Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Kernel Probes (KProbes)
  3 *  arch/mips/kernel/kprobes.c
  4 *
  5 *  Copyright 2006 Sony Corp.
  6 *  Copyright 2010 Cavium Networks
  7 *
  8 *  Some portions copied from the powerpc version.
  9 *
 10 *   Copyright (C) IBM Corporation, 2002, 2004
 11 *
 12 *  This program is free software; you can redistribute it and/or modify
 13 *  it under the terms of the GNU General Public License as published by
 14 *  the Free Software Foundation; version 2 of the License.
 15 *
 16 *  This program is distributed in the hope that it will be useful,
 17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 *  GNU General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License
 22 *  along with this program; if not, write to the Free Software
 23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kprobes.h>
 27#include <linux/preempt.h>
 28#include <linux/uaccess.h>
 29#include <linux/kdebug.h>
 30#include <linux/slab.h>
 31
 32#include <asm/ptrace.h>
 33#include <asm/branch.h>
 34#include <asm/break.h>
 35
 36#include "probes-common.h"
 37
 38static const union mips_instruction breakpoint_insn = {
 39	.b_format = {
 40		.opcode = spec_op,
 41		.code = BRK_KPROBE_BP,
 42		.func = break_op
 43	}
 44};
 45
 46static const union mips_instruction breakpoint2_insn = {
 47	.b_format = {
 48		.opcode = spec_op,
 49		.code = BRK_KPROBE_SSTEPBP,
 50		.func = break_op
 51	}
 52};
 53
 54DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 55DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 56
 57static int __kprobes insn_has_delayslot(union mips_instruction insn)
 58{
 59	return __insn_has_delay_slot(insn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60}
 61
 62/*
 63 * insn_has_ll_or_sc function checks whether instruction is ll or sc
 64 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
 65 * so we need to prevent it and refuse kprobes insertion for such
 66 * instructions; cannot do much about breakpoint in the middle of
 67 * ll/sc pair; it is upto user to avoid those places
 68 */
 69static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
 70{
 71	int ret = 0;
 72
 73	switch (insn.i_format.opcode) {
 74	case ll_op:
 75	case lld_op:
 76	case sc_op:
 77	case scd_op:
 78		ret = 1;
 79		break;
 80	default:
 81		break;
 82	}
 83	return ret;
 84}
 85
 86int __kprobes arch_prepare_kprobe(struct kprobe *p)
 87{
 88	union mips_instruction insn;
 89	union mips_instruction prev_insn;
 90	int ret = 0;
 91
 92	insn = p->addr[0];
 93
 94	if (insn_has_ll_or_sc(insn)) {
 95		pr_notice("Kprobes for ll and sc instructions are not"
 96			  "supported\n");
 97		ret = -EINVAL;
 98		goto out;
 99	}
100
101	if ((probe_kernel_read(&prev_insn, p->addr - 1,
102				sizeof(mips_instruction)) == 0) &&
103				insn_has_delayslot(prev_insn)) {
104		pr_notice("Kprobes for branch delayslot are not supported\n");
105		ret = -EINVAL;
106		goto out;
107	}
108
109	if (__insn_is_compact_branch(insn)) {
110		pr_notice("Kprobes for compact branches are not supported\n");
111		ret = -EINVAL;
112		goto out;
113	}
114
115	/* insn: must be on special executable page on mips. */
116	p->ainsn.insn = get_insn_slot();
117	if (!p->ainsn.insn) {
118		ret = -ENOMEM;
119		goto out;
120	}
121
122	/*
123	 * In the kprobe->ainsn.insn[] array we store the original
124	 * instruction at index zero and a break trap instruction at
125	 * index one.
126	 *
127	 * On MIPS arch if the instruction at probed address is a
128	 * branch instruction, we need to execute the instruction at
129	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130	 * doesn't have single stepping support, the BD instruction can
131	 * not be executed in-line and it would be executed on SSOL slot
132	 * using a normal breakpoint instruction in the next slot.
133	 * So, read the instruction and save it for later execution.
134	 */
135	if (insn_has_delayslot(insn))
136		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137	else
138		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139
140	p->ainsn.insn[1] = breakpoint2_insn;
141	p->opcode = *p->addr;
142
143out:
144	return ret;
145}
146
147void __kprobes arch_arm_kprobe(struct kprobe *p)
148{
149	*p->addr = breakpoint_insn;
150	flush_insn_slot(p);
151}
152
153void __kprobes arch_disarm_kprobe(struct kprobe *p)
154{
155	*p->addr = p->opcode;
156	flush_insn_slot(p);
157}
158
159void __kprobes arch_remove_kprobe(struct kprobe *p)
160{
161	if (p->ainsn.insn) {
162		free_insn_slot(p->ainsn.insn, 0);
163		p->ainsn.insn = NULL;
164	}
165}
166
167static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168{
169	kcb->prev_kprobe.kp = kprobe_running();
170	kcb->prev_kprobe.status = kcb->kprobe_status;
171	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174}
175
176static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177{
178	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179	kcb->kprobe_status = kcb->prev_kprobe.status;
180	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183}
184
185static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186			       struct kprobe_ctlblk *kcb)
187{
188	__this_cpu_write(current_kprobe, p);
189	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190	kcb->kprobe_saved_epc = regs->cp0_epc;
191}
192
193/**
194 * evaluate_branch_instrucion -
195 *
196 * Evaluate the branch instruction at probed address during probe hit. The
197 * result of evaluation would be the updated epc. The insturction in delayslot
198 * would actually be single stepped using a normal breakpoint) on SSOL slot.
199 *
200 * The result is also saved in the kprobe control block for later use,
201 * in case we need to execute the delayslot instruction. The latter will be
202 * false for NOP instruction in dealyslot and the branch-likely instructions
203 * when the branch is taken. And for those cases we set a flag as
204 * SKIP_DELAYSLOT in the kprobe control block
205 */
206static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207					struct kprobe_ctlblk *kcb)
208{
209	union mips_instruction insn = p->opcode;
210	long epc;
211	int ret = 0;
212
213	epc = regs->cp0_epc;
214	if (epc & 3)
215		goto unaligned;
216
217	if (p->ainsn.insn->word == 0)
218		kcb->flags |= SKIP_DELAYSLOT;
219	else
220		kcb->flags &= ~SKIP_DELAYSLOT;
221
222	ret = __compute_return_epc_for_insn(regs, insn);
223	if (ret < 0)
224		return ret;
225
226	if (ret == BRANCH_LIKELY_TAKEN)
227		kcb->flags |= SKIP_DELAYSLOT;
228
229	kcb->target_epc = regs->cp0_epc;
230
231	return 0;
232
233unaligned:
234	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235	force_sig(SIGBUS, current);
236	return -EFAULT;
237
238}
239
240static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241						struct kprobe_ctlblk *kcb)
242{
243	int ret = 0;
244
245	regs->cp0_status &= ~ST0_IE;
246
247	/* single step inline if the instruction is a break */
248	if (p->opcode.word == breakpoint_insn.word ||
249	    p->opcode.word == breakpoint2_insn.word)
250		regs->cp0_epc = (unsigned long)p->addr;
251	else if (insn_has_delayslot(p->opcode)) {
252		ret = evaluate_branch_instruction(p, regs, kcb);
253		if (ret < 0) {
254			pr_notice("Kprobes: Error in evaluating branch\n");
255			return;
256		}
257	}
258	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259}
260
261/*
262 * Called after single-stepping.  p->addr is the address of the
263 * instruction whose first byte has been replaced by the "break 0"
264 * instruction.	 To avoid the SMP problems that can occur when we
265 * temporarily put back the original opcode to single-step, we
266 * single-stepped a copy of the instruction.  The address of this
267 * copy is p->ainsn.insn.
268 *
269 * This function prepares to return from the post-single-step
270 * breakpoint trap. In case of branch instructions, the target
271 * epc to be restored.
272 */
273static void __kprobes resume_execution(struct kprobe *p,
274				       struct pt_regs *regs,
275				       struct kprobe_ctlblk *kcb)
276{
277	if (insn_has_delayslot(p->opcode))
278		regs->cp0_epc = kcb->target_epc;
279	else {
280		unsigned long orig_epc = kcb->kprobe_saved_epc;
281		regs->cp0_epc = orig_epc + 4;
282	}
283}
284
285static int __kprobes kprobe_handler(struct pt_regs *regs)
286{
287	struct kprobe *p;
288	int ret = 0;
289	kprobe_opcode_t *addr;
290	struct kprobe_ctlblk *kcb;
291
292	addr = (kprobe_opcode_t *) regs->cp0_epc;
293
294	/*
295	 * We don't want to be preempted for the entire
296	 * duration of kprobe processing
297	 */
298	preempt_disable();
299	kcb = get_kprobe_ctlblk();
300
301	/* Check we're not actually recursing */
302	if (kprobe_running()) {
303		p = get_kprobe(addr);
304		if (p) {
305			if (kcb->kprobe_status == KPROBE_HIT_SS &&
306			    p->ainsn.insn->word == breakpoint_insn.word) {
307				regs->cp0_status &= ~ST0_IE;
308				regs->cp0_status |= kcb->kprobe_saved_SR;
309				goto no_kprobe;
310			}
311			/*
312			 * We have reentered the kprobe_handler(), since
313			 * another probe was hit while within the handler.
314			 * We here save the original kprobes variables and
315			 * just single step on the instruction of the new probe
316			 * without calling any user handlers.
317			 */
318			save_previous_kprobe(kcb);
319			set_current_kprobe(p, regs, kcb);
320			kprobes_inc_nmissed_count(p);
321			prepare_singlestep(p, regs, kcb);
322			kcb->kprobe_status = KPROBE_REENTER;
323			if (kcb->flags & SKIP_DELAYSLOT) {
324				resume_execution(p, regs, kcb);
325				restore_previous_kprobe(kcb);
326				preempt_enable_no_resched();
327			}
328			return 1;
329		} else {
330			if (addr->word != breakpoint_insn.word) {
331				/*
332				 * The breakpoint instruction was removed by
333				 * another cpu right after we hit, no further
334				 * handling of this interrupt is appropriate
335				 */
336				ret = 1;
337				goto no_kprobe;
338			}
339			p = __this_cpu_read(current_kprobe);
340			if (p->break_handler && p->break_handler(p, regs))
341				goto ss_probe;
342		}
343		goto no_kprobe;
344	}
345
346	p = get_kprobe(addr);
347	if (!p) {
348		if (addr->word != breakpoint_insn.word) {
349			/*
350			 * The breakpoint instruction was removed right
351			 * after we hit it.  Another cpu has removed
352			 * either a probepoint or a debugger breakpoint
353			 * at this address.  In either case, no further
354			 * handling of this interrupt is appropriate.
355			 */
356			ret = 1;
357		}
358		/* Not one of ours: let kernel handle it */
359		goto no_kprobe;
360	}
361
362	set_current_kprobe(p, regs, kcb);
363	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364
365	if (p->pre_handler && p->pre_handler(p, regs)) {
366		/* handler has already set things up, so skip ss setup */
367		return 1;
368	}
369
370ss_probe:
371	prepare_singlestep(p, regs, kcb);
372	if (kcb->flags & SKIP_DELAYSLOT) {
373		kcb->kprobe_status = KPROBE_HIT_SSDONE;
374		if (p->post_handler)
375			p->post_handler(p, regs, 0);
376		resume_execution(p, regs, kcb);
377		preempt_enable_no_resched();
378	} else
379		kcb->kprobe_status = KPROBE_HIT_SS;
380
381	return 1;
382
383no_kprobe:
384	preempt_enable_no_resched();
385	return ret;
386
387}
388
389static inline int post_kprobe_handler(struct pt_regs *regs)
390{
391	struct kprobe *cur = kprobe_running();
392	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393
394	if (!cur)
395		return 0;
396
397	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
398		kcb->kprobe_status = KPROBE_HIT_SSDONE;
399		cur->post_handler(cur, regs, 0);
400	}
401
402	resume_execution(cur, regs, kcb);
403
404	regs->cp0_status |= kcb->kprobe_saved_SR;
405
406	/* Restore back the original saved kprobes variables and continue. */
407	if (kcb->kprobe_status == KPROBE_REENTER) {
408		restore_previous_kprobe(kcb);
409		goto out;
410	}
411	reset_current_kprobe();
412out:
413	preempt_enable_no_resched();
414
415	return 1;
416}
417
418static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
419{
420	struct kprobe *cur = kprobe_running();
421	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
422
423	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
424		return 1;
425
426	if (kcb->kprobe_status & KPROBE_HIT_SS) {
427		resume_execution(cur, regs, kcb);
428		regs->cp0_status |= kcb->kprobe_old_SR;
429
430		reset_current_kprobe();
431		preempt_enable_no_resched();
432	}
433	return 0;
434}
435
436/*
437 * Wrapper routine for handling exceptions.
438 */
439int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
440				       unsigned long val, void *data)
441{
442
443	struct die_args *args = (struct die_args *)data;
444	int ret = NOTIFY_DONE;
445
446	switch (val) {
447	case DIE_BREAK:
448		if (kprobe_handler(args->regs))
449			ret = NOTIFY_STOP;
450		break;
451	case DIE_SSTEPBP:
452		if (post_kprobe_handler(args->regs))
453			ret = NOTIFY_STOP;
454		break;
455
456	case DIE_PAGE_FAULT:
457		/* kprobe_running() needs smp_processor_id() */
458		preempt_disable();
459
460		if (kprobe_running()
461		    && kprobe_fault_handler(args->regs, args->trapnr))
462			ret = NOTIFY_STOP;
463		preempt_enable();
464		break;
465	default:
466		break;
467	}
468	return ret;
469}
470
471int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
472{
473	struct jprobe *jp = container_of(p, struct jprobe, kp);
474	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475
476	kcb->jprobe_saved_regs = *regs;
477	kcb->jprobe_saved_sp = regs->regs[29];
478
479	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
480	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
481
482	regs->cp0_epc = (unsigned long)(jp->entry);
483
484	return 1;
485}
486
487/* Defined in the inline asm below. */
488void jprobe_return_end(void);
489
490void __kprobes jprobe_return(void)
491{
492	/* Assembler quirk necessitates this '0,code' business.	 */
493	asm volatile(
494		"break 0,%0\n\t"
495		".globl jprobe_return_end\n"
496		"jprobe_return_end:\n"
497		: : "n" (BRK_KPROBE_BP) : "memory");
498}
499
500int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
501{
502	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503
504	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
505	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
506		*regs = kcb->jprobe_saved_regs;
507		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
508		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
509		preempt_enable_no_resched();
510
511		return 1;
512	}
513	return 0;
514}
515
516/*
517 * Function return probe trampoline:
518 *	- init_kprobes() establishes a probepoint here
519 *	- When the probed function returns, this probe causes the
520 *	  handlers to fire
521 */
522static void __used kretprobe_trampoline_holder(void)
523{
524	asm volatile(
525		".set push\n\t"
526		/* Keep the assembler from reordering and placing JR here. */
527		".set noreorder\n\t"
528		"nop\n\t"
529		".global kretprobe_trampoline\n"
530		"kretprobe_trampoline:\n\t"
531		"nop\n\t"
532		".set pop"
533		: : : "memory");
534}
535
536void kretprobe_trampoline(void);
537
538void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
539				      struct pt_regs *regs)
540{
541	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
542
543	/* Replace the return addr with trampoline addr */
544	regs->regs[31] = (unsigned long)kretprobe_trampoline;
545}
546
547/*
548 * Called when the probe at kretprobe trampoline is hit
549 */
550static int __kprobes trampoline_probe_handler(struct kprobe *p,
551						struct pt_regs *regs)
552{
553	struct kretprobe_instance *ri = NULL;
554	struct hlist_head *head, empty_rp;
555	struct hlist_node *tmp;
556	unsigned long flags, orig_ret_address = 0;
557	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
558
559	INIT_HLIST_HEAD(&empty_rp);
560	kretprobe_hash_lock(current, &head, &flags);
561
562	/*
563	 * It is possible to have multiple instances associated with a given
564	 * task either because an multiple functions in the call path
565	 * have a return probe installed on them, and/or more than one return
566	 * return probe was registered for a target function.
567	 *
568	 * We can handle this because:
569	 *     - instances are always inserted at the head of the list
570	 *     - when multiple return probes are registered for the same
571	 *	 function, the first instance's ret_addr will point to the
572	 *	 real return address, and all the rest will point to
573	 *	 kretprobe_trampoline
574	 */
575	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
576		if (ri->task != current)
577			/* another task is sharing our hash bucket */
578			continue;
579
580		if (ri->rp && ri->rp->handler)
581			ri->rp->handler(ri, regs);
582
583		orig_ret_address = (unsigned long)ri->ret_addr;
584		recycle_rp_inst(ri, &empty_rp);
585
586		if (orig_ret_address != trampoline_address)
587			/*
588			 * This is the real return address. Any other
589			 * instances associated with this task are for
590			 * other calls deeper on the call stack
591			 */
592			break;
593	}
594
595	kretprobe_assert(ri, orig_ret_address, trampoline_address);
596	instruction_pointer(regs) = orig_ret_address;
597
598	reset_current_kprobe();
599	kretprobe_hash_unlock(current, &flags);
600	preempt_enable_no_resched();
601
602	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
603		hlist_del(&ri->hlist);
604		kfree(ri);
605	}
606	/*
607	 * By returning a non-zero value, we are telling
608	 * kprobe_handler() that we don't want the post_handler
609	 * to run (and have re-enabled preemption)
610	 */
611	return 1;
612}
613
614int __kprobes arch_trampoline_kprobe(struct kprobe *p)
615{
616	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
617		return 1;
618
619	return 0;
620}
621
622static struct kprobe trampoline_p = {
623	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
624	.pre_handler = trampoline_probe_handler
625};
626
627int __init arch_init_kprobes(void)
628{
629	return register_kprobe(&trampoline_p);
630}
v3.5.6
  1/*
  2 *  Kernel Probes (KProbes)
  3 *  arch/mips/kernel/kprobes.c
  4 *
  5 *  Copyright 2006 Sony Corp.
  6 *  Copyright 2010 Cavium Networks
  7 *
  8 *  Some portions copied from the powerpc version.
  9 *
 10 *   Copyright (C) IBM Corporation, 2002, 2004
 11 *
 12 *  This program is free software; you can redistribute it and/or modify
 13 *  it under the terms of the GNU General Public License as published by
 14 *  the Free Software Foundation; version 2 of the License.
 15 *
 16 *  This program is distributed in the hope that it will be useful,
 17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 *  GNU General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License
 22 *  along with this program; if not, write to the Free Software
 23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kprobes.h>
 27#include <linux/preempt.h>
 28#include <linux/uaccess.h>
 29#include <linux/kdebug.h>
 30#include <linux/slab.h>
 31
 32#include <asm/ptrace.h>
 33#include <asm/branch.h>
 34#include <asm/break.h>
 35#include <asm/inst.h>
 
 36
 37static const union mips_instruction breakpoint_insn = {
 38	.b_format = {
 39		.opcode = spec_op,
 40		.code = BRK_KPROBE_BP,
 41		.func = break_op
 42	}
 43};
 44
 45static const union mips_instruction breakpoint2_insn = {
 46	.b_format = {
 47		.opcode = spec_op,
 48		.code = BRK_KPROBE_SSTEPBP,
 49		.func = break_op
 50	}
 51};
 52
 53DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 54DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 55
 56static int __kprobes insn_has_delayslot(union mips_instruction insn)
 57{
 58	switch (insn.i_format.opcode) {
 59
 60		/*
 61		 * This group contains:
 62		 * jr and jalr are in r_format format.
 63		 */
 64	case spec_op:
 65		switch (insn.r_format.func) {
 66		case jr_op:
 67		case jalr_op:
 68			break;
 69		default:
 70			goto insn_ok;
 71		}
 72
 73		/*
 74		 * This group contains:
 75		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
 76		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
 77		 */
 78	case bcond_op:
 79
 80		/*
 81		 * These are unconditional and in j_format.
 82		 */
 83	case jal_op:
 84	case j_op:
 85
 86		/*
 87		 * These are conditional and in i_format.
 88		 */
 89	case beq_op:
 90	case beql_op:
 91	case bne_op:
 92	case bnel_op:
 93	case blez_op:
 94	case blezl_op:
 95	case bgtz_op:
 96	case bgtzl_op:
 97
 98		/*
 99		 * These are the FPA/cp1 branch instructions.
100		 */
101	case cop1_op:
102
103#ifdef CONFIG_CPU_CAVIUM_OCTEON
104	case lwc2_op: /* This is bbit0 on Octeon */
105	case ldc2_op: /* This is bbit032 on Octeon */
106	case swc2_op: /* This is bbit1 on Octeon */
107	case sdc2_op: /* This is bbit132 on Octeon */
108#endif
109		return 1;
110	default:
111		break;
112	}
113insn_ok:
114	return 0;
115}
116
117/*
118 * insn_has_ll_or_sc function checks whether instruction is ll or sc
119 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120 * so we need to prevent it and refuse kprobes insertion for such
121 * instructions; cannot do much about breakpoint in the middle of
122 * ll/sc pair; it is upto user to avoid those places
123 */
124static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
125{
126	int ret = 0;
127
128	switch (insn.i_format.opcode) {
129	case ll_op:
130	case lld_op:
131	case sc_op:
132	case scd_op:
133		ret = 1;
134		break;
135	default:
136		break;
137	}
138	return ret;
139}
140
141int __kprobes arch_prepare_kprobe(struct kprobe *p)
142{
143	union mips_instruction insn;
144	union mips_instruction prev_insn;
145	int ret = 0;
146
147	insn = p->addr[0];
148
149	if (insn_has_ll_or_sc(insn)) {
150		pr_notice("Kprobes for ll and sc instructions are not"
151			  "supported\n");
152		ret = -EINVAL;
153		goto out;
154	}
155
156	if ((probe_kernel_read(&prev_insn, p->addr - 1,
157				sizeof(mips_instruction)) == 0) &&
158				insn_has_delayslot(prev_insn)) {
159		pr_notice("Kprobes for branch delayslot are not supported\n");
160		ret = -EINVAL;
161		goto out;
162	}
163
 
 
 
 
 
 
164	/* insn: must be on special executable page on mips. */
165	p->ainsn.insn = get_insn_slot();
166	if (!p->ainsn.insn) {
167		ret = -ENOMEM;
168		goto out;
169	}
170
171	/*
172	 * In the kprobe->ainsn.insn[] array we store the original
173	 * instruction at index zero and a break trap instruction at
174	 * index one.
175	 *
176	 * On MIPS arch if the instruction at probed address is a
177	 * branch instruction, we need to execute the instruction at
178	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179	 * doesn't have single stepping support, the BD instruction can
180	 * not be executed in-line and it would be executed on SSOL slot
181	 * using a normal breakpoint instruction in the next slot.
182	 * So, read the instruction and save it for later execution.
183	 */
184	if (insn_has_delayslot(insn))
185		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186	else
187		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
188
189	p->ainsn.insn[1] = breakpoint2_insn;
190	p->opcode = *p->addr;
191
192out:
193	return ret;
194}
195
196void __kprobes arch_arm_kprobe(struct kprobe *p)
197{
198	*p->addr = breakpoint_insn;
199	flush_insn_slot(p);
200}
201
202void __kprobes arch_disarm_kprobe(struct kprobe *p)
203{
204	*p->addr = p->opcode;
205	flush_insn_slot(p);
206}
207
208void __kprobes arch_remove_kprobe(struct kprobe *p)
209{
210	free_insn_slot(p->ainsn.insn, 0);
 
 
 
211}
212
213static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
214{
215	kcb->prev_kprobe.kp = kprobe_running();
216	kcb->prev_kprobe.status = kcb->kprobe_status;
217	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
218	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
219	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
220}
221
222static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
223{
224	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
225	kcb->kprobe_status = kcb->prev_kprobe.status;
226	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
227	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
228	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
229}
230
231static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
232			       struct kprobe_ctlblk *kcb)
233{
234	__get_cpu_var(current_kprobe) = p;
235	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
236	kcb->kprobe_saved_epc = regs->cp0_epc;
237}
238
239/**
240 * evaluate_branch_instrucion -
241 *
242 * Evaluate the branch instruction at probed address during probe hit. The
243 * result of evaluation would be the updated epc. The insturction in delayslot
244 * would actually be single stepped using a normal breakpoint) on SSOL slot.
245 *
246 * The result is also saved in the kprobe control block for later use,
247 * in case we need to execute the delayslot instruction. The latter will be
248 * false for NOP instruction in dealyslot and the branch-likely instructions
249 * when the branch is taken. And for those cases we set a flag as
250 * SKIP_DELAYSLOT in the kprobe control block
251 */
252static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
253					struct kprobe_ctlblk *kcb)
254{
255	union mips_instruction insn = p->opcode;
256	long epc;
257	int ret = 0;
258
259	epc = regs->cp0_epc;
260	if (epc & 3)
261		goto unaligned;
262
263	if (p->ainsn.insn->word == 0)
264		kcb->flags |= SKIP_DELAYSLOT;
265	else
266		kcb->flags &= ~SKIP_DELAYSLOT;
267
268	ret = __compute_return_epc_for_insn(regs, insn);
269	if (ret < 0)
270		return ret;
271
272	if (ret == BRANCH_LIKELY_TAKEN)
273		kcb->flags |= SKIP_DELAYSLOT;
274
275	kcb->target_epc = regs->cp0_epc;
276
277	return 0;
278
279unaligned:
280	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
281	force_sig(SIGBUS, current);
282	return -EFAULT;
283
284}
285
286static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
287						struct kprobe_ctlblk *kcb)
288{
289	int ret = 0;
290
291	regs->cp0_status &= ~ST0_IE;
292
293	/* single step inline if the instruction is a break */
294	if (p->opcode.word == breakpoint_insn.word ||
295	    p->opcode.word == breakpoint2_insn.word)
296		regs->cp0_epc = (unsigned long)p->addr;
297	else if (insn_has_delayslot(p->opcode)) {
298		ret = evaluate_branch_instruction(p, regs, kcb);
299		if (ret < 0) {
300			pr_notice("Kprobes: Error in evaluating branch\n");
301			return;
302		}
303	}
304	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
305}
306
307/*
308 * Called after single-stepping.  p->addr is the address of the
309 * instruction whose first byte has been replaced by the "break 0"
310 * instruction.  To avoid the SMP problems that can occur when we
311 * temporarily put back the original opcode to single-step, we
312 * single-stepped a copy of the instruction.  The address of this
313 * copy is p->ainsn.insn.
314 *
315 * This function prepares to return from the post-single-step
316 * breakpoint trap. In case of branch instructions, the target
317 * epc to be restored.
318 */
319static void __kprobes resume_execution(struct kprobe *p,
320				       struct pt_regs *regs,
321				       struct kprobe_ctlblk *kcb)
322{
323	if (insn_has_delayslot(p->opcode))
324		regs->cp0_epc = kcb->target_epc;
325	else {
326		unsigned long orig_epc = kcb->kprobe_saved_epc;
327		regs->cp0_epc = orig_epc + 4;
328	}
329}
330
331static int __kprobes kprobe_handler(struct pt_regs *regs)
332{
333	struct kprobe *p;
334	int ret = 0;
335	kprobe_opcode_t *addr;
336	struct kprobe_ctlblk *kcb;
337
338	addr = (kprobe_opcode_t *) regs->cp0_epc;
339
340	/*
341	 * We don't want to be preempted for the entire
342	 * duration of kprobe processing
343	 */
344	preempt_disable();
345	kcb = get_kprobe_ctlblk();
346
347	/* Check we're not actually recursing */
348	if (kprobe_running()) {
349		p = get_kprobe(addr);
350		if (p) {
351			if (kcb->kprobe_status == KPROBE_HIT_SS &&
352			    p->ainsn.insn->word == breakpoint_insn.word) {
353				regs->cp0_status &= ~ST0_IE;
354				regs->cp0_status |= kcb->kprobe_saved_SR;
355				goto no_kprobe;
356			}
357			/*
358			 * We have reentered the kprobe_handler(), since
359			 * another probe was hit while within the handler.
360			 * We here save the original kprobes variables and
361			 * just single step on the instruction of the new probe
362			 * without calling any user handlers.
363			 */
364			save_previous_kprobe(kcb);
365			set_current_kprobe(p, regs, kcb);
366			kprobes_inc_nmissed_count(p);
367			prepare_singlestep(p, regs, kcb);
368			kcb->kprobe_status = KPROBE_REENTER;
369			if (kcb->flags & SKIP_DELAYSLOT) {
370				resume_execution(p, regs, kcb);
371				restore_previous_kprobe(kcb);
372				preempt_enable_no_resched();
373			}
374			return 1;
375		} else {
376			if (addr->word != breakpoint_insn.word) {
377				/*
378				 * The breakpoint instruction was removed by
379				 * another cpu right after we hit, no further
380				 * handling of this interrupt is appropriate
381				 */
382				ret = 1;
383				goto no_kprobe;
384			}
385			p = __get_cpu_var(current_kprobe);
386			if (p->break_handler && p->break_handler(p, regs))
387				goto ss_probe;
388		}
389		goto no_kprobe;
390	}
391
392	p = get_kprobe(addr);
393	if (!p) {
394		if (addr->word != breakpoint_insn.word) {
395			/*
396			 * The breakpoint instruction was removed right
397			 * after we hit it.  Another cpu has removed
398			 * either a probepoint or a debugger breakpoint
399			 * at this address.  In either case, no further
400			 * handling of this interrupt is appropriate.
401			 */
402			ret = 1;
403		}
404		/* Not one of ours: let kernel handle it */
405		goto no_kprobe;
406	}
407
408	set_current_kprobe(p, regs, kcb);
409	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
410
411	if (p->pre_handler && p->pre_handler(p, regs)) {
412		/* handler has already set things up, so skip ss setup */
413		return 1;
414	}
415
416ss_probe:
417	prepare_singlestep(p, regs, kcb);
418	if (kcb->flags & SKIP_DELAYSLOT) {
419		kcb->kprobe_status = KPROBE_HIT_SSDONE;
420		if (p->post_handler)
421			p->post_handler(p, regs, 0);
422		resume_execution(p, regs, kcb);
423		preempt_enable_no_resched();
424	} else
425		kcb->kprobe_status = KPROBE_HIT_SS;
426
427	return 1;
428
429no_kprobe:
430	preempt_enable_no_resched();
431	return ret;
432
433}
434
435static inline int post_kprobe_handler(struct pt_regs *regs)
436{
437	struct kprobe *cur = kprobe_running();
438	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
439
440	if (!cur)
441		return 0;
442
443	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
444		kcb->kprobe_status = KPROBE_HIT_SSDONE;
445		cur->post_handler(cur, regs, 0);
446	}
447
448	resume_execution(cur, regs, kcb);
449
450	regs->cp0_status |= kcb->kprobe_saved_SR;
451
452	/* Restore back the original saved kprobes variables and continue. */
453	if (kcb->kprobe_status == KPROBE_REENTER) {
454		restore_previous_kprobe(kcb);
455		goto out;
456	}
457	reset_current_kprobe();
458out:
459	preempt_enable_no_resched();
460
461	return 1;
462}
463
464static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
465{
466	struct kprobe *cur = kprobe_running();
467	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
468
469	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
470		return 1;
471
472	if (kcb->kprobe_status & KPROBE_HIT_SS) {
473		resume_execution(cur, regs, kcb);
474		regs->cp0_status |= kcb->kprobe_old_SR;
475
476		reset_current_kprobe();
477		preempt_enable_no_resched();
478	}
479	return 0;
480}
481
482/*
483 * Wrapper routine for handling exceptions.
484 */
485int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
486				       unsigned long val, void *data)
487{
488
489	struct die_args *args = (struct die_args *)data;
490	int ret = NOTIFY_DONE;
491
492	switch (val) {
493	case DIE_BREAK:
494		if (kprobe_handler(args->regs))
495			ret = NOTIFY_STOP;
496		break;
497	case DIE_SSTEPBP:
498		if (post_kprobe_handler(args->regs))
499			ret = NOTIFY_STOP;
500		break;
501
502	case DIE_PAGE_FAULT:
503		/* kprobe_running() needs smp_processor_id() */
504		preempt_disable();
505
506		if (kprobe_running()
507		    && kprobe_fault_handler(args->regs, args->trapnr))
508			ret = NOTIFY_STOP;
509		preempt_enable();
510		break;
511	default:
512		break;
513	}
514	return ret;
515}
516
517int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
518{
519	struct jprobe *jp = container_of(p, struct jprobe, kp);
520	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
521
522	kcb->jprobe_saved_regs = *regs;
523	kcb->jprobe_saved_sp = regs->regs[29];
524
525	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
526	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
527
528	regs->cp0_epc = (unsigned long)(jp->entry);
529
530	return 1;
531}
532
533/* Defined in the inline asm below. */
534void jprobe_return_end(void);
535
536void __kprobes jprobe_return(void)
537{
538	/* Assembler quirk necessitates this '0,code' business.  */
539	asm volatile(
540		"break 0,%0\n\t"
541		".globl jprobe_return_end\n"
542		"jprobe_return_end:\n"
543		: : "n" (BRK_KPROBE_BP) : "memory");
544}
545
546int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
547{
548	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
549
550	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
551	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
552		*regs = kcb->jprobe_saved_regs;
553		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
554		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
555		preempt_enable_no_resched();
556
557		return 1;
558	}
559	return 0;
560}
561
562/*
563 * Function return probe trampoline:
564 *	- init_kprobes() establishes a probepoint here
565 *	- When the probed function returns, this probe causes the
566 *	  handlers to fire
567 */
568static void __used kretprobe_trampoline_holder(void)
569{
570	asm volatile(
571		".set push\n\t"
572		/* Keep the assembler from reordering and placing JR here. */
573		".set noreorder\n\t"
574		"nop\n\t"
575		".global kretprobe_trampoline\n"
576		"kretprobe_trampoline:\n\t"
577		"nop\n\t"
578		".set pop"
579		: : : "memory");
580}
581
582void kretprobe_trampoline(void);
583
584void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
585				      struct pt_regs *regs)
586{
587	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
588
589	/* Replace the return addr with trampoline addr */
590	regs->regs[31] = (unsigned long)kretprobe_trampoline;
591}
592
593/*
594 * Called when the probe at kretprobe trampoline is hit
595 */
596static int __kprobes trampoline_probe_handler(struct kprobe *p,
597						struct pt_regs *regs)
598{
599	struct kretprobe_instance *ri = NULL;
600	struct hlist_head *head, empty_rp;
601	struct hlist_node *node, *tmp;
602	unsigned long flags, orig_ret_address = 0;
603	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
604
605	INIT_HLIST_HEAD(&empty_rp);
606	kretprobe_hash_lock(current, &head, &flags);
607
608	/*
609	 * It is possible to have multiple instances associated with a given
610	 * task either because an multiple functions in the call path
611	 * have a return probe installed on them, and/or more than one return
612	 * return probe was registered for a target function.
613	 *
614	 * We can handle this because:
615	 *     - instances are always inserted at the head of the list
616	 *     - when multiple return probes are registered for the same
617	 *       function, the first instance's ret_addr will point to the
618	 *       real return address, and all the rest will point to
619	 *       kretprobe_trampoline
620	 */
621	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
622		if (ri->task != current)
623			/* another task is sharing our hash bucket */
624			continue;
625
626		if (ri->rp && ri->rp->handler)
627			ri->rp->handler(ri, regs);
628
629		orig_ret_address = (unsigned long)ri->ret_addr;
630		recycle_rp_inst(ri, &empty_rp);
631
632		if (orig_ret_address != trampoline_address)
633			/*
634			 * This is the real return address. Any other
635			 * instances associated with this task are for
636			 * other calls deeper on the call stack
637			 */
638			break;
639	}
640
641	kretprobe_assert(ri, orig_ret_address, trampoline_address);
642	instruction_pointer(regs) = orig_ret_address;
643
644	reset_current_kprobe();
645	kretprobe_hash_unlock(current, &flags);
646	preempt_enable_no_resched();
647
648	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
649		hlist_del(&ri->hlist);
650		kfree(ri);
651	}
652	/*
653	 * By returning a non-zero value, we are telling
654	 * kprobe_handler() that we don't want the post_handler
655	 * to run (and have re-enabled preemption)
656	 */
657	return 1;
658}
659
660int __kprobes arch_trampoline_kprobe(struct kprobe *p)
661{
662	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
663		return 1;
664
665	return 0;
666}
667
668static struct kprobe trampoline_p = {
669	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
670	.pre_handler = trampoline_probe_handler
671};
672
673int __init arch_init_kprobes(void)
674{
675	return register_kprobe(&trampoline_p);
676}