Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.17
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <linux/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_mirror {
  70	ssize_t count;
  71};
  72
  73struct nfs_direct_req {
  74	struct kref		kref;		/* release manager */
  75
  76	/* I/O parameters */
  77	struct nfs_open_context	*ctx;		/* file open context info */
  78	struct nfs_lock_context *l_ctx;		/* Lock context info */
  79	struct kiocb *		iocb;		/* controlling i/o request */
  80	struct inode *		inode;		/* target file of i/o */
  81
  82	/* completion state */
  83	atomic_t		io_count;	/* i/os we're waiting for */
  84	spinlock_t		lock;		/* protect completion state */
  85
  86	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  87	int			mirror_count;
  88
  89	loff_t			io_start;	/* Start offset for I/O */
  90	ssize_t			count,		/* bytes actually processed */
  91				max_count,	/* max expected count */
  92				bytes_left,	/* bytes left to be sent */
  93				error;		/* any reported error */
  94	struct completion	completion;	/* wait for i/o completion */
  95
  96	/* commit state */
  97	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  98	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  99	struct work_struct	work;
 100	int			flags;
 101#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 102#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 103	struct nfs_writeverf	verf;		/* unstable write verifier */
 104};
 105
 106static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 107static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 108static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
 109static void nfs_direct_write_schedule_work(struct work_struct *work);
 110
 111static inline void get_dreq(struct nfs_direct_req *dreq)
 112{
 113	atomic_inc(&dreq->io_count);
 114}
 115
 116static inline int put_dreq(struct nfs_direct_req *dreq)
 117{
 118	return atomic_dec_and_test(&dreq->io_count);
 119}
 120
 121static void
 122nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
 123{
 124	int i;
 125	ssize_t count;
 126
 127	WARN_ON_ONCE(dreq->count >= dreq->max_count);
 128
 129	if (dreq->mirror_count == 1) {
 130		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
 131		dreq->count += hdr->good_bytes;
 132	} else {
 133		/* mirrored writes */
 134		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
 135		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
 136			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
 137			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
 138		}
 139		/* update the dreq->count by finding the minimum agreed count from all
 140		 * mirrors */
 141		count = dreq->mirrors[0].count;
 142
 143		for (i = 1; i < dreq->mirror_count; i++)
 144			count = min(count, dreq->mirrors[i].count);
 145
 146		dreq->count = count;
 147	}
 148}
 149
 150/*
 151 * nfs_direct_select_verf - select the right verifier
 152 * @dreq - direct request possibly spanning multiple servers
 153 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
 154 * @commit_idx - commit bucket index for the DS
 155 *
 156 * returns the correct verifier to use given the role of the server
 157 */
 158static struct nfs_writeverf *
 159nfs_direct_select_verf(struct nfs_direct_req *dreq,
 160		       struct nfs_client *ds_clp,
 161		       int commit_idx)
 162{
 163	struct nfs_writeverf *verfp = &dreq->verf;
 164
 165#ifdef CONFIG_NFS_V4_1
 166	/*
 167	 * pNFS is in use, use the DS verf except commit_through_mds is set
 168	 * for layout segment where nbuckets is zero.
 169	 */
 170	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
 171		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
 172			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
 173		else
 174			WARN_ON_ONCE(1);
 175	}
 176#endif
 177	return verfp;
 178}
 179
 180
 181/*
 182 * nfs_direct_set_hdr_verf - set the write/commit verifier
 183 * @dreq - direct request possibly spanning multiple servers
 184 * @hdr - pageio header to validate against previously seen verfs
 185 *
 186 * Set the server's (MDS or DS) "seen" verifier
 187 */
 188static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
 189				    struct nfs_pgio_header *hdr)
 190{
 191	struct nfs_writeverf *verfp;
 192
 193	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 194	WARN_ON_ONCE(verfp->committed >= 0);
 195	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 196	WARN_ON_ONCE(verfp->committed < 0);
 197}
 198
 199static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
 200		const struct nfs_writeverf *v2)
 201{
 202	return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
 203}
 204
 205/*
 206 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
 207 * @dreq - direct request possibly spanning multiple servers
 208 * @hdr - pageio header to validate against previously seen verf
 209 *
 210 * set the server's "seen" verf if not initialized.
 211 * returns result of comparison between @hdr->verf and the "seen"
 212 * verf of the server used by @hdr (DS or MDS)
 213 */
 214static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
 215					  struct nfs_pgio_header *hdr)
 216{
 217	struct nfs_writeverf *verfp;
 218
 219	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 220	if (verfp->committed < 0) {
 221		nfs_direct_set_hdr_verf(dreq, hdr);
 222		return 0;
 223	}
 224	return nfs_direct_cmp_verf(verfp, &hdr->verf);
 225}
 226
 227/*
 228 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
 229 * @dreq - direct request possibly spanning multiple servers
 230 * @data - commit data to validate against previously seen verf
 231 *
 232 * returns result of comparison between @data->verf and the verf of
 233 * the server used by @data (DS or MDS)
 234 */
 235static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
 236					   struct nfs_commit_data *data)
 237{
 238	struct nfs_writeverf *verfp;
 239
 240	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
 241					 data->ds_commit_index);
 242
 243	/* verifier not set so always fail */
 244	if (verfp->committed < 0)
 245		return 1;
 246
 247	return nfs_direct_cmp_verf(verfp, &data->verf);
 248}
 249
 250/**
 251 * nfs_direct_IO - NFS address space operation for direct I/O
 
 252 * @iocb: target I/O control block
 253 * @iter: I/O buffer
 
 
 254 *
 255 * The presence of this routine in the address space ops vector means
 256 * the NFS client supports direct I/O. However, for most direct IO, we
 257 * shunt off direct read and write requests before the VFS gets them,
 258 * so this method is only ever called for swap.
 259 */
 260ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 261{
 262	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
 
 263
 264	/* we only support swap file calling nfs_direct_IO */
 265	if (!IS_SWAPFILE(inode))
 266		return 0;
 267
 268	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
 269
 270	if (iov_iter_rw(iter) == READ)
 271		return nfs_file_direct_read(iocb, iter);
 272	return nfs_file_direct_write(iocb, iter);
 273}
 274
 275static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 276{
 277	unsigned int i;
 278	for (i = 0; i < npages; i++)
 279		put_page(pages[i]);
 280}
 281
 282void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 283			      struct nfs_direct_req *dreq)
 284{
 285	cinfo->inode = dreq->inode;
 286	cinfo->mds = &dreq->mds_cinfo;
 287	cinfo->ds = &dreq->ds_cinfo;
 288	cinfo->dreq = dreq;
 289	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 290}
 291
 292static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
 293					     struct nfs_pageio_descriptor *pgio,
 294					     struct nfs_page *req)
 295{
 296	int mirror_count = 1;
 297
 298	if (pgio->pg_ops->pg_get_mirror_count)
 299		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
 300
 301	dreq->mirror_count = mirror_count;
 302}
 303
 304static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 305{
 306	struct nfs_direct_req *dreq;
 307
 308	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 309	if (!dreq)
 310		return NULL;
 311
 312	kref_init(&dreq->kref);
 313	kref_get(&dreq->kref);
 314	init_completion(&dreq->completion);
 315	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 316	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
 317	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 318	dreq->mirror_count = 1;
 319	spin_lock_init(&dreq->lock);
 320
 321	return dreq;
 322}
 323
 324static void nfs_direct_req_free(struct kref *kref)
 325{
 326	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 327
 328	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
 329	if (dreq->l_ctx != NULL)
 330		nfs_put_lock_context(dreq->l_ctx);
 331	if (dreq->ctx != NULL)
 332		put_nfs_open_context(dreq->ctx);
 333	kmem_cache_free(nfs_direct_cachep, dreq);
 334}
 335
 336static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 337{
 338	kref_put(&dreq->kref, nfs_direct_req_free);
 339}
 340
 341ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 342{
 343	return dreq->bytes_left;
 344}
 345EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 346
 347/*
 348 * Collects and returns the final error value/byte-count.
 349 */
 350static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 351{
 352	ssize_t result = -EIOCBQUEUED;
 353
 354	/* Async requests don't wait here */
 355	if (dreq->iocb)
 356		goto out;
 357
 358	result = wait_for_completion_killable(&dreq->completion);
 359
 360	if (!result) {
 361		result = dreq->count;
 362		WARN_ON_ONCE(dreq->count < 0);
 363	}
 364	if (!result)
 365		result = dreq->error;
 
 
 366
 367out:
 368	return (ssize_t) result;
 369}
 370
 371/*
 372 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 373 * the iocb is still valid here if this is a synchronous request.
 374 */
 375static void nfs_direct_complete(struct nfs_direct_req *dreq)
 376{
 377	struct inode *inode = dreq->inode;
 378
 379	inode_dio_end(inode);
 380
 381	if (dreq->iocb) {
 382		long res = (long) dreq->error;
 383		if (dreq->count != 0) {
 384			res = (long) dreq->count;
 385			WARN_ON_ONCE(dreq->count < 0);
 386		}
 387		dreq->iocb->ki_complete(dreq->iocb, res, 0);
 388	}
 389
 390	complete(&dreq->completion);
 391
 392	nfs_direct_req_release(dreq);
 393}
 394
 
 
 
 
 
 
 
 
 
 
 395static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 396{
 397	unsigned long bytes = 0;
 398	struct nfs_direct_req *dreq = hdr->dreq;
 399
 400	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 401		goto out_put;
 402
 403	spin_lock(&dreq->lock);
 404	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 405		dreq->error = hdr->error;
 406	else
 407		nfs_direct_good_bytes(dreq, hdr);
 408
 409	spin_unlock(&dreq->lock);
 410
 411	while (!list_empty(&hdr->pages)) {
 412		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 413		struct page *page = req->wb_page;
 414
 415		if (!PageCompound(page) && bytes < hdr->good_bytes)
 416			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 417		bytes += req->wb_bytes;
 418		nfs_list_remove_request(req);
 419		nfs_release_request(req);
 420	}
 421out_put:
 422	if (put_dreq(dreq))
 423		nfs_direct_complete(dreq);
 424	hdr->release(hdr);
 425}
 426
 427static void nfs_read_sync_pgio_error(struct list_head *head)
 428{
 429	struct nfs_page *req;
 430
 431	while (!list_empty(head)) {
 432		req = nfs_list_entry(head->next);
 433		nfs_list_remove_request(req);
 434		nfs_release_request(req);
 435	}
 436}
 437
 438static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 439{
 440	get_dreq(hdr->dreq);
 441}
 442
 443static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 444	.error_cleanup = nfs_read_sync_pgio_error,
 445	.init_hdr = nfs_direct_pgio_init,
 446	.completion = nfs_direct_read_completion,
 447};
 448
 449/*
 450 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 451 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 452 * bail and stop sending more reads.  Read length accounting is
 453 * handled automatically by nfs_direct_read_result().  Otherwise, if
 454 * no requests have been sent, just return an error.
 455 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456
 457static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 458					      struct iov_iter *iter,
 459					      loff_t pos)
 460{
 461	struct nfs_pageio_descriptor desc;
 462	struct inode *inode = dreq->inode;
 463	ssize_t result = -EINVAL;
 464	size_t requested_bytes = 0;
 465	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 466
 467	nfs_pageio_init_read(&desc, dreq->inode, false,
 468			     &nfs_direct_read_completion_ops);
 469	get_dreq(dreq);
 470	desc.pg_dreq = dreq;
 471	inode_dio_begin(inode);
 472
 473	while (iov_iter_count(iter)) {
 474		struct page **pagevec;
 475		size_t bytes;
 476		size_t pgbase;
 477		unsigned npages, i;
 478
 479		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 480						  rsize, &pgbase);
 
 
 
 
 
 
 
 
 
 
 
 
 481		if (result < 0)
 482			break;
 483	
 484		bytes = result;
 485		iov_iter_advance(iter, bytes);
 486		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
 
 487		for (i = 0; i < npages; i++) {
 488			struct nfs_page *req;
 489			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 490			/* XXX do we need to do the eof zeroing found in async_filler? */
 491			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 
 492						 pgbase, req_len);
 493			if (IS_ERR(req)) {
 494				result = PTR_ERR(req);
 495				break;
 496			}
 497			req->wb_index = pos >> PAGE_SHIFT;
 498			req->wb_offset = pos & ~PAGE_MASK;
 499			if (!nfs_pageio_add_request(&desc, req)) {
 500				result = desc.pg_error;
 501				nfs_release_request(req);
 502				break;
 503			}
 504			pgbase = 0;
 505			bytes -= req_len;
 506			requested_bytes += req_len;
 
 507			pos += req_len;
 508			dreq->bytes_left -= req_len;
 509		}
 
 510		nfs_direct_release_pages(pagevec, npages);
 511		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512		if (result < 0)
 513			break;
 
 
 
 
 514	}
 515
 516	nfs_pageio_complete(&desc);
 517
 518	/*
 519	 * If no bytes were started, return the error, and let the
 520	 * generic layer handle the completion.
 521	 */
 522	if (requested_bytes == 0) {
 523		inode_dio_end(inode);
 524		nfs_direct_req_release(dreq);
 525		return result < 0 ? result : -EIO;
 526	}
 527
 528	if (put_dreq(dreq))
 529		nfs_direct_complete(dreq);
 530	return requested_bytes;
 531}
 532
 533/**
 534 * nfs_file_direct_read - file direct read operation for NFS files
 535 * @iocb: target I/O control block
 536 * @iter: vector of user buffers into which to read data
 537 *
 538 * We use this function for direct reads instead of calling
 539 * generic_file_aio_read() in order to avoid gfar's check to see if
 540 * the request starts before the end of the file.  For that check
 541 * to work, we must generate a GETATTR before each direct read, and
 542 * even then there is a window between the GETATTR and the subsequent
 543 * READ where the file size could change.  Our preference is simply
 544 * to do all reads the application wants, and the server will take
 545 * care of managing the end of file boundary.
 546 *
 547 * This function also eliminates unnecessarily updating the file's
 548 * atime locally, as the NFS server sets the file's atime, and this
 549 * client must read the updated atime from the server back into its
 550 * cache.
 551 */
 552ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
 553{
 554	struct file *file = iocb->ki_filp;
 555	struct address_space *mapping = file->f_mapping;
 556	struct inode *inode = mapping->host;
 557	struct nfs_direct_req *dreq;
 558	struct nfs_lock_context *l_ctx;
 559	ssize_t result = -EINVAL, requested;
 560	size_t count = iov_iter_count(iter);
 561	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 562
 563	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 564		file, count, (long long) iocb->ki_pos);
 565
 566	result = 0;
 567	if (!count)
 568		goto out;
 569
 570	task_io_account_read(count);
 571
 572	result = -ENOMEM;
 573	dreq = nfs_direct_req_alloc();
 574	if (dreq == NULL)
 575		goto out;
 576
 577	dreq->inode = inode;
 578	dreq->bytes_left = dreq->max_count = count;
 579	dreq->io_start = iocb->ki_pos;
 580	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 581	l_ctx = nfs_get_lock_context(dreq->ctx);
 582	if (IS_ERR(l_ctx)) {
 583		result = PTR_ERR(l_ctx);
 584		goto out_release;
 585	}
 586	dreq->l_ctx = l_ctx;
 587	if (!is_sync_kiocb(iocb))
 588		dreq->iocb = iocb;
 589
 590	nfs_start_io_direct(inode);
 591
 592	NFS_I(inode)->read_io += count;
 593	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
 594
 595	nfs_end_io_direct(inode);
 596
 597	if (requested > 0) {
 598		result = nfs_direct_wait(dreq);
 599		if (result > 0) {
 600			requested -= result;
 601			iocb->ki_pos += result;
 602		}
 603		iov_iter_revert(iter, requested);
 604	} else {
 605		result = requested;
 606	}
 607
 608out_release:
 609	nfs_direct_req_release(dreq);
 610out:
 611	return result;
 612}
 613
 614static void
 615nfs_direct_write_scan_commit_list(struct inode *inode,
 616				  struct list_head *list,
 617				  struct nfs_commit_info *cinfo)
 618{
 619	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
 620#ifdef CONFIG_NFS_V4_1
 621	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
 622		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
 623#endif
 624	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 625	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
 626}
 627
 
 628static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 629{
 630	struct nfs_pageio_descriptor desc;
 631	struct nfs_page *req, *tmp;
 632	LIST_HEAD(reqs);
 633	struct nfs_commit_info cinfo;
 634	LIST_HEAD(failed);
 635	int i;
 636
 637	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 638	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 
 
 
 639
 640	dreq->count = 0;
 641	dreq->verf.committed = NFS_INVALID_STABLE_HOW;
 642	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
 643	for (i = 0; i < dreq->mirror_count; i++)
 644		dreq->mirrors[i].count = 0;
 645	get_dreq(dreq);
 646
 647	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 648			      &nfs_direct_write_completion_ops);
 649	desc.pg_dreq = dreq;
 650
 651	req = nfs_list_entry(reqs.next);
 652	nfs_direct_setup_mirroring(dreq, &desc, req);
 653	if (desc.pg_error < 0) {
 654		list_splice_init(&reqs, &failed);
 655		goto out_failed;
 656	}
 657
 658	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 659		if (!nfs_pageio_add_request(&desc, req)) {
 660			nfs_list_remove_request(req);
 661			nfs_list_add_request(req, &failed);
 662			spin_lock(&cinfo.inode->i_lock);
 663			dreq->flags = 0;
 664			if (desc.pg_error < 0)
 665				dreq->error = desc.pg_error;
 666			else
 667				dreq->error = -EIO;
 668			spin_unlock(&cinfo.inode->i_lock);
 669		}
 670		nfs_release_request(req);
 671	}
 672	nfs_pageio_complete(&desc);
 673
 674out_failed:
 675	while (!list_empty(&failed)) {
 676		req = nfs_list_entry(failed.next);
 677		nfs_list_remove_request(req);
 678		nfs_unlock_and_release_request(req);
 679	}
 680
 681	if (put_dreq(dreq))
 682		nfs_direct_write_complete(dreq);
 683}
 684
 685static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 686{
 687	struct nfs_direct_req *dreq = data->dreq;
 688	struct nfs_commit_info cinfo;
 689	struct nfs_page *req;
 690	int status = data->task.tk_status;
 691
 692	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 693	if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
 
 
 
 
 
 694		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 
 695
 
 696	while (!list_empty(&data->pages)) {
 697		req = nfs_list_entry(data->pages.next);
 698		nfs_list_remove_request(req);
 699		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 700			/* Note the rewrite will go through mds */
 701			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 702		} else
 703			nfs_release_request(req);
 704		nfs_unlock_and_release_request(req);
 705	}
 706
 707	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 708		nfs_direct_write_complete(dreq);
 709}
 710
 711static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 712		struct nfs_page *req)
 713{
 714	struct nfs_direct_req *dreq = cinfo->dreq;
 715
 716	spin_lock(&dreq->lock);
 717	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 718	spin_unlock(&dreq->lock);
 719	nfs_mark_request_commit(req, NULL, cinfo, 0);
 720}
 721
 722static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 723	.completion = nfs_direct_commit_complete,
 724	.resched_write = nfs_direct_resched_write,
 725};
 726
 727static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 728{
 729	int res;
 730	struct nfs_commit_info cinfo;
 731	LIST_HEAD(mds_list);
 732
 733	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 734	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 735	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 736	if (res < 0) /* res == -ENOMEM */
 737		nfs_direct_write_reschedule(dreq);
 738}
 739
 740static void nfs_direct_write_schedule_work(struct work_struct *work)
 741{
 742	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 743	int flags = dreq->flags;
 744
 745	dreq->flags = 0;
 746	switch (flags) {
 747		case NFS_ODIRECT_DO_COMMIT:
 748			nfs_direct_commit_schedule(dreq);
 749			break;
 750		case NFS_ODIRECT_RESCHED_WRITES:
 751			nfs_direct_write_reschedule(dreq);
 752			break;
 753		default:
 754			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
 755			nfs_direct_complete(dreq);
 756	}
 757}
 758
 759static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 760{
 761	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 762}
 763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 765{
 766	struct nfs_direct_req *dreq = hdr->dreq;
 767	struct nfs_commit_info cinfo;
 768	bool request_commit = false;
 769	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 770
 771	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 772		goto out_put;
 773
 774	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 775
 776	spin_lock(&dreq->lock);
 777
 778	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
 
 779		dreq->error = hdr->error;
 780	if (dreq->error == 0) {
 781		nfs_direct_good_bytes(dreq, hdr);
 782		if (nfs_write_need_commit(hdr)) {
 
 
 
 
 
 
 783			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 784				request_commit = true;
 785			else if (dreq->flags == 0) {
 786				nfs_direct_set_hdr_verf(dreq, hdr);
 787				request_commit = true;
 
 788				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 789			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 790				request_commit = true;
 791				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
 792					dreq->flags =
 793						NFS_ODIRECT_RESCHED_WRITES;
 
 794			}
 795		}
 796	}
 797	spin_unlock(&dreq->lock);
 798
 799	while (!list_empty(&hdr->pages)) {
 800
 801		req = nfs_list_entry(hdr->pages.next);
 802		nfs_list_remove_request(req);
 803		if (request_commit) {
 
 
 804			kref_get(&req->wb_kref);
 805			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 806				hdr->ds_commit_idx);
 807		}
 808		nfs_unlock_and_release_request(req);
 809	}
 810
 811out_put:
 812	if (put_dreq(dreq))
 813		nfs_direct_write_complete(dreq);
 814	hdr->release(hdr);
 815}
 816
 817static void nfs_write_sync_pgio_error(struct list_head *head)
 818{
 819	struct nfs_page *req;
 820
 821	while (!list_empty(head)) {
 822		req = nfs_list_entry(head->next);
 823		nfs_list_remove_request(req);
 824		nfs_unlock_and_release_request(req);
 825	}
 826}
 827
 828static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 829{
 830	struct nfs_direct_req *dreq = hdr->dreq;
 831
 832	spin_lock(&dreq->lock);
 833	if (dreq->error == 0) {
 834		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 835		/* fake unstable write to let common nfs resend pages */
 836		hdr->verf.committed = NFS_UNSTABLE;
 837		hdr->good_bytes = hdr->args.count;
 838	}
 839	spin_unlock(&dreq->lock);
 840}
 841
 842static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 843	.error_cleanup = nfs_write_sync_pgio_error,
 844	.init_hdr = nfs_direct_pgio_init,
 845	.completion = nfs_direct_write_completion,
 846	.reschedule_io = nfs_direct_write_reschedule_io,
 847};
 848
 849
 850/*
 851 * NB: Return the value of the first error return code.  Subsequent
 852 *     errors after the first one are ignored.
 853 */
 854/*
 855 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 856 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 857 * bail and stop sending more writes.  Write length accounting is
 858 * handled automatically by nfs_direct_write_result().  Otherwise, if
 859 * no requests have been sent, just return an error.
 860 */
 861static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 862					       struct iov_iter *iter,
 
 863					       loff_t pos)
 864{
 865	struct nfs_pageio_descriptor desc;
 866	struct inode *inode = dreq->inode;
 867	ssize_t result = 0;
 868	size_t requested_bytes = 0;
 869	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 870
 871	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
 872			      &nfs_direct_write_completion_ops);
 873	desc.pg_dreq = dreq;
 874	get_dreq(dreq);
 875	inode_dio_begin(inode);
 876
 877	NFS_I(inode)->write_io += iov_iter_count(iter);
 878	while (iov_iter_count(iter)) {
 879		struct page **pagevec;
 880		size_t bytes;
 881		size_t pgbase;
 882		unsigned npages, i;
 883
 884		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 885						  wsize, &pgbase);
 
 886		if (result < 0)
 887			break;
 888
 889		bytes = result;
 890		iov_iter_advance(iter, bytes);
 891		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 892		for (i = 0; i < npages; i++) {
 893			struct nfs_page *req;
 894			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 895
 896			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 897						 pgbase, req_len);
 898			if (IS_ERR(req)) {
 899				result = PTR_ERR(req);
 900				break;
 901			}
 902
 903			nfs_direct_setup_mirroring(dreq, &desc, req);
 904			if (desc.pg_error < 0) {
 905				nfs_free_request(req);
 906				result = desc.pg_error;
 907				break;
 908			}
 909
 910			nfs_lock_request(req);
 911			req->wb_index = pos >> PAGE_SHIFT;
 912			req->wb_offset = pos & ~PAGE_MASK;
 913			if (!nfs_pageio_add_request(&desc, req)) {
 914				result = desc.pg_error;
 915				nfs_unlock_and_release_request(req);
 916				break;
 917			}
 918			pgbase = 0;
 919			bytes -= req_len;
 920			requested_bytes += req_len;
 921			pos += req_len;
 922			dreq->bytes_left -= req_len;
 923		}
 924		nfs_direct_release_pages(pagevec, npages);
 925		kvfree(pagevec);
 926		if (result < 0)
 927			break;
 
 928	}
 929	nfs_pageio_complete(&desc);
 
 930
 931	/*
 932	 * If no bytes were started, return the error, and let the
 933	 * generic layer handle the completion.
 934	 */
 935	if (requested_bytes == 0) {
 936		inode_dio_end(inode);
 937		nfs_direct_req_release(dreq);
 938		return result < 0 ? result : -EIO;
 939	}
 940
 941	if (put_dreq(dreq))
 942		nfs_direct_write_complete(dreq);
 943	return requested_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944}
 945
 946/**
 947 * nfs_file_direct_write - file direct write operation for NFS files
 948 * @iocb: target I/O control block
 949 * @iter: vector of user buffers from which to write data
 
 
 950 *
 951 * We use this function for direct writes instead of calling
 952 * generic_file_aio_write() in order to avoid taking the inode
 953 * semaphore and updating the i_size.  The NFS server will set
 954 * the new i_size and this client must read the updated size
 955 * back into its cache.  We let the server do generic write
 956 * parameter checking and report problems.
 957 *
 958 * We eliminate local atime updates, see direct read above.
 959 *
 960 * We avoid unnecessary page cache invalidations for normal cached
 961 * readers of this file.
 962 *
 963 * Note that O_APPEND is not supported for NFS direct writes, as there
 964 * is no atomic O_APPEND write facility in the NFS protocol.
 965 */
 966ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 
 967{
 968	ssize_t result = -EINVAL, requested;
 969	size_t count;
 970	struct file *file = iocb->ki_filp;
 971	struct address_space *mapping = file->f_mapping;
 972	struct inode *inode = mapping->host;
 973	struct nfs_direct_req *dreq;
 974	struct nfs_lock_context *l_ctx;
 975	loff_t pos, end;
 976
 977	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 978		file, iov_iter_count(iter), (long long) iocb->ki_pos);
 979
 980	result = generic_write_checks(iocb, iter);
 981	if (result <= 0)
 982		return result;
 983	count = result;
 984	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 985
 986	pos = iocb->ki_pos;
 987	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 988
 989	task_io_account_write(count);
 990
 991	result = -ENOMEM;
 992	dreq = nfs_direct_req_alloc();
 993	if (!dreq)
 994		goto out;
 995
 996	dreq->inode = inode;
 997	dreq->bytes_left = dreq->max_count = count;
 998	dreq->io_start = pos;
 999	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1000	l_ctx = nfs_get_lock_context(dreq->ctx);
1001	if (IS_ERR(l_ctx)) {
1002		result = PTR_ERR(l_ctx);
1003		goto out_release;
1004	}
1005	dreq->l_ctx = l_ctx;
1006	if (!is_sync_kiocb(iocb))
1007		dreq->iocb = iocb;
1008
1009	nfs_start_io_direct(inode);
1010
1011	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1012
1013	if (mapping->nrpages) {
1014		invalidate_inode_pages2_range(mapping,
1015					      pos >> PAGE_SHIFT, end);
1016	}
1017
1018	nfs_end_io_direct(inode);
1019
1020	if (requested > 0) {
1021		result = nfs_direct_wait(dreq);
1022		if (result > 0) {
1023			requested -= result;
1024			iocb->ki_pos = pos + result;
1025			/* XXX: should check the generic_write_sync retval */
1026			generic_write_sync(iocb, result);
1027		}
1028		iov_iter_revert(iter, requested);
1029	} else {
1030		result = requested;
1031	}
1032out_release:
1033	nfs_direct_req_release(dreq);
1034out:
1035	return result;
1036}
1037
1038/**
1039 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1040 *
1041 */
1042int __init nfs_init_directcache(void)
1043{
1044	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1045						sizeof(struct nfs_direct_req),
1046						0, (SLAB_RECLAIM_ACCOUNT|
1047							SLAB_MEM_SPREAD),
1048						NULL);
1049	if (nfs_direct_cachep == NULL)
1050		return -ENOMEM;
1051
1052	return 0;
1053}
1054
1055/**
1056 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1057 *
1058 */
1059void nfs_destroy_directcache(void)
1060{
1061	kmem_cache_destroy(nfs_direct_cachep);
1062}
v3.5.6
  1/*
  2 * linux/fs/nfs/direct.c
  3 *
  4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5 *
  6 * High-performance uncached I/O for the Linux NFS client
  7 *
  8 * There are important applications whose performance or correctness
  9 * depends on uncached access to file data.  Database clusters
 10 * (multiple copies of the same instance running on separate hosts)
 11 * implement their own cache coherency protocol that subsumes file
 12 * system cache protocols.  Applications that process datasets
 13 * considerably larger than the client's memory do not always benefit
 14 * from a local cache.  A streaming video server, for instance, has no
 15 * need to cache the contents of a file.
 16 *
 17 * When an application requests uncached I/O, all read and write requests
 18 * are made directly to the server; data stored or fetched via these
 19 * requests is not cached in the Linux page cache.  The client does not
 20 * correct unaligned requests from applications.  All requested bytes are
 21 * held on permanent storage before a direct write system call returns to
 22 * an application.
 23 *
 24 * Solaris implements an uncached I/O facility called directio() that
 25 * is used for backups and sequential I/O to very large files.  Solaris
 26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 27 * an undocumented mount option.
 28 *
 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 30 * help from Andrew Morton.
 31 *
 32 * 18 Dec 2001	Initial implementation for 2.4  --cel
 33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 34 * 08 Jun 2003	Port to 2.5 APIs  --cel
 35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 36 * 15 Sep 2004	Parallel async reads  --cel
 37 * 04 May 2005	support O_DIRECT with aio  --cel
 38 *
 39 */
 40
 41#include <linux/errno.h>
 42#include <linux/sched.h>
 43#include <linux/kernel.h>
 44#include <linux/file.h>
 45#include <linux/pagemap.h>
 46#include <linux/kref.h>
 47#include <linux/slab.h>
 48#include <linux/task_io_accounting_ops.h>
 
 49
 50#include <linux/nfs_fs.h>
 51#include <linux/nfs_page.h>
 52#include <linux/sunrpc/clnt.h>
 53
 54#include <asm/uaccess.h>
 55#include <linux/atomic.h>
 56
 57#include "internal.h"
 58#include "iostat.h"
 59#include "pnfs.h"
 60
 61#define NFSDBG_FACILITY		NFSDBG_VFS
 62
 63static struct kmem_cache *nfs_direct_cachep;
 64
 65/*
 66 * This represents a set of asynchronous requests that we're waiting on
 67 */
 
 
 
 
 68struct nfs_direct_req {
 69	struct kref		kref;		/* release manager */
 70
 71	/* I/O parameters */
 72	struct nfs_open_context	*ctx;		/* file open context info */
 73	struct nfs_lock_context *l_ctx;		/* Lock context info */
 74	struct kiocb *		iocb;		/* controlling i/o request */
 75	struct inode *		inode;		/* target file of i/o */
 76
 77	/* completion state */
 78	atomic_t		io_count;	/* i/os we're waiting for */
 79	spinlock_t		lock;		/* protect completion state */
 
 
 
 
 
 80	ssize_t			count,		/* bytes actually processed */
 
 
 81				error;		/* any reported error */
 82	struct completion	completion;	/* wait for i/o completion */
 83
 84	/* commit state */
 85	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
 86	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
 87	struct work_struct	work;
 88	int			flags;
 89#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 90#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 91	struct nfs_writeverf	verf;		/* unstable write verifier */
 92};
 93
 94static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 95static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 96static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
 97static void nfs_direct_write_schedule_work(struct work_struct *work);
 98
 99static inline void get_dreq(struct nfs_direct_req *dreq)
100{
101	atomic_inc(&dreq->io_count);
102}
103
104static inline int put_dreq(struct nfs_direct_req *dreq)
105{
106	return atomic_dec_and_test(&dreq->io_count);
107}
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109/**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O.  However, we shunt off direct
119 * read and write requests before the VFS gets them, so this method
120 * should never be called.
121 */
122ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123{
124	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
125			iocb->ki_filp->f_path.dentry->d_name.name,
126			(long long) pos, nr_segs);
127
128	return -EINVAL;
 
 
 
 
 
 
 
 
129}
130
131static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
132{
133	unsigned int i;
134	for (i = 0; i < npages; i++)
135		page_cache_release(pages[i]);
136}
137
138void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
139			      struct nfs_direct_req *dreq)
140{
141	cinfo->lock = &dreq->lock;
142	cinfo->mds = &dreq->mds_cinfo;
143	cinfo->ds = &dreq->ds_cinfo;
144	cinfo->dreq = dreq;
145	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
146}
147
 
 
 
 
 
 
 
 
 
 
 
 
148static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149{
150	struct nfs_direct_req *dreq;
151
152	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
153	if (!dreq)
154		return NULL;
155
156	kref_init(&dreq->kref);
157	kref_get(&dreq->kref);
158	init_completion(&dreq->completion);
159	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
160	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
161	spin_lock_init(&dreq->lock);
162
163	return dreq;
164}
165
166static void nfs_direct_req_free(struct kref *kref)
167{
168	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
169
 
170	if (dreq->l_ctx != NULL)
171		nfs_put_lock_context(dreq->l_ctx);
172	if (dreq->ctx != NULL)
173		put_nfs_open_context(dreq->ctx);
174	kmem_cache_free(nfs_direct_cachep, dreq);
175}
176
177static void nfs_direct_req_release(struct nfs_direct_req *dreq)
178{
179	kref_put(&dreq->kref, nfs_direct_req_free);
180}
181
 
 
 
 
 
 
182/*
183 * Collects and returns the final error value/byte-count.
184 */
185static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
186{
187	ssize_t result = -EIOCBQUEUED;
188
189	/* Async requests don't wait here */
190	if (dreq->iocb)
191		goto out;
192
193	result = wait_for_completion_killable(&dreq->completion);
194
 
 
 
 
195	if (!result)
196		result = dreq->error;
197	if (!result)
198		result = dreq->count;
199
200out:
201	return (ssize_t) result;
202}
203
204/*
205 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
206 * the iocb is still valid here if this is a synchronous request.
207 */
208static void nfs_direct_complete(struct nfs_direct_req *dreq)
209{
 
 
 
 
210	if (dreq->iocb) {
211		long res = (long) dreq->error;
212		if (!res)
213			res = (long) dreq->count;
214		aio_complete(dreq->iocb, res, 0);
 
 
215	}
216	complete_all(&dreq->completion);
 
217
218	nfs_direct_req_release(dreq);
219}
220
221static void nfs_direct_readpage_release(struct nfs_page *req)
222{
223	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
224		req->wb_context->dentry->d_inode->i_sb->s_id,
225		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
226		req->wb_bytes,
227		(long long)req_offset(req));
228	nfs_release_request(req);
229}
230
231static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
232{
233	unsigned long bytes = 0;
234	struct nfs_direct_req *dreq = hdr->dreq;
235
236	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
237		goto out_put;
238
239	spin_lock(&dreq->lock);
240	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
241		dreq->error = hdr->error;
242	else
243		dreq->count += hdr->good_bytes;
 
244	spin_unlock(&dreq->lock);
245
246	while (!list_empty(&hdr->pages)) {
247		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
248		struct page *page = req->wb_page;
249
250		if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
251			if (bytes > hdr->good_bytes)
252				zero_user(page, 0, PAGE_SIZE);
253			else if (hdr->good_bytes - bytes < PAGE_SIZE)
254				zero_user_segment(page,
255					hdr->good_bytes & ~PAGE_MASK,
256					PAGE_SIZE);
257		}
258		if (!PageCompound(page)) {
259			if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
260				if (bytes < hdr->good_bytes)
261					set_page_dirty(page);
262			} else
263				set_page_dirty(page);
264		}
265		bytes += req->wb_bytes;
266		nfs_list_remove_request(req);
267		nfs_direct_readpage_release(req);
268	}
269out_put:
270	if (put_dreq(dreq))
271		nfs_direct_complete(dreq);
272	hdr->release(hdr);
273}
274
275static void nfs_read_sync_pgio_error(struct list_head *head)
276{
277	struct nfs_page *req;
278
279	while (!list_empty(head)) {
280		req = nfs_list_entry(head->next);
281		nfs_list_remove_request(req);
282		nfs_release_request(req);
283	}
284}
285
286static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
287{
288	get_dreq(hdr->dreq);
289}
290
291static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
292	.error_cleanup = nfs_read_sync_pgio_error,
293	.init_hdr = nfs_direct_pgio_init,
294	.completion = nfs_direct_read_completion,
295};
296
297/*
298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
299 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
300 * bail and stop sending more reads.  Read length accounting is
301 * handled automatically by nfs_direct_read_result().  Otherwise, if
302 * no requests have been sent, just return an error.
303 */
304static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
305						const struct iovec *iov,
306						loff_t pos)
307{
308	struct nfs_direct_req *dreq = desc->pg_dreq;
309	struct nfs_open_context *ctx = dreq->ctx;
310	struct inode *inode = ctx->dentry->d_inode;
311	unsigned long user_addr = (unsigned long)iov->iov_base;
312	size_t count = iov->iov_len;
313	size_t rsize = NFS_SERVER(inode)->rsize;
314	unsigned int pgbase;
315	int result;
316	ssize_t started = 0;
317	struct page **pagevec = NULL;
318	unsigned int npages;
319
320	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321		size_t bytes;
322		int i;
 
323
324		pgbase = user_addr & ~PAGE_MASK;
325		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
326
327		result = -ENOMEM;
328		npages = nfs_page_array_len(pgbase, bytes);
329		if (!pagevec)
330			pagevec = kmalloc(npages * sizeof(struct page *),
331					  GFP_KERNEL);
332		if (!pagevec)
333			break;
334		down_read(&current->mm->mmap_sem);
335		result = get_user_pages(current, current->mm, user_addr,
336					npages, 1, 0, pagevec, NULL);
337		up_read(&current->mm->mmap_sem);
338		if (result < 0)
339			break;
340		if ((unsigned)result < npages) {
341			bytes = result * PAGE_SIZE;
342			if (bytes <= pgbase) {
343				nfs_direct_release_pages(pagevec, result);
344				break;
345			}
346			bytes -= pgbase;
347			npages = result;
348		}
349
350		for (i = 0; i < npages; i++) {
351			struct nfs_page *req;
352			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
353			/* XXX do we need to do the eof zeroing found in async_filler? */
354			req = nfs_create_request(dreq->ctx, dreq->inode,
355						 pagevec[i],
356						 pgbase, req_len);
357			if (IS_ERR(req)) {
358				result = PTR_ERR(req);
359				break;
360			}
361			req->wb_index = pos >> PAGE_SHIFT;
362			req->wb_offset = pos & ~PAGE_MASK;
363			if (!nfs_pageio_add_request(desc, req)) {
364				result = desc->pg_error;
365				nfs_release_request(req);
366				break;
367			}
368			pgbase = 0;
369			bytes -= req_len;
370			started += req_len;
371			user_addr += req_len;
372			pos += req_len;
373			count -= req_len;
374		}
375		/* The nfs_page now hold references to these pages */
376		nfs_direct_release_pages(pagevec, npages);
377	} while (count != 0 && result >= 0);
378
379	kfree(pagevec);
380
381	if (started)
382		return started;
383	return result < 0 ? (ssize_t) result : -EFAULT;
384}
385
386static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
387					      const struct iovec *iov,
388					      unsigned long nr_segs,
389					      loff_t pos)
390{
391	struct nfs_pageio_descriptor desc;
392	ssize_t result = -EINVAL;
393	size_t requested_bytes = 0;
394	unsigned long seg;
395
396	nfs_pageio_init_read(&desc, dreq->inode,
397			     &nfs_direct_read_completion_ops);
398	get_dreq(dreq);
399	desc.pg_dreq = dreq;
400
401	for (seg = 0; seg < nr_segs; seg++) {
402		const struct iovec *vec = &iov[seg];
403		result = nfs_direct_read_schedule_segment(&desc, vec, pos);
404		if (result < 0)
405			break;
406		requested_bytes += result;
407		if ((size_t)result < vec->iov_len)
408			break;
409		pos += vec->iov_len;
410	}
411
412	nfs_pageio_complete(&desc);
413
414	/*
415	 * If no bytes were started, return the error, and let the
416	 * generic layer handle the completion.
417	 */
418	if (requested_bytes == 0) {
 
419		nfs_direct_req_release(dreq);
420		return result < 0 ? result : -EIO;
421	}
422
423	if (put_dreq(dreq))
424		nfs_direct_complete(dreq);
425	return 0;
426}
427
428static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
429			       unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430{
431	ssize_t result = -ENOMEM;
432	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
433	struct nfs_direct_req *dreq;
 
 
 
 
434
 
 
 
 
 
 
 
 
 
 
435	dreq = nfs_direct_req_alloc();
436	if (dreq == NULL)
437		goto out;
438
439	dreq->inode = inode;
 
 
440	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
441	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
442	if (dreq->l_ctx == NULL)
 
443		goto out_release;
 
 
444	if (!is_sync_kiocb(iocb))
445		dreq->iocb = iocb;
446
447	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
448	if (!result)
 
 
 
 
 
 
449		result = nfs_direct_wait(dreq);
450	NFS_I(inode)->read_io += result;
 
 
 
 
 
 
 
 
451out_release:
452	nfs_direct_req_release(dreq);
453out:
454	return result;
455}
456
457static void nfs_inode_dio_write_done(struct inode *inode)
458{
459	nfs_zap_mapping(inode, inode->i_mapping);
460	inode_dio_done(inode);
 
 
 
 
 
 
 
 
461}
462
463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
465{
466	struct nfs_pageio_descriptor desc;
467	struct nfs_page *req, *tmp;
468	LIST_HEAD(reqs);
469	struct nfs_commit_info cinfo;
470	LIST_HEAD(failed);
 
471
472	nfs_init_cinfo_from_dreq(&cinfo, dreq);
473	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
474	spin_lock(cinfo.lock);
475	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
476	spin_unlock(cinfo.lock);
477
478	dreq->count = 0;
 
 
 
 
479	get_dreq(dreq);
480
481	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
482			      &nfs_direct_write_completion_ops);
483	desc.pg_dreq = dreq;
484
 
 
 
 
 
 
 
485	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
486		if (!nfs_pageio_add_request(&desc, req)) {
487			nfs_list_remove_request(req);
488			nfs_list_add_request(req, &failed);
489			spin_lock(cinfo.lock);
490			dreq->flags = 0;
491			dreq->error = -EIO;
492			spin_unlock(cinfo.lock);
 
 
 
493		}
494		nfs_release_request(req);
495	}
496	nfs_pageio_complete(&desc);
497
 
498	while (!list_empty(&failed)) {
499		req = nfs_list_entry(failed.next);
500		nfs_list_remove_request(req);
501		nfs_unlock_and_release_request(req);
502	}
503
504	if (put_dreq(dreq))
505		nfs_direct_write_complete(dreq, dreq->inode);
506}
507
508static void nfs_direct_commit_complete(struct nfs_commit_data *data)
509{
510	struct nfs_direct_req *dreq = data->dreq;
511	struct nfs_commit_info cinfo;
512	struct nfs_page *req;
513	int status = data->task.tk_status;
514
515	nfs_init_cinfo_from_dreq(&cinfo, dreq);
516	if (status < 0) {
517		dprintk("NFS: %5u commit failed with error %d.\n",
518			data->task.tk_pid, status);
519		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
520	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
521		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
522		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
523	}
524
525	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
526	while (!list_empty(&data->pages)) {
527		req = nfs_list_entry(data->pages.next);
528		nfs_list_remove_request(req);
529		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
530			/* Note the rewrite will go through mds */
531			nfs_mark_request_commit(req, NULL, &cinfo);
532		} else
533			nfs_release_request(req);
534		nfs_unlock_and_release_request(req);
535	}
536
537	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
538		nfs_direct_write_complete(dreq, data->inode);
539}
540
541static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
542{
543	/* There is no lock to clear */
 
 
 
 
 
544}
545
546static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
547	.completion = nfs_direct_commit_complete,
548	.error_cleanup = nfs_direct_error_cleanup,
549};
550
551static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
552{
553	int res;
554	struct nfs_commit_info cinfo;
555	LIST_HEAD(mds_list);
556
557	nfs_init_cinfo_from_dreq(&cinfo, dreq);
558	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
559	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
560	if (res < 0) /* res == -ENOMEM */
561		nfs_direct_write_reschedule(dreq);
562}
563
564static void nfs_direct_write_schedule_work(struct work_struct *work)
565{
566	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
567	int flags = dreq->flags;
568
569	dreq->flags = 0;
570	switch (flags) {
571		case NFS_ODIRECT_DO_COMMIT:
572			nfs_direct_commit_schedule(dreq);
573			break;
574		case NFS_ODIRECT_RESCHED_WRITES:
575			nfs_direct_write_reschedule(dreq);
576			break;
577		default:
578			nfs_inode_dio_write_done(dreq->inode);
579			nfs_direct_complete(dreq);
580	}
581}
582
583static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
584{
585	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
586}
587
588#else
589static void nfs_direct_write_schedule_work(struct work_struct *work)
590{
591}
592
593static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
594{
595	nfs_inode_dio_write_done(inode);
596	nfs_direct_complete(dreq);
597}
598#endif
599
600/*
601 * NB: Return the value of the first error return code.  Subsequent
602 *     errors after the first one are ignored.
603 */
604/*
605 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
606 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
607 * bail and stop sending more writes.  Write length accounting is
608 * handled automatically by nfs_direct_write_result().  Otherwise, if
609 * no requests have been sent, just return an error.
610 */
611static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
612						 const struct iovec *iov,
613						 loff_t pos)
614{
615	struct nfs_direct_req *dreq = desc->pg_dreq;
616	struct nfs_open_context *ctx = dreq->ctx;
617	struct inode *inode = ctx->dentry->d_inode;
618	unsigned long user_addr = (unsigned long)iov->iov_base;
619	size_t count = iov->iov_len;
620	size_t wsize = NFS_SERVER(inode)->wsize;
621	unsigned int pgbase;
622	int result;
623	ssize_t started = 0;
624	struct page **pagevec = NULL;
625	unsigned int npages;
626
627	do {
628		size_t bytes;
629		int i;
630
631		pgbase = user_addr & ~PAGE_MASK;
632		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
633
634		result = -ENOMEM;
635		npages = nfs_page_array_len(pgbase, bytes);
636		if (!pagevec)
637			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
638		if (!pagevec)
639			break;
640
641		down_read(&current->mm->mmap_sem);
642		result = get_user_pages(current, current->mm, user_addr,
643					npages, 0, 0, pagevec, NULL);
644		up_read(&current->mm->mmap_sem);
645		if (result < 0)
646			break;
647
648		if ((unsigned)result < npages) {
649			bytes = result * PAGE_SIZE;
650			if (bytes <= pgbase) {
651				nfs_direct_release_pages(pagevec, result);
652				break;
653			}
654			bytes -= pgbase;
655			npages = result;
656		}
657
658		for (i = 0; i < npages; i++) {
659			struct nfs_page *req;
660			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
661
662			req = nfs_create_request(dreq->ctx, dreq->inode,
663						 pagevec[i],
664						 pgbase, req_len);
665			if (IS_ERR(req)) {
666				result = PTR_ERR(req);
667				break;
668			}
669			nfs_lock_request(req);
670			req->wb_index = pos >> PAGE_SHIFT;
671			req->wb_offset = pos & ~PAGE_MASK;
672			if (!nfs_pageio_add_request(desc, req)) {
673				result = desc->pg_error;
674				nfs_unlock_and_release_request(req);
675				break;
676			}
677			pgbase = 0;
678			bytes -= req_len;
679			started += req_len;
680			user_addr += req_len;
681			pos += req_len;
682			count -= req_len;
683		}
684		/* The nfs_page now hold references to these pages */
685		nfs_direct_release_pages(pagevec, npages);
686	} while (count != 0 && result >= 0);
687
688	kfree(pagevec);
689
690	if (started)
691		return started;
692	return result < 0 ? (ssize_t) result : -EFAULT;
693}
694
695static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
696{
697	struct nfs_direct_req *dreq = hdr->dreq;
698	struct nfs_commit_info cinfo;
699	int bit = -1;
700	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
701
702	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
703		goto out_put;
704
705	nfs_init_cinfo_from_dreq(&cinfo, dreq);
706
707	spin_lock(&dreq->lock);
708
709	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
710		dreq->flags = 0;
711		dreq->error = hdr->error;
712	}
713	if (dreq->error != 0)
714		bit = NFS_IOHDR_ERROR;
715	else {
716		dreq->count += hdr->good_bytes;
717		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
718			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
719			bit = NFS_IOHDR_NEED_RESCHED;
720		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
721			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
722				bit = NFS_IOHDR_NEED_RESCHED;
723			else if (dreq->flags == 0) {
724				memcpy(&dreq->verf, hdr->verf,
725				       sizeof(dreq->verf));
726				bit = NFS_IOHDR_NEED_COMMIT;
727				dreq->flags = NFS_ODIRECT_DO_COMMIT;
728			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
729				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
730					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
731					bit = NFS_IOHDR_NEED_RESCHED;
732				} else
733					bit = NFS_IOHDR_NEED_COMMIT;
734			}
735		}
736	}
737	spin_unlock(&dreq->lock);
738
739	while (!list_empty(&hdr->pages)) {
 
740		req = nfs_list_entry(hdr->pages.next);
741		nfs_list_remove_request(req);
742		switch (bit) {
743		case NFS_IOHDR_NEED_RESCHED:
744		case NFS_IOHDR_NEED_COMMIT:
745			kref_get(&req->wb_kref);
746			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 
747		}
748		nfs_unlock_and_release_request(req);
749	}
750
751out_put:
752	if (put_dreq(dreq))
753		nfs_direct_write_complete(dreq, hdr->inode);
754	hdr->release(hdr);
755}
756
757static void nfs_write_sync_pgio_error(struct list_head *head)
758{
759	struct nfs_page *req;
760
761	while (!list_empty(head)) {
762		req = nfs_list_entry(head->next);
763		nfs_list_remove_request(req);
764		nfs_unlock_and_release_request(req);
765	}
766}
767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
769	.error_cleanup = nfs_write_sync_pgio_error,
770	.init_hdr = nfs_direct_pgio_init,
771	.completion = nfs_direct_write_completion,
 
772};
773
 
 
 
 
 
 
 
 
 
 
 
 
774static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
775					       const struct iovec *iov,
776					       unsigned long nr_segs,
777					       loff_t pos)
778{
779	struct nfs_pageio_descriptor desc;
780	struct inode *inode = dreq->inode;
781	ssize_t result = 0;
782	size_t requested_bytes = 0;
783	unsigned long seg;
784
785	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE,
786			      &nfs_direct_write_completion_ops);
787	desc.pg_dreq = dreq;
788	get_dreq(dreq);
789	atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
790
791	for (seg = 0; seg < nr_segs; seg++) {
792		const struct iovec *vec = &iov[seg];
793		result = nfs_direct_write_schedule_segment(&desc, vec, pos);
794		if (result < 0)
795			break;
796		requested_bytes += result;
797		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798			break;
799		pos += vec->iov_len;
800	}
801	nfs_pageio_complete(&desc);
802	NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
803
804	/*
805	 * If no bytes were started, return the error, and let the
806	 * generic layer handle the completion.
807	 */
808	if (requested_bytes == 0) {
809		inode_dio_done(inode);
810		nfs_direct_req_release(dreq);
811		return result < 0 ? result : -EIO;
812	}
813
814	if (put_dreq(dreq))
815		nfs_direct_write_complete(dreq, dreq->inode);
816	return 0;
817}
818
819static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
820				unsigned long nr_segs, loff_t pos,
821				size_t count)
822{
823	ssize_t result = -ENOMEM;
824	struct inode *inode = iocb->ki_filp->f_mapping->host;
825	struct nfs_direct_req *dreq;
826
827	dreq = nfs_direct_req_alloc();
828	if (!dreq)
829		goto out;
830
831	dreq->inode = inode;
832	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
833	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
834	if (dreq->l_ctx == NULL)
835		goto out_release;
836	if (!is_sync_kiocb(iocb))
837		dreq->iocb = iocb;
838
839	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
840	if (!result)
841		result = nfs_direct_wait(dreq);
842out_release:
843	nfs_direct_req_release(dreq);
844out:
845	return result;
846}
847
848/**
849 * nfs_file_direct_read - file direct read operation for NFS files
850 * @iocb: target I/O control block
851 * @iov: vector of user buffers into which to read data
852 * @nr_segs: size of iov vector
853 * @pos: byte offset in file where reading starts
854 *
855 * We use this function for direct reads instead of calling
856 * generic_file_aio_read() in order to avoid gfar's check to see if
857 * the request starts before the end of the file.  For that check
858 * to work, we must generate a GETATTR before each direct read, and
859 * even then there is a window between the GETATTR and the subsequent
860 * READ where the file size could change.  Our preference is simply
861 * to do all reads the application wants, and the server will take
862 * care of managing the end of file boundary.
863 *
864 * This function also eliminates unnecessarily updating the file's
865 * atime locally, as the NFS server sets the file's atime, and this
866 * client must read the updated atime from the server back into its
867 * cache.
868 */
869ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
870				unsigned long nr_segs, loff_t pos)
871{
872	ssize_t retval = -EINVAL;
873	struct file *file = iocb->ki_filp;
874	struct address_space *mapping = file->f_mapping;
875	size_t count;
876
877	count = iov_length(iov, nr_segs);
878	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
879
880	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
881		file->f_path.dentry->d_parent->d_name.name,
882		file->f_path.dentry->d_name.name,
883		count, (long long) pos);
884
885	retval = 0;
886	if (!count)
887		goto out;
888
889	retval = nfs_sync_mapping(mapping);
890	if (retval)
891		goto out;
892
893	task_io_account_read(count);
894
895	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
896	if (retval > 0)
897		iocb->ki_pos = pos + retval;
898
899out:
900	return retval;
901}
902
903/**
904 * nfs_file_direct_write - file direct write operation for NFS files
905 * @iocb: target I/O control block
906 * @iov: vector of user buffers from which to write data
907 * @nr_segs: size of iov vector
908 * @pos: byte offset in file where writing starts
909 *
910 * We use this function for direct writes instead of calling
911 * generic_file_aio_write() in order to avoid taking the inode
912 * semaphore and updating the i_size.  The NFS server will set
913 * the new i_size and this client must read the updated size
914 * back into its cache.  We let the server do generic write
915 * parameter checking and report problems.
916 *
917 * We eliminate local atime updates, see direct read above.
918 *
919 * We avoid unnecessary page cache invalidations for normal cached
920 * readers of this file.
921 *
922 * Note that O_APPEND is not supported for NFS direct writes, as there
923 * is no atomic O_APPEND write facility in the NFS protocol.
924 */
925ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
926				unsigned long nr_segs, loff_t pos)
927{
928	ssize_t retval = -EINVAL;
 
929	struct file *file = iocb->ki_filp;
930	struct address_space *mapping = file->f_mapping;
931	size_t count;
 
 
 
 
 
 
932
933	count = iov_length(iov, nr_segs);
 
 
 
934	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
935
936	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
937		file->f_path.dentry->d_parent->d_name.name,
938		file->f_path.dentry->d_name.name,
939		count, (long long) pos);
940
941	retval = generic_write_checks(file, &pos, &count, 0);
942	if (retval)
 
943		goto out;
944
945	retval = -EINVAL;
946	if ((ssize_t) count < 0)
947		goto out;
948	retval = 0;
949	if (!count)
950		goto out;
 
 
 
 
 
 
 
 
 
 
951
952	retval = nfs_sync_mapping(mapping);
953	if (retval)
954		goto out;
 
955
956	task_io_account_write(count);
957
958	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
959	if (retval > 0) {
960		struct inode *inode = mapping->host;
961
962		iocb->ki_pos = pos + retval;
963		spin_lock(&inode->i_lock);
964		if (i_size_read(inode) < iocb->ki_pos)
965			i_size_write(inode, iocb->ki_pos);
966		spin_unlock(&inode->i_lock);
 
 
967	}
 
 
968out:
969	return retval;
970}
971
972/**
973 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
974 *
975 */
976int __init nfs_init_directcache(void)
977{
978	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
979						sizeof(struct nfs_direct_req),
980						0, (SLAB_RECLAIM_ACCOUNT|
981							SLAB_MEM_SPREAD),
982						NULL);
983	if (nfs_direct_cachep == NULL)
984		return -ENOMEM;
985
986	return 0;
987}
988
989/**
990 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
991 *
992 */
993void nfs_destroy_directcache(void)
994{
995	kmem_cache_destroy(nfs_direct_cachep);
996}