Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   3 *
   4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   5 *
   6 * Thanks to Essential Communication for providing us with hardware
   7 * and very comprehensive documentation without which I would not have
   8 * been able to write this driver. A special thank you to John Gibbon
   9 * for sorting out the legal issues, with the NDA, allowing the code to
  10 * be released under the GPL.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18 * stupid bugs in my code.
  19 *
  20 * Softnet support and various other patches from Val Henson of
  21 * ODS/Essential.
  22 *
  23 * PCI DMA mapping code partly based on work by Francois Romieu.
  24 */
  25
  26
  27#define DEBUG 1
  28#define RX_DMA_SKBUFF 1
  29#define PKT_COPY_THRESHOLD 512
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/ioport.h>
  35#include <linux/pci.h>
  36#include <linux/kernel.h>
  37#include <linux/netdevice.h>
  38#include <linux/hippidevice.h>
  39#include <linux/skbuff.h>
 
  40#include <linux/delay.h>
  41#include <linux/mm.h>
  42#include <linux/slab.h>
  43#include <net/sock.h>
  44
  45#include <asm/cache.h>
  46#include <asm/byteorder.h>
  47#include <asm/io.h>
  48#include <asm/irq.h>
  49#include <linux/uaccess.h>
  50
  51#define rr_if_busy(dev)     netif_queue_stopped(dev)
  52#define rr_if_running(dev)  netif_running(dev)
  53
  54#include "rrunner.h"
  55
  56#define RUN_AT(x) (jiffies + (x))
  57
  58
  59MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  60MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  61MODULE_LICENSE("GPL");
  62
  63static const char version[] =
  64"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  65
  66
  67static const struct net_device_ops rr_netdev_ops = {
  68	.ndo_open 		= rr_open,
  69	.ndo_stop		= rr_close,
  70	.ndo_do_ioctl		= rr_ioctl,
  71	.ndo_start_xmit		= rr_start_xmit,
 
  72	.ndo_set_mac_address	= hippi_mac_addr,
  73};
  74
  75/*
  76 * Implementation notes:
  77 *
  78 * The DMA engine only allows for DMA within physical 64KB chunks of
  79 * memory. The current approach of the driver (and stack) is to use
  80 * linear blocks of memory for the skbuffs. However, as the data block
  81 * is always the first part of the skb and skbs are 2^n aligned so we
  82 * are guarantted to get the whole block within one 64KB align 64KB
  83 * chunk.
  84 *
  85 * On the long term, relying on being able to allocate 64KB linear
  86 * chunks of memory is not feasible and the skb handling code and the
  87 * stack will need to know about I/O vectors or something similar.
  88 */
  89
  90static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 
  91{
  92	struct net_device *dev;
  93	static int version_disp;
  94	u8 pci_latency;
  95	struct rr_private *rrpriv;
  96	void *tmpptr;
  97	dma_addr_t ring_dma;
  98	int ret = -ENOMEM;
  99
 100	dev = alloc_hippi_dev(sizeof(struct rr_private));
 101	if (!dev)
 102		goto out3;
 103
 104	ret = pci_enable_device(pdev);
 105	if (ret) {
 106		ret = -ENODEV;
 107		goto out2;
 108	}
 109
 110	rrpriv = netdev_priv(dev);
 111
 112	SET_NETDEV_DEV(dev, &pdev->dev);
 113
 114	ret = pci_request_regions(pdev, "rrunner");
 115	if (ret < 0)
 116		goto out;
 117
 118	pci_set_drvdata(pdev, dev);
 119
 120	rrpriv->pci_dev = pdev;
 121
 122	spin_lock_init(&rrpriv->lock);
 123
 124	dev->netdev_ops = &rr_netdev_ops;
 125
 126	/* display version info if adapter is found */
 127	if (!version_disp) {
 128		/* set display flag to TRUE so that */
 129		/* we only display this string ONCE */
 130		version_disp = 1;
 131		printk(version);
 132	}
 133
 134	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 135	if (pci_latency <= 0x58){
 136		pci_latency = 0x58;
 137		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 138	}
 139
 140	pci_set_master(pdev);
 141
 142	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 143	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 144	       (unsigned long long)pci_resource_start(pdev, 0),
 145	       pdev->irq, pci_latency);
 146
 147	/*
 148	 * Remap the MMIO regs into kernel space.
 149	 */
 150	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 151	if (!rrpriv->regs) {
 152		printk(KERN_ERR "%s:  Unable to map I/O register, "
 153			"RoadRunner will be disabled.\n", dev->name);
 154		ret = -EIO;
 155		goto out;
 156	}
 157
 158	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 159	rrpriv->tx_ring = tmpptr;
 160	rrpriv->tx_ring_dma = ring_dma;
 161
 162	if (!tmpptr) {
 163		ret = -ENOMEM;
 164		goto out;
 165	}
 166
 167	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 168	rrpriv->rx_ring = tmpptr;
 169	rrpriv->rx_ring_dma = ring_dma;
 170
 171	if (!tmpptr) {
 172		ret = -ENOMEM;
 173		goto out;
 174	}
 175
 176	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 177	rrpriv->evt_ring = tmpptr;
 178	rrpriv->evt_ring_dma = ring_dma;
 179
 180	if (!tmpptr) {
 181		ret = -ENOMEM;
 182		goto out;
 183	}
 184
 185	/*
 186	 * Don't access any register before this point!
 187	 */
 188#ifdef __BIG_ENDIAN
 189	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 190		&rrpriv->regs->HostCtrl);
 191#endif
 192	/*
 193	 * Need to add a case for little-endian 64-bit hosts here.
 194	 */
 195
 196	rr_init(dev);
 197
 198	ret = register_netdev(dev);
 199	if (ret)
 200		goto out;
 201	return 0;
 202
 203 out:
 204	if (rrpriv->evt_ring)
 205		pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
 206				    rrpriv->evt_ring_dma);
 207	if (rrpriv->rx_ring)
 208		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 209				    rrpriv->rx_ring_dma);
 210	if (rrpriv->tx_ring)
 211		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 212				    rrpriv->tx_ring_dma);
 213	if (rrpriv->regs)
 214		pci_iounmap(pdev, rrpriv->regs);
 215	if (pdev)
 216		pci_release_regions(pdev);
 
 
 217 out2:
 218	free_netdev(dev);
 219 out3:
 220	return ret;
 221}
 222
 223static void rr_remove_one(struct pci_dev *pdev)
 224{
 225	struct net_device *dev = pci_get_drvdata(pdev);
 226	struct rr_private *rr = netdev_priv(dev);
 227
 228	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 229		printk(KERN_ERR "%s: trying to unload running NIC\n",
 230		       dev->name);
 231		writel(HALT_NIC, &rr->regs->HostCtrl);
 232	}
 233
 234	unregister_netdev(dev);
 235	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 236			    rr->evt_ring_dma);
 237	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 238			    rr->rx_ring_dma);
 239	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 240			    rr->tx_ring_dma);
 241	pci_iounmap(pdev, rr->regs);
 242	pci_release_regions(pdev);
 243	pci_disable_device(pdev);
 
 244	free_netdev(dev);
 245}
 246
 247
 248/*
 249 * Commands are considered to be slow, thus there is no reason to
 250 * inline this.
 251 */
 252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 253{
 254	struct rr_regs __iomem *regs;
 255	u32 idx;
 256
 257	regs = rrpriv->regs;
 258	/*
 259	 * This is temporary - it will go away in the final version.
 260	 * We probably also want to make this function inline.
 261	 */
 262	if (readl(&regs->HostCtrl) & NIC_HALTED){
 263		printk("issuing command for halted NIC, code 0x%x, "
 264		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 265		if (readl(&regs->Mode) & FATAL_ERR)
 266			printk("error codes Fail1 %02x, Fail2 %02x\n",
 267			       readl(&regs->Fail1), readl(&regs->Fail2));
 268	}
 269
 270	idx = rrpriv->info->cmd_ctrl.pi;
 271
 272	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 273	wmb();
 274
 275	idx = (idx - 1) % CMD_RING_ENTRIES;
 276	rrpriv->info->cmd_ctrl.pi = idx;
 277	wmb();
 278
 279	if (readl(&regs->Mode) & FATAL_ERR)
 280		printk("error code %02x\n", readl(&regs->Fail1));
 281}
 282
 283
 284/*
 285 * Reset the board in a sensible manner. The NIC is already halted
 286 * when we get here and a spin-lock is held.
 287 */
 288static int rr_reset(struct net_device *dev)
 289{
 290	struct rr_private *rrpriv;
 291	struct rr_regs __iomem *regs;
 292	u32 start_pc;
 293	int i;
 294
 295	rrpriv = netdev_priv(dev);
 296	regs = rrpriv->regs;
 297
 298	rr_load_firmware(dev);
 299
 300	writel(0x01000000, &regs->TX_state);
 301	writel(0xff800000, &regs->RX_state);
 302	writel(0, &regs->AssistState);
 303	writel(CLEAR_INTA, &regs->LocalCtrl);
 304	writel(0x01, &regs->BrkPt);
 305	writel(0, &regs->Timer);
 306	writel(0, &regs->TimerRef);
 307	writel(RESET_DMA, &regs->DmaReadState);
 308	writel(RESET_DMA, &regs->DmaWriteState);
 309	writel(0, &regs->DmaWriteHostHi);
 310	writel(0, &regs->DmaWriteHostLo);
 311	writel(0, &regs->DmaReadHostHi);
 312	writel(0, &regs->DmaReadHostLo);
 313	writel(0, &regs->DmaReadLen);
 314	writel(0, &regs->DmaWriteLen);
 315	writel(0, &regs->DmaWriteLcl);
 316	writel(0, &regs->DmaWriteIPchecksum);
 317	writel(0, &regs->DmaReadLcl);
 318	writel(0, &regs->DmaReadIPchecksum);
 319	writel(0, &regs->PciState);
 320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 321	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 322#elif (BITS_PER_LONG == 64)
 323	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 324#else
 325	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 326#endif
 327
 328#if 0
 329	/*
 330	 * Don't worry, this is just black magic.
 331	 */
 332	writel(0xdf000, &regs->RxBase);
 333	writel(0xdf000, &regs->RxPrd);
 334	writel(0xdf000, &regs->RxCon);
 335	writel(0xce000, &regs->TxBase);
 336	writel(0xce000, &regs->TxPrd);
 337	writel(0xce000, &regs->TxCon);
 338	writel(0, &regs->RxIndPro);
 339	writel(0, &regs->RxIndCon);
 340	writel(0, &regs->RxIndRef);
 341	writel(0, &regs->TxIndPro);
 342	writel(0, &regs->TxIndCon);
 343	writel(0, &regs->TxIndRef);
 344	writel(0xcc000, &regs->pad10[0]);
 345	writel(0, &regs->DrCmndPro);
 346	writel(0, &regs->DrCmndCon);
 347	writel(0, &regs->DwCmndPro);
 348	writel(0, &regs->DwCmndCon);
 349	writel(0, &regs->DwCmndRef);
 350	writel(0, &regs->DrDataPro);
 351	writel(0, &regs->DrDataCon);
 352	writel(0, &regs->DrDataRef);
 353	writel(0, &regs->DwDataPro);
 354	writel(0, &regs->DwDataCon);
 355	writel(0, &regs->DwDataRef);
 356#endif
 357
 358	writel(0xffffffff, &regs->MbEvent);
 359	writel(0, &regs->Event);
 360
 361	writel(0, &regs->TxPi);
 362	writel(0, &regs->IpRxPi);
 363
 364	writel(0, &regs->EvtCon);
 365	writel(0, &regs->EvtPrd);
 366
 367	rrpriv->info->evt_ctrl.pi = 0;
 368
 369	for (i = 0; i < CMD_RING_ENTRIES; i++)
 370		writel(0, &regs->CmdRing[i]);
 371
 372/*
 373 * Why 32 ? is this not cache line size dependent?
 374 */
 375	writel(RBURST_64|WBURST_64, &regs->PciState);
 376	wmb();
 377
 378	start_pc = rr_read_eeprom_word(rrpriv,
 379			offsetof(struct eeprom, rncd_info.FwStart));
 380
 381#if (DEBUG > 1)
 382	printk("%s: Executing firmware at address 0x%06x\n",
 383	       dev->name, start_pc);
 384#endif
 385
 386	writel(start_pc + 0x800, &regs->Pc);
 387	wmb();
 388	udelay(5);
 389
 390	writel(start_pc, &regs->Pc);
 391	wmb();
 392
 393	return 0;
 394}
 395
 396
 397/*
 398 * Read a string from the EEPROM.
 399 */
 400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 401				unsigned long offset,
 402				unsigned char *buf,
 403				unsigned long length)
 404{
 405	struct rr_regs __iomem *regs = rrpriv->regs;
 406	u32 misc, io, host, i;
 407
 408	io = readl(&regs->ExtIo);
 409	writel(0, &regs->ExtIo);
 410	misc = readl(&regs->LocalCtrl);
 411	writel(0, &regs->LocalCtrl);
 412	host = readl(&regs->HostCtrl);
 413	writel(host | HALT_NIC, &regs->HostCtrl);
 414	mb();
 415
 416	for (i = 0; i < length; i++){
 417		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 418		mb();
 419		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 420		mb();
 421	}
 422
 423	writel(host, &regs->HostCtrl);
 424	writel(misc, &regs->LocalCtrl);
 425	writel(io, &regs->ExtIo);
 426	mb();
 427	return i;
 428}
 429
 430
 431/*
 432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 433 * it to our CPU byte-order.
 434 */
 435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 436			    size_t offset)
 437{
 438	__be32 word;
 439
 440	if ((rr_read_eeprom(rrpriv, offset,
 441			    (unsigned char *)&word, 4) == 4))
 442		return be32_to_cpu(word);
 443	return 0;
 444}
 445
 446
 447/*
 448 * Write a string to the EEPROM.
 449 *
 450 * This is only called when the firmware is not running.
 451 */
 452static unsigned int write_eeprom(struct rr_private *rrpriv,
 453				 unsigned long offset,
 454				 unsigned char *buf,
 455				 unsigned long length)
 456{
 457	struct rr_regs __iomem *regs = rrpriv->regs;
 458	u32 misc, io, data, i, j, ready, error = 0;
 459
 460	io = readl(&regs->ExtIo);
 461	writel(0, &regs->ExtIo);
 462	misc = readl(&regs->LocalCtrl);
 463	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 464	mb();
 465
 466	for (i = 0; i < length; i++){
 467		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 468		mb();
 469		data = buf[i] << 24;
 470		/*
 471		 * Only try to write the data if it is not the same
 472		 * value already.
 473		 */
 474		if ((readl(&regs->WinData) & 0xff000000) != data){
 475			writel(data, &regs->WinData);
 476			ready = 0;
 477			j = 0;
 478			mb();
 479			while(!ready){
 480				udelay(20);
 481				if ((readl(&regs->WinData) & 0xff000000) ==
 482				    data)
 483					ready = 1;
 484				mb();
 485				if (j++ > 5000){
 486					printk("data mismatch: %08x, "
 487					       "WinData %08x\n", data,
 488					       readl(&regs->WinData));
 489					ready = 1;
 490					error = 1;
 491				}
 492			}
 493		}
 494	}
 495
 496	writel(misc, &regs->LocalCtrl);
 497	writel(io, &regs->ExtIo);
 498	mb();
 499
 500	return error;
 501}
 502
 503
 504static int rr_init(struct net_device *dev)
 505{
 506	struct rr_private *rrpriv;
 507	struct rr_regs __iomem *regs;
 508	u32 sram_size, rev;
 509
 510	rrpriv = netdev_priv(dev);
 511	regs = rrpriv->regs;
 512
 513	rev = readl(&regs->FwRev);
 514	rrpriv->fw_rev = rev;
 515	if (rev > 0x00020024)
 516		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 517		       ((rev >> 8) & 0xff), (rev & 0xff));
 518	else if (rev >= 0x00020000) {
 519		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 520		       "later is recommended)\n", (rev >> 16),
 521		       ((rev >> 8) & 0xff), (rev & 0xff));
 522	}else{
 523		printk("  Firmware revision too old: %i.%i.%i, please "
 524		       "upgrade to 2.0.37 or later.\n",
 525		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 526	}
 527
 528#if (DEBUG > 2)
 529	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 530#endif
 531
 532	/*
 533	 * Read the hardware address from the eeprom.  The HW address
 534	 * is not really necessary for HIPPI but awfully convenient.
 535	 * The pointer arithmetic to put it in dev_addr is ugly, but
 536	 * Donald Becker does it this way for the GigE version of this
 537	 * card and it's shorter and more portable than any
 538	 * other method I've seen.  -VAL
 539	 */
 540
 541	*(__be16 *)(dev->dev_addr) =
 542	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 543	*(__be32 *)(dev->dev_addr+2) =
 544	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 545
 546	printk("  MAC: %pM\n", dev->dev_addr);
 547
 548	sram_size = rr_read_eeprom_word(rrpriv, 8);
 549	printk("  SRAM size 0x%06x\n", sram_size);
 550
 551	return 0;
 552}
 553
 554
 555static int rr_init1(struct net_device *dev)
 556{
 557	struct rr_private *rrpriv;
 558	struct rr_regs __iomem *regs;
 559	unsigned long myjif, flags;
 560	struct cmd cmd;
 561	u32 hostctrl;
 562	int ecode = 0;
 563	short i;
 564
 565	rrpriv = netdev_priv(dev);
 566	regs = rrpriv->regs;
 567
 568	spin_lock_irqsave(&rrpriv->lock, flags);
 569
 570	hostctrl = readl(&regs->HostCtrl);
 571	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 572	wmb();
 573
 574	if (hostctrl & PARITY_ERR){
 575		printk("%s: Parity error halting NIC - this is serious!\n",
 576		       dev->name);
 577		spin_unlock_irqrestore(&rrpriv->lock, flags);
 578		ecode = -EFAULT;
 579		goto error;
 580	}
 581
 582	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 583	set_infoaddr(regs, rrpriv->info_dma);
 584
 585	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 586	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 587	rrpriv->info->evt_ctrl.mode = 0;
 588	rrpriv->info->evt_ctrl.pi = 0;
 589	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 590
 591	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 592	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 593	rrpriv->info->cmd_ctrl.mode = 0;
 594	rrpriv->info->cmd_ctrl.pi = 15;
 595
 596	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 597		writel(0, &regs->CmdRing[i]);
 598	}
 599
 600	for (i = 0; i < TX_RING_ENTRIES; i++) {
 601		rrpriv->tx_ring[i].size = 0;
 602		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 603		rrpriv->tx_skbuff[i] = NULL;
 604	}
 605	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 606	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 607	rrpriv->info->tx_ctrl.mode = 0;
 608	rrpriv->info->tx_ctrl.pi = 0;
 609	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 610
 611	/*
 612	 * Set dirty_tx before we start receiving interrupts, otherwise
 613	 * the interrupt handler might think it is supposed to process
 614	 * tx ints before we are up and running, which may cause a null
 615	 * pointer access in the int handler.
 616	 */
 617	rrpriv->tx_full = 0;
 618	rrpriv->cur_rx = 0;
 619	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 620
 621	rr_reset(dev);
 622
 623	/* Tuning values */
 624	writel(0x5000, &regs->ConRetry);
 625	writel(0x100, &regs->ConRetryTmr);
 626	writel(0x500000, &regs->ConTmout);
 627 	writel(0x60, &regs->IntrTmr);
 628	writel(0x500000, &regs->TxDataMvTimeout);
 629	writel(0x200000, &regs->RxDataMvTimeout);
 630 	writel(0x80, &regs->WriteDmaThresh);
 631 	writel(0x80, &regs->ReadDmaThresh);
 632
 633	rrpriv->fw_running = 0;
 634	wmb();
 635
 636	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 637	writel(hostctrl, &regs->HostCtrl);
 638	wmb();
 639
 640	spin_unlock_irqrestore(&rrpriv->lock, flags);
 641
 642	for (i = 0; i < RX_RING_ENTRIES; i++) {
 643		struct sk_buff *skb;
 644		dma_addr_t addr;
 645
 646		rrpriv->rx_ring[i].mode = 0;
 647		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 648		if (!skb) {
 649			printk(KERN_WARNING "%s: Unable to allocate memory "
 650			       "for receive ring - halting NIC\n", dev->name);
 651			ecode = -ENOMEM;
 652			goto error;
 653		}
 654		rrpriv->rx_skbuff[i] = skb;
 655	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
 656			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 657		/*
 658		 * Sanity test to see if we conflict with the DMA
 659		 * limitations of the Roadrunner.
 660		 */
 661		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 662			printk("skb alloc error\n");
 663
 664		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 665		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 666	}
 667
 668	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 669	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 670	rrpriv->rx_ctrl[4].mode = 8;
 671	rrpriv->rx_ctrl[4].pi = 0;
 672	wmb();
 673	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 674
 675	udelay(1000);
 676
 677	/*
 678	 * Now start the FirmWare.
 679	 */
 680	cmd.code = C_START_FW;
 681	cmd.ring = 0;
 682	cmd.index = 0;
 683
 684	rr_issue_cmd(rrpriv, &cmd);
 685
 686	/*
 687	 * Give the FirmWare time to chew on the `get running' command.
 688	 */
 689	myjif = jiffies + 5 * HZ;
 690	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 691		cpu_relax();
 692
 693	netif_start_queue(dev);
 694
 695	return ecode;
 696
 697 error:
 698	/*
 699	 * We might have gotten here because we are out of memory,
 700	 * make sure we release everything we allocated before failing
 701	 */
 702	for (i = 0; i < RX_RING_ENTRIES; i++) {
 703		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 704
 705		if (skb) {
 706	        	pci_unmap_single(rrpriv->pci_dev,
 707					 rrpriv->rx_ring[i].addr.addrlo,
 708					 dev->mtu + HIPPI_HLEN,
 709					 PCI_DMA_FROMDEVICE);
 710			rrpriv->rx_ring[i].size = 0;
 711			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 712			dev_kfree_skb(skb);
 713			rrpriv->rx_skbuff[i] = NULL;
 714		}
 715	}
 716	return ecode;
 717}
 718
 719
 720/*
 721 * All events are considered to be slow (RX/TX ints do not generate
 722 * events) and are handled here, outside the main interrupt handler,
 723 * to reduce the size of the handler.
 724 */
 725static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 726{
 727	struct rr_private *rrpriv;
 728	struct rr_regs __iomem *regs;
 729	u32 tmp;
 730
 731	rrpriv = netdev_priv(dev);
 732	regs = rrpriv->regs;
 733
 734	while (prodidx != eidx){
 735		switch (rrpriv->evt_ring[eidx].code){
 736		case E_NIC_UP:
 737			tmp = readl(&regs->FwRev);
 738			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 739			       "up and running\n", dev->name,
 740			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 741			rrpriv->fw_running = 1;
 742			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 743			wmb();
 744			break;
 745		case E_LINK_ON:
 746			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 747			break;
 748		case E_LINK_OFF:
 749			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 750			break;
 751		case E_RX_IDLE:
 752			printk(KERN_WARNING "%s: RX data not moving\n",
 753			       dev->name);
 754			goto drop;
 755		case E_WATCHDOG:
 756			printk(KERN_INFO "%s: The watchdog is here to see "
 757			       "us\n", dev->name);
 758			break;
 759		case E_INTERN_ERR:
 760			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 761			       dev->name);
 762			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 763			       &regs->HostCtrl);
 764			wmb();
 765			break;
 766		case E_HOST_ERR:
 767			printk(KERN_ERR "%s: Host software error\n",
 768			       dev->name);
 769			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 770			       &regs->HostCtrl);
 771			wmb();
 772			break;
 773		/*
 774		 * TX events.
 775		 */
 776		case E_CON_REJ:
 777			printk(KERN_WARNING "%s: Connection rejected\n",
 778			       dev->name);
 779			dev->stats.tx_aborted_errors++;
 780			break;
 781		case E_CON_TMOUT:
 782			printk(KERN_WARNING "%s: Connection timeout\n",
 783			       dev->name);
 784			break;
 785		case E_DISC_ERR:
 786			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 787			       dev->name);
 788			dev->stats.tx_aborted_errors++;
 789			break;
 790		case E_INT_PRTY:
 791			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 792			       dev->name);
 793			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 794			       &regs->HostCtrl);
 795			wmb();
 796			break;
 797		case E_TX_IDLE:
 798			printk(KERN_WARNING "%s: Transmitter idle\n",
 799			       dev->name);
 800			break;
 801		case E_TX_LINK_DROP:
 802			printk(KERN_WARNING "%s: Link lost during transmit\n",
 803			       dev->name);
 804			dev->stats.tx_aborted_errors++;
 805			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 806			       &regs->HostCtrl);
 807			wmb();
 808			break;
 809		case E_TX_INV_RNG:
 810			printk(KERN_ERR "%s: Invalid send ring block\n",
 811			       dev->name);
 812			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 813			       &regs->HostCtrl);
 814			wmb();
 815			break;
 816		case E_TX_INV_BUF:
 817			printk(KERN_ERR "%s: Invalid send buffer address\n",
 818			       dev->name);
 819			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 820			       &regs->HostCtrl);
 821			wmb();
 822			break;
 823		case E_TX_INV_DSC:
 824			printk(KERN_ERR "%s: Invalid descriptor address\n",
 825			       dev->name);
 826			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 827			       &regs->HostCtrl);
 828			wmb();
 829			break;
 830		/*
 831		 * RX events.
 832		 */
 833		case E_RX_RNG_OUT:
 834			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 835			break;
 836
 837		case E_RX_PAR_ERR:
 838			printk(KERN_WARNING "%s: Receive parity error\n",
 839			       dev->name);
 840			goto drop;
 841		case E_RX_LLRC_ERR:
 842			printk(KERN_WARNING "%s: Receive LLRC error\n",
 843			       dev->name);
 844			goto drop;
 845		case E_PKT_LN_ERR:
 846			printk(KERN_WARNING "%s: Receive packet length "
 847			       "error\n", dev->name);
 848			goto drop;
 849		case E_DTA_CKSM_ERR:
 850			printk(KERN_WARNING "%s: Data checksum error\n",
 851			       dev->name);
 852			goto drop;
 853		case E_SHT_BST:
 854			printk(KERN_WARNING "%s: Unexpected short burst "
 855			       "error\n", dev->name);
 856			goto drop;
 857		case E_STATE_ERR:
 858			printk(KERN_WARNING "%s: Recv. state transition"
 859			       " error\n", dev->name);
 860			goto drop;
 861		case E_UNEXP_DATA:
 862			printk(KERN_WARNING "%s: Unexpected data error\n",
 863			       dev->name);
 864			goto drop;
 865		case E_LST_LNK_ERR:
 866			printk(KERN_WARNING "%s: Link lost error\n",
 867			       dev->name);
 868			goto drop;
 869		case E_FRM_ERR:
 870			printk(KERN_WARNING "%s: Framming Error\n",
 871			       dev->name);
 872			goto drop;
 873		case E_FLG_SYN_ERR:
 874			printk(KERN_WARNING "%s: Flag sync. lost during "
 875			       "packet\n", dev->name);
 876			goto drop;
 877		case E_RX_INV_BUF:
 878			printk(KERN_ERR "%s: Invalid receive buffer "
 879			       "address\n", dev->name);
 880			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 881			       &regs->HostCtrl);
 882			wmb();
 883			break;
 884		case E_RX_INV_DSC:
 885			printk(KERN_ERR "%s: Invalid receive descriptor "
 886			       "address\n", dev->name);
 887			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 888			       &regs->HostCtrl);
 889			wmb();
 890			break;
 891		case E_RNG_BLK:
 892			printk(KERN_ERR "%s: Invalid ring block\n",
 893			       dev->name);
 894			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 895			       &regs->HostCtrl);
 896			wmb();
 897			break;
 898		drop:
 899			/* Label packet to be dropped.
 900			 * Actual dropping occurs in rx
 901			 * handling.
 902			 *
 903			 * The index of packet we get to drop is
 904			 * the index of the packet following
 905			 * the bad packet. -kbf
 906			 */
 907			{
 908				u16 index = rrpriv->evt_ring[eidx].index;
 909				index = (index + (RX_RING_ENTRIES - 1)) %
 910					RX_RING_ENTRIES;
 911				rrpriv->rx_ring[index].mode |=
 912					(PACKET_BAD | PACKET_END);
 913			}
 914			break;
 915		default:
 916			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 917			       dev->name, rrpriv->evt_ring[eidx].code);
 918		}
 919		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 920	}
 921
 922	rrpriv->info->evt_ctrl.pi = eidx;
 923	wmb();
 924	return eidx;
 925}
 926
 927
 928static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 929{
 930	struct rr_private *rrpriv = netdev_priv(dev);
 931	struct rr_regs __iomem *regs = rrpriv->regs;
 932
 933	do {
 934		struct rx_desc *desc;
 935		u32 pkt_len;
 936
 937		desc = &(rrpriv->rx_ring[index]);
 938		pkt_len = desc->size;
 939#if (DEBUG > 2)
 940		printk("index %i, rxlimit %i\n", index, rxlimit);
 941		printk("len %x, mode %x\n", pkt_len, desc->mode);
 942#endif
 943		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 944			dev->stats.rx_dropped++;
 945			goto defer;
 946		}
 947
 948		if (pkt_len > 0){
 949			struct sk_buff *skb, *rx_skb;
 950
 951			rx_skb = rrpriv->rx_skbuff[index];
 952
 953			if (pkt_len < PKT_COPY_THRESHOLD) {
 954				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 955				if (skb == NULL){
 956					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 957					dev->stats.rx_dropped++;
 958					goto defer;
 959				} else {
 960					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 961								    desc->addr.addrlo,
 962								    pkt_len,
 963								    PCI_DMA_FROMDEVICE);
 964
 965					skb_put_data(skb, rx_skb->data,
 966						     pkt_len);
 967
 968					pci_dma_sync_single_for_device(rrpriv->pci_dev,
 969								       desc->addr.addrlo,
 970								       pkt_len,
 971								       PCI_DMA_FROMDEVICE);
 972				}
 973			}else{
 974				struct sk_buff *newskb;
 975
 976				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 977					GFP_ATOMIC);
 978				if (newskb){
 979					dma_addr_t addr;
 980
 981	        			pci_unmap_single(rrpriv->pci_dev,
 982						desc->addr.addrlo, dev->mtu +
 983						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 984					skb = rx_skb;
 985					skb_put(skb, pkt_len);
 986					rrpriv->rx_skbuff[index] = newskb;
 987	        			addr = pci_map_single(rrpriv->pci_dev,
 988						newskb->data,
 989						dev->mtu + HIPPI_HLEN,
 990						PCI_DMA_FROMDEVICE);
 991					set_rraddr(&desc->addr, addr);
 992				} else {
 993					printk("%s: Out of memory, deferring "
 994					       "packet\n", dev->name);
 995					dev->stats.rx_dropped++;
 996					goto defer;
 997				}
 998			}
 999			skb->protocol = hippi_type_trans(skb, dev);
1000
1001			netif_rx(skb);		/* send it up */
1002
1003			dev->stats.rx_packets++;
1004			dev->stats.rx_bytes += pkt_len;
1005		}
1006	defer:
1007		desc->mode = 0;
1008		desc->size = dev->mtu + HIPPI_HLEN;
1009
1010		if ((index & 7) == 7)
1011			writel(index, &regs->IpRxPi);
1012
1013		index = (index + 1) % RX_RING_ENTRIES;
1014	} while(index != rxlimit);
1015
1016	rrpriv->cur_rx = index;
1017	wmb();
1018}
1019
1020
1021static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022{
1023	struct rr_private *rrpriv;
1024	struct rr_regs __iomem *regs;
1025	struct net_device *dev = (struct net_device *)dev_id;
1026	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028	rrpriv = netdev_priv(dev);
1029	regs = rrpriv->regs;
1030
1031	if (!(readl(&regs->HostCtrl) & RR_INT))
1032		return IRQ_NONE;
1033
1034	spin_lock(&rrpriv->lock);
1035
1036	prodidx = readl(&regs->EvtPrd);
1037	txcsmr = (prodidx >> 8) & 0xff;
1038	rxlimit = (prodidx >> 16) & 0xff;
1039	prodidx &= 0xff;
1040
1041#if (DEBUG > 2)
1042	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043	       prodidx, rrpriv->info->evt_ctrl.pi);
1044#endif
1045	/*
1046	 * Order here is important.  We must handle events
1047	 * before doing anything else in order to catch
1048	 * such things as LLRC errors, etc -kbf
1049	 */
1050
1051	eidx = rrpriv->info->evt_ctrl.pi;
1052	if (prodidx != eidx)
1053		eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055	rxindex = rrpriv->cur_rx;
1056	if (rxindex != rxlimit)
1057		rx_int(dev, rxlimit, rxindex);
1058
1059	txcon = rrpriv->dirty_tx;
1060	if (txcsmr != txcon) {
1061		do {
1062			/* Due to occational firmware TX producer/consumer out
1063			 * of sync. error need to check entry in ring -kbf
1064			 */
1065			if(rrpriv->tx_skbuff[txcon]){
1066				struct tx_desc *desc;
1067				struct sk_buff *skb;
1068
1069				desc = &(rrpriv->tx_ring[txcon]);
1070				skb = rrpriv->tx_skbuff[txcon];
1071
1072				dev->stats.tx_packets++;
1073				dev->stats.tx_bytes += skb->len;
1074
1075				pci_unmap_single(rrpriv->pci_dev,
1076						 desc->addr.addrlo, skb->len,
1077						 PCI_DMA_TODEVICE);
1078				dev_kfree_skb_irq(skb);
1079
1080				rrpriv->tx_skbuff[txcon] = NULL;
1081				desc->size = 0;
1082				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083				desc->mode = 0;
1084			}
1085			txcon = (txcon + 1) % TX_RING_ENTRIES;
1086		} while (txcsmr != txcon);
1087		wmb();
1088
1089		rrpriv->dirty_tx = txcon;
1090		if (rrpriv->tx_full && rr_if_busy(dev) &&
1091		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092		     != rrpriv->dirty_tx)){
1093			rrpriv->tx_full = 0;
1094			netif_wake_queue(dev);
1095		}
1096	}
1097
1098	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099	writel(eidx, &regs->EvtCon);
1100	wmb();
1101
1102	spin_unlock(&rrpriv->lock);
1103	return IRQ_HANDLED;
1104}
1105
1106static inline void rr_raz_tx(struct rr_private *rrpriv,
1107			     struct net_device *dev)
1108{
1109	int i;
1110
1111	for (i = 0; i < TX_RING_ENTRIES; i++) {
1112		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114		if (skb) {
1115			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1118				skb->len, PCI_DMA_TODEVICE);
1119			desc->size = 0;
1120			set_rraddr(&desc->addr, 0);
1121			dev_kfree_skb(skb);
1122			rrpriv->tx_skbuff[i] = NULL;
1123		}
1124	}
1125}
1126
1127
1128static inline void rr_raz_rx(struct rr_private *rrpriv,
1129			     struct net_device *dev)
1130{
1131	int i;
1132
1133	for (i = 0; i < RX_RING_ENTRIES; i++) {
1134		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1135
1136		if (skb) {
1137			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1138
1139	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1140				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1141			desc->size = 0;
1142			set_rraddr(&desc->addr, 0);
1143			dev_kfree_skb(skb);
1144			rrpriv->rx_skbuff[i] = NULL;
1145		}
1146	}
1147}
1148
1149static void rr_timer(struct timer_list *t)
1150{
1151	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1152	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1153	struct rr_regs __iomem *regs = rrpriv->regs;
1154	unsigned long flags;
1155
1156	if (readl(&regs->HostCtrl) & NIC_HALTED){
1157		printk("%s: Restarting nic\n", dev->name);
1158		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1159		memset(rrpriv->info, 0, sizeof(struct rr_info));
1160		wmb();
1161
1162		rr_raz_tx(rrpriv, dev);
1163		rr_raz_rx(rrpriv, dev);
1164
1165		if (rr_init1(dev)) {
1166			spin_lock_irqsave(&rrpriv->lock, flags);
1167			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1168			       &regs->HostCtrl);
1169			spin_unlock_irqrestore(&rrpriv->lock, flags);
1170		}
1171	}
1172	rrpriv->timer.expires = RUN_AT(5*HZ);
1173	add_timer(&rrpriv->timer);
1174}
1175
1176
1177static int rr_open(struct net_device *dev)
1178{
1179	struct rr_private *rrpriv = netdev_priv(dev);
1180	struct pci_dev *pdev = rrpriv->pci_dev;
1181	struct rr_regs __iomem *regs;
1182	int ecode = 0;
1183	unsigned long flags;
1184	dma_addr_t dma_addr;
1185
1186	regs = rrpriv->regs;
1187
1188	if (rrpriv->fw_rev < 0x00020000) {
1189		printk(KERN_WARNING "%s: trying to configure device with "
1190		       "obsolete firmware\n", dev->name);
1191		ecode = -EBUSY;
1192		goto error;
1193	}
1194
1195	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1196					       256 * sizeof(struct ring_ctrl),
1197					       &dma_addr);
1198	if (!rrpriv->rx_ctrl) {
1199		ecode = -ENOMEM;
1200		goto error;
1201	}
1202	rrpriv->rx_ctrl_dma = dma_addr;
1203	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1204
1205	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1206					    &dma_addr);
1207	if (!rrpriv->info) {
1208		ecode = -ENOMEM;
1209		goto error;
1210	}
1211	rrpriv->info_dma = dma_addr;
1212	memset(rrpriv->info, 0, sizeof(struct rr_info));
1213	wmb();
1214
1215	spin_lock_irqsave(&rrpriv->lock, flags);
1216	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1217	readl(&regs->HostCtrl);
1218	spin_unlock_irqrestore(&rrpriv->lock, flags);
1219
1220	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1221		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1222		       dev->name, pdev->irq);
1223		ecode = -EAGAIN;
1224		goto error;
1225	}
1226
1227	if ((ecode = rr_init1(dev)))
1228		goto error;
1229
1230	/* Set the timer to switch to check for link beat and perhaps switch
1231	   to an alternate media type. */
1232	timer_setup(&rrpriv->timer, rr_timer, 0);
1233	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
 
 
1234	add_timer(&rrpriv->timer);
1235
1236	netif_start_queue(dev);
1237
1238	return ecode;
1239
1240 error:
1241	spin_lock_irqsave(&rrpriv->lock, flags);
1242	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1243	spin_unlock_irqrestore(&rrpriv->lock, flags);
1244
1245	if (rrpriv->info) {
1246		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1247				    rrpriv->info_dma);
1248		rrpriv->info = NULL;
1249	}
1250	if (rrpriv->rx_ctrl) {
1251		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1252				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1253		rrpriv->rx_ctrl = NULL;
1254	}
1255
1256	netif_stop_queue(dev);
1257
1258	return ecode;
1259}
1260
1261
1262static void rr_dump(struct net_device *dev)
1263{
1264	struct rr_private *rrpriv;
1265	struct rr_regs __iomem *regs;
1266	u32 index, cons;
1267	short i;
1268	int len;
1269
1270	rrpriv = netdev_priv(dev);
1271	regs = rrpriv->regs;
1272
1273	printk("%s: dumping NIC TX rings\n", dev->name);
1274
1275	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1276	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1277	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1278	       rrpriv->info->tx_ctrl.pi);
1279
1280	printk("Error code 0x%x\n", readl(&regs->Fail1));
1281
1282	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1283	cons = rrpriv->dirty_tx;
1284	printk("TX ring index %i, TX consumer %i\n",
1285	       index, cons);
1286
1287	if (rrpriv->tx_skbuff[index]){
1288		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1289		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1290		for (i = 0; i < len; i++){
1291			if (!(i & 7))
1292				printk("\n");
1293			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1294		}
1295		printk("\n");
1296	}
1297
1298	if (rrpriv->tx_skbuff[cons]){
1299		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1300		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1301		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1302		       rrpriv->tx_ring[cons].mode,
1303		       rrpriv->tx_ring[cons].size,
1304		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1305		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1306		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1307		for (i = 0; i < len; i++){
1308			if (!(i & 7))
1309				printk("\n");
1310			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1311		}
1312		printk("\n");
1313	}
1314
1315	printk("dumping TX ring info:\n");
1316	for (i = 0; i < TX_RING_ENTRIES; i++)
1317		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1318		       rrpriv->tx_ring[i].mode,
1319		       rrpriv->tx_ring[i].size,
1320		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1321
1322}
1323
1324
1325static int rr_close(struct net_device *dev)
1326{
1327	struct rr_private *rrpriv = netdev_priv(dev);
1328	struct rr_regs __iomem *regs = rrpriv->regs;
1329	struct pci_dev *pdev = rrpriv->pci_dev;
1330	unsigned long flags;
1331	u32 tmp;
1332	short i;
1333
1334	netif_stop_queue(dev);
1335
1336
1337	/*
1338	 * Lock to make sure we are not cleaning up while another CPU
1339	 * is handling interrupts.
1340	 */
1341	spin_lock_irqsave(&rrpriv->lock, flags);
1342
1343	tmp = readl(&regs->HostCtrl);
1344	if (tmp & NIC_HALTED){
1345		printk("%s: NIC already halted\n", dev->name);
1346		rr_dump(dev);
1347	}else{
1348		tmp |= HALT_NIC | RR_CLEAR_INT;
1349		writel(tmp, &regs->HostCtrl);
1350		readl(&regs->HostCtrl);
1351	}
1352
1353	rrpriv->fw_running = 0;
1354
1355	del_timer_sync(&rrpriv->timer);
1356
1357	writel(0, &regs->TxPi);
1358	writel(0, &regs->IpRxPi);
1359
1360	writel(0, &regs->EvtCon);
1361	writel(0, &regs->EvtPrd);
1362
1363	for (i = 0; i < CMD_RING_ENTRIES; i++)
1364		writel(0, &regs->CmdRing[i]);
1365
1366	rrpriv->info->tx_ctrl.entries = 0;
1367	rrpriv->info->cmd_ctrl.pi = 0;
1368	rrpriv->info->evt_ctrl.pi = 0;
1369	rrpriv->rx_ctrl[4].entries = 0;
1370
1371	rr_raz_tx(rrpriv, dev);
1372	rr_raz_rx(rrpriv, dev);
1373
1374	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1375			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1376	rrpriv->rx_ctrl = NULL;
1377
1378	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1379			    rrpriv->info_dma);
1380	rrpriv->info = NULL;
1381
1382	spin_unlock_irqrestore(&rrpriv->lock, flags);
1383	free_irq(pdev->irq, dev);
 
1384
1385	return 0;
1386}
1387
1388
1389static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1390				 struct net_device *dev)
1391{
1392	struct rr_private *rrpriv = netdev_priv(dev);
1393	struct rr_regs __iomem *regs = rrpriv->regs;
1394	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1395	struct ring_ctrl *txctrl;
1396	unsigned long flags;
1397	u32 index, len = skb->len;
1398	u32 *ifield;
1399	struct sk_buff *new_skb;
1400
1401	if (readl(&regs->Mode) & FATAL_ERR)
1402		printk("error codes Fail1 %02x, Fail2 %02x\n",
1403		       readl(&regs->Fail1), readl(&regs->Fail2));
1404
1405	/*
1406	 * We probably need to deal with tbusy here to prevent overruns.
1407	 */
1408
1409	if (skb_headroom(skb) < 8){
1410		printk("incoming skb too small - reallocating\n");
1411		if (!(new_skb = dev_alloc_skb(len + 8))) {
1412			dev_kfree_skb(skb);
1413			netif_wake_queue(dev);
1414			return NETDEV_TX_OK;
1415		}
1416		skb_reserve(new_skb, 8);
1417		skb_put(new_skb, len);
1418		skb_copy_from_linear_data(skb, new_skb->data, len);
1419		dev_kfree_skb(skb);
1420		skb = new_skb;
1421	}
1422
1423	ifield = skb_push(skb, 8);
1424
1425	ifield[0] = 0;
1426	ifield[1] = hcb->ifield;
1427
1428	/*
1429	 * We don't need the lock before we are actually going to start
1430	 * fiddling with the control blocks.
1431	 */
1432	spin_lock_irqsave(&rrpriv->lock, flags);
1433
1434	txctrl = &rrpriv->info->tx_ctrl;
1435
1436	index = txctrl->pi;
1437
1438	rrpriv->tx_skbuff[index] = skb;
1439	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1440		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1441	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1442	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1443	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1444	wmb();
1445	writel(txctrl->pi, &regs->TxPi);
1446
1447	if (txctrl->pi == rrpriv->dirty_tx){
1448		rrpriv->tx_full = 1;
1449		netif_stop_queue(dev);
1450	}
1451
1452	spin_unlock_irqrestore(&rrpriv->lock, flags);
1453
1454	return NETDEV_TX_OK;
1455}
1456
1457
1458/*
1459 * Read the firmware out of the EEPROM and put it into the SRAM
1460 * (or from user space - later)
1461 *
1462 * This operation requires the NIC to be halted and is performed with
1463 * interrupts disabled and with the spinlock hold.
1464 */
1465static int rr_load_firmware(struct net_device *dev)
1466{
1467	struct rr_private *rrpriv;
1468	struct rr_regs __iomem *regs;
1469	size_t eptr, segptr;
1470	int i, j;
1471	u32 localctrl, sptr, len, tmp;
1472	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1473
1474	rrpriv = netdev_priv(dev);
1475	regs = rrpriv->regs;
1476
1477	if (dev->flags & IFF_UP)
1478		return -EBUSY;
1479
1480	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1481		printk("%s: Trying to load firmware to a running NIC.\n",
1482		       dev->name);
1483		return -EBUSY;
1484	}
1485
1486	localctrl = readl(&regs->LocalCtrl);
1487	writel(0, &regs->LocalCtrl);
1488
1489	writel(0, &regs->EvtPrd);
1490	writel(0, &regs->RxPrd);
1491	writel(0, &regs->TxPrd);
1492
1493	/*
1494	 * First wipe the entire SRAM, otherwise we might run into all
1495	 * kinds of trouble ... sigh, this took almost all afternoon
1496	 * to track down ;-(
1497	 */
1498	io = readl(&regs->ExtIo);
1499	writel(0, &regs->ExtIo);
1500	sram_size = rr_read_eeprom_word(rrpriv, 8);
1501
1502	for (i = 200; i < sram_size / 4; i++){
1503		writel(i * 4, &regs->WinBase);
1504		mb();
1505		writel(0, &regs->WinData);
1506		mb();
1507	}
1508	writel(io, &regs->ExtIo);
1509	mb();
1510
1511	eptr = rr_read_eeprom_word(rrpriv,
1512		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1513	eptr = ((eptr & 0x1fffff) >> 3);
1514
1515	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1516	p2len = (p2len << 2);
1517	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1518	p2size = ((p2size & 0x1fffff) >> 3);
1519
1520	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1521		printk("%s: eptr is invalid\n", dev->name);
1522		goto out;
1523	}
1524
1525	revision = rr_read_eeprom_word(rrpriv,
1526			offsetof(struct eeprom, manf.HeaderFmt));
1527
1528	if (revision != 1){
1529		printk("%s: invalid firmware format (%i)\n",
1530		       dev->name, revision);
1531		goto out;
1532	}
1533
1534	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1535	eptr +=4;
1536#if (DEBUG > 1)
1537	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1538#endif
1539
1540	for (i = 0; i < nr_seg; i++){
1541		sptr = rr_read_eeprom_word(rrpriv, eptr);
1542		eptr += 4;
1543		len = rr_read_eeprom_word(rrpriv, eptr);
1544		eptr += 4;
1545		segptr = rr_read_eeprom_word(rrpriv, eptr);
1546		segptr = ((segptr & 0x1fffff) >> 3);
1547		eptr += 4;
1548#if (DEBUG > 1)
1549		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1550		       dev->name, i, sptr, len, segptr);
1551#endif
1552		for (j = 0; j < len; j++){
1553			tmp = rr_read_eeprom_word(rrpriv, segptr);
1554			writel(sptr, &regs->WinBase);
1555			mb();
1556			writel(tmp, &regs->WinData);
1557			mb();
1558			segptr += 4;
1559			sptr += 4;
1560		}
1561	}
1562
1563out:
1564	writel(localctrl, &regs->LocalCtrl);
1565	mb();
1566	return 0;
1567}
1568
1569
1570static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1571{
1572	struct rr_private *rrpriv;
1573	unsigned char *image, *oldimage;
1574	unsigned long flags;
1575	unsigned int i;
1576	int error = -EOPNOTSUPP;
1577
1578	rrpriv = netdev_priv(dev);
1579
1580	switch(cmd){
1581	case SIOCRRGFW:
1582		if (!capable(CAP_SYS_RAWIO)){
1583			return -EPERM;
1584		}
1585
1586		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1587		if (!image)
1588			return -ENOMEM;
1589
1590		if (rrpriv->fw_running){
1591			printk("%s: Firmware already running\n", dev->name);
1592			error = -EPERM;
1593			goto gf_out;
1594		}
1595
1596		spin_lock_irqsave(&rrpriv->lock, flags);
1597		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1598		spin_unlock_irqrestore(&rrpriv->lock, flags);
1599		if (i != EEPROM_BYTES){
1600			printk(KERN_ERR "%s: Error reading EEPROM\n",
1601			       dev->name);
1602			error = -EFAULT;
1603			goto gf_out;
1604		}
1605		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1606		if (error)
1607			error = -EFAULT;
1608	gf_out:
1609		kfree(image);
1610		return error;
1611
1612	case SIOCRRPFW:
1613		if (!capable(CAP_SYS_RAWIO)){
1614			return -EPERM;
1615		}
1616
1617		image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1618		if (IS_ERR(image))
1619			return PTR_ERR(image);
1620
1621		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1622		if (!oldimage) {
1623			kfree(image);
1624			return -ENOMEM;
 
 
 
1625		}
1626
1627		if (rrpriv->fw_running){
1628			printk("%s: Firmware already running\n", dev->name);
1629			error = -EPERM;
1630			goto wf_out;
1631		}
1632
1633		printk("%s: Updating EEPROM firmware\n", dev->name);
1634
1635		spin_lock_irqsave(&rrpriv->lock, flags);
1636		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1637		if (error)
1638			printk(KERN_ERR "%s: Error writing EEPROM\n",
1639			       dev->name);
1640
1641		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1642		spin_unlock_irqrestore(&rrpriv->lock, flags);
1643
1644		if (i != EEPROM_BYTES)
1645			printk(KERN_ERR "%s: Error reading back EEPROM "
1646			       "image\n", dev->name);
1647
1648		error = memcmp(image, oldimage, EEPROM_BYTES);
1649		if (error){
1650			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1651			       dev->name);
1652			error = -EFAULT;
1653		}
1654	wf_out:
1655		kfree(oldimage);
1656		kfree(image);
1657		return error;
1658
1659	case SIOCRRID:
1660		return put_user(0x52523032, (int __user *)rq->ifr_data);
1661	default:
1662		return error;
1663	}
1664}
1665
1666static const struct pci_device_id rr_pci_tbl[] = {
1667	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1668		PCI_ANY_ID, PCI_ANY_ID, },
1669	{ 0,}
1670};
1671MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1672
1673static struct pci_driver rr_driver = {
1674	.name		= "rrunner",
1675	.id_table	= rr_pci_tbl,
1676	.probe		= rr_init_one,
1677	.remove		= rr_remove_one,
1678};
1679
1680module_pci_driver(rr_driver);
 
 
 
 
 
 
 
 
 
 
 
v3.5.6
   1/*
   2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   3 *
   4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   5 *
   6 * Thanks to Essential Communication for providing us with hardware
   7 * and very comprehensive documentation without which I would not have
   8 * been able to write this driver. A special thank you to John Gibbon
   9 * for sorting out the legal issues, with the NDA, allowing the code to
  10 * be released under the GPL.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18 * stupid bugs in my code.
  19 *
  20 * Softnet support and various other patches from Val Henson of
  21 * ODS/Essential.
  22 *
  23 * PCI DMA mapping code partly based on work by Francois Romieu.
  24 */
  25
  26
  27#define DEBUG 1
  28#define RX_DMA_SKBUFF 1
  29#define PKT_COPY_THRESHOLD 512
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/ioport.h>
  35#include <linux/pci.h>
  36#include <linux/kernel.h>
  37#include <linux/netdevice.h>
  38#include <linux/hippidevice.h>
  39#include <linux/skbuff.h>
  40#include <linux/init.h>
  41#include <linux/delay.h>
  42#include <linux/mm.h>
  43#include <linux/slab.h>
  44#include <net/sock.h>
  45
  46#include <asm/cache.h>
  47#include <asm/byteorder.h>
  48#include <asm/io.h>
  49#include <asm/irq.h>
  50#include <asm/uaccess.h>
  51
  52#define rr_if_busy(dev)     netif_queue_stopped(dev)
  53#define rr_if_running(dev)  netif_running(dev)
  54
  55#include "rrunner.h"
  56
  57#define RUN_AT(x) (jiffies + (x))
  58
  59
  60MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  61MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  62MODULE_LICENSE("GPL");
  63
  64static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
 
  65
  66
  67static const struct net_device_ops rr_netdev_ops = {
  68	.ndo_open 		= rr_open,
  69	.ndo_stop		= rr_close,
  70	.ndo_do_ioctl		= rr_ioctl,
  71	.ndo_start_xmit		= rr_start_xmit,
  72	.ndo_change_mtu		= hippi_change_mtu,
  73	.ndo_set_mac_address	= hippi_mac_addr,
  74};
  75
  76/*
  77 * Implementation notes:
  78 *
  79 * The DMA engine only allows for DMA within physical 64KB chunks of
  80 * memory. The current approach of the driver (and stack) is to use
  81 * linear blocks of memory for the skbuffs. However, as the data block
  82 * is always the first part of the skb and skbs are 2^n aligned so we
  83 * are guarantted to get the whole block within one 64KB align 64KB
  84 * chunk.
  85 *
  86 * On the long term, relying on being able to allocate 64KB linear
  87 * chunks of memory is not feasible and the skb handling code and the
  88 * stack will need to know about I/O vectors or something similar.
  89 */
  90
  91static int __devinit rr_init_one(struct pci_dev *pdev,
  92	const struct pci_device_id *ent)
  93{
  94	struct net_device *dev;
  95	static int version_disp;
  96	u8 pci_latency;
  97	struct rr_private *rrpriv;
  98	void *tmpptr;
  99	dma_addr_t ring_dma;
 100	int ret = -ENOMEM;
 101
 102	dev = alloc_hippi_dev(sizeof(struct rr_private));
 103	if (!dev)
 104		goto out3;
 105
 106	ret = pci_enable_device(pdev);
 107	if (ret) {
 108		ret = -ENODEV;
 109		goto out2;
 110	}
 111
 112	rrpriv = netdev_priv(dev);
 113
 114	SET_NETDEV_DEV(dev, &pdev->dev);
 115
 116	ret = pci_request_regions(pdev, "rrunner");
 117	if (ret < 0)
 118		goto out;
 119
 120	pci_set_drvdata(pdev, dev);
 121
 122	rrpriv->pci_dev = pdev;
 123
 124	spin_lock_init(&rrpriv->lock);
 125
 126	dev->netdev_ops = &rr_netdev_ops;
 127
 128	/* display version info if adapter is found */
 129	if (!version_disp) {
 130		/* set display flag to TRUE so that */
 131		/* we only display this string ONCE */
 132		version_disp = 1;
 133		printk(version);
 134	}
 135
 136	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 137	if (pci_latency <= 0x58){
 138		pci_latency = 0x58;
 139		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 140	}
 141
 142	pci_set_master(pdev);
 143
 144	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 145	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 146	       (unsigned long long)pci_resource_start(pdev, 0),
 147	       pdev->irq, pci_latency);
 148
 149	/*
 150	 * Remap the MMIO regs into kernel space.
 151	 */
 152	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 153	if (!rrpriv->regs) {
 154		printk(KERN_ERR "%s:  Unable to map I/O register, "
 155			"RoadRunner will be disabled.\n", dev->name);
 156		ret = -EIO;
 157		goto out;
 158	}
 159
 160	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 161	rrpriv->tx_ring = tmpptr;
 162	rrpriv->tx_ring_dma = ring_dma;
 163
 164	if (!tmpptr) {
 165		ret = -ENOMEM;
 166		goto out;
 167	}
 168
 169	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 170	rrpriv->rx_ring = tmpptr;
 171	rrpriv->rx_ring_dma = ring_dma;
 172
 173	if (!tmpptr) {
 174		ret = -ENOMEM;
 175		goto out;
 176	}
 177
 178	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 179	rrpriv->evt_ring = tmpptr;
 180	rrpriv->evt_ring_dma = ring_dma;
 181
 182	if (!tmpptr) {
 183		ret = -ENOMEM;
 184		goto out;
 185	}
 186
 187	/*
 188	 * Don't access any register before this point!
 189	 */
 190#ifdef __BIG_ENDIAN
 191	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 192		&rrpriv->regs->HostCtrl);
 193#endif
 194	/*
 195	 * Need to add a case for little-endian 64-bit hosts here.
 196	 */
 197
 198	rr_init(dev);
 199
 200	ret = register_netdev(dev);
 201	if (ret)
 202		goto out;
 203	return 0;
 204
 205 out:
 
 
 
 206	if (rrpriv->rx_ring)
 207		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 208				    rrpriv->rx_ring_dma);
 209	if (rrpriv->tx_ring)
 210		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 211				    rrpriv->tx_ring_dma);
 212	if (rrpriv->regs)
 213		pci_iounmap(pdev, rrpriv->regs);
 214	if (pdev) {
 215		pci_release_regions(pdev);
 216		pci_set_drvdata(pdev, NULL);
 217	}
 218 out2:
 219	free_netdev(dev);
 220 out3:
 221	return ret;
 222}
 223
 224static void __devexit rr_remove_one (struct pci_dev *pdev)
 225{
 226	struct net_device *dev = pci_get_drvdata(pdev);
 227	struct rr_private *rr = netdev_priv(dev);
 228
 229	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 230		printk(KERN_ERR "%s: trying to unload running NIC\n",
 231		       dev->name);
 232		writel(HALT_NIC, &rr->regs->HostCtrl);
 233	}
 234
 235	unregister_netdev(dev);
 236	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 237			    rr->evt_ring_dma);
 238	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 239			    rr->rx_ring_dma);
 240	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 241			    rr->tx_ring_dma);
 242	pci_iounmap(pdev, rr->regs);
 243	pci_release_regions(pdev);
 244	pci_disable_device(pdev);
 245	pci_set_drvdata(pdev, NULL);
 246	free_netdev(dev);
 247}
 248
 249
 250/*
 251 * Commands are considered to be slow, thus there is no reason to
 252 * inline this.
 253 */
 254static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 255{
 256	struct rr_regs __iomem *regs;
 257	u32 idx;
 258
 259	regs = rrpriv->regs;
 260	/*
 261	 * This is temporary - it will go away in the final version.
 262	 * We probably also want to make this function inline.
 263	 */
 264	if (readl(&regs->HostCtrl) & NIC_HALTED){
 265		printk("issuing command for halted NIC, code 0x%x, "
 266		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 267		if (readl(&regs->Mode) & FATAL_ERR)
 268			printk("error codes Fail1 %02x, Fail2 %02x\n",
 269			       readl(&regs->Fail1), readl(&regs->Fail2));
 270	}
 271
 272	idx = rrpriv->info->cmd_ctrl.pi;
 273
 274	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 275	wmb();
 276
 277	idx = (idx - 1) % CMD_RING_ENTRIES;
 278	rrpriv->info->cmd_ctrl.pi = idx;
 279	wmb();
 280
 281	if (readl(&regs->Mode) & FATAL_ERR)
 282		printk("error code %02x\n", readl(&regs->Fail1));
 283}
 284
 285
 286/*
 287 * Reset the board in a sensible manner. The NIC is already halted
 288 * when we get here and a spin-lock is held.
 289 */
 290static int rr_reset(struct net_device *dev)
 291{
 292	struct rr_private *rrpriv;
 293	struct rr_regs __iomem *regs;
 294	u32 start_pc;
 295	int i;
 296
 297	rrpriv = netdev_priv(dev);
 298	regs = rrpriv->regs;
 299
 300	rr_load_firmware(dev);
 301
 302	writel(0x01000000, &regs->TX_state);
 303	writel(0xff800000, &regs->RX_state);
 304	writel(0, &regs->AssistState);
 305	writel(CLEAR_INTA, &regs->LocalCtrl);
 306	writel(0x01, &regs->BrkPt);
 307	writel(0, &regs->Timer);
 308	writel(0, &regs->TimerRef);
 309	writel(RESET_DMA, &regs->DmaReadState);
 310	writel(RESET_DMA, &regs->DmaWriteState);
 311	writel(0, &regs->DmaWriteHostHi);
 312	writel(0, &regs->DmaWriteHostLo);
 313	writel(0, &regs->DmaReadHostHi);
 314	writel(0, &regs->DmaReadHostLo);
 315	writel(0, &regs->DmaReadLen);
 316	writel(0, &regs->DmaWriteLen);
 317	writel(0, &regs->DmaWriteLcl);
 318	writel(0, &regs->DmaWriteIPchecksum);
 319	writel(0, &regs->DmaReadLcl);
 320	writel(0, &regs->DmaReadIPchecksum);
 321	writel(0, &regs->PciState);
 322#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 323	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 324#elif (BITS_PER_LONG == 64)
 325	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 326#else
 327	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 328#endif
 329
 330#if 0
 331	/*
 332	 * Don't worry, this is just black magic.
 333	 */
 334	writel(0xdf000, &regs->RxBase);
 335	writel(0xdf000, &regs->RxPrd);
 336	writel(0xdf000, &regs->RxCon);
 337	writel(0xce000, &regs->TxBase);
 338	writel(0xce000, &regs->TxPrd);
 339	writel(0xce000, &regs->TxCon);
 340	writel(0, &regs->RxIndPro);
 341	writel(0, &regs->RxIndCon);
 342	writel(0, &regs->RxIndRef);
 343	writel(0, &regs->TxIndPro);
 344	writel(0, &regs->TxIndCon);
 345	writel(0, &regs->TxIndRef);
 346	writel(0xcc000, &regs->pad10[0]);
 347	writel(0, &regs->DrCmndPro);
 348	writel(0, &regs->DrCmndCon);
 349	writel(0, &regs->DwCmndPro);
 350	writel(0, &regs->DwCmndCon);
 351	writel(0, &regs->DwCmndRef);
 352	writel(0, &regs->DrDataPro);
 353	writel(0, &regs->DrDataCon);
 354	writel(0, &regs->DrDataRef);
 355	writel(0, &regs->DwDataPro);
 356	writel(0, &regs->DwDataCon);
 357	writel(0, &regs->DwDataRef);
 358#endif
 359
 360	writel(0xffffffff, &regs->MbEvent);
 361	writel(0, &regs->Event);
 362
 363	writel(0, &regs->TxPi);
 364	writel(0, &regs->IpRxPi);
 365
 366	writel(0, &regs->EvtCon);
 367	writel(0, &regs->EvtPrd);
 368
 369	rrpriv->info->evt_ctrl.pi = 0;
 370
 371	for (i = 0; i < CMD_RING_ENTRIES; i++)
 372		writel(0, &regs->CmdRing[i]);
 373
 374/*
 375 * Why 32 ? is this not cache line size dependent?
 376 */
 377	writel(RBURST_64|WBURST_64, &regs->PciState);
 378	wmb();
 379
 380	start_pc = rr_read_eeprom_word(rrpriv,
 381			offsetof(struct eeprom, rncd_info.FwStart));
 382
 383#if (DEBUG > 1)
 384	printk("%s: Executing firmware at address 0x%06x\n",
 385	       dev->name, start_pc);
 386#endif
 387
 388	writel(start_pc + 0x800, &regs->Pc);
 389	wmb();
 390	udelay(5);
 391
 392	writel(start_pc, &regs->Pc);
 393	wmb();
 394
 395	return 0;
 396}
 397
 398
 399/*
 400 * Read a string from the EEPROM.
 401 */
 402static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 403				unsigned long offset,
 404				unsigned char *buf,
 405				unsigned long length)
 406{
 407	struct rr_regs __iomem *regs = rrpriv->regs;
 408	u32 misc, io, host, i;
 409
 410	io = readl(&regs->ExtIo);
 411	writel(0, &regs->ExtIo);
 412	misc = readl(&regs->LocalCtrl);
 413	writel(0, &regs->LocalCtrl);
 414	host = readl(&regs->HostCtrl);
 415	writel(host | HALT_NIC, &regs->HostCtrl);
 416	mb();
 417
 418	for (i = 0; i < length; i++){
 419		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 420		mb();
 421		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 422		mb();
 423	}
 424
 425	writel(host, &regs->HostCtrl);
 426	writel(misc, &regs->LocalCtrl);
 427	writel(io, &regs->ExtIo);
 428	mb();
 429	return i;
 430}
 431
 432
 433/*
 434 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 435 * it to our CPU byte-order.
 436 */
 437static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 438			    size_t offset)
 439{
 440	__be32 word;
 441
 442	if ((rr_read_eeprom(rrpriv, offset,
 443			    (unsigned char *)&word, 4) == 4))
 444		return be32_to_cpu(word);
 445	return 0;
 446}
 447
 448
 449/*
 450 * Write a string to the EEPROM.
 451 *
 452 * This is only called when the firmware is not running.
 453 */
 454static unsigned int write_eeprom(struct rr_private *rrpriv,
 455				 unsigned long offset,
 456				 unsigned char *buf,
 457				 unsigned long length)
 458{
 459	struct rr_regs __iomem *regs = rrpriv->regs;
 460	u32 misc, io, data, i, j, ready, error = 0;
 461
 462	io = readl(&regs->ExtIo);
 463	writel(0, &regs->ExtIo);
 464	misc = readl(&regs->LocalCtrl);
 465	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 466	mb();
 467
 468	for (i = 0; i < length; i++){
 469		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 470		mb();
 471		data = buf[i] << 24;
 472		/*
 473		 * Only try to write the data if it is not the same
 474		 * value already.
 475		 */
 476		if ((readl(&regs->WinData) & 0xff000000) != data){
 477			writel(data, &regs->WinData);
 478			ready = 0;
 479			j = 0;
 480			mb();
 481			while(!ready){
 482				udelay(20);
 483				if ((readl(&regs->WinData) & 0xff000000) ==
 484				    data)
 485					ready = 1;
 486				mb();
 487				if (j++ > 5000){
 488					printk("data mismatch: %08x, "
 489					       "WinData %08x\n", data,
 490					       readl(&regs->WinData));
 491					ready = 1;
 492					error = 1;
 493				}
 494			}
 495		}
 496	}
 497
 498	writel(misc, &regs->LocalCtrl);
 499	writel(io, &regs->ExtIo);
 500	mb();
 501
 502	return error;
 503}
 504
 505
 506static int __devinit rr_init(struct net_device *dev)
 507{
 508	struct rr_private *rrpriv;
 509	struct rr_regs __iomem *regs;
 510	u32 sram_size, rev;
 511
 512	rrpriv = netdev_priv(dev);
 513	regs = rrpriv->regs;
 514
 515	rev = readl(&regs->FwRev);
 516	rrpriv->fw_rev = rev;
 517	if (rev > 0x00020024)
 518		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 519		       ((rev >> 8) & 0xff), (rev & 0xff));
 520	else if (rev >= 0x00020000) {
 521		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 522		       "later is recommended)\n", (rev >> 16),
 523		       ((rev >> 8) & 0xff), (rev & 0xff));
 524	}else{
 525		printk("  Firmware revision too old: %i.%i.%i, please "
 526		       "upgrade to 2.0.37 or later.\n",
 527		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 528	}
 529
 530#if (DEBUG > 2)
 531	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 532#endif
 533
 534	/*
 535	 * Read the hardware address from the eeprom.  The HW address
 536	 * is not really necessary for HIPPI but awfully convenient.
 537	 * The pointer arithmetic to put it in dev_addr is ugly, but
 538	 * Donald Becker does it this way for the GigE version of this
 539	 * card and it's shorter and more portable than any
 540	 * other method I've seen.  -VAL
 541	 */
 542
 543	*(__be16 *)(dev->dev_addr) =
 544	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 545	*(__be32 *)(dev->dev_addr+2) =
 546	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 547
 548	printk("  MAC: %pM\n", dev->dev_addr);
 549
 550	sram_size = rr_read_eeprom_word(rrpriv, 8);
 551	printk("  SRAM size 0x%06x\n", sram_size);
 552
 553	return 0;
 554}
 555
 556
 557static int rr_init1(struct net_device *dev)
 558{
 559	struct rr_private *rrpriv;
 560	struct rr_regs __iomem *regs;
 561	unsigned long myjif, flags;
 562	struct cmd cmd;
 563	u32 hostctrl;
 564	int ecode = 0;
 565	short i;
 566
 567	rrpriv = netdev_priv(dev);
 568	regs = rrpriv->regs;
 569
 570	spin_lock_irqsave(&rrpriv->lock, flags);
 571
 572	hostctrl = readl(&regs->HostCtrl);
 573	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 574	wmb();
 575
 576	if (hostctrl & PARITY_ERR){
 577		printk("%s: Parity error halting NIC - this is serious!\n",
 578		       dev->name);
 579		spin_unlock_irqrestore(&rrpriv->lock, flags);
 580		ecode = -EFAULT;
 581		goto error;
 582	}
 583
 584	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 585	set_infoaddr(regs, rrpriv->info_dma);
 586
 587	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 588	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 589	rrpriv->info->evt_ctrl.mode = 0;
 590	rrpriv->info->evt_ctrl.pi = 0;
 591	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 592
 593	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 594	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 595	rrpriv->info->cmd_ctrl.mode = 0;
 596	rrpriv->info->cmd_ctrl.pi = 15;
 597
 598	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 599		writel(0, &regs->CmdRing[i]);
 600	}
 601
 602	for (i = 0; i < TX_RING_ENTRIES; i++) {
 603		rrpriv->tx_ring[i].size = 0;
 604		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 605		rrpriv->tx_skbuff[i] = NULL;
 606	}
 607	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 608	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 609	rrpriv->info->tx_ctrl.mode = 0;
 610	rrpriv->info->tx_ctrl.pi = 0;
 611	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 612
 613	/*
 614	 * Set dirty_tx before we start receiving interrupts, otherwise
 615	 * the interrupt handler might think it is supposed to process
 616	 * tx ints before we are up and running, which may cause a null
 617	 * pointer access in the int handler.
 618	 */
 619	rrpriv->tx_full = 0;
 620	rrpriv->cur_rx = 0;
 621	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 622
 623	rr_reset(dev);
 624
 625	/* Tuning values */
 626	writel(0x5000, &regs->ConRetry);
 627	writel(0x100, &regs->ConRetryTmr);
 628	writel(0x500000, &regs->ConTmout);
 629 	writel(0x60, &regs->IntrTmr);
 630	writel(0x500000, &regs->TxDataMvTimeout);
 631	writel(0x200000, &regs->RxDataMvTimeout);
 632 	writel(0x80, &regs->WriteDmaThresh);
 633 	writel(0x80, &regs->ReadDmaThresh);
 634
 635	rrpriv->fw_running = 0;
 636	wmb();
 637
 638	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 639	writel(hostctrl, &regs->HostCtrl);
 640	wmb();
 641
 642	spin_unlock_irqrestore(&rrpriv->lock, flags);
 643
 644	for (i = 0; i < RX_RING_ENTRIES; i++) {
 645		struct sk_buff *skb;
 646		dma_addr_t addr;
 647
 648		rrpriv->rx_ring[i].mode = 0;
 649		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 650		if (!skb) {
 651			printk(KERN_WARNING "%s: Unable to allocate memory "
 652			       "for receive ring - halting NIC\n", dev->name);
 653			ecode = -ENOMEM;
 654			goto error;
 655		}
 656		rrpriv->rx_skbuff[i] = skb;
 657	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
 658			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 659		/*
 660		 * Sanity test to see if we conflict with the DMA
 661		 * limitations of the Roadrunner.
 662		 */
 663		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 664			printk("skb alloc error\n");
 665
 666		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 667		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 668	}
 669
 670	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 671	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 672	rrpriv->rx_ctrl[4].mode = 8;
 673	rrpriv->rx_ctrl[4].pi = 0;
 674	wmb();
 675	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 676
 677	udelay(1000);
 678
 679	/*
 680	 * Now start the FirmWare.
 681	 */
 682	cmd.code = C_START_FW;
 683	cmd.ring = 0;
 684	cmd.index = 0;
 685
 686	rr_issue_cmd(rrpriv, &cmd);
 687
 688	/*
 689	 * Give the FirmWare time to chew on the `get running' command.
 690	 */
 691	myjif = jiffies + 5 * HZ;
 692	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 693		cpu_relax();
 694
 695	netif_start_queue(dev);
 696
 697	return ecode;
 698
 699 error:
 700	/*
 701	 * We might have gotten here because we are out of memory,
 702	 * make sure we release everything we allocated before failing
 703	 */
 704	for (i = 0; i < RX_RING_ENTRIES; i++) {
 705		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 706
 707		if (skb) {
 708	        	pci_unmap_single(rrpriv->pci_dev,
 709					 rrpriv->rx_ring[i].addr.addrlo,
 710					 dev->mtu + HIPPI_HLEN,
 711					 PCI_DMA_FROMDEVICE);
 712			rrpriv->rx_ring[i].size = 0;
 713			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 714			dev_kfree_skb(skb);
 715			rrpriv->rx_skbuff[i] = NULL;
 716		}
 717	}
 718	return ecode;
 719}
 720
 721
 722/*
 723 * All events are considered to be slow (RX/TX ints do not generate
 724 * events) and are handled here, outside the main interrupt handler,
 725 * to reduce the size of the handler.
 726 */
 727static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 728{
 729	struct rr_private *rrpriv;
 730	struct rr_regs __iomem *regs;
 731	u32 tmp;
 732
 733	rrpriv = netdev_priv(dev);
 734	regs = rrpriv->regs;
 735
 736	while (prodidx != eidx){
 737		switch (rrpriv->evt_ring[eidx].code){
 738		case E_NIC_UP:
 739			tmp = readl(&regs->FwRev);
 740			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 741			       "up and running\n", dev->name,
 742			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 743			rrpriv->fw_running = 1;
 744			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 745			wmb();
 746			break;
 747		case E_LINK_ON:
 748			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 749			break;
 750		case E_LINK_OFF:
 751			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 752			break;
 753		case E_RX_IDLE:
 754			printk(KERN_WARNING "%s: RX data not moving\n",
 755			       dev->name);
 756			goto drop;
 757		case E_WATCHDOG:
 758			printk(KERN_INFO "%s: The watchdog is here to see "
 759			       "us\n", dev->name);
 760			break;
 761		case E_INTERN_ERR:
 762			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 763			       dev->name);
 764			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 765			       &regs->HostCtrl);
 766			wmb();
 767			break;
 768		case E_HOST_ERR:
 769			printk(KERN_ERR "%s: Host software error\n",
 770			       dev->name);
 771			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 772			       &regs->HostCtrl);
 773			wmb();
 774			break;
 775		/*
 776		 * TX events.
 777		 */
 778		case E_CON_REJ:
 779			printk(KERN_WARNING "%s: Connection rejected\n",
 780			       dev->name);
 781			dev->stats.tx_aborted_errors++;
 782			break;
 783		case E_CON_TMOUT:
 784			printk(KERN_WARNING "%s: Connection timeout\n",
 785			       dev->name);
 786			break;
 787		case E_DISC_ERR:
 788			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 789			       dev->name);
 790			dev->stats.tx_aborted_errors++;
 791			break;
 792		case E_INT_PRTY:
 793			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 794			       dev->name);
 795			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 796			       &regs->HostCtrl);
 797			wmb();
 798			break;
 799		case E_TX_IDLE:
 800			printk(KERN_WARNING "%s: Transmitter idle\n",
 801			       dev->name);
 802			break;
 803		case E_TX_LINK_DROP:
 804			printk(KERN_WARNING "%s: Link lost during transmit\n",
 805			       dev->name);
 806			dev->stats.tx_aborted_errors++;
 807			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 808			       &regs->HostCtrl);
 809			wmb();
 810			break;
 811		case E_TX_INV_RNG:
 812			printk(KERN_ERR "%s: Invalid send ring block\n",
 813			       dev->name);
 814			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 815			       &regs->HostCtrl);
 816			wmb();
 817			break;
 818		case E_TX_INV_BUF:
 819			printk(KERN_ERR "%s: Invalid send buffer address\n",
 820			       dev->name);
 821			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 822			       &regs->HostCtrl);
 823			wmb();
 824			break;
 825		case E_TX_INV_DSC:
 826			printk(KERN_ERR "%s: Invalid descriptor address\n",
 827			       dev->name);
 828			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 829			       &regs->HostCtrl);
 830			wmb();
 831			break;
 832		/*
 833		 * RX events.
 834		 */
 835		case E_RX_RNG_OUT:
 836			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 837			break;
 838
 839		case E_RX_PAR_ERR:
 840			printk(KERN_WARNING "%s: Receive parity error\n",
 841			       dev->name);
 842			goto drop;
 843		case E_RX_LLRC_ERR:
 844			printk(KERN_WARNING "%s: Receive LLRC error\n",
 845			       dev->name);
 846			goto drop;
 847		case E_PKT_LN_ERR:
 848			printk(KERN_WARNING "%s: Receive packet length "
 849			       "error\n", dev->name);
 850			goto drop;
 851		case E_DTA_CKSM_ERR:
 852			printk(KERN_WARNING "%s: Data checksum error\n",
 853			       dev->name);
 854			goto drop;
 855		case E_SHT_BST:
 856			printk(KERN_WARNING "%s: Unexpected short burst "
 857			       "error\n", dev->name);
 858			goto drop;
 859		case E_STATE_ERR:
 860			printk(KERN_WARNING "%s: Recv. state transition"
 861			       " error\n", dev->name);
 862			goto drop;
 863		case E_UNEXP_DATA:
 864			printk(KERN_WARNING "%s: Unexpected data error\n",
 865			       dev->name);
 866			goto drop;
 867		case E_LST_LNK_ERR:
 868			printk(KERN_WARNING "%s: Link lost error\n",
 869			       dev->name);
 870			goto drop;
 871		case E_FRM_ERR:
 872			printk(KERN_WARNING "%s: Framming Error\n",
 873			       dev->name);
 874			goto drop;
 875		case E_FLG_SYN_ERR:
 876			printk(KERN_WARNING "%s: Flag sync. lost during "
 877			       "packet\n", dev->name);
 878			goto drop;
 879		case E_RX_INV_BUF:
 880			printk(KERN_ERR "%s: Invalid receive buffer "
 881			       "address\n", dev->name);
 882			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 883			       &regs->HostCtrl);
 884			wmb();
 885			break;
 886		case E_RX_INV_DSC:
 887			printk(KERN_ERR "%s: Invalid receive descriptor "
 888			       "address\n", dev->name);
 889			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 890			       &regs->HostCtrl);
 891			wmb();
 892			break;
 893		case E_RNG_BLK:
 894			printk(KERN_ERR "%s: Invalid ring block\n",
 895			       dev->name);
 896			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 897			       &regs->HostCtrl);
 898			wmb();
 899			break;
 900		drop:
 901			/* Label packet to be dropped.
 902			 * Actual dropping occurs in rx
 903			 * handling.
 904			 *
 905			 * The index of packet we get to drop is
 906			 * the index of the packet following
 907			 * the bad packet. -kbf
 908			 */
 909			{
 910				u16 index = rrpriv->evt_ring[eidx].index;
 911				index = (index + (RX_RING_ENTRIES - 1)) %
 912					RX_RING_ENTRIES;
 913				rrpriv->rx_ring[index].mode |=
 914					(PACKET_BAD | PACKET_END);
 915			}
 916			break;
 917		default:
 918			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 919			       dev->name, rrpriv->evt_ring[eidx].code);
 920		}
 921		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 922	}
 923
 924	rrpriv->info->evt_ctrl.pi = eidx;
 925	wmb();
 926	return eidx;
 927}
 928
 929
 930static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 931{
 932	struct rr_private *rrpriv = netdev_priv(dev);
 933	struct rr_regs __iomem *regs = rrpriv->regs;
 934
 935	do {
 936		struct rx_desc *desc;
 937		u32 pkt_len;
 938
 939		desc = &(rrpriv->rx_ring[index]);
 940		pkt_len = desc->size;
 941#if (DEBUG > 2)
 942		printk("index %i, rxlimit %i\n", index, rxlimit);
 943		printk("len %x, mode %x\n", pkt_len, desc->mode);
 944#endif
 945		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 946			dev->stats.rx_dropped++;
 947			goto defer;
 948		}
 949
 950		if (pkt_len > 0){
 951			struct sk_buff *skb, *rx_skb;
 952
 953			rx_skb = rrpriv->rx_skbuff[index];
 954
 955			if (pkt_len < PKT_COPY_THRESHOLD) {
 956				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 957				if (skb == NULL){
 958					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 959					dev->stats.rx_dropped++;
 960					goto defer;
 961				} else {
 962					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 963								    desc->addr.addrlo,
 964								    pkt_len,
 965								    PCI_DMA_FROMDEVICE);
 966
 967					memcpy(skb_put(skb, pkt_len),
 968					       rx_skb->data, pkt_len);
 969
 970					pci_dma_sync_single_for_device(rrpriv->pci_dev,
 971								       desc->addr.addrlo,
 972								       pkt_len,
 973								       PCI_DMA_FROMDEVICE);
 974				}
 975			}else{
 976				struct sk_buff *newskb;
 977
 978				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 979					GFP_ATOMIC);
 980				if (newskb){
 981					dma_addr_t addr;
 982
 983	        			pci_unmap_single(rrpriv->pci_dev,
 984						desc->addr.addrlo, dev->mtu +
 985						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 986					skb = rx_skb;
 987					skb_put(skb, pkt_len);
 988					rrpriv->rx_skbuff[index] = newskb;
 989	        			addr = pci_map_single(rrpriv->pci_dev,
 990						newskb->data,
 991						dev->mtu + HIPPI_HLEN,
 992						PCI_DMA_FROMDEVICE);
 993					set_rraddr(&desc->addr, addr);
 994				} else {
 995					printk("%s: Out of memory, deferring "
 996					       "packet\n", dev->name);
 997					dev->stats.rx_dropped++;
 998					goto defer;
 999				}
1000			}
1001			skb->protocol = hippi_type_trans(skb, dev);
1002
1003			netif_rx(skb);		/* send it up */
1004
1005			dev->stats.rx_packets++;
1006			dev->stats.rx_bytes += pkt_len;
1007		}
1008	defer:
1009		desc->mode = 0;
1010		desc->size = dev->mtu + HIPPI_HLEN;
1011
1012		if ((index & 7) == 7)
1013			writel(index, &regs->IpRxPi);
1014
1015		index = (index + 1) % RX_RING_ENTRIES;
1016	} while(index != rxlimit);
1017
1018	rrpriv->cur_rx = index;
1019	wmb();
1020}
1021
1022
1023static irqreturn_t rr_interrupt(int irq, void *dev_id)
1024{
1025	struct rr_private *rrpriv;
1026	struct rr_regs __iomem *regs;
1027	struct net_device *dev = (struct net_device *)dev_id;
1028	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1029
1030	rrpriv = netdev_priv(dev);
1031	regs = rrpriv->regs;
1032
1033	if (!(readl(&regs->HostCtrl) & RR_INT))
1034		return IRQ_NONE;
1035
1036	spin_lock(&rrpriv->lock);
1037
1038	prodidx = readl(&regs->EvtPrd);
1039	txcsmr = (prodidx >> 8) & 0xff;
1040	rxlimit = (prodidx >> 16) & 0xff;
1041	prodidx &= 0xff;
1042
1043#if (DEBUG > 2)
1044	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1045	       prodidx, rrpriv->info->evt_ctrl.pi);
1046#endif
1047	/*
1048	 * Order here is important.  We must handle events
1049	 * before doing anything else in order to catch
1050	 * such things as LLRC errors, etc -kbf
1051	 */
1052
1053	eidx = rrpriv->info->evt_ctrl.pi;
1054	if (prodidx != eidx)
1055		eidx = rr_handle_event(dev, prodidx, eidx);
1056
1057	rxindex = rrpriv->cur_rx;
1058	if (rxindex != rxlimit)
1059		rx_int(dev, rxlimit, rxindex);
1060
1061	txcon = rrpriv->dirty_tx;
1062	if (txcsmr != txcon) {
1063		do {
1064			/* Due to occational firmware TX producer/consumer out
1065			 * of sync. error need to check entry in ring -kbf
1066			 */
1067			if(rrpriv->tx_skbuff[txcon]){
1068				struct tx_desc *desc;
1069				struct sk_buff *skb;
1070
1071				desc = &(rrpriv->tx_ring[txcon]);
1072				skb = rrpriv->tx_skbuff[txcon];
1073
1074				dev->stats.tx_packets++;
1075				dev->stats.tx_bytes += skb->len;
1076
1077				pci_unmap_single(rrpriv->pci_dev,
1078						 desc->addr.addrlo, skb->len,
1079						 PCI_DMA_TODEVICE);
1080				dev_kfree_skb_irq(skb);
1081
1082				rrpriv->tx_skbuff[txcon] = NULL;
1083				desc->size = 0;
1084				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1085				desc->mode = 0;
1086			}
1087			txcon = (txcon + 1) % TX_RING_ENTRIES;
1088		} while (txcsmr != txcon);
1089		wmb();
1090
1091		rrpriv->dirty_tx = txcon;
1092		if (rrpriv->tx_full && rr_if_busy(dev) &&
1093		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1094		     != rrpriv->dirty_tx)){
1095			rrpriv->tx_full = 0;
1096			netif_wake_queue(dev);
1097		}
1098	}
1099
1100	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1101	writel(eidx, &regs->EvtCon);
1102	wmb();
1103
1104	spin_unlock(&rrpriv->lock);
1105	return IRQ_HANDLED;
1106}
1107
1108static inline void rr_raz_tx(struct rr_private *rrpriv,
1109			     struct net_device *dev)
1110{
1111	int i;
1112
1113	for (i = 0; i < TX_RING_ENTRIES; i++) {
1114		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1115
1116		if (skb) {
1117			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1118
1119	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1120				skb->len, PCI_DMA_TODEVICE);
1121			desc->size = 0;
1122			set_rraddr(&desc->addr, 0);
1123			dev_kfree_skb(skb);
1124			rrpriv->tx_skbuff[i] = NULL;
1125		}
1126	}
1127}
1128
1129
1130static inline void rr_raz_rx(struct rr_private *rrpriv,
1131			     struct net_device *dev)
1132{
1133	int i;
1134
1135	for (i = 0; i < RX_RING_ENTRIES; i++) {
1136		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1137
1138		if (skb) {
1139			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1140
1141	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1142				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1143			desc->size = 0;
1144			set_rraddr(&desc->addr, 0);
1145			dev_kfree_skb(skb);
1146			rrpriv->rx_skbuff[i] = NULL;
1147		}
1148	}
1149}
1150
1151static void rr_timer(unsigned long data)
1152{
1153	struct net_device *dev = (struct net_device *)data;
1154	struct rr_private *rrpriv = netdev_priv(dev);
1155	struct rr_regs __iomem *regs = rrpriv->regs;
1156	unsigned long flags;
1157
1158	if (readl(&regs->HostCtrl) & NIC_HALTED){
1159		printk("%s: Restarting nic\n", dev->name);
1160		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1161		memset(rrpriv->info, 0, sizeof(struct rr_info));
1162		wmb();
1163
1164		rr_raz_tx(rrpriv, dev);
1165		rr_raz_rx(rrpriv, dev);
1166
1167		if (rr_init1(dev)) {
1168			spin_lock_irqsave(&rrpriv->lock, flags);
1169			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1170			       &regs->HostCtrl);
1171			spin_unlock_irqrestore(&rrpriv->lock, flags);
1172		}
1173	}
1174	rrpriv->timer.expires = RUN_AT(5*HZ);
1175	add_timer(&rrpriv->timer);
1176}
1177
1178
1179static int rr_open(struct net_device *dev)
1180{
1181	struct rr_private *rrpriv = netdev_priv(dev);
1182	struct pci_dev *pdev = rrpriv->pci_dev;
1183	struct rr_regs __iomem *regs;
1184	int ecode = 0;
1185	unsigned long flags;
1186	dma_addr_t dma_addr;
1187
1188	regs = rrpriv->regs;
1189
1190	if (rrpriv->fw_rev < 0x00020000) {
1191		printk(KERN_WARNING "%s: trying to configure device with "
1192		       "obsolete firmware\n", dev->name);
1193		ecode = -EBUSY;
1194		goto error;
1195	}
1196
1197	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1198					       256 * sizeof(struct ring_ctrl),
1199					       &dma_addr);
1200	if (!rrpriv->rx_ctrl) {
1201		ecode = -ENOMEM;
1202		goto error;
1203	}
1204	rrpriv->rx_ctrl_dma = dma_addr;
1205	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1206
1207	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1208					    &dma_addr);
1209	if (!rrpriv->info) {
1210		ecode = -ENOMEM;
1211		goto error;
1212	}
1213	rrpriv->info_dma = dma_addr;
1214	memset(rrpriv->info, 0, sizeof(struct rr_info));
1215	wmb();
1216
1217	spin_lock_irqsave(&rrpriv->lock, flags);
1218	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1219	readl(&regs->HostCtrl);
1220	spin_unlock_irqrestore(&rrpriv->lock, flags);
1221
1222	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1223		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1224		       dev->name, pdev->irq);
1225		ecode = -EAGAIN;
1226		goto error;
1227	}
1228
1229	if ((ecode = rr_init1(dev)))
1230		goto error;
1231
1232	/* Set the timer to switch to check for link beat and perhaps switch
1233	   to an alternate media type. */
1234	init_timer(&rrpriv->timer);
1235	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1236	rrpriv->timer.data = (unsigned long)dev;
1237	rrpriv->timer.function = rr_timer;               /* timer handler */
1238	add_timer(&rrpriv->timer);
1239
1240	netif_start_queue(dev);
1241
1242	return ecode;
1243
1244 error:
1245	spin_lock_irqsave(&rrpriv->lock, flags);
1246	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1247	spin_unlock_irqrestore(&rrpriv->lock, flags);
1248
1249	if (rrpriv->info) {
1250		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1251				    rrpriv->info_dma);
1252		rrpriv->info = NULL;
1253	}
1254	if (rrpriv->rx_ctrl) {
1255		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1256				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257		rrpriv->rx_ctrl = NULL;
1258	}
1259
1260	netif_stop_queue(dev);
1261
1262	return ecode;
1263}
1264
1265
1266static void rr_dump(struct net_device *dev)
1267{
1268	struct rr_private *rrpriv;
1269	struct rr_regs __iomem *regs;
1270	u32 index, cons;
1271	short i;
1272	int len;
1273
1274	rrpriv = netdev_priv(dev);
1275	regs = rrpriv->regs;
1276
1277	printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1281	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1282	       rrpriv->info->tx_ctrl.pi);
1283
1284	printk("Error code 0x%x\n", readl(&regs->Fail1));
1285
1286	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287	cons = rrpriv->dirty_tx;
1288	printk("TX ring index %i, TX consumer %i\n",
1289	       index, cons);
1290
1291	if (rrpriv->tx_skbuff[index]){
1292		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294		for (i = 0; i < len; i++){
1295			if (!(i & 7))
1296				printk("\n");
1297			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298		}
1299		printk("\n");
1300	}
1301
1302	if (rrpriv->tx_skbuff[cons]){
1303		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1306		       rrpriv->tx_ring[cons].mode,
1307		       rrpriv->tx_ring[cons].size,
1308		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1310		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311		for (i = 0; i < len; i++){
1312			if (!(i & 7))
1313				printk("\n");
1314			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315		}
1316		printk("\n");
1317	}
1318
1319	printk("dumping TX ring info:\n");
1320	for (i = 0; i < TX_RING_ENTRIES; i++)
1321		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322		       rrpriv->tx_ring[i].mode,
1323		       rrpriv->tx_ring[i].size,
1324		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326}
1327
1328
1329static int rr_close(struct net_device *dev)
1330{
1331	struct rr_private *rrpriv = netdev_priv(dev);
1332	struct rr_regs __iomem *regs = rrpriv->regs;
1333	struct pci_dev *pdev = rrpriv->pci_dev;
1334	unsigned long flags;
1335	u32 tmp;
1336	short i;
1337
1338	netif_stop_queue(dev);
1339
1340
1341	/*
1342	 * Lock to make sure we are not cleaning up while another CPU
1343	 * is handling interrupts.
1344	 */
1345	spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347	tmp = readl(&regs->HostCtrl);
1348	if (tmp & NIC_HALTED){
1349		printk("%s: NIC already halted\n", dev->name);
1350		rr_dump(dev);
1351	}else{
1352		tmp |= HALT_NIC | RR_CLEAR_INT;
1353		writel(tmp, &regs->HostCtrl);
1354		readl(&regs->HostCtrl);
1355	}
1356
1357	rrpriv->fw_running = 0;
1358
1359	del_timer_sync(&rrpriv->timer);
1360
1361	writel(0, &regs->TxPi);
1362	writel(0, &regs->IpRxPi);
1363
1364	writel(0, &regs->EvtCon);
1365	writel(0, &regs->EvtPrd);
1366
1367	for (i = 0; i < CMD_RING_ENTRIES; i++)
1368		writel(0, &regs->CmdRing[i]);
1369
1370	rrpriv->info->tx_ctrl.entries = 0;
1371	rrpriv->info->cmd_ctrl.pi = 0;
1372	rrpriv->info->evt_ctrl.pi = 0;
1373	rrpriv->rx_ctrl[4].entries = 0;
1374
1375	rr_raz_tx(rrpriv, dev);
1376	rr_raz_rx(rrpriv, dev);
1377
1378	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1379			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1380	rrpriv->rx_ctrl = NULL;
1381
1382	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1383			    rrpriv->info_dma);
1384	rrpriv->info = NULL;
1385
 
1386	free_irq(pdev->irq, dev);
1387	spin_unlock_irqrestore(&rrpriv->lock, flags);
1388
1389	return 0;
1390}
1391
1392
1393static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1394				 struct net_device *dev)
1395{
1396	struct rr_private *rrpriv = netdev_priv(dev);
1397	struct rr_regs __iomem *regs = rrpriv->regs;
1398	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1399	struct ring_ctrl *txctrl;
1400	unsigned long flags;
1401	u32 index, len = skb->len;
1402	u32 *ifield;
1403	struct sk_buff *new_skb;
1404
1405	if (readl(&regs->Mode) & FATAL_ERR)
1406		printk("error codes Fail1 %02x, Fail2 %02x\n",
1407		       readl(&regs->Fail1), readl(&regs->Fail2));
1408
1409	/*
1410	 * We probably need to deal with tbusy here to prevent overruns.
1411	 */
1412
1413	if (skb_headroom(skb) < 8){
1414		printk("incoming skb too small - reallocating\n");
1415		if (!(new_skb = dev_alloc_skb(len + 8))) {
1416			dev_kfree_skb(skb);
1417			netif_wake_queue(dev);
1418			return NETDEV_TX_OK;
1419		}
1420		skb_reserve(new_skb, 8);
1421		skb_put(new_skb, len);
1422		skb_copy_from_linear_data(skb, new_skb->data, len);
1423		dev_kfree_skb(skb);
1424		skb = new_skb;
1425	}
1426
1427	ifield = (u32 *)skb_push(skb, 8);
1428
1429	ifield[0] = 0;
1430	ifield[1] = hcb->ifield;
1431
1432	/*
1433	 * We don't need the lock before we are actually going to start
1434	 * fiddling with the control blocks.
1435	 */
1436	spin_lock_irqsave(&rrpriv->lock, flags);
1437
1438	txctrl = &rrpriv->info->tx_ctrl;
1439
1440	index = txctrl->pi;
1441
1442	rrpriv->tx_skbuff[index] = skb;
1443	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1444		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1445	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1446	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1447	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1448	wmb();
1449	writel(txctrl->pi, &regs->TxPi);
1450
1451	if (txctrl->pi == rrpriv->dirty_tx){
1452		rrpriv->tx_full = 1;
1453		netif_stop_queue(dev);
1454	}
1455
1456	spin_unlock_irqrestore(&rrpriv->lock, flags);
1457
1458	return NETDEV_TX_OK;
1459}
1460
1461
1462/*
1463 * Read the firmware out of the EEPROM and put it into the SRAM
1464 * (or from user space - later)
1465 *
1466 * This operation requires the NIC to be halted and is performed with
1467 * interrupts disabled and with the spinlock hold.
1468 */
1469static int rr_load_firmware(struct net_device *dev)
1470{
1471	struct rr_private *rrpriv;
1472	struct rr_regs __iomem *regs;
1473	size_t eptr, segptr;
1474	int i, j;
1475	u32 localctrl, sptr, len, tmp;
1476	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1477
1478	rrpriv = netdev_priv(dev);
1479	regs = rrpriv->regs;
1480
1481	if (dev->flags & IFF_UP)
1482		return -EBUSY;
1483
1484	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1485		printk("%s: Trying to load firmware to a running NIC.\n",
1486		       dev->name);
1487		return -EBUSY;
1488	}
1489
1490	localctrl = readl(&regs->LocalCtrl);
1491	writel(0, &regs->LocalCtrl);
1492
1493	writel(0, &regs->EvtPrd);
1494	writel(0, &regs->RxPrd);
1495	writel(0, &regs->TxPrd);
1496
1497	/*
1498	 * First wipe the entire SRAM, otherwise we might run into all
1499	 * kinds of trouble ... sigh, this took almost all afternoon
1500	 * to track down ;-(
1501	 */
1502	io = readl(&regs->ExtIo);
1503	writel(0, &regs->ExtIo);
1504	sram_size = rr_read_eeprom_word(rrpriv, 8);
1505
1506	for (i = 200; i < sram_size / 4; i++){
1507		writel(i * 4, &regs->WinBase);
1508		mb();
1509		writel(0, &regs->WinData);
1510		mb();
1511	}
1512	writel(io, &regs->ExtIo);
1513	mb();
1514
1515	eptr = rr_read_eeprom_word(rrpriv,
1516		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1517	eptr = ((eptr & 0x1fffff) >> 3);
1518
1519	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1520	p2len = (p2len << 2);
1521	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1522	p2size = ((p2size & 0x1fffff) >> 3);
1523
1524	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1525		printk("%s: eptr is invalid\n", dev->name);
1526		goto out;
1527	}
1528
1529	revision = rr_read_eeprom_word(rrpriv,
1530			offsetof(struct eeprom, manf.HeaderFmt));
1531
1532	if (revision != 1){
1533		printk("%s: invalid firmware format (%i)\n",
1534		       dev->name, revision);
1535		goto out;
1536	}
1537
1538	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1539	eptr +=4;
1540#if (DEBUG > 1)
1541	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1542#endif
1543
1544	for (i = 0; i < nr_seg; i++){
1545		sptr = rr_read_eeprom_word(rrpriv, eptr);
1546		eptr += 4;
1547		len = rr_read_eeprom_word(rrpriv, eptr);
1548		eptr += 4;
1549		segptr = rr_read_eeprom_word(rrpriv, eptr);
1550		segptr = ((segptr & 0x1fffff) >> 3);
1551		eptr += 4;
1552#if (DEBUG > 1)
1553		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1554		       dev->name, i, sptr, len, segptr);
1555#endif
1556		for (j = 0; j < len; j++){
1557			tmp = rr_read_eeprom_word(rrpriv, segptr);
1558			writel(sptr, &regs->WinBase);
1559			mb();
1560			writel(tmp, &regs->WinData);
1561			mb();
1562			segptr += 4;
1563			sptr += 4;
1564		}
1565	}
1566
1567out:
1568	writel(localctrl, &regs->LocalCtrl);
1569	mb();
1570	return 0;
1571}
1572
1573
1574static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1575{
1576	struct rr_private *rrpriv;
1577	unsigned char *image, *oldimage;
1578	unsigned long flags;
1579	unsigned int i;
1580	int error = -EOPNOTSUPP;
1581
1582	rrpriv = netdev_priv(dev);
1583
1584	switch(cmd){
1585	case SIOCRRGFW:
1586		if (!capable(CAP_SYS_RAWIO)){
1587			return -EPERM;
1588		}
1589
1590		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1591		if (!image)
1592			return -ENOMEM;
1593
1594		if (rrpriv->fw_running){
1595			printk("%s: Firmware already running\n", dev->name);
1596			error = -EPERM;
1597			goto gf_out;
1598		}
1599
1600		spin_lock_irqsave(&rrpriv->lock, flags);
1601		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1602		spin_unlock_irqrestore(&rrpriv->lock, flags);
1603		if (i != EEPROM_BYTES){
1604			printk(KERN_ERR "%s: Error reading EEPROM\n",
1605			       dev->name);
1606			error = -EFAULT;
1607			goto gf_out;
1608		}
1609		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1610		if (error)
1611			error = -EFAULT;
1612	gf_out:
1613		kfree(image);
1614		return error;
1615
1616	case SIOCRRPFW:
1617		if (!capable(CAP_SYS_RAWIO)){
1618			return -EPERM;
1619		}
1620
1621		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1622		oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1623		if (!image || !oldimage) {
1624			error = -ENOMEM;
1625			goto wf_out;
1626		}
1627
1628		error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1629		if (error) {
1630			error = -EFAULT;
1631			goto wf_out;
1632		}
1633
1634		if (rrpriv->fw_running){
1635			printk("%s: Firmware already running\n", dev->name);
1636			error = -EPERM;
1637			goto wf_out;
1638		}
1639
1640		printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642		spin_lock_irqsave(&rrpriv->lock, flags);
1643		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644		if (error)
1645			printk(KERN_ERR "%s: Error writing EEPROM\n",
1646			       dev->name);
1647
1648		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649		spin_unlock_irqrestore(&rrpriv->lock, flags);
1650
1651		if (i != EEPROM_BYTES)
1652			printk(KERN_ERR "%s: Error reading back EEPROM "
1653			       "image\n", dev->name);
1654
1655		error = memcmp(image, oldimage, EEPROM_BYTES);
1656		if (error){
1657			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658			       dev->name);
1659			error = -EFAULT;
1660		}
1661	wf_out:
1662		kfree(oldimage);
1663		kfree(image);
1664		return error;
1665
1666	case SIOCRRID:
1667		return put_user(0x52523032, (int __user *)rq->ifr_data);
1668	default:
1669		return error;
1670	}
1671}
1672
1673static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1674	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675		PCI_ANY_ID, PCI_ANY_ID, },
1676	{ 0,}
1677};
1678MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680static struct pci_driver rr_driver = {
1681	.name		= "rrunner",
1682	.id_table	= rr_pci_tbl,
1683	.probe		= rr_init_one,
1684	.remove		= __devexit_p(rr_remove_one),
1685};
1686
1687static int __init rr_init_module(void)
1688{
1689	return pci_register_driver(&rr_driver);
1690}
1691
1692static void __exit rr_cleanup_module(void)
1693{
1694	pci_unregister_driver(&rr_driver);
1695}
1696
1697module_init(rr_init_module);
1698module_exit(rr_cleanup_module);