Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2015 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 */
22
23#include "e1000.h"
24
25/**
26 * e1000_raise_eec_clk - Raise EEPROM clock
27 * @hw: pointer to the HW structure
28 * @eecd: pointer to the EEPROM
29 *
30 * Enable/Raise the EEPROM clock bit.
31 **/
32static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
33{
34 *eecd = *eecd | E1000_EECD_SK;
35 ew32(EECD, *eecd);
36 e1e_flush();
37 udelay(hw->nvm.delay_usec);
38}
39
40/**
41 * e1000_lower_eec_clk - Lower EEPROM clock
42 * @hw: pointer to the HW structure
43 * @eecd: pointer to the EEPROM
44 *
45 * Clear/Lower the EEPROM clock bit.
46 **/
47static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
48{
49 *eecd = *eecd & ~E1000_EECD_SK;
50 ew32(EECD, *eecd);
51 e1e_flush();
52 udelay(hw->nvm.delay_usec);
53}
54
55/**
56 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
57 * @hw: pointer to the HW structure
58 * @data: data to send to the EEPROM
59 * @count: number of bits to shift out
60 *
61 * We need to shift 'count' bits out to the EEPROM. So, the value in the
62 * "data" parameter will be shifted out to the EEPROM one bit at a time.
63 * In order to do this, "data" must be broken down into bits.
64 **/
65static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
66{
67 struct e1000_nvm_info *nvm = &hw->nvm;
68 u32 eecd = er32(EECD);
69 u32 mask;
70
71 mask = BIT(count - 1);
72 if (nvm->type == e1000_nvm_eeprom_spi)
73 eecd |= E1000_EECD_DO;
74
75 do {
76 eecd &= ~E1000_EECD_DI;
77
78 if (data & mask)
79 eecd |= E1000_EECD_DI;
80
81 ew32(EECD, eecd);
82 e1e_flush();
83
84 udelay(nvm->delay_usec);
85
86 e1000_raise_eec_clk(hw, &eecd);
87 e1000_lower_eec_clk(hw, &eecd);
88
89 mask >>= 1;
90 } while (mask);
91
92 eecd &= ~E1000_EECD_DI;
93 ew32(EECD, eecd);
94}
95
96/**
97 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
98 * @hw: pointer to the HW structure
99 * @count: number of bits to shift in
100 *
101 * In order to read a register from the EEPROM, we need to shift 'count' bits
102 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
103 * the EEPROM (setting the SK bit), and then reading the value of the data out
104 * "DO" bit. During this "shifting in" process the data in "DI" bit should
105 * always be clear.
106 **/
107static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
108{
109 u32 eecd;
110 u32 i;
111 u16 data;
112
113 eecd = er32(EECD);
114 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
115 data = 0;
116
117 for (i = 0; i < count; i++) {
118 data <<= 1;
119 e1000_raise_eec_clk(hw, &eecd);
120
121 eecd = er32(EECD);
122
123 eecd &= ~E1000_EECD_DI;
124 if (eecd & E1000_EECD_DO)
125 data |= 1;
126
127 e1000_lower_eec_clk(hw, &eecd);
128 }
129
130 return data;
131}
132
133/**
134 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
135 * @hw: pointer to the HW structure
136 * @ee_reg: EEPROM flag for polling
137 *
138 * Polls the EEPROM status bit for either read or write completion based
139 * upon the value of 'ee_reg'.
140 **/
141s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
142{
143 u32 attempts = 100000;
144 u32 i, reg = 0;
145
146 for (i = 0; i < attempts; i++) {
147 if (ee_reg == E1000_NVM_POLL_READ)
148 reg = er32(EERD);
149 else
150 reg = er32(EEWR);
151
152 if (reg & E1000_NVM_RW_REG_DONE)
153 return 0;
154
155 udelay(5);
156 }
157
158 return -E1000_ERR_NVM;
159}
160
161/**
162 * e1000e_acquire_nvm - Generic request for access to EEPROM
163 * @hw: pointer to the HW structure
164 *
165 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
166 * Return successful if access grant bit set, else clear the request for
167 * EEPROM access and return -E1000_ERR_NVM (-1).
168 **/
169s32 e1000e_acquire_nvm(struct e1000_hw *hw)
170{
171 u32 eecd = er32(EECD);
172 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
173
174 ew32(EECD, eecd | E1000_EECD_REQ);
175 eecd = er32(EECD);
176
177 while (timeout) {
178 if (eecd & E1000_EECD_GNT)
179 break;
180 udelay(5);
181 eecd = er32(EECD);
182 timeout--;
183 }
184
185 if (!timeout) {
186 eecd &= ~E1000_EECD_REQ;
187 ew32(EECD, eecd);
188 e_dbg("Could not acquire NVM grant\n");
189 return -E1000_ERR_NVM;
190 }
191
192 return 0;
193}
194
195/**
196 * e1000_standby_nvm - Return EEPROM to standby state
197 * @hw: pointer to the HW structure
198 *
199 * Return the EEPROM to a standby state.
200 **/
201static void e1000_standby_nvm(struct e1000_hw *hw)
202{
203 struct e1000_nvm_info *nvm = &hw->nvm;
204 u32 eecd = er32(EECD);
205
206 if (nvm->type == e1000_nvm_eeprom_spi) {
207 /* Toggle CS to flush commands */
208 eecd |= E1000_EECD_CS;
209 ew32(EECD, eecd);
210 e1e_flush();
211 udelay(nvm->delay_usec);
212 eecd &= ~E1000_EECD_CS;
213 ew32(EECD, eecd);
214 e1e_flush();
215 udelay(nvm->delay_usec);
216 }
217}
218
219/**
220 * e1000_stop_nvm - Terminate EEPROM command
221 * @hw: pointer to the HW structure
222 *
223 * Terminates the current command by inverting the EEPROM's chip select pin.
224 **/
225static void e1000_stop_nvm(struct e1000_hw *hw)
226{
227 u32 eecd;
228
229 eecd = er32(EECD);
230 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
231 /* Pull CS high */
232 eecd |= E1000_EECD_CS;
233 e1000_lower_eec_clk(hw, &eecd);
234 }
235}
236
237/**
238 * e1000e_release_nvm - Release exclusive access to EEPROM
239 * @hw: pointer to the HW structure
240 *
241 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
242 **/
243void e1000e_release_nvm(struct e1000_hw *hw)
244{
245 u32 eecd;
246
247 e1000_stop_nvm(hw);
248
249 eecd = er32(EECD);
250 eecd &= ~E1000_EECD_REQ;
251 ew32(EECD, eecd);
252}
253
254/**
255 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
256 * @hw: pointer to the HW structure
257 *
258 * Setups the EEPROM for reading and writing.
259 **/
260static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
261{
262 struct e1000_nvm_info *nvm = &hw->nvm;
263 u32 eecd = er32(EECD);
264 u8 spi_stat_reg;
265
266 if (nvm->type == e1000_nvm_eeprom_spi) {
267 u16 timeout = NVM_MAX_RETRY_SPI;
268
269 /* Clear SK and CS */
270 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
271 ew32(EECD, eecd);
272 e1e_flush();
273 udelay(1);
274
275 /* Read "Status Register" repeatedly until the LSB is cleared.
276 * The EEPROM will signal that the command has been completed
277 * by clearing bit 0 of the internal status register. If it's
278 * not cleared within 'timeout', then error out.
279 */
280 while (timeout) {
281 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
282 hw->nvm.opcode_bits);
283 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
284 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
285 break;
286
287 udelay(5);
288 e1000_standby_nvm(hw);
289 timeout--;
290 }
291
292 if (!timeout) {
293 e_dbg("SPI NVM Status error\n");
294 return -E1000_ERR_NVM;
295 }
296 }
297
298 return 0;
299}
300
301/**
302 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
303 * @hw: pointer to the HW structure
304 * @offset: offset of word in the EEPROM to read
305 * @words: number of words to read
306 * @data: word read from the EEPROM
307 *
308 * Reads a 16 bit word from the EEPROM using the EERD register.
309 **/
310s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
311{
312 struct e1000_nvm_info *nvm = &hw->nvm;
313 u32 i, eerd = 0;
314 s32 ret_val = 0;
315
316 /* A check for invalid values: offset too large, too many words,
317 * too many words for the offset, and not enough words.
318 */
319 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
320 (words == 0)) {
321 e_dbg("nvm parameter(s) out of bounds\n");
322 return -E1000_ERR_NVM;
323 }
324
325 for (i = 0; i < words; i++) {
326 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
327 E1000_NVM_RW_REG_START;
328
329 ew32(EERD, eerd);
330 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
331 if (ret_val) {
332 e_dbg("NVM read error: %d\n", ret_val);
333 break;
334 }
335
336 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
337 }
338
339 return ret_val;
340}
341
342/**
343 * e1000e_write_nvm_spi - Write to EEPROM using SPI
344 * @hw: pointer to the HW structure
345 * @offset: offset within the EEPROM to be written to
346 * @words: number of words to write
347 * @data: 16 bit word(s) to be written to the EEPROM
348 *
349 * Writes data to EEPROM at offset using SPI interface.
350 *
351 * If e1000e_update_nvm_checksum is not called after this function , the
352 * EEPROM will most likely contain an invalid checksum.
353 **/
354s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
355{
356 struct e1000_nvm_info *nvm = &hw->nvm;
357 s32 ret_val = -E1000_ERR_NVM;
358 u16 widx = 0;
359
360 /* A check for invalid values: offset too large, too many words,
361 * and not enough words.
362 */
363 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
364 (words == 0)) {
365 e_dbg("nvm parameter(s) out of bounds\n");
366 return -E1000_ERR_NVM;
367 }
368
369 while (widx < words) {
370 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
371
372 ret_val = nvm->ops.acquire(hw);
373 if (ret_val)
374 return ret_val;
375
376 ret_val = e1000_ready_nvm_eeprom(hw);
377 if (ret_val) {
378 nvm->ops.release(hw);
379 return ret_val;
380 }
381
382 e1000_standby_nvm(hw);
383
384 /* Send the WRITE ENABLE command (8 bit opcode) */
385 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
386 nvm->opcode_bits);
387
388 e1000_standby_nvm(hw);
389
390 /* Some SPI eeproms use the 8th address bit embedded in the
391 * opcode
392 */
393 if ((nvm->address_bits == 8) && (offset >= 128))
394 write_opcode |= NVM_A8_OPCODE_SPI;
395
396 /* Send the Write command (8-bit opcode + addr) */
397 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
398 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
399 nvm->address_bits);
400
401 /* Loop to allow for up to whole page write of eeprom */
402 while (widx < words) {
403 u16 word_out = data[widx];
404
405 word_out = (word_out >> 8) | (word_out << 8);
406 e1000_shift_out_eec_bits(hw, word_out, 16);
407 widx++;
408
409 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
410 e1000_standby_nvm(hw);
411 break;
412 }
413 }
414 usleep_range(10000, 20000);
415 nvm->ops.release(hw);
416 }
417
418 return ret_val;
419}
420
421/**
422 * e1000_read_pba_string_generic - Read device part number
423 * @hw: pointer to the HW structure
424 * @pba_num: pointer to device part number
425 * @pba_num_size: size of part number buffer
426 *
427 * Reads the product board assembly (PBA) number from the EEPROM and stores
428 * the value in pba_num.
429 **/
430s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
431 u32 pba_num_size)
432{
433 s32 ret_val;
434 u16 nvm_data;
435 u16 pba_ptr;
436 u16 offset;
437 u16 length;
438
439 if (pba_num == NULL) {
440 e_dbg("PBA string buffer was null\n");
441 return -E1000_ERR_INVALID_ARGUMENT;
442 }
443
444 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
445 if (ret_val) {
446 e_dbg("NVM Read Error\n");
447 return ret_val;
448 }
449
450 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
451 if (ret_val) {
452 e_dbg("NVM Read Error\n");
453 return ret_val;
454 }
455
456 /* if nvm_data is not ptr guard the PBA must be in legacy format which
457 * means pba_ptr is actually our second data word for the PBA number
458 * and we can decode it into an ascii string
459 */
460 if (nvm_data != NVM_PBA_PTR_GUARD) {
461 e_dbg("NVM PBA number is not stored as string\n");
462
463 /* make sure callers buffer is big enough to store the PBA */
464 if (pba_num_size < E1000_PBANUM_LENGTH) {
465 e_dbg("PBA string buffer too small\n");
466 return E1000_ERR_NO_SPACE;
467 }
468
469 /* extract hex string from data and pba_ptr */
470 pba_num[0] = (nvm_data >> 12) & 0xF;
471 pba_num[1] = (nvm_data >> 8) & 0xF;
472 pba_num[2] = (nvm_data >> 4) & 0xF;
473 pba_num[3] = nvm_data & 0xF;
474 pba_num[4] = (pba_ptr >> 12) & 0xF;
475 pba_num[5] = (pba_ptr >> 8) & 0xF;
476 pba_num[6] = '-';
477 pba_num[7] = 0;
478 pba_num[8] = (pba_ptr >> 4) & 0xF;
479 pba_num[9] = pba_ptr & 0xF;
480
481 /* put a null character on the end of our string */
482 pba_num[10] = '\0';
483
484 /* switch all the data but the '-' to hex char */
485 for (offset = 0; offset < 10; offset++) {
486 if (pba_num[offset] < 0xA)
487 pba_num[offset] += '0';
488 else if (pba_num[offset] < 0x10)
489 pba_num[offset] += 'A' - 0xA;
490 }
491
492 return 0;
493 }
494
495 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
496 if (ret_val) {
497 e_dbg("NVM Read Error\n");
498 return ret_val;
499 }
500
501 if (length == 0xFFFF || length == 0) {
502 e_dbg("NVM PBA number section invalid length\n");
503 return -E1000_ERR_NVM_PBA_SECTION;
504 }
505 /* check if pba_num buffer is big enough */
506 if (pba_num_size < (((u32)length * 2) - 1)) {
507 e_dbg("PBA string buffer too small\n");
508 return -E1000_ERR_NO_SPACE;
509 }
510
511 /* trim pba length from start of string */
512 pba_ptr++;
513 length--;
514
515 for (offset = 0; offset < length; offset++) {
516 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
517 if (ret_val) {
518 e_dbg("NVM Read Error\n");
519 return ret_val;
520 }
521 pba_num[offset * 2] = (u8)(nvm_data >> 8);
522 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
523 }
524 pba_num[offset * 2] = '\0';
525
526 return 0;
527}
528
529/**
530 * e1000_read_mac_addr_generic - Read device MAC address
531 * @hw: pointer to the HW structure
532 *
533 * Reads the device MAC address from the EEPROM and stores the value.
534 * Since devices with two ports use the same EEPROM, we increment the
535 * last bit in the MAC address for the second port.
536 **/
537s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
538{
539 u32 rar_high;
540 u32 rar_low;
541 u16 i;
542
543 rar_high = er32(RAH(0));
544 rar_low = er32(RAL(0));
545
546 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
547 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
548
549 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
550 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
551
552 for (i = 0; i < ETH_ALEN; i++)
553 hw->mac.addr[i] = hw->mac.perm_addr[i];
554
555 return 0;
556}
557
558/**
559 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
560 * @hw: pointer to the HW structure
561 *
562 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
563 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
564 **/
565s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
566{
567 s32 ret_val;
568 u16 checksum = 0;
569 u16 i, nvm_data;
570
571 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
572 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
573 if (ret_val) {
574 e_dbg("NVM Read Error\n");
575 return ret_val;
576 }
577 checksum += nvm_data;
578 }
579
580 if (checksum != (u16)NVM_SUM) {
581 e_dbg("NVM Checksum Invalid\n");
582 return -E1000_ERR_NVM;
583 }
584
585 return 0;
586}
587
588/**
589 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
590 * @hw: pointer to the HW structure
591 *
592 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
593 * up to the checksum. Then calculates the EEPROM checksum and writes the
594 * value to the EEPROM.
595 **/
596s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
597{
598 s32 ret_val;
599 u16 checksum = 0;
600 u16 i, nvm_data;
601
602 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
603 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
604 if (ret_val) {
605 e_dbg("NVM Read Error while updating checksum.\n");
606 return ret_val;
607 }
608 checksum += nvm_data;
609 }
610 checksum = (u16)NVM_SUM - checksum;
611 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
612 if (ret_val)
613 e_dbg("NVM Write Error while updating checksum.\n");
614
615 return ret_val;
616}
617
618/**
619 * e1000e_reload_nvm_generic - Reloads EEPROM
620 * @hw: pointer to the HW structure
621 *
622 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
623 * extended control register.
624 **/
625void e1000e_reload_nvm_generic(struct e1000_hw *hw)
626{
627 u32 ctrl_ext;
628
629 usleep_range(10, 20);
630 ctrl_ext = er32(CTRL_EXT);
631 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
632 ew32(CTRL_EXT, ctrl_ext);
633 e1e_flush();
634}
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 * e1000_raise_eec_clk - Raise EEPROM clock
33 * @hw: pointer to the HW structure
34 * @eecd: pointer to the EEPROM
35 *
36 * Enable/Raise the EEPROM clock bit.
37 **/
38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
39{
40 *eecd = *eecd | E1000_EECD_SK;
41 ew32(EECD, *eecd);
42 e1e_flush();
43 udelay(hw->nvm.delay_usec);
44}
45
46/**
47 * e1000_lower_eec_clk - Lower EEPROM clock
48 * @hw: pointer to the HW structure
49 * @eecd: pointer to the EEPROM
50 *
51 * Clear/Lower the EEPROM clock bit.
52 **/
53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
54{
55 *eecd = *eecd & ~E1000_EECD_SK;
56 ew32(EECD, *eecd);
57 e1e_flush();
58 udelay(hw->nvm.delay_usec);
59}
60
61/**
62 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
63 * @hw: pointer to the HW structure
64 * @data: data to send to the EEPROM
65 * @count: number of bits to shift out
66 *
67 * We need to shift 'count' bits out to the EEPROM. So, the value in the
68 * "data" parameter will be shifted out to the EEPROM one bit at a time.
69 * In order to do this, "data" must be broken down into bits.
70 **/
71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
72{
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 u32 eecd = er32(EECD);
75 u32 mask;
76
77 mask = 0x01 << (count - 1);
78 if (nvm->type == e1000_nvm_eeprom_spi)
79 eecd |= E1000_EECD_DO;
80
81 do {
82 eecd &= ~E1000_EECD_DI;
83
84 if (data & mask)
85 eecd |= E1000_EECD_DI;
86
87 ew32(EECD, eecd);
88 e1e_flush();
89
90 udelay(nvm->delay_usec);
91
92 e1000_raise_eec_clk(hw, &eecd);
93 e1000_lower_eec_clk(hw, &eecd);
94
95 mask >>= 1;
96 } while (mask);
97
98 eecd &= ~E1000_EECD_DI;
99 ew32(EECD, eecd);
100}
101
102/**
103 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 * @hw: pointer to the HW structure
105 * @count: number of bits to shift in
106 *
107 * In order to read a register from the EEPROM, we need to shift 'count' bits
108 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
109 * the EEPROM (setting the SK bit), and then reading the value of the data out
110 * "DO" bit. During this "shifting in" process the data in "DI" bit should
111 * always be clear.
112 **/
113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114{
115 u32 eecd;
116 u32 i;
117 u16 data;
118
119 eecd = er32(EECD);
120
121 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
122 data = 0;
123
124 for (i = 0; i < count; i++) {
125 data <<= 1;
126 e1000_raise_eec_clk(hw, &eecd);
127
128 eecd = er32(EECD);
129
130 eecd &= ~E1000_EECD_DI;
131 if (eecd & E1000_EECD_DO)
132 data |= 1;
133
134 e1000_lower_eec_clk(hw, &eecd);
135 }
136
137 return data;
138}
139
140/**
141 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
142 * @hw: pointer to the HW structure
143 * @ee_reg: EEPROM flag for polling
144 *
145 * Polls the EEPROM status bit for either read or write completion based
146 * upon the value of 'ee_reg'.
147 **/
148s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
149{
150 u32 attempts = 100000;
151 u32 i, reg = 0;
152
153 for (i = 0; i < attempts; i++) {
154 if (ee_reg == E1000_NVM_POLL_READ)
155 reg = er32(EERD);
156 else
157 reg = er32(EEWR);
158
159 if (reg & E1000_NVM_RW_REG_DONE)
160 return 0;
161
162 udelay(5);
163 }
164
165 return -E1000_ERR_NVM;
166}
167
168/**
169 * e1000e_acquire_nvm - Generic request for access to EEPROM
170 * @hw: pointer to the HW structure
171 *
172 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
173 * Return successful if access grant bit set, else clear the request for
174 * EEPROM access and return -E1000_ERR_NVM (-1).
175 **/
176s32 e1000e_acquire_nvm(struct e1000_hw *hw)
177{
178 u32 eecd = er32(EECD);
179 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
180
181 ew32(EECD, eecd | E1000_EECD_REQ);
182 eecd = er32(EECD);
183
184 while (timeout) {
185 if (eecd & E1000_EECD_GNT)
186 break;
187 udelay(5);
188 eecd = er32(EECD);
189 timeout--;
190 }
191
192 if (!timeout) {
193 eecd &= ~E1000_EECD_REQ;
194 ew32(EECD, eecd);
195 e_dbg("Could not acquire NVM grant\n");
196 return -E1000_ERR_NVM;
197 }
198
199 return 0;
200}
201
202/**
203 * e1000_standby_nvm - Return EEPROM to standby state
204 * @hw: pointer to the HW structure
205 *
206 * Return the EEPROM to a standby state.
207 **/
208static void e1000_standby_nvm(struct e1000_hw *hw)
209{
210 struct e1000_nvm_info *nvm = &hw->nvm;
211 u32 eecd = er32(EECD);
212
213 if (nvm->type == e1000_nvm_eeprom_spi) {
214 /* Toggle CS to flush commands */
215 eecd |= E1000_EECD_CS;
216 ew32(EECD, eecd);
217 e1e_flush();
218 udelay(nvm->delay_usec);
219 eecd &= ~E1000_EECD_CS;
220 ew32(EECD, eecd);
221 e1e_flush();
222 udelay(nvm->delay_usec);
223 }
224}
225
226/**
227 * e1000_stop_nvm - Terminate EEPROM command
228 * @hw: pointer to the HW structure
229 *
230 * Terminates the current command by inverting the EEPROM's chip select pin.
231 **/
232static void e1000_stop_nvm(struct e1000_hw *hw)
233{
234 u32 eecd;
235
236 eecd = er32(EECD);
237 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
238 /* Pull CS high */
239 eecd |= E1000_EECD_CS;
240 e1000_lower_eec_clk(hw, &eecd);
241 }
242}
243
244/**
245 * e1000e_release_nvm - Release exclusive access to EEPROM
246 * @hw: pointer to the HW structure
247 *
248 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
249 **/
250void e1000e_release_nvm(struct e1000_hw *hw)
251{
252 u32 eecd;
253
254 e1000_stop_nvm(hw);
255
256 eecd = er32(EECD);
257 eecd &= ~E1000_EECD_REQ;
258 ew32(EECD, eecd);
259}
260
261/**
262 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
263 * @hw: pointer to the HW structure
264 *
265 * Setups the EEPROM for reading and writing.
266 **/
267static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
268{
269 struct e1000_nvm_info *nvm = &hw->nvm;
270 u32 eecd = er32(EECD);
271 u8 spi_stat_reg;
272
273 if (nvm->type == e1000_nvm_eeprom_spi) {
274 u16 timeout = NVM_MAX_RETRY_SPI;
275
276 /* Clear SK and CS */
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 ew32(EECD, eecd);
279 e1e_flush();
280 udelay(1);
281
282 /*
283 * Read "Status Register" repeatedly until the LSB is cleared.
284 * The EEPROM will signal that the command has been completed
285 * by clearing bit 0 of the internal status register. If it's
286 * not cleared within 'timeout', then error out.
287 */
288 while (timeout) {
289 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
290 hw->nvm.opcode_bits);
291 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
292 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
293 break;
294
295 udelay(5);
296 e1000_standby_nvm(hw);
297 timeout--;
298 }
299
300 if (!timeout) {
301 e_dbg("SPI NVM Status error\n");
302 return -E1000_ERR_NVM;
303 }
304 }
305
306 return 0;
307}
308
309/**
310 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
311 * @hw: pointer to the HW structure
312 * @offset: offset of word in the EEPROM to read
313 * @words: number of words to read
314 * @data: word read from the EEPROM
315 *
316 * Reads a 16 bit word from the EEPROM using the EERD register.
317 **/
318s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
319{
320 struct e1000_nvm_info *nvm = &hw->nvm;
321 u32 i, eerd = 0;
322 s32 ret_val = 0;
323
324 /*
325 * A check for invalid values: offset too large, too many words,
326 * too many words for the offset, and not enough words.
327 */
328 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
329 (words == 0)) {
330 e_dbg("nvm parameter(s) out of bounds\n");
331 return -E1000_ERR_NVM;
332 }
333
334 for (i = 0; i < words; i++) {
335 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
336 E1000_NVM_RW_REG_START;
337
338 ew32(EERD, eerd);
339 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
340 if (ret_val)
341 break;
342
343 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
344 }
345
346 return ret_val;
347}
348
349/**
350 * e1000e_write_nvm_spi - Write to EEPROM using SPI
351 * @hw: pointer to the HW structure
352 * @offset: offset within the EEPROM to be written to
353 * @words: number of words to write
354 * @data: 16 bit word(s) to be written to the EEPROM
355 *
356 * Writes data to EEPROM at offset using SPI interface.
357 *
358 * If e1000e_update_nvm_checksum is not called after this function , the
359 * EEPROM will most likely contain an invalid checksum.
360 **/
361s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
362{
363 struct e1000_nvm_info *nvm = &hw->nvm;
364 s32 ret_val;
365 u16 widx = 0;
366
367 /*
368 * A check for invalid values: offset too large, too many words,
369 * and not enough words.
370 */
371 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
372 (words == 0)) {
373 e_dbg("nvm parameter(s) out of bounds\n");
374 return -E1000_ERR_NVM;
375 }
376
377 ret_val = nvm->ops.acquire(hw);
378 if (ret_val)
379 return ret_val;
380
381 while (widx < words) {
382 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
383
384 ret_val = e1000_ready_nvm_eeprom(hw);
385 if (ret_val)
386 goto release;
387
388 e1000_standby_nvm(hw);
389
390 /* Send the WRITE ENABLE command (8 bit opcode) */
391 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
392 nvm->opcode_bits);
393
394 e1000_standby_nvm(hw);
395
396 /*
397 * Some SPI eeproms use the 8th address bit embedded in the
398 * opcode
399 */
400 if ((nvm->address_bits == 8) && (offset >= 128))
401 write_opcode |= NVM_A8_OPCODE_SPI;
402
403 /* Send the Write command (8-bit opcode + addr) */
404 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
405 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
406 nvm->address_bits);
407
408 /* Loop to allow for up to whole page write of eeprom */
409 while (widx < words) {
410 u16 word_out = data[widx];
411 word_out = (word_out >> 8) | (word_out << 8);
412 e1000_shift_out_eec_bits(hw, word_out, 16);
413 widx++;
414
415 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
416 e1000_standby_nvm(hw);
417 break;
418 }
419 }
420 }
421
422 usleep_range(10000, 20000);
423release:
424 nvm->ops.release(hw);
425
426 return ret_val;
427}
428
429/**
430 * e1000_read_pba_string_generic - Read device part number
431 * @hw: pointer to the HW structure
432 * @pba_num: pointer to device part number
433 * @pba_num_size: size of part number buffer
434 *
435 * Reads the product board assembly (PBA) number from the EEPROM and stores
436 * the value in pba_num.
437 **/
438s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
439 u32 pba_num_size)
440{
441 s32 ret_val;
442 u16 nvm_data;
443 u16 pba_ptr;
444 u16 offset;
445 u16 length;
446
447 if (pba_num == NULL) {
448 e_dbg("PBA string buffer was null\n");
449 return -E1000_ERR_INVALID_ARGUMENT;
450 }
451
452 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
453 if (ret_val) {
454 e_dbg("NVM Read Error\n");
455 return ret_val;
456 }
457
458 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
459 if (ret_val) {
460 e_dbg("NVM Read Error\n");
461 return ret_val;
462 }
463
464 /*
465 * if nvm_data is not ptr guard the PBA must be in legacy format which
466 * means pba_ptr is actually our second data word for the PBA number
467 * and we can decode it into an ascii string
468 */
469 if (nvm_data != NVM_PBA_PTR_GUARD) {
470 e_dbg("NVM PBA number is not stored as string\n");
471
472 /* we will need 11 characters to store the PBA */
473 if (pba_num_size < 11) {
474 e_dbg("PBA string buffer too small\n");
475 return E1000_ERR_NO_SPACE;
476 }
477
478 /* extract hex string from data and pba_ptr */
479 pba_num[0] = (nvm_data >> 12) & 0xF;
480 pba_num[1] = (nvm_data >> 8) & 0xF;
481 pba_num[2] = (nvm_data >> 4) & 0xF;
482 pba_num[3] = nvm_data & 0xF;
483 pba_num[4] = (pba_ptr >> 12) & 0xF;
484 pba_num[5] = (pba_ptr >> 8) & 0xF;
485 pba_num[6] = '-';
486 pba_num[7] = 0;
487 pba_num[8] = (pba_ptr >> 4) & 0xF;
488 pba_num[9] = pba_ptr & 0xF;
489
490 /* put a null character on the end of our string */
491 pba_num[10] = '\0';
492
493 /* switch all the data but the '-' to hex char */
494 for (offset = 0; offset < 10; offset++) {
495 if (pba_num[offset] < 0xA)
496 pba_num[offset] += '0';
497 else if (pba_num[offset] < 0x10)
498 pba_num[offset] += 'A' - 0xA;
499 }
500
501 return 0;
502 }
503
504 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
505 if (ret_val) {
506 e_dbg("NVM Read Error\n");
507 return ret_val;
508 }
509
510 if (length == 0xFFFF || length == 0) {
511 e_dbg("NVM PBA number section invalid length\n");
512 return -E1000_ERR_NVM_PBA_SECTION;
513 }
514 /* check if pba_num buffer is big enough */
515 if (pba_num_size < (((u32)length * 2) - 1)) {
516 e_dbg("PBA string buffer too small\n");
517 return -E1000_ERR_NO_SPACE;
518 }
519
520 /* trim pba length from start of string */
521 pba_ptr++;
522 length--;
523
524 for (offset = 0; offset < length; offset++) {
525 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
526 if (ret_val) {
527 e_dbg("NVM Read Error\n");
528 return ret_val;
529 }
530 pba_num[offset * 2] = (u8)(nvm_data >> 8);
531 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
532 }
533 pba_num[offset * 2] = '\0';
534
535 return 0;
536}
537
538/**
539 * e1000_read_mac_addr_generic - Read device MAC address
540 * @hw: pointer to the HW structure
541 *
542 * Reads the device MAC address from the EEPROM and stores the value.
543 * Since devices with two ports use the same EEPROM, we increment the
544 * last bit in the MAC address for the second port.
545 **/
546s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
547{
548 u32 rar_high;
549 u32 rar_low;
550 u16 i;
551
552 rar_high = er32(RAH(0));
553 rar_low = er32(RAL(0));
554
555 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
556 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
557
558 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
559 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
560
561 for (i = 0; i < ETH_ALEN; i++)
562 hw->mac.addr[i] = hw->mac.perm_addr[i];
563
564 return 0;
565}
566
567/**
568 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
569 * @hw: pointer to the HW structure
570 *
571 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
572 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
573 **/
574s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
575{
576 s32 ret_val;
577 u16 checksum = 0;
578 u16 i, nvm_data;
579
580 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
581 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
582 if (ret_val) {
583 e_dbg("NVM Read Error\n");
584 return ret_val;
585 }
586 checksum += nvm_data;
587 }
588
589 if (checksum != (u16)NVM_SUM) {
590 e_dbg("NVM Checksum Invalid\n");
591 return -E1000_ERR_NVM;
592 }
593
594 return 0;
595}
596
597/**
598 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
599 * @hw: pointer to the HW structure
600 *
601 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
602 * up to the checksum. Then calculates the EEPROM checksum and writes the
603 * value to the EEPROM.
604 **/
605s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
606{
607 s32 ret_val;
608 u16 checksum = 0;
609 u16 i, nvm_data;
610
611 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
612 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
613 if (ret_val) {
614 e_dbg("NVM Read Error while updating checksum.\n");
615 return ret_val;
616 }
617 checksum += nvm_data;
618 }
619 checksum = (u16)NVM_SUM - checksum;
620 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
621 if (ret_val)
622 e_dbg("NVM Write Error while updating checksum.\n");
623
624 return ret_val;
625}
626
627/**
628 * e1000e_reload_nvm_generic - Reloads EEPROM
629 * @hw: pointer to the HW structure
630 *
631 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
632 * extended control register.
633 **/
634void e1000e_reload_nvm_generic(struct e1000_hw *hw)
635{
636 u32 ctrl_ext;
637
638 udelay(10);
639 ctrl_ext = er32(CTRL_EXT);
640 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
641 ew32(CTRL_EXT, ctrl_ext);
642 e1e_flush();
643}