for detecting the next grace period.  The caller must hold
1034 * the root node's ->lock, which is released before return.  Hard irqs must
1035 * be disabled.
1036 *
1037 * Note that it is legal for a dying CPU (which is marked as offline) to
1038 * invoke this function.  This can happen when the dying CPU reports its
1039 * quiescent state.
1040 */
1041static void
1042rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1043	__releases(rcu_get_root(rsp)->lock)
1044{
1045	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1046	struct rcu_node *rnp = rcu_get_root(rsp);
1047
1048	if (!rcu_scheduler_fully_active ||
1049	    !cpu_needs_another_gp(rsp, rdp)) {
1050		/*
1051		 * Either the scheduler hasn't yet spawned the first
1052		 * non-idle task or this CPU does not need another
1053		 * grace period.  Either way, don't start a new grace
1054		 * period.
1055		 */
1056		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057		return;
1058	}
1059
1060	if (rsp->fqs_active) {
1061		/*
1062		 * This CPU needs a grace period, but force_quiescent_state()
1063		 * is running.  Tell it to start one on this CPU's behalf.
1064		 */
1065		rsp->fqs_need_gp = 1;
1066		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067		return;
1068	}
1069
1070	/* Advance to a new grace period and initialize state. */
1071	rsp->gpnum++;
1072	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1073	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1074	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1075	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1076	record_gp_stall_check_time(rsp);
1077	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1078
1079	/* Exclude any concurrent CPU-hotplug operations. */
1080	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1081
1082	/*
1083	 * Set the quiescent-state-needed bits in all the rcu_node
1084	 * structures for all currently online CPUs in breadth-first
1085	 * order, starting from the root rcu_node structure.  This
1086	 * operation relies on the layout of the hierarchy within the
1087	 * rsp->node[] array.  Note that other CPUs will access only
1088	 * the leaves of the hierarchy, which still indicate that no
1089	 * grace period is in progress, at least until the corresponding
1090	 * leaf node has been initialized.  In addition, we have excluded
1091	 * CPU-hotplug operations.
1092	 *
1093	 * Note that the grace period cannot complete until we finish
1094	 * the initialization process, as there will be at least one
1095	 * qsmask bit set in the root node until that time, namely the
1096	 * one corresponding to this CPU, due to the fact that we have
1097	 * irqs disabled.
1098	 */
1099	rcu_for_each_node_breadth_first(rsp, rnp) {
1100		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1101		rcu_preempt_check_blocked_tasks(rnp);
1102		rnp->qsmask = rnp->qsmaskinit;
1103		rnp->gpnum = rsp->gpnum;
1104		rnp->completed = rsp->completed;
1105		if (rnp == rdp->mynode)
1106			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1107		rcu_preempt_boost_start_gp(rnp);
1108		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1109					    rnp->level, rnp->grplo,
1110					    rnp->grphi, rnp->qsmask);
1111		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1112	}
1113
1114	rnp = rcu_get_root(rsp);
1115	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1116	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1117	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1118	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1119}
1120
1121/*
1122 * Report a full set of quiescent states to the specified rcu_state
1123 * data structure.  This involves cleaning up after the prior grace
1124 * period and letting rcu_start_gp() start up the next grace period
1125 * if one is needed.  Note that the caller must hold rnp->lock, as
1126 * required by rcu_start_gp(), which will release it.
1127 */
1128static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1129	__releases(rcu_get_root(rsp)->lock)
1130{
1131	unsigned long gp_duration;
1132	struct rcu_node *rnp = rcu_get_root(rsp);
1133	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1134
1135	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1136
1137	/*
1138	 * Ensure that all grace-period and pre-grace-period activity
1139	 * is seen before the assignment to rsp->completed.
1140	 */
1141	smp_mb(); /* See above block comment. */
1142	gp_duration = jiffies - rsp->gp_start;
1143	if (gp_duration > rsp->gp_max)
1144		rsp->gp_max = gp_duration;
1145
1146	/*
1147	 * We know the grace period is complete, but to everyone else
1148	 * it appears to still be ongoing.  But it is also the case
1149	 * that to everyone else it looks like there is nothing that
1150	 * they can do to advance the grace period.  It is therefore
1151	 * safe for us to drop the lock in order to mark the grace
1152	 * period as completed in all of the rcu_node structures.
1153	 *
1154	 * But if this CPU needs another grace period, it will take
1155	 * care of this while initializing the next grace period.
1156	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1157	 * because the callbacks have not yet been advanced: Those
1158	 * callbacks are waiting on the grace period that just now
1159	 * completed.
1160	 */
1161	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1162		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
1163
1164		/*
1165		 * Propagate new ->completed value to rcu_node structures
1166		 * so that other CPUs don't have to wait until the start
1167		 * of the next grace period to process their callbacks.
1168		 */
1169		rcu_for_each_node_breadth_first(rsp, rnp) {
1170			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1171			rnp->completed = rsp->gpnum;
1172			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1173		}
1174		rnp = rcu_get_root(rsp);
1175		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1176	}
1177
1178	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1179	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1180	rsp->fqs_state = RCU_GP_IDLE;
1181	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
1182}
1183
1184/*
1185 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1186 * Allows quiescent states for a group of CPUs to be reported at one go
1187 * to the specified rcu_node structure, though all the CPUs in the group
1188 * must be represented by the same rcu_node structure (which need not be
1189 * a leaf rcu_node structure, though it often will be).  That structure's
1190 * lock must be held upon entry, and it is released before return.
1191 */
1192static void
1193rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1194		  struct rcu_node *rnp, unsigned long flags)
1195	__releases(rnp->lock)
1196{
1197	struct rcu_node *rnp_c;
1198
1199	/* Walk up the rcu_node hierarchy. */
1200	for (;;) {
1201		if (!(rnp->qsmask & mask)) {
1202
1203			/* Our bit has already been cleared, so done. */
1204			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1205			return;
1206		}
1207		rnp->qsmask &= ~mask;
1208		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1209						 mask, rnp->qsmask, rnp->level,
1210						 rnp->grplo, rnp->grphi,
1211						 !!rnp->gp_tasks);
1212		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1213
1214			/* Other bits still set at this level, so done. */
1215			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1216			return;
1217		}
1218		mask = rnp->grpmask;
1219		if (rnp->parent == NULL) {
1220
1221			/* No more levels.  Exit loop holding root lock. */
1222
1223			break;
1224		}
1225		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1226		rnp_c = rnp;
1227		rnp = rnp->parent;
1228		raw_spin_lock_irqsave(&rnp->lock, flags);
1229		WARN_ON_ONCE(rnp_c->qsmask);
1230	}
1231
1232	/*
1233	 * Get here if we are the last CPU to pass through a quiescent
1234	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1235	 * to clean up and start the next grace period if one is needed.
1236	 */
1237	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1238}
1239
1240/*
1241 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1242 * structure.  This must be either called from the specified CPU, or
1243 * called when the specified CPU is known to be offline (and when it is
1244 * also known that no other CPU is concurrently trying to help the offline
1245 * CPU).  The lastcomp argument is used to make sure we are still in the
1246 * grace period of interest.  We don't want to end the current grace period
1247 * based on quiescent states detected in an earlier grace period!
1248 */
1249static void
1250rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1251{
1252	unsigned long flags;
1253	unsigned long mask;
1254	struct rcu_node *rnp;
1255
1256	rnp = rdp->mynode;
1257	raw_spin_lock_irqsave(&rnp->lock, flags);
1258	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1259
1260		/*
1261		 * The grace period in which this quiescent state was
1262		 * recorded has ended, so don't report it upwards.
1263		 * We will instead need a new quiescent state that lies
1264		 * within the current grace period.
1265		 */
1266		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1267		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1268		return;
1269	}
1270	mask = rdp->grpmask;
1271	if ((rnp->qsmask & mask) == 0) {
1272		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1273	} else {
1274		rdp->qs_pending = 0;
1275
1276		/*
1277		 * This GP can't end until cpu checks in, so all of our
1278		 * callbacks can be processed during the next GP.
1279		 */
1280		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1281
1282		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1283	}
1284}
1285
1286/*
1287 * Check to see if there is a new grace period of which this CPU
1288 * is not yet aware, and if so, set up local rcu_data state for it.
1289 * Otherwise, see if this CPU has just passed through its first
1290 * quiescent state for this grace period, and record that fact if so.
1291 */
1292static void
1293rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1294{
1295	/* If there is now a new grace period, record and return. */
1296	if (check_for_new_grace_period(rsp, rdp))
1297		return;
1298
1299	/*
1300	 * Does this CPU still need to do its part for current grace period?
1301	 * If no, return and let the other CPUs do their part as well.
1302	 */
1303	if (!rdp->qs_pending)
1304		return;
1305
1306	/*
1307	 * Was there a quiescent state since the beginning of the grace
1308	 * period? If no, then exit and wait for the next call.
1309	 */
1310	if (!rdp->passed_quiesce)
1311		return;
1312
1313	/*
1314	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1315	 * judge of that).
1316	 */
1317	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1318}
1319
1320#ifdef CONFIG_HOTPLUG_CPU
1321
1322/*
1323 * Send the specified CPU's RCU callbacks to the orphanage.  The
1324 * specified CPU must be offline, and the caller must hold the
1325 * ->onofflock.
1326 */
1327static void
1328rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1329			  struct rcu_node *rnp, struct rcu_data *rdp)
1330{
1331	int i;
1332
1333	/*
1334	 * Orphan the callbacks.  First adjust the counts.  This is safe
1335	 * because ->onofflock excludes _rcu_barrier()'s adoption of
1336	 * the callbacks, thus no memory barrier is required.
1337	 */
1338	if (rdp->nxtlist != NULL) {
1339		rsp->qlen_lazy += rdp->qlen_lazy;
1340		rsp->qlen += rdp->qlen;
1341		rdp->n_cbs_orphaned += rdp->qlen;
1342		rdp->qlen_lazy = 0;
1343		rdp->qlen = 0;
1344	}
1345
1346	/*
1347	 * Next, move those callbacks still needing a grace period to
1348	 * the orphanage, where some other CPU will pick them up.
1349	 * Some of the callbacks might have gone partway through a grace
1350	 * period, but that is too bad.  They get to start over because we
1351	 * cannot assume that grace periods are synchronized across CPUs.
1352	 * We don't bother updating the ->nxttail[] array yet, instead
1353	 * we just reset the whole thing later on.
1354	 */
1355	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1356		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1357		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1358		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1359	}
1360
1361	/*
1362	 * Then move the ready-to-invoke callbacks to the orphanage,
1363	 * where some other CPU will pick them up.  These will not be
1364	 * required to pass though another grace period: They are done.
1365	 */
1366	if (rdp->nxtlist != NULL) {
1367		*rsp->orphan_donetail = rdp->nxtlist;
1368		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1369	}
1370
1371	/* Finally, initialize the rcu_data structure's list to empty.  */
1372	rdp->nxtlist = NULL;
1373	for (i = 0; i < RCU_NEXT_SIZE; i++)
1374		rdp->nxttail[i] = &rdp->nxtlist;
1375}
1376
1377/*
1378 * Adopt the RCU callbacks from the specified rcu_state structure's
1379 * orphanage.  The caller must hold the ->onofflock.
1380 */
1381static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1382{
1383	int i;
1384	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1385
1386	/*
1387	 * If there is an rcu_barrier() operation in progress, then
1388	 * only the task doing that operation is permitted to adopt
1389	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
1390	 * by causing them to fail to wait for the callbacks in the
1391	 * orphanage.
1392	 */
1393	if (rsp->rcu_barrier_in_progress &&
1394	    rsp->rcu_barrier_in_progress != current)
1395		return;
1396
1397	/* Do the accounting first. */
1398	rdp->qlen_lazy += rsp->qlen_lazy;
1399	rdp->qlen += rsp->qlen;
1400	rdp->n_cbs_adopted += rsp->qlen;
1401	if (rsp->qlen_lazy != rsp->qlen)
1402		rcu_idle_count_callbacks_posted();
1403	rsp->qlen_lazy = 0;
1404	rsp->qlen = 0;
1405
1406	/*
1407	 * We do not need a memory barrier here because the only way we
1408	 * can get here if there is an rcu_barrier() in flight is if
1409	 * we are the task doing the rcu_barrier().
1410	 */
1411
1412	/* First adopt the ready-to-invoke callbacks. */
1413	if (rsp->orphan_donelist != NULL) {
1414		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1415		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1416		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1417			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1418				rdp->nxttail[i] = rsp->orphan_donetail;
1419		rsp->orphan_donelist = NULL;
1420		rsp->orphan_donetail = &rsp->orphan_donelist;
1421	}
1422
1423	/* And then adopt the callbacks that still need a grace period. */
1424	if (rsp->orphan_nxtlist != NULL) {
1425		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1426		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1427		rsp->orphan_nxtlist = NULL;
1428		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1429	}
1430}
1431
1432/*
1433 * Trace the fact that this CPU is going offline.
1434 */
1435static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1436{
1437	RCU_TRACE(unsigned long mask);
1438	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1439	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1440
1441	RCU_TRACE(mask = rdp->grpmask);
1442	trace_rcu_grace_period(rsp->name,
1443			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1444			       "cpuofl");
1445}
1446
1447/*
1448 * The CPU has been completely removed, and some other CPU is reporting
1449 * this fact from process context.  Do the remainder of the cleanup,
1450 * including orphaning the outgoing CPU's RCU callbacks, and also
1451 * adopting them, if there is no _rcu_barrier() instance running.
1452 * There can only be one CPU hotplug operation at a time, so no other
1453 * CPU can be attempting to update rcu_cpu_kthread_task.
1454 */
1455static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1456{
1457	unsigned long flags;
1458	unsigned long mask;
1459	int need_report = 0;
1460	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1461	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1462
1463	/* Adjust any no-longer-needed kthreads. */
1464	rcu_stop_cpu_kthread(cpu);
1465	rcu_node_kthread_setaffinity(rnp, -1);
1466
1467	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1468
1469	/* Exclude any attempts to start a new grace period. */
1470	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1471
1472	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1473	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1474	rcu_adopt_orphan_cbs(rsp);
1475
1476	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1477	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1478	do {
1479		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1480		rnp->qsmaskinit &= ~mask;
1481		if (rnp->qsmaskinit != 0) {
1482			if (rnp != rdp->mynode)
1483				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1484			break;
1485		}
1486		if (rnp == rdp->mynode)
1487			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1488		else
1489			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1490		mask = rnp->grpmask;
1491		rnp = rnp->parent;
1492	} while (rnp != NULL);
1493
1494	/*
1495	 * We still hold the leaf rcu_node structure lock here, and
1496	 * irqs are still disabled.  The reason for this subterfuge is
1497	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1498	 * held leads to deadlock.
1499	 */
1500	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1501	rnp = rdp->mynode;
1502	if (need_report & RCU_OFL_TASKS_NORM_GP)
1503		rcu_report_unblock_qs_rnp(rnp, flags);
1504	else
1505		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1506	if (need_report & RCU_OFL_TASKS_EXP_GP)
1507		rcu_report_exp_rnp(rsp, rnp, true);
1508}
1509
1510#else /* #ifdef CONFIG_HOTPLUG_CPU */
1511
1512static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1513{
1514}
1515
1516static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1517{
1518}
1519
1520static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1521{
1522}
1523
1524#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1525
1526/*
1527 * Invoke any RCU callbacks that have made it to the end of their grace
1528 * period.  Thottle as specified by rdp->blimit.
1529 */
1530static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1531{
1532	unsigned long flags;
1533	struct rcu_head *next, *list, **tail;
1534	int bl, count, count_lazy, i;
1535
1536	/* If no callbacks are ready, just return.*/
1537	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1538		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1539		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1540				    need_resched(), is_idle_task(current),
1541				    rcu_is_callbacks_kthread());
1542		return;
1543	}
1544
1545	/*
1546	 * Extract the list of ready callbacks, disabling to prevent
1547	 * races with call_rcu() from interrupt handlers.
1548	 */
1549	local_irq_save(flags);
1550	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1551	bl = rdp->blimit;
1552	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1553	list = rdp->nxtlist;
1554	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1555	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1556	tail = rdp->nxttail[RCU_DONE_TAIL];
1557	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1558		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1559			rdp->nxttail[i] = &rdp->nxtlist;
1560	local_irq_restore(flags);
1561
1562	/* Invoke callbacks. */
1563	count = count_lazy = 0;
1564	while (list) {
1565		next = list->next;
1566		prefetch(next);
1567		debug_rcu_head_unqueue(list);
1568		if (__rcu_reclaim(rsp->name, list))
1569			count_lazy++;
1570		list = next;
1571		/* Stop only if limit reached and CPU has something to do. */
1572		if (++count >= bl &&
1573		    (need_resched() ||
1574		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1575			break;
1576	}
1577
1578	local_irq_save(flags);
1579	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1580			    is_idle_task(current),
1581			    rcu_is_callbacks_kthread());
1582
1583	/* Update count, and requeue any remaining callbacks. */
1584	if (list != NULL) {
1585		*tail = rdp->nxtlist;
1586		rdp->nxtlist = list;
1587		for (i = 0; i < RCU_NEXT_SIZE; i++)
1588			if (&rdp->nxtlist == rdp->nxttail[i])
1589				rdp->nxttail[i] = tail;
1590			else
1591				break;
1592	}
1593	smp_mb(); /* List handling before counting for rcu_barrier(). */
1594	rdp->qlen_lazy -= count_lazy;
1595	rdp->qlen -= count;
1596	rdp->n_cbs_invoked += count;
1597
1598	/* Reinstate batch limit if we have worked down the excess. */
1599	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1600		rdp->blimit = blimit;
1601
1602	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1603	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1604		rdp->qlen_last_fqs_check = 0;
1605		rdp->n_force_qs_snap = rsp->n_force_qs;
1606	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1607		rdp->qlen_last_fqs_check = rdp->qlen;
1608
1609	local_irq_restore(flags);
1610
1611	/* Re-invoke RCU core processing if there are callbacks remaining. */
1612	if (cpu_has_callbacks_ready_to_invoke(rdp))
1613		invoke_rcu_core();
1614}
1615
1616/*
1617 * Check to see if this CPU is in a non-context-switch quiescent state
1618 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1619 * Also schedule RCU core processing.
1620 *
1621 * This function must be called from hardirq context.  It is normally
1622 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
1623 * false, there is no point in invoking rcu_check_callbacks().
1624 */
1625void rcu_check_callbacks(int cpu, int user)
1626{
1627	trace_rcu_utilization("Start scheduler-tick");
1628	increment_cpu_stall_ticks();
1629	if (user || rcu_is_cpu_rrupt_from_idle()) {
1630
1631		/*
1632		 * Get here if this CPU took its interrupt from user
1633		 * mode or from the idle loop, and if this is not a
1634		 * nested interrupt.  In this case, the CPU is in
1635		 * a quiescent state, so note it.
1636		 *
1637		 * No memory barrier is required here because both
1638		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1639		 * variables that other CPUs neither access nor modify,
1640		 * at least not while the corresponding CPU is online.
1641		 */
1642
1643		rcu_sched_qs(cpu);
1644		rcu_bh_qs(cpu);
1645
1646	} else if (!in_softirq()) {
1647
1648		/*
1649		 * Get here if this CPU did not take its interrupt from
1650		 * softirq, in other words, if it is not interrupting
1651		 * a rcu_bh read-side critical section.  This is an _bh
1652		 * critical section, so note it.
1653		 */
1654
1655		rcu_bh_qs(cpu);
1656	}
1657	rcu_preempt_check_callbacks(cpu);
1658	if (rcu_pending(cpu))
1659		invoke_rcu_core();
1660	trace_rcu_utilization("End scheduler-tick");
1661}
1662
1663/*
1664 * Scan the leaf rcu_node structures, processing dyntick state for any that
1665 * have not yet encountered a quiescent state, using the function specified.
1666 * Also initiate boosting for any threads blocked on the root rcu_node.
1667 *
1668 * The caller must have suppressed start of new grace periods.
1669 */
1670static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1671{
1672	unsigned long bit;
1673	int cpu;
1674	unsigned long flags;
1675	unsigned long mask;
1676	struct rcu_node *rnp;
1677
1678	rcu_for_each_leaf_node(rsp, rnp) {
1679		mask = 0;
1680		raw_spin_lock_irqsave(&rnp->lock, flags);
1681		if (!rcu_gp_in_progress(rsp)) {
1682			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1683			return;
1684		}
1685		if (rnp->qsmask == 0) {
1686			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1687			continue;
1688		}
1689		cpu = rnp->grplo;
1690		bit = 1;
1691		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1692			if ((rnp->qsmask & bit) != 0 &&
1693			    f(per_cpu_ptr(rsp->rda, cpu)))
1694				mask |= bit;
1695		}
1696		if (mask != 0) {
1697
1698			/* rcu_report_qs_rnp() releases rnp->lock. */
1699			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1700			continue;
1701		}
1702		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1703	}
1704	rnp = rcu_get_root(rsp);
1705	if (rnp->qsmask == 0) {
1706		raw_spin_lock_irqsave(&rnp->lock, flags);
1707		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1708	}
1709}
1710
1711/*
1712 * Force quiescent states on reluctant CPUs, and also detect which
1713 * CPUs are in dyntick-idle mode.
1714 */
1715static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1716{
1717	unsigned long flags;
1718	struct rcu_node *rnp = rcu_get_root(rsp);
1719
1720	trace_rcu_utilization("Start fqs");
1721	if (!rcu_gp_in_progress(rsp)) {
1722		trace_rcu_utilization("End fqs");
1723		return;  /* No grace period in progress, nothing to force. */
1724	}
1725	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1726		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1727		trace_rcu_utilization("End fqs");
1728		return;	/* Someone else is already on the job. */
1729	}
1730	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1731		goto unlock_fqs_ret; /* no emergency and done recently. */
1732	rsp->n_force_qs++;
1733	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1734	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1735	if(!rcu_gp_in_progress(rsp)) {
1736		rsp->n_force_qs_ngp++;
1737		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1738		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1739	}
1740	rsp->fqs_active = 1;
1741	switch (rsp->fqs_state) {
1742	case RCU_GP_IDLE:
1743	case RCU_GP_INIT:
1744
1745		break; /* grace period idle or initializing, ignore. */
1746
1747	case RCU_SAVE_DYNTICK:
1748		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1749			break; /* So gcc recognizes the dead code. */
1750
1751		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1752
1753		/* Record dyntick-idle state. */
1754		force_qs_rnp(rsp, dyntick_save_progress_counter);
1755		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1756		if (rcu_gp_in_progress(rsp))
1757			rsp->fqs_state = RCU_FORCE_QS;
1758		break;
1759
1760	case RCU_FORCE_QS:
1761
1762		/* Check dyntick-idle state, send IPI to laggarts. */
1763		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1764		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1765
1766		/* Leave state in case more forcing is required. */
1767
1768		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1769		break;
1770	}
1771	rsp->fqs_active = 0;
1772	if (rsp->fqs_need_gp) {
1773		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1774		rsp->fqs_need_gp = 0;
1775		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1776		trace_rcu_utilization("End fqs");
1777		return;
1778	}
1779	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1780unlock_fqs_ret:
1781	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1782	trace_rcu_utilization("End fqs");
1783}
1784
1785/*
1786 * This does the RCU core processing work for the specified rcu_state
1787 * and rcu_data structures.  This may be called only from the CPU to
1788 * whom the rdp belongs.
1789 */
1790static void
1791__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1792{
1793	unsigned long flags;
1794
1795	WARN_ON_ONCE(rdp->beenonline == 0);
1796
1797	/*
1798	 * If an RCU GP has gone long enough, go check for dyntick
1799	 * idle CPUs and, if needed, send resched IPIs.
1800	 */
1801	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1802		force_quiescent_state(rsp, 1);
1803
1804	/*
1805	 * Advance callbacks in response to end of earlier grace
1806	 * period that some other CPU ended.
1807	 */
1808	rcu_process_gp_end(rsp, rdp);
1809
1810	/* Update RCU state based on any recent quiescent states. */
1811	rcu_check_quiescent_state(rsp, rdp);
1812
1813	/* Does this CPU require a not-yet-started grace period? */
1814	if (cpu_needs_another_gp(rsp, rdp)) {
1815		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1816		rcu_start_gp(rsp, flags);  /* releases above lock */
1817	}
1818
1819	/* If there are callbacks ready, invoke them. */
1820	if (cpu_has_callbacks_ready_to_invoke(rdp))
1821		invoke_rcu_callbacks(rsp, rdp);
1822}
1823
1824/*
1825 * Do RCU core processing for the current CPU.
1826 */
1827static void rcu_process_callbacks(struct softirq_action *unused)
1828{
1829	trace_rcu_utilization("Start RCU core");
1830	__rcu_process_callbacks(&rcu_sched_state,
1831				&__get_cpu_var(rcu_sched_data));
1832	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1833	rcu_preempt_process_callbacks();
1834	trace_rcu_utilization("End RCU core");
1835}
1836
1837/*
1838 * Schedule RCU callback invocation.  If the specified type of RCU
1839 * does not support RCU priority boosting, just do a direct call,
1840 * otherwise wake up the per-CPU kernel kthread.  Note that because we
1841 * are running on the current CPU with interrupts disabled, the
1842 * rcu_cpu_kthread_task cannot disappear out from under us.
1843 */
1844static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1845{
1846	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1847		return;
1848	if (likely(!rsp->boost)) {
1849		rcu_do_batch(rsp, rdp);
1850		return;
1851	}
1852	invoke_rcu_callbacks_kthread();
1853}
1854
1855static void invoke_rcu_core(void)
1856{
1857	raise_softirq(RCU_SOFTIRQ);
1858}
1859
1860static void
1861__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1862	   struct rcu_state *rsp, bool lazy)
1863{
1864	unsigned long flags;
1865	struct rcu_data *rdp;
1866
1867	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1868	debug_rcu_head_queue(head);
1869	head->func = func;
1870	head->next = NULL;
1871
1872	smp_mb(); /* Ensure RCU update seen before callback registry. */
1873
1874	/*
1875	 * Opportunistically note grace-period endings and beginnings.
1876	 * Note that we might see a beginning right after we see an
1877	 * end, but never vice versa, since this CPU has to pass through
1878	 * a quiescent state betweentimes.
1879	 */
1880	local_irq_save(flags);
1881	rdp = this_cpu_ptr(rsp->rda);
1882
1883	/* Add the callback to our list. */
1884	rdp->qlen++;
1885	if (lazy)
1886		rdp->qlen_lazy++;
1887	else
1888		rcu_idle_count_callbacks_posted();
1889	smp_mb();  /* Count before adding callback for rcu_barrier(). */
1890	*rdp->nxttail[RCU_NEXT_TAIL] = head;
1891	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1892
1893	if (__is_kfree_rcu_offset((unsigned long)func))
1894		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1895					 rdp->qlen_lazy, rdp->qlen);
1896	else
1897		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1898
1899	/* If interrupts were disabled, don't dive into RCU core. */
1900	if (irqs_disabled_flags(flags)) {
1901		local_irq_restore(flags);
1902		return;
1903	}
1904
1905	/*
1906	 * Force the grace period if too many callbacks or too long waiting.
1907	 * Enforce hysteresis, and don't invoke force_quiescent_state()
1908	 * if some other CPU has recently done so.  Also, don't bother
1909	 * invoking force_quiescent_state() if the newly enqueued callback
1910	 * is the only one waiting for a grace period to complete.
1911	 */
1912	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1913
1914		/* Are we ignoring a completed grace period? */
1915		rcu_process_gp_end(rsp, rdp);
1916		check_for_new_grace_period(rsp, rdp);
1917
1918		/* Start a new grace period if one not already started. */
1919		if (!rcu_gp_in_progress(rsp)) {
1920			unsigned long nestflag;
1921			struct rcu_node *rnp_root = rcu_get_root(rsp);
1922
1923			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1924			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
1925		} else {
1926			/* Give the grace period a kick. */
1927			rdp->blimit = LONG_MAX;
1928			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1929			    *rdp->nxttail[RCU_DONE_TAIL] != head)
1930				force_quiescent_state(rsp, 0);
1931			rdp->n_force_qs_snap = rsp->n_force_qs;
1932			rdp->qlen_last_fqs_check = rdp->qlen;
1933		}
1934	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1935		force_quiescent_state(rsp, 1);
1936	local_irq_restore(flags);
1937}
1938
1939/*
1940 * Queue an RCU-sched callback for invocation after a grace period.
1941 */
1942void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1943{
1944	__call_rcu(head, func, &rcu_sched_state, 0);
1945}
1946EXPORT_SYMBOL_GPL(call_rcu_sched);
1947
1948/*
1949 * Queue an RCU callback for invocation after a quicker grace period.
1950 */
1951void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1952{
1953	__call_rcu(head, func, &rcu_bh_state, 0);
1954}
1955EXPORT_SYMBOL_GPL(call_rcu_bh);
1956
1957/*
1958 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1959 * any blocking grace-period wait automatically implies a grace period
1960 * if there is only one CPU online at any point time during execution
1961 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
1962 * occasionally incorrectly indicate that there are multiple CPUs online
1963 * when there was in fact only one the whole time, as this just adds
1964 * some overhead: RCU still operates correctly.
1965 *
1966 * Of course, sampling num_online_cpus() with preemption enabled can
1967 * give erroneous results if there are concurrent CPU-hotplug operations.
1968 * For example, given a demonic sequence of preemptions in num_online_cpus()
1969 * and CPU-hotplug operations, there could be two or more CPUs online at
1970 * all times, but num_online_cpus() might well return one (or even zero).
1971 *
1972 * However, all such demonic sequences require at least one CPU-offline
1973 * operation.  Furthermore, rcu_blocking_is_gp() giving the wrong answer
1974 * is only a problem if there is an RCU read-side critical section executing
1975 * throughout.  But RCU-sched and RCU-bh read-side critical sections
1976 * disable either preemption or bh, which prevents a CPU from going offline.
1977 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1978 * that there is only one CPU when in fact there was more than one throughout
1979 * is when there were no RCU readers in the system.  If there are no
1980 * RCU readers, the grace period by definition can be of zero length,
1981 * regardless of the number of online CPUs.
1982 */
1983static inline int rcu_blocking_is_gp(void)
1984{
1985	might_sleep();  /* Check for RCU read-side critical section. */
1986	return num_online_cpus() <= 1;
1987}
1988
1989/**
1990 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1991 *
1992 * Control will return to the caller some time after a full rcu-sched
1993 * grace period has elapsed, in other words after all currently executing
1994 * rcu-sched read-side critical sections have completed.   These read-side
1995 * critical sections are delimited by rcu_read_lock_sched() and
1996 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
1997 * local_irq_disable(), and so on may be used in place of
1998 * rcu_read_lock_sched().
1999 *
2000 * This means that all preempt_disable code sequences, including NMI and
2001 * hardware-interrupt handlers, in progress on entry will have completed
2002 * before this primitive returns.  However, this does not guarantee that
2003 * softirq handlers will have completed, since in some kernels, these
2004 * handlers can run in process context, and can block.
2005 *
2006 * This primitive provides the guarantees made by the (now removed)
2007 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2008 * guarantees that rcu_read_lock() sections will have completed.
2009 * In "classic RCU", these two guarantees happen to be one and
2010 * the same, but can differ in realtime RCU implementations.
2011 */
2012void synchronize_sched(void)
2013{
2014	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2015			   !lock_is_held(&rcu_lock_map) &&
2016			   !lock_is_held(&rcu_sched_lock_map),
2017			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2018	if (rcu_blocking_is_gp())
2019		return;
2020	wait_rcu_gp(call_rcu_sched);
2021}
2022EXPORT_SYMBOL_GPL(synchronize_sched);
2023
2024/**
2025 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2026 *
2027 * Control will return to the caller some time after a full rcu_bh grace
2028 * period has elapsed, in other words after all currently executing rcu_bh
2029 * read-side critical sections have completed.  RCU read-side critical
2030 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2031 * and may be nested.
2032 */
2033void synchronize_rcu_bh(void)
2034{
2035	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2036			   !lock_is_held(&rcu_lock_map) &&
2037			   !lock_is_held(&rcu_sched_lock_map),
2038			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2039	if (rcu_blocking_is_gp())
2040		return;
2041	wait_rcu_gp(call_rcu_bh);
2042}
2043EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2044
2045static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2046static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2047
2048static int synchronize_sched_expedited_cpu_stop(void *data)
2049{
2050	/*
2051	 * There must be a full memory barrier on each affected CPU
2052	 * between the time that try_stop_cpus() is called and the
2053	 * time that it returns.
2054	 *
2055	 * In the current initial implementation of cpu_stop, the
2056	 * above condition is already met when the control reaches
2057	 * this point and the following smp_mb() is not strictly
2058	 * necessary.  Do smp_mb() anyway for documentation and
2059	 * robustness against future implementation changes.
2060	 */
2061	smp_mb(); /* See above comment block. */
2062	return 0;
2063}
2064
2065/**
2066 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2067 *
2068 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2069 * approach to force the grace period to end quickly.  This consumes
2070 * significant time on all CPUs and is unfriendly to real-time workloads,
2071 * so is thus not recommended for any sort of common-case code.  In fact,
2072 * if you are using synchronize_sched_expedited() in a loop, please
2073 * restructure your code to batch your updates, and then use a single
2074 * synchronize_sched() instead.
2075 *
2076 * Note that it is illegal to call this function while holding any lock
2077 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2078 * to call this function from a CPU-hotplug notifier.  Failing to observe
2079 * these restriction will result in deadlock.
2080 *
2081 * This implementation can be thought of as an application of ticket
2082 * locking to RCU, with sync_sched_expedited_started and
2083 * sync_sched_expedited_done taking on the roles of the halves
2084 * of the ticket-lock word.  Each task atomically increments
2085 * sync_sched_expedited_started upon entry, snapshotting the old value,
2086 * then attempts to stop all the CPUs.  If this succeeds, then each
2087 * CPU will have executed a context switch, resulting in an RCU-sched
2088 * grace period.  We are then done, so we use atomic_cmpxchg() to
2089 * update sync_sched_expedited_done to match our snapshot -- but
2090 * only if someone else has not already advanced past our snapshot.
2091 *
2092 * On the other hand, if try_stop_cpus() fails, we check the value
2093 * of sync_sched_expedited_done.  If it has advanced past our
2094 * initial snapshot, then someone else must have forced a grace period
2095 * some time after we took our snapshot.  In this case, our work is
2096 * done for us, and we can simply return.  Otherwise, we try again,
2097 * but keep our initial snapshot for purposes of checking for someone
2098 * doing our work for us.
2099 *
2100 * If we fail too many times in a row, we fall back to synchronize_sched().
2101 */
2102void synchronize_sched_expedited(void)
2103{
2104	int firstsnap, s, snap, trycount = 0;
2105
2106	/* Note that atomic_inc_return() implies full memory barrier. */
2107	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2108	get_online_cpus();
2109	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2110
2111	/*
2112	 * Each pass through the following loop attempts to force a
2113	 * context switch on each CPU.
2114	 */
2115	while (try_stop_cpus(cpu_online_mask,
2116			     synchronize_sched_expedited_cpu_stop,
2117			     NULL) == -EAGAIN) {
2118		put_online_cpus();
2119
2120		/* No joy, try again later.  Or just synchronize_sched(). */
2121		if (trycount++ < 10)
2122			udelay(trycount * num_online_cpus());
2123		else {
2124			synchronize_sched();
2125			return;
2126		}
2127
2128		/* Check to see if someone else did our work for us. */
2129		s = atomic_read(&sync_sched_expedited_done);
2130		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2131			smp_mb(); /* ensure test happens before caller kfree */
2132			return;
2133		}
2134
2135		/*
2136		 * Refetching sync_sched_expedited_started allows later
2137		 * callers to piggyback on our grace period.  We subtract
2138		 * 1 to get the same token that the last incrementer got.
2139		 * We retry after they started, so our grace period works
2140		 * for them, and they started after our first try, so their
2141		 * grace period works for us.
2142		 */
2143		get_online_cpus();
2144		snap = atomic_read(&sync_sched_expedited_started);
2145		smp_mb(); /* ensure read is before try_stop_cpus(). */
2146	}
2147
2148	/*
2149	 * Everyone up to our most recent fetch is covered by our grace
2150	 * period.  Update the counter, but only if our work is still
2151	 * relevant -- which it won't be if someone who started later
2152	 * than we did beat us to the punch.
2153	 */
2154	do {
2155		s = atomic_read(&sync_sched_expedited_done);
2156		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2157			smp_mb(); /* ensure test happens before caller kfree */
2158			break;
2159		}
2160	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2161
2162	put_online_cpus();
2163}
2164EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2165
2166/*
2167 * Check to see if there is any immediate RCU-related work to be done
2168 * by the current CPU, for the specified type of RCU, returning 1 if so.
2169 * The checks are in order of increasing expense: checks that can be
2170 * carried out against CPU-local state are performed first.  However,
2171 * we must check for CPU stalls first, else we might not get a chance.
2172 */
2173static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2174{
2175	struct rcu_node *rnp = rdp->mynode;
2176
2177	rdp->n_rcu_pending++;
2178
2179	/* Check for CPU stalls, if enabled. */
2180	check_cpu_stall(rsp, rdp);
2181
2182	/* Is the RCU core waiting for a quiescent state from this CPU? */
2183	if (rcu_scheduler_fully_active &&
2184	    rdp->qs_pending && !rdp->passed_quiesce) {
2185
2186		/*
2187		 * If force_quiescent_state() coming soon and this CPU
2188		 * needs a quiescent state, and this is either RCU-sched
2189		 * or RCU-bh, force a local reschedule.
2190		 */
2191		rdp->n_rp_qs_pending++;
2192		if (!rdp->preemptible &&
2193		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2194				 jiffies))
2195			set_need_resched();
2196	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2197		rdp->n_rp_report_qs++;
2198		return 1;
2199	}
2200
2201	/* Does this CPU have callbacks ready to invoke? */
2202	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2203		rdp->n_rp_cb_ready++;
2204		return 1;
2205	}
2206
2207	/* Has RCU gone idle with this CPU needing another grace period? */
2208	if (cpu_needs_another_gp(rsp, rdp)) {
2209		rdp->n_rp_cpu_needs_gp++;
2210		return 1;
2211	}
2212
2213	/* Has another RCU grace period completed?  */
2214	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2215		rdp->n_rp_gp_completed++;
2216		return 1;
2217	}
2218
2219	/* Has a new RCU grace period started? */
2220	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2221		rdp->n_rp_gp_started++;
2222		return 1;
2223	}
2224
2225	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2226	if (rcu_gp_in_progress(rsp) &&
2227	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2228		rdp->n_rp_need_fqs++;
2229		return 1;
2230	}
2231
2232	/* nothing to do */
2233	rdp->n_rp_need_nothing++;
2234	return 0;
2235}
2236
2237/*
2238 * Check to see if there is any immediate RCU-related work to be done
2239 * by the current CPU, returning 1 if so.  This function is part of the
2240 * RCU implementation; it is -not- an exported member of the RCU API.
2241 */
2242static int rcu_pending(int cpu)
2243{
2244	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2245	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2246	       rcu_preempt_pending(cpu);
2247}
2248
2249/*
2250 * Check to see if any future RCU-related work will need to be done
2251 * by the current CPU, even if none need be done immediately, returning
2252 * 1 if so.
2253 */
2254static int rcu_cpu_has_callbacks(int cpu)
2255{
2256	/* RCU callbacks either ready or pending? */
2257	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2258	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2259	       rcu_preempt_cpu_has_callbacks(cpu);
2260}
2261
2262/*
2263 * RCU callback function for _rcu_barrier().  If we are last, wake
2264 * up the task executing _rcu_barrier().
2265 */
2266static void rcu_barrier_callback(struct rcu_head *notused)
2267{
2268	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2269		complete(&rcu_barrier_completion);
2270}
2271
2272/*
2273 * Called with preemption disabled, and from cross-cpu IRQ context.
2274 */
2275static void rcu_barrier_func(void *type)
2276{
2277	int cpu = smp_processor_id();
2278	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2279	void (*call_rcu_func)(struct rcu_head *head,
2280			      void (*func)(struct rcu_head *head));
2281
2282	atomic_inc(&rcu_barrier_cpu_count);
2283	call_rcu_func = type;
2284	call_rcu_func(head, rcu_barrier_callback);
2285}
2286
2287/*
2288 * Orchestrate the specified type of RCU barrier, waiting for all
2289 * RCU callbacks of the specified type to complete.
2290 */
2291static void _rcu_barrier(struct rcu_state *rsp,
2292			 void (*call_rcu_func)(struct rcu_head *head,
2293					       void (*func)(struct rcu_head *head)))
2294{
2295	int cpu;
2296	unsigned long flags;
2297	struct rcu_data *rdp;
2298	struct rcu_head rh;
2299
2300	init_rcu_head_on_stack(&rh);
2301
2302	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2303	mutex_lock(&rcu_barrier_mutex);
2304
2305	smp_mb();  /* Prevent any prior operations from leaking in. */
2306
2307	/*
2308	 * Initialize the count to one rather than to zero in order to
2309	 * avoid a too-soon return to zero in case of a short grace period
2310	 * (or preemption of this task).  Also flag this task as doing
2311	 * an rcu_barrier().  This will prevent anyone else from adopting
2312	 * orphaned callbacks, which could cause otherwise failure if a
2313	 * CPU went offline and quickly came back online.  To see this,
2314	 * consider the following sequence of events:
2315	 *
2316	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
2317	 * 2.	CPU 1 goes offline, orphaning its callbacks.
2318	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
2319	 * 4.	CPU 1 comes back online.
2320	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
2321	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
2322	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2323	 */
2324	init_completion(&rcu_barrier_completion);
2325	atomic_set(&rcu_barrier_cpu_count, 1);
2326	raw_spin_lock_irqsave(&rsp->onofflock, flags);
2327	rsp->rcu_barrier_in_progress = current;
2328	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2329
2330	/*
2331	 * Force every CPU with callbacks to register a new callback
2332	 * that will tell us when all the preceding callbacks have
2333	 * been invoked.  If an offline CPU has callbacks, wait for
2334	 * it to either come back online or to finish orphaning those
2335	 * callbacks.
2336	 */
2337	for_each_possible_cpu(cpu) {
2338		preempt_disable();
2339		rdp = per_cpu_ptr(rsp->rda, cpu);
2340		if (cpu_is_offline(cpu)) {
2341			preempt_enable();
2342			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2343				schedule_timeout_interruptible(1);
2344		} else if (ACCESS_ONCE(rdp->qlen)) {
2345			smp_call_function_single(cpu, rcu_barrier_func,
2346						 (void *)call_rcu_func, 1);
2347			preempt_enable();
2348		} else {
2349			preempt_enable();
2350		}
2351	}
2352
2353	/*
2354	 * Now that all online CPUs have rcu_barrier_callback() callbacks
2355	 * posted, we can adopt all of the orphaned callbacks and place
2356	 * an rcu_barrier_callback() callback after them.  When that is done,
2357	 * we are guaranteed to have an rcu_barrier_callback() callback
2358	 * following every callback that could possibly have been
2359	 * registered before _rcu_barrier() was called.
2360	 */
2361	raw_spin_lock_irqsave(&rsp->onofflock, flags);
2362	rcu_adopt_orphan_cbs(rsp);
2363	rsp->rcu_barrier_in_progress = NULL;
2364	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2365	atomic_inc(&rcu_barrier_cpu_count);
2366	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2367	call_rcu_func(&rh, rcu_barrier_callback);
2368
2369	/*
2370	 * Now that we have an rcu_barrier_callback() callback on each
2371	 * CPU, and thus each counted, remove the initial count.
2372	 */
2373	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2374		complete(&rcu_barrier_completion);
2375
2376	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2377	wait_for_completion(&rcu_barrier_completion);
2378
2379	/* Other rcu_barrier() invocations can now safely proceed. */
2380	mutex_unlock(&rcu_barrier_mutex);
2381
2382	destroy_rcu_head_on_stack(&rh);
2383}
2384
2385/**
2386 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2387 */
2388void rcu_barrier_bh(void)
2389{
2390	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2391}
2392EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2393
2394/**
2395 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2396 */
2397void rcu_barrier_sched(void)
2398{
2399	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2400}
2401EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2402
2403/*
2404 * Do boot-time initialization of a CPU's per-CPU RCU data.
2405 */
2406static void __init
2407rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2408{
2409	unsigned long flags;
2410	int i;
2411	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2412	struct rcu_node *rnp = rcu_get_root(rsp);
2413
2414	/* Set up local state, ensuring consistent view of global state. */
2415	raw_spin_lock_irqsave(&rnp->lock, flags);
2416	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2417	rdp->nxtlist = NULL;
2418	for (i = 0; i < RCU_NEXT_SIZE; i++)
2419		rdp->nxttail[i] = &rdp->nxtlist;
2420	rdp->qlen_lazy = 0;
2421	rdp->qlen = 0;
2422	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2423	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2424	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2425	rdp->cpu = cpu;
2426	rdp->rsp = rsp;
2427	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2428}
2429
2430/*
2431 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
2432 * offline event can be happening at a given time.  Note also that we
2433 * can accept some slop in the rsp->completed access due to the fact
2434 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2435 */
2436static void __cpuinit
2437rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2438{
2439	unsigned long flags;
2440	unsigned long mask;
2441	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2442	struct rcu_node *rnp = rcu_get_root(rsp);
2443
2444	/* Set up local state, ensuring consistent view of global state. */
2445	raw_spin_lock_irqsave(&rnp->lock, flags);
2446	rdp->beenonline = 1;	 /* We have now been online. */
2447	rdp->preemptible = preemptible;
2448	rdp->qlen_last_fqs_check = 0;
2449	rdp->n_force_qs_snap = rsp->n_force_qs;
2450	rdp->blimit = blimit;
2451	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2452	atomic_set(&rdp->dynticks->dynticks,
2453		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2454	rcu_prepare_for_idle_init(cpu);
2455	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2456
2457	/*
2458	 * A new grace period might start here.  If so, we won't be part
2459	 * of it, but that is OK, as we are currently in a quiescent state.
2460	 */
2461
2462	/* Exclude any attempts to start a new GP on large systems. */
2463	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2464
2465	/* Add CPU to rcu_node bitmasks. */
2466	rnp = rdp->mynode;
2467	mask = rdp->grpmask;
2468	do {
2469		/* Exclude any attempts to start a new GP on small systems. */
2470		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2471		rnp->qsmaskinit |= mask;
2472		mask = rnp->grpmask;
2473		if (rnp == rdp->mynode) {
2474			/*
2475			 * If there is a grace period in progress, we will
2476			 * set up to wait for it next time we run the
2477			 * RCU core code.
2478			 */
2479			rdp->gpnum = rnp->completed;
2480			rdp->completed = rnp->completed;
2481			rdp->passed_quiesce = 0;
2482			rdp->qs_pending = 0;
2483			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2484			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2485		}
2486		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2487		rnp = rnp->parent;
2488	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2489
2490	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2491}
2492
2493static void __cpuinit rcu_prepare_cpu(int cpu)
2494{
2495	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2496	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2497	rcu_preempt_init_percpu_data(cpu);
2498}
2499
2500/*
2501 * Handle CPU online/offline notification events.
2502 */
2503static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2504				    unsigned long action, void *hcpu)
2505{
2506	long cpu = (long)hcpu;
2507	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2508	struct rcu_node *rnp = rdp->mynode;
2509
2510	trace_rcu_utilization("Start CPU hotplug");
2511	switch (action) {
2512	case CPU_UP_PREPARE:
2513	case CPU_UP_PREPARE_FROZEN:
2514		rcu_prepare_cpu(cpu);
2515		rcu_prepare_kthreads(cpu);
2516		break;
2517	case CPU_ONLINE:
2518	case CPU_DOWN_FAILED:
2519		rcu_node_kthread_setaffinity(rnp, -1);
2520		rcu_cpu_kthread_setrt(cpu, 1);
2521		break;
2522	case CPU_DOWN_PREPARE:
2523		rcu_node_kthread_setaffinity(rnp, cpu);
2524		rcu_cpu_kthread_setrt(cpu, 0);
2525		break;
2526	case CPU_DYING:
2527	case CPU_DYING_FROZEN:
2528		/*
2529		 * The whole machine is "stopped" except this CPU, so we can
2530		 * touch any data without introducing corruption. We send the
2531		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2532		 */
2533		rcu_cleanup_dying_cpu(&rcu_bh_state);
2534		rcu_cleanup_dying_cpu(&rcu_sched_state);
2535		rcu_preempt_cleanup_dying_cpu();
2536		rcu_cleanup_after_idle(cpu);
2537		break;
2538	case CPU_DEAD:
2539	case CPU_DEAD_FROZEN:
2540	case CPU_UP_CANCELED:
2541	case CPU_UP_CANCELED_FROZEN:
2542		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2543		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2544		rcu_preempt_cleanup_dead_cpu(cpu);
2545		break;
2546	default:
2547		break;
2548	}
2549	trace_rcu_utilization("End CPU hotplug");
2550	return NOTIFY_OK;
2551}
2552
2553/*
2554 * This function is invoked towards the end of the scheduler's initialization
2555 * process.  Before this is called, the idle task might contain
2556 * RCU read-side critical sections (during which time, this idle
2557 * task is booting the system).  After this function is called, the
2558 * idle tasks are prohibited from containing RCU read-side critical
2559 * sections.  This function also enables RCU lockdep checking.
2560 */
2561void rcu_scheduler_starting(void)
2562{
2563	WARN_ON(num_online_cpus() != 1);
2564	WARN_ON(nr_context_switches() > 0);
2565	rcu_scheduler_active = 1;
2566}
2567
2568/*
2569 * Compute the per-level fanout, either using the exact fanout specified
2570 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2571 */
2572#ifdef CONFIG_RCU_FANOUT_EXACT
2573static void __init rcu_init_levelspread(struct rcu_state *rsp)
2574{
2575	int i;
2576
2577	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2578		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2579	rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
2580}
2581#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2582static void __init rcu_init_levelspread(struct rcu_state *rsp)
2583{
2584	int ccur;
2585	int cprv;
2586	int i;
2587
2588	cprv = NR_CPUS;
2589	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2590		ccur = rsp->levelcnt[i];
2591		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2592		cprv = ccur;
2593	}
2594}
2595#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2596
2597/*
2598 * Helper function for rcu_init() that initializes one rcu_state structure.
2599 */
2600static void __init rcu_init_one(struct rcu_state *rsp,
2601		struct rcu_data __percpu *rda)
2602{
2603	static char *buf[] = { "rcu_node_level_0",
2604			       "rcu_node_level_1",
2605			       "rcu_node_level_2",
2606			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2607	int cpustride = 1;
2608	int i;
2609	int j;
2610	struct rcu_node *rnp;
2611
2612	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
2613
2614	/* Initialize the level-tracking arrays. */
2615
2616	for (i = 1; i < NUM_RCU_LVLS; i++)
2617		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2618	rcu_init_levelspread(rsp);
2619
2620	/* Initialize the elements themselves, starting from the leaves. */
2621
2622	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2623		cpustride *= rsp->levelspread[i];
2624		rnp = rsp->level[i];
2625		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2626			raw_spin_lock_init(&rnp->lock);
2627			lockdep_set_class_and_name(&rnp->lock,
2628						   &rcu_node_class[i], buf[i]);
2629			rnp->gpnum = 0;
2630			rnp->qsmask = 0;
2631			rnp->qsmaskinit = 0;
2632			rnp->grplo = j * cpustride;
2633			rnp->grphi = (j + 1) * cpustride - 1;
2634			if (rnp->grphi >= NR_CPUS)
2635				rnp->grphi = NR_CPUS - 1;
2636			if (i == 0) {
2637				rnp->grpnum = 0;
2638				rnp->grpmask = 0;
2639				rnp->parent = NULL;
2640			} else {
2641				rnp->grpnum = j % rsp->levelspread[i - 1];
2642				rnp->grpmask = 1UL << rnp->grpnum;
2643				rnp->parent = rsp->level[i - 1] +
2644					      j / rsp->levelspread[i - 1];
2645			}
2646			rnp->level = i;
2647			INIT_LIST_HEAD(&rnp->blkd_tasks);
2648		}
2649	}
2650
2651	rsp->rda = rda;
2652	rnp = rsp->level[NUM_RCU_LVLS - 1];
2653	for_each_possible_cpu(i) {
2654		while (i > rnp->grphi)
2655			rnp++;
2656		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2657		rcu_boot_init_percpu_data(i, rsp);
2658	}
2659}
2660
2661void __init rcu_init(void)
2662{
2663	int cpu;
2664
2665	rcu_bootup_announce();
2666	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2667	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2668	__rcu_init_preempt();
2669	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2670
2671	/*
2672	 * We don't need protection against CPU-hotplug here because
2673	 * this is called early in boot, before either interrupts
2674	 * or the scheduler are operational.
2675	 */
2676	cpu_notifier(rcu_cpu_notify, 0);
2677	for_each_online_cpu(cpu)
2678		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2679	check_cpu_stall_init();
2680}
2681
2682#include "rcutree_plugin.h"