Loading...
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
32
33#include "ixgbe.h"
34#include "ixgbe_phy.h"
35
36static void ixgbe_i2c_start(struct ixgbe_hw *hw);
37static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
38static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
39static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
40static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
41static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
42static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
43static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
45static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
46static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
47static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
48static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
49static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
50static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
51
52/**
53 * ixgbe_out_i2c_byte_ack - Send I2C byte with ack
54 * @hw: pointer to the hardware structure
55 * @byte: byte to send
56 *
57 * Returns an error code on error.
58 **/
59static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
60{
61 s32 status;
62
63 status = ixgbe_clock_out_i2c_byte(hw, byte);
64 if (status)
65 return status;
66 return ixgbe_get_i2c_ack(hw);
67}
68
69/**
70 * ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
71 * @hw: pointer to the hardware structure
72 * @byte: pointer to a u8 to receive the byte
73 *
74 * Returns an error code on error.
75 **/
76static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
77{
78 s32 status;
79
80 status = ixgbe_clock_in_i2c_byte(hw, byte);
81 if (status)
82 return status;
83 /* ACK */
84 return ixgbe_clock_out_i2c_bit(hw, false);
85}
86
87/**
88 * ixgbe_ones_comp_byte_add - Perform one's complement addition
89 * @add1: addend 1
90 * @add2: addend 2
91 *
92 * Returns one's complement 8-bit sum.
93 **/
94static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
95{
96 u16 sum = add1 + add2;
97
98 sum = (sum & 0xFF) + (sum >> 8);
99 return sum & 0xFF;
100}
101
102/**
103 * ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
104 * @hw: pointer to the hardware structure
105 * @addr: I2C bus address to read from
106 * @reg: I2C device register to read from
107 * @val: pointer to location to receive read value
108 * @lock: true if to take and release semaphore
109 *
110 * Returns an error code on error.
111 */
112s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
113 u16 reg, u16 *val, bool lock)
114{
115 u32 swfw_mask = hw->phy.phy_semaphore_mask;
116 int max_retry = 3;
117 int retry = 0;
118 u8 csum_byte;
119 u8 high_bits;
120 u8 low_bits;
121 u8 reg_high;
122 u8 csum;
123
124 reg_high = ((reg >> 7) & 0xFE) | 1; /* Indicate read combined */
125 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
126 csum = ~csum;
127 do {
128 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
129 return IXGBE_ERR_SWFW_SYNC;
130 ixgbe_i2c_start(hw);
131 /* Device Address and write indication */
132 if (ixgbe_out_i2c_byte_ack(hw, addr))
133 goto fail;
134 /* Write bits 14:8 */
135 if (ixgbe_out_i2c_byte_ack(hw, reg_high))
136 goto fail;
137 /* Write bits 7:0 */
138 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
139 goto fail;
140 /* Write csum */
141 if (ixgbe_out_i2c_byte_ack(hw, csum))
142 goto fail;
143 /* Re-start condition */
144 ixgbe_i2c_start(hw);
145 /* Device Address and read indication */
146 if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
147 goto fail;
148 /* Get upper bits */
149 if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
150 goto fail;
151 /* Get low bits */
152 if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
153 goto fail;
154 /* Get csum */
155 if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
156 goto fail;
157 /* NACK */
158 if (ixgbe_clock_out_i2c_bit(hw, false))
159 goto fail;
160 ixgbe_i2c_stop(hw);
161 if (lock)
162 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
163 *val = (high_bits << 8) | low_bits;
164 return 0;
165
166fail:
167 ixgbe_i2c_bus_clear(hw);
168 if (lock)
169 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
170 retry++;
171 if (retry < max_retry)
172 hw_dbg(hw, "I2C byte read combined error - Retry.\n");
173 else
174 hw_dbg(hw, "I2C byte read combined error.\n");
175 } while (retry < max_retry);
176
177 return IXGBE_ERR_I2C;
178}
179
180/**
181 * ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
182 * @hw: pointer to the hardware structure
183 * @addr: I2C bus address to write to
184 * @reg: I2C device register to write to
185 * @val: value to write
186 * @lock: true if to take and release semaphore
187 *
188 * Returns an error code on error.
189 */
190s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
191 u16 reg, u16 val, bool lock)
192{
193 u32 swfw_mask = hw->phy.phy_semaphore_mask;
194 int max_retry = 1;
195 int retry = 0;
196 u8 reg_high;
197 u8 csum;
198
199 reg_high = (reg >> 7) & 0xFE; /* Indicate write combined */
200 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
201 csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
202 csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
203 csum = ~csum;
204 do {
205 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
206 return IXGBE_ERR_SWFW_SYNC;
207 ixgbe_i2c_start(hw);
208 /* Device Address and write indication */
209 if (ixgbe_out_i2c_byte_ack(hw, addr))
210 goto fail;
211 /* Write bits 14:8 */
212 if (ixgbe_out_i2c_byte_ack(hw, reg_high))
213 goto fail;
214 /* Write bits 7:0 */
215 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
216 goto fail;
217 /* Write data 15:8 */
218 if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
219 goto fail;
220 /* Write data 7:0 */
221 if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
222 goto fail;
223 /* Write csum */
224 if (ixgbe_out_i2c_byte_ack(hw, csum))
225 goto fail;
226 ixgbe_i2c_stop(hw);
227 if (lock)
228 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
229 return 0;
230
231fail:
232 ixgbe_i2c_bus_clear(hw);
233 if (lock)
234 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
235 retry++;
236 if (retry < max_retry)
237 hw_dbg(hw, "I2C byte write combined error - Retry.\n");
238 else
239 hw_dbg(hw, "I2C byte write combined error.\n");
240 } while (retry < max_retry);
241
242 return IXGBE_ERR_I2C;
243}
244
245/**
246 * ixgbe_probe_phy - Probe a single address for a PHY
247 * @hw: pointer to hardware structure
248 * @phy_addr: PHY address to probe
249 *
250 * Returns true if PHY found
251 **/
252static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
253{
254 u16 ext_ability = 0;
255
256 hw->phy.mdio.prtad = phy_addr;
257 if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
258 return false;
259
260 if (ixgbe_get_phy_id(hw))
261 return false;
262
263 hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
264
265 if (hw->phy.type == ixgbe_phy_unknown) {
266 hw->phy.ops.read_reg(hw,
267 MDIO_PMA_EXTABLE,
268 MDIO_MMD_PMAPMD,
269 &ext_ability);
270 if (ext_ability &
271 (MDIO_PMA_EXTABLE_10GBT |
272 MDIO_PMA_EXTABLE_1000BT))
273 hw->phy.type = ixgbe_phy_cu_unknown;
274 else
275 hw->phy.type = ixgbe_phy_generic;
276 }
277
278 return true;
279}
280
281/**
282 * ixgbe_identify_phy_generic - Get physical layer module
283 * @hw: pointer to hardware structure
284 *
285 * Determines the physical layer module found on the current adapter.
286 **/
287s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
288{
289 u32 phy_addr;
290 u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
291
292 if (!hw->phy.phy_semaphore_mask) {
293 if (hw->bus.lan_id)
294 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
295 else
296 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
297 }
298
299 if (hw->phy.type != ixgbe_phy_unknown)
300 return 0;
301
302 if (hw->phy.nw_mng_if_sel) {
303 phy_addr = (hw->phy.nw_mng_if_sel &
304 IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
305 IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
306 if (ixgbe_probe_phy(hw, phy_addr))
307 return 0;
308 else
309 return IXGBE_ERR_PHY_ADDR_INVALID;
310 }
311
312 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
313 if (ixgbe_probe_phy(hw, phy_addr)) {
314 status = 0;
315 break;
316 }
317 }
318
319 /* Certain media types do not have a phy so an address will not
320 * be found and the code will take this path. Caller has to
321 * decide if it is an error or not.
322 */
323 if (status)
324 hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
325
326 return status;
327}
328
329/**
330 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
331 * @hw: pointer to the hardware structure
332 *
333 * This function checks the MMNGC.MNG_VETO bit to see if there are
334 * any constraints on link from manageability. For MAC's that don't
335 * have this bit just return false since the link can not be blocked
336 * via this method.
337 **/
338bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
339{
340 u32 mmngc;
341
342 /* If we don't have this bit, it can't be blocking */
343 if (hw->mac.type == ixgbe_mac_82598EB)
344 return false;
345
346 mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
347 if (mmngc & IXGBE_MMNGC_MNG_VETO) {
348 hw_dbg(hw, "MNG_VETO bit detected.\n");
349 return true;
350 }
351
352 return false;
353}
354
355/**
356 * ixgbe_get_phy_id - Get the phy type
357 * @hw: pointer to hardware structure
358 *
359 **/
360static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
361{
362 s32 status;
363 u16 phy_id_high = 0;
364 u16 phy_id_low = 0;
365
366 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
367 &phy_id_high);
368
369 if (!status) {
370 hw->phy.id = (u32)(phy_id_high << 16);
371 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
372 &phy_id_low);
373 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
374 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
375 }
376 return status;
377}
378
379/**
380 * ixgbe_get_phy_type_from_id - Get the phy type
381 * @phy_id: hardware phy id
382 *
383 **/
384static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
385{
386 enum ixgbe_phy_type phy_type;
387
388 switch (phy_id) {
389 case TN1010_PHY_ID:
390 phy_type = ixgbe_phy_tn;
391 break;
392 case X550_PHY_ID2:
393 case X550_PHY_ID3:
394 case X540_PHY_ID:
395 phy_type = ixgbe_phy_aq;
396 break;
397 case QT2022_PHY_ID:
398 phy_type = ixgbe_phy_qt;
399 break;
400 case ATH_PHY_ID:
401 phy_type = ixgbe_phy_nl;
402 break;
403 case X557_PHY_ID:
404 case X557_PHY_ID2:
405 phy_type = ixgbe_phy_x550em_ext_t;
406 break;
407 default:
408 phy_type = ixgbe_phy_unknown;
409 break;
410 }
411
412 return phy_type;
413}
414
415/**
416 * ixgbe_reset_phy_generic - Performs a PHY reset
417 * @hw: pointer to hardware structure
418 **/
419s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
420{
421 u32 i;
422 u16 ctrl = 0;
423 s32 status = 0;
424
425 if (hw->phy.type == ixgbe_phy_unknown)
426 status = ixgbe_identify_phy_generic(hw);
427
428 if (status != 0 || hw->phy.type == ixgbe_phy_none)
429 return status;
430
431 /* Don't reset PHY if it's shut down due to overtemp. */
432 if (!hw->phy.reset_if_overtemp &&
433 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
434 return 0;
435
436 /* Blocked by MNG FW so bail */
437 if (ixgbe_check_reset_blocked(hw))
438 return 0;
439
440 /*
441 * Perform soft PHY reset to the PHY_XS.
442 * This will cause a soft reset to the PHY
443 */
444 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
445 MDIO_MMD_PHYXS,
446 MDIO_CTRL1_RESET);
447
448 /*
449 * Poll for reset bit to self-clear indicating reset is complete.
450 * Some PHYs could take up to 3 seconds to complete and need about
451 * 1.7 usec delay after the reset is complete.
452 */
453 for (i = 0; i < 30; i++) {
454 msleep(100);
455 if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
456 status = hw->phy.ops.read_reg(hw,
457 IXGBE_MDIO_TX_VENDOR_ALARMS_3,
458 MDIO_MMD_PMAPMD, &ctrl);
459 if (status)
460 return status;
461
462 if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
463 udelay(2);
464 break;
465 }
466 } else {
467 status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
468 MDIO_MMD_PHYXS, &ctrl);
469 if (status)
470 return status;
471
472 if (!(ctrl & MDIO_CTRL1_RESET)) {
473 udelay(2);
474 break;
475 }
476 }
477 }
478
479 if (ctrl & MDIO_CTRL1_RESET) {
480 hw_dbg(hw, "PHY reset polling failed to complete.\n");
481 return IXGBE_ERR_RESET_FAILED;
482 }
483
484 return 0;
485}
486
487/**
488 * ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
489 * the SWFW lock
490 * @hw: pointer to hardware structure
491 * @reg_addr: 32 bit address of PHY register to read
492 * @device_type: 5 bit device type
493 * @phy_data: Pointer to read data from PHY register
494 **/
495s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
496 u16 *phy_data)
497{
498 u32 i, data, command;
499
500 /* Setup and write the address cycle command */
501 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
502 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
503 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
504 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
505
506 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
507
508 /* Check every 10 usec to see if the address cycle completed.
509 * The MDI Command bit will clear when the operation is
510 * complete
511 */
512 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
513 udelay(10);
514
515 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
516 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
517 break;
518 }
519
520
521 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
522 hw_dbg(hw, "PHY address command did not complete.\n");
523 return IXGBE_ERR_PHY;
524 }
525
526 /* Address cycle complete, setup and write the read
527 * command
528 */
529 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
530 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
531 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
532 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
533
534 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
535
536 /* Check every 10 usec to see if the address cycle
537 * completed. The MDI Command bit will clear when the
538 * operation is complete
539 */
540 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
541 udelay(10);
542
543 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
544 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
545 break;
546 }
547
548 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
549 hw_dbg(hw, "PHY read command didn't complete\n");
550 return IXGBE_ERR_PHY;
551 }
552
553 /* Read operation is complete. Get the data
554 * from MSRWD
555 */
556 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
557 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
558 *phy_data = (u16)(data);
559
560 return 0;
561}
562
563/**
564 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
565 * using the SWFW lock - this function is needed in most cases
566 * @hw: pointer to hardware structure
567 * @reg_addr: 32 bit address of PHY register to read
568 * @device_type: 5 bit device type
569 * @phy_data: Pointer to read data from PHY register
570 **/
571s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
572 u32 device_type, u16 *phy_data)
573{
574 s32 status;
575 u32 gssr = hw->phy.phy_semaphore_mask;
576
577 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
578 status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
579 phy_data);
580 hw->mac.ops.release_swfw_sync(hw, gssr);
581 } else {
582 return IXGBE_ERR_SWFW_SYNC;
583 }
584
585 return status;
586}
587
588/**
589 * ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
590 * without SWFW lock
591 * @hw: pointer to hardware structure
592 * @reg_addr: 32 bit PHY register to write
593 * @device_type: 5 bit device type
594 * @phy_data: Data to write to the PHY register
595 **/
596s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
597 u32 device_type, u16 phy_data)
598{
599 u32 i, command;
600
601 /* Put the data in the MDI single read and write data register*/
602 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
603
604 /* Setup and write the address cycle command */
605 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
606 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
607 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
608 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
609
610 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
611
612 /*
613 * Check every 10 usec to see if the address cycle completed.
614 * The MDI Command bit will clear when the operation is
615 * complete
616 */
617 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
618 udelay(10);
619
620 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
621 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
622 break;
623 }
624
625 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
626 hw_dbg(hw, "PHY address cmd didn't complete\n");
627 return IXGBE_ERR_PHY;
628 }
629
630 /*
631 * Address cycle complete, setup and write the write
632 * command
633 */
634 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
635 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
636 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
637 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
638
639 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
640
641 /* Check every 10 usec to see if the address cycle
642 * completed. The MDI Command bit will clear when the
643 * operation is complete
644 */
645 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
646 udelay(10);
647
648 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
649 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
650 break;
651 }
652
653 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
654 hw_dbg(hw, "PHY write cmd didn't complete\n");
655 return IXGBE_ERR_PHY;
656 }
657
658 return 0;
659}
660
661/**
662 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
663 * using SWFW lock- this function is needed in most cases
664 * @hw: pointer to hardware structure
665 * @reg_addr: 32 bit PHY register to write
666 * @device_type: 5 bit device type
667 * @phy_data: Data to write to the PHY register
668 **/
669s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
670 u32 device_type, u16 phy_data)
671{
672 s32 status;
673 u32 gssr = hw->phy.phy_semaphore_mask;
674
675 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
676 status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
677 phy_data);
678 hw->mac.ops.release_swfw_sync(hw, gssr);
679 } else {
680 return IXGBE_ERR_SWFW_SYNC;
681 }
682
683 return status;
684}
685
686/**
687 * ixgbe_setup_phy_link_generic - Set and restart autoneg
688 * @hw: pointer to hardware structure
689 *
690 * Restart autonegotiation and PHY and waits for completion.
691 **/
692s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
693{
694 s32 status = 0;
695 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
696 bool autoneg = false;
697 ixgbe_link_speed speed;
698
699 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
700
701 /* Set or unset auto-negotiation 10G advertisement */
702 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
703
704 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
705 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
706 (speed & IXGBE_LINK_SPEED_10GB_FULL))
707 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
708
709 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
710
711 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
712 MDIO_MMD_AN, &autoneg_reg);
713
714 if (hw->mac.type == ixgbe_mac_X550) {
715 /* Set or unset auto-negotiation 5G advertisement */
716 autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
717 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
718 (speed & IXGBE_LINK_SPEED_5GB_FULL))
719 autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
720
721 /* Set or unset auto-negotiation 2.5G advertisement */
722 autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
723 if ((hw->phy.autoneg_advertised &
724 IXGBE_LINK_SPEED_2_5GB_FULL) &&
725 (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
726 autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
727 }
728
729 /* Set or unset auto-negotiation 1G advertisement */
730 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
731 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
732 (speed & IXGBE_LINK_SPEED_1GB_FULL))
733 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
734
735 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
736 MDIO_MMD_AN, autoneg_reg);
737
738 /* Set or unset auto-negotiation 100M advertisement */
739 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
740
741 autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
742 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
743 (speed & IXGBE_LINK_SPEED_100_FULL))
744 autoneg_reg |= ADVERTISE_100FULL;
745
746 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
747
748 /* Blocked by MNG FW so don't reset PHY */
749 if (ixgbe_check_reset_blocked(hw))
750 return 0;
751
752 /* Restart PHY autonegotiation and wait for completion */
753 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
754 MDIO_MMD_AN, &autoneg_reg);
755
756 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
757
758 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
759 MDIO_MMD_AN, autoneg_reg);
760
761 return status;
762}
763
764/**
765 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
766 * @hw: pointer to hardware structure
767 * @speed: new link speed
768 * @autoneg_wait_to_complete: unused
769 **/
770s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
771 ixgbe_link_speed speed,
772 bool autoneg_wait_to_complete)
773{
774 /* Clear autoneg_advertised and set new values based on input link
775 * speed.
776 */
777 hw->phy.autoneg_advertised = 0;
778
779 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
780 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
781
782 if (speed & IXGBE_LINK_SPEED_5GB_FULL)
783 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
784
785 if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
786 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
787
788 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
789 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
790
791 if (speed & IXGBE_LINK_SPEED_100_FULL)
792 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
793
794 if (speed & IXGBE_LINK_SPEED_10_FULL)
795 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
796
797 /* Setup link based on the new speed settings */
798 if (hw->phy.ops.setup_link)
799 hw->phy.ops.setup_link(hw);
800
801 return 0;
802}
803
804/**
805 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
806 * @hw: pointer to hardware structure
807 *
808 * Determines the supported link capabilities by reading the PHY auto
809 * negotiation register.
810 */
811static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
812{
813 u16 speed_ability;
814 s32 status;
815
816 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
817 &speed_ability);
818 if (status)
819 return status;
820
821 if (speed_ability & MDIO_SPEED_10G)
822 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
823 if (speed_ability & MDIO_PMA_SPEED_1000)
824 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
825 if (speed_ability & MDIO_PMA_SPEED_100)
826 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
827
828 switch (hw->mac.type) {
829 case ixgbe_mac_X550:
830 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
831 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
832 break;
833 case ixgbe_mac_X550EM_x:
834 case ixgbe_mac_x550em_a:
835 hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
836 break;
837 default:
838 break;
839 }
840
841 return 0;
842}
843
844/**
845 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
846 * @hw: pointer to hardware structure
847 * @speed: pointer to link speed
848 * @autoneg: boolean auto-negotiation value
849 */
850s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
851 ixgbe_link_speed *speed,
852 bool *autoneg)
853{
854 s32 status = 0;
855
856 *autoneg = true;
857 if (!hw->phy.speeds_supported)
858 status = ixgbe_get_copper_speeds_supported(hw);
859
860 *speed = hw->phy.speeds_supported;
861 return status;
862}
863
864/**
865 * ixgbe_check_phy_link_tnx - Determine link and speed status
866 * @hw: pointer to hardware structure
867 * @speed: link speed
868 * @link_up: status of link
869 *
870 * Reads the VS1 register to determine if link is up and the current speed for
871 * the PHY.
872 **/
873s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
874 bool *link_up)
875{
876 s32 status;
877 u32 time_out;
878 u32 max_time_out = 10;
879 u16 phy_link = 0;
880 u16 phy_speed = 0;
881 u16 phy_data = 0;
882
883 /* Initialize speed and link to default case */
884 *link_up = false;
885 *speed = IXGBE_LINK_SPEED_10GB_FULL;
886
887 /*
888 * Check current speed and link status of the PHY register.
889 * This is a vendor specific register and may have to
890 * be changed for other copper PHYs.
891 */
892 for (time_out = 0; time_out < max_time_out; time_out++) {
893 udelay(10);
894 status = hw->phy.ops.read_reg(hw,
895 MDIO_STAT1,
896 MDIO_MMD_VEND1,
897 &phy_data);
898 phy_link = phy_data &
899 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
900 phy_speed = phy_data &
901 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
902 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
903 *link_up = true;
904 if (phy_speed ==
905 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
906 *speed = IXGBE_LINK_SPEED_1GB_FULL;
907 break;
908 }
909 }
910
911 return status;
912}
913
914/**
915 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
916 * @hw: pointer to hardware structure
917 *
918 * Restart autonegotiation and PHY and waits for completion.
919 * This function always returns success, this is nessary since
920 * it is called via a function pointer that could call other
921 * functions that could return an error.
922 **/
923s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
924{
925 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
926 bool autoneg = false;
927 ixgbe_link_speed speed;
928
929 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
930
931 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
932 /* Set or unset auto-negotiation 10G advertisement */
933 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
934 MDIO_MMD_AN,
935 &autoneg_reg);
936
937 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
938 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
939 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
940
941 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
942 MDIO_MMD_AN,
943 autoneg_reg);
944 }
945
946 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
947 /* Set or unset auto-negotiation 1G advertisement */
948 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
949 MDIO_MMD_AN,
950 &autoneg_reg);
951
952 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
953 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
954 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
955
956 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
957 MDIO_MMD_AN,
958 autoneg_reg);
959 }
960
961 if (speed & IXGBE_LINK_SPEED_100_FULL) {
962 /* Set or unset auto-negotiation 100M advertisement */
963 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
964 MDIO_MMD_AN,
965 &autoneg_reg);
966
967 autoneg_reg &= ~(ADVERTISE_100FULL |
968 ADVERTISE_100HALF);
969 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
970 autoneg_reg |= ADVERTISE_100FULL;
971
972 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
973 MDIO_MMD_AN,
974 autoneg_reg);
975 }
976
977 /* Blocked by MNG FW so don't reset PHY */
978 if (ixgbe_check_reset_blocked(hw))
979 return 0;
980
981 /* Restart PHY autonegotiation and wait for completion */
982 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
983 MDIO_MMD_AN, &autoneg_reg);
984
985 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
986
987 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
988 MDIO_MMD_AN, autoneg_reg);
989 return 0;
990}
991
992/**
993 * ixgbe_reset_phy_nl - Performs a PHY reset
994 * @hw: pointer to hardware structure
995 **/
996s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
997{
998 u16 phy_offset, control, eword, edata, block_crc;
999 bool end_data = false;
1000 u16 list_offset, data_offset;
1001 u16 phy_data = 0;
1002 s32 ret_val;
1003 u32 i;
1004
1005 /* Blocked by MNG FW so bail */
1006 if (ixgbe_check_reset_blocked(hw))
1007 return 0;
1008
1009 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1010
1011 /* reset the PHY and poll for completion */
1012 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1013 (phy_data | MDIO_CTRL1_RESET));
1014
1015 for (i = 0; i < 100; i++) {
1016 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1017 &phy_data);
1018 if ((phy_data & MDIO_CTRL1_RESET) == 0)
1019 break;
1020 usleep_range(10000, 20000);
1021 }
1022
1023 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1024 hw_dbg(hw, "PHY reset did not complete.\n");
1025 return IXGBE_ERR_PHY;
1026 }
1027
1028 /* Get init offsets */
1029 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1030 &data_offset);
1031 if (ret_val)
1032 return ret_val;
1033
1034 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1035 data_offset++;
1036 while (!end_data) {
1037 /*
1038 * Read control word from PHY init contents offset
1039 */
1040 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1041 if (ret_val)
1042 goto err_eeprom;
1043 control = (eword & IXGBE_CONTROL_MASK_NL) >>
1044 IXGBE_CONTROL_SHIFT_NL;
1045 edata = eword & IXGBE_DATA_MASK_NL;
1046 switch (control) {
1047 case IXGBE_DELAY_NL:
1048 data_offset++;
1049 hw_dbg(hw, "DELAY: %d MS\n", edata);
1050 usleep_range(edata * 1000, edata * 2000);
1051 break;
1052 case IXGBE_DATA_NL:
1053 hw_dbg(hw, "DATA:\n");
1054 data_offset++;
1055 ret_val = hw->eeprom.ops.read(hw, data_offset++,
1056 &phy_offset);
1057 if (ret_val)
1058 goto err_eeprom;
1059 for (i = 0; i < edata; i++) {
1060 ret_val = hw->eeprom.ops.read(hw, data_offset,
1061 &eword);
1062 if (ret_val)
1063 goto err_eeprom;
1064 hw->phy.ops.write_reg(hw, phy_offset,
1065 MDIO_MMD_PMAPMD, eword);
1066 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1067 phy_offset);
1068 data_offset++;
1069 phy_offset++;
1070 }
1071 break;
1072 case IXGBE_CONTROL_NL:
1073 data_offset++;
1074 hw_dbg(hw, "CONTROL:\n");
1075 if (edata == IXGBE_CONTROL_EOL_NL) {
1076 hw_dbg(hw, "EOL\n");
1077 end_data = true;
1078 } else if (edata == IXGBE_CONTROL_SOL_NL) {
1079 hw_dbg(hw, "SOL\n");
1080 } else {
1081 hw_dbg(hw, "Bad control value\n");
1082 return IXGBE_ERR_PHY;
1083 }
1084 break;
1085 default:
1086 hw_dbg(hw, "Bad control type\n");
1087 return IXGBE_ERR_PHY;
1088 }
1089 }
1090
1091 return ret_val;
1092
1093err_eeprom:
1094 hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1095 return IXGBE_ERR_PHY;
1096}
1097
1098/**
1099 * ixgbe_identify_module_generic - Identifies module type
1100 * @hw: pointer to hardware structure
1101 *
1102 * Determines HW type and calls appropriate function.
1103 **/
1104s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1105{
1106 switch (hw->mac.ops.get_media_type(hw)) {
1107 case ixgbe_media_type_fiber:
1108 return ixgbe_identify_sfp_module_generic(hw);
1109 case ixgbe_media_type_fiber_qsfp:
1110 return ixgbe_identify_qsfp_module_generic(hw);
1111 default:
1112 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1113 return IXGBE_ERR_SFP_NOT_PRESENT;
1114 }
1115
1116 return IXGBE_ERR_SFP_NOT_PRESENT;
1117}
1118
1119/**
1120 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
1121 * @hw: pointer to hardware structure
1122 *
1123 * Searches for and identifies the SFP module and assigns appropriate PHY type.
1124 **/
1125s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1126{
1127 struct ixgbe_adapter *adapter = hw->back;
1128 s32 status;
1129 u32 vendor_oui = 0;
1130 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1131 u8 identifier = 0;
1132 u8 comp_codes_1g = 0;
1133 u8 comp_codes_10g = 0;
1134 u8 oui_bytes[3] = {0, 0, 0};
1135 u8 cable_tech = 0;
1136 u8 cable_spec = 0;
1137 u16 enforce_sfp = 0;
1138
1139 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1140 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1141 return IXGBE_ERR_SFP_NOT_PRESENT;
1142 }
1143
1144 /* LAN ID is needed for sfp_type determination */
1145 hw->mac.ops.set_lan_id(hw);
1146
1147 status = hw->phy.ops.read_i2c_eeprom(hw,
1148 IXGBE_SFF_IDENTIFIER,
1149 &identifier);
1150
1151 if (status)
1152 goto err_read_i2c_eeprom;
1153
1154 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1155 hw->phy.type = ixgbe_phy_sfp_unsupported;
1156 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1157 }
1158 status = hw->phy.ops.read_i2c_eeprom(hw,
1159 IXGBE_SFF_1GBE_COMP_CODES,
1160 &comp_codes_1g);
1161
1162 if (status)
1163 goto err_read_i2c_eeprom;
1164
1165 status = hw->phy.ops.read_i2c_eeprom(hw,
1166 IXGBE_SFF_10GBE_COMP_CODES,
1167 &comp_codes_10g);
1168
1169 if (status)
1170 goto err_read_i2c_eeprom;
1171 status = hw->phy.ops.read_i2c_eeprom(hw,
1172 IXGBE_SFF_CABLE_TECHNOLOGY,
1173 &cable_tech);
1174
1175 if (status)
1176 goto err_read_i2c_eeprom;
1177
1178 /* ID Module
1179 * =========
1180 * 0 SFP_DA_CU
1181 * 1 SFP_SR
1182 * 2 SFP_LR
1183 * 3 SFP_DA_CORE0 - 82599-specific
1184 * 4 SFP_DA_CORE1 - 82599-specific
1185 * 5 SFP_SR/LR_CORE0 - 82599-specific
1186 * 6 SFP_SR/LR_CORE1 - 82599-specific
1187 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
1188 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
1189 * 9 SFP_1g_cu_CORE0 - 82599-specific
1190 * 10 SFP_1g_cu_CORE1 - 82599-specific
1191 * 11 SFP_1g_sx_CORE0 - 82599-specific
1192 * 12 SFP_1g_sx_CORE1 - 82599-specific
1193 */
1194 if (hw->mac.type == ixgbe_mac_82598EB) {
1195 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1196 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1197 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1198 hw->phy.sfp_type = ixgbe_sfp_type_sr;
1199 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1200 hw->phy.sfp_type = ixgbe_sfp_type_lr;
1201 else
1202 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1203 } else {
1204 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1205 if (hw->bus.lan_id == 0)
1206 hw->phy.sfp_type =
1207 ixgbe_sfp_type_da_cu_core0;
1208 else
1209 hw->phy.sfp_type =
1210 ixgbe_sfp_type_da_cu_core1;
1211 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1212 hw->phy.ops.read_i2c_eeprom(
1213 hw, IXGBE_SFF_CABLE_SPEC_COMP,
1214 &cable_spec);
1215 if (cable_spec &
1216 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1217 if (hw->bus.lan_id == 0)
1218 hw->phy.sfp_type =
1219 ixgbe_sfp_type_da_act_lmt_core0;
1220 else
1221 hw->phy.sfp_type =
1222 ixgbe_sfp_type_da_act_lmt_core1;
1223 } else {
1224 hw->phy.sfp_type =
1225 ixgbe_sfp_type_unknown;
1226 }
1227 } else if (comp_codes_10g &
1228 (IXGBE_SFF_10GBASESR_CAPABLE |
1229 IXGBE_SFF_10GBASELR_CAPABLE)) {
1230 if (hw->bus.lan_id == 0)
1231 hw->phy.sfp_type =
1232 ixgbe_sfp_type_srlr_core0;
1233 else
1234 hw->phy.sfp_type =
1235 ixgbe_sfp_type_srlr_core1;
1236 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1237 if (hw->bus.lan_id == 0)
1238 hw->phy.sfp_type =
1239 ixgbe_sfp_type_1g_cu_core0;
1240 else
1241 hw->phy.sfp_type =
1242 ixgbe_sfp_type_1g_cu_core1;
1243 } else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1244 if (hw->bus.lan_id == 0)
1245 hw->phy.sfp_type =
1246 ixgbe_sfp_type_1g_sx_core0;
1247 else
1248 hw->phy.sfp_type =
1249 ixgbe_sfp_type_1g_sx_core1;
1250 } else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1251 if (hw->bus.lan_id == 0)
1252 hw->phy.sfp_type =
1253 ixgbe_sfp_type_1g_lx_core0;
1254 else
1255 hw->phy.sfp_type =
1256 ixgbe_sfp_type_1g_lx_core1;
1257 } else {
1258 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1259 }
1260 }
1261
1262 if (hw->phy.sfp_type != stored_sfp_type)
1263 hw->phy.sfp_setup_needed = true;
1264
1265 /* Determine if the SFP+ PHY is dual speed or not. */
1266 hw->phy.multispeed_fiber = false;
1267 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1268 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1269 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1270 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1271 hw->phy.multispeed_fiber = true;
1272
1273 /* Determine PHY vendor */
1274 if (hw->phy.type != ixgbe_phy_nl) {
1275 hw->phy.id = identifier;
1276 status = hw->phy.ops.read_i2c_eeprom(hw,
1277 IXGBE_SFF_VENDOR_OUI_BYTE0,
1278 &oui_bytes[0]);
1279
1280 if (status != 0)
1281 goto err_read_i2c_eeprom;
1282
1283 status = hw->phy.ops.read_i2c_eeprom(hw,
1284 IXGBE_SFF_VENDOR_OUI_BYTE1,
1285 &oui_bytes[1]);
1286
1287 if (status != 0)
1288 goto err_read_i2c_eeprom;
1289
1290 status = hw->phy.ops.read_i2c_eeprom(hw,
1291 IXGBE_SFF_VENDOR_OUI_BYTE2,
1292 &oui_bytes[2]);
1293
1294 if (status != 0)
1295 goto err_read_i2c_eeprom;
1296
1297 vendor_oui =
1298 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1299 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1300 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1301
1302 switch (vendor_oui) {
1303 case IXGBE_SFF_VENDOR_OUI_TYCO:
1304 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1305 hw->phy.type =
1306 ixgbe_phy_sfp_passive_tyco;
1307 break;
1308 case IXGBE_SFF_VENDOR_OUI_FTL:
1309 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1310 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1311 else
1312 hw->phy.type = ixgbe_phy_sfp_ftl;
1313 break;
1314 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1315 hw->phy.type = ixgbe_phy_sfp_avago;
1316 break;
1317 case IXGBE_SFF_VENDOR_OUI_INTEL:
1318 hw->phy.type = ixgbe_phy_sfp_intel;
1319 break;
1320 default:
1321 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1322 hw->phy.type =
1323 ixgbe_phy_sfp_passive_unknown;
1324 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1325 hw->phy.type =
1326 ixgbe_phy_sfp_active_unknown;
1327 else
1328 hw->phy.type = ixgbe_phy_sfp_unknown;
1329 break;
1330 }
1331 }
1332
1333 /* Allow any DA cable vendor */
1334 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1335 IXGBE_SFF_DA_ACTIVE_CABLE))
1336 return 0;
1337
1338 /* Verify supported 1G SFP modules */
1339 if (comp_codes_10g == 0 &&
1340 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1341 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1342 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1343 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1344 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1345 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1346 hw->phy.type = ixgbe_phy_sfp_unsupported;
1347 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1348 }
1349
1350 /* Anything else 82598-based is supported */
1351 if (hw->mac.type == ixgbe_mac_82598EB)
1352 return 0;
1353
1354 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1355 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1356 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1357 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1358 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1359 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1360 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1361 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1362 /* Make sure we're a supported PHY type */
1363 if (hw->phy.type == ixgbe_phy_sfp_intel)
1364 return 0;
1365 if (hw->allow_unsupported_sfp) {
1366 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1367 return 0;
1368 }
1369 hw_dbg(hw, "SFP+ module not supported\n");
1370 hw->phy.type = ixgbe_phy_sfp_unsupported;
1371 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1372 }
1373 return 0;
1374
1375err_read_i2c_eeprom:
1376 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1377 if (hw->phy.type != ixgbe_phy_nl) {
1378 hw->phy.id = 0;
1379 hw->phy.type = ixgbe_phy_unknown;
1380 }
1381 return IXGBE_ERR_SFP_NOT_PRESENT;
1382}
1383
1384/**
1385 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1386 * @hw: pointer to hardware structure
1387 *
1388 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1389 **/
1390static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1391{
1392 struct ixgbe_adapter *adapter = hw->back;
1393 s32 status;
1394 u32 vendor_oui = 0;
1395 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1396 u8 identifier = 0;
1397 u8 comp_codes_1g = 0;
1398 u8 comp_codes_10g = 0;
1399 u8 oui_bytes[3] = {0, 0, 0};
1400 u16 enforce_sfp = 0;
1401 u8 connector = 0;
1402 u8 cable_length = 0;
1403 u8 device_tech = 0;
1404 bool active_cable = false;
1405
1406 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1407 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1408 return IXGBE_ERR_SFP_NOT_PRESENT;
1409 }
1410
1411 /* LAN ID is needed for sfp_type determination */
1412 hw->mac.ops.set_lan_id(hw);
1413
1414 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1415 &identifier);
1416
1417 if (status != 0)
1418 goto err_read_i2c_eeprom;
1419
1420 if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1421 hw->phy.type = ixgbe_phy_sfp_unsupported;
1422 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1423 }
1424
1425 hw->phy.id = identifier;
1426
1427 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1428 &comp_codes_10g);
1429
1430 if (status != 0)
1431 goto err_read_i2c_eeprom;
1432
1433 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1434 &comp_codes_1g);
1435
1436 if (status != 0)
1437 goto err_read_i2c_eeprom;
1438
1439 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1440 hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1441 if (hw->bus.lan_id == 0)
1442 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1443 else
1444 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1445 } else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1446 IXGBE_SFF_10GBASELR_CAPABLE)) {
1447 if (hw->bus.lan_id == 0)
1448 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1449 else
1450 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1451 } else {
1452 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1453 active_cable = true;
1454
1455 if (!active_cable) {
1456 /* check for active DA cables that pre-date
1457 * SFF-8436 v3.6
1458 */
1459 hw->phy.ops.read_i2c_eeprom(hw,
1460 IXGBE_SFF_QSFP_CONNECTOR,
1461 &connector);
1462
1463 hw->phy.ops.read_i2c_eeprom(hw,
1464 IXGBE_SFF_QSFP_CABLE_LENGTH,
1465 &cable_length);
1466
1467 hw->phy.ops.read_i2c_eeprom(hw,
1468 IXGBE_SFF_QSFP_DEVICE_TECH,
1469 &device_tech);
1470
1471 if ((connector ==
1472 IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1473 (cable_length > 0) &&
1474 ((device_tech >> 4) ==
1475 IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1476 active_cable = true;
1477 }
1478
1479 if (active_cable) {
1480 hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1481 if (hw->bus.lan_id == 0)
1482 hw->phy.sfp_type =
1483 ixgbe_sfp_type_da_act_lmt_core0;
1484 else
1485 hw->phy.sfp_type =
1486 ixgbe_sfp_type_da_act_lmt_core1;
1487 } else {
1488 /* unsupported module type */
1489 hw->phy.type = ixgbe_phy_sfp_unsupported;
1490 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1491 }
1492 }
1493
1494 if (hw->phy.sfp_type != stored_sfp_type)
1495 hw->phy.sfp_setup_needed = true;
1496
1497 /* Determine if the QSFP+ PHY is dual speed or not. */
1498 hw->phy.multispeed_fiber = false;
1499 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1500 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1501 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1502 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1503 hw->phy.multispeed_fiber = true;
1504
1505 /* Determine PHY vendor for optical modules */
1506 if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1507 IXGBE_SFF_10GBASELR_CAPABLE)) {
1508 status = hw->phy.ops.read_i2c_eeprom(hw,
1509 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1510 &oui_bytes[0]);
1511
1512 if (status != 0)
1513 goto err_read_i2c_eeprom;
1514
1515 status = hw->phy.ops.read_i2c_eeprom(hw,
1516 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1517 &oui_bytes[1]);
1518
1519 if (status != 0)
1520 goto err_read_i2c_eeprom;
1521
1522 status = hw->phy.ops.read_i2c_eeprom(hw,
1523 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1524 &oui_bytes[2]);
1525
1526 if (status != 0)
1527 goto err_read_i2c_eeprom;
1528
1529 vendor_oui =
1530 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1531 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1532 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1533
1534 if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1535 hw->phy.type = ixgbe_phy_qsfp_intel;
1536 else
1537 hw->phy.type = ixgbe_phy_qsfp_unknown;
1538
1539 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1540 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1541 /* Make sure we're a supported PHY type */
1542 if (hw->phy.type == ixgbe_phy_qsfp_intel)
1543 return 0;
1544 if (hw->allow_unsupported_sfp) {
1545 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1546 return 0;
1547 }
1548 hw_dbg(hw, "QSFP module not supported\n");
1549 hw->phy.type = ixgbe_phy_sfp_unsupported;
1550 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1551 }
1552 return 0;
1553 }
1554 return 0;
1555
1556err_read_i2c_eeprom:
1557 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1558 hw->phy.id = 0;
1559 hw->phy.type = ixgbe_phy_unknown;
1560
1561 return IXGBE_ERR_SFP_NOT_PRESENT;
1562}
1563
1564/**
1565 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1566 * @hw: pointer to hardware structure
1567 * @list_offset: offset to the SFP ID list
1568 * @data_offset: offset to the SFP data block
1569 *
1570 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1571 * so it returns the offsets to the phy init sequence block.
1572 **/
1573s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1574 u16 *list_offset,
1575 u16 *data_offset)
1576{
1577 u16 sfp_id;
1578 u16 sfp_type = hw->phy.sfp_type;
1579
1580 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1581 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1582
1583 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1584 return IXGBE_ERR_SFP_NOT_PRESENT;
1585
1586 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1587 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1588 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1589
1590 /*
1591 * Limiting active cables and 1G Phys must be initialized as
1592 * SR modules
1593 */
1594 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1595 sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1596 sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1597 sfp_type == ixgbe_sfp_type_1g_sx_core0)
1598 sfp_type = ixgbe_sfp_type_srlr_core0;
1599 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1600 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1601 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1602 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1603 sfp_type = ixgbe_sfp_type_srlr_core1;
1604
1605 /* Read offset to PHY init contents */
1606 if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1607 hw_err(hw, "eeprom read at %d failed\n",
1608 IXGBE_PHY_INIT_OFFSET_NL);
1609 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1610 }
1611
1612 if ((!*list_offset) || (*list_offset == 0xFFFF))
1613 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1614
1615 /* Shift offset to first ID word */
1616 (*list_offset)++;
1617
1618 /*
1619 * Find the matching SFP ID in the EEPROM
1620 * and program the init sequence
1621 */
1622 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1623 goto err_phy;
1624
1625 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1626 if (sfp_id == sfp_type) {
1627 (*list_offset)++;
1628 if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1629 goto err_phy;
1630 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1631 hw_dbg(hw, "SFP+ module not supported\n");
1632 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1633 } else {
1634 break;
1635 }
1636 } else {
1637 (*list_offset) += 2;
1638 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1639 goto err_phy;
1640 }
1641 }
1642
1643 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1644 hw_dbg(hw, "No matching SFP+ module found\n");
1645 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1646 }
1647
1648 return 0;
1649
1650err_phy:
1651 hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1652 return IXGBE_ERR_PHY;
1653}
1654
1655/**
1656 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1657 * @hw: pointer to hardware structure
1658 * @byte_offset: EEPROM byte offset to read
1659 * @eeprom_data: value read
1660 *
1661 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1662 **/
1663s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1664 u8 *eeprom_data)
1665{
1666 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1667 IXGBE_I2C_EEPROM_DEV_ADDR,
1668 eeprom_data);
1669}
1670
1671/**
1672 * ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1673 * @hw: pointer to hardware structure
1674 * @byte_offset: byte offset at address 0xA2
1675 * @sff8472_data: value read
1676 *
1677 * Performs byte read operation to SFP module's SFF-8472 data over I2C
1678 **/
1679s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1680 u8 *sff8472_data)
1681{
1682 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1683 IXGBE_I2C_EEPROM_DEV_ADDR2,
1684 sff8472_data);
1685}
1686
1687/**
1688 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1689 * @hw: pointer to hardware structure
1690 * @byte_offset: EEPROM byte offset to write
1691 * @eeprom_data: value to write
1692 *
1693 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1694 **/
1695s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1696 u8 eeprom_data)
1697{
1698 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1699 IXGBE_I2C_EEPROM_DEV_ADDR,
1700 eeprom_data);
1701}
1702
1703/**
1704 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1705 * @hw: pointer to hardware structure
1706 * @offset: eeprom offset to be read
1707 * @addr: I2C address to be read
1708 */
1709static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1710{
1711 if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1712 offset == IXGBE_SFF_IDENTIFIER &&
1713 hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1714 return true;
1715 return false;
1716}
1717
1718/**
1719 * ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1720 * @hw: pointer to hardware structure
1721 * @byte_offset: byte offset to read
1722 * @dev_addr: device address
1723 * @data: value read
1724 * @lock: true if to take and release semaphore
1725 *
1726 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1727 * a specified device address.
1728 */
1729static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1730 u8 dev_addr, u8 *data, bool lock)
1731{
1732 s32 status;
1733 u32 max_retry = 10;
1734 u32 retry = 0;
1735 u32 swfw_mask = hw->phy.phy_semaphore_mask;
1736 bool nack = true;
1737
1738 if (hw->mac.type >= ixgbe_mac_X550)
1739 max_retry = 3;
1740 if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
1741 max_retry = IXGBE_SFP_DETECT_RETRIES;
1742
1743 *data = 0;
1744
1745 do {
1746 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1747 return IXGBE_ERR_SWFW_SYNC;
1748
1749 ixgbe_i2c_start(hw);
1750
1751 /* Device Address and write indication */
1752 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1753 if (status != 0)
1754 goto fail;
1755
1756 status = ixgbe_get_i2c_ack(hw);
1757 if (status != 0)
1758 goto fail;
1759
1760 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1761 if (status != 0)
1762 goto fail;
1763
1764 status = ixgbe_get_i2c_ack(hw);
1765 if (status != 0)
1766 goto fail;
1767
1768 ixgbe_i2c_start(hw);
1769
1770 /* Device Address and read indication */
1771 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1772 if (status != 0)
1773 goto fail;
1774
1775 status = ixgbe_get_i2c_ack(hw);
1776 if (status != 0)
1777 goto fail;
1778
1779 status = ixgbe_clock_in_i2c_byte(hw, data);
1780 if (status != 0)
1781 goto fail;
1782
1783 status = ixgbe_clock_out_i2c_bit(hw, nack);
1784 if (status != 0)
1785 goto fail;
1786
1787 ixgbe_i2c_stop(hw);
1788 if (lock)
1789 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1790 return 0;
1791
1792fail:
1793 ixgbe_i2c_bus_clear(hw);
1794 if (lock) {
1795 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1796 msleep(100);
1797 }
1798 retry++;
1799 if (retry < max_retry)
1800 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1801 else
1802 hw_dbg(hw, "I2C byte read error.\n");
1803
1804 } while (retry < max_retry);
1805
1806 return status;
1807}
1808
1809/**
1810 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1811 * @hw: pointer to hardware structure
1812 * @byte_offset: byte offset to read
1813 * @dev_addr: device address
1814 * @data: value read
1815 *
1816 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1817 * a specified device address.
1818 */
1819s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1820 u8 dev_addr, u8 *data)
1821{
1822 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1823 data, true);
1824}
1825
1826/**
1827 * ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
1828 * @hw: pointer to hardware structure
1829 * @byte_offset: byte offset to read
1830 * @dev_addr: device address
1831 * @data: value read
1832 *
1833 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1834 * a specified device address.
1835 */
1836s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1837 u8 dev_addr, u8 *data)
1838{
1839 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1840 data, false);
1841}
1842
1843/**
1844 * ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
1845 * @hw: pointer to hardware structure
1846 * @byte_offset: byte offset to write
1847 * @dev_addr: device address
1848 * @data: value to write
1849 * @lock: true if to take and release semaphore
1850 *
1851 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1852 * a specified device address.
1853 */
1854static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1855 u8 dev_addr, u8 data, bool lock)
1856{
1857 s32 status;
1858 u32 max_retry = 1;
1859 u32 retry = 0;
1860 u32 swfw_mask = hw->phy.phy_semaphore_mask;
1861
1862 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1863 return IXGBE_ERR_SWFW_SYNC;
1864
1865 do {
1866 ixgbe_i2c_start(hw);
1867
1868 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1869 if (status != 0)
1870 goto fail;
1871
1872 status = ixgbe_get_i2c_ack(hw);
1873 if (status != 0)
1874 goto fail;
1875
1876 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1877 if (status != 0)
1878 goto fail;
1879
1880 status = ixgbe_get_i2c_ack(hw);
1881 if (status != 0)
1882 goto fail;
1883
1884 status = ixgbe_clock_out_i2c_byte(hw, data);
1885 if (status != 0)
1886 goto fail;
1887
1888 status = ixgbe_get_i2c_ack(hw);
1889 if (status != 0)
1890 goto fail;
1891
1892 ixgbe_i2c_stop(hw);
1893 if (lock)
1894 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1895 return 0;
1896
1897fail:
1898 ixgbe_i2c_bus_clear(hw);
1899 retry++;
1900 if (retry < max_retry)
1901 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1902 else
1903 hw_dbg(hw, "I2C byte write error.\n");
1904 } while (retry < max_retry);
1905
1906 if (lock)
1907 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1908
1909 return status;
1910}
1911
1912/**
1913 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1914 * @hw: pointer to hardware structure
1915 * @byte_offset: byte offset to write
1916 * @dev_addr: device address
1917 * @data: value to write
1918 *
1919 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1920 * a specified device address.
1921 */
1922s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1923 u8 dev_addr, u8 data)
1924{
1925 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1926 data, true);
1927}
1928
1929/**
1930 * ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
1931 * @hw: pointer to hardware structure
1932 * @byte_offset: byte offset to write
1933 * @dev_addr: device address
1934 * @data: value to write
1935 *
1936 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1937 * a specified device address.
1938 */
1939s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1940 u8 dev_addr, u8 data)
1941{
1942 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1943 data, false);
1944}
1945
1946/**
1947 * ixgbe_i2c_start - Sets I2C start condition
1948 * @hw: pointer to hardware structure
1949 *
1950 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1951 * Set bit-bang mode on X550 hardware.
1952 **/
1953static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1954{
1955 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
1956
1957 i2cctl |= IXGBE_I2C_BB_EN(hw);
1958
1959 /* Start condition must begin with data and clock high */
1960 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1961 ixgbe_raise_i2c_clk(hw, &i2cctl);
1962
1963 /* Setup time for start condition (4.7us) */
1964 udelay(IXGBE_I2C_T_SU_STA);
1965
1966 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1967
1968 /* Hold time for start condition (4us) */
1969 udelay(IXGBE_I2C_T_HD_STA);
1970
1971 ixgbe_lower_i2c_clk(hw, &i2cctl);
1972
1973 /* Minimum low period of clock is 4.7 us */
1974 udelay(IXGBE_I2C_T_LOW);
1975
1976}
1977
1978/**
1979 * ixgbe_i2c_stop - Sets I2C stop condition
1980 * @hw: pointer to hardware structure
1981 *
1982 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1983 * Disables bit-bang mode and negates data output enable on X550
1984 * hardware.
1985 **/
1986static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1987{
1988 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
1989 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
1990 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
1991 u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
1992
1993 /* Stop condition must begin with data low and clock high */
1994 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1995 ixgbe_raise_i2c_clk(hw, &i2cctl);
1996
1997 /* Setup time for stop condition (4us) */
1998 udelay(IXGBE_I2C_T_SU_STO);
1999
2000 ixgbe_set_i2c_data(hw, &i2cctl, 1);
2001
2002 /* bus free time between stop and start (4.7us)*/
2003 udelay(IXGBE_I2C_T_BUF);
2004
2005 if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2006 i2cctl &= ~bb_en_bit;
2007 i2cctl |= data_oe_bit | clk_oe_bit;
2008 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2009 IXGBE_WRITE_FLUSH(hw);
2010 }
2011}
2012
2013/**
2014 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2015 * @hw: pointer to hardware structure
2016 * @data: data byte to clock in
2017 *
2018 * Clocks in one byte data via I2C data/clock
2019 **/
2020static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2021{
2022 s32 i;
2023 bool bit = false;
2024
2025 *data = 0;
2026 for (i = 7; i >= 0; i--) {
2027 ixgbe_clock_in_i2c_bit(hw, &bit);
2028 *data |= bit << i;
2029 }
2030
2031 return 0;
2032}
2033
2034/**
2035 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2036 * @hw: pointer to hardware structure
2037 * @data: data byte clocked out
2038 *
2039 * Clocks out one byte data via I2C data/clock
2040 **/
2041static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2042{
2043 s32 status;
2044 s32 i;
2045 u32 i2cctl;
2046 bool bit = false;
2047
2048 for (i = 7; i >= 0; i--) {
2049 bit = (data >> i) & 0x1;
2050 status = ixgbe_clock_out_i2c_bit(hw, bit);
2051
2052 if (status != 0)
2053 break;
2054 }
2055
2056 /* Release SDA line (set high) */
2057 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2058 i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2059 i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2060 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2061 IXGBE_WRITE_FLUSH(hw);
2062
2063 return status;
2064}
2065
2066/**
2067 * ixgbe_get_i2c_ack - Polls for I2C ACK
2068 * @hw: pointer to hardware structure
2069 *
2070 * Clocks in/out one bit via I2C data/clock
2071 **/
2072static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2073{
2074 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2075 s32 status = 0;
2076 u32 i = 0;
2077 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2078 u32 timeout = 10;
2079 bool ack = true;
2080
2081 if (data_oe_bit) {
2082 i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2083 i2cctl |= data_oe_bit;
2084 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2085 IXGBE_WRITE_FLUSH(hw);
2086 }
2087 ixgbe_raise_i2c_clk(hw, &i2cctl);
2088
2089 /* Minimum high period of clock is 4us */
2090 udelay(IXGBE_I2C_T_HIGH);
2091
2092 /* Poll for ACK. Note that ACK in I2C spec is
2093 * transition from 1 to 0 */
2094 for (i = 0; i < timeout; i++) {
2095 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2096 ack = ixgbe_get_i2c_data(hw, &i2cctl);
2097
2098 udelay(1);
2099 if (ack == 0)
2100 break;
2101 }
2102
2103 if (ack == 1) {
2104 hw_dbg(hw, "I2C ack was not received.\n");
2105 status = IXGBE_ERR_I2C;
2106 }
2107
2108 ixgbe_lower_i2c_clk(hw, &i2cctl);
2109
2110 /* Minimum low period of clock is 4.7 us */
2111 udelay(IXGBE_I2C_T_LOW);
2112
2113 return status;
2114}
2115
2116/**
2117 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2118 * @hw: pointer to hardware structure
2119 * @data: read data value
2120 *
2121 * Clocks in one bit via I2C data/clock
2122 **/
2123static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2124{
2125 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2126 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2127
2128 if (data_oe_bit) {
2129 i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2130 i2cctl |= data_oe_bit;
2131 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2132 IXGBE_WRITE_FLUSH(hw);
2133 }
2134 ixgbe_raise_i2c_clk(hw, &i2cctl);
2135
2136 /* Minimum high period of clock is 4us */
2137 udelay(IXGBE_I2C_T_HIGH);
2138
2139 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2140 *data = ixgbe_get_i2c_data(hw, &i2cctl);
2141
2142 ixgbe_lower_i2c_clk(hw, &i2cctl);
2143
2144 /* Minimum low period of clock is 4.7 us */
2145 udelay(IXGBE_I2C_T_LOW);
2146
2147 return 0;
2148}
2149
2150/**
2151 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2152 * @hw: pointer to hardware structure
2153 * @data: data value to write
2154 *
2155 * Clocks out one bit via I2C data/clock
2156 **/
2157static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2158{
2159 s32 status;
2160 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2161
2162 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2163 if (status == 0) {
2164 ixgbe_raise_i2c_clk(hw, &i2cctl);
2165
2166 /* Minimum high period of clock is 4us */
2167 udelay(IXGBE_I2C_T_HIGH);
2168
2169 ixgbe_lower_i2c_clk(hw, &i2cctl);
2170
2171 /* Minimum low period of clock is 4.7 us.
2172 * This also takes care of the data hold time.
2173 */
2174 udelay(IXGBE_I2C_T_LOW);
2175 } else {
2176 hw_dbg(hw, "I2C data was not set to %X\n", data);
2177 return IXGBE_ERR_I2C;
2178 }
2179
2180 return 0;
2181}
2182/**
2183 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2184 * @hw: pointer to hardware structure
2185 * @i2cctl: Current value of I2CCTL register
2186 *
2187 * Raises the I2C clock line '0'->'1'
2188 * Negates the I2C clock output enable on X550 hardware.
2189 **/
2190static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2191{
2192 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2193 u32 i = 0;
2194 u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2195 u32 i2cctl_r = 0;
2196
2197 if (clk_oe_bit) {
2198 *i2cctl |= clk_oe_bit;
2199 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2200 }
2201
2202 for (i = 0; i < timeout; i++) {
2203 *i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2204 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2205 IXGBE_WRITE_FLUSH(hw);
2206 /* SCL rise time (1000ns) */
2207 udelay(IXGBE_I2C_T_RISE);
2208
2209 i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2210 if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2211 break;
2212 }
2213}
2214
2215/**
2216 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2217 * @hw: pointer to hardware structure
2218 * @i2cctl: Current value of I2CCTL register
2219 *
2220 * Lowers the I2C clock line '1'->'0'
2221 * Asserts the I2C clock output enable on X550 hardware.
2222 **/
2223static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2224{
2225
2226 *i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2227 *i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2228
2229 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2230 IXGBE_WRITE_FLUSH(hw);
2231
2232 /* SCL fall time (300ns) */
2233 udelay(IXGBE_I2C_T_FALL);
2234}
2235
2236/**
2237 * ixgbe_set_i2c_data - Sets the I2C data bit
2238 * @hw: pointer to hardware structure
2239 * @i2cctl: Current value of I2CCTL register
2240 * @data: I2C data value (0 or 1) to set
2241 *
2242 * Sets the I2C data bit
2243 * Asserts the I2C data output enable on X550 hardware.
2244 **/
2245static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2246{
2247 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2248
2249 if (data)
2250 *i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2251 else
2252 *i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2253 *i2cctl &= ~data_oe_bit;
2254
2255 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2256 IXGBE_WRITE_FLUSH(hw);
2257
2258 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2259 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2260
2261 if (!data) /* Can't verify data in this case */
2262 return 0;
2263 if (data_oe_bit) {
2264 *i2cctl |= data_oe_bit;
2265 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2266 IXGBE_WRITE_FLUSH(hw);
2267 }
2268
2269 /* Verify data was set correctly */
2270 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2271 if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2272 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2273 return IXGBE_ERR_I2C;
2274 }
2275
2276 return 0;
2277}
2278
2279/**
2280 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
2281 * @hw: pointer to hardware structure
2282 * @i2cctl: Current value of I2CCTL register
2283 *
2284 * Returns the I2C data bit value
2285 * Negates the I2C data output enable on X550 hardware.
2286 **/
2287static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2288{
2289 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2290
2291 if (data_oe_bit) {
2292 *i2cctl |= data_oe_bit;
2293 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2294 IXGBE_WRITE_FLUSH(hw);
2295 udelay(IXGBE_I2C_T_FALL);
2296 }
2297
2298 if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2299 return true;
2300 return false;
2301}
2302
2303/**
2304 * ixgbe_i2c_bus_clear - Clears the I2C bus
2305 * @hw: pointer to hardware structure
2306 *
2307 * Clears the I2C bus by sending nine clock pulses.
2308 * Used when data line is stuck low.
2309 **/
2310static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2311{
2312 u32 i2cctl;
2313 u32 i;
2314
2315 ixgbe_i2c_start(hw);
2316 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2317
2318 ixgbe_set_i2c_data(hw, &i2cctl, 1);
2319
2320 for (i = 0; i < 9; i++) {
2321 ixgbe_raise_i2c_clk(hw, &i2cctl);
2322
2323 /* Min high period of clock is 4us */
2324 udelay(IXGBE_I2C_T_HIGH);
2325
2326 ixgbe_lower_i2c_clk(hw, &i2cctl);
2327
2328 /* Min low period of clock is 4.7us*/
2329 udelay(IXGBE_I2C_T_LOW);
2330 }
2331
2332 ixgbe_i2c_start(hw);
2333
2334 /* Put the i2c bus back to default state */
2335 ixgbe_i2c_stop(hw);
2336}
2337
2338/**
2339 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2340 * @hw: pointer to hardware structure
2341 *
2342 * Checks if the LASI temp alarm status was triggered due to overtemp
2343 **/
2344s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2345{
2346 u16 phy_data = 0;
2347
2348 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2349 return 0;
2350
2351 /* Check that the LASI temp alarm status was triggered */
2352 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2353 MDIO_MMD_PMAPMD, &phy_data);
2354
2355 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2356 return 0;
2357
2358 return IXGBE_ERR_OVERTEMP;
2359}
2360
2361/** ixgbe_set_copper_phy_power - Control power for copper phy
2362 * @hw: pointer to hardware structure
2363 * @on: true for on, false for off
2364 **/
2365s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2366{
2367 u32 status;
2368 u16 reg;
2369
2370 /* Bail if we don't have copper phy */
2371 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2372 return 0;
2373
2374 if (!on && ixgbe_mng_present(hw))
2375 return 0;
2376
2377 status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, ®);
2378 if (status)
2379 return status;
2380
2381 if (on) {
2382 reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2383 } else {
2384 if (ixgbe_check_reset_blocked(hw))
2385 return 0;
2386 reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2387 }
2388
2389 status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2390 return status;
2391}
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe_common.h"
33#include "ixgbe_phy.h"
34
35static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45static bool ixgbe_get_i2c_data(u32 *i2cctl);
46static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50/**
51 * ixgbe_identify_phy_generic - Get physical layer module
52 * @hw: pointer to hardware structure
53 *
54 * Determines the physical layer module found on the current adapter.
55 **/
56s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57{
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60 u16 ext_ability = 0;
61
62 if (hw->phy.type == ixgbe_phy_unknown) {
63 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
64 hw->phy.mdio.prtad = phy_addr;
65 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
66 ixgbe_get_phy_id(hw);
67 hw->phy.type =
68 ixgbe_get_phy_type_from_id(hw->phy.id);
69
70 if (hw->phy.type == ixgbe_phy_unknown) {
71 hw->phy.ops.read_reg(hw,
72 MDIO_PMA_EXTABLE,
73 MDIO_MMD_PMAPMD,
74 &ext_ability);
75 if (ext_ability &
76 (MDIO_PMA_EXTABLE_10GBT |
77 MDIO_PMA_EXTABLE_1000BT))
78 hw->phy.type =
79 ixgbe_phy_cu_unknown;
80 else
81 hw->phy.type =
82 ixgbe_phy_generic;
83 }
84
85 status = 0;
86 break;
87 }
88 }
89 /* clear value if nothing found */
90 if (status != 0)
91 hw->phy.mdio.prtad = 0;
92 } else {
93 status = 0;
94 }
95
96 return status;
97}
98
99/**
100 * ixgbe_get_phy_id - Get the phy type
101 * @hw: pointer to hardware structure
102 *
103 **/
104static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
105{
106 u32 status;
107 u16 phy_id_high = 0;
108 u16 phy_id_low = 0;
109
110 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
111 &phy_id_high);
112
113 if (status == 0) {
114 hw->phy.id = (u32)(phy_id_high << 16);
115 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
116 &phy_id_low);
117 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
118 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
119 }
120 return status;
121}
122
123/**
124 * ixgbe_get_phy_type_from_id - Get the phy type
125 * @hw: pointer to hardware structure
126 *
127 **/
128static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
129{
130 enum ixgbe_phy_type phy_type;
131
132 switch (phy_id) {
133 case TN1010_PHY_ID:
134 phy_type = ixgbe_phy_tn;
135 break;
136 case X540_PHY_ID:
137 phy_type = ixgbe_phy_aq;
138 break;
139 case QT2022_PHY_ID:
140 phy_type = ixgbe_phy_qt;
141 break;
142 case ATH_PHY_ID:
143 phy_type = ixgbe_phy_nl;
144 break;
145 default:
146 phy_type = ixgbe_phy_unknown;
147 break;
148 }
149
150 return phy_type;
151}
152
153/**
154 * ixgbe_reset_phy_generic - Performs a PHY reset
155 * @hw: pointer to hardware structure
156 **/
157s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
158{
159 u32 i;
160 u16 ctrl = 0;
161 s32 status = 0;
162
163 if (hw->phy.type == ixgbe_phy_unknown)
164 status = ixgbe_identify_phy_generic(hw);
165
166 if (status != 0 || hw->phy.type == ixgbe_phy_none)
167 goto out;
168
169 /* Don't reset PHY if it's shut down due to overtemp. */
170 if (!hw->phy.reset_if_overtemp &&
171 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
172 goto out;
173
174 /*
175 * Perform soft PHY reset to the PHY_XS.
176 * This will cause a soft reset to the PHY
177 */
178 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
179 MDIO_MMD_PHYXS,
180 MDIO_CTRL1_RESET);
181
182 /*
183 * Poll for reset bit to self-clear indicating reset is complete.
184 * Some PHYs could take up to 3 seconds to complete and need about
185 * 1.7 usec delay after the reset is complete.
186 */
187 for (i = 0; i < 30; i++) {
188 msleep(100);
189 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
190 MDIO_MMD_PHYXS, &ctrl);
191 if (!(ctrl & MDIO_CTRL1_RESET)) {
192 udelay(2);
193 break;
194 }
195 }
196
197 if (ctrl & MDIO_CTRL1_RESET) {
198 status = IXGBE_ERR_RESET_FAILED;
199 hw_dbg(hw, "PHY reset polling failed to complete.\n");
200 }
201
202out:
203 return status;
204}
205
206/**
207 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
208 * @hw: pointer to hardware structure
209 * @reg_addr: 32 bit address of PHY register to read
210 * @phy_data: Pointer to read data from PHY register
211 **/
212s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
213 u32 device_type, u16 *phy_data)
214{
215 u32 command;
216 u32 i;
217 u32 data;
218 s32 status = 0;
219 u16 gssr;
220
221 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
222 gssr = IXGBE_GSSR_PHY1_SM;
223 else
224 gssr = IXGBE_GSSR_PHY0_SM;
225
226 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
227 status = IXGBE_ERR_SWFW_SYNC;
228
229 if (status == 0) {
230 /* Setup and write the address cycle command */
231 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
232 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
233 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
234 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
235
236 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
237
238 /*
239 * Check every 10 usec to see if the address cycle completed.
240 * The MDI Command bit will clear when the operation is
241 * complete
242 */
243 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
244 udelay(10);
245
246 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
247
248 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
249 break;
250 }
251
252 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
253 hw_dbg(hw, "PHY address command did not complete.\n");
254 status = IXGBE_ERR_PHY;
255 }
256
257 if (status == 0) {
258 /*
259 * Address cycle complete, setup and write the read
260 * command
261 */
262 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
263 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
264 (hw->phy.mdio.prtad <<
265 IXGBE_MSCA_PHY_ADDR_SHIFT) |
266 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
267
268 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
269
270 /*
271 * Check every 10 usec to see if the address cycle
272 * completed. The MDI Command bit will clear when the
273 * operation is complete
274 */
275 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
276 udelay(10);
277
278 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
279
280 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
281 break;
282 }
283
284 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
285 hw_dbg(hw, "PHY read command didn't complete\n");
286 status = IXGBE_ERR_PHY;
287 } else {
288 /*
289 * Read operation is complete. Get the data
290 * from MSRWD
291 */
292 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
293 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
294 *phy_data = (u16)(data);
295 }
296 }
297
298 hw->mac.ops.release_swfw_sync(hw, gssr);
299 }
300
301 return status;
302}
303
304/**
305 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
306 * @hw: pointer to hardware structure
307 * @reg_addr: 32 bit PHY register to write
308 * @device_type: 5 bit device type
309 * @phy_data: Data to write to the PHY register
310 **/
311s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
312 u32 device_type, u16 phy_data)
313{
314 u32 command;
315 u32 i;
316 s32 status = 0;
317 u16 gssr;
318
319 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
320 gssr = IXGBE_GSSR_PHY1_SM;
321 else
322 gssr = IXGBE_GSSR_PHY0_SM;
323
324 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
325 status = IXGBE_ERR_SWFW_SYNC;
326
327 if (status == 0) {
328 /* Put the data in the MDI single read and write data register*/
329 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
330
331 /* Setup and write the address cycle command */
332 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
333 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
334 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
335 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
336
337 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
338
339 /*
340 * Check every 10 usec to see if the address cycle completed.
341 * The MDI Command bit will clear when the operation is
342 * complete
343 */
344 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
345 udelay(10);
346
347 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
348
349 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
350 break;
351 }
352
353 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
354 hw_dbg(hw, "PHY address cmd didn't complete\n");
355 status = IXGBE_ERR_PHY;
356 }
357
358 if (status == 0) {
359 /*
360 * Address cycle complete, setup and write the write
361 * command
362 */
363 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
364 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
365 (hw->phy.mdio.prtad <<
366 IXGBE_MSCA_PHY_ADDR_SHIFT) |
367 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
368
369 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
370
371 /*
372 * Check every 10 usec to see if the address cycle
373 * completed. The MDI Command bit will clear when the
374 * operation is complete
375 */
376 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
377 udelay(10);
378
379 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
380
381 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
382 break;
383 }
384
385 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
386 hw_dbg(hw, "PHY address cmd didn't complete\n");
387 status = IXGBE_ERR_PHY;
388 }
389 }
390
391 hw->mac.ops.release_swfw_sync(hw, gssr);
392 }
393
394 return status;
395}
396
397/**
398 * ixgbe_setup_phy_link_generic - Set and restart autoneg
399 * @hw: pointer to hardware structure
400 *
401 * Restart autonegotiation and PHY and waits for completion.
402 **/
403s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
404{
405 s32 status = 0;
406 u32 time_out;
407 u32 max_time_out = 10;
408 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
409 bool autoneg = false;
410 ixgbe_link_speed speed;
411
412 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
413
414 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
415 /* Set or unset auto-negotiation 10G advertisement */
416 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
417 MDIO_MMD_AN,
418 &autoneg_reg);
419
420 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
421 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
422 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
423
424 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
425 MDIO_MMD_AN,
426 autoneg_reg);
427 }
428
429 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
430 /* Set or unset auto-negotiation 1G advertisement */
431 hw->phy.ops.read_reg(hw,
432 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
433 MDIO_MMD_AN,
434 &autoneg_reg);
435
436 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
437 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
438 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
439
440 hw->phy.ops.write_reg(hw,
441 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
442 MDIO_MMD_AN,
443 autoneg_reg);
444 }
445
446 if (speed & IXGBE_LINK_SPEED_100_FULL) {
447 /* Set or unset auto-negotiation 100M advertisement */
448 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
449 MDIO_MMD_AN,
450 &autoneg_reg);
451
452 autoneg_reg &= ~(ADVERTISE_100FULL |
453 ADVERTISE_100HALF);
454 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
455 autoneg_reg |= ADVERTISE_100FULL;
456
457 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
458 MDIO_MMD_AN,
459 autoneg_reg);
460 }
461
462 /* Restart PHY autonegotiation and wait for completion */
463 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
464 MDIO_MMD_AN, &autoneg_reg);
465
466 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
467
468 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
469 MDIO_MMD_AN, autoneg_reg);
470
471 /* Wait for autonegotiation to finish */
472 for (time_out = 0; time_out < max_time_out; time_out++) {
473 udelay(10);
474 /* Restart PHY autonegotiation and wait for completion */
475 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
476 MDIO_MMD_AN,
477 &autoneg_reg);
478
479 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
480 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
481 break;
482 }
483 }
484
485 if (time_out == max_time_out) {
486 status = IXGBE_ERR_LINK_SETUP;
487 hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out");
488 }
489
490 return status;
491}
492
493/**
494 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
495 * @hw: pointer to hardware structure
496 * @speed: new link speed
497 * @autoneg: true if autonegotiation enabled
498 **/
499s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
500 ixgbe_link_speed speed,
501 bool autoneg,
502 bool autoneg_wait_to_complete)
503{
504
505 /*
506 * Clear autoneg_advertised and set new values based on input link
507 * speed.
508 */
509 hw->phy.autoneg_advertised = 0;
510
511 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
512 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
513
514 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
515 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
516
517 if (speed & IXGBE_LINK_SPEED_100_FULL)
518 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
519
520 /* Setup link based on the new speed settings */
521 hw->phy.ops.setup_link(hw);
522
523 return 0;
524}
525
526/**
527 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
528 * @hw: pointer to hardware structure
529 * @speed: pointer to link speed
530 * @autoneg: boolean auto-negotiation value
531 *
532 * Determines the link capabilities by reading the AUTOC register.
533 */
534s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
535 ixgbe_link_speed *speed,
536 bool *autoneg)
537{
538 s32 status = IXGBE_ERR_LINK_SETUP;
539 u16 speed_ability;
540
541 *speed = 0;
542 *autoneg = true;
543
544 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
545 &speed_ability);
546
547 if (status == 0) {
548 if (speed_ability & MDIO_SPEED_10G)
549 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
550 if (speed_ability & MDIO_PMA_SPEED_1000)
551 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
552 if (speed_ability & MDIO_PMA_SPEED_100)
553 *speed |= IXGBE_LINK_SPEED_100_FULL;
554 }
555
556 return status;
557}
558
559/**
560 * ixgbe_check_phy_link_tnx - Determine link and speed status
561 * @hw: pointer to hardware structure
562 *
563 * Reads the VS1 register to determine if link is up and the current speed for
564 * the PHY.
565 **/
566s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
567 bool *link_up)
568{
569 s32 status = 0;
570 u32 time_out;
571 u32 max_time_out = 10;
572 u16 phy_link = 0;
573 u16 phy_speed = 0;
574 u16 phy_data = 0;
575
576 /* Initialize speed and link to default case */
577 *link_up = false;
578 *speed = IXGBE_LINK_SPEED_10GB_FULL;
579
580 /*
581 * Check current speed and link status of the PHY register.
582 * This is a vendor specific register and may have to
583 * be changed for other copper PHYs.
584 */
585 for (time_out = 0; time_out < max_time_out; time_out++) {
586 udelay(10);
587 status = hw->phy.ops.read_reg(hw,
588 MDIO_STAT1,
589 MDIO_MMD_VEND1,
590 &phy_data);
591 phy_link = phy_data &
592 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
593 phy_speed = phy_data &
594 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
595 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
596 *link_up = true;
597 if (phy_speed ==
598 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
599 *speed = IXGBE_LINK_SPEED_1GB_FULL;
600 break;
601 }
602 }
603
604 return status;
605}
606
607/**
608 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
609 * @hw: pointer to hardware structure
610 *
611 * Restart autonegotiation and PHY and waits for completion.
612 **/
613s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
614{
615 s32 status = 0;
616 u32 time_out;
617 u32 max_time_out = 10;
618 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
619 bool autoneg = false;
620 ixgbe_link_speed speed;
621
622 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
623
624 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
625 /* Set or unset auto-negotiation 10G advertisement */
626 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
627 MDIO_MMD_AN,
628 &autoneg_reg);
629
630 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
631 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
632 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
633
634 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
635 MDIO_MMD_AN,
636 autoneg_reg);
637 }
638
639 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
640 /* Set or unset auto-negotiation 1G advertisement */
641 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
642 MDIO_MMD_AN,
643 &autoneg_reg);
644
645 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
646 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
647 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
648
649 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
650 MDIO_MMD_AN,
651 autoneg_reg);
652 }
653
654 if (speed & IXGBE_LINK_SPEED_100_FULL) {
655 /* Set or unset auto-negotiation 100M advertisement */
656 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
657 MDIO_MMD_AN,
658 &autoneg_reg);
659
660 autoneg_reg &= ~(ADVERTISE_100FULL |
661 ADVERTISE_100HALF);
662 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
663 autoneg_reg |= ADVERTISE_100FULL;
664
665 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
666 MDIO_MMD_AN,
667 autoneg_reg);
668 }
669
670 /* Restart PHY autonegotiation and wait for completion */
671 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
672 MDIO_MMD_AN, &autoneg_reg);
673
674 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
675
676 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
677 MDIO_MMD_AN, autoneg_reg);
678
679 /* Wait for autonegotiation to finish */
680 for (time_out = 0; time_out < max_time_out; time_out++) {
681 udelay(10);
682 /* Restart PHY autonegotiation and wait for completion */
683 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
684 MDIO_MMD_AN,
685 &autoneg_reg);
686
687 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
688 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE)
689 break;
690 }
691
692 if (time_out == max_time_out) {
693 status = IXGBE_ERR_LINK_SETUP;
694 hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out");
695 }
696
697 return status;
698}
699
700/**
701 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
702 * @hw: pointer to hardware structure
703 * @firmware_version: pointer to the PHY Firmware Version
704 **/
705s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
706 u16 *firmware_version)
707{
708 s32 status = 0;
709
710 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
711 MDIO_MMD_VEND1,
712 firmware_version);
713
714 return status;
715}
716
717/**
718 * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
719 * @hw: pointer to hardware structure
720 * @firmware_version: pointer to the PHY Firmware Version
721 **/
722s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
723 u16 *firmware_version)
724{
725 s32 status = 0;
726
727 status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
728 MDIO_MMD_VEND1,
729 firmware_version);
730
731 return status;
732}
733
734/**
735 * ixgbe_reset_phy_nl - Performs a PHY reset
736 * @hw: pointer to hardware structure
737 **/
738s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
739{
740 u16 phy_offset, control, eword, edata, block_crc;
741 bool end_data = false;
742 u16 list_offset, data_offset;
743 u16 phy_data = 0;
744 s32 ret_val = 0;
745 u32 i;
746
747 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
748
749 /* reset the PHY and poll for completion */
750 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
751 (phy_data | MDIO_CTRL1_RESET));
752
753 for (i = 0; i < 100; i++) {
754 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
755 &phy_data);
756 if ((phy_data & MDIO_CTRL1_RESET) == 0)
757 break;
758 usleep_range(10000, 20000);
759 }
760
761 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
762 hw_dbg(hw, "PHY reset did not complete.\n");
763 ret_val = IXGBE_ERR_PHY;
764 goto out;
765 }
766
767 /* Get init offsets */
768 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
769 &data_offset);
770 if (ret_val != 0)
771 goto out;
772
773 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
774 data_offset++;
775 while (!end_data) {
776 /*
777 * Read control word from PHY init contents offset
778 */
779 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
780 control = (eword & IXGBE_CONTROL_MASK_NL) >>
781 IXGBE_CONTROL_SHIFT_NL;
782 edata = eword & IXGBE_DATA_MASK_NL;
783 switch (control) {
784 case IXGBE_DELAY_NL:
785 data_offset++;
786 hw_dbg(hw, "DELAY: %d MS\n", edata);
787 usleep_range(edata * 1000, edata * 2000);
788 break;
789 case IXGBE_DATA_NL:
790 hw_dbg(hw, "DATA:\n");
791 data_offset++;
792 hw->eeprom.ops.read(hw, data_offset++,
793 &phy_offset);
794 for (i = 0; i < edata; i++) {
795 hw->eeprom.ops.read(hw, data_offset, &eword);
796 hw->phy.ops.write_reg(hw, phy_offset,
797 MDIO_MMD_PMAPMD, eword);
798 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
799 phy_offset);
800 data_offset++;
801 phy_offset++;
802 }
803 break;
804 case IXGBE_CONTROL_NL:
805 data_offset++;
806 hw_dbg(hw, "CONTROL:\n");
807 if (edata == IXGBE_CONTROL_EOL_NL) {
808 hw_dbg(hw, "EOL\n");
809 end_data = true;
810 } else if (edata == IXGBE_CONTROL_SOL_NL) {
811 hw_dbg(hw, "SOL\n");
812 } else {
813 hw_dbg(hw, "Bad control value\n");
814 ret_val = IXGBE_ERR_PHY;
815 goto out;
816 }
817 break;
818 default:
819 hw_dbg(hw, "Bad control type\n");
820 ret_val = IXGBE_ERR_PHY;
821 goto out;
822 }
823 }
824
825out:
826 return ret_val;
827}
828
829/**
830 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
831 * @hw: pointer to hardware structure
832 *
833 * Searches for and identifies the SFP module and assigns appropriate PHY type.
834 **/
835s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
836{
837 struct ixgbe_adapter *adapter = hw->back;
838 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
839 u32 vendor_oui = 0;
840 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
841 u8 identifier = 0;
842 u8 comp_codes_1g = 0;
843 u8 comp_codes_10g = 0;
844 u8 oui_bytes[3] = {0, 0, 0};
845 u8 cable_tech = 0;
846 u8 cable_spec = 0;
847 u16 enforce_sfp = 0;
848
849 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
850 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
851 status = IXGBE_ERR_SFP_NOT_PRESENT;
852 goto out;
853 }
854
855 status = hw->phy.ops.read_i2c_eeprom(hw,
856 IXGBE_SFF_IDENTIFIER,
857 &identifier);
858
859 if (status == IXGBE_ERR_SWFW_SYNC ||
860 status == IXGBE_ERR_I2C ||
861 status == IXGBE_ERR_SFP_NOT_PRESENT)
862 goto err_read_i2c_eeprom;
863
864 /* LAN ID is needed for sfp_type determination */
865 hw->mac.ops.set_lan_id(hw);
866
867 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
868 hw->phy.type = ixgbe_phy_sfp_unsupported;
869 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
870 } else {
871 status = hw->phy.ops.read_i2c_eeprom(hw,
872 IXGBE_SFF_1GBE_COMP_CODES,
873 &comp_codes_1g);
874
875 if (status == IXGBE_ERR_SWFW_SYNC ||
876 status == IXGBE_ERR_I2C ||
877 status == IXGBE_ERR_SFP_NOT_PRESENT)
878 goto err_read_i2c_eeprom;
879
880 status = hw->phy.ops.read_i2c_eeprom(hw,
881 IXGBE_SFF_10GBE_COMP_CODES,
882 &comp_codes_10g);
883
884 if (status == IXGBE_ERR_SWFW_SYNC ||
885 status == IXGBE_ERR_I2C ||
886 status == IXGBE_ERR_SFP_NOT_PRESENT)
887 goto err_read_i2c_eeprom;
888 status = hw->phy.ops.read_i2c_eeprom(hw,
889 IXGBE_SFF_CABLE_TECHNOLOGY,
890 &cable_tech);
891
892 if (status == IXGBE_ERR_SWFW_SYNC ||
893 status == IXGBE_ERR_I2C ||
894 status == IXGBE_ERR_SFP_NOT_PRESENT)
895 goto err_read_i2c_eeprom;
896
897 /* ID Module
898 * =========
899 * 0 SFP_DA_CU
900 * 1 SFP_SR
901 * 2 SFP_LR
902 * 3 SFP_DA_CORE0 - 82599-specific
903 * 4 SFP_DA_CORE1 - 82599-specific
904 * 5 SFP_SR/LR_CORE0 - 82599-specific
905 * 6 SFP_SR/LR_CORE1 - 82599-specific
906 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
907 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
908 * 9 SFP_1g_cu_CORE0 - 82599-specific
909 * 10 SFP_1g_cu_CORE1 - 82599-specific
910 */
911 if (hw->mac.type == ixgbe_mac_82598EB) {
912 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
913 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
914 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
915 hw->phy.sfp_type = ixgbe_sfp_type_sr;
916 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
917 hw->phy.sfp_type = ixgbe_sfp_type_lr;
918 else
919 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
920 } else if (hw->mac.type == ixgbe_mac_82599EB) {
921 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
922 if (hw->bus.lan_id == 0)
923 hw->phy.sfp_type =
924 ixgbe_sfp_type_da_cu_core0;
925 else
926 hw->phy.sfp_type =
927 ixgbe_sfp_type_da_cu_core1;
928 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
929 hw->phy.ops.read_i2c_eeprom(
930 hw, IXGBE_SFF_CABLE_SPEC_COMP,
931 &cable_spec);
932 if (cable_spec &
933 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
934 if (hw->bus.lan_id == 0)
935 hw->phy.sfp_type =
936 ixgbe_sfp_type_da_act_lmt_core0;
937 else
938 hw->phy.sfp_type =
939 ixgbe_sfp_type_da_act_lmt_core1;
940 } else {
941 hw->phy.sfp_type =
942 ixgbe_sfp_type_unknown;
943 }
944 } else if (comp_codes_10g &
945 (IXGBE_SFF_10GBASESR_CAPABLE |
946 IXGBE_SFF_10GBASELR_CAPABLE)) {
947 if (hw->bus.lan_id == 0)
948 hw->phy.sfp_type =
949 ixgbe_sfp_type_srlr_core0;
950 else
951 hw->phy.sfp_type =
952 ixgbe_sfp_type_srlr_core1;
953 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
954 if (hw->bus.lan_id == 0)
955 hw->phy.sfp_type =
956 ixgbe_sfp_type_1g_cu_core0;
957 else
958 hw->phy.sfp_type =
959 ixgbe_sfp_type_1g_cu_core1;
960 } else {
961 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
962 }
963 }
964
965 if (hw->phy.sfp_type != stored_sfp_type)
966 hw->phy.sfp_setup_needed = true;
967
968 /* Determine if the SFP+ PHY is dual speed or not. */
969 hw->phy.multispeed_fiber = false;
970 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
971 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
972 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
973 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
974 hw->phy.multispeed_fiber = true;
975
976 /* Determine PHY vendor */
977 if (hw->phy.type != ixgbe_phy_nl) {
978 hw->phy.id = identifier;
979 status = hw->phy.ops.read_i2c_eeprom(hw,
980 IXGBE_SFF_VENDOR_OUI_BYTE0,
981 &oui_bytes[0]);
982
983 if (status == IXGBE_ERR_SWFW_SYNC ||
984 status == IXGBE_ERR_I2C ||
985 status == IXGBE_ERR_SFP_NOT_PRESENT)
986 goto err_read_i2c_eeprom;
987
988 status = hw->phy.ops.read_i2c_eeprom(hw,
989 IXGBE_SFF_VENDOR_OUI_BYTE1,
990 &oui_bytes[1]);
991
992 if (status == IXGBE_ERR_SWFW_SYNC ||
993 status == IXGBE_ERR_I2C ||
994 status == IXGBE_ERR_SFP_NOT_PRESENT)
995 goto err_read_i2c_eeprom;
996
997 status = hw->phy.ops.read_i2c_eeprom(hw,
998 IXGBE_SFF_VENDOR_OUI_BYTE2,
999 &oui_bytes[2]);
1000
1001 if (status == IXGBE_ERR_SWFW_SYNC ||
1002 status == IXGBE_ERR_I2C ||
1003 status == IXGBE_ERR_SFP_NOT_PRESENT)
1004 goto err_read_i2c_eeprom;
1005
1006 vendor_oui =
1007 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1008 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1009 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1010
1011 switch (vendor_oui) {
1012 case IXGBE_SFF_VENDOR_OUI_TYCO:
1013 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1014 hw->phy.type =
1015 ixgbe_phy_sfp_passive_tyco;
1016 break;
1017 case IXGBE_SFF_VENDOR_OUI_FTL:
1018 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1019 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1020 else
1021 hw->phy.type = ixgbe_phy_sfp_ftl;
1022 break;
1023 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1024 hw->phy.type = ixgbe_phy_sfp_avago;
1025 break;
1026 case IXGBE_SFF_VENDOR_OUI_INTEL:
1027 hw->phy.type = ixgbe_phy_sfp_intel;
1028 break;
1029 default:
1030 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1031 hw->phy.type =
1032 ixgbe_phy_sfp_passive_unknown;
1033 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1034 hw->phy.type =
1035 ixgbe_phy_sfp_active_unknown;
1036 else
1037 hw->phy.type = ixgbe_phy_sfp_unknown;
1038 break;
1039 }
1040 }
1041
1042 /* Allow any DA cable vendor */
1043 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1044 IXGBE_SFF_DA_ACTIVE_CABLE)) {
1045 status = 0;
1046 goto out;
1047 }
1048
1049 /* Verify supported 1G SFP modules */
1050 if (comp_codes_10g == 0 &&
1051 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1052 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
1053 hw->phy.type = ixgbe_phy_sfp_unsupported;
1054 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1055 goto out;
1056 }
1057
1058 /* Anything else 82598-based is supported */
1059 if (hw->mac.type == ixgbe_mac_82598EB) {
1060 status = 0;
1061 goto out;
1062 }
1063
1064 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1065 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1066 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
1067 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
1068 /* Make sure we're a supported PHY type */
1069 if (hw->phy.type == ixgbe_phy_sfp_intel) {
1070 status = 0;
1071 } else {
1072 if (hw->allow_unsupported_sfp) {
1073 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.");
1074 status = 0;
1075 } else {
1076 hw_dbg(hw,
1077 "SFP+ module not supported\n");
1078 hw->phy.type =
1079 ixgbe_phy_sfp_unsupported;
1080 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1081 }
1082 }
1083 } else {
1084 status = 0;
1085 }
1086 }
1087
1088out:
1089 return status;
1090
1091err_read_i2c_eeprom:
1092 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1093 if (hw->phy.type != ixgbe_phy_nl) {
1094 hw->phy.id = 0;
1095 hw->phy.type = ixgbe_phy_unknown;
1096 }
1097 return IXGBE_ERR_SFP_NOT_PRESENT;
1098}
1099
1100/**
1101 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1102 * @hw: pointer to hardware structure
1103 * @list_offset: offset to the SFP ID list
1104 * @data_offset: offset to the SFP data block
1105 *
1106 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1107 * so it returns the offsets to the phy init sequence block.
1108 **/
1109s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1110 u16 *list_offset,
1111 u16 *data_offset)
1112{
1113 u16 sfp_id;
1114 u16 sfp_type = hw->phy.sfp_type;
1115
1116 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1117 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1118
1119 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1120 return IXGBE_ERR_SFP_NOT_PRESENT;
1121
1122 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1123 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1124 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1125
1126 /*
1127 * Limiting active cables and 1G Phys must be initialized as
1128 * SR modules
1129 */
1130 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1131 sfp_type == ixgbe_sfp_type_1g_cu_core0)
1132 sfp_type = ixgbe_sfp_type_srlr_core0;
1133 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1134 sfp_type == ixgbe_sfp_type_1g_cu_core1)
1135 sfp_type = ixgbe_sfp_type_srlr_core1;
1136
1137 /* Read offset to PHY init contents */
1138 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
1139
1140 if ((!*list_offset) || (*list_offset == 0xFFFF))
1141 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1142
1143 /* Shift offset to first ID word */
1144 (*list_offset)++;
1145
1146 /*
1147 * Find the matching SFP ID in the EEPROM
1148 * and program the init sequence
1149 */
1150 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
1151
1152 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1153 if (sfp_id == sfp_type) {
1154 (*list_offset)++;
1155 hw->eeprom.ops.read(hw, *list_offset, data_offset);
1156 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1157 hw_dbg(hw, "SFP+ module not supported\n");
1158 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1159 } else {
1160 break;
1161 }
1162 } else {
1163 (*list_offset) += 2;
1164 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1165 return IXGBE_ERR_PHY;
1166 }
1167 }
1168
1169 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1170 hw_dbg(hw, "No matching SFP+ module found\n");
1171 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1172 }
1173
1174 return 0;
1175}
1176
1177/**
1178 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1179 * @hw: pointer to hardware structure
1180 * @byte_offset: EEPROM byte offset to read
1181 * @eeprom_data: value read
1182 *
1183 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1184 **/
1185s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1186 u8 *eeprom_data)
1187{
1188 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1189 IXGBE_I2C_EEPROM_DEV_ADDR,
1190 eeprom_data);
1191}
1192
1193/**
1194 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1195 * @hw: pointer to hardware structure
1196 * @byte_offset: EEPROM byte offset to write
1197 * @eeprom_data: value to write
1198 *
1199 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1200 **/
1201s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1202 u8 eeprom_data)
1203{
1204 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1205 IXGBE_I2C_EEPROM_DEV_ADDR,
1206 eeprom_data);
1207}
1208
1209/**
1210 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1211 * @hw: pointer to hardware structure
1212 * @byte_offset: byte offset to read
1213 * @data: value read
1214 *
1215 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1216 * a specified device address.
1217 **/
1218s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1219 u8 dev_addr, u8 *data)
1220{
1221 s32 status = 0;
1222 u32 max_retry = 10;
1223 u32 retry = 0;
1224 u16 swfw_mask = 0;
1225 bool nack = true;
1226 *data = 0;
1227
1228 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1229 swfw_mask = IXGBE_GSSR_PHY1_SM;
1230 else
1231 swfw_mask = IXGBE_GSSR_PHY0_SM;
1232
1233 do {
1234 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1235 status = IXGBE_ERR_SWFW_SYNC;
1236 goto read_byte_out;
1237 }
1238
1239 ixgbe_i2c_start(hw);
1240
1241 /* Device Address and write indication */
1242 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1243 if (status != 0)
1244 goto fail;
1245
1246 status = ixgbe_get_i2c_ack(hw);
1247 if (status != 0)
1248 goto fail;
1249
1250 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1251 if (status != 0)
1252 goto fail;
1253
1254 status = ixgbe_get_i2c_ack(hw);
1255 if (status != 0)
1256 goto fail;
1257
1258 ixgbe_i2c_start(hw);
1259
1260 /* Device Address and read indication */
1261 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1262 if (status != 0)
1263 goto fail;
1264
1265 status = ixgbe_get_i2c_ack(hw);
1266 if (status != 0)
1267 goto fail;
1268
1269 status = ixgbe_clock_in_i2c_byte(hw, data);
1270 if (status != 0)
1271 goto fail;
1272
1273 status = ixgbe_clock_out_i2c_bit(hw, nack);
1274 if (status != 0)
1275 goto fail;
1276
1277 ixgbe_i2c_stop(hw);
1278 break;
1279
1280fail:
1281 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1282 msleep(100);
1283 ixgbe_i2c_bus_clear(hw);
1284 retry++;
1285 if (retry < max_retry)
1286 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1287 else
1288 hw_dbg(hw, "I2C byte read error.\n");
1289
1290 } while (retry < max_retry);
1291
1292 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1293
1294read_byte_out:
1295 return status;
1296}
1297
1298/**
1299 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1300 * @hw: pointer to hardware structure
1301 * @byte_offset: byte offset to write
1302 * @data: value to write
1303 *
1304 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1305 * a specified device address.
1306 **/
1307s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1308 u8 dev_addr, u8 data)
1309{
1310 s32 status = 0;
1311 u32 max_retry = 1;
1312 u32 retry = 0;
1313 u16 swfw_mask = 0;
1314
1315 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1316 swfw_mask = IXGBE_GSSR_PHY1_SM;
1317 else
1318 swfw_mask = IXGBE_GSSR_PHY0_SM;
1319
1320 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1321 status = IXGBE_ERR_SWFW_SYNC;
1322 goto write_byte_out;
1323 }
1324
1325 do {
1326 ixgbe_i2c_start(hw);
1327
1328 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1329 if (status != 0)
1330 goto fail;
1331
1332 status = ixgbe_get_i2c_ack(hw);
1333 if (status != 0)
1334 goto fail;
1335
1336 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1337 if (status != 0)
1338 goto fail;
1339
1340 status = ixgbe_get_i2c_ack(hw);
1341 if (status != 0)
1342 goto fail;
1343
1344 status = ixgbe_clock_out_i2c_byte(hw, data);
1345 if (status != 0)
1346 goto fail;
1347
1348 status = ixgbe_get_i2c_ack(hw);
1349 if (status != 0)
1350 goto fail;
1351
1352 ixgbe_i2c_stop(hw);
1353 break;
1354
1355fail:
1356 ixgbe_i2c_bus_clear(hw);
1357 retry++;
1358 if (retry < max_retry)
1359 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1360 else
1361 hw_dbg(hw, "I2C byte write error.\n");
1362 } while (retry < max_retry);
1363
1364 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1365
1366write_byte_out:
1367 return status;
1368}
1369
1370/**
1371 * ixgbe_i2c_start - Sets I2C start condition
1372 * @hw: pointer to hardware structure
1373 *
1374 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1375 **/
1376static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1377{
1378 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1379
1380 /* Start condition must begin with data and clock high */
1381 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1382 ixgbe_raise_i2c_clk(hw, &i2cctl);
1383
1384 /* Setup time for start condition (4.7us) */
1385 udelay(IXGBE_I2C_T_SU_STA);
1386
1387 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1388
1389 /* Hold time for start condition (4us) */
1390 udelay(IXGBE_I2C_T_HD_STA);
1391
1392 ixgbe_lower_i2c_clk(hw, &i2cctl);
1393
1394 /* Minimum low period of clock is 4.7 us */
1395 udelay(IXGBE_I2C_T_LOW);
1396
1397}
1398
1399/**
1400 * ixgbe_i2c_stop - Sets I2C stop condition
1401 * @hw: pointer to hardware structure
1402 *
1403 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1404 **/
1405static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1406{
1407 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1408
1409 /* Stop condition must begin with data low and clock high */
1410 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1411 ixgbe_raise_i2c_clk(hw, &i2cctl);
1412
1413 /* Setup time for stop condition (4us) */
1414 udelay(IXGBE_I2C_T_SU_STO);
1415
1416 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1417
1418 /* bus free time between stop and start (4.7us)*/
1419 udelay(IXGBE_I2C_T_BUF);
1420}
1421
1422/**
1423 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1424 * @hw: pointer to hardware structure
1425 * @data: data byte to clock in
1426 *
1427 * Clocks in one byte data via I2C data/clock
1428 **/
1429static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1430{
1431 s32 i;
1432 bool bit = false;
1433
1434 for (i = 7; i >= 0; i--) {
1435 ixgbe_clock_in_i2c_bit(hw, &bit);
1436 *data |= bit << i;
1437 }
1438
1439 return 0;
1440}
1441
1442/**
1443 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1444 * @hw: pointer to hardware structure
1445 * @data: data byte clocked out
1446 *
1447 * Clocks out one byte data via I2C data/clock
1448 **/
1449static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1450{
1451 s32 status = 0;
1452 s32 i;
1453 u32 i2cctl;
1454 bool bit = false;
1455
1456 for (i = 7; i >= 0; i--) {
1457 bit = (data >> i) & 0x1;
1458 status = ixgbe_clock_out_i2c_bit(hw, bit);
1459
1460 if (status != 0)
1461 break;
1462 }
1463
1464 /* Release SDA line (set high) */
1465 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1466 i2cctl |= IXGBE_I2C_DATA_OUT;
1467 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1468 IXGBE_WRITE_FLUSH(hw);
1469
1470 return status;
1471}
1472
1473/**
1474 * ixgbe_get_i2c_ack - Polls for I2C ACK
1475 * @hw: pointer to hardware structure
1476 *
1477 * Clocks in/out one bit via I2C data/clock
1478 **/
1479static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1480{
1481 s32 status = 0;
1482 u32 i = 0;
1483 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1484 u32 timeout = 10;
1485 bool ack = true;
1486
1487 ixgbe_raise_i2c_clk(hw, &i2cctl);
1488
1489
1490 /* Minimum high period of clock is 4us */
1491 udelay(IXGBE_I2C_T_HIGH);
1492
1493 /* Poll for ACK. Note that ACK in I2C spec is
1494 * transition from 1 to 0 */
1495 for (i = 0; i < timeout; i++) {
1496 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1497 ack = ixgbe_get_i2c_data(&i2cctl);
1498
1499 udelay(1);
1500 if (ack == 0)
1501 break;
1502 }
1503
1504 if (ack == 1) {
1505 hw_dbg(hw, "I2C ack was not received.\n");
1506 status = IXGBE_ERR_I2C;
1507 }
1508
1509 ixgbe_lower_i2c_clk(hw, &i2cctl);
1510
1511 /* Minimum low period of clock is 4.7 us */
1512 udelay(IXGBE_I2C_T_LOW);
1513
1514 return status;
1515}
1516
1517/**
1518 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1519 * @hw: pointer to hardware structure
1520 * @data: read data value
1521 *
1522 * Clocks in one bit via I2C data/clock
1523 **/
1524static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1525{
1526 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1527
1528 ixgbe_raise_i2c_clk(hw, &i2cctl);
1529
1530 /* Minimum high period of clock is 4us */
1531 udelay(IXGBE_I2C_T_HIGH);
1532
1533 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1534 *data = ixgbe_get_i2c_data(&i2cctl);
1535
1536 ixgbe_lower_i2c_clk(hw, &i2cctl);
1537
1538 /* Minimum low period of clock is 4.7 us */
1539 udelay(IXGBE_I2C_T_LOW);
1540
1541 return 0;
1542}
1543
1544/**
1545 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1546 * @hw: pointer to hardware structure
1547 * @data: data value to write
1548 *
1549 * Clocks out one bit via I2C data/clock
1550 **/
1551static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1552{
1553 s32 status;
1554 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1555
1556 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1557 if (status == 0) {
1558 ixgbe_raise_i2c_clk(hw, &i2cctl);
1559
1560 /* Minimum high period of clock is 4us */
1561 udelay(IXGBE_I2C_T_HIGH);
1562
1563 ixgbe_lower_i2c_clk(hw, &i2cctl);
1564
1565 /* Minimum low period of clock is 4.7 us.
1566 * This also takes care of the data hold time.
1567 */
1568 udelay(IXGBE_I2C_T_LOW);
1569 } else {
1570 status = IXGBE_ERR_I2C;
1571 hw_dbg(hw, "I2C data was not set to %X\n", data);
1572 }
1573
1574 return status;
1575}
1576/**
1577 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1578 * @hw: pointer to hardware structure
1579 * @i2cctl: Current value of I2CCTL register
1580 *
1581 * Raises the I2C clock line '0'->'1'
1582 **/
1583static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1584{
1585 u32 i = 0;
1586 u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
1587 u32 i2cctl_r = 0;
1588
1589 for (i = 0; i < timeout; i++) {
1590 *i2cctl |= IXGBE_I2C_CLK_OUT;
1591 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1592 IXGBE_WRITE_FLUSH(hw);
1593 /* SCL rise time (1000ns) */
1594 udelay(IXGBE_I2C_T_RISE);
1595
1596 i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1597 if (i2cctl_r & IXGBE_I2C_CLK_IN)
1598 break;
1599 }
1600}
1601
1602/**
1603 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1604 * @hw: pointer to hardware structure
1605 * @i2cctl: Current value of I2CCTL register
1606 *
1607 * Lowers the I2C clock line '1'->'0'
1608 **/
1609static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1610{
1611
1612 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1613
1614 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1615 IXGBE_WRITE_FLUSH(hw);
1616
1617 /* SCL fall time (300ns) */
1618 udelay(IXGBE_I2C_T_FALL);
1619}
1620
1621/**
1622 * ixgbe_set_i2c_data - Sets the I2C data bit
1623 * @hw: pointer to hardware structure
1624 * @i2cctl: Current value of I2CCTL register
1625 * @data: I2C data value (0 or 1) to set
1626 *
1627 * Sets the I2C data bit
1628 **/
1629static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1630{
1631 s32 status = 0;
1632
1633 if (data)
1634 *i2cctl |= IXGBE_I2C_DATA_OUT;
1635 else
1636 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1637
1638 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1639 IXGBE_WRITE_FLUSH(hw);
1640
1641 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1642 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1643
1644 /* Verify data was set correctly */
1645 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1646 if (data != ixgbe_get_i2c_data(i2cctl)) {
1647 status = IXGBE_ERR_I2C;
1648 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1649 }
1650
1651 return status;
1652}
1653
1654/**
1655 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1656 * @hw: pointer to hardware structure
1657 * @i2cctl: Current value of I2CCTL register
1658 *
1659 * Returns the I2C data bit value
1660 **/
1661static bool ixgbe_get_i2c_data(u32 *i2cctl)
1662{
1663 bool data;
1664
1665 if (*i2cctl & IXGBE_I2C_DATA_IN)
1666 data = true;
1667 else
1668 data = false;
1669
1670 return data;
1671}
1672
1673/**
1674 * ixgbe_i2c_bus_clear - Clears the I2C bus
1675 * @hw: pointer to hardware structure
1676 *
1677 * Clears the I2C bus by sending nine clock pulses.
1678 * Used when data line is stuck low.
1679 **/
1680static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1681{
1682 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1683 u32 i;
1684
1685 ixgbe_i2c_start(hw);
1686
1687 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1688
1689 for (i = 0; i < 9; i++) {
1690 ixgbe_raise_i2c_clk(hw, &i2cctl);
1691
1692 /* Min high period of clock is 4us */
1693 udelay(IXGBE_I2C_T_HIGH);
1694
1695 ixgbe_lower_i2c_clk(hw, &i2cctl);
1696
1697 /* Min low period of clock is 4.7us*/
1698 udelay(IXGBE_I2C_T_LOW);
1699 }
1700
1701 ixgbe_i2c_start(hw);
1702
1703 /* Put the i2c bus back to default state */
1704 ixgbe_i2c_stop(hw);
1705}
1706
1707/**
1708 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
1709 * @hw: pointer to hardware structure
1710 *
1711 * Checks if the LASI temp alarm status was triggered due to overtemp
1712 **/
1713s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1714{
1715 s32 status = 0;
1716 u16 phy_data = 0;
1717
1718 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1719 goto out;
1720
1721 /* Check that the LASI temp alarm status was triggered */
1722 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1723 MDIO_MMD_PMAPMD, &phy_data);
1724
1725 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1726 goto out;
1727
1728 status = IXGBE_ERR_OVERTEMP;
1729out:
1730 return status;
1731}