Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel PRO/1000 Linux driver
5 Copyright(c) 1999 - 2006 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28*******************************************************************************/
29
30#include "e1000.h"
31#include <net/ip6_checksum.h>
32#include <linux/io.h>
33#include <linux/prefetch.h>
34#include <linux/bitops.h>
35#include <linux/if_vlan.h>
36
37char e1000_driver_name[] = "e1000";
38static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
39#define DRV_VERSION "7.3.21-k8-NAPI"
40const char e1000_driver_version[] = DRV_VERSION;
41static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43/* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50static const struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1075),
77 INTEL_E1000_ETHERNET_DEVICE(0x1076),
78 INTEL_E1000_ETHERNET_DEVICE(0x1077),
79 INTEL_E1000_ETHERNET_DEVICE(0x1078),
80 INTEL_E1000_ETHERNET_DEVICE(0x1079),
81 INTEL_E1000_ETHERNET_DEVICE(0x107A),
82 INTEL_E1000_ETHERNET_DEVICE(0x107B),
83 INTEL_E1000_ETHERNET_DEVICE(0x107C),
84 INTEL_E1000_ETHERNET_DEVICE(0x108A),
85 INTEL_E1000_ETHERNET_DEVICE(0x1099),
86 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
88 /* required last entry */
89 {0,}
90};
91
92MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
93
94int e1000_up(struct e1000_adapter *adapter);
95void e1000_down(struct e1000_adapter *adapter);
96void e1000_reinit_locked(struct e1000_adapter *adapter);
97void e1000_reset(struct e1000_adapter *adapter);
98int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103 struct e1000_tx_ring *txdr);
104static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105 struct e1000_rx_ring *rxdr);
106static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107 struct e1000_tx_ring *tx_ring);
108static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109 struct e1000_rx_ring *rx_ring);
110void e1000_update_stats(struct e1000_adapter *adapter);
111
112static int e1000_init_module(void);
113static void e1000_exit_module(void);
114static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115static void e1000_remove(struct pci_dev *pdev);
116static int e1000_alloc_queues(struct e1000_adapter *adapter);
117static int e1000_sw_init(struct e1000_adapter *adapter);
118int e1000_open(struct net_device *netdev);
119int e1000_close(struct net_device *netdev);
120static void e1000_configure_tx(struct e1000_adapter *adapter);
121static void e1000_configure_rx(struct e1000_adapter *adapter);
122static void e1000_setup_rctl(struct e1000_adapter *adapter);
123static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129static void e1000_set_rx_mode(struct net_device *netdev);
130static void e1000_update_phy_info_task(struct work_struct *work);
131static void e1000_watchdog(struct work_struct *work);
132static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
133static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
134 struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 /* disable receives in the hardware */
525 rctl = er32(RCTL);
526 ew32(RCTL, rctl & ~E1000_RCTL_EN);
527 /* flush and sleep below */
528
529 netif_tx_disable(netdev);
530
531 /* disable transmits in the hardware */
532 tctl = er32(TCTL);
533 tctl &= ~E1000_TCTL_EN;
534 ew32(TCTL, tctl);
535 /* flush both disables and wait for them to finish */
536 E1000_WRITE_FLUSH();
537 msleep(10);
538
539 /* Set the carrier off after transmits have been disabled in the
540 * hardware, to avoid race conditions with e1000_watchdog() (which
541 * may be running concurrently to us, checking for the carrier
542 * bit to decide whether it should enable transmits again). Such
543 * a race condition would result into transmission being disabled
544 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
545 */
546 netif_carrier_off(netdev);
547
548 napi_disable(&adapter->napi);
549
550 e1000_irq_disable(adapter);
551
552 /* Setting DOWN must be after irq_disable to prevent
553 * a screaming interrupt. Setting DOWN also prevents
554 * tasks from rescheduling.
555 */
556 e1000_down_and_stop(adapter);
557
558 adapter->link_speed = 0;
559 adapter->link_duplex = 0;
560
561 e1000_reset(adapter);
562 e1000_clean_all_tx_rings(adapter);
563 e1000_clean_all_rx_rings(adapter);
564}
565
566void e1000_reinit_locked(struct e1000_adapter *adapter)
567{
568 WARN_ON(in_interrupt());
569 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
570 msleep(1);
571 e1000_down(adapter);
572 e1000_up(adapter);
573 clear_bit(__E1000_RESETTING, &adapter->flags);
574}
575
576void e1000_reset(struct e1000_adapter *adapter)
577{
578 struct e1000_hw *hw = &adapter->hw;
579 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
580 bool legacy_pba_adjust = false;
581 u16 hwm;
582
583 /* Repartition Pba for greater than 9k mtu
584 * To take effect CTRL.RST is required.
585 */
586
587 switch (hw->mac_type) {
588 case e1000_82542_rev2_0:
589 case e1000_82542_rev2_1:
590 case e1000_82543:
591 case e1000_82544:
592 case e1000_82540:
593 case e1000_82541:
594 case e1000_82541_rev_2:
595 legacy_pba_adjust = true;
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82545:
599 case e1000_82545_rev_3:
600 case e1000_82546:
601 case e1000_ce4100:
602 case e1000_82546_rev_3:
603 pba = E1000_PBA_48K;
604 break;
605 case e1000_82547:
606 case e1000_82547_rev_2:
607 legacy_pba_adjust = true;
608 pba = E1000_PBA_30K;
609 break;
610 case e1000_undefined:
611 case e1000_num_macs:
612 break;
613 }
614
615 if (legacy_pba_adjust) {
616 if (hw->max_frame_size > E1000_RXBUFFER_8192)
617 pba -= 8; /* allocate more FIFO for Tx */
618
619 if (hw->mac_type == e1000_82547) {
620 adapter->tx_fifo_head = 0;
621 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
622 adapter->tx_fifo_size =
623 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
624 atomic_set(&adapter->tx_fifo_stall, 0);
625 }
626 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
627 /* adjust PBA for jumbo frames */
628 ew32(PBA, pba);
629
630 /* To maintain wire speed transmits, the Tx FIFO should be
631 * large enough to accommodate two full transmit packets,
632 * rounded up to the next 1KB and expressed in KB. Likewise,
633 * the Rx FIFO should be large enough to accommodate at least
634 * one full receive packet and is similarly rounded up and
635 * expressed in KB.
636 */
637 pba = er32(PBA);
638 /* upper 16 bits has Tx packet buffer allocation size in KB */
639 tx_space = pba >> 16;
640 /* lower 16 bits has Rx packet buffer allocation size in KB */
641 pba &= 0xffff;
642 /* the Tx fifo also stores 16 bytes of information about the Tx
643 * but don't include ethernet FCS because hardware appends it
644 */
645 min_tx_space = (hw->max_frame_size +
646 sizeof(struct e1000_tx_desc) -
647 ETH_FCS_LEN) * 2;
648 min_tx_space = ALIGN(min_tx_space, 1024);
649 min_tx_space >>= 10;
650 /* software strips receive CRC, so leave room for it */
651 min_rx_space = hw->max_frame_size;
652 min_rx_space = ALIGN(min_rx_space, 1024);
653 min_rx_space >>= 10;
654
655 /* If current Tx allocation is less than the min Tx FIFO size,
656 * and the min Tx FIFO size is less than the current Rx FIFO
657 * allocation, take space away from current Rx allocation
658 */
659 if (tx_space < min_tx_space &&
660 ((min_tx_space - tx_space) < pba)) {
661 pba = pba - (min_tx_space - tx_space);
662
663 /* PCI/PCIx hardware has PBA alignment constraints */
664 switch (hw->mac_type) {
665 case e1000_82545 ... e1000_82546_rev_3:
666 pba &= ~(E1000_PBA_8K - 1);
667 break;
668 default:
669 break;
670 }
671
672 /* if short on Rx space, Rx wins and must trump Tx
673 * adjustment or use Early Receive if available
674 */
675 if (pba < min_rx_space)
676 pba = min_rx_space;
677 }
678 }
679
680 ew32(PBA, pba);
681
682 /* flow control settings:
683 * The high water mark must be low enough to fit one full frame
684 * (or the size used for early receive) above it in the Rx FIFO.
685 * Set it to the lower of:
686 * - 90% of the Rx FIFO size, and
687 * - the full Rx FIFO size minus the early receive size (for parts
688 * with ERT support assuming ERT set to E1000_ERT_2048), or
689 * - the full Rx FIFO size minus one full frame
690 */
691 hwm = min(((pba << 10) * 9 / 10),
692 ((pba << 10) - hw->max_frame_size));
693
694 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
695 hw->fc_low_water = hw->fc_high_water - 8;
696 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
697 hw->fc_send_xon = 1;
698 hw->fc = hw->original_fc;
699
700 /* Allow time for pending master requests to run */
701 e1000_reset_hw(hw);
702 if (hw->mac_type >= e1000_82544)
703 ew32(WUC, 0);
704
705 if (e1000_init_hw(hw))
706 e_dev_err("Hardware Error\n");
707 e1000_update_mng_vlan(adapter);
708
709 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
710 if (hw->mac_type >= e1000_82544 &&
711 hw->autoneg == 1 &&
712 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
713 u32 ctrl = er32(CTRL);
714 /* clear phy power management bit if we are in gig only mode,
715 * which if enabled will attempt negotiation to 100Mb, which
716 * can cause a loss of link at power off or driver unload
717 */
718 ctrl &= ~E1000_CTRL_SWDPIN3;
719 ew32(CTRL, ctrl);
720 }
721
722 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
723 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
724
725 e1000_reset_adaptive(hw);
726 e1000_phy_get_info(hw, &adapter->phy_info);
727
728 e1000_release_manageability(adapter);
729}
730
731/* Dump the eeprom for users having checksum issues */
732static void e1000_dump_eeprom(struct e1000_adapter *adapter)
733{
734 struct net_device *netdev = adapter->netdev;
735 struct ethtool_eeprom eeprom;
736 const struct ethtool_ops *ops = netdev->ethtool_ops;
737 u8 *data;
738 int i;
739 u16 csum_old, csum_new = 0;
740
741 eeprom.len = ops->get_eeprom_len(netdev);
742 eeprom.offset = 0;
743
744 data = kmalloc(eeprom.len, GFP_KERNEL);
745 if (!data)
746 return;
747
748 ops->get_eeprom(netdev, &eeprom, data);
749
750 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
751 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
752 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
753 csum_new += data[i] + (data[i + 1] << 8);
754 csum_new = EEPROM_SUM - csum_new;
755
756 pr_err("/*********************/\n");
757 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
758 pr_err("Calculated : 0x%04x\n", csum_new);
759
760 pr_err("Offset Values\n");
761 pr_err("======== ======\n");
762 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
763
764 pr_err("Include this output when contacting your support provider.\n");
765 pr_err("This is not a software error! Something bad happened to\n");
766 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
767 pr_err("result in further problems, possibly loss of data,\n");
768 pr_err("corruption or system hangs!\n");
769 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
770 pr_err("which is invalid and requires you to set the proper MAC\n");
771 pr_err("address manually before continuing to enable this network\n");
772 pr_err("device. Please inspect the EEPROM dump and report the\n");
773 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
774 pr_err("/*********************/\n");
775
776 kfree(data);
777}
778
779/**
780 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
781 * @pdev: PCI device information struct
782 *
783 * Return true if an adapter needs ioport resources
784 **/
785static int e1000_is_need_ioport(struct pci_dev *pdev)
786{
787 switch (pdev->device) {
788 case E1000_DEV_ID_82540EM:
789 case E1000_DEV_ID_82540EM_LOM:
790 case E1000_DEV_ID_82540EP:
791 case E1000_DEV_ID_82540EP_LOM:
792 case E1000_DEV_ID_82540EP_LP:
793 case E1000_DEV_ID_82541EI:
794 case E1000_DEV_ID_82541EI_MOBILE:
795 case E1000_DEV_ID_82541ER:
796 case E1000_DEV_ID_82541ER_LOM:
797 case E1000_DEV_ID_82541GI:
798 case E1000_DEV_ID_82541GI_LF:
799 case E1000_DEV_ID_82541GI_MOBILE:
800 case E1000_DEV_ID_82544EI_COPPER:
801 case E1000_DEV_ID_82544EI_FIBER:
802 case E1000_DEV_ID_82544GC_COPPER:
803 case E1000_DEV_ID_82544GC_LOM:
804 case E1000_DEV_ID_82545EM_COPPER:
805 case E1000_DEV_ID_82545EM_FIBER:
806 case E1000_DEV_ID_82546EB_COPPER:
807 case E1000_DEV_ID_82546EB_FIBER:
808 case E1000_DEV_ID_82546EB_QUAD_COPPER:
809 return true;
810 default:
811 return false;
812 }
813}
814
815static netdev_features_t e1000_fix_features(struct net_device *netdev,
816 netdev_features_t features)
817{
818 /* Since there is no support for separate Rx/Tx vlan accel
819 * enable/disable make sure Tx flag is always in same state as Rx.
820 */
821 if (features & NETIF_F_HW_VLAN_CTAG_RX)
822 features |= NETIF_F_HW_VLAN_CTAG_TX;
823 else
824 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
825
826 return features;
827}
828
829static int e1000_set_features(struct net_device *netdev,
830 netdev_features_t features)
831{
832 struct e1000_adapter *adapter = netdev_priv(netdev);
833 netdev_features_t changed = features ^ netdev->features;
834
835 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
836 e1000_vlan_mode(netdev, features);
837
838 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
839 return 0;
840
841 netdev->features = features;
842 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
843
844 if (netif_running(netdev))
845 e1000_reinit_locked(adapter);
846 else
847 e1000_reset(adapter);
848
849 return 0;
850}
851
852static const struct net_device_ops e1000_netdev_ops = {
853 .ndo_open = e1000_open,
854 .ndo_stop = e1000_close,
855 .ndo_start_xmit = e1000_xmit_frame,
856 .ndo_set_rx_mode = e1000_set_rx_mode,
857 .ndo_set_mac_address = e1000_set_mac,
858 .ndo_tx_timeout = e1000_tx_timeout,
859 .ndo_change_mtu = e1000_change_mtu,
860 .ndo_do_ioctl = e1000_ioctl,
861 .ndo_validate_addr = eth_validate_addr,
862 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
863 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
864#ifdef CONFIG_NET_POLL_CONTROLLER
865 .ndo_poll_controller = e1000_netpoll,
866#endif
867 .ndo_fix_features = e1000_fix_features,
868 .ndo_set_features = e1000_set_features,
869};
870
871/**
872 * e1000_init_hw_struct - initialize members of hw struct
873 * @adapter: board private struct
874 * @hw: structure used by e1000_hw.c
875 *
876 * Factors out initialization of the e1000_hw struct to its own function
877 * that can be called very early at init (just after struct allocation).
878 * Fields are initialized based on PCI device information and
879 * OS network device settings (MTU size).
880 * Returns negative error codes if MAC type setup fails.
881 */
882static int e1000_init_hw_struct(struct e1000_adapter *adapter,
883 struct e1000_hw *hw)
884{
885 struct pci_dev *pdev = adapter->pdev;
886
887 /* PCI config space info */
888 hw->vendor_id = pdev->vendor;
889 hw->device_id = pdev->device;
890 hw->subsystem_vendor_id = pdev->subsystem_vendor;
891 hw->subsystem_id = pdev->subsystem_device;
892 hw->revision_id = pdev->revision;
893
894 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
895
896 hw->max_frame_size = adapter->netdev->mtu +
897 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
898 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
899
900 /* identify the MAC */
901 if (e1000_set_mac_type(hw)) {
902 e_err(probe, "Unknown MAC Type\n");
903 return -EIO;
904 }
905
906 switch (hw->mac_type) {
907 default:
908 break;
909 case e1000_82541:
910 case e1000_82547:
911 case e1000_82541_rev_2:
912 case e1000_82547_rev_2:
913 hw->phy_init_script = 1;
914 break;
915 }
916
917 e1000_set_media_type(hw);
918 e1000_get_bus_info(hw);
919
920 hw->wait_autoneg_complete = false;
921 hw->tbi_compatibility_en = true;
922 hw->adaptive_ifs = true;
923
924 /* Copper options */
925
926 if (hw->media_type == e1000_media_type_copper) {
927 hw->mdix = AUTO_ALL_MODES;
928 hw->disable_polarity_correction = false;
929 hw->master_slave = E1000_MASTER_SLAVE;
930 }
931
932 return 0;
933}
934
935/**
936 * e1000_probe - Device Initialization Routine
937 * @pdev: PCI device information struct
938 * @ent: entry in e1000_pci_tbl
939 *
940 * Returns 0 on success, negative on failure
941 *
942 * e1000_probe initializes an adapter identified by a pci_dev structure.
943 * The OS initialization, configuring of the adapter private structure,
944 * and a hardware reset occur.
945 **/
946static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
947{
948 struct net_device *netdev;
949 struct e1000_adapter *adapter = NULL;
950 struct e1000_hw *hw;
951
952 static int cards_found;
953 static int global_quad_port_a; /* global ksp3 port a indication */
954 int i, err, pci_using_dac;
955 u16 eeprom_data = 0;
956 u16 tmp = 0;
957 u16 eeprom_apme_mask = E1000_EEPROM_APME;
958 int bars, need_ioport;
959 bool disable_dev = false;
960
961 /* do not allocate ioport bars when not needed */
962 need_ioport = e1000_is_need_ioport(pdev);
963 if (need_ioport) {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
965 err = pci_enable_device(pdev);
966 } else {
967 bars = pci_select_bars(pdev, IORESOURCE_MEM);
968 err = pci_enable_device_mem(pdev);
969 }
970 if (err)
971 return err;
972
973 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
974 if (err)
975 goto err_pci_reg;
976
977 pci_set_master(pdev);
978 err = pci_save_state(pdev);
979 if (err)
980 goto err_alloc_etherdev;
981
982 err = -ENOMEM;
983 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
984 if (!netdev)
985 goto err_alloc_etherdev;
986
987 SET_NETDEV_DEV(netdev, &pdev->dev);
988
989 pci_set_drvdata(pdev, netdev);
990 adapter = netdev_priv(netdev);
991 adapter->netdev = netdev;
992 adapter->pdev = pdev;
993 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
994 adapter->bars = bars;
995 adapter->need_ioport = need_ioport;
996
997 hw = &adapter->hw;
998 hw->back = adapter;
999
1000 err = -EIO;
1001 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1002 if (!hw->hw_addr)
1003 goto err_ioremap;
1004
1005 if (adapter->need_ioport) {
1006 for (i = BAR_1; i <= BAR_5; i++) {
1007 if (pci_resource_len(pdev, i) == 0)
1008 continue;
1009 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1010 hw->io_base = pci_resource_start(pdev, i);
1011 break;
1012 }
1013 }
1014 }
1015
1016 /* make ready for any if (hw->...) below */
1017 err = e1000_init_hw_struct(adapter, hw);
1018 if (err)
1019 goto err_sw_init;
1020
1021 /* there is a workaround being applied below that limits
1022 * 64-bit DMA addresses to 64-bit hardware. There are some
1023 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1024 */
1025 pci_using_dac = 0;
1026 if ((hw->bus_type == e1000_bus_type_pcix) &&
1027 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1028 pci_using_dac = 1;
1029 } else {
1030 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1031 if (err) {
1032 pr_err("No usable DMA config, aborting\n");
1033 goto err_dma;
1034 }
1035 }
1036
1037 netdev->netdev_ops = &e1000_netdev_ops;
1038 e1000_set_ethtool_ops(netdev);
1039 netdev->watchdog_timeo = 5 * HZ;
1040 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041
1042 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043
1044 adapter->bd_number = cards_found;
1045
1046 /* setup the private structure */
1047
1048 err = e1000_sw_init(adapter);
1049 if (err)
1050 goto err_sw_init;
1051
1052 err = -EIO;
1053 if (hw->mac_type == e1000_ce4100) {
1054 hw->ce4100_gbe_mdio_base_virt =
1055 ioremap(pci_resource_start(pdev, BAR_1),
1056 pci_resource_len(pdev, BAR_1));
1057
1058 if (!hw->ce4100_gbe_mdio_base_virt)
1059 goto err_mdio_ioremap;
1060 }
1061
1062 if (hw->mac_type >= e1000_82543) {
1063 netdev->hw_features = NETIF_F_SG |
1064 NETIF_F_HW_CSUM |
1065 NETIF_F_HW_VLAN_CTAG_RX;
1066 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1067 NETIF_F_HW_VLAN_CTAG_FILTER;
1068 }
1069
1070 if ((hw->mac_type >= e1000_82544) &&
1071 (hw->mac_type != e1000_82547))
1072 netdev->hw_features |= NETIF_F_TSO;
1073
1074 netdev->priv_flags |= IFF_SUPP_NOFCS;
1075
1076 netdev->features |= netdev->hw_features;
1077 netdev->hw_features |= (NETIF_F_RXCSUM |
1078 NETIF_F_RXALL |
1079 NETIF_F_RXFCS);
1080
1081 if (pci_using_dac) {
1082 netdev->features |= NETIF_F_HIGHDMA;
1083 netdev->vlan_features |= NETIF_F_HIGHDMA;
1084 }
1085
1086 netdev->vlan_features |= (NETIF_F_TSO |
1087 NETIF_F_HW_CSUM |
1088 NETIF_F_SG);
1089
1090 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1091 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1092 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1093 netdev->priv_flags |= IFF_UNICAST_FLT;
1094
1095 /* MTU range: 46 - 16110 */
1096 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1097 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1098
1099 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1100
1101 /* initialize eeprom parameters */
1102 if (e1000_init_eeprom_params(hw)) {
1103 e_err(probe, "EEPROM initialization failed\n");
1104 goto err_eeprom;
1105 }
1106
1107 /* before reading the EEPROM, reset the controller to
1108 * put the device in a known good starting state
1109 */
1110
1111 e1000_reset_hw(hw);
1112
1113 /* make sure the EEPROM is good */
1114 if (e1000_validate_eeprom_checksum(hw) < 0) {
1115 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1116 e1000_dump_eeprom(adapter);
1117 /* set MAC address to all zeroes to invalidate and temporary
1118 * disable this device for the user. This blocks regular
1119 * traffic while still permitting ethtool ioctls from reaching
1120 * the hardware as well as allowing the user to run the
1121 * interface after manually setting a hw addr using
1122 * `ip set address`
1123 */
1124 memset(hw->mac_addr, 0, netdev->addr_len);
1125 } else {
1126 /* copy the MAC address out of the EEPROM */
1127 if (e1000_read_mac_addr(hw))
1128 e_err(probe, "EEPROM Read Error\n");
1129 }
1130 /* don't block initialization here due to bad MAC address */
1131 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1132
1133 if (!is_valid_ether_addr(netdev->dev_addr))
1134 e_err(probe, "Invalid MAC Address\n");
1135
1136
1137 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1138 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1139 e1000_82547_tx_fifo_stall_task);
1140 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1141 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1142
1143 e1000_check_options(adapter);
1144
1145 /* Initial Wake on LAN setting
1146 * If APM wake is enabled in the EEPROM,
1147 * enable the ACPI Magic Packet filter
1148 */
1149
1150 switch (hw->mac_type) {
1151 case e1000_82542_rev2_0:
1152 case e1000_82542_rev2_1:
1153 case e1000_82543:
1154 break;
1155 case e1000_82544:
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1158 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1159 break;
1160 case e1000_82546:
1161 case e1000_82546_rev_3:
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1163 e1000_read_eeprom(hw,
1164 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1165 break;
1166 }
1167 /* Fall Through */
1168 default:
1169 e1000_read_eeprom(hw,
1170 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1171 break;
1172 }
1173 if (eeprom_data & eeprom_apme_mask)
1174 adapter->eeprom_wol |= E1000_WUFC_MAG;
1175
1176 /* now that we have the eeprom settings, apply the special cases
1177 * where the eeprom may be wrong or the board simply won't support
1178 * wake on lan on a particular port
1179 */
1180 switch (pdev->device) {
1181 case E1000_DEV_ID_82546GB_PCIE:
1182 adapter->eeprom_wol = 0;
1183 break;
1184 case E1000_DEV_ID_82546EB_FIBER:
1185 case E1000_DEV_ID_82546GB_FIBER:
1186 /* Wake events only supported on port A for dual fiber
1187 * regardless of eeprom setting
1188 */
1189 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1190 adapter->eeprom_wol = 0;
1191 break;
1192 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1193 /* if quad port adapter, disable WoL on all but port A */
1194 if (global_quad_port_a != 0)
1195 adapter->eeprom_wol = 0;
1196 else
1197 adapter->quad_port_a = true;
1198 /* Reset for multiple quad port adapters */
1199 if (++global_quad_port_a == 4)
1200 global_quad_port_a = 0;
1201 break;
1202 }
1203
1204 /* initialize the wol settings based on the eeprom settings */
1205 adapter->wol = adapter->eeprom_wol;
1206 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1207
1208 /* Auto detect PHY address */
1209 if (hw->mac_type == e1000_ce4100) {
1210 for (i = 0; i < 32; i++) {
1211 hw->phy_addr = i;
1212 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1213
1214 if (tmp != 0 && tmp != 0xFF)
1215 break;
1216 }
1217
1218 if (i >= 32)
1219 goto err_eeprom;
1220 }
1221
1222 /* reset the hardware with the new settings */
1223 e1000_reset(adapter);
1224
1225 strcpy(netdev->name, "eth%d");
1226 err = register_netdev(netdev);
1227 if (err)
1228 goto err_register;
1229
1230 e1000_vlan_filter_on_off(adapter, false);
1231
1232 /* print bus type/speed/width info */
1233 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1234 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1235 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1236 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1237 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1238 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1239 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1240 netdev->dev_addr);
1241
1242 /* carrier off reporting is important to ethtool even BEFORE open */
1243 netif_carrier_off(netdev);
1244
1245 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1246
1247 cards_found++;
1248 return 0;
1249
1250err_register:
1251err_eeprom:
1252 e1000_phy_hw_reset(hw);
1253
1254 if (hw->flash_address)
1255 iounmap(hw->flash_address);
1256 kfree(adapter->tx_ring);
1257 kfree(adapter->rx_ring);
1258err_dma:
1259err_sw_init:
1260err_mdio_ioremap:
1261 iounmap(hw->ce4100_gbe_mdio_base_virt);
1262 iounmap(hw->hw_addr);
1263err_ioremap:
1264 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1265 free_netdev(netdev);
1266err_alloc_etherdev:
1267 pci_release_selected_regions(pdev, bars);
1268err_pci_reg:
1269 if (!adapter || disable_dev)
1270 pci_disable_device(pdev);
1271 return err;
1272}
1273
1274/**
1275 * e1000_remove - Device Removal Routine
1276 * @pdev: PCI device information struct
1277 *
1278 * e1000_remove is called by the PCI subsystem to alert the driver
1279 * that it should release a PCI device. That could be caused by a
1280 * Hot-Plug event, or because the driver is going to be removed from
1281 * memory.
1282 **/
1283static void e1000_remove(struct pci_dev *pdev)
1284{
1285 struct net_device *netdev = pci_get_drvdata(pdev);
1286 struct e1000_adapter *adapter = netdev_priv(netdev);
1287 struct e1000_hw *hw = &adapter->hw;
1288 bool disable_dev;
1289
1290 e1000_down_and_stop(adapter);
1291 e1000_release_manageability(adapter);
1292
1293 unregister_netdev(netdev);
1294
1295 e1000_phy_hw_reset(hw);
1296
1297 kfree(adapter->tx_ring);
1298 kfree(adapter->rx_ring);
1299
1300 if (hw->mac_type == e1000_ce4100)
1301 iounmap(hw->ce4100_gbe_mdio_base_virt);
1302 iounmap(hw->hw_addr);
1303 if (hw->flash_address)
1304 iounmap(hw->flash_address);
1305 pci_release_selected_regions(pdev, adapter->bars);
1306
1307 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1308 free_netdev(netdev);
1309
1310 if (disable_dev)
1311 pci_disable_device(pdev);
1312}
1313
1314/**
1315 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1316 * @adapter: board private structure to initialize
1317 *
1318 * e1000_sw_init initializes the Adapter private data structure.
1319 * e1000_init_hw_struct MUST be called before this function
1320 **/
1321static int e1000_sw_init(struct e1000_adapter *adapter)
1322{
1323 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1324
1325 adapter->num_tx_queues = 1;
1326 adapter->num_rx_queues = 1;
1327
1328 if (e1000_alloc_queues(adapter)) {
1329 e_err(probe, "Unable to allocate memory for queues\n");
1330 return -ENOMEM;
1331 }
1332
1333 /* Explicitly disable IRQ since the NIC can be in any state. */
1334 e1000_irq_disable(adapter);
1335
1336 spin_lock_init(&adapter->stats_lock);
1337
1338 set_bit(__E1000_DOWN, &adapter->flags);
1339
1340 return 0;
1341}
1342
1343/**
1344 * e1000_alloc_queues - Allocate memory for all rings
1345 * @adapter: board private structure to initialize
1346 *
1347 * We allocate one ring per queue at run-time since we don't know the
1348 * number of queues at compile-time.
1349 **/
1350static int e1000_alloc_queues(struct e1000_adapter *adapter)
1351{
1352 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354 if (!adapter->tx_ring)
1355 return -ENOMEM;
1356
1357 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359 if (!adapter->rx_ring) {
1360 kfree(adapter->tx_ring);
1361 return -ENOMEM;
1362 }
1363
1364 return E1000_SUCCESS;
1365}
1366
1367/**
1368 * e1000_open - Called when a network interface is made active
1369 * @netdev: network interface device structure
1370 *
1371 * Returns 0 on success, negative value on failure
1372 *
1373 * The open entry point is called when a network interface is made
1374 * active by the system (IFF_UP). At this point all resources needed
1375 * for transmit and receive operations are allocated, the interrupt
1376 * handler is registered with the OS, the watchdog task is started,
1377 * and the stack is notified that the interface is ready.
1378 **/
1379int e1000_open(struct net_device *netdev)
1380{
1381 struct e1000_adapter *adapter = netdev_priv(netdev);
1382 struct e1000_hw *hw = &adapter->hw;
1383 int err;
1384
1385 /* disallow open during test */
1386 if (test_bit(__E1000_TESTING, &adapter->flags))
1387 return -EBUSY;
1388
1389 netif_carrier_off(netdev);
1390
1391 /* allocate transmit descriptors */
1392 err = e1000_setup_all_tx_resources(adapter);
1393 if (err)
1394 goto err_setup_tx;
1395
1396 /* allocate receive descriptors */
1397 err = e1000_setup_all_rx_resources(adapter);
1398 if (err)
1399 goto err_setup_rx;
1400
1401 e1000_power_up_phy(adapter);
1402
1403 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1404 if ((hw->mng_cookie.status &
1405 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1406 e1000_update_mng_vlan(adapter);
1407 }
1408
1409 /* before we allocate an interrupt, we must be ready to handle it.
1410 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1411 * as soon as we call pci_request_irq, so we have to setup our
1412 * clean_rx handler before we do so.
1413 */
1414 e1000_configure(adapter);
1415
1416 err = e1000_request_irq(adapter);
1417 if (err)
1418 goto err_req_irq;
1419
1420 /* From here on the code is the same as e1000_up() */
1421 clear_bit(__E1000_DOWN, &adapter->flags);
1422
1423 napi_enable(&adapter->napi);
1424
1425 e1000_irq_enable(adapter);
1426
1427 netif_start_queue(netdev);
1428
1429 /* fire a link status change interrupt to start the watchdog */
1430 ew32(ICS, E1000_ICS_LSC);
1431
1432 return E1000_SUCCESS;
1433
1434err_req_irq:
1435 e1000_power_down_phy(adapter);
1436 e1000_free_all_rx_resources(adapter);
1437err_setup_rx:
1438 e1000_free_all_tx_resources(adapter);
1439err_setup_tx:
1440 e1000_reset(adapter);
1441
1442 return err;
1443}
1444
1445/**
1446 * e1000_close - Disables a network interface
1447 * @netdev: network interface device structure
1448 *
1449 * Returns 0, this is not allowed to fail
1450 *
1451 * The close entry point is called when an interface is de-activated
1452 * by the OS. The hardware is still under the drivers control, but
1453 * needs to be disabled. A global MAC reset is issued to stop the
1454 * hardware, and all transmit and receive resources are freed.
1455 **/
1456int e1000_close(struct net_device *netdev)
1457{
1458 struct e1000_adapter *adapter = netdev_priv(netdev);
1459 struct e1000_hw *hw = &adapter->hw;
1460 int count = E1000_CHECK_RESET_COUNT;
1461
1462 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1463 usleep_range(10000, 20000);
1464
1465 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1466 e1000_down(adapter);
1467 e1000_power_down_phy(adapter);
1468 e1000_free_irq(adapter);
1469
1470 e1000_free_all_tx_resources(adapter);
1471 e1000_free_all_rx_resources(adapter);
1472
1473 /* kill manageability vlan ID if supported, but not if a vlan with
1474 * the same ID is registered on the host OS (let 8021q kill it)
1475 */
1476 if ((hw->mng_cookie.status &
1477 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1478 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1479 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1480 adapter->mng_vlan_id);
1481 }
1482
1483 return 0;
1484}
1485
1486/**
1487 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1488 * @adapter: address of board private structure
1489 * @start: address of beginning of memory
1490 * @len: length of memory
1491 **/
1492static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1493 unsigned long len)
1494{
1495 struct e1000_hw *hw = &adapter->hw;
1496 unsigned long begin = (unsigned long)start;
1497 unsigned long end = begin + len;
1498
1499 /* First rev 82545 and 82546 need to not allow any memory
1500 * write location to cross 64k boundary due to errata 23
1501 */
1502 if (hw->mac_type == e1000_82545 ||
1503 hw->mac_type == e1000_ce4100 ||
1504 hw->mac_type == e1000_82546) {
1505 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1506 }
1507
1508 return true;
1509}
1510
1511/**
1512 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1513 * @adapter: board private structure
1514 * @txdr: tx descriptor ring (for a specific queue) to setup
1515 *
1516 * Return 0 on success, negative on failure
1517 **/
1518static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1519 struct e1000_tx_ring *txdr)
1520{
1521 struct pci_dev *pdev = adapter->pdev;
1522 int size;
1523
1524 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1525 txdr->buffer_info = vzalloc(size);
1526 if (!txdr->buffer_info)
1527 return -ENOMEM;
1528
1529 /* round up to nearest 4K */
1530
1531 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1532 txdr->size = ALIGN(txdr->size, 4096);
1533
1534 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1535 GFP_KERNEL);
1536 if (!txdr->desc) {
1537setup_tx_desc_die:
1538 vfree(txdr->buffer_info);
1539 return -ENOMEM;
1540 }
1541
1542 /* Fix for errata 23, can't cross 64kB boundary */
1543 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 void *olddesc = txdr->desc;
1545 dma_addr_t olddma = txdr->dma;
1546 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1547 txdr->size, txdr->desc);
1548 /* Try again, without freeing the previous */
1549 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1550 &txdr->dma, GFP_KERNEL);
1551 /* Failed allocation, critical failure */
1552 if (!txdr->desc) {
1553 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554 olddma);
1555 goto setup_tx_desc_die;
1556 }
1557
1558 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1559 /* give up */
1560 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1561 txdr->dma);
1562 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1563 olddma);
1564 e_err(probe, "Unable to allocate aligned memory "
1565 "for the transmit descriptor ring\n");
1566 vfree(txdr->buffer_info);
1567 return -ENOMEM;
1568 } else {
1569 /* Free old allocation, new allocation was successful */
1570 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1571 olddma);
1572 }
1573 }
1574 memset(txdr->desc, 0, txdr->size);
1575
1576 txdr->next_to_use = 0;
1577 txdr->next_to_clean = 0;
1578
1579 return 0;
1580}
1581
1582/**
1583 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1584 * (Descriptors) for all queues
1585 * @adapter: board private structure
1586 *
1587 * Return 0 on success, negative on failure
1588 **/
1589int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1590{
1591 int i, err = 0;
1592
1593 for (i = 0; i < adapter->num_tx_queues; i++) {
1594 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1595 if (err) {
1596 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1597 for (i-- ; i >= 0; i--)
1598 e1000_free_tx_resources(adapter,
1599 &adapter->tx_ring[i]);
1600 break;
1601 }
1602 }
1603
1604 return err;
1605}
1606
1607/**
1608 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1609 * @adapter: board private structure
1610 *
1611 * Configure the Tx unit of the MAC after a reset.
1612 **/
1613static void e1000_configure_tx(struct e1000_adapter *adapter)
1614{
1615 u64 tdba;
1616 struct e1000_hw *hw = &adapter->hw;
1617 u32 tdlen, tctl, tipg;
1618 u32 ipgr1, ipgr2;
1619
1620 /* Setup the HW Tx Head and Tail descriptor pointers */
1621
1622 switch (adapter->num_tx_queues) {
1623 case 1:
1624 default:
1625 tdba = adapter->tx_ring[0].dma;
1626 tdlen = adapter->tx_ring[0].count *
1627 sizeof(struct e1000_tx_desc);
1628 ew32(TDLEN, tdlen);
1629 ew32(TDBAH, (tdba >> 32));
1630 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1631 ew32(TDT, 0);
1632 ew32(TDH, 0);
1633 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1634 E1000_TDH : E1000_82542_TDH);
1635 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1636 E1000_TDT : E1000_82542_TDT);
1637 break;
1638 }
1639
1640 /* Set the default values for the Tx Inter Packet Gap timer */
1641 if ((hw->media_type == e1000_media_type_fiber ||
1642 hw->media_type == e1000_media_type_internal_serdes))
1643 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1644 else
1645 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1646
1647 switch (hw->mac_type) {
1648 case e1000_82542_rev2_0:
1649 case e1000_82542_rev2_1:
1650 tipg = DEFAULT_82542_TIPG_IPGT;
1651 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1652 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1653 break;
1654 default:
1655 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1656 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1657 break;
1658 }
1659 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1660 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1661 ew32(TIPG, tipg);
1662
1663 /* Set the Tx Interrupt Delay register */
1664
1665 ew32(TIDV, adapter->tx_int_delay);
1666 if (hw->mac_type >= e1000_82540)
1667 ew32(TADV, adapter->tx_abs_int_delay);
1668
1669 /* Program the Transmit Control Register */
1670
1671 tctl = er32(TCTL);
1672 tctl &= ~E1000_TCTL_CT;
1673 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1674 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1675
1676 e1000_config_collision_dist(hw);
1677
1678 /* Setup Transmit Descriptor Settings for eop descriptor */
1679 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1680
1681 /* only set IDE if we are delaying interrupts using the timers */
1682 if (adapter->tx_int_delay)
1683 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1684
1685 if (hw->mac_type < e1000_82543)
1686 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1687 else
1688 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1689
1690 /* Cache if we're 82544 running in PCI-X because we'll
1691 * need this to apply a workaround later in the send path.
1692 */
1693 if (hw->mac_type == e1000_82544 &&
1694 hw->bus_type == e1000_bus_type_pcix)
1695 adapter->pcix_82544 = true;
1696
1697 ew32(TCTL, tctl);
1698
1699}
1700
1701/**
1702 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1703 * @adapter: board private structure
1704 * @rxdr: rx descriptor ring (for a specific queue) to setup
1705 *
1706 * Returns 0 on success, negative on failure
1707 **/
1708static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1709 struct e1000_rx_ring *rxdr)
1710{
1711 struct pci_dev *pdev = adapter->pdev;
1712 int size, desc_len;
1713
1714 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1715 rxdr->buffer_info = vzalloc(size);
1716 if (!rxdr->buffer_info)
1717 return -ENOMEM;
1718
1719 desc_len = sizeof(struct e1000_rx_desc);
1720
1721 /* Round up to nearest 4K */
1722
1723 rxdr->size = rxdr->count * desc_len;
1724 rxdr->size = ALIGN(rxdr->size, 4096);
1725
1726 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1727 GFP_KERNEL);
1728 if (!rxdr->desc) {
1729setup_rx_desc_die:
1730 vfree(rxdr->buffer_info);
1731 return -ENOMEM;
1732 }
1733
1734 /* Fix for errata 23, can't cross 64kB boundary */
1735 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736 void *olddesc = rxdr->desc;
1737 dma_addr_t olddma = rxdr->dma;
1738 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739 rxdr->size, rxdr->desc);
1740 /* Try again, without freeing the previous */
1741 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742 &rxdr->dma, GFP_KERNEL);
1743 /* Failed allocation, critical failure */
1744 if (!rxdr->desc) {
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 goto setup_rx_desc_die;
1748 }
1749
1750 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1751 /* give up */
1752 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1753 rxdr->dma);
1754 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 olddma);
1756 e_err(probe, "Unable to allocate aligned memory for "
1757 "the Rx descriptor ring\n");
1758 goto setup_rx_desc_die;
1759 } else {
1760 /* Free old allocation, new allocation was successful */
1761 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1762 olddma);
1763 }
1764 }
1765 memset(rxdr->desc, 0, rxdr->size);
1766
1767 rxdr->next_to_clean = 0;
1768 rxdr->next_to_use = 0;
1769 rxdr->rx_skb_top = NULL;
1770
1771 return 0;
1772}
1773
1774/**
1775 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1776 * (Descriptors) for all queues
1777 * @adapter: board private structure
1778 *
1779 * Return 0 on success, negative on failure
1780 **/
1781int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1782{
1783 int i, err = 0;
1784
1785 for (i = 0; i < adapter->num_rx_queues; i++) {
1786 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1787 if (err) {
1788 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1789 for (i-- ; i >= 0; i--)
1790 e1000_free_rx_resources(adapter,
1791 &adapter->rx_ring[i]);
1792 break;
1793 }
1794 }
1795
1796 return err;
1797}
1798
1799/**
1800 * e1000_setup_rctl - configure the receive control registers
1801 * @adapter: Board private structure
1802 **/
1803static void e1000_setup_rctl(struct e1000_adapter *adapter)
1804{
1805 struct e1000_hw *hw = &adapter->hw;
1806 u32 rctl;
1807
1808 rctl = er32(RCTL);
1809
1810 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1811
1812 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1813 E1000_RCTL_RDMTS_HALF |
1814 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1815
1816 if (hw->tbi_compatibility_on == 1)
1817 rctl |= E1000_RCTL_SBP;
1818 else
1819 rctl &= ~E1000_RCTL_SBP;
1820
1821 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1822 rctl &= ~E1000_RCTL_LPE;
1823 else
1824 rctl |= E1000_RCTL_LPE;
1825
1826 /* Setup buffer sizes */
1827 rctl &= ~E1000_RCTL_SZ_4096;
1828 rctl |= E1000_RCTL_BSEX;
1829 switch (adapter->rx_buffer_len) {
1830 case E1000_RXBUFFER_2048:
1831 default:
1832 rctl |= E1000_RCTL_SZ_2048;
1833 rctl &= ~E1000_RCTL_BSEX;
1834 break;
1835 case E1000_RXBUFFER_4096:
1836 rctl |= E1000_RCTL_SZ_4096;
1837 break;
1838 case E1000_RXBUFFER_8192:
1839 rctl |= E1000_RCTL_SZ_8192;
1840 break;
1841 case E1000_RXBUFFER_16384:
1842 rctl |= E1000_RCTL_SZ_16384;
1843 break;
1844 }
1845
1846 /* This is useful for sniffing bad packets. */
1847 if (adapter->netdev->features & NETIF_F_RXALL) {
1848 /* UPE and MPE will be handled by normal PROMISC logic
1849 * in e1000e_set_rx_mode
1850 */
1851 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1852 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1853 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1854
1855 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1856 E1000_RCTL_DPF | /* Allow filtered pause */
1857 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1858 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1859 * and that breaks VLANs.
1860 */
1861 }
1862
1863 ew32(RCTL, rctl);
1864}
1865
1866/**
1867 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1868 * @adapter: board private structure
1869 *
1870 * Configure the Rx unit of the MAC after a reset.
1871 **/
1872static void e1000_configure_rx(struct e1000_adapter *adapter)
1873{
1874 u64 rdba;
1875 struct e1000_hw *hw = &adapter->hw;
1876 u32 rdlen, rctl, rxcsum;
1877
1878 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1879 rdlen = adapter->rx_ring[0].count *
1880 sizeof(struct e1000_rx_desc);
1881 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1882 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1883 } else {
1884 rdlen = adapter->rx_ring[0].count *
1885 sizeof(struct e1000_rx_desc);
1886 adapter->clean_rx = e1000_clean_rx_irq;
1887 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1888 }
1889
1890 /* disable receives while setting up the descriptors */
1891 rctl = er32(RCTL);
1892 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1893
1894 /* set the Receive Delay Timer Register */
1895 ew32(RDTR, adapter->rx_int_delay);
1896
1897 if (hw->mac_type >= e1000_82540) {
1898 ew32(RADV, adapter->rx_abs_int_delay);
1899 if (adapter->itr_setting != 0)
1900 ew32(ITR, 1000000000 / (adapter->itr * 256));
1901 }
1902
1903 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1904 * the Base and Length of the Rx Descriptor Ring
1905 */
1906 switch (adapter->num_rx_queues) {
1907 case 1:
1908 default:
1909 rdba = adapter->rx_ring[0].dma;
1910 ew32(RDLEN, rdlen);
1911 ew32(RDBAH, (rdba >> 32));
1912 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1913 ew32(RDT, 0);
1914 ew32(RDH, 0);
1915 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1916 E1000_RDH : E1000_82542_RDH);
1917 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1918 E1000_RDT : E1000_82542_RDT);
1919 break;
1920 }
1921
1922 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923 if (hw->mac_type >= e1000_82543) {
1924 rxcsum = er32(RXCSUM);
1925 if (adapter->rx_csum)
1926 rxcsum |= E1000_RXCSUM_TUOFL;
1927 else
1928 /* don't need to clear IPPCSE as it defaults to 0 */
1929 rxcsum &= ~E1000_RXCSUM_TUOFL;
1930 ew32(RXCSUM, rxcsum);
1931 }
1932
1933 /* Enable Receives */
1934 ew32(RCTL, rctl | E1000_RCTL_EN);
1935}
1936
1937/**
1938 * e1000_free_tx_resources - Free Tx Resources per Queue
1939 * @adapter: board private structure
1940 * @tx_ring: Tx descriptor ring for a specific queue
1941 *
1942 * Free all transmit software resources
1943 **/
1944static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945 struct e1000_tx_ring *tx_ring)
1946{
1947 struct pci_dev *pdev = adapter->pdev;
1948
1949 e1000_clean_tx_ring(adapter, tx_ring);
1950
1951 vfree(tx_ring->buffer_info);
1952 tx_ring->buffer_info = NULL;
1953
1954 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955 tx_ring->dma);
1956
1957 tx_ring->desc = NULL;
1958}
1959
1960/**
1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962 * @adapter: board private structure
1963 *
1964 * Free all transmit software resources
1965 **/
1966void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1967{
1968 int i;
1969
1970 for (i = 0; i < adapter->num_tx_queues; i++)
1971 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1972}
1973
1974static void
1975e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976 struct e1000_tx_buffer *buffer_info)
1977{
1978 if (buffer_info->dma) {
1979 if (buffer_info->mapped_as_page)
1980 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981 buffer_info->length, DMA_TO_DEVICE);
1982 else
1983 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984 buffer_info->length,
1985 DMA_TO_DEVICE);
1986 buffer_info->dma = 0;
1987 }
1988 if (buffer_info->skb) {
1989 dev_kfree_skb_any(buffer_info->skb);
1990 buffer_info->skb = NULL;
1991 }
1992 buffer_info->time_stamp = 0;
1993 /* buffer_info must be completely set up in the transmit path */
1994}
1995
1996/**
1997 * e1000_clean_tx_ring - Free Tx Buffers
1998 * @adapter: board private structure
1999 * @tx_ring: ring to be cleaned
2000 **/
2001static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002 struct e1000_tx_ring *tx_ring)
2003{
2004 struct e1000_hw *hw = &adapter->hw;
2005 struct e1000_tx_buffer *buffer_info;
2006 unsigned long size;
2007 unsigned int i;
2008
2009 /* Free all the Tx ring sk_buffs */
2010
2011 for (i = 0; i < tx_ring->count; i++) {
2012 buffer_info = &tx_ring->buffer_info[i];
2013 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014 }
2015
2016 netdev_reset_queue(adapter->netdev);
2017 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2018 memset(tx_ring->buffer_info, 0, size);
2019
2020 /* Zero out the descriptor ring */
2021
2022 memset(tx_ring->desc, 0, tx_ring->size);
2023
2024 tx_ring->next_to_use = 0;
2025 tx_ring->next_to_clean = 0;
2026 tx_ring->last_tx_tso = false;
2027
2028 writel(0, hw->hw_addr + tx_ring->tdh);
2029 writel(0, hw->hw_addr + tx_ring->tdt);
2030}
2031
2032/**
2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034 * @adapter: board private structure
2035 **/
2036static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2037{
2038 int i;
2039
2040 for (i = 0; i < adapter->num_tx_queues; i++)
2041 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2042}
2043
2044/**
2045 * e1000_free_rx_resources - Free Rx Resources
2046 * @adapter: board private structure
2047 * @rx_ring: ring to clean the resources from
2048 *
2049 * Free all receive software resources
2050 **/
2051static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2052 struct e1000_rx_ring *rx_ring)
2053{
2054 struct pci_dev *pdev = adapter->pdev;
2055
2056 e1000_clean_rx_ring(adapter, rx_ring);
2057
2058 vfree(rx_ring->buffer_info);
2059 rx_ring->buffer_info = NULL;
2060
2061 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2062 rx_ring->dma);
2063
2064 rx_ring->desc = NULL;
2065}
2066
2067/**
2068 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2069 * @adapter: board private structure
2070 *
2071 * Free all receive software resources
2072 **/
2073void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2074{
2075 int i;
2076
2077 for (i = 0; i < adapter->num_rx_queues; i++)
2078 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2079}
2080
2081#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2082static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2083{
2084 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2085 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2086}
2087
2088static void *e1000_alloc_frag(const struct e1000_adapter *a)
2089{
2090 unsigned int len = e1000_frag_len(a);
2091 u8 *data = netdev_alloc_frag(len);
2092
2093 if (likely(data))
2094 data += E1000_HEADROOM;
2095 return data;
2096}
2097
2098/**
2099 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2100 * @adapter: board private structure
2101 * @rx_ring: ring to free buffers from
2102 **/
2103static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104 struct e1000_rx_ring *rx_ring)
2105{
2106 struct e1000_hw *hw = &adapter->hw;
2107 struct e1000_rx_buffer *buffer_info;
2108 struct pci_dev *pdev = adapter->pdev;
2109 unsigned long size;
2110 unsigned int i;
2111
2112 /* Free all the Rx netfrags */
2113 for (i = 0; i < rx_ring->count; i++) {
2114 buffer_info = &rx_ring->buffer_info[i];
2115 if (adapter->clean_rx == e1000_clean_rx_irq) {
2116 if (buffer_info->dma)
2117 dma_unmap_single(&pdev->dev, buffer_info->dma,
2118 adapter->rx_buffer_len,
2119 DMA_FROM_DEVICE);
2120 if (buffer_info->rxbuf.data) {
2121 skb_free_frag(buffer_info->rxbuf.data);
2122 buffer_info->rxbuf.data = NULL;
2123 }
2124 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2125 if (buffer_info->dma)
2126 dma_unmap_page(&pdev->dev, buffer_info->dma,
2127 adapter->rx_buffer_len,
2128 DMA_FROM_DEVICE);
2129 if (buffer_info->rxbuf.page) {
2130 put_page(buffer_info->rxbuf.page);
2131 buffer_info->rxbuf.page = NULL;
2132 }
2133 }
2134
2135 buffer_info->dma = 0;
2136 }
2137
2138 /* there also may be some cached data from a chained receive */
2139 napi_free_frags(&adapter->napi);
2140 rx_ring->rx_skb_top = NULL;
2141
2142 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2143 memset(rx_ring->buffer_info, 0, size);
2144
2145 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 writel(0, hw->hw_addr + rx_ring->rdh);
2152 writel(0, hw->hw_addr + rx_ring->rdt);
2153}
2154
2155/**
2156 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2158 **/
2159static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2160{
2161 int i;
2162
2163 for (i = 0; i < adapter->num_rx_queues; i++)
2164 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2165}
2166
2167/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2168 * and memory write and invalidate disabled for certain operations
2169 */
2170static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2171{
2172 struct e1000_hw *hw = &adapter->hw;
2173 struct net_device *netdev = adapter->netdev;
2174 u32 rctl;
2175
2176 e1000_pci_clear_mwi(hw);
2177
2178 rctl = er32(RCTL);
2179 rctl |= E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (netif_running(netdev))
2185 e1000_clean_all_rx_rings(adapter);
2186}
2187
2188static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2189{
2190 struct e1000_hw *hw = &adapter->hw;
2191 struct net_device *netdev = adapter->netdev;
2192 u32 rctl;
2193
2194 rctl = er32(RCTL);
2195 rctl &= ~E1000_RCTL_RST;
2196 ew32(RCTL, rctl);
2197 E1000_WRITE_FLUSH();
2198 mdelay(5);
2199
2200 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2201 e1000_pci_set_mwi(hw);
2202
2203 if (netif_running(netdev)) {
2204 /* No need to loop, because 82542 supports only 1 queue */
2205 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2206 e1000_configure_rx(adapter);
2207 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2208 }
2209}
2210
2211/**
2212 * e1000_set_mac - Change the Ethernet Address of the NIC
2213 * @netdev: network interface device structure
2214 * @p: pointer to an address structure
2215 *
2216 * Returns 0 on success, negative on failure
2217 **/
2218static int e1000_set_mac(struct net_device *netdev, void *p)
2219{
2220 struct e1000_adapter *adapter = netdev_priv(netdev);
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct sockaddr *addr = p;
2223
2224 if (!is_valid_ether_addr(addr->sa_data))
2225 return -EADDRNOTAVAIL;
2226
2227 /* 82542 2.0 needs to be in reset to write receive address registers */
2228
2229 if (hw->mac_type == e1000_82542_rev2_0)
2230 e1000_enter_82542_rst(adapter);
2231
2232 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2233 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2234
2235 e1000_rar_set(hw, hw->mac_addr, 0);
2236
2237 if (hw->mac_type == e1000_82542_rev2_0)
2238 e1000_leave_82542_rst(adapter);
2239
2240 return 0;
2241}
2242
2243/**
2244 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2245 * @netdev: network interface device structure
2246 *
2247 * The set_rx_mode entry point is called whenever the unicast or multicast
2248 * address lists or the network interface flags are updated. This routine is
2249 * responsible for configuring the hardware for proper unicast, multicast,
2250 * promiscuous mode, and all-multi behavior.
2251 **/
2252static void e1000_set_rx_mode(struct net_device *netdev)
2253{
2254 struct e1000_adapter *adapter = netdev_priv(netdev);
2255 struct e1000_hw *hw = &adapter->hw;
2256 struct netdev_hw_addr *ha;
2257 bool use_uc = false;
2258 u32 rctl;
2259 u32 hash_value;
2260 int i, rar_entries = E1000_RAR_ENTRIES;
2261 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2262 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2263
2264 if (!mcarray)
2265 return;
2266
2267 /* Check for Promiscuous and All Multicast modes */
2268
2269 rctl = er32(RCTL);
2270
2271 if (netdev->flags & IFF_PROMISC) {
2272 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273 rctl &= ~E1000_RCTL_VFE;
2274 } else {
2275 if (netdev->flags & IFF_ALLMULTI)
2276 rctl |= E1000_RCTL_MPE;
2277 else
2278 rctl &= ~E1000_RCTL_MPE;
2279 /* Enable VLAN filter if there is a VLAN */
2280 if (e1000_vlan_used(adapter))
2281 rctl |= E1000_RCTL_VFE;
2282 }
2283
2284 if (netdev_uc_count(netdev) > rar_entries - 1) {
2285 rctl |= E1000_RCTL_UPE;
2286 } else if (!(netdev->flags & IFF_PROMISC)) {
2287 rctl &= ~E1000_RCTL_UPE;
2288 use_uc = true;
2289 }
2290
2291 ew32(RCTL, rctl);
2292
2293 /* 82542 2.0 needs to be in reset to write receive address registers */
2294
2295 if (hw->mac_type == e1000_82542_rev2_0)
2296 e1000_enter_82542_rst(adapter);
2297
2298 /* load the first 14 addresses into the exact filters 1-14. Unicast
2299 * addresses take precedence to avoid disabling unicast filtering
2300 * when possible.
2301 *
2302 * RAR 0 is used for the station MAC address
2303 * if there are not 14 addresses, go ahead and clear the filters
2304 */
2305 i = 1;
2306 if (use_uc)
2307 netdev_for_each_uc_addr(ha, netdev) {
2308 if (i == rar_entries)
2309 break;
2310 e1000_rar_set(hw, ha->addr, i++);
2311 }
2312
2313 netdev_for_each_mc_addr(ha, netdev) {
2314 if (i == rar_entries) {
2315 /* load any remaining addresses into the hash table */
2316 u32 hash_reg, hash_bit, mta;
2317 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2318 hash_reg = (hash_value >> 5) & 0x7F;
2319 hash_bit = hash_value & 0x1F;
2320 mta = (1 << hash_bit);
2321 mcarray[hash_reg] |= mta;
2322 } else {
2323 e1000_rar_set(hw, ha->addr, i++);
2324 }
2325 }
2326
2327 for (; i < rar_entries; i++) {
2328 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2329 E1000_WRITE_FLUSH();
2330 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2331 E1000_WRITE_FLUSH();
2332 }
2333
2334 /* write the hash table completely, write from bottom to avoid
2335 * both stupid write combining chipsets, and flushing each write
2336 */
2337 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2338 /* If we are on an 82544 has an errata where writing odd
2339 * offsets overwrites the previous even offset, but writing
2340 * backwards over the range solves the issue by always
2341 * writing the odd offset first
2342 */
2343 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2344 }
2345 E1000_WRITE_FLUSH();
2346
2347 if (hw->mac_type == e1000_82542_rev2_0)
2348 e1000_leave_82542_rst(adapter);
2349
2350 kfree(mcarray);
2351}
2352
2353/**
2354 * e1000_update_phy_info_task - get phy info
2355 * @work: work struct contained inside adapter struct
2356 *
2357 * Need to wait a few seconds after link up to get diagnostic information from
2358 * the phy
2359 */
2360static void e1000_update_phy_info_task(struct work_struct *work)
2361{
2362 struct e1000_adapter *adapter = container_of(work,
2363 struct e1000_adapter,
2364 phy_info_task.work);
2365
2366 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2367}
2368
2369/**
2370 * e1000_82547_tx_fifo_stall_task - task to complete work
2371 * @work: work struct contained inside adapter struct
2372 **/
2373static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2374{
2375 struct e1000_adapter *adapter = container_of(work,
2376 struct e1000_adapter,
2377 fifo_stall_task.work);
2378 struct e1000_hw *hw = &adapter->hw;
2379 struct net_device *netdev = adapter->netdev;
2380 u32 tctl;
2381
2382 if (atomic_read(&adapter->tx_fifo_stall)) {
2383 if ((er32(TDT) == er32(TDH)) &&
2384 (er32(TDFT) == er32(TDFH)) &&
2385 (er32(TDFTS) == er32(TDFHS))) {
2386 tctl = er32(TCTL);
2387 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388 ew32(TDFT, adapter->tx_head_addr);
2389 ew32(TDFH, adapter->tx_head_addr);
2390 ew32(TDFTS, adapter->tx_head_addr);
2391 ew32(TDFHS, adapter->tx_head_addr);
2392 ew32(TCTL, tctl);
2393 E1000_WRITE_FLUSH();
2394
2395 adapter->tx_fifo_head = 0;
2396 atomic_set(&adapter->tx_fifo_stall, 0);
2397 netif_wake_queue(netdev);
2398 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400 }
2401 }
2402}
2403
2404bool e1000_has_link(struct e1000_adapter *adapter)
2405{
2406 struct e1000_hw *hw = &adapter->hw;
2407 bool link_active = false;
2408
2409 /* get_link_status is set on LSC (link status) interrupt or rx
2410 * sequence error interrupt (except on intel ce4100).
2411 * get_link_status will stay false until the
2412 * e1000_check_for_link establishes link for copper adapters
2413 * ONLY
2414 */
2415 switch (hw->media_type) {
2416 case e1000_media_type_copper:
2417 if (hw->mac_type == e1000_ce4100)
2418 hw->get_link_status = 1;
2419 if (hw->get_link_status) {
2420 e1000_check_for_link(hw);
2421 link_active = !hw->get_link_status;
2422 } else {
2423 link_active = true;
2424 }
2425 break;
2426 case e1000_media_type_fiber:
2427 e1000_check_for_link(hw);
2428 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2429 break;
2430 case e1000_media_type_internal_serdes:
2431 e1000_check_for_link(hw);
2432 link_active = hw->serdes_has_link;
2433 break;
2434 default:
2435 break;
2436 }
2437
2438 return link_active;
2439}
2440
2441/**
2442 * e1000_watchdog - work function
2443 * @work: work struct contained inside adapter struct
2444 **/
2445static void e1000_watchdog(struct work_struct *work)
2446{
2447 struct e1000_adapter *adapter = container_of(work,
2448 struct e1000_adapter,
2449 watchdog_task.work);
2450 struct e1000_hw *hw = &adapter->hw;
2451 struct net_device *netdev = adapter->netdev;
2452 struct e1000_tx_ring *txdr = adapter->tx_ring;
2453 u32 link, tctl;
2454
2455 link = e1000_has_link(adapter);
2456 if ((netif_carrier_ok(netdev)) && link)
2457 goto link_up;
2458
2459 if (link) {
2460 if (!netif_carrier_ok(netdev)) {
2461 u32 ctrl;
2462 bool txb2b = true;
2463 /* update snapshot of PHY registers on LSC */
2464 e1000_get_speed_and_duplex(hw,
2465 &adapter->link_speed,
2466 &adapter->link_duplex);
2467
2468 ctrl = er32(CTRL);
2469 pr_info("%s NIC Link is Up %d Mbps %s, "
2470 "Flow Control: %s\n",
2471 netdev->name,
2472 adapter->link_speed,
2473 adapter->link_duplex == FULL_DUPLEX ?
2474 "Full Duplex" : "Half Duplex",
2475 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2476 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2477 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2478 E1000_CTRL_TFCE) ? "TX" : "None")));
2479
2480 /* adjust timeout factor according to speed/duplex */
2481 adapter->tx_timeout_factor = 1;
2482 switch (adapter->link_speed) {
2483 case SPEED_10:
2484 txb2b = false;
2485 adapter->tx_timeout_factor = 16;
2486 break;
2487 case SPEED_100:
2488 txb2b = false;
2489 /* maybe add some timeout factor ? */
2490 break;
2491 }
2492
2493 /* enable transmits in the hardware */
2494 tctl = er32(TCTL);
2495 tctl |= E1000_TCTL_EN;
2496 ew32(TCTL, tctl);
2497
2498 netif_carrier_on(netdev);
2499 if (!test_bit(__E1000_DOWN, &adapter->flags))
2500 schedule_delayed_work(&adapter->phy_info_task,
2501 2 * HZ);
2502 adapter->smartspeed = 0;
2503 }
2504 } else {
2505 if (netif_carrier_ok(netdev)) {
2506 adapter->link_speed = 0;
2507 adapter->link_duplex = 0;
2508 pr_info("%s NIC Link is Down\n",
2509 netdev->name);
2510 netif_carrier_off(netdev);
2511
2512 if (!test_bit(__E1000_DOWN, &adapter->flags))
2513 schedule_delayed_work(&adapter->phy_info_task,
2514 2 * HZ);
2515 }
2516
2517 e1000_smartspeed(adapter);
2518 }
2519
2520link_up:
2521 e1000_update_stats(adapter);
2522
2523 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2524 adapter->tpt_old = adapter->stats.tpt;
2525 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2526 adapter->colc_old = adapter->stats.colc;
2527
2528 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2529 adapter->gorcl_old = adapter->stats.gorcl;
2530 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2531 adapter->gotcl_old = adapter->stats.gotcl;
2532
2533 e1000_update_adaptive(hw);
2534
2535 if (!netif_carrier_ok(netdev)) {
2536 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2537 /* We've lost link, so the controller stops DMA,
2538 * but we've got queued Tx work that's never going
2539 * to get done, so reset controller to flush Tx.
2540 * (Do the reset outside of interrupt context).
2541 */
2542 adapter->tx_timeout_count++;
2543 schedule_work(&adapter->reset_task);
2544 /* exit immediately since reset is imminent */
2545 return;
2546 }
2547 }
2548
2549 /* Simple mode for Interrupt Throttle Rate (ITR) */
2550 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2551 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2552 * Total asymmetrical Tx or Rx gets ITR=8000;
2553 * everyone else is between 2000-8000.
2554 */
2555 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2556 u32 dif = (adapter->gotcl > adapter->gorcl ?
2557 adapter->gotcl - adapter->gorcl :
2558 adapter->gorcl - adapter->gotcl) / 10000;
2559 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2560
2561 ew32(ITR, 1000000000 / (itr * 256));
2562 }
2563
2564 /* Cause software interrupt to ensure rx ring is cleaned */
2565 ew32(ICS, E1000_ICS_RXDMT0);
2566
2567 /* Force detection of hung controller every watchdog period */
2568 adapter->detect_tx_hung = true;
2569
2570 /* Reschedule the task */
2571 if (!test_bit(__E1000_DOWN, &adapter->flags))
2572 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2573}
2574
2575enum latency_range {
2576 lowest_latency = 0,
2577 low_latency = 1,
2578 bulk_latency = 2,
2579 latency_invalid = 255
2580};
2581
2582/**
2583 * e1000_update_itr - update the dynamic ITR value based on statistics
2584 * @adapter: pointer to adapter
2585 * @itr_setting: current adapter->itr
2586 * @packets: the number of packets during this measurement interval
2587 * @bytes: the number of bytes during this measurement interval
2588 *
2589 * Stores a new ITR value based on packets and byte
2590 * counts during the last interrupt. The advantage of per interrupt
2591 * computation is faster updates and more accurate ITR for the current
2592 * traffic pattern. Constants in this function were computed
2593 * based on theoretical maximum wire speed and thresholds were set based
2594 * on testing data as well as attempting to minimize response time
2595 * while increasing bulk throughput.
2596 * this functionality is controlled by the InterruptThrottleRate module
2597 * parameter (see e1000_param.c)
2598 **/
2599static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2600 u16 itr_setting, int packets, int bytes)
2601{
2602 unsigned int retval = itr_setting;
2603 struct e1000_hw *hw = &adapter->hw;
2604
2605 if (unlikely(hw->mac_type < e1000_82540))
2606 goto update_itr_done;
2607
2608 if (packets == 0)
2609 goto update_itr_done;
2610
2611 switch (itr_setting) {
2612 case lowest_latency:
2613 /* jumbo frames get bulk treatment*/
2614 if (bytes/packets > 8000)
2615 retval = bulk_latency;
2616 else if ((packets < 5) && (bytes > 512))
2617 retval = low_latency;
2618 break;
2619 case low_latency: /* 50 usec aka 20000 ints/s */
2620 if (bytes > 10000) {
2621 /* jumbo frames need bulk latency setting */
2622 if (bytes/packets > 8000)
2623 retval = bulk_latency;
2624 else if ((packets < 10) || ((bytes/packets) > 1200))
2625 retval = bulk_latency;
2626 else if ((packets > 35))
2627 retval = lowest_latency;
2628 } else if (bytes/packets > 2000)
2629 retval = bulk_latency;
2630 else if (packets <= 2 && bytes < 512)
2631 retval = lowest_latency;
2632 break;
2633 case bulk_latency: /* 250 usec aka 4000 ints/s */
2634 if (bytes > 25000) {
2635 if (packets > 35)
2636 retval = low_latency;
2637 } else if (bytes < 6000) {
2638 retval = low_latency;
2639 }
2640 break;
2641 }
2642
2643update_itr_done:
2644 return retval;
2645}
2646
2647static void e1000_set_itr(struct e1000_adapter *adapter)
2648{
2649 struct e1000_hw *hw = &adapter->hw;
2650 u16 current_itr;
2651 u32 new_itr = adapter->itr;
2652
2653 if (unlikely(hw->mac_type < e1000_82540))
2654 return;
2655
2656 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2657 if (unlikely(adapter->link_speed != SPEED_1000)) {
2658 current_itr = 0;
2659 new_itr = 4000;
2660 goto set_itr_now;
2661 }
2662
2663 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2664 adapter->total_tx_packets,
2665 adapter->total_tx_bytes);
2666 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2667 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2668 adapter->tx_itr = low_latency;
2669
2670 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2671 adapter->total_rx_packets,
2672 adapter->total_rx_bytes);
2673 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2674 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2675 adapter->rx_itr = low_latency;
2676
2677 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2678
2679 switch (current_itr) {
2680 /* counts and packets in update_itr are dependent on these numbers */
2681 case lowest_latency:
2682 new_itr = 70000;
2683 break;
2684 case low_latency:
2685 new_itr = 20000; /* aka hwitr = ~200 */
2686 break;
2687 case bulk_latency:
2688 new_itr = 4000;
2689 break;
2690 default:
2691 break;
2692 }
2693
2694set_itr_now:
2695 if (new_itr != adapter->itr) {
2696 /* this attempts to bias the interrupt rate towards Bulk
2697 * by adding intermediate steps when interrupt rate is
2698 * increasing
2699 */
2700 new_itr = new_itr > adapter->itr ?
2701 min(adapter->itr + (new_itr >> 2), new_itr) :
2702 new_itr;
2703 adapter->itr = new_itr;
2704 ew32(ITR, 1000000000 / (new_itr * 256));
2705 }
2706}
2707
2708#define E1000_TX_FLAGS_CSUM 0x00000001
2709#define E1000_TX_FLAGS_VLAN 0x00000002
2710#define E1000_TX_FLAGS_TSO 0x00000004
2711#define E1000_TX_FLAGS_IPV4 0x00000008
2712#define E1000_TX_FLAGS_NO_FCS 0x00000010
2713#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2714#define E1000_TX_FLAGS_VLAN_SHIFT 16
2715
2716static int e1000_tso(struct e1000_adapter *adapter,
2717 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2718 __be16 protocol)
2719{
2720 struct e1000_context_desc *context_desc;
2721 struct e1000_tx_buffer *buffer_info;
2722 unsigned int i;
2723 u32 cmd_length = 0;
2724 u16 ipcse = 0, tucse, mss;
2725 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2726
2727 if (skb_is_gso(skb)) {
2728 int err;
2729
2730 err = skb_cow_head(skb, 0);
2731 if (err < 0)
2732 return err;
2733
2734 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2735 mss = skb_shinfo(skb)->gso_size;
2736 if (protocol == htons(ETH_P_IP)) {
2737 struct iphdr *iph = ip_hdr(skb);
2738 iph->tot_len = 0;
2739 iph->check = 0;
2740 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2741 iph->daddr, 0,
2742 IPPROTO_TCP,
2743 0);
2744 cmd_length = E1000_TXD_CMD_IP;
2745 ipcse = skb_transport_offset(skb) - 1;
2746 } else if (skb_is_gso_v6(skb)) {
2747 ipv6_hdr(skb)->payload_len = 0;
2748 tcp_hdr(skb)->check =
2749 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2750 &ipv6_hdr(skb)->daddr,
2751 0, IPPROTO_TCP, 0);
2752 ipcse = 0;
2753 }
2754 ipcss = skb_network_offset(skb);
2755 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2756 tucss = skb_transport_offset(skb);
2757 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2758 tucse = 0;
2759
2760 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2761 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2762
2763 i = tx_ring->next_to_use;
2764 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2765 buffer_info = &tx_ring->buffer_info[i];
2766
2767 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2768 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2769 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2770 context_desc->upper_setup.tcp_fields.tucss = tucss;
2771 context_desc->upper_setup.tcp_fields.tucso = tucso;
2772 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2773 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2774 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2775 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779
2780 if (++i == tx_ring->count)
2781 i = 0;
2782
2783 tx_ring->next_to_use = i;
2784
2785 return true;
2786 }
2787 return false;
2788}
2789
2790static bool e1000_tx_csum(struct e1000_adapter *adapter,
2791 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2792 __be16 protocol)
2793{
2794 struct e1000_context_desc *context_desc;
2795 struct e1000_tx_buffer *buffer_info;
2796 unsigned int i;
2797 u8 css;
2798 u32 cmd_len = E1000_TXD_CMD_DEXT;
2799
2800 if (skb->ip_summed != CHECKSUM_PARTIAL)
2801 return false;
2802
2803 switch (protocol) {
2804 case cpu_to_be16(ETH_P_IP):
2805 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2806 cmd_len |= E1000_TXD_CMD_TCP;
2807 break;
2808 case cpu_to_be16(ETH_P_IPV6):
2809 /* XXX not handling all IPV6 headers */
2810 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2811 cmd_len |= E1000_TXD_CMD_TCP;
2812 break;
2813 default:
2814 if (unlikely(net_ratelimit()))
2815 e_warn(drv, "checksum_partial proto=%x!\n",
2816 skb->protocol);
2817 break;
2818 }
2819
2820 css = skb_checksum_start_offset(skb);
2821
2822 i = tx_ring->next_to_use;
2823 buffer_info = &tx_ring->buffer_info[i];
2824 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825
2826 context_desc->lower_setup.ip_config = 0;
2827 context_desc->upper_setup.tcp_fields.tucss = css;
2828 context_desc->upper_setup.tcp_fields.tucso =
2829 css + skb->csum_offset;
2830 context_desc->upper_setup.tcp_fields.tucse = 0;
2831 context_desc->tcp_seg_setup.data = 0;
2832 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2833
2834 buffer_info->time_stamp = jiffies;
2835 buffer_info->next_to_watch = i;
2836
2837 if (unlikely(++i == tx_ring->count))
2838 i = 0;
2839
2840 tx_ring->next_to_use = i;
2841
2842 return true;
2843}
2844
2845#define E1000_MAX_TXD_PWR 12
2846#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2847
2848static int e1000_tx_map(struct e1000_adapter *adapter,
2849 struct e1000_tx_ring *tx_ring,
2850 struct sk_buff *skb, unsigned int first,
2851 unsigned int max_per_txd, unsigned int nr_frags,
2852 unsigned int mss)
2853{
2854 struct e1000_hw *hw = &adapter->hw;
2855 struct pci_dev *pdev = adapter->pdev;
2856 struct e1000_tx_buffer *buffer_info;
2857 unsigned int len = skb_headlen(skb);
2858 unsigned int offset = 0, size, count = 0, i;
2859 unsigned int f, bytecount, segs;
2860
2861 i = tx_ring->next_to_use;
2862
2863 while (len) {
2864 buffer_info = &tx_ring->buffer_info[i];
2865 size = min(len, max_per_txd);
2866 /* Workaround for Controller erratum --
2867 * descriptor for non-tso packet in a linear SKB that follows a
2868 * tso gets written back prematurely before the data is fully
2869 * DMA'd to the controller
2870 */
2871 if (!skb->data_len && tx_ring->last_tx_tso &&
2872 !skb_is_gso(skb)) {
2873 tx_ring->last_tx_tso = false;
2874 size -= 4;
2875 }
2876
2877 /* Workaround for premature desc write-backs
2878 * in TSO mode. Append 4-byte sentinel desc
2879 */
2880 if (unlikely(mss && !nr_frags && size == len && size > 8))
2881 size -= 4;
2882 /* work-around for errata 10 and it applies
2883 * to all controllers in PCI-X mode
2884 * The fix is to make sure that the first descriptor of a
2885 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2886 */
2887 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2888 (size > 2015) && count == 0))
2889 size = 2015;
2890
2891 /* Workaround for potential 82544 hang in PCI-X. Avoid
2892 * terminating buffers within evenly-aligned dwords.
2893 */
2894 if (unlikely(adapter->pcix_82544 &&
2895 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2896 size > 4))
2897 size -= 4;
2898
2899 buffer_info->length = size;
2900 /* set time_stamp *before* dma to help avoid a possible race */
2901 buffer_info->time_stamp = jiffies;
2902 buffer_info->mapped_as_page = false;
2903 buffer_info->dma = dma_map_single(&pdev->dev,
2904 skb->data + offset,
2905 size, DMA_TO_DEVICE);
2906 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2907 goto dma_error;
2908 buffer_info->next_to_watch = i;
2909
2910 len -= size;
2911 offset += size;
2912 count++;
2913 if (len) {
2914 i++;
2915 if (unlikely(i == tx_ring->count))
2916 i = 0;
2917 }
2918 }
2919
2920 for (f = 0; f < nr_frags; f++) {
2921 const struct skb_frag_struct *frag;
2922
2923 frag = &skb_shinfo(skb)->frags[f];
2924 len = skb_frag_size(frag);
2925 offset = 0;
2926
2927 while (len) {
2928 unsigned long bufend;
2929 i++;
2930 if (unlikely(i == tx_ring->count))
2931 i = 0;
2932
2933 buffer_info = &tx_ring->buffer_info[i];
2934 size = min(len, max_per_txd);
2935 /* Workaround for premature desc write-backs
2936 * in TSO mode. Append 4-byte sentinel desc
2937 */
2938 if (unlikely(mss && f == (nr_frags-1) &&
2939 size == len && size > 8))
2940 size -= 4;
2941 /* Workaround for potential 82544 hang in PCI-X.
2942 * Avoid terminating buffers within evenly-aligned
2943 * dwords.
2944 */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i == 0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999{
3000 struct e1000_tx_desc *tx_desc = NULL;
3001 struct e1000_tx_buffer *buffer_info;
3002 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3003 unsigned int i;
3004
3005 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3006 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3007 E1000_TXD_CMD_TSE;
3008 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009
3010 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3011 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3012 }
3013
3014 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3015 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3016 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3017 }
3018
3019 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3020 txd_lower |= E1000_TXD_CMD_VLE;
3021 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3022 }
3023
3024 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3025 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3026
3027 i = tx_ring->next_to_use;
3028
3029 while (count--) {
3030 buffer_info = &tx_ring->buffer_info[i];
3031 tx_desc = E1000_TX_DESC(*tx_ring, i);
3032 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3033 tx_desc->lower.data =
3034 cpu_to_le32(txd_lower | buffer_info->length);
3035 tx_desc->upper.data = cpu_to_le32(txd_upper);
3036 if (unlikely(++i == tx_ring->count))
3037 i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64).
3050 */
3051 wmb();
3052
3053 tx_ring->next_to_use = i;
3054}
3055
3056/* 82547 workaround to avoid controller hang in half-duplex environment.
3057 * The workaround is to avoid queuing a large packet that would span
3058 * the internal Tx FIFO ring boundary by notifying the stack to resend
3059 * the packet at a later time. This gives the Tx FIFO an opportunity to
3060 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3061 * to the beginning of the Tx FIFO.
3062 */
3063
3064#define E1000_FIFO_HDR 0x10
3065#define E1000_82547_PAD_LEN 0x3E0
3066
3067static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3068 struct sk_buff *skb)
3069{
3070 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3071 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3072
3073 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3074
3075 if (adapter->link_duplex != HALF_DUPLEX)
3076 goto no_fifo_stall_required;
3077
3078 if (atomic_read(&adapter->tx_fifo_stall))
3079 return 1;
3080
3081 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3082 atomic_set(&adapter->tx_fifo_stall, 1);
3083 return 1;
3084 }
3085
3086no_fifo_stall_required:
3087 adapter->tx_fifo_head += skb_fifo_len;
3088 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3089 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3090 return 0;
3091}
3092
3093static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3094{
3095 struct e1000_adapter *adapter = netdev_priv(netdev);
3096 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3097
3098 netif_stop_queue(netdev);
3099 /* Herbert's original patch had:
3100 * smp_mb__after_netif_stop_queue();
3101 * but since that doesn't exist yet, just open code it.
3102 */
3103 smp_mb();
3104
3105 /* We need to check again in a case another CPU has just
3106 * made room available.
3107 */
3108 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3109 return -EBUSY;
3110
3111 /* A reprieve! */
3112 netif_start_queue(netdev);
3113 ++adapter->restart_queue;
3114 return 0;
3115}
3116
3117static int e1000_maybe_stop_tx(struct net_device *netdev,
3118 struct e1000_tx_ring *tx_ring, int size)
3119{
3120 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3121 return 0;
3122 return __e1000_maybe_stop_tx(netdev, size);
3123}
3124
3125#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3126static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3127 struct net_device *netdev)
3128{
3129 struct e1000_adapter *adapter = netdev_priv(netdev);
3130 struct e1000_hw *hw = &adapter->hw;
3131 struct e1000_tx_ring *tx_ring;
3132 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3133 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3134 unsigned int tx_flags = 0;
3135 unsigned int len = skb_headlen(skb);
3136 unsigned int nr_frags;
3137 unsigned int mss;
3138 int count = 0;
3139 int tso;
3140 unsigned int f;
3141 __be16 protocol = vlan_get_protocol(skb);
3142
3143 /* This goes back to the question of how to logically map a Tx queue
3144 * to a flow. Right now, performance is impacted slightly negatively
3145 * if using multiple Tx queues. If the stack breaks away from a
3146 * single qdisc implementation, we can look at this again.
3147 */
3148 tx_ring = adapter->tx_ring;
3149
3150 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3151 * packets may get corrupted during padding by HW.
3152 * To WA this issue, pad all small packets manually.
3153 */
3154 if (eth_skb_pad(skb))
3155 return NETDEV_TX_OK;
3156
3157 mss = skb_shinfo(skb)->gso_size;
3158 /* The controller does a simple calculation to
3159 * make sure there is enough room in the FIFO before
3160 * initiating the DMA for each buffer. The calc is:
3161 * 4 = ceil(buffer len/mss). To make sure we don't
3162 * overrun the FIFO, adjust the max buffer len if mss
3163 * drops.
3164 */
3165 if (mss) {
3166 u8 hdr_len;
3167 max_per_txd = min(mss << 2, max_per_txd);
3168 max_txd_pwr = fls(max_per_txd) - 1;
3169
3170 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3171 if (skb->data_len && hdr_len == len) {
3172 switch (hw->mac_type) {
3173 unsigned int pull_size;
3174 case e1000_82544:
3175 /* Make sure we have room to chop off 4 bytes,
3176 * and that the end alignment will work out to
3177 * this hardware's requirements
3178 * NOTE: this is a TSO only workaround
3179 * if end byte alignment not correct move us
3180 * into the next dword
3181 */
3182 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3183 & 4)
3184 break;
3185 /* fall through */
3186 pull_size = min((unsigned int)4, skb->data_len);
3187 if (!__pskb_pull_tail(skb, pull_size)) {
3188 e_err(drv, "__pskb_pull_tail "
3189 "failed.\n");
3190 dev_kfree_skb_any(skb);
3191 return NETDEV_TX_OK;
3192 }
3193 len = skb_headlen(skb);
3194 break;
3195 default:
3196 /* do nothing */
3197 break;
3198 }
3199 }
3200 }
3201
3202 /* reserve a descriptor for the offload context */
3203 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3204 count++;
3205 count++;
3206
3207 /* Controller Erratum workaround */
3208 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3209 count++;
3210
3211 count += TXD_USE_COUNT(len, max_txd_pwr);
3212
3213 if (adapter->pcix_82544)
3214 count++;
3215
3216 /* work-around for errata 10 and it applies to all controllers
3217 * in PCI-X mode, so add one more descriptor to the count
3218 */
3219 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3220 (len > 2015)))
3221 count++;
3222
3223 nr_frags = skb_shinfo(skb)->nr_frags;
3224 for (f = 0; f < nr_frags; f++)
3225 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3226 max_txd_pwr);
3227 if (adapter->pcix_82544)
3228 count += nr_frags;
3229
3230 /* need: count + 2 desc gap to keep tail from touching
3231 * head, otherwise try next time
3232 */
3233 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3234 return NETDEV_TX_BUSY;
3235
3236 if (unlikely((hw->mac_type == e1000_82547) &&
3237 (e1000_82547_fifo_workaround(adapter, skb)))) {
3238 netif_stop_queue(netdev);
3239 if (!test_bit(__E1000_DOWN, &adapter->flags))
3240 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3241 return NETDEV_TX_BUSY;
3242 }
3243
3244 if (skb_vlan_tag_present(skb)) {
3245 tx_flags |= E1000_TX_FLAGS_VLAN;
3246 tx_flags |= (skb_vlan_tag_get(skb) <<
3247 E1000_TX_FLAGS_VLAN_SHIFT);
3248 }
3249
3250 first = tx_ring->next_to_use;
3251
3252 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3253 if (tso < 0) {
3254 dev_kfree_skb_any(skb);
3255 return NETDEV_TX_OK;
3256 }
3257
3258 if (likely(tso)) {
3259 if (likely(hw->mac_type != e1000_82544))
3260 tx_ring->last_tx_tso = true;
3261 tx_flags |= E1000_TX_FLAGS_TSO;
3262 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3263 tx_flags |= E1000_TX_FLAGS_CSUM;
3264
3265 if (protocol == htons(ETH_P_IP))
3266 tx_flags |= E1000_TX_FLAGS_IPV4;
3267
3268 if (unlikely(skb->no_fcs))
3269 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3270
3271 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3272 nr_frags, mss);
3273
3274 if (count) {
3275 /* The descriptors needed is higher than other Intel drivers
3276 * due to a number of workarounds. The breakdown is below:
3277 * Data descriptors: MAX_SKB_FRAGS + 1
3278 * Context Descriptor: 1
3279 * Keep head from touching tail: 2
3280 * Workarounds: 3
3281 */
3282 int desc_needed = MAX_SKB_FRAGS + 7;
3283
3284 netdev_sent_queue(netdev, skb->len);
3285 skb_tx_timestamp(skb);
3286
3287 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3288
3289 /* 82544 potentially requires twice as many data descriptors
3290 * in order to guarantee buffers don't end on evenly-aligned
3291 * dwords
3292 */
3293 if (adapter->pcix_82544)
3294 desc_needed += MAX_SKB_FRAGS + 1;
3295
3296 /* Make sure there is space in the ring for the next send. */
3297 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3298
3299 if (!skb->xmit_more ||
3300 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3301 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3302 /* we need this if more than one processor can write to
3303 * our tail at a time, it synchronizes IO on IA64/Altix
3304 * systems
3305 */
3306 mmiowb();
3307 }
3308 } else {
3309 dev_kfree_skb_any(skb);
3310 tx_ring->buffer_info[first].time_stamp = 0;
3311 tx_ring->next_to_use = first;
3312 }
3313
3314 return NETDEV_TX_OK;
3315}
3316
3317#define NUM_REGS 38 /* 1 based count */
3318static void e1000_regdump(struct e1000_adapter *adapter)
3319{
3320 struct e1000_hw *hw = &adapter->hw;
3321 u32 regs[NUM_REGS];
3322 u32 *regs_buff = regs;
3323 int i = 0;
3324
3325 static const char * const reg_name[] = {
3326 "CTRL", "STATUS",
3327 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3328 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3329 "TIDV", "TXDCTL", "TADV", "TARC0",
3330 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3331 "TXDCTL1", "TARC1",
3332 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3333 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3334 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3335 };
3336
3337 regs_buff[0] = er32(CTRL);
3338 regs_buff[1] = er32(STATUS);
3339
3340 regs_buff[2] = er32(RCTL);
3341 regs_buff[3] = er32(RDLEN);
3342 regs_buff[4] = er32(RDH);
3343 regs_buff[5] = er32(RDT);
3344 regs_buff[6] = er32(RDTR);
3345
3346 regs_buff[7] = er32(TCTL);
3347 regs_buff[8] = er32(TDBAL);
3348 regs_buff[9] = er32(TDBAH);
3349 regs_buff[10] = er32(TDLEN);
3350 regs_buff[11] = er32(TDH);
3351 regs_buff[12] = er32(TDT);
3352 regs_buff[13] = er32(TIDV);
3353 regs_buff[14] = er32(TXDCTL);
3354 regs_buff[15] = er32(TADV);
3355 regs_buff[16] = er32(TARC0);
3356
3357 regs_buff[17] = er32(TDBAL1);
3358 regs_buff[18] = er32(TDBAH1);
3359 regs_buff[19] = er32(TDLEN1);
3360 regs_buff[20] = er32(TDH1);
3361 regs_buff[21] = er32(TDT1);
3362 regs_buff[22] = er32(TXDCTL1);
3363 regs_buff[23] = er32(TARC1);
3364 regs_buff[24] = er32(CTRL_EXT);
3365 regs_buff[25] = er32(ERT);
3366 regs_buff[26] = er32(RDBAL0);
3367 regs_buff[27] = er32(RDBAH0);
3368 regs_buff[28] = er32(TDFH);
3369 regs_buff[29] = er32(TDFT);
3370 regs_buff[30] = er32(TDFHS);
3371 regs_buff[31] = er32(TDFTS);
3372 regs_buff[32] = er32(TDFPC);
3373 regs_buff[33] = er32(RDFH);
3374 regs_buff[34] = er32(RDFT);
3375 regs_buff[35] = er32(RDFHS);
3376 regs_buff[36] = er32(RDFTS);
3377 regs_buff[37] = er32(RDFPC);
3378
3379 pr_info("Register dump\n");
3380 for (i = 0; i < NUM_REGS; i++)
3381 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3382}
3383
3384/*
3385 * e1000_dump: Print registers, tx ring and rx ring
3386 */
3387static void e1000_dump(struct e1000_adapter *adapter)
3388{
3389 /* this code doesn't handle multiple rings */
3390 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3391 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3392 int i;
3393
3394 if (!netif_msg_hw(adapter))
3395 return;
3396
3397 /* Print Registers */
3398 e1000_regdump(adapter);
3399
3400 /* transmit dump */
3401 pr_info("TX Desc ring0 dump\n");
3402
3403 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3404 *
3405 * Legacy Transmit Descriptor
3406 * +--------------------------------------------------------------+
3407 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3408 * +--------------------------------------------------------------+
3409 * 8 | Special | CSS | Status | CMD | CSO | Length |
3410 * +--------------------------------------------------------------+
3411 * 63 48 47 36 35 32 31 24 23 16 15 0
3412 *
3413 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3414 * 63 48 47 40 39 32 31 16 15 8 7 0
3415 * +----------------------------------------------------------------+
3416 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3417 * +----------------------------------------------------------------+
3418 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3419 * +----------------------------------------------------------------+
3420 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3421 *
3422 * Extended Data Descriptor (DTYP=0x1)
3423 * +----------------------------------------------------------------+
3424 * 0 | Buffer Address [63:0] |
3425 * +----------------------------------------------------------------+
3426 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3427 * +----------------------------------------------------------------+
3428 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3429 */
3430 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3431 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3432
3433 if (!netif_msg_tx_done(adapter))
3434 goto rx_ring_summary;
3435
3436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3437 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3438 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3439 struct my_u { __le64 a; __le64 b; };
3440 struct my_u *u = (struct my_u *)tx_desc;
3441 const char *type;
3442
3443 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3444 type = "NTC/U";
3445 else if (i == tx_ring->next_to_use)
3446 type = "NTU";
3447 else if (i == tx_ring->next_to_clean)
3448 type = "NTC";
3449 else
3450 type = "";
3451
3452 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3453 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3454 le64_to_cpu(u->a), le64_to_cpu(u->b),
3455 (u64)buffer_info->dma, buffer_info->length,
3456 buffer_info->next_to_watch,
3457 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3458 }
3459
3460rx_ring_summary:
3461 /* receive dump */
3462 pr_info("\nRX Desc ring dump\n");
3463
3464 /* Legacy Receive Descriptor Format
3465 *
3466 * +-----------------------------------------------------+
3467 * | Buffer Address [63:0] |
3468 * +-----------------------------------------------------+
3469 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3470 * +-----------------------------------------------------+
3471 * 63 48 47 40 39 32 31 16 15 0
3472 */
3473 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3474
3475 if (!netif_msg_rx_status(adapter))
3476 goto exit;
3477
3478 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3479 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3480 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3481 struct my_u { __le64 a; __le64 b; };
3482 struct my_u *u = (struct my_u *)rx_desc;
3483 const char *type;
3484
3485 if (i == rx_ring->next_to_use)
3486 type = "NTU";
3487 else if (i == rx_ring->next_to_clean)
3488 type = "NTC";
3489 else
3490 type = "";
3491
3492 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3493 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3494 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3495 } /* for */
3496
3497 /* dump the descriptor caches */
3498 /* rx */
3499 pr_info("Rx descriptor cache in 64bit format\n");
3500 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3501 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3502 i,
3503 readl(adapter->hw.hw_addr + i+4),
3504 readl(adapter->hw.hw_addr + i),
3505 readl(adapter->hw.hw_addr + i+12),
3506 readl(adapter->hw.hw_addr + i+8));
3507 }
3508 /* tx */
3509 pr_info("Tx descriptor cache in 64bit format\n");
3510 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3511 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3512 i,
3513 readl(adapter->hw.hw_addr + i+4),
3514 readl(adapter->hw.hw_addr + i),
3515 readl(adapter->hw.hw_addr + i+12),
3516 readl(adapter->hw.hw_addr + i+8));
3517 }
3518exit:
3519 return;
3520}
3521
3522/**
3523 * e1000_tx_timeout - Respond to a Tx Hang
3524 * @netdev: network interface device structure
3525 **/
3526static void e1000_tx_timeout(struct net_device *netdev)
3527{
3528 struct e1000_adapter *adapter = netdev_priv(netdev);
3529
3530 /* Do the reset outside of interrupt context */
3531 adapter->tx_timeout_count++;
3532 schedule_work(&adapter->reset_task);
3533}
3534
3535static void e1000_reset_task(struct work_struct *work)
3536{
3537 struct e1000_adapter *adapter =
3538 container_of(work, struct e1000_adapter, reset_task);
3539
3540 e_err(drv, "Reset adapter\n");
3541 e1000_reinit_locked(adapter);
3542}
3543
3544/**
3545 * e1000_change_mtu - Change the Maximum Transfer Unit
3546 * @netdev: network interface device structure
3547 * @new_mtu: new value for maximum frame size
3548 *
3549 * Returns 0 on success, negative on failure
3550 **/
3551static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3552{
3553 struct e1000_adapter *adapter = netdev_priv(netdev);
3554 struct e1000_hw *hw = &adapter->hw;
3555 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3556
3557 /* Adapter-specific max frame size limits. */
3558 switch (hw->mac_type) {
3559 case e1000_undefined ... e1000_82542_rev2_1:
3560 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3561 e_err(probe, "Jumbo Frames not supported.\n");
3562 return -EINVAL;
3563 }
3564 break;
3565 default:
3566 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3567 break;
3568 }
3569
3570 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3571 msleep(1);
3572 /* e1000_down has a dependency on max_frame_size */
3573 hw->max_frame_size = max_frame;
3574 if (netif_running(netdev)) {
3575 /* prevent buffers from being reallocated */
3576 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3577 e1000_down(adapter);
3578 }
3579
3580 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3581 * means we reserve 2 more, this pushes us to allocate from the next
3582 * larger slab size.
3583 * i.e. RXBUFFER_2048 --> size-4096 slab
3584 * however with the new *_jumbo_rx* routines, jumbo receives will use
3585 * fragmented skbs
3586 */
3587
3588 if (max_frame <= E1000_RXBUFFER_2048)
3589 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3590 else
3591#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3593#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3594 adapter->rx_buffer_len = PAGE_SIZE;
3595#endif
3596
3597 /* adjust allocation if LPE protects us, and we aren't using SBP */
3598 if (!hw->tbi_compatibility_on &&
3599 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3600 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3601 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3602
3603 pr_info("%s changing MTU from %d to %d\n",
3604 netdev->name, netdev->mtu, new_mtu);
3605 netdev->mtu = new_mtu;
3606
3607 if (netif_running(netdev))
3608 e1000_up(adapter);
3609 else
3610 e1000_reset(adapter);
3611
3612 clear_bit(__E1000_RESETTING, &adapter->flags);
3613
3614 return 0;
3615}
3616
3617/**
3618 * e1000_update_stats - Update the board statistics counters
3619 * @adapter: board private structure
3620 **/
3621void e1000_update_stats(struct e1000_adapter *adapter)
3622{
3623 struct net_device *netdev = adapter->netdev;
3624 struct e1000_hw *hw = &adapter->hw;
3625 struct pci_dev *pdev = adapter->pdev;
3626 unsigned long flags;
3627 u16 phy_tmp;
3628
3629#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630
3631 /* Prevent stats update while adapter is being reset, or if the pci
3632 * connection is down.
3633 */
3634 if (adapter->link_speed == 0)
3635 return;
3636 if (pci_channel_offline(pdev))
3637 return;
3638
3639 spin_lock_irqsave(&adapter->stats_lock, flags);
3640
3641 /* these counters are modified from e1000_tbi_adjust_stats,
3642 * called from the interrupt context, so they must only
3643 * be written while holding adapter->stats_lock
3644 */
3645
3646 adapter->stats.crcerrs += er32(CRCERRS);
3647 adapter->stats.gprc += er32(GPRC);
3648 adapter->stats.gorcl += er32(GORCL);
3649 adapter->stats.gorch += er32(GORCH);
3650 adapter->stats.bprc += er32(BPRC);
3651 adapter->stats.mprc += er32(MPRC);
3652 adapter->stats.roc += er32(ROC);
3653
3654 adapter->stats.prc64 += er32(PRC64);
3655 adapter->stats.prc127 += er32(PRC127);
3656 adapter->stats.prc255 += er32(PRC255);
3657 adapter->stats.prc511 += er32(PRC511);
3658 adapter->stats.prc1023 += er32(PRC1023);
3659 adapter->stats.prc1522 += er32(PRC1522);
3660
3661 adapter->stats.symerrs += er32(SYMERRS);
3662 adapter->stats.mpc += er32(MPC);
3663 adapter->stats.scc += er32(SCC);
3664 adapter->stats.ecol += er32(ECOL);
3665 adapter->stats.mcc += er32(MCC);
3666 adapter->stats.latecol += er32(LATECOL);
3667 adapter->stats.dc += er32(DC);
3668 adapter->stats.sec += er32(SEC);
3669 adapter->stats.rlec += er32(RLEC);
3670 adapter->stats.xonrxc += er32(XONRXC);
3671 adapter->stats.xontxc += er32(XONTXC);
3672 adapter->stats.xoffrxc += er32(XOFFRXC);
3673 adapter->stats.xofftxc += er32(XOFFTXC);
3674 adapter->stats.fcruc += er32(FCRUC);
3675 adapter->stats.gptc += er32(GPTC);
3676 adapter->stats.gotcl += er32(GOTCL);
3677 adapter->stats.gotch += er32(GOTCH);
3678 adapter->stats.rnbc += er32(RNBC);
3679 adapter->stats.ruc += er32(RUC);
3680 adapter->stats.rfc += er32(RFC);
3681 adapter->stats.rjc += er32(RJC);
3682 adapter->stats.torl += er32(TORL);
3683 adapter->stats.torh += er32(TORH);
3684 adapter->stats.totl += er32(TOTL);
3685 adapter->stats.toth += er32(TOTH);
3686 adapter->stats.tpr += er32(TPR);
3687
3688 adapter->stats.ptc64 += er32(PTC64);
3689 adapter->stats.ptc127 += er32(PTC127);
3690 adapter->stats.ptc255 += er32(PTC255);
3691 adapter->stats.ptc511 += er32(PTC511);
3692 adapter->stats.ptc1023 += er32(PTC1023);
3693 adapter->stats.ptc1522 += er32(PTC1522);
3694
3695 adapter->stats.mptc += er32(MPTC);
3696 adapter->stats.bptc += er32(BPTC);
3697
3698 /* used for adaptive IFS */
3699
3700 hw->tx_packet_delta = er32(TPT);
3701 adapter->stats.tpt += hw->tx_packet_delta;
3702 hw->collision_delta = er32(COLC);
3703 adapter->stats.colc += hw->collision_delta;
3704
3705 if (hw->mac_type >= e1000_82543) {
3706 adapter->stats.algnerrc += er32(ALGNERRC);
3707 adapter->stats.rxerrc += er32(RXERRC);
3708 adapter->stats.tncrs += er32(TNCRS);
3709 adapter->stats.cexterr += er32(CEXTERR);
3710 adapter->stats.tsctc += er32(TSCTC);
3711 adapter->stats.tsctfc += er32(TSCTFC);
3712 }
3713
3714 /* Fill out the OS statistics structure */
3715 netdev->stats.multicast = adapter->stats.mprc;
3716 netdev->stats.collisions = adapter->stats.colc;
3717
3718 /* Rx Errors */
3719
3720 /* RLEC on some newer hardware can be incorrect so build
3721 * our own version based on RUC and ROC
3722 */
3723 netdev->stats.rx_errors = adapter->stats.rxerrc +
3724 adapter->stats.crcerrs + adapter->stats.algnerrc +
3725 adapter->stats.ruc + adapter->stats.roc +
3726 adapter->stats.cexterr;
3727 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3728 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3729 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3730 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3731 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3732
3733 /* Tx Errors */
3734 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3735 netdev->stats.tx_errors = adapter->stats.txerrc;
3736 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3737 netdev->stats.tx_window_errors = adapter->stats.latecol;
3738 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3739 if (hw->bad_tx_carr_stats_fd &&
3740 adapter->link_duplex == FULL_DUPLEX) {
3741 netdev->stats.tx_carrier_errors = 0;
3742 adapter->stats.tncrs = 0;
3743 }
3744
3745 /* Tx Dropped needs to be maintained elsewhere */
3746
3747 /* Phy Stats */
3748 if (hw->media_type == e1000_media_type_copper) {
3749 if ((adapter->link_speed == SPEED_1000) &&
3750 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3751 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3752 adapter->phy_stats.idle_errors += phy_tmp;
3753 }
3754
3755 if ((hw->mac_type <= e1000_82546) &&
3756 (hw->phy_type == e1000_phy_m88) &&
3757 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3758 adapter->phy_stats.receive_errors += phy_tmp;
3759 }
3760
3761 /* Management Stats */
3762 if (hw->has_smbus) {
3763 adapter->stats.mgptc += er32(MGTPTC);
3764 adapter->stats.mgprc += er32(MGTPRC);
3765 adapter->stats.mgpdc += er32(MGTPDC);
3766 }
3767
3768 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3769}
3770
3771/**
3772 * e1000_intr - Interrupt Handler
3773 * @irq: interrupt number
3774 * @data: pointer to a network interface device structure
3775 **/
3776static irqreturn_t e1000_intr(int irq, void *data)
3777{
3778 struct net_device *netdev = data;
3779 struct e1000_adapter *adapter = netdev_priv(netdev);
3780 struct e1000_hw *hw = &adapter->hw;
3781 u32 icr = er32(ICR);
3782
3783 if (unlikely((!icr)))
3784 return IRQ_NONE; /* Not our interrupt */
3785
3786 /* we might have caused the interrupt, but the above
3787 * read cleared it, and just in case the driver is
3788 * down there is nothing to do so return handled
3789 */
3790 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3791 return IRQ_HANDLED;
3792
3793 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3794 hw->get_link_status = 1;
3795 /* guard against interrupt when we're going down */
3796 if (!test_bit(__E1000_DOWN, &adapter->flags))
3797 schedule_delayed_work(&adapter->watchdog_task, 1);
3798 }
3799
3800 /* disable interrupts, without the synchronize_irq bit */
3801 ew32(IMC, ~0);
3802 E1000_WRITE_FLUSH();
3803
3804 if (likely(napi_schedule_prep(&adapter->napi))) {
3805 adapter->total_tx_bytes = 0;
3806 adapter->total_tx_packets = 0;
3807 adapter->total_rx_bytes = 0;
3808 adapter->total_rx_packets = 0;
3809 __napi_schedule(&adapter->napi);
3810 } else {
3811 /* this really should not happen! if it does it is basically a
3812 * bug, but not a hard error, so enable ints and continue
3813 */
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return IRQ_HANDLED;
3819}
3820
3821/**
3822 * e1000_clean - NAPI Rx polling callback
3823 * @adapter: board private structure
3824 **/
3825static int e1000_clean(struct napi_struct *napi, int budget)
3826{
3827 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3828 napi);
3829 int tx_clean_complete = 0, work_done = 0;
3830
3831 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3832
3833 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3834
3835 if (!tx_clean_complete)
3836 work_done = budget;
3837
3838 /* If budget not fully consumed, exit the polling mode */
3839 if (work_done < budget) {
3840 if (likely(adapter->itr_setting & 3))
3841 e1000_set_itr(adapter);
3842 napi_complete_done(napi, work_done);
3843 if (!test_bit(__E1000_DOWN, &adapter->flags))
3844 e1000_irq_enable(adapter);
3845 }
3846
3847 return work_done;
3848}
3849
3850/**
3851 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3852 * @adapter: board private structure
3853 **/
3854static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3855 struct e1000_tx_ring *tx_ring)
3856{
3857 struct e1000_hw *hw = &adapter->hw;
3858 struct net_device *netdev = adapter->netdev;
3859 struct e1000_tx_desc *tx_desc, *eop_desc;
3860 struct e1000_tx_buffer *buffer_info;
3861 unsigned int i, eop;
3862 unsigned int count = 0;
3863 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3864 unsigned int bytes_compl = 0, pkts_compl = 0;
3865
3866 i = tx_ring->next_to_clean;
3867 eop = tx_ring->buffer_info[i].next_to_watch;
3868 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869
3870 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3871 (count < tx_ring->count)) {
3872 bool cleaned = false;
3873 dma_rmb(); /* read buffer_info after eop_desc */
3874 for ( ; !cleaned; count++) {
3875 tx_desc = E1000_TX_DESC(*tx_ring, i);
3876 buffer_info = &tx_ring->buffer_info[i];
3877 cleaned = (i == eop);
3878
3879 if (cleaned) {
3880 total_tx_packets += buffer_info->segs;
3881 total_tx_bytes += buffer_info->bytecount;
3882 if (buffer_info->skb) {
3883 bytes_compl += buffer_info->skb->len;
3884 pkts_compl++;
3885 }
3886
3887 }
3888 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3889 tx_desc->upper.data = 0;
3890
3891 if (unlikely(++i == tx_ring->count))
3892 i = 0;
3893 }
3894
3895 eop = tx_ring->buffer_info[i].next_to_watch;
3896 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3897 }
3898
3899 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3900 * which will reuse the cleaned buffers.
3901 */
3902 smp_store_release(&tx_ring->next_to_clean, i);
3903
3904 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3905
3906#define TX_WAKE_THRESHOLD 32
3907 if (unlikely(count && netif_carrier_ok(netdev) &&
3908 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3909 /* Make sure that anybody stopping the queue after this
3910 * sees the new next_to_clean.
3911 */
3912 smp_mb();
3913
3914 if (netif_queue_stopped(netdev) &&
3915 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3916 netif_wake_queue(netdev);
3917 ++adapter->restart_queue;
3918 }
3919 }
3920
3921 if (adapter->detect_tx_hung) {
3922 /* Detect a transmit hang in hardware, this serializes the
3923 * check with the clearing of time_stamp and movement of i
3924 */
3925 adapter->detect_tx_hung = false;
3926 if (tx_ring->buffer_info[eop].time_stamp &&
3927 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3928 (adapter->tx_timeout_factor * HZ)) &&
3929 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3930
3931 /* detected Tx unit hang */
3932 e_err(drv, "Detected Tx Unit Hang\n"
3933 " Tx Queue <%lu>\n"
3934 " TDH <%x>\n"
3935 " TDT <%x>\n"
3936 " next_to_use <%x>\n"
3937 " next_to_clean <%x>\n"
3938 "buffer_info[next_to_clean]\n"
3939 " time_stamp <%lx>\n"
3940 " next_to_watch <%x>\n"
3941 " jiffies <%lx>\n"
3942 " next_to_watch.status <%x>\n",
3943 (unsigned long)(tx_ring - adapter->tx_ring),
3944 readl(hw->hw_addr + tx_ring->tdh),
3945 readl(hw->hw_addr + tx_ring->tdt),
3946 tx_ring->next_to_use,
3947 tx_ring->next_to_clean,
3948 tx_ring->buffer_info[eop].time_stamp,
3949 eop,
3950 jiffies,
3951 eop_desc->upper.fields.status);
3952 e1000_dump(adapter);
3953 netif_stop_queue(netdev);
3954 }
3955 }
3956 adapter->total_tx_bytes += total_tx_bytes;
3957 adapter->total_tx_packets += total_tx_packets;
3958 netdev->stats.tx_bytes += total_tx_bytes;
3959 netdev->stats.tx_packets += total_tx_packets;
3960 return count < tx_ring->count;
3961}
3962
3963/**
3964 * e1000_rx_checksum - Receive Checksum Offload for 82543
3965 * @adapter: board private structure
3966 * @status_err: receive descriptor status and error fields
3967 * @csum: receive descriptor csum field
3968 * @sk_buff: socket buffer with received data
3969 **/
3970static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3971 u32 csum, struct sk_buff *skb)
3972{
3973 struct e1000_hw *hw = &adapter->hw;
3974 u16 status = (u16)status_err;
3975 u8 errors = (u8)(status_err >> 24);
3976
3977 skb_checksum_none_assert(skb);
3978
3979 /* 82543 or newer only */
3980 if (unlikely(hw->mac_type < e1000_82543))
3981 return;
3982 /* Ignore Checksum bit is set */
3983 if (unlikely(status & E1000_RXD_STAT_IXSM))
3984 return;
3985 /* TCP/UDP checksum error bit is set */
3986 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3987 /* let the stack verify checksum errors */
3988 adapter->hw_csum_err++;
3989 return;
3990 }
3991 /* TCP/UDP Checksum has not been calculated */
3992 if (!(status & E1000_RXD_STAT_TCPCS))
3993 return;
3994
3995 /* It must be a TCP or UDP packet with a valid checksum */
3996 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3997 /* TCP checksum is good */
3998 skb->ip_summed = CHECKSUM_UNNECESSARY;
3999 }
4000 adapter->hw_csum_good++;
4001}
4002
4003/**
4004 * e1000_consume_page - helper function for jumbo Rx path
4005 **/
4006static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4007 u16 length)
4008{
4009 bi->rxbuf.page = NULL;
4010 skb->len += length;
4011 skb->data_len += length;
4012 skb->truesize += PAGE_SIZE;
4013}
4014
4015/**
4016 * e1000_receive_skb - helper function to handle rx indications
4017 * @adapter: board private structure
4018 * @status: descriptor status field as written by hardware
4019 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4020 * @skb: pointer to sk_buff to be indicated to stack
4021 */
4022static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4023 __le16 vlan, struct sk_buff *skb)
4024{
4025 skb->protocol = eth_type_trans(skb, adapter->netdev);
4026
4027 if (status & E1000_RXD_STAT_VP) {
4028 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4029
4030 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4031 }
4032 napi_gro_receive(&adapter->napi, skb);
4033}
4034
4035/**
4036 * e1000_tbi_adjust_stats
4037 * @hw: Struct containing variables accessed by shared code
4038 * @frame_len: The length of the frame in question
4039 * @mac_addr: The Ethernet destination address of the frame in question
4040 *
4041 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4042 */
4043static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4044 struct e1000_hw_stats *stats,
4045 u32 frame_len, const u8 *mac_addr)
4046{
4047 u64 carry_bit;
4048
4049 /* First adjust the frame length. */
4050 frame_len--;
4051 /* We need to adjust the statistics counters, since the hardware
4052 * counters overcount this packet as a CRC error and undercount
4053 * the packet as a good packet
4054 */
4055 /* This packet should not be counted as a CRC error. */
4056 stats->crcerrs--;
4057 /* This packet does count as a Good Packet Received. */
4058 stats->gprc++;
4059
4060 /* Adjust the Good Octets received counters */
4061 carry_bit = 0x80000000 & stats->gorcl;
4062 stats->gorcl += frame_len;
4063 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4064 * Received Count) was one before the addition,
4065 * AND it is zero after, then we lost the carry out,
4066 * need to add one to Gorch (Good Octets Received Count High).
4067 * This could be simplified if all environments supported
4068 * 64-bit integers.
4069 */
4070 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4071 stats->gorch++;
4072 /* Is this a broadcast or multicast? Check broadcast first,
4073 * since the test for a multicast frame will test positive on
4074 * a broadcast frame.
4075 */
4076 if (is_broadcast_ether_addr(mac_addr))
4077 stats->bprc++;
4078 else if (is_multicast_ether_addr(mac_addr))
4079 stats->mprc++;
4080
4081 if (frame_len == hw->max_frame_size) {
4082 /* In this case, the hardware has overcounted the number of
4083 * oversize frames.
4084 */
4085 if (stats->roc > 0)
4086 stats->roc--;
4087 }
4088
4089 /* Adjust the bin counters when the extra byte put the frame in the
4090 * wrong bin. Remember that the frame_len was adjusted above.
4091 */
4092 if (frame_len == 64) {
4093 stats->prc64++;
4094 stats->prc127--;
4095 } else if (frame_len == 127) {
4096 stats->prc127++;
4097 stats->prc255--;
4098 } else if (frame_len == 255) {
4099 stats->prc255++;
4100 stats->prc511--;
4101 } else if (frame_len == 511) {
4102 stats->prc511++;
4103 stats->prc1023--;
4104 } else if (frame_len == 1023) {
4105 stats->prc1023++;
4106 stats->prc1522--;
4107 } else if (frame_len == 1522) {
4108 stats->prc1522++;
4109 }
4110}
4111
4112static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4113 u8 status, u8 errors,
4114 u32 length, const u8 *data)
4115{
4116 struct e1000_hw *hw = &adapter->hw;
4117 u8 last_byte = *(data + length - 1);
4118
4119 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4120 unsigned long irq_flags;
4121
4122 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4123 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4124 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4125
4126 return true;
4127 }
4128
4129 return false;
4130}
4131
4132static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4133 unsigned int bufsz)
4134{
4135 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4136
4137 if (unlikely(!skb))
4138 adapter->alloc_rx_buff_failed++;
4139 return skb;
4140}
4141
4142/**
4143 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4144 * @adapter: board private structure
4145 * @rx_ring: ring to clean
4146 * @work_done: amount of napi work completed this call
4147 * @work_to_do: max amount of work allowed for this call to do
4148 *
4149 * the return value indicates whether actual cleaning was done, there
4150 * is no guarantee that everything was cleaned
4151 */
4152static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4153 struct e1000_rx_ring *rx_ring,
4154 int *work_done, int work_to_do)
4155{
4156 struct net_device *netdev = adapter->netdev;
4157 struct pci_dev *pdev = adapter->pdev;
4158 struct e1000_rx_desc *rx_desc, *next_rxd;
4159 struct e1000_rx_buffer *buffer_info, *next_buffer;
4160 u32 length;
4161 unsigned int i;
4162 int cleaned_count = 0;
4163 bool cleaned = false;
4164 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4165
4166 i = rx_ring->next_to_clean;
4167 rx_desc = E1000_RX_DESC(*rx_ring, i);
4168 buffer_info = &rx_ring->buffer_info[i];
4169
4170 while (rx_desc->status & E1000_RXD_STAT_DD) {
4171 struct sk_buff *skb;
4172 u8 status;
4173
4174 if (*work_done >= work_to_do)
4175 break;
4176 (*work_done)++;
4177 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4178
4179 status = rx_desc->status;
4180
4181 if (++i == rx_ring->count)
4182 i = 0;
4183
4184 next_rxd = E1000_RX_DESC(*rx_ring, i);
4185 prefetch(next_rxd);
4186
4187 next_buffer = &rx_ring->buffer_info[i];
4188
4189 cleaned = true;
4190 cleaned_count++;
4191 dma_unmap_page(&pdev->dev, buffer_info->dma,
4192 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4193 buffer_info->dma = 0;
4194
4195 length = le16_to_cpu(rx_desc->length);
4196
4197 /* errors is only valid for DD + EOP descriptors */
4198 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4199 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4200 u8 *mapped = page_address(buffer_info->rxbuf.page);
4201
4202 if (e1000_tbi_should_accept(adapter, status,
4203 rx_desc->errors,
4204 length, mapped)) {
4205 length--;
4206 } else if (netdev->features & NETIF_F_RXALL) {
4207 goto process_skb;
4208 } else {
4209 /* an error means any chain goes out the window
4210 * too
4211 */
4212 if (rx_ring->rx_skb_top)
4213 dev_kfree_skb(rx_ring->rx_skb_top);
4214 rx_ring->rx_skb_top = NULL;
4215 goto next_desc;
4216 }
4217 }
4218
4219#define rxtop rx_ring->rx_skb_top
4220process_skb:
4221 if (!(status & E1000_RXD_STAT_EOP)) {
4222 /* this descriptor is only the beginning (or middle) */
4223 if (!rxtop) {
4224 /* this is the beginning of a chain */
4225 rxtop = napi_get_frags(&adapter->napi);
4226 if (!rxtop)
4227 break;
4228
4229 skb_fill_page_desc(rxtop, 0,
4230 buffer_info->rxbuf.page,
4231 0, length);
4232 } else {
4233 /* this is the middle of a chain */
4234 skb_fill_page_desc(rxtop,
4235 skb_shinfo(rxtop)->nr_frags,
4236 buffer_info->rxbuf.page, 0, length);
4237 }
4238 e1000_consume_page(buffer_info, rxtop, length);
4239 goto next_desc;
4240 } else {
4241 if (rxtop) {
4242 /* end of the chain */
4243 skb_fill_page_desc(rxtop,
4244 skb_shinfo(rxtop)->nr_frags,
4245 buffer_info->rxbuf.page, 0, length);
4246 skb = rxtop;
4247 rxtop = NULL;
4248 e1000_consume_page(buffer_info, skb, length);
4249 } else {
4250 struct page *p;
4251 /* no chain, got EOP, this buf is the packet
4252 * copybreak to save the put_page/alloc_page
4253 */
4254 p = buffer_info->rxbuf.page;
4255 if (length <= copybreak) {
4256 u8 *vaddr;
4257
4258 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4259 length -= 4;
4260 skb = e1000_alloc_rx_skb(adapter,
4261 length);
4262 if (!skb)
4263 break;
4264
4265 vaddr = kmap_atomic(p);
4266 memcpy(skb_tail_pointer(skb), vaddr,
4267 length);
4268 kunmap_atomic(vaddr);
4269 /* re-use the page, so don't erase
4270 * buffer_info->rxbuf.page
4271 */
4272 skb_put(skb, length);
4273 e1000_rx_checksum(adapter,
4274 status | rx_desc->errors << 24,
4275 le16_to_cpu(rx_desc->csum), skb);
4276
4277 total_rx_bytes += skb->len;
4278 total_rx_packets++;
4279
4280 e1000_receive_skb(adapter, status,
4281 rx_desc->special, skb);
4282 goto next_desc;
4283 } else {
4284 skb = napi_get_frags(&adapter->napi);
4285 if (!skb) {
4286 adapter->alloc_rx_buff_failed++;
4287 break;
4288 }
4289 skb_fill_page_desc(skb, 0, p, 0,
4290 length);
4291 e1000_consume_page(buffer_info, skb,
4292 length);
4293 }
4294 }
4295 }
4296
4297 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4298 e1000_rx_checksum(adapter,
4299 (u32)(status) |
4300 ((u32)(rx_desc->errors) << 24),
4301 le16_to_cpu(rx_desc->csum), skb);
4302
4303 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4304 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4305 pskb_trim(skb, skb->len - 4);
4306 total_rx_packets++;
4307
4308 if (status & E1000_RXD_STAT_VP) {
4309 __le16 vlan = rx_desc->special;
4310 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4311
4312 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4313 }
4314
4315 napi_gro_frags(&adapter->napi);
4316
4317next_desc:
4318 rx_desc->status = 0;
4319
4320 /* return some buffers to hardware, one at a time is too slow */
4321 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323 cleaned_count = 0;
4324 }
4325
4326 /* use prefetched values */
4327 rx_desc = next_rxd;
4328 buffer_info = next_buffer;
4329 }
4330 rx_ring->next_to_clean = i;
4331
4332 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333 if (cleaned_count)
4334 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335
4336 adapter->total_rx_packets += total_rx_packets;
4337 adapter->total_rx_bytes += total_rx_bytes;
4338 netdev->stats.rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_packets += total_rx_packets;
4340 return cleaned;
4341}
4342
4343/* this should improve performance for small packets with large amounts
4344 * of reassembly being done in the stack
4345 */
4346static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4347 struct e1000_rx_buffer *buffer_info,
4348 u32 length, const void *data)
4349{
4350 struct sk_buff *skb;
4351
4352 if (length > copybreak)
4353 return NULL;
4354
4355 skb = e1000_alloc_rx_skb(adapter, length);
4356 if (!skb)
4357 return NULL;
4358
4359 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4360 length, DMA_FROM_DEVICE);
4361
4362 skb_put_data(skb, data, length);
4363
4364 return skb;
4365}
4366
4367/**
4368 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4369 * @adapter: board private structure
4370 * @rx_ring: ring to clean
4371 * @work_done: amount of napi work completed this call
4372 * @work_to_do: max amount of work allowed for this call to do
4373 */
4374static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring,
4376 int *work_done, int work_to_do)
4377{
4378 struct net_device *netdev = adapter->netdev;
4379 struct pci_dev *pdev = adapter->pdev;
4380 struct e1000_rx_desc *rx_desc, *next_rxd;
4381 struct e1000_rx_buffer *buffer_info, *next_buffer;
4382 u32 length;
4383 unsigned int i;
4384 int cleaned_count = 0;
4385 bool cleaned = false;
4386 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4387
4388 i = rx_ring->next_to_clean;
4389 rx_desc = E1000_RX_DESC(*rx_ring, i);
4390 buffer_info = &rx_ring->buffer_info[i];
4391
4392 while (rx_desc->status & E1000_RXD_STAT_DD) {
4393 struct sk_buff *skb;
4394 u8 *data;
4395 u8 status;
4396
4397 if (*work_done >= work_to_do)
4398 break;
4399 (*work_done)++;
4400 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4401
4402 status = rx_desc->status;
4403 length = le16_to_cpu(rx_desc->length);
4404
4405 data = buffer_info->rxbuf.data;
4406 prefetch(data);
4407 skb = e1000_copybreak(adapter, buffer_info, length, data);
4408 if (!skb) {
4409 unsigned int frag_len = e1000_frag_len(adapter);
4410
4411 skb = build_skb(data - E1000_HEADROOM, frag_len);
4412 if (!skb) {
4413 adapter->alloc_rx_buff_failed++;
4414 break;
4415 }
4416
4417 skb_reserve(skb, E1000_HEADROOM);
4418 dma_unmap_single(&pdev->dev, buffer_info->dma,
4419 adapter->rx_buffer_len,
4420 DMA_FROM_DEVICE);
4421 buffer_info->dma = 0;
4422 buffer_info->rxbuf.data = NULL;
4423 }
4424
4425 if (++i == rx_ring->count)
4426 i = 0;
4427
4428 next_rxd = E1000_RX_DESC(*rx_ring, i);
4429 prefetch(next_rxd);
4430
4431 next_buffer = &rx_ring->buffer_info[i];
4432
4433 cleaned = true;
4434 cleaned_count++;
4435
4436 /* !EOP means multiple descriptors were used to store a single
4437 * packet, if thats the case we need to toss it. In fact, we
4438 * to toss every packet with the EOP bit clear and the next
4439 * frame that _does_ have the EOP bit set, as it is by
4440 * definition only a frame fragment
4441 */
4442 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4443 adapter->discarding = true;
4444
4445 if (adapter->discarding) {
4446 /* All receives must fit into a single buffer */
4447 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4448 dev_kfree_skb(skb);
4449 if (status & E1000_RXD_STAT_EOP)
4450 adapter->discarding = false;
4451 goto next_desc;
4452 }
4453
4454 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4455 if (e1000_tbi_should_accept(adapter, status,
4456 rx_desc->errors,
4457 length, data)) {
4458 length--;
4459 } else if (netdev->features & NETIF_F_RXALL) {
4460 goto process_skb;
4461 } else {
4462 dev_kfree_skb(skb);
4463 goto next_desc;
4464 }
4465 }
4466
4467process_skb:
4468 total_rx_bytes += (length - 4); /* don't count FCS */
4469 total_rx_packets++;
4470
4471 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4472 /* adjust length to remove Ethernet CRC, this must be
4473 * done after the TBI_ACCEPT workaround above
4474 */
4475 length -= 4;
4476
4477 if (buffer_info->rxbuf.data == NULL)
4478 skb_put(skb, length);
4479 else /* copybreak skb */
4480 skb_trim(skb, length);
4481
4482 /* Receive Checksum Offload */
4483 e1000_rx_checksum(adapter,
4484 (u32)(status) |
4485 ((u32)(rx_desc->errors) << 24),
4486 le16_to_cpu(rx_desc->csum), skb);
4487
4488 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4489
4490next_desc:
4491 rx_desc->status = 0;
4492
4493 /* return some buffers to hardware, one at a time is too slow */
4494 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4495 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4496 cleaned_count = 0;
4497 }
4498
4499 /* use prefetched values */
4500 rx_desc = next_rxd;
4501 buffer_info = next_buffer;
4502 }
4503 rx_ring->next_to_clean = i;
4504
4505 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4506 if (cleaned_count)
4507 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4508
4509 adapter->total_rx_packets += total_rx_packets;
4510 adapter->total_rx_bytes += total_rx_bytes;
4511 netdev->stats.rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_packets += total_rx_packets;
4513 return cleaned;
4514}
4515
4516/**
4517 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4518 * @adapter: address of board private structure
4519 * @rx_ring: pointer to receive ring structure
4520 * @cleaned_count: number of buffers to allocate this pass
4521 **/
4522static void
4523e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4524 struct e1000_rx_ring *rx_ring, int cleaned_count)
4525{
4526 struct pci_dev *pdev = adapter->pdev;
4527 struct e1000_rx_desc *rx_desc;
4528 struct e1000_rx_buffer *buffer_info;
4529 unsigned int i;
4530
4531 i = rx_ring->next_to_use;
4532 buffer_info = &rx_ring->buffer_info[i];
4533
4534 while (cleaned_count--) {
4535 /* allocate a new page if necessary */
4536 if (!buffer_info->rxbuf.page) {
4537 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4538 if (unlikely(!buffer_info->rxbuf.page)) {
4539 adapter->alloc_rx_buff_failed++;
4540 break;
4541 }
4542 }
4543
4544 if (!buffer_info->dma) {
4545 buffer_info->dma = dma_map_page(&pdev->dev,
4546 buffer_info->rxbuf.page, 0,
4547 adapter->rx_buffer_len,
4548 DMA_FROM_DEVICE);
4549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4550 put_page(buffer_info->rxbuf.page);
4551 buffer_info->rxbuf.page = NULL;
4552 buffer_info->dma = 0;
4553 adapter->alloc_rx_buff_failed++;
4554 break;
4555 }
4556 }
4557
4558 rx_desc = E1000_RX_DESC(*rx_ring, i);
4559 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560
4561 if (unlikely(++i == rx_ring->count))
4562 i = 0;
4563 buffer_info = &rx_ring->buffer_info[i];
4564 }
4565
4566 if (likely(rx_ring->next_to_use != i)) {
4567 rx_ring->next_to_use = i;
4568 if (unlikely(i-- == 0))
4569 i = (rx_ring->count - 1);
4570
4571 /* Force memory writes to complete before letting h/w
4572 * know there are new descriptors to fetch. (Only
4573 * applicable for weak-ordered memory model archs,
4574 * such as IA-64).
4575 */
4576 wmb();
4577 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4578 }
4579}
4580
4581/**
4582 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4583 * @adapter: address of board private structure
4584 **/
4585static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4586 struct e1000_rx_ring *rx_ring,
4587 int cleaned_count)
4588{
4589 struct e1000_hw *hw = &adapter->hw;
4590 struct pci_dev *pdev = adapter->pdev;
4591 struct e1000_rx_desc *rx_desc;
4592 struct e1000_rx_buffer *buffer_info;
4593 unsigned int i;
4594 unsigned int bufsz = adapter->rx_buffer_len;
4595
4596 i = rx_ring->next_to_use;
4597 buffer_info = &rx_ring->buffer_info[i];
4598
4599 while (cleaned_count--) {
4600 void *data;
4601
4602 if (buffer_info->rxbuf.data)
4603 goto skip;
4604
4605 data = e1000_alloc_frag(adapter);
4606 if (!data) {
4607 /* Better luck next round */
4608 adapter->alloc_rx_buff_failed++;
4609 break;
4610 }
4611
4612 /* Fix for errata 23, can't cross 64kB boundary */
4613 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4614 void *olddata = data;
4615 e_err(rx_err, "skb align check failed: %u bytes at "
4616 "%p\n", bufsz, data);
4617 /* Try again, without freeing the previous */
4618 data = e1000_alloc_frag(adapter);
4619 /* Failed allocation, critical failure */
4620 if (!data) {
4621 skb_free_frag(olddata);
4622 adapter->alloc_rx_buff_failed++;
4623 break;
4624 }
4625
4626 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4627 /* give up */
4628 skb_free_frag(data);
4629 skb_free_frag(olddata);
4630 adapter->alloc_rx_buff_failed++;
4631 break;
4632 }
4633
4634 /* Use new allocation */
4635 skb_free_frag(olddata);
4636 }
4637 buffer_info->dma = dma_map_single(&pdev->dev,
4638 data,
4639 adapter->rx_buffer_len,
4640 DMA_FROM_DEVICE);
4641 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4642 skb_free_frag(data);
4643 buffer_info->dma = 0;
4644 adapter->alloc_rx_buff_failed++;
4645 break;
4646 }
4647
4648 /* XXX if it was allocated cleanly it will never map to a
4649 * boundary crossing
4650 */
4651
4652 /* Fix for errata 23, can't cross 64kB boundary */
4653 if (!e1000_check_64k_bound(adapter,
4654 (void *)(unsigned long)buffer_info->dma,
4655 adapter->rx_buffer_len)) {
4656 e_err(rx_err, "dma align check failed: %u bytes at "
4657 "%p\n", adapter->rx_buffer_len,
4658 (void *)(unsigned long)buffer_info->dma);
4659
4660 dma_unmap_single(&pdev->dev, buffer_info->dma,
4661 adapter->rx_buffer_len,
4662 DMA_FROM_DEVICE);
4663
4664 skb_free_frag(data);
4665 buffer_info->rxbuf.data = NULL;
4666 buffer_info->dma = 0;
4667
4668 adapter->alloc_rx_buff_failed++;
4669 break;
4670 }
4671 buffer_info->rxbuf.data = data;
4672 skip:
4673 rx_desc = E1000_RX_DESC(*rx_ring, i);
4674 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4675
4676 if (unlikely(++i == rx_ring->count))
4677 i = 0;
4678 buffer_info = &rx_ring->buffer_info[i];
4679 }
4680
4681 if (likely(rx_ring->next_to_use != i)) {
4682 rx_ring->next_to_use = i;
4683 if (unlikely(i-- == 0))
4684 i = (rx_ring->count - 1);
4685
4686 /* Force memory writes to complete before letting h/w
4687 * know there are new descriptors to fetch. (Only
4688 * applicable for weak-ordered memory model archs,
4689 * such as IA-64).
4690 */
4691 wmb();
4692 writel(i, hw->hw_addr + rx_ring->rdt);
4693 }
4694}
4695
4696/**
4697 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4698 * @adapter:
4699 **/
4700static void e1000_smartspeed(struct e1000_adapter *adapter)
4701{
4702 struct e1000_hw *hw = &adapter->hw;
4703 u16 phy_status;
4704 u16 phy_ctrl;
4705
4706 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4707 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4708 return;
4709
4710 if (adapter->smartspeed == 0) {
4711 /* If Master/Slave config fault is asserted twice,
4712 * we assume back-to-back
4713 */
4714 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4715 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4716 return;
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
4720 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4721 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4722 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4723 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4724 phy_ctrl);
4725 adapter->smartspeed++;
4726 if (!e1000_phy_setup_autoneg(hw) &&
4727 !e1000_read_phy_reg(hw, PHY_CTRL,
4728 &phy_ctrl)) {
4729 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730 MII_CR_RESTART_AUTO_NEG);
4731 e1000_write_phy_reg(hw, PHY_CTRL,
4732 phy_ctrl);
4733 }
4734 }
4735 return;
4736 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4737 /* If still no link, perhaps using 2/3 pair cable */
4738 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4739 phy_ctrl |= CR_1000T_MS_ENABLE;
4740 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4741 if (!e1000_phy_setup_autoneg(hw) &&
4742 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4743 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4744 MII_CR_RESTART_AUTO_NEG);
4745 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4746 }
4747 }
4748 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4749 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4750 adapter->smartspeed = 0;
4751}
4752
4753/**
4754 * e1000_ioctl -
4755 * @netdev:
4756 * @ifreq:
4757 * @cmd:
4758 **/
4759static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4760{
4761 switch (cmd) {
4762 case SIOCGMIIPHY:
4763 case SIOCGMIIREG:
4764 case SIOCSMIIREG:
4765 return e1000_mii_ioctl(netdev, ifr, cmd);
4766 default:
4767 return -EOPNOTSUPP;
4768 }
4769}
4770
4771/**
4772 * e1000_mii_ioctl -
4773 * @netdev:
4774 * @ifreq:
4775 * @cmd:
4776 **/
4777static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4778 int cmd)
4779{
4780 struct e1000_adapter *adapter = netdev_priv(netdev);
4781 struct e1000_hw *hw = &adapter->hw;
4782 struct mii_ioctl_data *data = if_mii(ifr);
4783 int retval;
4784 u16 mii_reg;
4785 unsigned long flags;
4786
4787 if (hw->media_type != e1000_media_type_copper)
4788 return -EOPNOTSUPP;
4789
4790 switch (cmd) {
4791 case SIOCGMIIPHY:
4792 data->phy_id = hw->phy_addr;
4793 break;
4794 case SIOCGMIIREG:
4795 spin_lock_irqsave(&adapter->stats_lock, flags);
4796 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4797 &data->val_out)) {
4798 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4799 return -EIO;
4800 }
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 break;
4803 case SIOCSMIIREG:
4804 if (data->reg_num & ~(0x1F))
4805 return -EFAULT;
4806 mii_reg = data->val_in;
4807 spin_lock_irqsave(&adapter->stats_lock, flags);
4808 if (e1000_write_phy_reg(hw, data->reg_num,
4809 mii_reg)) {
4810 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4811 return -EIO;
4812 }
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 if (hw->media_type == e1000_media_type_copper) {
4815 switch (data->reg_num) {
4816 case PHY_CTRL:
4817 if (mii_reg & MII_CR_POWER_DOWN)
4818 break;
4819 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4820 hw->autoneg = 1;
4821 hw->autoneg_advertised = 0x2F;
4822 } else {
4823 u32 speed;
4824 if (mii_reg & 0x40)
4825 speed = SPEED_1000;
4826 else if (mii_reg & 0x2000)
4827 speed = SPEED_100;
4828 else
4829 speed = SPEED_10;
4830 retval = e1000_set_spd_dplx(
4831 adapter, speed,
4832 ((mii_reg & 0x100)
4833 ? DUPLEX_FULL :
4834 DUPLEX_HALF));
4835 if (retval)
4836 return retval;
4837 }
4838 if (netif_running(adapter->netdev))
4839 e1000_reinit_locked(adapter);
4840 else
4841 e1000_reset(adapter);
4842 break;
4843 case M88E1000_PHY_SPEC_CTRL:
4844 case M88E1000_EXT_PHY_SPEC_CTRL:
4845 if (e1000_phy_reset(hw))
4846 return -EIO;
4847 break;
4848 }
4849 } else {
4850 switch (data->reg_num) {
4851 case PHY_CTRL:
4852 if (mii_reg & MII_CR_POWER_DOWN)
4853 break;
4854 if (netif_running(adapter->netdev))
4855 e1000_reinit_locked(adapter);
4856 else
4857 e1000_reset(adapter);
4858 break;
4859 }
4860 }
4861 break;
4862 default:
4863 return -EOPNOTSUPP;
4864 }
4865 return E1000_SUCCESS;
4866}
4867
4868void e1000_pci_set_mwi(struct e1000_hw *hw)
4869{
4870 struct e1000_adapter *adapter = hw->back;
4871 int ret_val = pci_set_mwi(adapter->pdev);
4872
4873 if (ret_val)
4874 e_err(probe, "Error in setting MWI\n");
4875}
4876
4877void e1000_pci_clear_mwi(struct e1000_hw *hw)
4878{
4879 struct e1000_adapter *adapter = hw->back;
4880
4881 pci_clear_mwi(adapter->pdev);
4882}
4883
4884int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4885{
4886 struct e1000_adapter *adapter = hw->back;
4887 return pcix_get_mmrbc(adapter->pdev);
4888}
4889
4890void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4891{
4892 struct e1000_adapter *adapter = hw->back;
4893 pcix_set_mmrbc(adapter->pdev, mmrbc);
4894}
4895
4896void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4897{
4898 outl(value, port);
4899}
4900
4901static bool e1000_vlan_used(struct e1000_adapter *adapter)
4902{
4903 u16 vid;
4904
4905 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4906 return true;
4907 return false;
4908}
4909
4910static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4911 netdev_features_t features)
4912{
4913 struct e1000_hw *hw = &adapter->hw;
4914 u32 ctrl;
4915
4916 ctrl = er32(CTRL);
4917 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4918 /* enable VLAN tag insert/strip */
4919 ctrl |= E1000_CTRL_VME;
4920 } else {
4921 /* disable VLAN tag insert/strip */
4922 ctrl &= ~E1000_CTRL_VME;
4923 }
4924 ew32(CTRL, ctrl);
4925}
4926static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4927 bool filter_on)
4928{
4929 struct e1000_hw *hw = &adapter->hw;
4930 u32 rctl;
4931
4932 if (!test_bit(__E1000_DOWN, &adapter->flags))
4933 e1000_irq_disable(adapter);
4934
4935 __e1000_vlan_mode(adapter, adapter->netdev->features);
4936 if (filter_on) {
4937 /* enable VLAN receive filtering */
4938 rctl = er32(RCTL);
4939 rctl &= ~E1000_RCTL_CFIEN;
4940 if (!(adapter->netdev->flags & IFF_PROMISC))
4941 rctl |= E1000_RCTL_VFE;
4942 ew32(RCTL, rctl);
4943 e1000_update_mng_vlan(adapter);
4944 } else {
4945 /* disable VLAN receive filtering */
4946 rctl = er32(RCTL);
4947 rctl &= ~E1000_RCTL_VFE;
4948 ew32(RCTL, rctl);
4949 }
4950
4951 if (!test_bit(__E1000_DOWN, &adapter->flags))
4952 e1000_irq_enable(adapter);
4953}
4954
4955static void e1000_vlan_mode(struct net_device *netdev,
4956 netdev_features_t features)
4957{
4958 struct e1000_adapter *adapter = netdev_priv(netdev);
4959
4960 if (!test_bit(__E1000_DOWN, &adapter->flags))
4961 e1000_irq_disable(adapter);
4962
4963 __e1000_vlan_mode(adapter, features);
4964
4965 if (!test_bit(__E1000_DOWN, &adapter->flags))
4966 e1000_irq_enable(adapter);
4967}
4968
4969static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4970 __be16 proto, u16 vid)
4971{
4972 struct e1000_adapter *adapter = netdev_priv(netdev);
4973 struct e1000_hw *hw = &adapter->hw;
4974 u32 vfta, index;
4975
4976 if ((hw->mng_cookie.status &
4977 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4978 (vid == adapter->mng_vlan_id))
4979 return 0;
4980
4981 if (!e1000_vlan_used(adapter))
4982 e1000_vlan_filter_on_off(adapter, true);
4983
4984 /* add VID to filter table */
4985 index = (vid >> 5) & 0x7F;
4986 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4987 vfta |= (1 << (vid & 0x1F));
4988 e1000_write_vfta(hw, index, vfta);
4989
4990 set_bit(vid, adapter->active_vlans);
4991
4992 return 0;
4993}
4994
4995static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4996 __be16 proto, u16 vid)
4997{
4998 struct e1000_adapter *adapter = netdev_priv(netdev);
4999 struct e1000_hw *hw = &adapter->hw;
5000 u32 vfta, index;
5001
5002 if (!test_bit(__E1000_DOWN, &adapter->flags))
5003 e1000_irq_disable(adapter);
5004 if (!test_bit(__E1000_DOWN, &adapter->flags))
5005 e1000_irq_enable(adapter);
5006
5007 /* remove VID from filter table */
5008 index = (vid >> 5) & 0x7F;
5009 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5010 vfta &= ~(1 << (vid & 0x1F));
5011 e1000_write_vfta(hw, index, vfta);
5012
5013 clear_bit(vid, adapter->active_vlans);
5014
5015 if (!e1000_vlan_used(adapter))
5016 e1000_vlan_filter_on_off(adapter, false);
5017
5018 return 0;
5019}
5020
5021static void e1000_restore_vlan(struct e1000_adapter *adapter)
5022{
5023 u16 vid;
5024
5025 if (!e1000_vlan_used(adapter))
5026 return;
5027
5028 e1000_vlan_filter_on_off(adapter, true);
5029 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5030 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5031}
5032
5033int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5034{
5035 struct e1000_hw *hw = &adapter->hw;
5036
5037 hw->autoneg = 0;
5038
5039 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5040 * for the switch() below to work
5041 */
5042 if ((spd & 1) || (dplx & ~1))
5043 goto err_inval;
5044
5045 /* Fiber NICs only allow 1000 gbps Full duplex */
5046 if ((hw->media_type == e1000_media_type_fiber) &&
5047 spd != SPEED_1000 &&
5048 dplx != DUPLEX_FULL)
5049 goto err_inval;
5050
5051 switch (spd + dplx) {
5052 case SPEED_10 + DUPLEX_HALF:
5053 hw->forced_speed_duplex = e1000_10_half;
5054 break;
5055 case SPEED_10 + DUPLEX_FULL:
5056 hw->forced_speed_duplex = e1000_10_full;
5057 break;
5058 case SPEED_100 + DUPLEX_HALF:
5059 hw->forced_speed_duplex = e1000_100_half;
5060 break;
5061 case SPEED_100 + DUPLEX_FULL:
5062 hw->forced_speed_duplex = e1000_100_full;
5063 break;
5064 case SPEED_1000 + DUPLEX_FULL:
5065 hw->autoneg = 1;
5066 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5067 break;
5068 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5069 default:
5070 goto err_inval;
5071 }
5072
5073 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5074 hw->mdix = AUTO_ALL_MODES;
5075
5076 return 0;
5077
5078err_inval:
5079 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5080 return -EINVAL;
5081}
5082
5083static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5084{
5085 struct net_device *netdev = pci_get_drvdata(pdev);
5086 struct e1000_adapter *adapter = netdev_priv(netdev);
5087 struct e1000_hw *hw = &adapter->hw;
5088 u32 ctrl, ctrl_ext, rctl, status;
5089 u32 wufc = adapter->wol;
5090#ifdef CONFIG_PM
5091 int retval = 0;
5092#endif
5093
5094 netif_device_detach(netdev);
5095
5096 if (netif_running(netdev)) {
5097 int count = E1000_CHECK_RESET_COUNT;
5098
5099 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5100 usleep_range(10000, 20000);
5101
5102 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5103 e1000_down(adapter);
5104 }
5105
5106#ifdef CONFIG_PM
5107 retval = pci_save_state(pdev);
5108 if (retval)
5109 return retval;
5110#endif
5111
5112 status = er32(STATUS);
5113 if (status & E1000_STATUS_LU)
5114 wufc &= ~E1000_WUFC_LNKC;
5115
5116 if (wufc) {
5117 e1000_setup_rctl(adapter);
5118 e1000_set_rx_mode(netdev);
5119
5120 rctl = er32(RCTL);
5121
5122 /* turn on all-multi mode if wake on multicast is enabled */
5123 if (wufc & E1000_WUFC_MC)
5124 rctl |= E1000_RCTL_MPE;
5125
5126 /* enable receives in the hardware */
5127 ew32(RCTL, rctl | E1000_RCTL_EN);
5128
5129 if (hw->mac_type >= e1000_82540) {
5130 ctrl = er32(CTRL);
5131 /* advertise wake from D3Cold */
5132 #define E1000_CTRL_ADVD3WUC 0x00100000
5133 /* phy power management enable */
5134 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5135 ctrl |= E1000_CTRL_ADVD3WUC |
5136 E1000_CTRL_EN_PHY_PWR_MGMT;
5137 ew32(CTRL, ctrl);
5138 }
5139
5140 if (hw->media_type == e1000_media_type_fiber ||
5141 hw->media_type == e1000_media_type_internal_serdes) {
5142 /* keep the laser running in D3 */
5143 ctrl_ext = er32(CTRL_EXT);
5144 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5145 ew32(CTRL_EXT, ctrl_ext);
5146 }
5147
5148 ew32(WUC, E1000_WUC_PME_EN);
5149 ew32(WUFC, wufc);
5150 } else {
5151 ew32(WUC, 0);
5152 ew32(WUFC, 0);
5153 }
5154
5155 e1000_release_manageability(adapter);
5156
5157 *enable_wake = !!wufc;
5158
5159 /* make sure adapter isn't asleep if manageability is enabled */
5160 if (adapter->en_mng_pt)
5161 *enable_wake = true;
5162
5163 if (netif_running(netdev))
5164 e1000_free_irq(adapter);
5165
5166 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5167 pci_disable_device(pdev);
5168
5169 return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175 int retval;
5176 bool wake;
5177
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5181
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5187 }
5188
5189 return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5198
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5202
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5210 }
5211
5212 /* flush memory to make sure state is correct */
5213 smp_mb__before_atomic();
5214 clear_bit(__E1000_DISABLED, &adapter->flags);
5215 pci_set_master(pdev);
5216
5217 pci_enable_wake(pdev, PCI_D3hot, 0);
5218 pci_enable_wake(pdev, PCI_D3cold, 0);
5219
5220 if (netif_running(netdev)) {
5221 err = e1000_request_irq(adapter);
5222 if (err)
5223 return err;
5224 }
5225
5226 e1000_power_up_phy(adapter);
5227 e1000_reset(adapter);
5228 ew32(WUS, ~0);
5229
5230 e1000_init_manageability(adapter);
5231
5232 if (netif_running(netdev))
5233 e1000_up(adapter);
5234
5235 netif_device_attach(netdev);
5236
5237 return 0;
5238}
5239#endif
5240
5241static void e1000_shutdown(struct pci_dev *pdev)
5242{
5243 bool wake;
5244
5245 __e1000_shutdown(pdev, &wake);
5246
5247 if (system_state == SYSTEM_POWER_OFF) {
5248 pci_wake_from_d3(pdev, wake);
5249 pci_set_power_state(pdev, PCI_D3hot);
5250 }
5251}
5252
5253#ifdef CONFIG_NET_POLL_CONTROLLER
5254/* Polling 'interrupt' - used by things like netconsole to send skbs
5255 * without having to re-enable interrupts. It's not called while
5256 * the interrupt routine is executing.
5257 */
5258static void e1000_netpoll(struct net_device *netdev)
5259{
5260 struct e1000_adapter *adapter = netdev_priv(netdev);
5261
5262 if (disable_hardirq(adapter->pdev->irq))
5263 e1000_intr(adapter->pdev->irq, netdev);
5264 enable_irq(adapter->pdev->irq);
5265}
5266#endif
5267
5268/**
5269 * e1000_io_error_detected - called when PCI error is detected
5270 * @pdev: Pointer to PCI device
5271 * @state: The current pci connection state
5272 *
5273 * This function is called after a PCI bus error affecting
5274 * this device has been detected.
5275 */
5276static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5277 pci_channel_state_t state)
5278{
5279 struct net_device *netdev = pci_get_drvdata(pdev);
5280 struct e1000_adapter *adapter = netdev_priv(netdev);
5281
5282 netif_device_detach(netdev);
5283
5284 if (state == pci_channel_io_perm_failure)
5285 return PCI_ERS_RESULT_DISCONNECT;
5286
5287 if (netif_running(netdev))
5288 e1000_down(adapter);
5289
5290 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5291 pci_disable_device(pdev);
5292
5293 /* Request a slot slot reset. */
5294 return PCI_ERS_RESULT_NEED_RESET;
5295}
5296
5297/**
5298 * e1000_io_slot_reset - called after the pci bus has been reset.
5299 * @pdev: Pointer to PCI device
5300 *
5301 * Restart the card from scratch, as if from a cold-boot. Implementation
5302 * resembles the first-half of the e1000_resume routine.
5303 */
5304static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5305{
5306 struct net_device *netdev = pci_get_drvdata(pdev);
5307 struct e1000_adapter *adapter = netdev_priv(netdev);
5308 struct e1000_hw *hw = &adapter->hw;
5309 int err;
5310
5311 if (adapter->need_ioport)
5312 err = pci_enable_device(pdev);
5313 else
5314 err = pci_enable_device_mem(pdev);
5315 if (err) {
5316 pr_err("Cannot re-enable PCI device after reset.\n");
5317 return PCI_ERS_RESULT_DISCONNECT;
5318 }
5319
5320 /* flush memory to make sure state is correct */
5321 smp_mb__before_atomic();
5322 clear_bit(__E1000_DISABLED, &adapter->flags);
5323 pci_set_master(pdev);
5324
5325 pci_enable_wake(pdev, PCI_D3hot, 0);
5326 pci_enable_wake(pdev, PCI_D3cold, 0);
5327
5328 e1000_reset(adapter);
5329 ew32(WUS, ~0);
5330
5331 return PCI_ERS_RESULT_RECOVERED;
5332}
5333
5334/**
5335 * e1000_io_resume - called when traffic can start flowing again.
5336 * @pdev: Pointer to PCI device
5337 *
5338 * This callback is called when the error recovery driver tells us that
5339 * its OK to resume normal operation. Implementation resembles the
5340 * second-half of the e1000_resume routine.
5341 */
5342static void e1000_io_resume(struct pci_dev *pdev)
5343{
5344 struct net_device *netdev = pci_get_drvdata(pdev);
5345 struct e1000_adapter *adapter = netdev_priv(netdev);
5346
5347 e1000_init_manageability(adapter);
5348
5349 if (netif_running(netdev)) {
5350 if (e1000_up(adapter)) {
5351 pr_info("can't bring device back up after reset\n");
5352 return;
5353 }
5354 }
5355
5356 netif_device_attach(netdev);
5357}
5358
5359/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void __devexit e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
159static void e1000_reset_task(struct work_struct *work);
160static void e1000_smartspeed(struct e1000_adapter *adapter);
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164static bool e1000_vlan_used(struct e1000_adapter *adapter);
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173#ifdef CONFIG_PM
174static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175static int e1000_resume(struct pci_dev *pdev);
176#endif
177static void e1000_shutdown(struct pci_dev *pdev);
178
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void e1000_netpoll (struct net_device *netdev);
182#endif
183
184#define COPYBREAK_DEFAULT 256
185static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186module_param(copybreak, uint, 0644);
187MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193static void e1000_io_resume(struct pci_dev *pdev);
194
195static struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199};
200
201static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = __devexit_p(e1000_remove),
206#ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210#endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213};
214
215MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217MODULE_LICENSE("GPL");
218MODULE_VERSION(DRV_VERSION);
219
220#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221static int debug = -1;
222module_param(debug, int, 0);
223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225/**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231{
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234}
235
236/**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242
243static int __init e1000_init_module(void)
244{
245 int ret;
246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248 pr_info("%s\n", e1000_copyright);
249
250 ret = pci_register_driver(&e1000_driver);
251 if (copybreak != COPYBREAK_DEFAULT) {
252 if (copybreak == 0)
253 pr_info("copybreak disabled\n");
254 else
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak);
257 }
258 return ret;
259}
260
261module_init(e1000_init_module);
262
263/**
264 * e1000_exit_module - Driver Exit Cleanup Routine
265 *
266 * e1000_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269
270static void __exit e1000_exit_module(void)
271{
272 pci_unregister_driver(&e1000_driver);
273}
274
275module_exit(e1000_exit_module);
276
277static int e1000_request_irq(struct e1000_adapter *adapter)
278{
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291}
292
293static void e1000_free_irq(struct e1000_adapter *adapter)
294{
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298}
299
300/**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304
305static void e1000_irq_disable(struct e1000_adapter *adapter)
306{
307 struct e1000_hw *hw = &adapter->hw;
308
309 ew32(IMC, ~0);
310 E1000_WRITE_FLUSH();
311 synchronize_irq(adapter->pdev->irq);
312}
313
314/**
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
317 **/
318
319static void e1000_irq_enable(struct e1000_adapter *adapter)
320{
321 struct e1000_hw *hw = &adapter->hw;
322
323 ew32(IMS, IMS_ENABLE_MASK);
324 E1000_WRITE_FLUSH();
325}
326
327static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328{
329 struct e1000_hw *hw = &adapter->hw;
330 struct net_device *netdev = adapter->netdev;
331 u16 vid = hw->mng_cookie.vlan_id;
332 u16 old_vid = adapter->mng_vlan_id;
333
334 if (!e1000_vlan_used(adapter))
335 return;
336
337 if (!test_bit(vid, adapter->active_vlans)) {
338 if (hw->mng_cookie.status &
339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 e1000_vlan_rx_add_vid(netdev, vid);
341 adapter->mng_vlan_id = vid;
342 } else {
343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 }
345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 (vid != old_vid) &&
347 !test_bit(old_vid, adapter->active_vlans))
348 e1000_vlan_rx_kill_vid(netdev, old_vid);
349 } else {
350 adapter->mng_vlan_id = vid;
351 }
352}
353
354static void e1000_init_manageability(struct e1000_adapter *adapter)
355{
356 struct e1000_hw *hw = &adapter->hw;
357
358 if (adapter->en_mng_pt) {
359 u32 manc = er32(MANC);
360
361 /* disable hardware interception of ARP */
362 manc &= ~(E1000_MANC_ARP_EN);
363
364 ew32(MANC, manc);
365 }
366}
367
368static void e1000_release_manageability(struct e1000_adapter *adapter)
369{
370 struct e1000_hw *hw = &adapter->hw;
371
372 if (adapter->en_mng_pt) {
373 u32 manc = er32(MANC);
374
375 /* re-enable hardware interception of ARP */
376 manc |= E1000_MANC_ARP_EN;
377
378 ew32(MANC, manc);
379 }
380}
381
382/**
383 * e1000_configure - configure the hardware for RX and TX
384 * @adapter = private board structure
385 **/
386static void e1000_configure(struct e1000_adapter *adapter)
387{
388 struct net_device *netdev = adapter->netdev;
389 int i;
390
391 e1000_set_rx_mode(netdev);
392
393 e1000_restore_vlan(adapter);
394 e1000_init_manageability(adapter);
395
396 e1000_configure_tx(adapter);
397 e1000_setup_rctl(adapter);
398 e1000_configure_rx(adapter);
399 /* call E1000_DESC_UNUSED which always leaves
400 * at least 1 descriptor unused to make sure
401 * next_to_use != next_to_clean */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407}
408
409int e1000_up(struct e1000_adapter *adapter)
410{
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427}
428
429/**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 *
437 **/
438
439void e1000_power_up_phy(struct e1000_adapter *adapter)
440{
441 struct e1000_hw *hw = &adapter->hw;
442 u16 mii_reg = 0;
443
444 /* Just clear the power down bit to wake the phy back up */
445 if (hw->media_type == e1000_media_type_copper) {
446 /* according to the manual, the phy will retain its
447 * settings across a power-down/up cycle */
448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 mii_reg &= ~MII_CR_POWER_DOWN;
450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 }
452}
453
454static void e1000_power_down_phy(struct e1000_adapter *adapter)
455{
456 struct e1000_hw *hw = &adapter->hw;
457
458 /* Power down the PHY so no link is implied when interface is down *
459 * The PHY cannot be powered down if any of the following is true *
460 * (a) WoL is enabled
461 * (b) AMT is active
462 * (c) SoL/IDER session is active */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489out:
490 return;
491}
492
493static void e1000_down_and_stop(struct e1000_adapter *adapter)
494{
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504}
505
506void e1000_down(struct e1000_adapter *adapter)
507{
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /*
533 * Setting DOWN must be after irq_disable to prevent
534 * a screaming interrupt. Setting DOWN also prevents
535 * tasks from rescheduling.
536 */
537 e1000_down_and_stop(adapter);
538
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542
543 e1000_reset(adapter);
544 e1000_clean_all_tx_rings(adapter);
545 e1000_clean_all_rx_rings(adapter);
546}
547
548static void e1000_reinit_safe(struct e1000_adapter *adapter)
549{
550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 msleep(1);
552 mutex_lock(&adapter->mutex);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 mutex_unlock(&adapter->mutex);
556 clear_bit(__E1000_RESETTING, &adapter->flags);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 /* if rtnl_lock is not held the call path is bogus */
562 ASSERT_RTNL();
563 WARN_ON(in_interrupt());
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
566 e1000_down(adapter);
567 e1000_up(adapter);
568 clear_bit(__E1000_RESETTING, &adapter->flags);
569}
570
571void e1000_reset(struct e1000_adapter *adapter)
572{
573 struct e1000_hw *hw = &adapter->hw;
574 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 bool legacy_pba_adjust = false;
576 u16 hwm;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (hw->mac_type) {
583 case e1000_82542_rev2_0:
584 case e1000_82542_rev2_1:
585 case e1000_82543:
586 case e1000_82544:
587 case e1000_82540:
588 case e1000_82541:
589 case e1000_82541_rev_2:
590 legacy_pba_adjust = true;
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82545:
594 case e1000_82545_rev_3:
595 case e1000_82546:
596 case e1000_ce4100:
597 case e1000_82546_rev_3:
598 pba = E1000_PBA_48K;
599 break;
600 case e1000_82547:
601 case e1000_82547_rev_2:
602 legacy_pba_adjust = true;
603 pba = E1000_PBA_30K;
604 break;
605 case e1000_undefined:
606 case e1000_num_macs:
607 break;
608 }
609
610 if (legacy_pba_adjust) {
611 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 pba -= 8; /* allocate more FIFO for Tx */
613
614 if (hw->mac_type == e1000_82547) {
615 adapter->tx_fifo_head = 0;
616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 adapter->tx_fifo_size =
618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 atomic_set(&adapter->tx_fifo_stall, 0);
620 }
621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
622 /* adjust PBA for jumbo frames */
623 ew32(PBA, pba);
624
625 /* To maintain wire speed transmits, the Tx FIFO should be
626 * large enough to accommodate two full transmit packets,
627 * rounded up to the next 1KB and expressed in KB. Likewise,
628 * the Rx FIFO should be large enough to accommodate at least
629 * one full receive packet and is similarly rounded up and
630 * expressed in KB. */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /*
637 * the tx fifo also stores 16 bytes of information about the tx
638 * but don't include ethernet FCS because hardware appends it
639 */
640 min_tx_space = (hw->max_frame_size +
641 sizeof(struct e1000_tx_desc) -
642 ETH_FCS_LEN) * 2;
643 min_tx_space = ALIGN(min_tx_space, 1024);
644 min_tx_space >>= 10;
645 /* software strips receive CRC, so leave room for it */
646 min_rx_space = hw->max_frame_size;
647 min_rx_space = ALIGN(min_rx_space, 1024);
648 min_rx_space >>= 10;
649
650 /* If current Tx allocation is less than the min Tx FIFO size,
651 * and the min Tx FIFO size is less than the current Rx FIFO
652 * allocation, take space away from current Rx allocation */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on rx space, rx wins and must trump tx
667 * adjustment or use Early Receive if available */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /*
676 * flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/**
725 * Dump the eeprom for users having checksum issues
726 **/
727static void e1000_dump_eeprom(struct e1000_adapter *adapter)
728{
729 struct net_device *netdev = adapter->netdev;
730 struct ethtool_eeprom eeprom;
731 const struct ethtool_ops *ops = netdev->ethtool_ops;
732 u8 *data;
733 int i;
734 u16 csum_old, csum_new = 0;
735
736 eeprom.len = ops->get_eeprom_len(netdev);
737 eeprom.offset = 0;
738
739 data = kmalloc(eeprom.len, GFP_KERNEL);
740 if (!data)
741 return;
742
743 ops->get_eeprom(netdev, &eeprom, data);
744
745 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
746 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
747 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
748 csum_new += data[i] + (data[i + 1] << 8);
749 csum_new = EEPROM_SUM - csum_new;
750
751 pr_err("/*********************/\n");
752 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
753 pr_err("Calculated : 0x%04x\n", csum_new);
754
755 pr_err("Offset Values\n");
756 pr_err("======== ======\n");
757 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
758
759 pr_err("Include this output when contacting your support provider.\n");
760 pr_err("This is not a software error! Something bad happened to\n");
761 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
762 pr_err("result in further problems, possibly loss of data,\n");
763 pr_err("corruption or system hangs!\n");
764 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
765 pr_err("which is invalid and requires you to set the proper MAC\n");
766 pr_err("address manually before continuing to enable this network\n");
767 pr_err("device. Please inspect the EEPROM dump and report the\n");
768 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
769 pr_err("/*********************/\n");
770
771 kfree(data);
772}
773
774/**
775 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
776 * @pdev: PCI device information struct
777 *
778 * Return true if an adapter needs ioport resources
779 **/
780static int e1000_is_need_ioport(struct pci_dev *pdev)
781{
782 switch (pdev->device) {
783 case E1000_DEV_ID_82540EM:
784 case E1000_DEV_ID_82540EM_LOM:
785 case E1000_DEV_ID_82540EP:
786 case E1000_DEV_ID_82540EP_LOM:
787 case E1000_DEV_ID_82540EP_LP:
788 case E1000_DEV_ID_82541EI:
789 case E1000_DEV_ID_82541EI_MOBILE:
790 case E1000_DEV_ID_82541ER:
791 case E1000_DEV_ID_82541ER_LOM:
792 case E1000_DEV_ID_82541GI:
793 case E1000_DEV_ID_82541GI_LF:
794 case E1000_DEV_ID_82541GI_MOBILE:
795 case E1000_DEV_ID_82544EI_COPPER:
796 case E1000_DEV_ID_82544EI_FIBER:
797 case E1000_DEV_ID_82544GC_COPPER:
798 case E1000_DEV_ID_82544GC_LOM:
799 case E1000_DEV_ID_82545EM_COPPER:
800 case E1000_DEV_ID_82545EM_FIBER:
801 case E1000_DEV_ID_82546EB_COPPER:
802 case E1000_DEV_ID_82546EB_FIBER:
803 case E1000_DEV_ID_82546EB_QUAD_COPPER:
804 return true;
805 default:
806 return false;
807 }
808}
809
810static netdev_features_t e1000_fix_features(struct net_device *netdev,
811 netdev_features_t features)
812{
813 /*
814 * Since there is no support for separate rx/tx vlan accel
815 * enable/disable make sure tx flag is always in same state as rx.
816 */
817 if (features & NETIF_F_HW_VLAN_RX)
818 features |= NETIF_F_HW_VLAN_TX;
819 else
820 features &= ~NETIF_F_HW_VLAN_TX;
821
822 return features;
823}
824
825static int e1000_set_features(struct net_device *netdev,
826 netdev_features_t features)
827{
828 struct e1000_adapter *adapter = netdev_priv(netdev);
829 netdev_features_t changed = features ^ netdev->features;
830
831 if (changed & NETIF_F_HW_VLAN_RX)
832 e1000_vlan_mode(netdev, features);
833
834 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
835 return 0;
836
837 netdev->features = features;
838 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
839
840 if (netif_running(netdev))
841 e1000_reinit_locked(adapter);
842 else
843 e1000_reset(adapter);
844
845 return 0;
846}
847
848static const struct net_device_ops e1000_netdev_ops = {
849 .ndo_open = e1000_open,
850 .ndo_stop = e1000_close,
851 .ndo_start_xmit = e1000_xmit_frame,
852 .ndo_get_stats = e1000_get_stats,
853 .ndo_set_rx_mode = e1000_set_rx_mode,
854 .ndo_set_mac_address = e1000_set_mac,
855 .ndo_tx_timeout = e1000_tx_timeout,
856 .ndo_change_mtu = e1000_change_mtu,
857 .ndo_do_ioctl = e1000_ioctl,
858 .ndo_validate_addr = eth_validate_addr,
859 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
860 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
861#ifdef CONFIG_NET_POLL_CONTROLLER
862 .ndo_poll_controller = e1000_netpoll,
863#endif
864 .ndo_fix_features = e1000_fix_features,
865 .ndo_set_features = e1000_set_features,
866};
867
868/**
869 * e1000_init_hw_struct - initialize members of hw struct
870 * @adapter: board private struct
871 * @hw: structure used by e1000_hw.c
872 *
873 * Factors out initialization of the e1000_hw struct to its own function
874 * that can be called very early at init (just after struct allocation).
875 * Fields are initialized based on PCI device information and
876 * OS network device settings (MTU size).
877 * Returns negative error codes if MAC type setup fails.
878 */
879static int e1000_init_hw_struct(struct e1000_adapter *adapter,
880 struct e1000_hw *hw)
881{
882 struct pci_dev *pdev = adapter->pdev;
883
884 /* PCI config space info */
885 hw->vendor_id = pdev->vendor;
886 hw->device_id = pdev->device;
887 hw->subsystem_vendor_id = pdev->subsystem_vendor;
888 hw->subsystem_id = pdev->subsystem_device;
889 hw->revision_id = pdev->revision;
890
891 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
892
893 hw->max_frame_size = adapter->netdev->mtu +
894 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
895 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
896
897 /* identify the MAC */
898 if (e1000_set_mac_type(hw)) {
899 e_err(probe, "Unknown MAC Type\n");
900 return -EIO;
901 }
902
903 switch (hw->mac_type) {
904 default:
905 break;
906 case e1000_82541:
907 case e1000_82547:
908 case e1000_82541_rev_2:
909 case e1000_82547_rev_2:
910 hw->phy_init_script = 1;
911 break;
912 }
913
914 e1000_set_media_type(hw);
915 e1000_get_bus_info(hw);
916
917 hw->wait_autoneg_complete = false;
918 hw->tbi_compatibility_en = true;
919 hw->adaptive_ifs = true;
920
921 /* Copper options */
922
923 if (hw->media_type == e1000_media_type_copper) {
924 hw->mdix = AUTO_ALL_MODES;
925 hw->disable_polarity_correction = false;
926 hw->master_slave = E1000_MASTER_SLAVE;
927 }
928
929 return 0;
930}
931
932/**
933 * e1000_probe - Device Initialization Routine
934 * @pdev: PCI device information struct
935 * @ent: entry in e1000_pci_tbl
936 *
937 * Returns 0 on success, negative on failure
938 *
939 * e1000_probe initializes an adapter identified by a pci_dev structure.
940 * The OS initialization, configuring of the adapter private structure,
941 * and a hardware reset occur.
942 **/
943static int __devinit e1000_probe(struct pci_dev *pdev,
944 const struct pci_device_id *ent)
945{
946 struct net_device *netdev;
947 struct e1000_adapter *adapter;
948 struct e1000_hw *hw;
949
950 static int cards_found = 0;
951 static int global_quad_port_a = 0; /* global ksp3 port a indication */
952 int i, err, pci_using_dac;
953 u16 eeprom_data = 0;
954 u16 tmp = 0;
955 u16 eeprom_apme_mask = E1000_EEPROM_APME;
956 int bars, need_ioport;
957
958 /* do not allocate ioport bars when not needed */
959 need_ioport = e1000_is_need_ioport(pdev);
960 if (need_ioport) {
961 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
962 err = pci_enable_device(pdev);
963 } else {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM);
965 err = pci_enable_device_mem(pdev);
966 }
967 if (err)
968 return err;
969
970 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
971 if (err)
972 goto err_pci_reg;
973
974 pci_set_master(pdev);
975 err = pci_save_state(pdev);
976 if (err)
977 goto err_alloc_etherdev;
978
979 err = -ENOMEM;
980 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
981 if (!netdev)
982 goto err_alloc_etherdev;
983
984 SET_NETDEV_DEV(netdev, &pdev->dev);
985
986 pci_set_drvdata(pdev, netdev);
987 adapter = netdev_priv(netdev);
988 adapter->netdev = netdev;
989 adapter->pdev = pdev;
990 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
991 adapter->bars = bars;
992 adapter->need_ioport = need_ioport;
993
994 hw = &adapter->hw;
995 hw->back = adapter;
996
997 err = -EIO;
998 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
999 if (!hw->hw_addr)
1000 goto err_ioremap;
1001
1002 if (adapter->need_ioport) {
1003 for (i = BAR_1; i <= BAR_5; i++) {
1004 if (pci_resource_len(pdev, i) == 0)
1005 continue;
1006 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1007 hw->io_base = pci_resource_start(pdev, i);
1008 break;
1009 }
1010 }
1011 }
1012
1013 /* make ready for any if (hw->...) below */
1014 err = e1000_init_hw_struct(adapter, hw);
1015 if (err)
1016 goto err_sw_init;
1017
1018 /*
1019 * there is a workaround being applied below that limits
1020 * 64-bit DMA addresses to 64-bit hardware. There are some
1021 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022 */
1023 pci_using_dac = 0;
1024 if ((hw->bus_type == e1000_bus_type_pcix) &&
1025 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1026 /*
1027 * according to DMA-API-HOWTO, coherent calls will always
1028 * succeed if the set call did
1029 */
1030 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1031 pci_using_dac = 1;
1032 } else {
1033 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1034 if (err) {
1035 pr_err("No usable DMA config, aborting\n");
1036 goto err_dma;
1037 }
1038 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1039 }
1040
1041 netdev->netdev_ops = &e1000_netdev_ops;
1042 e1000_set_ethtool_ops(netdev);
1043 netdev->watchdog_timeo = 5 * HZ;
1044 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1045
1046 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1047
1048 adapter->bd_number = cards_found;
1049
1050 /* setup the private structure */
1051
1052 err = e1000_sw_init(adapter);
1053 if (err)
1054 goto err_sw_init;
1055
1056 err = -EIO;
1057 if (hw->mac_type == e1000_ce4100) {
1058 hw->ce4100_gbe_mdio_base_virt =
1059 ioremap(pci_resource_start(pdev, BAR_1),
1060 pci_resource_len(pdev, BAR_1));
1061
1062 if (!hw->ce4100_gbe_mdio_base_virt)
1063 goto err_mdio_ioremap;
1064 }
1065
1066 if (hw->mac_type >= e1000_82543) {
1067 netdev->hw_features = NETIF_F_SG |
1068 NETIF_F_HW_CSUM |
1069 NETIF_F_HW_VLAN_RX;
1070 netdev->features = NETIF_F_HW_VLAN_TX |
1071 NETIF_F_HW_VLAN_FILTER;
1072 }
1073
1074 if ((hw->mac_type >= e1000_82544) &&
1075 (hw->mac_type != e1000_82547))
1076 netdev->hw_features |= NETIF_F_TSO;
1077
1078 netdev->priv_flags |= IFF_SUPP_NOFCS;
1079
1080 netdev->features |= netdev->hw_features;
1081 netdev->hw_features |= NETIF_F_RXCSUM;
1082 netdev->hw_features |= NETIF_F_RXALL;
1083 netdev->hw_features |= NETIF_F_RXFCS;
1084
1085 if (pci_using_dac) {
1086 netdev->features |= NETIF_F_HIGHDMA;
1087 netdev->vlan_features |= NETIF_F_HIGHDMA;
1088 }
1089
1090 netdev->vlan_features |= NETIF_F_TSO;
1091 netdev->vlan_features |= NETIF_F_HW_CSUM;
1092 netdev->vlan_features |= NETIF_F_SG;
1093
1094 netdev->priv_flags |= IFF_UNICAST_FLT;
1095
1096 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1097
1098 /* initialize eeprom parameters */
1099 if (e1000_init_eeprom_params(hw)) {
1100 e_err(probe, "EEPROM initialization failed\n");
1101 goto err_eeprom;
1102 }
1103
1104 /* before reading the EEPROM, reset the controller to
1105 * put the device in a known good starting state */
1106
1107 e1000_reset_hw(hw);
1108
1109 /* make sure the EEPROM is good */
1110 if (e1000_validate_eeprom_checksum(hw) < 0) {
1111 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1112 e1000_dump_eeprom(adapter);
1113 /*
1114 * set MAC address to all zeroes to invalidate and temporary
1115 * disable this device for the user. This blocks regular
1116 * traffic while still permitting ethtool ioctls from reaching
1117 * the hardware as well as allowing the user to run the
1118 * interface after manually setting a hw addr using
1119 * `ip set address`
1120 */
1121 memset(hw->mac_addr, 0, netdev->addr_len);
1122 } else {
1123 /* copy the MAC address out of the EEPROM */
1124 if (e1000_read_mac_addr(hw))
1125 e_err(probe, "EEPROM Read Error\n");
1126 }
1127 /* don't block initalization here due to bad MAC address */
1128 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1129 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1130
1131 if (!is_valid_ether_addr(netdev->perm_addr))
1132 e_err(probe, "Invalid MAC Address\n");
1133
1134
1135 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137 e1000_82547_tx_fifo_stall_task);
1138 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141 e1000_check_options(adapter);
1142
1143 /* Initial Wake on LAN setting
1144 * If APM wake is enabled in the EEPROM,
1145 * enable the ACPI Magic Packet filter
1146 */
1147
1148 switch (hw->mac_type) {
1149 case e1000_82542_rev2_0:
1150 case e1000_82542_rev2_1:
1151 case e1000_82543:
1152 break;
1153 case e1000_82544:
1154 e1000_read_eeprom(hw,
1155 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157 break;
1158 case e1000_82546:
1159 case e1000_82546_rev_3:
1160 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1161 e1000_read_eeprom(hw,
1162 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163 break;
1164 }
1165 /* Fall Through */
1166 default:
1167 e1000_read_eeprom(hw,
1168 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169 break;
1170 }
1171 if (eeprom_data & eeprom_apme_mask)
1172 adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174 /* now that we have the eeprom settings, apply the special cases
1175 * where the eeprom may be wrong or the board simply won't support
1176 * wake on lan on a particular port */
1177 switch (pdev->device) {
1178 case E1000_DEV_ID_82546GB_PCIE:
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546EB_FIBER:
1182 case E1000_DEV_ID_82546GB_FIBER:
1183 /* Wake events only supported on port A for dual fiber
1184 * regardless of eeprom setting */
1185 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1186 adapter->eeprom_wol = 0;
1187 break;
1188 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1189 /* if quad port adapter, disable WoL on all but port A */
1190 if (global_quad_port_a != 0)
1191 adapter->eeprom_wol = 0;
1192 else
1193 adapter->quad_port_a = true;
1194 /* Reset for multiple quad port adapters */
1195 if (++global_quad_port_a == 4)
1196 global_quad_port_a = 0;
1197 break;
1198 }
1199
1200 /* initialize the wol settings based on the eeprom settings */
1201 adapter->wol = adapter->eeprom_wol;
1202 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204 /* Auto detect PHY address */
1205 if (hw->mac_type == e1000_ce4100) {
1206 for (i = 0; i < 32; i++) {
1207 hw->phy_addr = i;
1208 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1209 if (tmp == 0 || tmp == 0xFF) {
1210 if (i == 31)
1211 goto err_eeprom;
1212 continue;
1213 } else
1214 break;
1215 }
1216 }
1217
1218 /* reset the hardware with the new settings */
1219 e1000_reset(adapter);
1220
1221 strcpy(netdev->name, "eth%d");
1222 err = register_netdev(netdev);
1223 if (err)
1224 goto err_register;
1225
1226 e1000_vlan_filter_on_off(adapter, false);
1227
1228 /* print bus type/speed/width info */
1229 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1230 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1231 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1232 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1233 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1234 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1235 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1236 netdev->dev_addr);
1237
1238 /* carrier off reporting is important to ethtool even BEFORE open */
1239 netif_carrier_off(netdev);
1240
1241 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1242
1243 cards_found++;
1244 return 0;
1245
1246err_register:
1247err_eeprom:
1248 e1000_phy_hw_reset(hw);
1249
1250 if (hw->flash_address)
1251 iounmap(hw->flash_address);
1252 kfree(adapter->tx_ring);
1253 kfree(adapter->rx_ring);
1254err_dma:
1255err_sw_init:
1256err_mdio_ioremap:
1257 iounmap(hw->ce4100_gbe_mdio_base_virt);
1258 iounmap(hw->hw_addr);
1259err_ioremap:
1260 free_netdev(netdev);
1261err_alloc_etherdev:
1262 pci_release_selected_regions(pdev, bars);
1263err_pci_reg:
1264 pci_disable_device(pdev);
1265 return err;
1266}
1267
1268/**
1269 * e1000_remove - Device Removal Routine
1270 * @pdev: PCI device information struct
1271 *
1272 * e1000_remove is called by the PCI subsystem to alert the driver
1273 * that it should release a PCI device. The could be caused by a
1274 * Hot-Plug event, or because the driver is going to be removed from
1275 * memory.
1276 **/
1277
1278static void __devexit e1000_remove(struct pci_dev *pdev)
1279{
1280 struct net_device *netdev = pci_get_drvdata(pdev);
1281 struct e1000_adapter *adapter = netdev_priv(netdev);
1282 struct e1000_hw *hw = &adapter->hw;
1283
1284 e1000_down_and_stop(adapter);
1285 e1000_release_manageability(adapter);
1286
1287 unregister_netdev(netdev);
1288
1289 e1000_phy_hw_reset(hw);
1290
1291 kfree(adapter->tx_ring);
1292 kfree(adapter->rx_ring);
1293
1294 if (hw->mac_type == e1000_ce4100)
1295 iounmap(hw->ce4100_gbe_mdio_base_virt);
1296 iounmap(hw->hw_addr);
1297 if (hw->flash_address)
1298 iounmap(hw->flash_address);
1299 pci_release_selected_regions(pdev, adapter->bars);
1300
1301 free_netdev(netdev);
1302
1303 pci_disable_device(pdev);
1304}
1305
1306/**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318 adapter->num_tx_queues = 1;
1319 adapter->num_rx_queues = 1;
1320
1321 if (e1000_alloc_queues(adapter)) {
1322 e_err(probe, "Unable to allocate memory for queues\n");
1323 return -ENOMEM;
1324 }
1325
1326 /* Explicitly disable IRQ since the NIC can be in any state. */
1327 e1000_irq_disable(adapter);
1328
1329 spin_lock_init(&adapter->stats_lock);
1330 mutex_init(&adapter->mutex);
1331
1332 set_bit(__E1000_DOWN, &adapter->flags);
1333
1334 return 0;
1335}
1336
1337/**
1338 * e1000_alloc_queues - Allocate memory for all rings
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one ring per queue at run-time since we don't know the
1342 * number of queues at compile-time.
1343 **/
1344
1345static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1346{
1347 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1348 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1349 if (!adapter->tx_ring)
1350 return -ENOMEM;
1351
1352 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1353 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1354 if (!adapter->rx_ring) {
1355 kfree(adapter->tx_ring);
1356 return -ENOMEM;
1357 }
1358
1359 return E1000_SUCCESS;
1360}
1361
1362/**
1363 * e1000_open - Called when a network interface is made active
1364 * @netdev: network interface device structure
1365 *
1366 * Returns 0 on success, negative value on failure
1367 *
1368 * The open entry point is called when a network interface is made
1369 * active by the system (IFF_UP). At this point all resources needed
1370 * for transmit and receive operations are allocated, the interrupt
1371 * handler is registered with the OS, the watchdog task is started,
1372 * and the stack is notified that the interface is ready.
1373 **/
1374
1375static int e1000_open(struct net_device *netdev)
1376{
1377 struct e1000_adapter *adapter = netdev_priv(netdev);
1378 struct e1000_hw *hw = &adapter->hw;
1379 int err;
1380
1381 /* disallow open during test */
1382 if (test_bit(__E1000_TESTING, &adapter->flags))
1383 return -EBUSY;
1384
1385 netif_carrier_off(netdev);
1386
1387 /* allocate transmit descriptors */
1388 err = e1000_setup_all_tx_resources(adapter);
1389 if (err)
1390 goto err_setup_tx;
1391
1392 /* allocate receive descriptors */
1393 err = e1000_setup_all_rx_resources(adapter);
1394 if (err)
1395 goto err_setup_rx;
1396
1397 e1000_power_up_phy(adapter);
1398
1399 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1400 if ((hw->mng_cookie.status &
1401 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1402 e1000_update_mng_vlan(adapter);
1403 }
1404
1405 /* before we allocate an interrupt, we must be ready to handle it.
1406 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1407 * as soon as we call pci_request_irq, so we have to setup our
1408 * clean_rx handler before we do so. */
1409 e1000_configure(adapter);
1410
1411 err = e1000_request_irq(adapter);
1412 if (err)
1413 goto err_req_irq;
1414
1415 /* From here on the code is the same as e1000_up() */
1416 clear_bit(__E1000_DOWN, &adapter->flags);
1417
1418 napi_enable(&adapter->napi);
1419
1420 e1000_irq_enable(adapter);
1421
1422 netif_start_queue(netdev);
1423
1424 /* fire a link status change interrupt to start the watchdog */
1425 ew32(ICS, E1000_ICS_LSC);
1426
1427 return E1000_SUCCESS;
1428
1429err_req_irq:
1430 e1000_power_down_phy(adapter);
1431 e1000_free_all_rx_resources(adapter);
1432err_setup_rx:
1433 e1000_free_all_tx_resources(adapter);
1434err_setup_tx:
1435 e1000_reset(adapter);
1436
1437 return err;
1438}
1439
1440/**
1441 * e1000_close - Disables a network interface
1442 * @netdev: network interface device structure
1443 *
1444 * Returns 0, this is not allowed to fail
1445 *
1446 * The close entry point is called when an interface is de-activated
1447 * by the OS. The hardware is still under the drivers control, but
1448 * needs to be disabled. A global MAC reset is issued to stop the
1449 * hardware, and all transmit and receive resources are freed.
1450 **/
1451
1452static int e1000_close(struct net_device *netdev)
1453{
1454 struct e1000_adapter *adapter = netdev_priv(netdev);
1455 struct e1000_hw *hw = &adapter->hw;
1456
1457 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1458 e1000_down(adapter);
1459 e1000_power_down_phy(adapter);
1460 e1000_free_irq(adapter);
1461
1462 e1000_free_all_tx_resources(adapter);
1463 e1000_free_all_rx_resources(adapter);
1464
1465 /* kill manageability vlan ID if supported, but not if a vlan with
1466 * the same ID is registered on the host OS (let 8021q kill it) */
1467 if ((hw->mng_cookie.status &
1468 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1469 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1470 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1471 }
1472
1473 return 0;
1474}
1475
1476/**
1477 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1478 * @adapter: address of board private structure
1479 * @start: address of beginning of memory
1480 * @len: length of memory
1481 **/
1482static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1483 unsigned long len)
1484{
1485 struct e1000_hw *hw = &adapter->hw;
1486 unsigned long begin = (unsigned long)start;
1487 unsigned long end = begin + len;
1488
1489 /* First rev 82545 and 82546 need to not allow any memory
1490 * write location to cross 64k boundary due to errata 23 */
1491 if (hw->mac_type == e1000_82545 ||
1492 hw->mac_type == e1000_ce4100 ||
1493 hw->mac_type == e1000_82546) {
1494 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1495 }
1496
1497 return true;
1498}
1499
1500/**
1501 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502 * @adapter: board private structure
1503 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 *
1505 * Return 0 on success, negative on failure
1506 **/
1507
1508static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1509 struct e1000_tx_ring *txdr)
1510{
1511 struct pci_dev *pdev = adapter->pdev;
1512 int size;
1513
1514 size = sizeof(struct e1000_buffer) * txdr->count;
1515 txdr->buffer_info = vzalloc(size);
1516 if (!txdr->buffer_info) {
1517 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1518 "ring\n");
1519 return -ENOMEM;
1520 }
1521
1522 /* round up to nearest 4K */
1523
1524 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525 txdr->size = ALIGN(txdr->size, 4096);
1526
1527 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528 GFP_KERNEL);
1529 if (!txdr->desc) {
1530setup_tx_desc_die:
1531 vfree(txdr->buffer_info);
1532 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1533 "ring\n");
1534 return -ENOMEM;
1535 }
1536
1537 /* Fix for errata 23, can't cross 64kB boundary */
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 void *olddesc = txdr->desc;
1540 dma_addr_t olddma = txdr->dma;
1541 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1542 txdr->size, txdr->desc);
1543 /* Try again, without freeing the previous */
1544 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1545 &txdr->dma, GFP_KERNEL);
1546 /* Failed allocation, critical failure */
1547 if (!txdr->desc) {
1548 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549 olddma);
1550 goto setup_tx_desc_die;
1551 }
1552
1553 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1554 /* give up */
1555 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1556 txdr->dma);
1557 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558 olddma);
1559 e_err(probe, "Unable to allocate aligned memory "
1560 "for the transmit descriptor ring\n");
1561 vfree(txdr->buffer_info);
1562 return -ENOMEM;
1563 } else {
1564 /* Free old allocation, new allocation was successful */
1565 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1566 olddma);
1567 }
1568 }
1569 memset(txdr->desc, 0, txdr->size);
1570
1571 txdr->next_to_use = 0;
1572 txdr->next_to_clean = 0;
1573
1574 return 0;
1575}
1576
1577/**
1578 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1579 * (Descriptors) for all queues
1580 * @adapter: board private structure
1581 *
1582 * Return 0 on success, negative on failure
1583 **/
1584
1585int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586{
1587 int i, err = 0;
1588
1589 for (i = 0; i < adapter->num_tx_queues; i++) {
1590 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591 if (err) {
1592 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1593 for (i-- ; i >= 0; i--)
1594 e1000_free_tx_resources(adapter,
1595 &adapter->tx_ring[i]);
1596 break;
1597 }
1598 }
1599
1600 return err;
1601}
1602
1603/**
1604 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609
1610static void e1000_configure_tx(struct e1000_adapter *adapter)
1611{
1612 u64 tdba;
1613 struct e1000_hw *hw = &adapter->hw;
1614 u32 tdlen, tctl, tipg;
1615 u32 ipgr1, ipgr2;
1616
1617 /* Setup the HW Tx Head and Tail descriptor pointers */
1618
1619 switch (adapter->num_tx_queues) {
1620 case 1:
1621 default:
1622 tdba = adapter->tx_ring[0].dma;
1623 tdlen = adapter->tx_ring[0].count *
1624 sizeof(struct e1000_tx_desc);
1625 ew32(TDLEN, tdlen);
1626 ew32(TDBAH, (tdba >> 32));
1627 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1628 ew32(TDT, 0);
1629 ew32(TDH, 0);
1630 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1631 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1632 break;
1633 }
1634
1635 /* Set the default values for the Tx Inter Packet Gap timer */
1636 if ((hw->media_type == e1000_media_type_fiber ||
1637 hw->media_type == e1000_media_type_internal_serdes))
1638 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1639 else
1640 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1641
1642 switch (hw->mac_type) {
1643 case e1000_82542_rev2_0:
1644 case e1000_82542_rev2_1:
1645 tipg = DEFAULT_82542_TIPG_IPGT;
1646 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1647 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1648 break;
1649 default:
1650 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1651 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1652 break;
1653 }
1654 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1655 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1656 ew32(TIPG, tipg);
1657
1658 /* Set the Tx Interrupt Delay register */
1659
1660 ew32(TIDV, adapter->tx_int_delay);
1661 if (hw->mac_type >= e1000_82540)
1662 ew32(TADV, adapter->tx_abs_int_delay);
1663
1664 /* Program the Transmit Control Register */
1665
1666 tctl = er32(TCTL);
1667 tctl &= ~E1000_TCTL_CT;
1668 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671 e1000_config_collision_dist(hw);
1672
1673 /* Setup Transmit Descriptor Settings for eop descriptor */
1674 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1675
1676 /* only set IDE if we are delaying interrupts using the timers */
1677 if (adapter->tx_int_delay)
1678 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1679
1680 if (hw->mac_type < e1000_82543)
1681 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1682 else
1683 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1684
1685 /* Cache if we're 82544 running in PCI-X because we'll
1686 * need this to apply a workaround later in the send path. */
1687 if (hw->mac_type == e1000_82544 &&
1688 hw->bus_type == e1000_bus_type_pcix)
1689 adapter->pcix_82544 = true;
1690
1691 ew32(TCTL, tctl);
1692
1693}
1694
1695/**
1696 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1697 * @adapter: board private structure
1698 * @rxdr: rx descriptor ring (for a specific queue) to setup
1699 *
1700 * Returns 0 on success, negative on failure
1701 **/
1702
1703static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1704 struct e1000_rx_ring *rxdr)
1705{
1706 struct pci_dev *pdev = adapter->pdev;
1707 int size, desc_len;
1708
1709 size = sizeof(struct e1000_buffer) * rxdr->count;
1710 rxdr->buffer_info = vzalloc(size);
1711 if (!rxdr->buffer_info) {
1712 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1713 "ring\n");
1714 return -ENOMEM;
1715 }
1716
1717 desc_len = sizeof(struct e1000_rx_desc);
1718
1719 /* Round up to nearest 4K */
1720
1721 rxdr->size = rxdr->count * desc_len;
1722 rxdr->size = ALIGN(rxdr->size, 4096);
1723
1724 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1725 GFP_KERNEL);
1726
1727 if (!rxdr->desc) {
1728 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1729 "ring\n");
1730setup_rx_desc_die:
1731 vfree(rxdr->buffer_info);
1732 return -ENOMEM;
1733 }
1734
1735 /* Fix for errata 23, can't cross 64kB boundary */
1736 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737 void *olddesc = rxdr->desc;
1738 dma_addr_t olddma = rxdr->dma;
1739 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1740 rxdr->size, rxdr->desc);
1741 /* Try again, without freeing the previous */
1742 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1743 &rxdr->dma, GFP_KERNEL);
1744 /* Failed allocation, critical failure */
1745 if (!rxdr->desc) {
1746 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747 olddma);
1748 e_err(probe, "Unable to allocate memory for the Rx "
1749 "descriptor ring\n");
1750 goto setup_rx_desc_die;
1751 }
1752
1753 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1754 /* give up */
1755 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1756 rxdr->dma);
1757 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1758 olddma);
1759 e_err(probe, "Unable to allocate aligned memory for "
1760 "the Rx descriptor ring\n");
1761 goto setup_rx_desc_die;
1762 } else {
1763 /* Free old allocation, new allocation was successful */
1764 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1765 olddma);
1766 }
1767 }
1768 memset(rxdr->desc, 0, rxdr->size);
1769
1770 rxdr->next_to_clean = 0;
1771 rxdr->next_to_use = 0;
1772 rxdr->rx_skb_top = NULL;
1773
1774 return 0;
1775}
1776
1777/**
1778 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1779 * (Descriptors) for all queues
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784
1785int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1786{
1787 int i, err = 0;
1788
1789 for (i = 0; i < adapter->num_rx_queues; i++) {
1790 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1791 if (err) {
1792 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1793 for (i-- ; i >= 0; i--)
1794 e1000_free_rx_resources(adapter,
1795 &adapter->rx_ring[i]);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801}
1802
1803/**
1804 * e1000_setup_rctl - configure the receive control registers
1805 * @adapter: Board private structure
1806 **/
1807static void e1000_setup_rctl(struct e1000_adapter *adapter)
1808{
1809 struct e1000_hw *hw = &adapter->hw;
1810 u32 rctl;
1811
1812 rctl = er32(RCTL);
1813
1814 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1815
1816 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1817 E1000_RCTL_RDMTS_HALF |
1818 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1819
1820 if (hw->tbi_compatibility_on == 1)
1821 rctl |= E1000_RCTL_SBP;
1822 else
1823 rctl &= ~E1000_RCTL_SBP;
1824
1825 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1826 rctl &= ~E1000_RCTL_LPE;
1827 else
1828 rctl |= E1000_RCTL_LPE;
1829
1830 /* Setup buffer sizes */
1831 rctl &= ~E1000_RCTL_SZ_4096;
1832 rctl |= E1000_RCTL_BSEX;
1833 switch (adapter->rx_buffer_len) {
1834 case E1000_RXBUFFER_2048:
1835 default:
1836 rctl |= E1000_RCTL_SZ_2048;
1837 rctl &= ~E1000_RCTL_BSEX;
1838 break;
1839 case E1000_RXBUFFER_4096:
1840 rctl |= E1000_RCTL_SZ_4096;
1841 break;
1842 case E1000_RXBUFFER_8192:
1843 rctl |= E1000_RCTL_SZ_8192;
1844 break;
1845 case E1000_RXBUFFER_16384:
1846 rctl |= E1000_RCTL_SZ_16384;
1847 break;
1848 }
1849
1850 /* This is useful for sniffing bad packets. */
1851 if (adapter->netdev->features & NETIF_F_RXALL) {
1852 /* UPE and MPE will be handled by normal PROMISC logic
1853 * in e1000e_set_rx_mode */
1854 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1855 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1856 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1857
1858 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1859 E1000_RCTL_DPF | /* Allow filtered pause */
1860 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1861 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1862 * and that breaks VLANs.
1863 */
1864 }
1865
1866 ew32(RCTL, rctl);
1867}
1868
1869/**
1870 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875
1876static void e1000_configure_rx(struct e1000_adapter *adapter)
1877{
1878 u64 rdba;
1879 struct e1000_hw *hw = &adapter->hw;
1880 u32 rdlen, rctl, rxcsum;
1881
1882 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1883 rdlen = adapter->rx_ring[0].count *
1884 sizeof(struct e1000_rx_desc);
1885 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1886 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1887 } else {
1888 rdlen = adapter->rx_ring[0].count *
1889 sizeof(struct e1000_rx_desc);
1890 adapter->clean_rx = e1000_clean_rx_irq;
1891 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1892 }
1893
1894 /* disable receives while setting up the descriptors */
1895 rctl = er32(RCTL);
1896 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1897
1898 /* set the Receive Delay Timer Register */
1899 ew32(RDTR, adapter->rx_int_delay);
1900
1901 if (hw->mac_type >= e1000_82540) {
1902 ew32(RADV, adapter->rx_abs_int_delay);
1903 if (adapter->itr_setting != 0)
1904 ew32(ITR, 1000000000 / (adapter->itr * 256));
1905 }
1906
1907 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1908 * the Base and Length of the Rx Descriptor Ring */
1909 switch (adapter->num_rx_queues) {
1910 case 1:
1911 default:
1912 rdba = adapter->rx_ring[0].dma;
1913 ew32(RDLEN, rdlen);
1914 ew32(RDBAH, (rdba >> 32));
1915 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1916 ew32(RDT, 0);
1917 ew32(RDH, 0);
1918 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920 break;
1921 }
1922
1923 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924 if (hw->mac_type >= e1000_82543) {
1925 rxcsum = er32(RXCSUM);
1926 if (adapter->rx_csum)
1927 rxcsum |= E1000_RXCSUM_TUOFL;
1928 else
1929 /* don't need to clear IPPCSE as it defaults to 0 */
1930 rxcsum &= ~E1000_RXCSUM_TUOFL;
1931 ew32(RXCSUM, rxcsum);
1932 }
1933
1934 /* Enable Receives */
1935 ew32(RCTL, rctl | E1000_RCTL_EN);
1936}
1937
1938/**
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1942 *
1943 * Free all transmit software resources
1944 **/
1945
1946static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1947 struct e1000_tx_ring *tx_ring)
1948{
1949 struct pci_dev *pdev = adapter->pdev;
1950
1951 e1000_clean_tx_ring(adapter, tx_ring);
1952
1953 vfree(tx_ring->buffer_info);
1954 tx_ring->buffer_info = NULL;
1955
1956 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1957 tx_ring->dma);
1958
1959 tx_ring->desc = NULL;
1960}
1961
1962/**
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1965 *
1966 * Free all transmit software resources
1967 **/
1968
1969void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1970{
1971 int i;
1972
1973 for (i = 0; i < adapter->num_tx_queues; i++)
1974 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1975}
1976
1977static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1978 struct e1000_buffer *buffer_info)
1979{
1980 if (buffer_info->dma) {
1981 if (buffer_info->mapped_as_page)
1982 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1983 buffer_info->length, DMA_TO_DEVICE);
1984 else
1985 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1986 buffer_info->length,
1987 DMA_TO_DEVICE);
1988 buffer_info->dma = 0;
1989 }
1990 if (buffer_info->skb) {
1991 dev_kfree_skb_any(buffer_info->skb);
1992 buffer_info->skb = NULL;
1993 }
1994 buffer_info->time_stamp = 0;
1995 /* buffer_info must be completely set up in the transmit path */
1996}
1997
1998/**
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2002 **/
2003
2004static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2005 struct e1000_tx_ring *tx_ring)
2006{
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct e1000_buffer *buffer_info;
2009 unsigned long size;
2010 unsigned int i;
2011
2012 /* Free all the Tx ring sk_buffs */
2013
2014 for (i = 0; i < tx_ring->count; i++) {
2015 buffer_info = &tx_ring->buffer_info[i];
2016 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2017 }
2018
2019 size = sizeof(struct e1000_buffer) * tx_ring->count;
2020 memset(tx_ring->buffer_info, 0, size);
2021
2022 /* Zero out the descriptor ring */
2023
2024 memset(tx_ring->desc, 0, tx_ring->size);
2025
2026 tx_ring->next_to_use = 0;
2027 tx_ring->next_to_clean = 0;
2028 tx_ring->last_tx_tso = false;
2029
2030 writel(0, hw->hw_addr + tx_ring->tdh);
2031 writel(0, hw->hw_addr + tx_ring->tdt);
2032}
2033
2034/**
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2037 **/
2038
2039static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040{
2041 int i;
2042
2043 for (i = 0; i < adapter->num_tx_queues; i++)
2044 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045}
2046
2047/**
2048 * e1000_free_rx_resources - Free Rx Resources
2049 * @adapter: board private structure
2050 * @rx_ring: ring to clean the resources from
2051 *
2052 * Free all receive software resources
2053 **/
2054
2055static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2056 struct e1000_rx_ring *rx_ring)
2057{
2058 struct pci_dev *pdev = adapter->pdev;
2059
2060 e1000_clean_rx_ring(adapter, rx_ring);
2061
2062 vfree(rx_ring->buffer_info);
2063 rx_ring->buffer_info = NULL;
2064
2065 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2066 rx_ring->dma);
2067
2068 rx_ring->desc = NULL;
2069}
2070
2071/**
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2074 *
2075 * Free all receive software resources
2076 **/
2077
2078void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2079{
2080 int i;
2081
2082 for (i = 0; i < adapter->num_rx_queues; i++)
2083 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091
2092static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093 struct e1000_rx_ring *rx_ring)
2094{
2095 struct e1000_hw *hw = &adapter->hw;
2096 struct e1000_buffer *buffer_info;
2097 struct pci_dev *pdev = adapter->pdev;
2098 unsigned long size;
2099 unsigned int i;
2100
2101 /* Free all the Rx ring sk_buffs */
2102 for (i = 0; i < rx_ring->count; i++) {
2103 buffer_info = &rx_ring->buffer_info[i];
2104 if (buffer_info->dma &&
2105 adapter->clean_rx == e1000_clean_rx_irq) {
2106 dma_unmap_single(&pdev->dev, buffer_info->dma,
2107 buffer_info->length,
2108 DMA_FROM_DEVICE);
2109 } else if (buffer_info->dma &&
2110 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111 dma_unmap_page(&pdev->dev, buffer_info->dma,
2112 buffer_info->length,
2113 DMA_FROM_DEVICE);
2114 }
2115
2116 buffer_info->dma = 0;
2117 if (buffer_info->page) {
2118 put_page(buffer_info->page);
2119 buffer_info->page = NULL;
2120 }
2121 if (buffer_info->skb) {
2122 dev_kfree_skb(buffer_info->skb);
2123 buffer_info->skb = NULL;
2124 }
2125 }
2126
2127 /* there also may be some cached data from a chained receive */
2128 if (rx_ring->rx_skb_top) {
2129 dev_kfree_skb(rx_ring->rx_skb_top);
2130 rx_ring->rx_skb_top = NULL;
2131 }
2132
2133 size = sizeof(struct e1000_buffer) * rx_ring->count;
2134 memset(rx_ring->buffer_info, 0, size);
2135
2136 /* Zero out the descriptor ring */
2137 memset(rx_ring->desc, 0, rx_ring->size);
2138
2139 rx_ring->next_to_clean = 0;
2140 rx_ring->next_to_use = 0;
2141
2142 writel(0, hw->hw_addr + rx_ring->rdh);
2143 writel(0, hw->hw_addr + rx_ring->rdt);
2144}
2145
2146/**
2147 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2148 * @adapter: board private structure
2149 **/
2150
2151static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2152{
2153 int i;
2154
2155 for (i = 0; i < adapter->num_rx_queues; i++)
2156 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2157}
2158
2159/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2160 * and memory write and invalidate disabled for certain operations
2161 */
2162static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163{
2164 struct e1000_hw *hw = &adapter->hw;
2165 struct net_device *netdev = adapter->netdev;
2166 u32 rctl;
2167
2168 e1000_pci_clear_mwi(hw);
2169
2170 rctl = er32(RCTL);
2171 rctl |= E1000_RCTL_RST;
2172 ew32(RCTL, rctl);
2173 E1000_WRITE_FLUSH();
2174 mdelay(5);
2175
2176 if (netif_running(netdev))
2177 e1000_clean_all_rx_rings(adapter);
2178}
2179
2180static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181{
2182 struct e1000_hw *hw = &adapter->hw;
2183 struct net_device *netdev = adapter->netdev;
2184 u32 rctl;
2185
2186 rctl = er32(RCTL);
2187 rctl &= ~E1000_RCTL_RST;
2188 ew32(RCTL, rctl);
2189 E1000_WRITE_FLUSH();
2190 mdelay(5);
2191
2192 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2193 e1000_pci_set_mwi(hw);
2194
2195 if (netif_running(netdev)) {
2196 /* No need to loop, because 82542 supports only 1 queue */
2197 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2198 e1000_configure_rx(adapter);
2199 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200 }
2201}
2202
2203/**
2204 * e1000_set_mac - Change the Ethernet Address of the NIC
2205 * @netdev: network interface device structure
2206 * @p: pointer to an address structure
2207 *
2208 * Returns 0 on success, negative on failure
2209 **/
2210
2211static int e1000_set_mac(struct net_device *netdev, void *p)
2212{
2213 struct e1000_adapter *adapter = netdev_priv(netdev);
2214 struct e1000_hw *hw = &adapter->hw;
2215 struct sockaddr *addr = p;
2216
2217 if (!is_valid_ether_addr(addr->sa_data))
2218 return -EADDRNOTAVAIL;
2219
2220 /* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222 if (hw->mac_type == e1000_82542_rev2_0)
2223 e1000_enter_82542_rst(adapter);
2224
2225 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228 e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230 if (hw->mac_type == e1000_82542_rev2_0)
2231 e1000_leave_82542_rst(adapter);
2232
2233 return 0;
2234}
2235
2236/**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245
2246static void e1000_set_rx_mode(struct net_device *netdev)
2247{
2248 struct e1000_adapter *adapter = netdev_priv(netdev);
2249 struct e1000_hw *hw = &adapter->hw;
2250 struct netdev_hw_addr *ha;
2251 bool use_uc = false;
2252 u32 rctl;
2253 u32 hash_value;
2254 int i, rar_entries = E1000_RAR_ENTRIES;
2255 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2256 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2257
2258 if (!mcarray) {
2259 e_err(probe, "memory allocation failed\n");
2260 return;
2261 }
2262
2263 /* Check for Promiscuous and All Multicast modes */
2264
2265 rctl = er32(RCTL);
2266
2267 if (netdev->flags & IFF_PROMISC) {
2268 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269 rctl &= ~E1000_RCTL_VFE;
2270 } else {
2271 if (netdev->flags & IFF_ALLMULTI)
2272 rctl |= E1000_RCTL_MPE;
2273 else
2274 rctl &= ~E1000_RCTL_MPE;
2275 /* Enable VLAN filter if there is a VLAN */
2276 if (e1000_vlan_used(adapter))
2277 rctl |= E1000_RCTL_VFE;
2278 }
2279
2280 if (netdev_uc_count(netdev) > rar_entries - 1) {
2281 rctl |= E1000_RCTL_UPE;
2282 } else if (!(netdev->flags & IFF_PROMISC)) {
2283 rctl &= ~E1000_RCTL_UPE;
2284 use_uc = true;
2285 }
2286
2287 ew32(RCTL, rctl);
2288
2289 /* 82542 2.0 needs to be in reset to write receive address registers */
2290
2291 if (hw->mac_type == e1000_82542_rev2_0)
2292 e1000_enter_82542_rst(adapter);
2293
2294 /* load the first 14 addresses into the exact filters 1-14. Unicast
2295 * addresses take precedence to avoid disabling unicast filtering
2296 * when possible.
2297 *
2298 * RAR 0 is used for the station MAC address
2299 * if there are not 14 addresses, go ahead and clear the filters
2300 */
2301 i = 1;
2302 if (use_uc)
2303 netdev_for_each_uc_addr(ha, netdev) {
2304 if (i == rar_entries)
2305 break;
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308
2309 netdev_for_each_mc_addr(ha, netdev) {
2310 if (i == rar_entries) {
2311 /* load any remaining addresses into the hash table */
2312 u32 hash_reg, hash_bit, mta;
2313 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2314 hash_reg = (hash_value >> 5) & 0x7F;
2315 hash_bit = hash_value & 0x1F;
2316 mta = (1 << hash_bit);
2317 mcarray[hash_reg] |= mta;
2318 } else {
2319 e1000_rar_set(hw, ha->addr, i++);
2320 }
2321 }
2322
2323 for (; i < rar_entries; i++) {
2324 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325 E1000_WRITE_FLUSH();
2326 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327 E1000_WRITE_FLUSH();
2328 }
2329
2330 /* write the hash table completely, write from bottom to avoid
2331 * both stupid write combining chipsets, and flushing each write */
2332 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2333 /*
2334 * If we are on an 82544 has an errata where writing odd
2335 * offsets overwrites the previous even offset, but writing
2336 * backwards over the range solves the issue by always
2337 * writing the odd offset first
2338 */
2339 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2340 }
2341 E1000_WRITE_FLUSH();
2342
2343 if (hw->mac_type == e1000_82542_rev2_0)
2344 e1000_leave_82542_rst(adapter);
2345
2346 kfree(mcarray);
2347}
2348
2349/**
2350 * e1000_update_phy_info_task - get phy info
2351 * @work: work struct contained inside adapter struct
2352 *
2353 * Need to wait a few seconds after link up to get diagnostic information from
2354 * the phy
2355 */
2356static void e1000_update_phy_info_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 phy_info_task.work);
2361 if (test_bit(__E1000_DOWN, &adapter->flags))
2362 return;
2363 mutex_lock(&adapter->mutex);
2364 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365 mutex_unlock(&adapter->mutex);
2366}
2367
2368/**
2369 * e1000_82547_tx_fifo_stall_task - task to complete work
2370 * @work: work struct contained inside adapter struct
2371 **/
2372static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373{
2374 struct e1000_adapter *adapter = container_of(work,
2375 struct e1000_adapter,
2376 fifo_stall_task.work);
2377 struct e1000_hw *hw = &adapter->hw;
2378 struct net_device *netdev = adapter->netdev;
2379 u32 tctl;
2380
2381 if (test_bit(__E1000_DOWN, &adapter->flags))
2382 return;
2383 mutex_lock(&adapter->mutex);
2384 if (atomic_read(&adapter->tx_fifo_stall)) {
2385 if ((er32(TDT) == er32(TDH)) &&
2386 (er32(TDFT) == er32(TDFH)) &&
2387 (er32(TDFTS) == er32(TDFHS))) {
2388 tctl = er32(TCTL);
2389 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2390 ew32(TDFT, adapter->tx_head_addr);
2391 ew32(TDFH, adapter->tx_head_addr);
2392 ew32(TDFTS, adapter->tx_head_addr);
2393 ew32(TDFHS, adapter->tx_head_addr);
2394 ew32(TCTL, tctl);
2395 E1000_WRITE_FLUSH();
2396
2397 adapter->tx_fifo_head = 0;
2398 atomic_set(&adapter->tx_fifo_stall, 0);
2399 netif_wake_queue(netdev);
2400 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2401 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2402 }
2403 }
2404 mutex_unlock(&adapter->mutex);
2405}
2406
2407bool e1000_has_link(struct e1000_adapter *adapter)
2408{
2409 struct e1000_hw *hw = &adapter->hw;
2410 bool link_active = false;
2411
2412 /* get_link_status is set on LSC (link status) interrupt or rx
2413 * sequence error interrupt (except on intel ce4100).
2414 * get_link_status will stay false until the
2415 * e1000_check_for_link establishes link for copper adapters
2416 * ONLY
2417 */
2418 switch (hw->media_type) {
2419 case e1000_media_type_copper:
2420 if (hw->mac_type == e1000_ce4100)
2421 hw->get_link_status = 1;
2422 if (hw->get_link_status) {
2423 e1000_check_for_link(hw);
2424 link_active = !hw->get_link_status;
2425 } else {
2426 link_active = true;
2427 }
2428 break;
2429 case e1000_media_type_fiber:
2430 e1000_check_for_link(hw);
2431 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2432 break;
2433 case e1000_media_type_internal_serdes:
2434 e1000_check_for_link(hw);
2435 link_active = hw->serdes_has_link;
2436 break;
2437 default:
2438 break;
2439 }
2440
2441 return link_active;
2442}
2443
2444/**
2445 * e1000_watchdog - work function
2446 * @work: work struct contained inside adapter struct
2447 **/
2448static void e1000_watchdog(struct work_struct *work)
2449{
2450 struct e1000_adapter *adapter = container_of(work,
2451 struct e1000_adapter,
2452 watchdog_task.work);
2453 struct e1000_hw *hw = &adapter->hw;
2454 struct net_device *netdev = adapter->netdev;
2455 struct e1000_tx_ring *txdr = adapter->tx_ring;
2456 u32 link, tctl;
2457
2458 if (test_bit(__E1000_DOWN, &adapter->flags))
2459 return;
2460
2461 mutex_lock(&adapter->mutex);
2462 link = e1000_has_link(adapter);
2463 if ((netif_carrier_ok(netdev)) && link)
2464 goto link_up;
2465
2466 if (link) {
2467 if (!netif_carrier_ok(netdev)) {
2468 u32 ctrl;
2469 bool txb2b = true;
2470 /* update snapshot of PHY registers on LSC */
2471 e1000_get_speed_and_duplex(hw,
2472 &adapter->link_speed,
2473 &adapter->link_duplex);
2474
2475 ctrl = er32(CTRL);
2476 pr_info("%s NIC Link is Up %d Mbps %s, "
2477 "Flow Control: %s\n",
2478 netdev->name,
2479 adapter->link_speed,
2480 adapter->link_duplex == FULL_DUPLEX ?
2481 "Full Duplex" : "Half Duplex",
2482 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2483 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2484 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2485 E1000_CTRL_TFCE) ? "TX" : "None")));
2486
2487 /* adjust timeout factor according to speed/duplex */
2488 adapter->tx_timeout_factor = 1;
2489 switch (adapter->link_speed) {
2490 case SPEED_10:
2491 txb2b = false;
2492 adapter->tx_timeout_factor = 16;
2493 break;
2494 case SPEED_100:
2495 txb2b = false;
2496 /* maybe add some timeout factor ? */
2497 break;
2498 }
2499
2500 /* enable transmits in the hardware */
2501 tctl = er32(TCTL);
2502 tctl |= E1000_TCTL_EN;
2503 ew32(TCTL, tctl);
2504
2505 netif_carrier_on(netdev);
2506 if (!test_bit(__E1000_DOWN, &adapter->flags))
2507 schedule_delayed_work(&adapter->phy_info_task,
2508 2 * HZ);
2509 adapter->smartspeed = 0;
2510 }
2511 } else {
2512 if (netif_carrier_ok(netdev)) {
2513 adapter->link_speed = 0;
2514 adapter->link_duplex = 0;
2515 pr_info("%s NIC Link is Down\n",
2516 netdev->name);
2517 netif_carrier_off(netdev);
2518
2519 if (!test_bit(__E1000_DOWN, &adapter->flags))
2520 schedule_delayed_work(&adapter->phy_info_task,
2521 2 * HZ);
2522 }
2523
2524 e1000_smartspeed(adapter);
2525 }
2526
2527link_up:
2528 e1000_update_stats(adapter);
2529
2530 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531 adapter->tpt_old = adapter->stats.tpt;
2532 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2533 adapter->colc_old = adapter->stats.colc;
2534
2535 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536 adapter->gorcl_old = adapter->stats.gorcl;
2537 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538 adapter->gotcl_old = adapter->stats.gotcl;
2539
2540 e1000_update_adaptive(hw);
2541
2542 if (!netif_carrier_ok(netdev)) {
2543 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544 /* We've lost link, so the controller stops DMA,
2545 * but we've got queued Tx work that's never going
2546 * to get done, so reset controller to flush Tx.
2547 * (Do the reset outside of interrupt context). */
2548 adapter->tx_timeout_count++;
2549 schedule_work(&adapter->reset_task);
2550 /* exit immediately since reset is imminent */
2551 goto unlock;
2552 }
2553 }
2554
2555 /* Simple mode for Interrupt Throttle Rate (ITR) */
2556 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2557 /*
2558 * Symmetric Tx/Rx gets a reduced ITR=2000;
2559 * Total asymmetrical Tx or Rx gets ITR=8000;
2560 * everyone else is between 2000-8000.
2561 */
2562 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2563 u32 dif = (adapter->gotcl > adapter->gorcl ?
2564 adapter->gotcl - adapter->gorcl :
2565 adapter->gorcl - adapter->gotcl) / 10000;
2566 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2567
2568 ew32(ITR, 1000000000 / (itr * 256));
2569 }
2570
2571 /* Cause software interrupt to ensure rx ring is cleaned */
2572 ew32(ICS, E1000_ICS_RXDMT0);
2573
2574 /* Force detection of hung controller every watchdog period */
2575 adapter->detect_tx_hung = true;
2576
2577 /* Reschedule the task */
2578 if (!test_bit(__E1000_DOWN, &adapter->flags))
2579 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2580
2581unlock:
2582 mutex_unlock(&adapter->mutex);
2583}
2584
2585enum latency_range {
2586 lowest_latency = 0,
2587 low_latency = 1,
2588 bulk_latency = 2,
2589 latency_invalid = 255
2590};
2591
2592/**
2593 * e1000_update_itr - update the dynamic ITR value based on statistics
2594 * @adapter: pointer to adapter
2595 * @itr_setting: current adapter->itr
2596 * @packets: the number of packets during this measurement interval
2597 * @bytes: the number of bytes during this measurement interval
2598 *
2599 * Stores a new ITR value based on packets and byte
2600 * counts during the last interrupt. The advantage of per interrupt
2601 * computation is faster updates and more accurate ITR for the current
2602 * traffic pattern. Constants in this function were computed
2603 * based on theoretical maximum wire speed and thresholds were set based
2604 * on testing data as well as attempting to minimize response time
2605 * while increasing bulk throughput.
2606 * this functionality is controlled by the InterruptThrottleRate module
2607 * parameter (see e1000_param.c)
2608 **/
2609static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2610 u16 itr_setting, int packets, int bytes)
2611{
2612 unsigned int retval = itr_setting;
2613 struct e1000_hw *hw = &adapter->hw;
2614
2615 if (unlikely(hw->mac_type < e1000_82540))
2616 goto update_itr_done;
2617
2618 if (packets == 0)
2619 goto update_itr_done;
2620
2621 switch (itr_setting) {
2622 case lowest_latency:
2623 /* jumbo frames get bulk treatment*/
2624 if (bytes/packets > 8000)
2625 retval = bulk_latency;
2626 else if ((packets < 5) && (bytes > 512))
2627 retval = low_latency;
2628 break;
2629 case low_latency: /* 50 usec aka 20000 ints/s */
2630 if (bytes > 10000) {
2631 /* jumbo frames need bulk latency setting */
2632 if (bytes/packets > 8000)
2633 retval = bulk_latency;
2634 else if ((packets < 10) || ((bytes/packets) > 1200))
2635 retval = bulk_latency;
2636 else if ((packets > 35))
2637 retval = lowest_latency;
2638 } else if (bytes/packets > 2000)
2639 retval = bulk_latency;
2640 else if (packets <= 2 && bytes < 512)
2641 retval = lowest_latency;
2642 break;
2643 case bulk_latency: /* 250 usec aka 4000 ints/s */
2644 if (bytes > 25000) {
2645 if (packets > 35)
2646 retval = low_latency;
2647 } else if (bytes < 6000) {
2648 retval = low_latency;
2649 }
2650 break;
2651 }
2652
2653update_itr_done:
2654 return retval;
2655}
2656
2657static void e1000_set_itr(struct e1000_adapter *adapter)
2658{
2659 struct e1000_hw *hw = &adapter->hw;
2660 u16 current_itr;
2661 u32 new_itr = adapter->itr;
2662
2663 if (unlikely(hw->mac_type < e1000_82540))
2664 return;
2665
2666 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2667 if (unlikely(adapter->link_speed != SPEED_1000)) {
2668 current_itr = 0;
2669 new_itr = 4000;
2670 goto set_itr_now;
2671 }
2672
2673 adapter->tx_itr = e1000_update_itr(adapter,
2674 adapter->tx_itr,
2675 adapter->total_tx_packets,
2676 adapter->total_tx_bytes);
2677 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2678 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2679 adapter->tx_itr = low_latency;
2680
2681 adapter->rx_itr = e1000_update_itr(adapter,
2682 adapter->rx_itr,
2683 adapter->total_rx_packets,
2684 adapter->total_rx_bytes);
2685 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2686 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2687 adapter->rx_itr = low_latency;
2688
2689 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2690
2691 switch (current_itr) {
2692 /* counts and packets in update_itr are dependent on these numbers */
2693 case lowest_latency:
2694 new_itr = 70000;
2695 break;
2696 case low_latency:
2697 new_itr = 20000; /* aka hwitr = ~200 */
2698 break;
2699 case bulk_latency:
2700 new_itr = 4000;
2701 break;
2702 default:
2703 break;
2704 }
2705
2706set_itr_now:
2707 if (new_itr != adapter->itr) {
2708 /* this attempts to bias the interrupt rate towards Bulk
2709 * by adding intermediate steps when interrupt rate is
2710 * increasing */
2711 new_itr = new_itr > adapter->itr ?
2712 min(adapter->itr + (new_itr >> 2), new_itr) :
2713 new_itr;
2714 adapter->itr = new_itr;
2715 ew32(ITR, 1000000000 / (new_itr * 256));
2716 }
2717}
2718
2719#define E1000_TX_FLAGS_CSUM 0x00000001
2720#define E1000_TX_FLAGS_VLAN 0x00000002
2721#define E1000_TX_FLAGS_TSO 0x00000004
2722#define E1000_TX_FLAGS_IPV4 0x00000008
2723#define E1000_TX_FLAGS_NO_FCS 0x00000010
2724#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2725#define E1000_TX_FLAGS_VLAN_SHIFT 16
2726
2727static int e1000_tso(struct e1000_adapter *adapter,
2728 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2729{
2730 struct e1000_context_desc *context_desc;
2731 struct e1000_buffer *buffer_info;
2732 unsigned int i;
2733 u32 cmd_length = 0;
2734 u16 ipcse = 0, tucse, mss;
2735 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2736 int err;
2737
2738 if (skb_is_gso(skb)) {
2739 if (skb_header_cloned(skb)) {
2740 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741 if (err)
2742 return err;
2743 }
2744
2745 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2746 mss = skb_shinfo(skb)->gso_size;
2747 if (skb->protocol == htons(ETH_P_IP)) {
2748 struct iphdr *iph = ip_hdr(skb);
2749 iph->tot_len = 0;
2750 iph->check = 0;
2751 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2752 iph->daddr, 0,
2753 IPPROTO_TCP,
2754 0);
2755 cmd_length = E1000_TXD_CMD_IP;
2756 ipcse = skb_transport_offset(skb) - 1;
2757 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2758 ipv6_hdr(skb)->payload_len = 0;
2759 tcp_hdr(skb)->check =
2760 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2761 &ipv6_hdr(skb)->daddr,
2762 0, IPPROTO_TCP, 0);
2763 ipcse = 0;
2764 }
2765 ipcss = skb_network_offset(skb);
2766 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2767 tucss = skb_transport_offset(skb);
2768 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2769 tucse = 0;
2770
2771 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2772 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2773
2774 i = tx_ring->next_to_use;
2775 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2776 buffer_info = &tx_ring->buffer_info[i];
2777
2778 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2779 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2780 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2781 context_desc->upper_setup.tcp_fields.tucss = tucss;
2782 context_desc->upper_setup.tcp_fields.tucso = tucso;
2783 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2784 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2785 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2786 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2787
2788 buffer_info->time_stamp = jiffies;
2789 buffer_info->next_to_watch = i;
2790
2791 if (++i == tx_ring->count) i = 0;
2792 tx_ring->next_to_use = i;
2793
2794 return true;
2795 }
2796 return false;
2797}
2798
2799static bool e1000_tx_csum(struct e1000_adapter *adapter,
2800 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2801{
2802 struct e1000_context_desc *context_desc;
2803 struct e1000_buffer *buffer_info;
2804 unsigned int i;
2805 u8 css;
2806 u32 cmd_len = E1000_TXD_CMD_DEXT;
2807
2808 if (skb->ip_summed != CHECKSUM_PARTIAL)
2809 return false;
2810
2811 switch (skb->protocol) {
2812 case cpu_to_be16(ETH_P_IP):
2813 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2814 cmd_len |= E1000_TXD_CMD_TCP;
2815 break;
2816 case cpu_to_be16(ETH_P_IPV6):
2817 /* XXX not handling all IPV6 headers */
2818 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2819 cmd_len |= E1000_TXD_CMD_TCP;
2820 break;
2821 default:
2822 if (unlikely(net_ratelimit()))
2823 e_warn(drv, "checksum_partial proto=%x!\n",
2824 skb->protocol);
2825 break;
2826 }
2827
2828 css = skb_checksum_start_offset(skb);
2829
2830 i = tx_ring->next_to_use;
2831 buffer_info = &tx_ring->buffer_info[i];
2832 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2833
2834 context_desc->lower_setup.ip_config = 0;
2835 context_desc->upper_setup.tcp_fields.tucss = css;
2836 context_desc->upper_setup.tcp_fields.tucso =
2837 css + skb->csum_offset;
2838 context_desc->upper_setup.tcp_fields.tucse = 0;
2839 context_desc->tcp_seg_setup.data = 0;
2840 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2841
2842 buffer_info->time_stamp = jiffies;
2843 buffer_info->next_to_watch = i;
2844
2845 if (unlikely(++i == tx_ring->count)) i = 0;
2846 tx_ring->next_to_use = i;
2847
2848 return true;
2849}
2850
2851#define E1000_MAX_TXD_PWR 12
2852#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2853
2854static int e1000_tx_map(struct e1000_adapter *adapter,
2855 struct e1000_tx_ring *tx_ring,
2856 struct sk_buff *skb, unsigned int first,
2857 unsigned int max_per_txd, unsigned int nr_frags,
2858 unsigned int mss)
2859{
2860 struct e1000_hw *hw = &adapter->hw;
2861 struct pci_dev *pdev = adapter->pdev;
2862 struct e1000_buffer *buffer_info;
2863 unsigned int len = skb_headlen(skb);
2864 unsigned int offset = 0, size, count = 0, i;
2865 unsigned int f, bytecount, segs;
2866
2867 i = tx_ring->next_to_use;
2868
2869 while (len) {
2870 buffer_info = &tx_ring->buffer_info[i];
2871 size = min(len, max_per_txd);
2872 /* Workaround for Controller erratum --
2873 * descriptor for non-tso packet in a linear SKB that follows a
2874 * tso gets written back prematurely before the data is fully
2875 * DMA'd to the controller */
2876 if (!skb->data_len && tx_ring->last_tx_tso &&
2877 !skb_is_gso(skb)) {
2878 tx_ring->last_tx_tso = false;
2879 size -= 4;
2880 }
2881
2882 /* Workaround for premature desc write-backs
2883 * in TSO mode. Append 4-byte sentinel desc */
2884 if (unlikely(mss && !nr_frags && size == len && size > 8))
2885 size -= 4;
2886 /* work-around for errata 10 and it applies
2887 * to all controllers in PCI-X mode
2888 * The fix is to make sure that the first descriptor of a
2889 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2890 */
2891 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2892 (size > 2015) && count == 0))
2893 size = 2015;
2894
2895 /* Workaround for potential 82544 hang in PCI-X. Avoid
2896 * terminating buffers within evenly-aligned dwords. */
2897 if (unlikely(adapter->pcix_82544 &&
2898 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2899 size > 4))
2900 size -= 4;
2901
2902 buffer_info->length = size;
2903 /* set time_stamp *before* dma to help avoid a possible race */
2904 buffer_info->time_stamp = jiffies;
2905 buffer_info->mapped_as_page = false;
2906 buffer_info->dma = dma_map_single(&pdev->dev,
2907 skb->data + offset,
2908 size, DMA_TO_DEVICE);
2909 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2910 goto dma_error;
2911 buffer_info->next_to_watch = i;
2912
2913 len -= size;
2914 offset += size;
2915 count++;
2916 if (len) {
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920 }
2921 }
2922
2923 for (f = 0; f < nr_frags; f++) {
2924 const struct skb_frag_struct *frag;
2925
2926 frag = &skb_shinfo(skb)->frags[f];
2927 len = skb_frag_size(frag);
2928 offset = 0;
2929
2930 while (len) {
2931 unsigned long bufend;
2932 i++;
2933 if (unlikely(i == tx_ring->count))
2934 i = 0;
2935
2936 buffer_info = &tx_ring->buffer_info[i];
2937 size = min(len, max_per_txd);
2938 /* Workaround for premature desc write-backs
2939 * in TSO mode. Append 4-byte sentinel desc */
2940 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2941 size -= 4;
2942 /* Workaround for potential 82544 hang in PCI-X.
2943 * Avoid terminating buffers within evenly-aligned
2944 * dwords. */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i==0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999{
3000 struct e1000_hw *hw = &adapter->hw;
3001 struct e1000_tx_desc *tx_desc = NULL;
3002 struct e1000_buffer *buffer_info;
3003 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3004 unsigned int i;
3005
3006 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3007 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3008 E1000_TXD_CMD_TSE;
3009 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010
3011 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3012 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3013 }
3014
3015 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3016 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3017 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3018 }
3019
3020 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3021 txd_lower |= E1000_TXD_CMD_VLE;
3022 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3023 }
3024
3025 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3026 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3027
3028 i = tx_ring->next_to_use;
3029
3030 while (count--) {
3031 buffer_info = &tx_ring->buffer_info[i];
3032 tx_desc = E1000_TX_DESC(*tx_ring, i);
3033 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3034 tx_desc->lower.data =
3035 cpu_to_le32(txd_lower | buffer_info->length);
3036 tx_desc->upper.data = cpu_to_le32(txd_upper);
3037 if (unlikely(++i == tx_ring->count)) i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64). */
3050 wmb();
3051
3052 tx_ring->next_to_use = i;
3053 writel(i, hw->hw_addr + tx_ring->tdt);
3054 /* we need this if more than one processor can write to our tail
3055 * at a time, it syncronizes IO on IA64/Altix systems */
3056 mmiowb();
3057}
3058
3059/**
3060 * 82547 workaround to avoid controller hang in half-duplex environment.
3061 * The workaround is to avoid queuing a large packet that would span
3062 * the internal Tx FIFO ring boundary by notifying the stack to resend
3063 * the packet at a later time. This gives the Tx FIFO an opportunity to
3064 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3065 * to the beginning of the Tx FIFO.
3066 **/
3067
3068#define E1000_FIFO_HDR 0x10
3069#define E1000_82547_PAD_LEN 0x3E0
3070
3071static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3072 struct sk_buff *skb)
3073{
3074 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3075 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3076
3077 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3078
3079 if (adapter->link_duplex != HALF_DUPLEX)
3080 goto no_fifo_stall_required;
3081
3082 if (atomic_read(&adapter->tx_fifo_stall))
3083 return 1;
3084
3085 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3086 atomic_set(&adapter->tx_fifo_stall, 1);
3087 return 1;
3088 }
3089
3090no_fifo_stall_required:
3091 adapter->tx_fifo_head += skb_fifo_len;
3092 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3093 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3094 return 0;
3095}
3096
3097static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3098{
3099 struct e1000_adapter *adapter = netdev_priv(netdev);
3100 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3101
3102 netif_stop_queue(netdev);
3103 /* Herbert's original patch had:
3104 * smp_mb__after_netif_stop_queue();
3105 * but since that doesn't exist yet, just open code it. */
3106 smp_mb();
3107
3108 /* We need to check again in a case another CPU has just
3109 * made room available. */
3110 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3111 return -EBUSY;
3112
3113 /* A reprieve! */
3114 netif_start_queue(netdev);
3115 ++adapter->restart_queue;
3116 return 0;
3117}
3118
3119static int e1000_maybe_stop_tx(struct net_device *netdev,
3120 struct e1000_tx_ring *tx_ring, int size)
3121{
3122 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3123 return 0;
3124 return __e1000_maybe_stop_tx(netdev, size);
3125}
3126
3127#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3128static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3129 struct net_device *netdev)
3130{
3131 struct e1000_adapter *adapter = netdev_priv(netdev);
3132 struct e1000_hw *hw = &adapter->hw;
3133 struct e1000_tx_ring *tx_ring;
3134 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3135 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3136 unsigned int tx_flags = 0;
3137 unsigned int len = skb_headlen(skb);
3138 unsigned int nr_frags;
3139 unsigned int mss;
3140 int count = 0;
3141 int tso;
3142 unsigned int f;
3143
3144 /* This goes back to the question of how to logically map a tx queue
3145 * to a flow. Right now, performance is impacted slightly negatively
3146 * if using multiple tx queues. If the stack breaks away from a
3147 * single qdisc implementation, we can look at this again. */
3148 tx_ring = adapter->tx_ring;
3149
3150 if (unlikely(skb->len <= 0)) {
3151 dev_kfree_skb_any(skb);
3152 return NETDEV_TX_OK;
3153 }
3154
3155 mss = skb_shinfo(skb)->gso_size;
3156 /* The controller does a simple calculation to
3157 * make sure there is enough room in the FIFO before
3158 * initiating the DMA for each buffer. The calc is:
3159 * 4 = ceil(buffer len/mss). To make sure we don't
3160 * overrun the FIFO, adjust the max buffer len if mss
3161 * drops. */
3162 if (mss) {
3163 u8 hdr_len;
3164 max_per_txd = min(mss << 2, max_per_txd);
3165 max_txd_pwr = fls(max_per_txd) - 1;
3166
3167 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168 if (skb->data_len && hdr_len == len) {
3169 switch (hw->mac_type) {
3170 unsigned int pull_size;
3171 case e1000_82544:
3172 /* Make sure we have room to chop off 4 bytes,
3173 * and that the end alignment will work out to
3174 * this hardware's requirements
3175 * NOTE: this is a TSO only workaround
3176 * if end byte alignment not correct move us
3177 * into the next dword */
3178 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3179 break;
3180 /* fall through */
3181 pull_size = min((unsigned int)4, skb->data_len);
3182 if (!__pskb_pull_tail(skb, pull_size)) {
3183 e_err(drv, "__pskb_pull_tail "
3184 "failed.\n");
3185 dev_kfree_skb_any(skb);
3186 return NETDEV_TX_OK;
3187 }
3188 len = skb_headlen(skb);
3189 break;
3190 default:
3191 /* do nothing */
3192 break;
3193 }
3194 }
3195 }
3196
3197 /* reserve a descriptor for the offload context */
3198 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3199 count++;
3200 count++;
3201
3202 /* Controller Erratum workaround */
3203 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204 count++;
3205
3206 count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208 if (adapter->pcix_82544)
3209 count++;
3210
3211 /* work-around for errata 10 and it applies to all controllers
3212 * in PCI-X mode, so add one more descriptor to the count
3213 */
3214 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3215 (len > 2015)))
3216 count++;
3217
3218 nr_frags = skb_shinfo(skb)->nr_frags;
3219 for (f = 0; f < nr_frags; f++)
3220 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3221 max_txd_pwr);
3222 if (adapter->pcix_82544)
3223 count += nr_frags;
3224
3225 /* need: count + 2 desc gap to keep tail from touching
3226 * head, otherwise try next time */
3227 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3228 return NETDEV_TX_BUSY;
3229
3230 if (unlikely((hw->mac_type == e1000_82547) &&
3231 (e1000_82547_fifo_workaround(adapter, skb)))) {
3232 netif_stop_queue(netdev);
3233 if (!test_bit(__E1000_DOWN, &adapter->flags))
3234 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3235 return NETDEV_TX_BUSY;
3236 }
3237
3238 if (vlan_tx_tag_present(skb)) {
3239 tx_flags |= E1000_TX_FLAGS_VLAN;
3240 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3241 }
3242
3243 first = tx_ring->next_to_use;
3244
3245 tso = e1000_tso(adapter, tx_ring, skb);
3246 if (tso < 0) {
3247 dev_kfree_skb_any(skb);
3248 return NETDEV_TX_OK;
3249 }
3250
3251 if (likely(tso)) {
3252 if (likely(hw->mac_type != e1000_82544))
3253 tx_ring->last_tx_tso = true;
3254 tx_flags |= E1000_TX_FLAGS_TSO;
3255 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3256 tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258 if (likely(skb->protocol == htons(ETH_P_IP)))
3259 tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261 if (unlikely(skb->no_fcs))
3262 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265 nr_frags, mss);
3266
3267 if (count) {
3268 skb_tx_timestamp(skb);
3269
3270 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
3274 } else {
3275 dev_kfree_skb_any(skb);
3276 tx_ring->buffer_info[first].time_stamp = 0;
3277 tx_ring->next_to_use = first;
3278 }
3279
3280 return NETDEV_TX_OK;
3281}
3282
3283#define NUM_REGS 38 /* 1 based count */
3284static void e1000_regdump(struct e1000_adapter *adapter)
3285{
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 regs[NUM_REGS];
3288 u32 *regs_buff = regs;
3289 int i = 0;
3290
3291 static const char * const reg_name[] = {
3292 "CTRL", "STATUS",
3293 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295 "TIDV", "TXDCTL", "TADV", "TARC0",
3296 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297 "TXDCTL1", "TARC1",
3298 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301 };
3302
3303 regs_buff[0] = er32(CTRL);
3304 regs_buff[1] = er32(STATUS);
3305
3306 regs_buff[2] = er32(RCTL);
3307 regs_buff[3] = er32(RDLEN);
3308 regs_buff[4] = er32(RDH);
3309 regs_buff[5] = er32(RDT);
3310 regs_buff[6] = er32(RDTR);
3311
3312 regs_buff[7] = er32(TCTL);
3313 regs_buff[8] = er32(TDBAL);
3314 regs_buff[9] = er32(TDBAH);
3315 regs_buff[10] = er32(TDLEN);
3316 regs_buff[11] = er32(TDH);
3317 regs_buff[12] = er32(TDT);
3318 regs_buff[13] = er32(TIDV);
3319 regs_buff[14] = er32(TXDCTL);
3320 regs_buff[15] = er32(TADV);
3321 regs_buff[16] = er32(TARC0);
3322
3323 regs_buff[17] = er32(TDBAL1);
3324 regs_buff[18] = er32(TDBAH1);
3325 regs_buff[19] = er32(TDLEN1);
3326 regs_buff[20] = er32(TDH1);
3327 regs_buff[21] = er32(TDT1);
3328 regs_buff[22] = er32(TXDCTL1);
3329 regs_buff[23] = er32(TARC1);
3330 regs_buff[24] = er32(CTRL_EXT);
3331 regs_buff[25] = er32(ERT);
3332 regs_buff[26] = er32(RDBAL0);
3333 regs_buff[27] = er32(RDBAH0);
3334 regs_buff[28] = er32(TDFH);
3335 regs_buff[29] = er32(TDFT);
3336 regs_buff[30] = er32(TDFHS);
3337 regs_buff[31] = er32(TDFTS);
3338 regs_buff[32] = er32(TDFPC);
3339 regs_buff[33] = er32(RDFH);
3340 regs_buff[34] = er32(RDFT);
3341 regs_buff[35] = er32(RDFHS);
3342 regs_buff[36] = er32(RDFTS);
3343 regs_buff[37] = er32(RDFPC);
3344
3345 pr_info("Register dump\n");
3346 for (i = 0; i < NUM_REGS; i++)
3347 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3348}
3349
3350/*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353static void e1000_dump(struct e1000_adapter *adapter)
3354{
3355 /* this code doesn't handle multiple rings */
3356 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358 int i;
3359
3360 if (!netif_msg_hw(adapter))
3361 return;
3362
3363 /* Print Registers */
3364 e1000_regdump(adapter);
3365
3366 /*
3367 * transmit dump
3368 */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /*
3430 * receive dump
3431 */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->skb, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 **/
3496
3497static void e1000_tx_timeout(struct net_device *netdev)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 if (test_bit(__E1000_DOWN, &adapter->flags))
3512 return;
3513 e_err(drv, "Reset adapter\n");
3514 e1000_reinit_safe(adapter);
3515}
3516
3517/**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526{
3527 /* only return the current stats */
3528 return &netdev->stats;
3529}
3530
3531/**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540{
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3542 struct e1000_hw *hw = &adapter->hw;
3543 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547 e_err(probe, "Invalid MTU setting\n");
3548 return -EINVAL;
3549 }
3550
3551 /* Adapter-specific max frame size limits. */
3552 switch (hw->mac_type) {
3553 case e1000_undefined ... e1000_82542_rev2_1:
3554 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555 e_err(probe, "Jumbo Frames not supported.\n");
3556 return -EINVAL;
3557 }
3558 break;
3559 default:
3560 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561 break;
3562 }
3563
3564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565 msleep(1);
3566 /* e1000_down has a dependency on max_frame_size */
3567 hw->max_frame_size = max_frame;
3568 if (netif_running(netdev))
3569 e1000_down(adapter);
3570
3571 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572 * means we reserve 2 more, this pushes us to allocate from the next
3573 * larger slab size.
3574 * i.e. RXBUFFER_2048 --> size-4096 slab
3575 * however with the new *_jumbo_rx* routines, jumbo receives will use
3576 * fragmented skbs */
3577
3578 if (max_frame <= E1000_RXBUFFER_2048)
3579 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580 else
3581#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584 adapter->rx_buffer_len = PAGE_SIZE;
3585#endif
3586
3587 /* adjust allocation if LPE protects us, and we aren't using SBP */
3588 if (!hw->tbi_compatibility_on &&
3589 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593 pr_info("%s changing MTU from %d to %d\n",
3594 netdev->name, netdev->mtu, new_mtu);
3595 netdev->mtu = new_mtu;
3596
3597 if (netif_running(netdev))
3598 e1000_up(adapter);
3599 else
3600 e1000_reset(adapter);
3601
3602 clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604 return 0;
3605}
3606
3607/**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612void e1000_update_stats(struct e1000_adapter *adapter)
3613{
3614 struct net_device *netdev = adapter->netdev;
3615 struct e1000_hw *hw = &adapter->hw;
3616 struct pci_dev *pdev = adapter->pdev;
3617 unsigned long flags;
3618 u16 phy_tmp;
3619
3620#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622 /*
3623 * Prevent stats update while adapter is being reset, or if the pci
3624 * connection is down.
3625 */
3626 if (adapter->link_speed == 0)
3627 return;
3628 if (pci_channel_offline(pdev))
3629 return;
3630
3631 spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633 /* these counters are modified from e1000_tbi_adjust_stats,
3634 * called from the interrupt context, so they must only
3635 * be written while holding adapter->stats_lock
3636 */
3637
3638 adapter->stats.crcerrs += er32(CRCERRS);
3639 adapter->stats.gprc += er32(GPRC);
3640 adapter->stats.gorcl += er32(GORCL);
3641 adapter->stats.gorch += er32(GORCH);
3642 adapter->stats.bprc += er32(BPRC);
3643 adapter->stats.mprc += er32(MPRC);
3644 adapter->stats.roc += er32(ROC);
3645
3646 adapter->stats.prc64 += er32(PRC64);
3647 adapter->stats.prc127 += er32(PRC127);
3648 adapter->stats.prc255 += er32(PRC255);
3649 adapter->stats.prc511 += er32(PRC511);
3650 adapter->stats.prc1023 += er32(PRC1023);
3651 adapter->stats.prc1522 += er32(PRC1522);
3652
3653 adapter->stats.symerrs += er32(SYMERRS);
3654 adapter->stats.mpc += er32(MPC);
3655 adapter->stats.scc += er32(SCC);
3656 adapter->stats.ecol += er32(ECOL);
3657 adapter->stats.mcc += er32(MCC);
3658 adapter->stats.latecol += er32(LATECOL);
3659 adapter->stats.dc += er32(DC);
3660 adapter->stats.sec += er32(SEC);
3661 adapter->stats.rlec += er32(RLEC);
3662 adapter->stats.xonrxc += er32(XONRXC);
3663 adapter->stats.xontxc += er32(XONTXC);
3664 adapter->stats.xoffrxc += er32(XOFFRXC);
3665 adapter->stats.xofftxc += er32(XOFFTXC);
3666 adapter->stats.fcruc += er32(FCRUC);
3667 adapter->stats.gptc += er32(GPTC);
3668 adapter->stats.gotcl += er32(GOTCL);
3669 adapter->stats.gotch += er32(GOTCH);
3670 adapter->stats.rnbc += er32(RNBC);
3671 adapter->stats.ruc += er32(RUC);
3672 adapter->stats.rfc += er32(RFC);
3673 adapter->stats.rjc += er32(RJC);
3674 adapter->stats.torl += er32(TORL);
3675 adapter->stats.torh += er32(TORH);
3676 adapter->stats.totl += er32(TOTL);
3677 adapter->stats.toth += er32(TOTH);
3678 adapter->stats.tpr += er32(TPR);
3679
3680 adapter->stats.ptc64 += er32(PTC64);
3681 adapter->stats.ptc127 += er32(PTC127);
3682 adapter->stats.ptc255 += er32(PTC255);
3683 adapter->stats.ptc511 += er32(PTC511);
3684 adapter->stats.ptc1023 += er32(PTC1023);
3685 adapter->stats.ptc1522 += er32(PTC1522);
3686
3687 adapter->stats.mptc += er32(MPTC);
3688 adapter->stats.bptc += er32(BPTC);
3689
3690 /* used for adaptive IFS */
3691
3692 hw->tx_packet_delta = er32(TPT);
3693 adapter->stats.tpt += hw->tx_packet_delta;
3694 hw->collision_delta = er32(COLC);
3695 adapter->stats.colc += hw->collision_delta;
3696
3697 if (hw->mac_type >= e1000_82543) {
3698 adapter->stats.algnerrc += er32(ALGNERRC);
3699 adapter->stats.rxerrc += er32(RXERRC);
3700 adapter->stats.tncrs += er32(TNCRS);
3701 adapter->stats.cexterr += er32(CEXTERR);
3702 adapter->stats.tsctc += er32(TSCTC);
3703 adapter->stats.tsctfc += er32(TSCTFC);
3704 }
3705
3706 /* Fill out the OS statistics structure */
3707 netdev->stats.multicast = adapter->stats.mprc;
3708 netdev->stats.collisions = adapter->stats.colc;
3709
3710 /* Rx Errors */
3711
3712 /* RLEC on some newer hardware can be incorrect so build
3713 * our own version based on RUC and ROC */
3714 netdev->stats.rx_errors = adapter->stats.rxerrc +
3715 adapter->stats.crcerrs + adapter->stats.algnerrc +
3716 adapter->stats.ruc + adapter->stats.roc +
3717 adapter->stats.cexterr;
3718 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724 /* Tx Errors */
3725 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726 netdev->stats.tx_errors = adapter->stats.txerrc;
3727 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728 netdev->stats.tx_window_errors = adapter->stats.latecol;
3729 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730 if (hw->bad_tx_carr_stats_fd &&
3731 adapter->link_duplex == FULL_DUPLEX) {
3732 netdev->stats.tx_carrier_errors = 0;
3733 adapter->stats.tncrs = 0;
3734 }
3735
3736 /* Tx Dropped needs to be maintained elsewhere */
3737
3738 /* Phy Stats */
3739 if (hw->media_type == e1000_media_type_copper) {
3740 if ((adapter->link_speed == SPEED_1000) &&
3741 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743 adapter->phy_stats.idle_errors += phy_tmp;
3744 }
3745
3746 if ((hw->mac_type <= e1000_82546) &&
3747 (hw->phy_type == e1000_phy_m88) &&
3748 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749 adapter->phy_stats.receive_errors += phy_tmp;
3750 }
3751
3752 /* Management Stats */
3753 if (hw->has_smbus) {
3754 adapter->stats.mgptc += er32(MGTPTC);
3755 adapter->stats.mgprc += er32(MGTPRC);
3756 adapter->stats.mgpdc += er32(MGTPDC);
3757 }
3758
3759 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760}
3761
3762/**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768static irqreturn_t e1000_intr(int irq, void *data)
3769{
3770 struct net_device *netdev = data;
3771 struct e1000_adapter *adapter = netdev_priv(netdev);
3772 struct e1000_hw *hw = &adapter->hw;
3773 u32 icr = er32(ICR);
3774
3775 if (unlikely((!icr)))
3776 return IRQ_NONE; /* Not our interrupt */
3777
3778 /*
3779 * we might have caused the interrupt, but the above
3780 * read cleared it, and just in case the driver is
3781 * down there is nothing to do so return handled
3782 */
3783 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784 return IRQ_HANDLED;
3785
3786 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787 hw->get_link_status = 1;
3788 /* guard against interrupt when we're going down */
3789 if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 schedule_delayed_work(&adapter->watchdog_task, 1);
3791 }
3792
3793 /* disable interrupts, without the synchronize_irq bit */
3794 ew32(IMC, ~0);
3795 E1000_WRITE_FLUSH();
3796
3797 if (likely(napi_schedule_prep(&adapter->napi))) {
3798 adapter->total_tx_bytes = 0;
3799 adapter->total_tx_packets = 0;
3800 adapter->total_rx_bytes = 0;
3801 adapter->total_rx_packets = 0;
3802 __napi_schedule(&adapter->napi);
3803 } else {
3804 /* this really should not happen! if it does it is basically a
3805 * bug, but not a hard error, so enable ints and continue */
3806 if (!test_bit(__E1000_DOWN, &adapter->flags))
3807 e1000_irq_enable(adapter);
3808 }
3809
3810 return IRQ_HANDLED;
3811}
3812
3813/**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
3816 **/
3817static int e1000_clean(struct napi_struct *napi, int budget)
3818{
3819 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3820 int tx_clean_complete = 0, work_done = 0;
3821
3822 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826 if (!tx_clean_complete)
3827 work_done = budget;
3828
3829 /* If budget not fully consumed, exit the polling mode */
3830 if (work_done < budget) {
3831 if (likely(adapter->itr_setting & 3))
3832 e1000_set_itr(adapter);
3833 napi_complete(napi);
3834 if (!test_bit(__E1000_DOWN, &adapter->flags))
3835 e1000_irq_enable(adapter);
3836 }
3837
3838 return work_done;
3839}
3840
3841/**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
3844 **/
3845static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846 struct e1000_tx_ring *tx_ring)
3847{
3848 struct e1000_hw *hw = &adapter->hw;
3849 struct net_device *netdev = adapter->netdev;
3850 struct e1000_tx_desc *tx_desc, *eop_desc;
3851 struct e1000_buffer *buffer_info;
3852 unsigned int i, eop;
3853 unsigned int count = 0;
3854 unsigned int total_tx_bytes=0, total_tx_packets=0;
3855
3856 i = tx_ring->next_to_clean;
3857 eop = tx_ring->buffer_info[i].next_to_watch;
3858 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3859
3860 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3861 (count < tx_ring->count)) {
3862 bool cleaned = false;
3863 rmb(); /* read buffer_info after eop_desc */
3864 for ( ; !cleaned; count++) {
3865 tx_desc = E1000_TX_DESC(*tx_ring, i);
3866 buffer_info = &tx_ring->buffer_info[i];
3867 cleaned = (i == eop);
3868
3869 if (cleaned) {
3870 total_tx_packets += buffer_info->segs;
3871 total_tx_bytes += buffer_info->bytecount;
3872 }
3873 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3874 tx_desc->upper.data = 0;
3875
3876 if (unlikely(++i == tx_ring->count)) i = 0;
3877 }
3878
3879 eop = tx_ring->buffer_info[i].next_to_watch;
3880 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3881 }
3882
3883 tx_ring->next_to_clean = i;
3884
3885#define TX_WAKE_THRESHOLD 32
3886 if (unlikely(count && netif_carrier_ok(netdev) &&
3887 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3888 /* Make sure that anybody stopping the queue after this
3889 * sees the new next_to_clean.
3890 */
3891 smp_mb();
3892
3893 if (netif_queue_stopped(netdev) &&
3894 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3895 netif_wake_queue(netdev);
3896 ++adapter->restart_queue;
3897 }
3898 }
3899
3900 if (adapter->detect_tx_hung) {
3901 /* Detect a transmit hang in hardware, this serializes the
3902 * check with the clearing of time_stamp and movement of i */
3903 adapter->detect_tx_hung = false;
3904 if (tx_ring->buffer_info[eop].time_stamp &&
3905 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3906 (adapter->tx_timeout_factor * HZ)) &&
3907 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3908
3909 /* detected Tx unit hang */
3910 e_err(drv, "Detected Tx Unit Hang\n"
3911 " Tx Queue <%lu>\n"
3912 " TDH <%x>\n"
3913 " TDT <%x>\n"
3914 " next_to_use <%x>\n"
3915 " next_to_clean <%x>\n"
3916 "buffer_info[next_to_clean]\n"
3917 " time_stamp <%lx>\n"
3918 " next_to_watch <%x>\n"
3919 " jiffies <%lx>\n"
3920 " next_to_watch.status <%x>\n",
3921 (unsigned long)((tx_ring - adapter->tx_ring) /
3922 sizeof(struct e1000_tx_ring)),
3923 readl(hw->hw_addr + tx_ring->tdh),
3924 readl(hw->hw_addr + tx_ring->tdt),
3925 tx_ring->next_to_use,
3926 tx_ring->next_to_clean,
3927 tx_ring->buffer_info[eop].time_stamp,
3928 eop,
3929 jiffies,
3930 eop_desc->upper.fields.status);
3931 e1000_dump(adapter);
3932 netif_stop_queue(netdev);
3933 }
3934 }
3935 adapter->total_tx_bytes += total_tx_bytes;
3936 adapter->total_tx_packets += total_tx_packets;
3937 netdev->stats.tx_bytes += total_tx_bytes;
3938 netdev->stats.tx_packets += total_tx_packets;
3939 return count < tx_ring->count;
3940}
3941
3942/**
3943 * e1000_rx_checksum - Receive Checksum Offload for 82543
3944 * @adapter: board private structure
3945 * @status_err: receive descriptor status and error fields
3946 * @csum: receive descriptor csum field
3947 * @sk_buff: socket buffer with received data
3948 **/
3949
3950static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3951 u32 csum, struct sk_buff *skb)
3952{
3953 struct e1000_hw *hw = &adapter->hw;
3954 u16 status = (u16)status_err;
3955 u8 errors = (u8)(status_err >> 24);
3956
3957 skb_checksum_none_assert(skb);
3958
3959 /* 82543 or newer only */
3960 if (unlikely(hw->mac_type < e1000_82543)) return;
3961 /* Ignore Checksum bit is set */
3962 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3963 /* TCP/UDP checksum error bit is set */
3964 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3965 /* let the stack verify checksum errors */
3966 adapter->hw_csum_err++;
3967 return;
3968 }
3969 /* TCP/UDP Checksum has not been calculated */
3970 if (!(status & E1000_RXD_STAT_TCPCS))
3971 return;
3972
3973 /* It must be a TCP or UDP packet with a valid checksum */
3974 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3975 /* TCP checksum is good */
3976 skb->ip_summed = CHECKSUM_UNNECESSARY;
3977 }
3978 adapter->hw_csum_good++;
3979}
3980
3981/**
3982 * e1000_consume_page - helper function
3983 **/
3984static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3985 u16 length)
3986{
3987 bi->page = NULL;
3988 skb->len += length;
3989 skb->data_len += length;
3990 skb->truesize += PAGE_SIZE;
3991}
3992
3993/**
3994 * e1000_receive_skb - helper function to handle rx indications
3995 * @adapter: board private structure
3996 * @status: descriptor status field as written by hardware
3997 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3998 * @skb: pointer to sk_buff to be indicated to stack
3999 */
4000static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4001 __le16 vlan, struct sk_buff *skb)
4002{
4003 skb->protocol = eth_type_trans(skb, adapter->netdev);
4004
4005 if (status & E1000_RXD_STAT_VP) {
4006 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4007
4008 __vlan_hwaccel_put_tag(skb, vid);
4009 }
4010 napi_gro_receive(&adapter->napi, skb);
4011}
4012
4013/**
4014 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4015 * @adapter: board private structure
4016 * @rx_ring: ring to clean
4017 * @work_done: amount of napi work completed this call
4018 * @work_to_do: max amount of work allowed for this call to do
4019 *
4020 * the return value indicates whether actual cleaning was done, there
4021 * is no guarantee that everything was cleaned
4022 */
4023static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4024 struct e1000_rx_ring *rx_ring,
4025 int *work_done, int work_to_do)
4026{
4027 struct e1000_hw *hw = &adapter->hw;
4028 struct net_device *netdev = adapter->netdev;
4029 struct pci_dev *pdev = adapter->pdev;
4030 struct e1000_rx_desc *rx_desc, *next_rxd;
4031 struct e1000_buffer *buffer_info, *next_buffer;
4032 unsigned long irq_flags;
4033 u32 length;
4034 unsigned int i;
4035 int cleaned_count = 0;
4036 bool cleaned = false;
4037 unsigned int total_rx_bytes=0, total_rx_packets=0;
4038
4039 i = rx_ring->next_to_clean;
4040 rx_desc = E1000_RX_DESC(*rx_ring, i);
4041 buffer_info = &rx_ring->buffer_info[i];
4042
4043 while (rx_desc->status & E1000_RXD_STAT_DD) {
4044 struct sk_buff *skb;
4045 u8 status;
4046
4047 if (*work_done >= work_to_do)
4048 break;
4049 (*work_done)++;
4050 rmb(); /* read descriptor and rx_buffer_info after status DD */
4051
4052 status = rx_desc->status;
4053 skb = buffer_info->skb;
4054 buffer_info->skb = NULL;
4055
4056 if (++i == rx_ring->count) i = 0;
4057 next_rxd = E1000_RX_DESC(*rx_ring, i);
4058 prefetch(next_rxd);
4059
4060 next_buffer = &rx_ring->buffer_info[i];
4061
4062 cleaned = true;
4063 cleaned_count++;
4064 dma_unmap_page(&pdev->dev, buffer_info->dma,
4065 buffer_info->length, DMA_FROM_DEVICE);
4066 buffer_info->dma = 0;
4067
4068 length = le16_to_cpu(rx_desc->length);
4069
4070 /* errors is only valid for DD + EOP descriptors */
4071 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4072 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4073 u8 *mapped;
4074 u8 last_byte;
4075
4076 mapped = page_address(buffer_info->page);
4077 last_byte = *(mapped + length - 1);
4078 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4079 last_byte)) {
4080 spin_lock_irqsave(&adapter->stats_lock,
4081 irq_flags);
4082 e1000_tbi_adjust_stats(hw, &adapter->stats,
4083 length, mapped);
4084 spin_unlock_irqrestore(&adapter->stats_lock,
4085 irq_flags);
4086 length--;
4087 } else {
4088 if (netdev->features & NETIF_F_RXALL)
4089 goto process_skb;
4090 /* recycle both page and skb */
4091 buffer_info->skb = skb;
4092 /* an error means any chain goes out the window
4093 * too */
4094 if (rx_ring->rx_skb_top)
4095 dev_kfree_skb(rx_ring->rx_skb_top);
4096 rx_ring->rx_skb_top = NULL;
4097 goto next_desc;
4098 }
4099 }
4100
4101#define rxtop rx_ring->rx_skb_top
4102process_skb:
4103 if (!(status & E1000_RXD_STAT_EOP)) {
4104 /* this descriptor is only the beginning (or middle) */
4105 if (!rxtop) {
4106 /* this is the beginning of a chain */
4107 rxtop = skb;
4108 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4109 0, length);
4110 } else {
4111 /* this is the middle of a chain */
4112 skb_fill_page_desc(rxtop,
4113 skb_shinfo(rxtop)->nr_frags,
4114 buffer_info->page, 0, length);
4115 /* re-use the skb, only consumed the page */
4116 buffer_info->skb = skb;
4117 }
4118 e1000_consume_page(buffer_info, rxtop, length);
4119 goto next_desc;
4120 } else {
4121 if (rxtop) {
4122 /* end of the chain */
4123 skb_fill_page_desc(rxtop,
4124 skb_shinfo(rxtop)->nr_frags,
4125 buffer_info->page, 0, length);
4126 /* re-use the current skb, we only consumed the
4127 * page */
4128 buffer_info->skb = skb;
4129 skb = rxtop;
4130 rxtop = NULL;
4131 e1000_consume_page(buffer_info, skb, length);
4132 } else {
4133 /* no chain, got EOP, this buf is the packet
4134 * copybreak to save the put_page/alloc_page */
4135 if (length <= copybreak &&
4136 skb_tailroom(skb) >= length) {
4137 u8 *vaddr;
4138 vaddr = kmap_atomic(buffer_info->page);
4139 memcpy(skb_tail_pointer(skb), vaddr, length);
4140 kunmap_atomic(vaddr);
4141 /* re-use the page, so don't erase
4142 * buffer_info->page */
4143 skb_put(skb, length);
4144 } else {
4145 skb_fill_page_desc(skb, 0,
4146 buffer_info->page, 0,
4147 length);
4148 e1000_consume_page(buffer_info, skb,
4149 length);
4150 }
4151 }
4152 }
4153
4154 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4155 e1000_rx_checksum(adapter,
4156 (u32)(status) |
4157 ((u32)(rx_desc->errors) << 24),
4158 le16_to_cpu(rx_desc->csum), skb);
4159
4160 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4161 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4162 pskb_trim(skb, skb->len - 4);
4163 total_rx_packets++;
4164
4165 /* eth type trans needs skb->data to point to something */
4166 if (!pskb_may_pull(skb, ETH_HLEN)) {
4167 e_err(drv, "pskb_may_pull failed.\n");
4168 dev_kfree_skb(skb);
4169 goto next_desc;
4170 }
4171
4172 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4173
4174next_desc:
4175 rx_desc->status = 0;
4176
4177 /* return some buffers to hardware, one at a time is too slow */
4178 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4179 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4180 cleaned_count = 0;
4181 }
4182
4183 /* use prefetched values */
4184 rx_desc = next_rxd;
4185 buffer_info = next_buffer;
4186 }
4187 rx_ring->next_to_clean = i;
4188
4189 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4190 if (cleaned_count)
4191 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4192
4193 adapter->total_rx_packets += total_rx_packets;
4194 adapter->total_rx_bytes += total_rx_bytes;
4195 netdev->stats.rx_bytes += total_rx_bytes;
4196 netdev->stats.rx_packets += total_rx_packets;
4197 return cleaned;
4198}
4199
4200/*
4201 * this should improve performance for small packets with large amounts
4202 * of reassembly being done in the stack
4203 */
4204static void e1000_check_copybreak(struct net_device *netdev,
4205 struct e1000_buffer *buffer_info,
4206 u32 length, struct sk_buff **skb)
4207{
4208 struct sk_buff *new_skb;
4209
4210 if (length > copybreak)
4211 return;
4212
4213 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4214 if (!new_skb)
4215 return;
4216
4217 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4218 (*skb)->data - NET_IP_ALIGN,
4219 length + NET_IP_ALIGN);
4220 /* save the skb in buffer_info as good */
4221 buffer_info->skb = *skb;
4222 *skb = new_skb;
4223}
4224
4225/**
4226 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4227 * @adapter: board private structure
4228 * @rx_ring: ring to clean
4229 * @work_done: amount of napi work completed this call
4230 * @work_to_do: max amount of work allowed for this call to do
4231 */
4232static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4233 struct e1000_rx_ring *rx_ring,
4234 int *work_done, int work_to_do)
4235{
4236 struct e1000_hw *hw = &adapter->hw;
4237 struct net_device *netdev = adapter->netdev;
4238 struct pci_dev *pdev = adapter->pdev;
4239 struct e1000_rx_desc *rx_desc, *next_rxd;
4240 struct e1000_buffer *buffer_info, *next_buffer;
4241 unsigned long flags;
4242 u32 length;
4243 unsigned int i;
4244 int cleaned_count = 0;
4245 bool cleaned = false;
4246 unsigned int total_rx_bytes=0, total_rx_packets=0;
4247
4248 i = rx_ring->next_to_clean;
4249 rx_desc = E1000_RX_DESC(*rx_ring, i);
4250 buffer_info = &rx_ring->buffer_info[i];
4251
4252 while (rx_desc->status & E1000_RXD_STAT_DD) {
4253 struct sk_buff *skb;
4254 u8 status;
4255
4256 if (*work_done >= work_to_do)
4257 break;
4258 (*work_done)++;
4259 rmb(); /* read descriptor and rx_buffer_info after status DD */
4260
4261 status = rx_desc->status;
4262 skb = buffer_info->skb;
4263 buffer_info->skb = NULL;
4264
4265 prefetch(skb->data - NET_IP_ALIGN);
4266
4267 if (++i == rx_ring->count) i = 0;
4268 next_rxd = E1000_RX_DESC(*rx_ring, i);
4269 prefetch(next_rxd);
4270
4271 next_buffer = &rx_ring->buffer_info[i];
4272
4273 cleaned = true;
4274 cleaned_count++;
4275 dma_unmap_single(&pdev->dev, buffer_info->dma,
4276 buffer_info->length, DMA_FROM_DEVICE);
4277 buffer_info->dma = 0;
4278
4279 length = le16_to_cpu(rx_desc->length);
4280 /* !EOP means multiple descriptors were used to store a single
4281 * packet, if thats the case we need to toss it. In fact, we
4282 * to toss every packet with the EOP bit clear and the next
4283 * frame that _does_ have the EOP bit set, as it is by
4284 * definition only a frame fragment
4285 */
4286 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4287 adapter->discarding = true;
4288
4289 if (adapter->discarding) {
4290 /* All receives must fit into a single buffer */
4291 e_dbg("Receive packet consumed multiple buffers\n");
4292 /* recycle */
4293 buffer_info->skb = skb;
4294 if (status & E1000_RXD_STAT_EOP)
4295 adapter->discarding = false;
4296 goto next_desc;
4297 }
4298
4299 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4300 u8 last_byte = *(skb->data + length - 1);
4301 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4302 last_byte)) {
4303 spin_lock_irqsave(&adapter->stats_lock, flags);
4304 e1000_tbi_adjust_stats(hw, &adapter->stats,
4305 length, skb->data);
4306 spin_unlock_irqrestore(&adapter->stats_lock,
4307 flags);
4308 length--;
4309 } else {
4310 if (netdev->features & NETIF_F_RXALL)
4311 goto process_skb;
4312 /* recycle */
4313 buffer_info->skb = skb;
4314 goto next_desc;
4315 }
4316 }
4317
4318process_skb:
4319 total_rx_bytes += (length - 4); /* don't count FCS */
4320 total_rx_packets++;
4321
4322 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4323 /* adjust length to remove Ethernet CRC, this must be
4324 * done after the TBI_ACCEPT workaround above
4325 */
4326 length -= 4;
4327
4328 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4329
4330 skb_put(skb, length);
4331
4332 /* Receive Checksum Offload */
4333 e1000_rx_checksum(adapter,
4334 (u32)(status) |
4335 ((u32)(rx_desc->errors) << 24),
4336 le16_to_cpu(rx_desc->csum), skb);
4337
4338 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4339
4340next_desc:
4341 rx_desc->status = 0;
4342
4343 /* return some buffers to hardware, one at a time is too slow */
4344 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4345 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4346 cleaned_count = 0;
4347 }
4348
4349 /* use prefetched values */
4350 rx_desc = next_rxd;
4351 buffer_info = next_buffer;
4352 }
4353 rx_ring->next_to_clean = i;
4354
4355 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4356 if (cleaned_count)
4357 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4358
4359 adapter->total_rx_packets += total_rx_packets;
4360 adapter->total_rx_bytes += total_rx_bytes;
4361 netdev->stats.rx_bytes += total_rx_bytes;
4362 netdev->stats.rx_packets += total_rx_packets;
4363 return cleaned;
4364}
4365
4366/**
4367 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4368 * @adapter: address of board private structure
4369 * @rx_ring: pointer to receive ring structure
4370 * @cleaned_count: number of buffers to allocate this pass
4371 **/
4372
4373static void
4374e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring, int cleaned_count)
4376{
4377 struct net_device *netdev = adapter->netdev;
4378 struct pci_dev *pdev = adapter->pdev;
4379 struct e1000_rx_desc *rx_desc;
4380 struct e1000_buffer *buffer_info;
4381 struct sk_buff *skb;
4382 unsigned int i;
4383 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4384
4385 i = rx_ring->next_to_use;
4386 buffer_info = &rx_ring->buffer_info[i];
4387
4388 while (cleaned_count--) {
4389 skb = buffer_info->skb;
4390 if (skb) {
4391 skb_trim(skb, 0);
4392 goto check_page;
4393 }
4394
4395 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4396 if (unlikely(!skb)) {
4397 /* Better luck next round */
4398 adapter->alloc_rx_buff_failed++;
4399 break;
4400 }
4401
4402 buffer_info->skb = skb;
4403 buffer_info->length = adapter->rx_buffer_len;
4404check_page:
4405 /* allocate a new page if necessary */
4406 if (!buffer_info->page) {
4407 buffer_info->page = alloc_page(GFP_ATOMIC);
4408 if (unlikely(!buffer_info->page)) {
4409 adapter->alloc_rx_buff_failed++;
4410 break;
4411 }
4412 }
4413
4414 if (!buffer_info->dma) {
4415 buffer_info->dma = dma_map_page(&pdev->dev,
4416 buffer_info->page, 0,
4417 buffer_info->length,
4418 DMA_FROM_DEVICE);
4419 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4420 put_page(buffer_info->page);
4421 dev_kfree_skb(skb);
4422 buffer_info->page = NULL;
4423 buffer_info->skb = NULL;
4424 buffer_info->dma = 0;
4425 adapter->alloc_rx_buff_failed++;
4426 break; /* while !buffer_info->skb */
4427 }
4428 }
4429
4430 rx_desc = E1000_RX_DESC(*rx_ring, i);
4431 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4432
4433 if (unlikely(++i == rx_ring->count))
4434 i = 0;
4435 buffer_info = &rx_ring->buffer_info[i];
4436 }
4437
4438 if (likely(rx_ring->next_to_use != i)) {
4439 rx_ring->next_to_use = i;
4440 if (unlikely(i-- == 0))
4441 i = (rx_ring->count - 1);
4442
4443 /* Force memory writes to complete before letting h/w
4444 * know there are new descriptors to fetch. (Only
4445 * applicable for weak-ordered memory model archs,
4446 * such as IA-64). */
4447 wmb();
4448 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4449 }
4450}
4451
4452/**
4453 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4454 * @adapter: address of board private structure
4455 **/
4456
4457static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4458 struct e1000_rx_ring *rx_ring,
4459 int cleaned_count)
4460{
4461 struct e1000_hw *hw = &adapter->hw;
4462 struct net_device *netdev = adapter->netdev;
4463 struct pci_dev *pdev = adapter->pdev;
4464 struct e1000_rx_desc *rx_desc;
4465 struct e1000_buffer *buffer_info;
4466 struct sk_buff *skb;
4467 unsigned int i;
4468 unsigned int bufsz = adapter->rx_buffer_len;
4469
4470 i = rx_ring->next_to_use;
4471 buffer_info = &rx_ring->buffer_info[i];
4472
4473 while (cleaned_count--) {
4474 skb = buffer_info->skb;
4475 if (skb) {
4476 skb_trim(skb, 0);
4477 goto map_skb;
4478 }
4479
4480 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4481 if (unlikely(!skb)) {
4482 /* Better luck next round */
4483 adapter->alloc_rx_buff_failed++;
4484 break;
4485 }
4486
4487 /* Fix for errata 23, can't cross 64kB boundary */
4488 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4489 struct sk_buff *oldskb = skb;
4490 e_err(rx_err, "skb align check failed: %u bytes at "
4491 "%p\n", bufsz, skb->data);
4492 /* Try again, without freeing the previous */
4493 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4494 /* Failed allocation, critical failure */
4495 if (!skb) {
4496 dev_kfree_skb(oldskb);
4497 adapter->alloc_rx_buff_failed++;
4498 break;
4499 }
4500
4501 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4502 /* give up */
4503 dev_kfree_skb(skb);
4504 dev_kfree_skb(oldskb);
4505 adapter->alloc_rx_buff_failed++;
4506 break; /* while !buffer_info->skb */
4507 }
4508
4509 /* Use new allocation */
4510 dev_kfree_skb(oldskb);
4511 }
4512 buffer_info->skb = skb;
4513 buffer_info->length = adapter->rx_buffer_len;
4514map_skb:
4515 buffer_info->dma = dma_map_single(&pdev->dev,
4516 skb->data,
4517 buffer_info->length,
4518 DMA_FROM_DEVICE);
4519 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4520 dev_kfree_skb(skb);
4521 buffer_info->skb = NULL;
4522 buffer_info->dma = 0;
4523 adapter->alloc_rx_buff_failed++;
4524 break; /* while !buffer_info->skb */
4525 }
4526
4527 /*
4528 * XXX if it was allocated cleanly it will never map to a
4529 * boundary crossing
4530 */
4531
4532 /* Fix for errata 23, can't cross 64kB boundary */
4533 if (!e1000_check_64k_bound(adapter,
4534 (void *)(unsigned long)buffer_info->dma,
4535 adapter->rx_buffer_len)) {
4536 e_err(rx_err, "dma align check failed: %u bytes at "
4537 "%p\n", adapter->rx_buffer_len,
4538 (void *)(unsigned long)buffer_info->dma);
4539 dev_kfree_skb(skb);
4540 buffer_info->skb = NULL;
4541
4542 dma_unmap_single(&pdev->dev, buffer_info->dma,
4543 adapter->rx_buffer_len,
4544 DMA_FROM_DEVICE);
4545 buffer_info->dma = 0;
4546
4547 adapter->alloc_rx_buff_failed++;
4548 break; /* while !buffer_info->skb */
4549 }
4550 rx_desc = E1000_RX_DESC(*rx_ring, i);
4551 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553 if (unlikely(++i == rx_ring->count))
4554 i = 0;
4555 buffer_info = &rx_ring->buffer_info[i];
4556 }
4557
4558 if (likely(rx_ring->next_to_use != i)) {
4559 rx_ring->next_to_use = i;
4560 if (unlikely(i-- == 0))
4561 i = (rx_ring->count - 1);
4562
4563 /* Force memory writes to complete before letting h/w
4564 * know there are new descriptors to fetch. (Only
4565 * applicable for weak-ordered memory model archs,
4566 * such as IA-64). */
4567 wmb();
4568 writel(i, hw->hw_addr + rx_ring->rdt);
4569 }
4570}
4571
4572/**
4573 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4574 * @adapter:
4575 **/
4576
4577static void e1000_smartspeed(struct e1000_adapter *adapter)
4578{
4579 struct e1000_hw *hw = &adapter->hw;
4580 u16 phy_status;
4581 u16 phy_ctrl;
4582
4583 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585 return;
4586
4587 if (adapter->smartspeed == 0) {
4588 /* If Master/Slave config fault is asserted twice,
4589 * we assume back-to-back */
4590 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4591 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4592 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4593 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4594 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4595 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4596 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4597 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4598 phy_ctrl);
4599 adapter->smartspeed++;
4600 if (!e1000_phy_setup_autoneg(hw) &&
4601 !e1000_read_phy_reg(hw, PHY_CTRL,
4602 &phy_ctrl)) {
4603 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4604 MII_CR_RESTART_AUTO_NEG);
4605 e1000_write_phy_reg(hw, PHY_CTRL,
4606 phy_ctrl);
4607 }
4608 }
4609 return;
4610 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4611 /* If still no link, perhaps using 2/3 pair cable */
4612 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613 phy_ctrl |= CR_1000T_MS_ENABLE;
4614 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4615 if (!e1000_phy_setup_autoneg(hw) &&
4616 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4617 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4618 MII_CR_RESTART_AUTO_NEG);
4619 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4620 }
4621 }
4622 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4623 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4624 adapter->smartspeed = 0;
4625}
4626
4627/**
4628 * e1000_ioctl -
4629 * @netdev:
4630 * @ifreq:
4631 * @cmd:
4632 **/
4633
4634static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635{
4636 switch (cmd) {
4637 case SIOCGMIIPHY:
4638 case SIOCGMIIREG:
4639 case SIOCSMIIREG:
4640 return e1000_mii_ioctl(netdev, ifr, cmd);
4641 default:
4642 return -EOPNOTSUPP;
4643 }
4644}
4645
4646/**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652
4653static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4654 int cmd)
4655{
4656 struct e1000_adapter *adapter = netdev_priv(netdev);
4657 struct e1000_hw *hw = &adapter->hw;
4658 struct mii_ioctl_data *data = if_mii(ifr);
4659 int retval;
4660 u16 mii_reg;
4661 unsigned long flags;
4662
4663 if (hw->media_type != e1000_media_type_copper)
4664 return -EOPNOTSUPP;
4665
4666 switch (cmd) {
4667 case SIOCGMIIPHY:
4668 data->phy_id = hw->phy_addr;
4669 break;
4670 case SIOCGMIIREG:
4671 spin_lock_irqsave(&adapter->stats_lock, flags);
4672 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4673 &data->val_out)) {
4674 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4675 return -EIO;
4676 }
4677 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4678 break;
4679 case SIOCSMIIREG:
4680 if (data->reg_num & ~(0x1F))
4681 return -EFAULT;
4682 mii_reg = data->val_in;
4683 spin_lock_irqsave(&adapter->stats_lock, flags);
4684 if (e1000_write_phy_reg(hw, data->reg_num,
4685 mii_reg)) {
4686 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4687 return -EIO;
4688 }
4689 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4690 if (hw->media_type == e1000_media_type_copper) {
4691 switch (data->reg_num) {
4692 case PHY_CTRL:
4693 if (mii_reg & MII_CR_POWER_DOWN)
4694 break;
4695 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4696 hw->autoneg = 1;
4697 hw->autoneg_advertised = 0x2F;
4698 } else {
4699 u32 speed;
4700 if (mii_reg & 0x40)
4701 speed = SPEED_1000;
4702 else if (mii_reg & 0x2000)
4703 speed = SPEED_100;
4704 else
4705 speed = SPEED_10;
4706 retval = e1000_set_spd_dplx(
4707 adapter, speed,
4708 ((mii_reg & 0x100)
4709 ? DUPLEX_FULL :
4710 DUPLEX_HALF));
4711 if (retval)
4712 return retval;
4713 }
4714 if (netif_running(adapter->netdev))
4715 e1000_reinit_locked(adapter);
4716 else
4717 e1000_reset(adapter);
4718 break;
4719 case M88E1000_PHY_SPEC_CTRL:
4720 case M88E1000_EXT_PHY_SPEC_CTRL:
4721 if (e1000_phy_reset(hw))
4722 return -EIO;
4723 break;
4724 }
4725 } else {
4726 switch (data->reg_num) {
4727 case PHY_CTRL:
4728 if (mii_reg & MII_CR_POWER_DOWN)
4729 break;
4730 if (netif_running(adapter->netdev))
4731 e1000_reinit_locked(adapter);
4732 else
4733 e1000_reset(adapter);
4734 break;
4735 }
4736 }
4737 break;
4738 default:
4739 return -EOPNOTSUPP;
4740 }
4741 return E1000_SUCCESS;
4742}
4743
4744void e1000_pci_set_mwi(struct e1000_hw *hw)
4745{
4746 struct e1000_adapter *adapter = hw->back;
4747 int ret_val = pci_set_mwi(adapter->pdev);
4748
4749 if (ret_val)
4750 e_err(probe, "Error in setting MWI\n");
4751}
4752
4753void e1000_pci_clear_mwi(struct e1000_hw *hw)
4754{
4755 struct e1000_adapter *adapter = hw->back;
4756
4757 pci_clear_mwi(adapter->pdev);
4758}
4759
4760int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4761{
4762 struct e1000_adapter *adapter = hw->back;
4763 return pcix_get_mmrbc(adapter->pdev);
4764}
4765
4766void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4767{
4768 struct e1000_adapter *adapter = hw->back;
4769 pcix_set_mmrbc(adapter->pdev, mmrbc);
4770}
4771
4772void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4773{
4774 outl(value, port);
4775}
4776
4777static bool e1000_vlan_used(struct e1000_adapter *adapter)
4778{
4779 u16 vid;
4780
4781 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4782 return true;
4783 return false;
4784}
4785
4786static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4787 netdev_features_t features)
4788{
4789 struct e1000_hw *hw = &adapter->hw;
4790 u32 ctrl;
4791
4792 ctrl = er32(CTRL);
4793 if (features & NETIF_F_HW_VLAN_RX) {
4794 /* enable VLAN tag insert/strip */
4795 ctrl |= E1000_CTRL_VME;
4796 } else {
4797 /* disable VLAN tag insert/strip */
4798 ctrl &= ~E1000_CTRL_VME;
4799 }
4800 ew32(CTRL, ctrl);
4801}
4802static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4803 bool filter_on)
4804{
4805 struct e1000_hw *hw = &adapter->hw;
4806 u32 rctl;
4807
4808 if (!test_bit(__E1000_DOWN, &adapter->flags))
4809 e1000_irq_disable(adapter);
4810
4811 __e1000_vlan_mode(adapter, adapter->netdev->features);
4812 if (filter_on) {
4813 /* enable VLAN receive filtering */
4814 rctl = er32(RCTL);
4815 rctl &= ~E1000_RCTL_CFIEN;
4816 if (!(adapter->netdev->flags & IFF_PROMISC))
4817 rctl |= E1000_RCTL_VFE;
4818 ew32(RCTL, rctl);
4819 e1000_update_mng_vlan(adapter);
4820 } else {
4821 /* disable VLAN receive filtering */
4822 rctl = er32(RCTL);
4823 rctl &= ~E1000_RCTL_VFE;
4824 ew32(RCTL, rctl);
4825 }
4826
4827 if (!test_bit(__E1000_DOWN, &adapter->flags))
4828 e1000_irq_enable(adapter);
4829}
4830
4831static void e1000_vlan_mode(struct net_device *netdev,
4832 netdev_features_t features)
4833{
4834 struct e1000_adapter *adapter = netdev_priv(netdev);
4835
4836 if (!test_bit(__E1000_DOWN, &adapter->flags))
4837 e1000_irq_disable(adapter);
4838
4839 __e1000_vlan_mode(adapter, features);
4840
4841 if (!test_bit(__E1000_DOWN, &adapter->flags))
4842 e1000_irq_enable(adapter);
4843}
4844
4845static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4846{
4847 struct e1000_adapter *adapter = netdev_priv(netdev);
4848 struct e1000_hw *hw = &adapter->hw;
4849 u32 vfta, index;
4850
4851 if ((hw->mng_cookie.status &
4852 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853 (vid == adapter->mng_vlan_id))
4854 return 0;
4855
4856 if (!e1000_vlan_used(adapter))
4857 e1000_vlan_filter_on_off(adapter, true);
4858
4859 /* add VID to filter table */
4860 index = (vid >> 5) & 0x7F;
4861 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862 vfta |= (1 << (vid & 0x1F));
4863 e1000_write_vfta(hw, index, vfta);
4864
4865 set_bit(vid, adapter->active_vlans);
4866
4867 return 0;
4868}
4869
4870static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4871{
4872 struct e1000_adapter *adapter = netdev_priv(netdev);
4873 struct e1000_hw *hw = &adapter->hw;
4874 u32 vfta, index;
4875
4876 if (!test_bit(__E1000_DOWN, &adapter->flags))
4877 e1000_irq_disable(adapter);
4878 if (!test_bit(__E1000_DOWN, &adapter->flags))
4879 e1000_irq_enable(adapter);
4880
4881 /* remove VID from filter table */
4882 index = (vid >> 5) & 0x7F;
4883 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4884 vfta &= ~(1 << (vid & 0x1F));
4885 e1000_write_vfta(hw, index, vfta);
4886
4887 clear_bit(vid, adapter->active_vlans);
4888
4889 if (!e1000_vlan_used(adapter))
4890 e1000_vlan_filter_on_off(adapter, false);
4891
4892 return 0;
4893}
4894
4895static void e1000_restore_vlan(struct e1000_adapter *adapter)
4896{
4897 u16 vid;
4898
4899 if (!e1000_vlan_used(adapter))
4900 return;
4901
4902 e1000_vlan_filter_on_off(adapter, true);
4903 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4904 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4905}
4906
4907int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4908{
4909 struct e1000_hw *hw = &adapter->hw;
4910
4911 hw->autoneg = 0;
4912
4913 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4914 * for the switch() below to work */
4915 if ((spd & 1) || (dplx & ~1))
4916 goto err_inval;
4917
4918 /* Fiber NICs only allow 1000 gbps Full duplex */
4919 if ((hw->media_type == e1000_media_type_fiber) &&
4920 spd != SPEED_1000 &&
4921 dplx != DUPLEX_FULL)
4922 goto err_inval;
4923
4924 switch (spd + dplx) {
4925 case SPEED_10 + DUPLEX_HALF:
4926 hw->forced_speed_duplex = e1000_10_half;
4927 break;
4928 case SPEED_10 + DUPLEX_FULL:
4929 hw->forced_speed_duplex = e1000_10_full;
4930 break;
4931 case SPEED_100 + DUPLEX_HALF:
4932 hw->forced_speed_duplex = e1000_100_half;
4933 break;
4934 case SPEED_100 + DUPLEX_FULL:
4935 hw->forced_speed_duplex = e1000_100_full;
4936 break;
4937 case SPEED_1000 + DUPLEX_FULL:
4938 hw->autoneg = 1;
4939 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4940 break;
4941 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4942 default:
4943 goto err_inval;
4944 }
4945 return 0;
4946
4947err_inval:
4948 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 return -EINVAL;
4950}
4951
4952static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953{
4954 struct net_device *netdev = pci_get_drvdata(pdev);
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 struct e1000_hw *hw = &adapter->hw;
4957 u32 ctrl, ctrl_ext, rctl, status;
4958 u32 wufc = adapter->wol;
4959#ifdef CONFIG_PM
4960 int retval = 0;
4961#endif
4962
4963 netif_device_detach(netdev);
4964
4965 if (netif_running(netdev)) {
4966 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 e1000_down(adapter);
4968 }
4969
4970#ifdef CONFIG_PM
4971 retval = pci_save_state(pdev);
4972 if (retval)
4973 return retval;
4974#endif
4975
4976 status = er32(STATUS);
4977 if (status & E1000_STATUS_LU)
4978 wufc &= ~E1000_WUFC_LNKC;
4979
4980 if (wufc) {
4981 e1000_setup_rctl(adapter);
4982 e1000_set_rx_mode(netdev);
4983
4984 rctl = er32(RCTL);
4985
4986 /* turn on all-multi mode if wake on multicast is enabled */
4987 if (wufc & E1000_WUFC_MC)
4988 rctl |= E1000_RCTL_MPE;
4989
4990 /* enable receives in the hardware */
4991 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993 if (hw->mac_type >= e1000_82540) {
4994 ctrl = er32(CTRL);
4995 /* advertise wake from D3Cold */
4996 #define E1000_CTRL_ADVD3WUC 0x00100000
4997 /* phy power management enable */
4998 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 ctrl |= E1000_CTRL_ADVD3WUC |
5000 E1000_CTRL_EN_PHY_PWR_MGMT;
5001 ew32(CTRL, ctrl);
5002 }
5003
5004 if (hw->media_type == e1000_media_type_fiber ||
5005 hw->media_type == e1000_media_type_internal_serdes) {
5006 /* keep the laser running in D3 */
5007 ctrl_ext = er32(CTRL_EXT);
5008 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 ew32(CTRL_EXT, ctrl_ext);
5010 }
5011
5012 ew32(WUC, E1000_WUC_PME_EN);
5013 ew32(WUFC, wufc);
5014 } else {
5015 ew32(WUC, 0);
5016 ew32(WUFC, 0);
5017 }
5018
5019 e1000_release_manageability(adapter);
5020
5021 *enable_wake = !!wufc;
5022
5023 /* make sure adapter isn't asleep if manageability is enabled */
5024 if (adapter->en_mng_pt)
5025 *enable_wake = true;
5026
5027 if (netif_running(netdev))
5028 e1000_free_irq(adapter);
5029
5030 pci_disable_device(pdev);
5031
5032 return 0;
5033}
5034
5035#ifdef CONFIG_PM
5036static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037{
5038 int retval;
5039 bool wake;
5040
5041 retval = __e1000_shutdown(pdev, &wake);
5042 if (retval)
5043 return retval;
5044
5045 if (wake) {
5046 pci_prepare_to_sleep(pdev);
5047 } else {
5048 pci_wake_from_d3(pdev, false);
5049 pci_set_power_state(pdev, PCI_D3hot);
5050 }
5051
5052 return 0;
5053}
5054
5055static int e1000_resume(struct pci_dev *pdev)
5056{
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct e1000_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 err;
5061
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_save_state(pdev);
5065
5066 if (adapter->need_ioport)
5067 err = pci_enable_device(pdev);
5068 else
5069 err = pci_enable_device_mem(pdev);
5070 if (err) {
5071 pr_err("Cannot enable PCI device from suspend\n");
5072 return err;
5073 }
5074 pci_set_master(pdev);
5075
5076 pci_enable_wake(pdev, PCI_D3hot, 0);
5077 pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079 if (netif_running(netdev)) {
5080 err = e1000_request_irq(adapter);
5081 if (err)
5082 return err;
5083 }
5084
5085 e1000_power_up_phy(adapter);
5086 e1000_reset(adapter);
5087 ew32(WUS, ~0);
5088
5089 e1000_init_manageability(adapter);
5090
5091 if (netif_running(netdev))
5092 e1000_up(adapter);
5093
5094 netif_device_attach(netdev);
5095
5096 return 0;
5097}
5098#endif
5099
5100static void e1000_shutdown(struct pci_dev *pdev)
5101{
5102 bool wake;
5103
5104 __e1000_shutdown(pdev, &wake);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, wake);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110}
5111
5112#ifdef CONFIG_NET_POLL_CONTROLLER
5113/*
5114 * Polling 'interrupt' - used by things like netconsole to send skbs
5115 * without having to re-enable interrupts. It's not called while
5116 * the interrupt routine is executing.
5117 */
5118static void e1000_netpoll(struct net_device *netdev)
5119{
5120 struct e1000_adapter *adapter = netdev_priv(netdev);
5121
5122 disable_irq(adapter->pdev->irq);
5123 e1000_intr(adapter->pdev->irq, netdev);
5124 enable_irq(adapter->pdev->irq);
5125}
5126#endif
5127
5128/**
5129 * e1000_io_error_detected - called when PCI error is detected
5130 * @pdev: Pointer to PCI device
5131 * @state: The current pci connection state
5132 *
5133 * This function is called after a PCI bus error affecting
5134 * this device has been detected.
5135 */
5136static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5137 pci_channel_state_t state)
5138{
5139 struct net_device *netdev = pci_get_drvdata(pdev);
5140 struct e1000_adapter *adapter = netdev_priv(netdev);
5141
5142 netif_device_detach(netdev);
5143
5144 if (state == pci_channel_io_perm_failure)
5145 return PCI_ERS_RESULT_DISCONNECT;
5146
5147 if (netif_running(netdev))
5148 e1000_down(adapter);
5149 pci_disable_device(pdev);
5150
5151 /* Request a slot slot reset. */
5152 return PCI_ERS_RESULT_NEED_RESET;
5153}
5154
5155/**
5156 * e1000_io_slot_reset - called after the pci bus has been reset.
5157 * @pdev: Pointer to PCI device
5158 *
5159 * Restart the card from scratch, as if from a cold-boot. Implementation
5160 * resembles the first-half of the e1000_resume routine.
5161 */
5162static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5163{
5164 struct net_device *netdev = pci_get_drvdata(pdev);
5165 struct e1000_adapter *adapter = netdev_priv(netdev);
5166 struct e1000_hw *hw = &adapter->hw;
5167 int err;
5168
5169 if (adapter->need_ioport)
5170 err = pci_enable_device(pdev);
5171 else
5172 err = pci_enable_device_mem(pdev);
5173 if (err) {
5174 pr_err("Cannot re-enable PCI device after reset.\n");
5175 return PCI_ERS_RESULT_DISCONNECT;
5176 }
5177 pci_set_master(pdev);
5178
5179 pci_enable_wake(pdev, PCI_D3hot, 0);
5180 pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 return PCI_ERS_RESULT_RECOVERED;
5186}
5187
5188/**
5189 * e1000_io_resume - called when traffic can start flowing again.
5190 * @pdev: Pointer to PCI device
5191 *
5192 * This callback is called when the error recovery driver tells us that
5193 * its OK to resume normal operation. Implementation resembles the
5194 * second-half of the e1000_resume routine.
5195 */
5196static void e1000_io_resume(struct pci_dev *pdev)
5197{
5198 struct net_device *netdev = pci_get_drvdata(pdev);
5199 struct e1000_adapter *adapter = netdev_priv(netdev);
5200
5201 e1000_init_manageability(adapter);
5202
5203 if (netif_running(netdev)) {
5204 if (e1000_up(adapter)) {
5205 pr_info("can't bring device back up after reset\n");
5206 return;
5207 }
5208 }
5209
5210 netif_device_attach(netdev);
5211}
5212
5213/* e1000_main.c */