Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/* Intel PRO/1000 Linux driver
  3 * Copyright(c) 1999 - 2015 Intel Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * The full GNU General Public License is included in this distribution in
 15 * the file called "COPYING".
 16 *
 17 * Contact Information:
 18 * Linux NICS <linux.nics@intel.com>
 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 21 */
 
 
 
 
 
 
 22
 23#include "e1000.h"
 24
 25/**
 26 *  e1000_raise_eec_clk - Raise EEPROM clock
 27 *  @hw: pointer to the HW structure
 28 *  @eecd: pointer to the EEPROM
 29 *
 30 *  Enable/Raise the EEPROM clock bit.
 31 **/
 32static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 33{
 34	*eecd = *eecd | E1000_EECD_SK;
 35	ew32(EECD, *eecd);
 36	e1e_flush();
 37	udelay(hw->nvm.delay_usec);
 38}
 39
 40/**
 41 *  e1000_lower_eec_clk - Lower EEPROM clock
 42 *  @hw: pointer to the HW structure
 43 *  @eecd: pointer to the EEPROM
 44 *
 45 *  Clear/Lower the EEPROM clock bit.
 46 **/
 47static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 48{
 49	*eecd = *eecd & ~E1000_EECD_SK;
 50	ew32(EECD, *eecd);
 51	e1e_flush();
 52	udelay(hw->nvm.delay_usec);
 53}
 54
 55/**
 56 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 57 *  @hw: pointer to the HW structure
 58 *  @data: data to send to the EEPROM
 59 *  @count: number of bits to shift out
 60 *
 61 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 62 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 63 *  In order to do this, "data" must be broken down into bits.
 64 **/
 65static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 66{
 67	struct e1000_nvm_info *nvm = &hw->nvm;
 68	u32 eecd = er32(EECD);
 69	u32 mask;
 70
 71	mask = BIT(count - 1);
 72	if (nvm->type == e1000_nvm_eeprom_spi)
 73		eecd |= E1000_EECD_DO;
 74
 75	do {
 76		eecd &= ~E1000_EECD_DI;
 77
 78		if (data & mask)
 79			eecd |= E1000_EECD_DI;
 80
 81		ew32(EECD, eecd);
 82		e1e_flush();
 83
 84		udelay(nvm->delay_usec);
 85
 86		e1000_raise_eec_clk(hw, &eecd);
 87		e1000_lower_eec_clk(hw, &eecd);
 88
 89		mask >>= 1;
 90	} while (mask);
 91
 92	eecd &= ~E1000_EECD_DI;
 93	ew32(EECD, eecd);
 94}
 95
 96/**
 97 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
 98 *  @hw: pointer to the HW structure
 99 *  @count: number of bits to shift in
100 *
101 *  In order to read a register from the EEPROM, we need to shift 'count' bits
102 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
103 *  the EEPROM (setting the SK bit), and then reading the value of the data out
104 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
105 *  always be clear.
106 **/
107static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
108{
109	u32 eecd;
110	u32 i;
111	u16 data;
112
113	eecd = er32(EECD);
 
114	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
115	data = 0;
116
117	for (i = 0; i < count; i++) {
118		data <<= 1;
119		e1000_raise_eec_clk(hw, &eecd);
120
121		eecd = er32(EECD);
122
123		eecd &= ~E1000_EECD_DI;
124		if (eecd & E1000_EECD_DO)
125			data |= 1;
126
127		e1000_lower_eec_clk(hw, &eecd);
128	}
129
130	return data;
131}
132
133/**
134 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
135 *  @hw: pointer to the HW structure
136 *  @ee_reg: EEPROM flag for polling
137 *
138 *  Polls the EEPROM status bit for either read or write completion based
139 *  upon the value of 'ee_reg'.
140 **/
141s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
142{
143	u32 attempts = 100000;
144	u32 i, reg = 0;
145
146	for (i = 0; i < attempts; i++) {
147		if (ee_reg == E1000_NVM_POLL_READ)
148			reg = er32(EERD);
149		else
150			reg = er32(EEWR);
151
152		if (reg & E1000_NVM_RW_REG_DONE)
153			return 0;
154
155		udelay(5);
156	}
157
158	return -E1000_ERR_NVM;
159}
160
161/**
162 *  e1000e_acquire_nvm - Generic request for access to EEPROM
163 *  @hw: pointer to the HW structure
164 *
165 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
166 *  Return successful if access grant bit set, else clear the request for
167 *  EEPROM access and return -E1000_ERR_NVM (-1).
168 **/
169s32 e1000e_acquire_nvm(struct e1000_hw *hw)
170{
171	u32 eecd = er32(EECD);
172	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
173
174	ew32(EECD, eecd | E1000_EECD_REQ);
175	eecd = er32(EECD);
176
177	while (timeout) {
178		if (eecd & E1000_EECD_GNT)
179			break;
180		udelay(5);
181		eecd = er32(EECD);
182		timeout--;
183	}
184
185	if (!timeout) {
186		eecd &= ~E1000_EECD_REQ;
187		ew32(EECD, eecd);
188		e_dbg("Could not acquire NVM grant\n");
189		return -E1000_ERR_NVM;
190	}
191
192	return 0;
193}
194
195/**
196 *  e1000_standby_nvm - Return EEPROM to standby state
197 *  @hw: pointer to the HW structure
198 *
199 *  Return the EEPROM to a standby state.
200 **/
201static void e1000_standby_nvm(struct e1000_hw *hw)
202{
203	struct e1000_nvm_info *nvm = &hw->nvm;
204	u32 eecd = er32(EECD);
205
206	if (nvm->type == e1000_nvm_eeprom_spi) {
207		/* Toggle CS to flush commands */
208		eecd |= E1000_EECD_CS;
209		ew32(EECD, eecd);
210		e1e_flush();
211		udelay(nvm->delay_usec);
212		eecd &= ~E1000_EECD_CS;
213		ew32(EECD, eecd);
214		e1e_flush();
215		udelay(nvm->delay_usec);
216	}
217}
218
219/**
220 *  e1000_stop_nvm - Terminate EEPROM command
221 *  @hw: pointer to the HW structure
222 *
223 *  Terminates the current command by inverting the EEPROM's chip select pin.
224 **/
225static void e1000_stop_nvm(struct e1000_hw *hw)
226{
227	u32 eecd;
228
229	eecd = er32(EECD);
230	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
231		/* Pull CS high */
232		eecd |= E1000_EECD_CS;
233		e1000_lower_eec_clk(hw, &eecd);
234	}
235}
236
237/**
238 *  e1000e_release_nvm - Release exclusive access to EEPROM
239 *  @hw: pointer to the HW structure
240 *
241 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
242 **/
243void e1000e_release_nvm(struct e1000_hw *hw)
244{
245	u32 eecd;
246
247	e1000_stop_nvm(hw);
248
249	eecd = er32(EECD);
250	eecd &= ~E1000_EECD_REQ;
251	ew32(EECD, eecd);
252}
253
254/**
255 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
256 *  @hw: pointer to the HW structure
257 *
258 *  Setups the EEPROM for reading and writing.
259 **/
260static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
261{
262	struct e1000_nvm_info *nvm = &hw->nvm;
263	u32 eecd = er32(EECD);
264	u8 spi_stat_reg;
265
266	if (nvm->type == e1000_nvm_eeprom_spi) {
267		u16 timeout = NVM_MAX_RETRY_SPI;
268
269		/* Clear SK and CS */
270		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
271		ew32(EECD, eecd);
272		e1e_flush();
273		udelay(1);
274
275		/* Read "Status Register" repeatedly until the LSB is cleared.
 
276		 * The EEPROM will signal that the command has been completed
277		 * by clearing bit 0 of the internal status register.  If it's
278		 * not cleared within 'timeout', then error out.
279		 */
280		while (timeout) {
281			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
282						 hw->nvm.opcode_bits);
283			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
284			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
285				break;
286
287			udelay(5);
288			e1000_standby_nvm(hw);
289			timeout--;
290		}
291
292		if (!timeout) {
293			e_dbg("SPI NVM Status error\n");
294			return -E1000_ERR_NVM;
295		}
296	}
297
298	return 0;
299}
300
301/**
302 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
303 *  @hw: pointer to the HW structure
304 *  @offset: offset of word in the EEPROM to read
305 *  @words: number of words to read
306 *  @data: word read from the EEPROM
307 *
308 *  Reads a 16 bit word from the EEPROM using the EERD register.
309 **/
310s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
311{
312	struct e1000_nvm_info *nvm = &hw->nvm;
313	u32 i, eerd = 0;
314	s32 ret_val = 0;
315
316	/* A check for invalid values:  offset too large, too many words,
 
317	 * too many words for the offset, and not enough words.
318	 */
319	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
320	    (words == 0)) {
321		e_dbg("nvm parameter(s) out of bounds\n");
322		return -E1000_ERR_NVM;
323	}
324
325	for (i = 0; i < words; i++) {
326		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
327		    E1000_NVM_RW_REG_START;
328
329		ew32(EERD, eerd);
330		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
331		if (ret_val) {
332			e_dbg("NVM read error: %d\n", ret_val);
333			break;
334		}
335
336		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
337	}
338
339	return ret_val;
340}
341
342/**
343 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
344 *  @hw: pointer to the HW structure
345 *  @offset: offset within the EEPROM to be written to
346 *  @words: number of words to write
347 *  @data: 16 bit word(s) to be written to the EEPROM
348 *
349 *  Writes data to EEPROM at offset using SPI interface.
350 *
351 *  If e1000e_update_nvm_checksum is not called after this function , the
352 *  EEPROM will most likely contain an invalid checksum.
353 **/
354s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
355{
356	struct e1000_nvm_info *nvm = &hw->nvm;
357	s32 ret_val = -E1000_ERR_NVM;
358	u16 widx = 0;
359
360	/* A check for invalid values:  offset too large, too many words,
 
361	 * and not enough words.
362	 */
363	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
364	    (words == 0)) {
365		e_dbg("nvm parameter(s) out of bounds\n");
366		return -E1000_ERR_NVM;
367	}
368
 
 
 
 
369	while (widx < words) {
370		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
371
372		ret_val = nvm->ops.acquire(hw);
373		if (ret_val)
374			return ret_val;
375
376		ret_val = e1000_ready_nvm_eeprom(hw);
377		if (ret_val) {
378			nvm->ops.release(hw);
379			return ret_val;
380		}
381
382		e1000_standby_nvm(hw);
383
384		/* Send the WRITE ENABLE command (8 bit opcode) */
385		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
386					 nvm->opcode_bits);
387
388		e1000_standby_nvm(hw);
389
390		/* Some SPI eeproms use the 8th address bit embedded in the
 
391		 * opcode
392		 */
393		if ((nvm->address_bits == 8) && (offset >= 128))
394			write_opcode |= NVM_A8_OPCODE_SPI;
395
396		/* Send the Write command (8-bit opcode + addr) */
397		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
398		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
399					 nvm->address_bits);
400
401		/* Loop to allow for up to whole page write of eeprom */
402		while (widx < words) {
403			u16 word_out = data[widx];
404
405			word_out = (word_out >> 8) | (word_out << 8);
406			e1000_shift_out_eec_bits(hw, word_out, 16);
407			widx++;
408
409			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
410				e1000_standby_nvm(hw);
411				break;
412			}
413		}
414		usleep_range(10000, 20000);
415		nvm->ops.release(hw);
416	}
417
 
 
 
 
418	return ret_val;
419}
420
421/**
422 *  e1000_read_pba_string_generic - Read device part number
423 *  @hw: pointer to the HW structure
424 *  @pba_num: pointer to device part number
425 *  @pba_num_size: size of part number buffer
426 *
427 *  Reads the product board assembly (PBA) number from the EEPROM and stores
428 *  the value in pba_num.
429 **/
430s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
431				  u32 pba_num_size)
432{
433	s32 ret_val;
434	u16 nvm_data;
435	u16 pba_ptr;
436	u16 offset;
437	u16 length;
438
439	if (pba_num == NULL) {
440		e_dbg("PBA string buffer was null\n");
441		return -E1000_ERR_INVALID_ARGUMENT;
442	}
443
444	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
445	if (ret_val) {
446		e_dbg("NVM Read Error\n");
447		return ret_val;
448	}
449
450	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
451	if (ret_val) {
452		e_dbg("NVM Read Error\n");
453		return ret_val;
454	}
455
456	/* if nvm_data is not ptr guard the PBA must be in legacy format which
 
457	 * means pba_ptr is actually our second data word for the PBA number
458	 * and we can decode it into an ascii string
459	 */
460	if (nvm_data != NVM_PBA_PTR_GUARD) {
461		e_dbg("NVM PBA number is not stored as string\n");
462
463		/* make sure callers buffer is big enough to store the PBA */
464		if (pba_num_size < E1000_PBANUM_LENGTH) {
465			e_dbg("PBA string buffer too small\n");
466			return E1000_ERR_NO_SPACE;
467		}
468
469		/* extract hex string from data and pba_ptr */
470		pba_num[0] = (nvm_data >> 12) & 0xF;
471		pba_num[1] = (nvm_data >> 8) & 0xF;
472		pba_num[2] = (nvm_data >> 4) & 0xF;
473		pba_num[3] = nvm_data & 0xF;
474		pba_num[4] = (pba_ptr >> 12) & 0xF;
475		pba_num[5] = (pba_ptr >> 8) & 0xF;
476		pba_num[6] = '-';
477		pba_num[7] = 0;
478		pba_num[8] = (pba_ptr >> 4) & 0xF;
479		pba_num[9] = pba_ptr & 0xF;
480
481		/* put a null character on the end of our string */
482		pba_num[10] = '\0';
483
484		/* switch all the data but the '-' to hex char */
485		for (offset = 0; offset < 10; offset++) {
486			if (pba_num[offset] < 0xA)
487				pba_num[offset] += '0';
488			else if (pba_num[offset] < 0x10)
489				pba_num[offset] += 'A' - 0xA;
490		}
491
492		return 0;
493	}
494
495	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
496	if (ret_val) {
497		e_dbg("NVM Read Error\n");
498		return ret_val;
499	}
500
501	if (length == 0xFFFF || length == 0) {
502		e_dbg("NVM PBA number section invalid length\n");
503		return -E1000_ERR_NVM_PBA_SECTION;
504	}
505	/* check if pba_num buffer is big enough */
506	if (pba_num_size < (((u32)length * 2) - 1)) {
507		e_dbg("PBA string buffer too small\n");
508		return -E1000_ERR_NO_SPACE;
509	}
510
511	/* trim pba length from start of string */
512	pba_ptr++;
513	length--;
514
515	for (offset = 0; offset < length; offset++) {
516		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
517		if (ret_val) {
518			e_dbg("NVM Read Error\n");
519			return ret_val;
520		}
521		pba_num[offset * 2] = (u8)(nvm_data >> 8);
522		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
523	}
524	pba_num[offset * 2] = '\0';
525
526	return 0;
527}
528
529/**
530 *  e1000_read_mac_addr_generic - Read device MAC address
531 *  @hw: pointer to the HW structure
532 *
533 *  Reads the device MAC address from the EEPROM and stores the value.
534 *  Since devices with two ports use the same EEPROM, we increment the
535 *  last bit in the MAC address for the second port.
536 **/
537s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
538{
539	u32 rar_high;
540	u32 rar_low;
541	u16 i;
542
543	rar_high = er32(RAH(0));
544	rar_low = er32(RAL(0));
545
546	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
547		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
548
549	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
550		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
551
552	for (i = 0; i < ETH_ALEN; i++)
553		hw->mac.addr[i] = hw->mac.perm_addr[i];
554
555	return 0;
556}
557
558/**
559 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
560 *  @hw: pointer to the HW structure
561 *
562 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
563 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
564 **/
565s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
566{
567	s32 ret_val;
568	u16 checksum = 0;
569	u16 i, nvm_data;
570
571	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
572		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
573		if (ret_val) {
574			e_dbg("NVM Read Error\n");
575			return ret_val;
576		}
577		checksum += nvm_data;
578	}
579
580	if (checksum != (u16)NVM_SUM) {
581		e_dbg("NVM Checksum Invalid\n");
582		return -E1000_ERR_NVM;
583	}
584
585	return 0;
586}
587
588/**
589 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
590 *  @hw: pointer to the HW structure
591 *
592 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
593 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
594 *  value to the EEPROM.
595 **/
596s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
597{
598	s32 ret_val;
599	u16 checksum = 0;
600	u16 i, nvm_data;
601
602	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
603		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
604		if (ret_val) {
605			e_dbg("NVM Read Error while updating checksum.\n");
606			return ret_val;
607		}
608		checksum += nvm_data;
609	}
610	checksum = (u16)NVM_SUM - checksum;
611	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
612	if (ret_val)
613		e_dbg("NVM Write Error while updating checksum.\n");
614
615	return ret_val;
616}
617
618/**
619 *  e1000e_reload_nvm_generic - Reloads EEPROM
620 *  @hw: pointer to the HW structure
621 *
622 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
623 *  extended control register.
624 **/
625void e1000e_reload_nvm_generic(struct e1000_hw *hw)
626{
627	u32 ctrl_ext;
628
629	usleep_range(10, 20);
630	ctrl_ext = er32(CTRL_EXT);
631	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
632	ew32(CTRL_EXT, ctrl_ext);
633	e1e_flush();
634}
v3.5.6
  1/*******************************************************************************
  2
  3  Intel PRO/1000 Linux driver
  4  Copyright(c) 1999 - 2012 Intel Corporation.
  5
  6  This program is free software; you can redistribute it and/or modify it
  7  under the terms and conditions of the GNU General Public License,
  8  version 2, as published by the Free Software Foundation.
  9
 10  This program is distributed in the hope it will be useful, but WITHOUT
 11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  more details.
 14
 15  You should have received a copy of the GNU General Public License along with
 16  this program; if not, write to the Free Software Foundation, Inc.,
 17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18
 19  The full GNU General Public License is included in this distribution in
 20  the file called "COPYING".
 21
 22  Contact Information:
 23  Linux NICS <linux.nics@intel.com>
 24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 26
 27*******************************************************************************/
 28
 29#include "e1000.h"
 30
 31/**
 32 *  e1000_raise_eec_clk - Raise EEPROM clock
 33 *  @hw: pointer to the HW structure
 34 *  @eecd: pointer to the EEPROM
 35 *
 36 *  Enable/Raise the EEPROM clock bit.
 37 **/
 38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 39{
 40	*eecd = *eecd | E1000_EECD_SK;
 41	ew32(EECD, *eecd);
 42	e1e_flush();
 43	udelay(hw->nvm.delay_usec);
 44}
 45
 46/**
 47 *  e1000_lower_eec_clk - Lower EEPROM clock
 48 *  @hw: pointer to the HW structure
 49 *  @eecd: pointer to the EEPROM
 50 *
 51 *  Clear/Lower the EEPROM clock bit.
 52 **/
 53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 54{
 55	*eecd = *eecd & ~E1000_EECD_SK;
 56	ew32(EECD, *eecd);
 57	e1e_flush();
 58	udelay(hw->nvm.delay_usec);
 59}
 60
 61/**
 62 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 63 *  @hw: pointer to the HW structure
 64 *  @data: data to send to the EEPROM
 65 *  @count: number of bits to shift out
 66 *
 67 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 68 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 69 *  In order to do this, "data" must be broken down into bits.
 70 **/
 71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 72{
 73	struct e1000_nvm_info *nvm = &hw->nvm;
 74	u32 eecd = er32(EECD);
 75	u32 mask;
 76
 77	mask = 0x01 << (count - 1);
 78	if (nvm->type == e1000_nvm_eeprom_spi)
 79		eecd |= E1000_EECD_DO;
 80
 81	do {
 82		eecd &= ~E1000_EECD_DI;
 83
 84		if (data & mask)
 85			eecd |= E1000_EECD_DI;
 86
 87		ew32(EECD, eecd);
 88		e1e_flush();
 89
 90		udelay(nvm->delay_usec);
 91
 92		e1000_raise_eec_clk(hw, &eecd);
 93		e1000_lower_eec_clk(hw, &eecd);
 94
 95		mask >>= 1;
 96	} while (mask);
 97
 98	eecd &= ~E1000_EECD_DI;
 99	ew32(EECD, eecd);
100}
101
102/**
103 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 *  @hw: pointer to the HW structure
105 *  @count: number of bits to shift in
106 *
107 *  In order to read a register from the EEPROM, we need to shift 'count' bits
108 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
109 *  the EEPROM (setting the SK bit), and then reading the value of the data out
110 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
111 *  always be clear.
112 **/
113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114{
115	u32 eecd;
116	u32 i;
117	u16 data;
118
119	eecd = er32(EECD);
120
121	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
122	data = 0;
123
124	for (i = 0; i < count; i++) {
125		data <<= 1;
126		e1000_raise_eec_clk(hw, &eecd);
127
128		eecd = er32(EECD);
129
130		eecd &= ~E1000_EECD_DI;
131		if (eecd & E1000_EECD_DO)
132			data |= 1;
133
134		e1000_lower_eec_clk(hw, &eecd);
135	}
136
137	return data;
138}
139
140/**
141 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
142 *  @hw: pointer to the HW structure
143 *  @ee_reg: EEPROM flag for polling
144 *
145 *  Polls the EEPROM status bit for either read or write completion based
146 *  upon the value of 'ee_reg'.
147 **/
148s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
149{
150	u32 attempts = 100000;
151	u32 i, reg = 0;
152
153	for (i = 0; i < attempts; i++) {
154		if (ee_reg == E1000_NVM_POLL_READ)
155			reg = er32(EERD);
156		else
157			reg = er32(EEWR);
158
159		if (reg & E1000_NVM_RW_REG_DONE)
160			return 0;
161
162		udelay(5);
163	}
164
165	return -E1000_ERR_NVM;
166}
167
168/**
169 *  e1000e_acquire_nvm - Generic request for access to EEPROM
170 *  @hw: pointer to the HW structure
171 *
172 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
173 *  Return successful if access grant bit set, else clear the request for
174 *  EEPROM access and return -E1000_ERR_NVM (-1).
175 **/
176s32 e1000e_acquire_nvm(struct e1000_hw *hw)
177{
178	u32 eecd = er32(EECD);
179	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
180
181	ew32(EECD, eecd | E1000_EECD_REQ);
182	eecd = er32(EECD);
183
184	while (timeout) {
185		if (eecd & E1000_EECD_GNT)
186			break;
187		udelay(5);
188		eecd = er32(EECD);
189		timeout--;
190	}
191
192	if (!timeout) {
193		eecd &= ~E1000_EECD_REQ;
194		ew32(EECD, eecd);
195		e_dbg("Could not acquire NVM grant\n");
196		return -E1000_ERR_NVM;
197	}
198
199	return 0;
200}
201
202/**
203 *  e1000_standby_nvm - Return EEPROM to standby state
204 *  @hw: pointer to the HW structure
205 *
206 *  Return the EEPROM to a standby state.
207 **/
208static void e1000_standby_nvm(struct e1000_hw *hw)
209{
210	struct e1000_nvm_info *nvm = &hw->nvm;
211	u32 eecd = er32(EECD);
212
213	if (nvm->type == e1000_nvm_eeprom_spi) {
214		/* Toggle CS to flush commands */
215		eecd |= E1000_EECD_CS;
216		ew32(EECD, eecd);
217		e1e_flush();
218		udelay(nvm->delay_usec);
219		eecd &= ~E1000_EECD_CS;
220		ew32(EECD, eecd);
221		e1e_flush();
222		udelay(nvm->delay_usec);
223	}
224}
225
226/**
227 *  e1000_stop_nvm - Terminate EEPROM command
228 *  @hw: pointer to the HW structure
229 *
230 *  Terminates the current command by inverting the EEPROM's chip select pin.
231 **/
232static void e1000_stop_nvm(struct e1000_hw *hw)
233{
234	u32 eecd;
235
236	eecd = er32(EECD);
237	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
238		/* Pull CS high */
239		eecd |= E1000_EECD_CS;
240		e1000_lower_eec_clk(hw, &eecd);
241	}
242}
243
244/**
245 *  e1000e_release_nvm - Release exclusive access to EEPROM
246 *  @hw: pointer to the HW structure
247 *
248 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
249 **/
250void e1000e_release_nvm(struct e1000_hw *hw)
251{
252	u32 eecd;
253
254	e1000_stop_nvm(hw);
255
256	eecd = er32(EECD);
257	eecd &= ~E1000_EECD_REQ;
258	ew32(EECD, eecd);
259}
260
261/**
262 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
263 *  @hw: pointer to the HW structure
264 *
265 *  Setups the EEPROM for reading and writing.
266 **/
267static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
268{
269	struct e1000_nvm_info *nvm = &hw->nvm;
270	u32 eecd = er32(EECD);
271	u8 spi_stat_reg;
272
273	if (nvm->type == e1000_nvm_eeprom_spi) {
274		u16 timeout = NVM_MAX_RETRY_SPI;
275
276		/* Clear SK and CS */
277		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278		ew32(EECD, eecd);
279		e1e_flush();
280		udelay(1);
281
282		/*
283		 * Read "Status Register" repeatedly until the LSB is cleared.
284		 * The EEPROM will signal that the command has been completed
285		 * by clearing bit 0 of the internal status register.  If it's
286		 * not cleared within 'timeout', then error out.
287		 */
288		while (timeout) {
289			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
290						 hw->nvm.opcode_bits);
291			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
292			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
293				break;
294
295			udelay(5);
296			e1000_standby_nvm(hw);
297			timeout--;
298		}
299
300		if (!timeout) {
301			e_dbg("SPI NVM Status error\n");
302			return -E1000_ERR_NVM;
303		}
304	}
305
306	return 0;
307}
308
309/**
310 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
311 *  @hw: pointer to the HW structure
312 *  @offset: offset of word in the EEPROM to read
313 *  @words: number of words to read
314 *  @data: word read from the EEPROM
315 *
316 *  Reads a 16 bit word from the EEPROM using the EERD register.
317 **/
318s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
319{
320	struct e1000_nvm_info *nvm = &hw->nvm;
321	u32 i, eerd = 0;
322	s32 ret_val = 0;
323
324	/*
325	 * A check for invalid values:  offset too large, too many words,
326	 * too many words for the offset, and not enough words.
327	 */
328	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
329	    (words == 0)) {
330		e_dbg("nvm parameter(s) out of bounds\n");
331		return -E1000_ERR_NVM;
332	}
333
334	for (i = 0; i < words; i++) {
335		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
336		    E1000_NVM_RW_REG_START;
337
338		ew32(EERD, eerd);
339		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
340		if (ret_val)
 
341			break;
 
342
343		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
344	}
345
346	return ret_val;
347}
348
349/**
350 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
351 *  @hw: pointer to the HW structure
352 *  @offset: offset within the EEPROM to be written to
353 *  @words: number of words to write
354 *  @data: 16 bit word(s) to be written to the EEPROM
355 *
356 *  Writes data to EEPROM at offset using SPI interface.
357 *
358 *  If e1000e_update_nvm_checksum is not called after this function , the
359 *  EEPROM will most likely contain an invalid checksum.
360 **/
361s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
362{
363	struct e1000_nvm_info *nvm = &hw->nvm;
364	s32 ret_val;
365	u16 widx = 0;
366
367	/*
368	 * A check for invalid values:  offset too large, too many words,
369	 * and not enough words.
370	 */
371	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
372	    (words == 0)) {
373		e_dbg("nvm parameter(s) out of bounds\n");
374		return -E1000_ERR_NVM;
375	}
376
377	ret_val = nvm->ops.acquire(hw);
378	if (ret_val)
379		return ret_val;
380
381	while (widx < words) {
382		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
383
 
 
 
 
384		ret_val = e1000_ready_nvm_eeprom(hw);
385		if (ret_val)
386			goto release;
 
 
387
388		e1000_standby_nvm(hw);
389
390		/* Send the WRITE ENABLE command (8 bit opcode) */
391		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
392					 nvm->opcode_bits);
393
394		e1000_standby_nvm(hw);
395
396		/*
397		 * Some SPI eeproms use the 8th address bit embedded in the
398		 * opcode
399		 */
400		if ((nvm->address_bits == 8) && (offset >= 128))
401			write_opcode |= NVM_A8_OPCODE_SPI;
402
403		/* Send the Write command (8-bit opcode + addr) */
404		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
405		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
406					 nvm->address_bits);
407
408		/* Loop to allow for up to whole page write of eeprom */
409		while (widx < words) {
410			u16 word_out = data[widx];
 
411			word_out = (word_out >> 8) | (word_out << 8);
412			e1000_shift_out_eec_bits(hw, word_out, 16);
413			widx++;
414
415			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
416				e1000_standby_nvm(hw);
417				break;
418			}
419		}
 
 
420	}
421
422	usleep_range(10000, 20000);
423release:
424	nvm->ops.release(hw);
425
426	return ret_val;
427}
428
429/**
430 *  e1000_read_pba_string_generic - Read device part number
431 *  @hw: pointer to the HW structure
432 *  @pba_num: pointer to device part number
433 *  @pba_num_size: size of part number buffer
434 *
435 *  Reads the product board assembly (PBA) number from the EEPROM and stores
436 *  the value in pba_num.
437 **/
438s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
439				  u32 pba_num_size)
440{
441	s32 ret_val;
442	u16 nvm_data;
443	u16 pba_ptr;
444	u16 offset;
445	u16 length;
446
447	if (pba_num == NULL) {
448		e_dbg("PBA string buffer was null\n");
449		return -E1000_ERR_INVALID_ARGUMENT;
450	}
451
452	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
453	if (ret_val) {
454		e_dbg("NVM Read Error\n");
455		return ret_val;
456	}
457
458	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
459	if (ret_val) {
460		e_dbg("NVM Read Error\n");
461		return ret_val;
462	}
463
464	/*
465	 * if nvm_data is not ptr guard the PBA must be in legacy format which
466	 * means pba_ptr is actually our second data word for the PBA number
467	 * and we can decode it into an ascii string
468	 */
469	if (nvm_data != NVM_PBA_PTR_GUARD) {
470		e_dbg("NVM PBA number is not stored as string\n");
471
472		/* we will need 11 characters to store the PBA */
473		if (pba_num_size < 11) {
474			e_dbg("PBA string buffer too small\n");
475			return E1000_ERR_NO_SPACE;
476		}
477
478		/* extract hex string from data and pba_ptr */
479		pba_num[0] = (nvm_data >> 12) & 0xF;
480		pba_num[1] = (nvm_data >> 8) & 0xF;
481		pba_num[2] = (nvm_data >> 4) & 0xF;
482		pba_num[3] = nvm_data & 0xF;
483		pba_num[4] = (pba_ptr >> 12) & 0xF;
484		pba_num[5] = (pba_ptr >> 8) & 0xF;
485		pba_num[6] = '-';
486		pba_num[7] = 0;
487		pba_num[8] = (pba_ptr >> 4) & 0xF;
488		pba_num[9] = pba_ptr & 0xF;
489
490		/* put a null character on the end of our string */
491		pba_num[10] = '\0';
492
493		/* switch all the data but the '-' to hex char */
494		for (offset = 0; offset < 10; offset++) {
495			if (pba_num[offset] < 0xA)
496				pba_num[offset] += '0';
497			else if (pba_num[offset] < 0x10)
498				pba_num[offset] += 'A' - 0xA;
499		}
500
501		return 0;
502	}
503
504	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
505	if (ret_val) {
506		e_dbg("NVM Read Error\n");
507		return ret_val;
508	}
509
510	if (length == 0xFFFF || length == 0) {
511		e_dbg("NVM PBA number section invalid length\n");
512		return -E1000_ERR_NVM_PBA_SECTION;
513	}
514	/* check if pba_num buffer is big enough */
515	if (pba_num_size < (((u32)length * 2) - 1)) {
516		e_dbg("PBA string buffer too small\n");
517		return -E1000_ERR_NO_SPACE;
518	}
519
520	/* trim pba length from start of string */
521	pba_ptr++;
522	length--;
523
524	for (offset = 0; offset < length; offset++) {
525		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
526		if (ret_val) {
527			e_dbg("NVM Read Error\n");
528			return ret_val;
529		}
530		pba_num[offset * 2] = (u8)(nvm_data >> 8);
531		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
532	}
533	pba_num[offset * 2] = '\0';
534
535	return 0;
536}
537
538/**
539 *  e1000_read_mac_addr_generic - Read device MAC address
540 *  @hw: pointer to the HW structure
541 *
542 *  Reads the device MAC address from the EEPROM and stores the value.
543 *  Since devices with two ports use the same EEPROM, we increment the
544 *  last bit in the MAC address for the second port.
545 **/
546s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
547{
548	u32 rar_high;
549	u32 rar_low;
550	u16 i;
551
552	rar_high = er32(RAH(0));
553	rar_low = er32(RAL(0));
554
555	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
556		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
557
558	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
559		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
560
561	for (i = 0; i < ETH_ALEN; i++)
562		hw->mac.addr[i] = hw->mac.perm_addr[i];
563
564	return 0;
565}
566
567/**
568 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
569 *  @hw: pointer to the HW structure
570 *
571 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
572 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
573 **/
574s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
575{
576	s32 ret_val;
577	u16 checksum = 0;
578	u16 i, nvm_data;
579
580	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
581		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
582		if (ret_val) {
583			e_dbg("NVM Read Error\n");
584			return ret_val;
585		}
586		checksum += nvm_data;
587	}
588
589	if (checksum != (u16)NVM_SUM) {
590		e_dbg("NVM Checksum Invalid\n");
591		return -E1000_ERR_NVM;
592	}
593
594	return 0;
595}
596
597/**
598 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
599 *  @hw: pointer to the HW structure
600 *
601 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
602 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
603 *  value to the EEPROM.
604 **/
605s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
606{
607	s32 ret_val;
608	u16 checksum = 0;
609	u16 i, nvm_data;
610
611	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
612		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
613		if (ret_val) {
614			e_dbg("NVM Read Error while updating checksum.\n");
615			return ret_val;
616		}
617		checksum += nvm_data;
618	}
619	checksum = (u16)NVM_SUM - checksum;
620	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
621	if (ret_val)
622		e_dbg("NVM Write Error while updating checksum.\n");
623
624	return ret_val;
625}
626
627/**
628 *  e1000e_reload_nvm_generic - Reloads EEPROM
629 *  @hw: pointer to the HW structure
630 *
631 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
632 *  extended control register.
633 **/
634void e1000e_reload_nvm_generic(struct e1000_hw *hw)
635{
636	u32 ctrl_ext;
637
638	udelay(10);
639	ctrl_ext = er32(CTRL_EXT);
640	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
641	ew32(CTRL_EXT, ctrl_ext);
642	e1e_flush();
643}