Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * This file contains the code that gets mapped at the upper end of each task's text
  4 * region.  For now, it contains the signal trampoline code only.
  5 *
  6 * Copyright (C) 1999-2003 Hewlett-Packard Co
  7 * 	David Mosberger-Tang <davidm@hpl.hp.com>
  8 */
  9
 10
 11#include <asm/asmmacro.h>
 12#include <asm/errno.h>
 13#include <asm/asm-offsets.h>
 14#include <asm/sigcontext.h>
 15#include <asm/unistd.h>
 16#include <asm/kregs.h>
 17#include <asm/page.h>
 18#include <asm/native/inst.h>
 19
 20/*
 21 * We can't easily refer to symbols inside the kernel.  To avoid full runtime relocation,
 22 * complications with the linker (which likes to create PLT stubs for branches
 23 * to targets outside the shared object) and to avoid multi-phase kernel builds, we
 24 * simply create minimalistic "patch lists" in special ELF sections.
 25 */
 26	.section ".data..patch.fsyscall_table", "a"
 27	.previous
 28#define LOAD_FSYSCALL_TABLE(reg)			\
 29[1:]	movl reg=0;					\
 30	.xdata4 ".data..patch.fsyscall_table", 1b-.
 31
 32	.section ".data..patch.brl_fsys_bubble_down", "a"
 33	.previous
 34#define BRL_COND_FSYS_BUBBLE_DOWN(pr)			\
 35[1:](pr)brl.cond.sptk 0;				\
 36	;;						\
 37	.xdata4 ".data..patch.brl_fsys_bubble_down", 1b-.
 38
 39GLOBAL_ENTRY(__kernel_syscall_via_break)
 40	.prologue
 41	.altrp b6
 42	.body
 43	/*
 44	 * Note: for (fast) syscall restart to work, the break instruction must be
 45	 *	 the first one in the bundle addressed by syscall_via_break.
 46	 */
 47{ .mib
 48	break 0x100000
 49	nop.i 0
 50	br.ret.sptk.many b6
 51}
 52END(__kernel_syscall_via_break)
 53
 54#	define ARG0_OFF		(16 + IA64_SIGFRAME_ARG0_OFFSET)
 55#	define ARG1_OFF		(16 + IA64_SIGFRAME_ARG1_OFFSET)
 56#	define ARG2_OFF		(16 + IA64_SIGFRAME_ARG2_OFFSET)
 57#	define SIGHANDLER_OFF	(16 + IA64_SIGFRAME_HANDLER_OFFSET)
 58#	define SIGCONTEXT_OFF	(16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET)
 59
 60#	define FLAGS_OFF	IA64_SIGCONTEXT_FLAGS_OFFSET
 61#	define CFM_OFF		IA64_SIGCONTEXT_CFM_OFFSET
 62#	define FR6_OFF		IA64_SIGCONTEXT_FR6_OFFSET
 63#	define BSP_OFF		IA64_SIGCONTEXT_AR_BSP_OFFSET
 64#	define RNAT_OFF		IA64_SIGCONTEXT_AR_RNAT_OFFSET
 65#	define UNAT_OFF		IA64_SIGCONTEXT_AR_UNAT_OFFSET
 66#	define FPSR_OFF		IA64_SIGCONTEXT_AR_FPSR_OFFSET
 67#	define PR_OFF		IA64_SIGCONTEXT_PR_OFFSET
 68#	define RP_OFF		IA64_SIGCONTEXT_IP_OFFSET
 69#	define SP_OFF		IA64_SIGCONTEXT_R12_OFFSET
 70#	define RBS_BASE_OFF	IA64_SIGCONTEXT_RBS_BASE_OFFSET
 71#	define LOADRS_OFF	IA64_SIGCONTEXT_LOADRS_OFFSET
 72#	define base0		r2
 73#	define base1		r3
 74	/*
 75	 * When we get here, the memory stack looks like this:
 76	 *
 77	 *   +===============================+
 78       	 *   |				     |
 79       	 *   //	    struct sigframe          //
 80       	 *   |				     |
 81	 *   +-------------------------------+ <-- sp+16
 82	 *   |      16 byte of scratch       |
 83	 *   |            space              |
 84	 *   +-------------------------------+ <-- sp
 85	 *
 86	 * The register stack looks _exactly_ the way it looked at the time the signal
 87	 * occurred.  In other words, we're treading on a potential mine-field: each
 88	 * incoming general register may be a NaT value (including sp, in which case the
 89	 * process ends up dying with a SIGSEGV).
 90	 *
 91	 * The first thing need to do is a cover to get the registers onto the backing
 92	 * store.  Once that is done, we invoke the signal handler which may modify some
 93	 * of the machine state.  After returning from the signal handler, we return
 94	 * control to the previous context by executing a sigreturn system call.  A signal
 95	 * handler may call the rt_sigreturn() function to directly return to a given
 96	 * sigcontext.  However, the user-level sigreturn() needs to do much more than
 97	 * calling the rt_sigreturn() system call as it needs to unwind the stack to
 98	 * restore preserved registers that may have been saved on the signal handler's
 99	 * call stack.
100	 */
101
102#define SIGTRAMP_SAVES										\
103	.unwabi 3, 's';		/* mark this as a sigtramp handler (saves scratch regs) */	\
104	.unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */	\
105	.savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF;						\
106	.savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF;						\
107	.savesp pr, PR_OFF+SIGCONTEXT_OFF;     							\
108	.savesp rp, RP_OFF+SIGCONTEXT_OFF;							\
109	.savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF;							\
110	.vframesp SP_OFF+SIGCONTEXT_OFF
111
112GLOBAL_ENTRY(__kernel_sigtramp)
113	// describe the state that is active when we get here:
114	.prologue
115	SIGTRAMP_SAVES
116	.body
117
118	.label_state 1
119
120	adds base0=SIGHANDLER_OFF,sp
121	adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp
122	br.call.sptk.many rp=1f
1231:
124	ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF)	// get pointer to signal handler's plabel
125	ld8 r15=[base1]					// get address of new RBS base (or NULL)
126	cover				// push args in interrupted frame onto backing store
127	;;
128	cmp.ne p1,p0=r15,r0		// do we need to switch rbs? (note: pr is saved by kernel)
129	mov.m r9=ar.bsp			// fetch ar.bsp
130	.spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
131(p1)	br.cond.spnt setup_rbs		// yup -> (clobbers p8, r14-r16, and r18-r20)
132back_from_setup_rbs:
133	alloc r8=ar.pfs,0,0,3,0
134	ld8 out0=[base0],16		// load arg0 (signum)
135	adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1
136	;;
137	ld8 out1=[base1]		// load arg1 (siginfop)
138	ld8 r10=[r17],8			// get signal handler entry point
139	;;
140	ld8 out2=[base0]		// load arg2 (sigcontextp)
141	ld8 gp=[r17]			// get signal handler's global pointer
142	adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
143	;;
144	.spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF
145	st8 [base0]=r9			// save sc_ar_bsp
146	adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
147	adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
148	;;
149	stf.spill [base0]=f6,32
150	stf.spill [base1]=f7,32
151	;;
152	stf.spill [base0]=f8,32
153	stf.spill [base1]=f9,32
154	mov b6=r10
155	;;
156	stf.spill [base0]=f10,32
157	stf.spill [base1]=f11,32
158	;;
159	stf.spill [base0]=f12,32
160	stf.spill [base1]=f13,32
161	;;
162	stf.spill [base0]=f14,32
163	stf.spill [base1]=f15,32
164	br.call.sptk.many rp=b6			// call the signal handler
165.ret0:	adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
166	;;
167	ld8 r15=[base0]				// fetch sc_ar_bsp
168	mov r14=ar.bsp
169	;;
170	cmp.ne p1,p0=r14,r15			// do we need to restore the rbs?
171(p1)	br.cond.spnt restore_rbs		// yup -> (clobbers r14-r18, f6 & f7)
172	;;
173back_from_restore_rbs:
174	adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
175	adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
176	;;
177	ldf.fill f6=[base0],32
178	ldf.fill f7=[base1],32
179	;;
180	ldf.fill f8=[base0],32
181	ldf.fill f9=[base1],32
182	;;
183	ldf.fill f10=[base0],32
184	ldf.fill f11=[base1],32
185	;;
186	ldf.fill f12=[base0],32
187	ldf.fill f13=[base1],32
188	;;
189	ldf.fill f14=[base0],32
190	ldf.fill f15=[base1],32
191	mov r15=__NR_rt_sigreturn
192	.restore sp				// pop .prologue
193	break __BREAK_SYSCALL
194
195	.prologue
196	SIGTRAMP_SAVES
197setup_rbs:
198	mov ar.rsc=0				// put RSE into enforced lazy mode
199	;;
200	.save ar.rnat, r19
201	mov r19=ar.rnat				// save RNaT before switching backing store area
202	adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp
203
204	mov r18=ar.bspstore
205	mov ar.bspstore=r15			// switch over to new register backing store area
206	;;
207
208	.spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
209	st8 [r14]=r19				// save sc_ar_rnat
210	.body
211	mov.m r16=ar.bsp			// sc_loadrs <- (new bsp - new bspstore) << 16
212	adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp
213	;;
214	invala
215	sub r15=r16,r15
216	extr.u r20=r18,3,6
217	;;
218	mov ar.rsc=0xf				// set RSE into eager mode, pl 3
219	cmp.eq p8,p0=63,r20
220	shl r15=r15,16
221	;;
222	st8 [r14]=r15				// save sc_loadrs
223(p8)	st8 [r18]=r19		// if bspstore points at RNaT slot, store RNaT there now
224	.restore sp				// pop .prologue
225	br.cond.sptk back_from_setup_rbs
226
227	.prologue
228	SIGTRAMP_SAVES
229	.spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
230	.body
231restore_rbs:
232	// On input:
233	//	r14 = bsp1 (bsp at the time of return from signal handler)
234	//	r15 = bsp0 (bsp at the time the signal occurred)
235	//
236	// Here, we need to calculate bspstore0, the value that ar.bspstore needs
237	// to be set to, based on bsp0 and the size of the dirty partition on
238	// the alternate stack (sc_loadrs >> 16).  This can be done with the
239	// following algorithm:
240	//
241	//  bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1));
242	//
243	// This is what the code below does.
244	//
245	alloc r2=ar.pfs,0,0,0,0			// alloc null frame
246	adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp
247	adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp
248	;;
249	ld8 r17=[r16]
250	ld8 r16=[r18]			// get new rnat
251	extr.u r18=r15,3,6	// r18 <- rse_slot_num(bsp0)
252	;;
253	mov ar.rsc=r17			// put RSE into enforced lazy mode
254	shr.u r17=r17,16
255	;;
256	sub r14=r14,r17		// r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16)
257	shr.u r17=r17,3		// r17 <- (sc_loadrs >> 19)
258	;;
259	loadrs			// restore dirty partition
260	extr.u r14=r14,3,6	// r14 <- rse_slot_num(bspstore1)
261	;;
262	add r14=r14,r17		// r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19)
263	;;
264	shr.u r14=r14,6		// r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40
265	;;
266	sub r14=r14,r17		// r14 <- -rse_num_regs(bspstore1, bsp1)
267	movl r17=0x8208208208208209
268	;;
269	add r18=r18,r14		// r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1)
270	setf.sig f7=r17
271	cmp.lt p7,p0=r14,r0	// p7 <- (r14 < 0)?
272	;;
273(p7)	adds r18=-62,r18	// delta -= 62
274	;;
275	setf.sig f6=r18
276	;;
277	xmpy.h f6=f6,f7
278	;;
279	getf.sig r17=f6
280	;;
281	add r17=r17,r18
282	shr r18=r18,63
283	;;
284	shr r17=r17,5
285	;;
286	sub r17=r17,r18		// r17 = delta/63
287	;;
288	add r17=r14,r17		// r17 <- delta/63 - rse_num_regs(bspstore1, bsp1)
289	;;
290	shladd r15=r17,3,r15	// r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1))
291	;;
292	mov ar.bspstore=r15			// switch back to old register backing store area
293	;;
294	mov ar.rnat=r16				// restore RNaT
295	mov ar.rsc=0xf				// (will be restored later on from sc_ar_rsc)
296	// invala not necessary as that will happen when returning to user-mode
297	br.cond.sptk back_from_restore_rbs
298END(__kernel_sigtramp)
299
300/*
301 * On entry:
302 *	r11 = saved ar.pfs
303 *	r15 = system call #
304 *	b0  = saved return address
305 *	b6  = return address
306 * On exit:
307 *	r11 = saved ar.pfs
308 *	r15 = system call #
309 *	b0  = saved return address
310 *	all other "scratch" registers:	undefined
311 *	all "preserved" registers:	same as on entry
312 */
313
314GLOBAL_ENTRY(__kernel_syscall_via_epc)
315	.prologue
316	.altrp b6
317	.body
318{
319	/*
320	 * Note: the kernel cannot assume that the first two instructions in this
321	 * bundle get executed.  The remaining code must be safe even if
322	 * they do not get executed.
323	 */
324	adds r17=-1024,r15			// A
325	mov r10=0				// A    default to successful syscall execution
326	epc					// B	causes split-issue
327}
328	;;
329	RSM_PSR_BE_I(r20, r22)			// M2 (5 cyc to srlz.d)
330	LOAD_FSYSCALL_TABLE(r14)		// X
331	;;
332	mov r16=IA64_KR(CURRENT)		// M2 (12 cyc)
333	shladd r18=r17,3,r14			// A
334	mov r19=NR_syscalls-1			// A
335	;;
336	lfetch [r18]				// M0|1
337	MOV_FROM_PSR(p0, r29, r8)		// M2 (12 cyc)
338	// If r17 is a NaT, p6 will be zero
339	cmp.geu p6,p7=r19,r17			// A    (sysnr > 0 && sysnr < 1024+NR_syscalls)?
340	;;
341	mov r21=ar.fpsr				// M2 (12 cyc)
342	tnat.nz p10,p9=r15			// I0
343	mov.i r26=ar.pfs			// I0 (would stall anyhow due to srlz.d...)
344	;;
345	srlz.d					// M0 (forces split-issue) ensure PSR.BE==0
346(p6)	ld8 r18=[r18]				// M0|1
347	nop.i 0
348	;;
349	nop.m 0
350(p6)	tbit.z.unc p8,p0=r18,0			// I0 (dual-issues with "mov b7=r18"!)
351	nop.i 0
352	;;
353	SSM_PSR_I(p8, p14, r25)
354(p6)	mov b7=r18				// I0
355(p8)	br.dptk.many b7				// B
356
357	mov r27=ar.rsc				// M2 (12 cyc)
358/*
359 * brl.cond doesn't work as intended because the linker would convert this branch
360 * into a branch to a PLT.  Perhaps there will be a way to avoid this with some
361 * future version of the linker.  In the meantime, we just use an indirect branch
362 * instead.
363 */
364#ifdef CONFIG_ITANIUM
365(p6)	add r14=-8,r14				// r14 <- addr of fsys_bubble_down entry
366	;;
367(p6)	ld8 r14=[r14]				// r14 <- fsys_bubble_down
368	;;
369(p6)	mov b7=r14
370(p6)	br.sptk.many b7
371#else
372	BRL_COND_FSYS_BUBBLE_DOWN(p6)
373#endif
374	SSM_PSR_I(p0, p14, r10)
375	mov r10=-1
376(p10)	mov r8=EINVAL
377(p9)	mov r8=ENOSYS
378	FSYS_RETURN
379
 
 
 
 
 
 
 
380END(__kernel_syscall_via_epc)
v3.5.6
 
  1/*
  2 * This file contains the code that gets mapped at the upper end of each task's text
  3 * region.  For now, it contains the signal trampoline code only.
  4 *
  5 * Copyright (C) 1999-2003 Hewlett-Packard Co
  6 * 	David Mosberger-Tang <davidm@hpl.hp.com>
  7 */
  8
  9
 10#include <asm/asmmacro.h>
 11#include <asm/errno.h>
 12#include <asm/asm-offsets.h>
 13#include <asm/sigcontext.h>
 14#include <asm/unistd.h>
 15#include <asm/kregs.h>
 16#include <asm/page.h>
 17#include "paravirt_inst.h"
 18
 19/*
 20 * We can't easily refer to symbols inside the kernel.  To avoid full runtime relocation,
 21 * complications with the linker (which likes to create PLT stubs for branches
 22 * to targets outside the shared object) and to avoid multi-phase kernel builds, we
 23 * simply create minimalistic "patch lists" in special ELF sections.
 24 */
 25	.section ".data..patch.fsyscall_table", "a"
 26	.previous
 27#define LOAD_FSYSCALL_TABLE(reg)			\
 28[1:]	movl reg=0;					\
 29	.xdata4 ".data..patch.fsyscall_table", 1b-.
 30
 31	.section ".data..patch.brl_fsys_bubble_down", "a"
 32	.previous
 33#define BRL_COND_FSYS_BUBBLE_DOWN(pr)			\
 34[1:](pr)brl.cond.sptk 0;				\
 35	;;						\
 36	.xdata4 ".data..patch.brl_fsys_bubble_down", 1b-.
 37
 38GLOBAL_ENTRY(__kernel_syscall_via_break)
 39	.prologue
 40	.altrp b6
 41	.body
 42	/*
 43	 * Note: for (fast) syscall restart to work, the break instruction must be
 44	 *	 the first one in the bundle addressed by syscall_via_break.
 45	 */
 46{ .mib
 47	break 0x100000
 48	nop.i 0
 49	br.ret.sptk.many b6
 50}
 51END(__kernel_syscall_via_break)
 52
 53#	define ARG0_OFF		(16 + IA64_SIGFRAME_ARG0_OFFSET)
 54#	define ARG1_OFF		(16 + IA64_SIGFRAME_ARG1_OFFSET)
 55#	define ARG2_OFF		(16 + IA64_SIGFRAME_ARG2_OFFSET)
 56#	define SIGHANDLER_OFF	(16 + IA64_SIGFRAME_HANDLER_OFFSET)
 57#	define SIGCONTEXT_OFF	(16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET)
 58
 59#	define FLAGS_OFF	IA64_SIGCONTEXT_FLAGS_OFFSET
 60#	define CFM_OFF		IA64_SIGCONTEXT_CFM_OFFSET
 61#	define FR6_OFF		IA64_SIGCONTEXT_FR6_OFFSET
 62#	define BSP_OFF		IA64_SIGCONTEXT_AR_BSP_OFFSET
 63#	define RNAT_OFF		IA64_SIGCONTEXT_AR_RNAT_OFFSET
 64#	define UNAT_OFF		IA64_SIGCONTEXT_AR_UNAT_OFFSET
 65#	define FPSR_OFF		IA64_SIGCONTEXT_AR_FPSR_OFFSET
 66#	define PR_OFF		IA64_SIGCONTEXT_PR_OFFSET
 67#	define RP_OFF		IA64_SIGCONTEXT_IP_OFFSET
 68#	define SP_OFF		IA64_SIGCONTEXT_R12_OFFSET
 69#	define RBS_BASE_OFF	IA64_SIGCONTEXT_RBS_BASE_OFFSET
 70#	define LOADRS_OFF	IA64_SIGCONTEXT_LOADRS_OFFSET
 71#	define base0		r2
 72#	define base1		r3
 73	/*
 74	 * When we get here, the memory stack looks like this:
 75	 *
 76	 *   +===============================+
 77       	 *   |				     |
 78       	 *   //	    struct sigframe          //
 79       	 *   |				     |
 80	 *   +-------------------------------+ <-- sp+16
 81	 *   |      16 byte of scratch       |
 82	 *   |            space              |
 83	 *   +-------------------------------+ <-- sp
 84	 *
 85	 * The register stack looks _exactly_ the way it looked at the time the signal
 86	 * occurred.  In other words, we're treading on a potential mine-field: each
 87	 * incoming general register may be a NaT value (including sp, in which case the
 88	 * process ends up dying with a SIGSEGV).
 89	 *
 90	 * The first thing need to do is a cover to get the registers onto the backing
 91	 * store.  Once that is done, we invoke the signal handler which may modify some
 92	 * of the machine state.  After returning from the signal handler, we return
 93	 * control to the previous context by executing a sigreturn system call.  A signal
 94	 * handler may call the rt_sigreturn() function to directly return to a given
 95	 * sigcontext.  However, the user-level sigreturn() needs to do much more than
 96	 * calling the rt_sigreturn() system call as it needs to unwind the stack to
 97	 * restore preserved registers that may have been saved on the signal handler's
 98	 * call stack.
 99	 */
100
101#define SIGTRAMP_SAVES										\
102	.unwabi 3, 's';		/* mark this as a sigtramp handler (saves scratch regs) */	\
103	.unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */	\
104	.savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF;						\
105	.savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF;						\
106	.savesp pr, PR_OFF+SIGCONTEXT_OFF;     							\
107	.savesp rp, RP_OFF+SIGCONTEXT_OFF;							\
108	.savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF;							\
109	.vframesp SP_OFF+SIGCONTEXT_OFF
110
111GLOBAL_ENTRY(__kernel_sigtramp)
112	// describe the state that is active when we get here:
113	.prologue
114	SIGTRAMP_SAVES
115	.body
116
117	.label_state 1
118
119	adds base0=SIGHANDLER_OFF,sp
120	adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp
121	br.call.sptk.many rp=1f
1221:
123	ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF)	// get pointer to signal handler's plabel
124	ld8 r15=[base1]					// get address of new RBS base (or NULL)
125	cover				// push args in interrupted frame onto backing store
126	;;
127	cmp.ne p1,p0=r15,r0		// do we need to switch rbs? (note: pr is saved by kernel)
128	mov.m r9=ar.bsp			// fetch ar.bsp
129	.spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
130(p1)	br.cond.spnt setup_rbs		// yup -> (clobbers p8, r14-r16, and r18-r20)
131back_from_setup_rbs:
132	alloc r8=ar.pfs,0,0,3,0
133	ld8 out0=[base0],16		// load arg0 (signum)
134	adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1
135	;;
136	ld8 out1=[base1]		// load arg1 (siginfop)
137	ld8 r10=[r17],8			// get signal handler entry point
138	;;
139	ld8 out2=[base0]		// load arg2 (sigcontextp)
140	ld8 gp=[r17]			// get signal handler's global pointer
141	adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
142	;;
143	.spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF
144	st8 [base0]=r9			// save sc_ar_bsp
145	adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
146	adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
147	;;
148	stf.spill [base0]=f6,32
149	stf.spill [base1]=f7,32
150	;;
151	stf.spill [base0]=f8,32
152	stf.spill [base1]=f9,32
153	mov b6=r10
154	;;
155	stf.spill [base0]=f10,32
156	stf.spill [base1]=f11,32
157	;;
158	stf.spill [base0]=f12,32
159	stf.spill [base1]=f13,32
160	;;
161	stf.spill [base0]=f14,32
162	stf.spill [base1]=f15,32
163	br.call.sptk.many rp=b6			// call the signal handler
164.ret0:	adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
165	;;
166	ld8 r15=[base0]				// fetch sc_ar_bsp
167	mov r14=ar.bsp
168	;;
169	cmp.ne p1,p0=r14,r15			// do we need to restore the rbs?
170(p1)	br.cond.spnt restore_rbs		// yup -> (clobbers r14-r18, f6 & f7)
171	;;
172back_from_restore_rbs:
173	adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
174	adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
175	;;
176	ldf.fill f6=[base0],32
177	ldf.fill f7=[base1],32
178	;;
179	ldf.fill f8=[base0],32
180	ldf.fill f9=[base1],32
181	;;
182	ldf.fill f10=[base0],32
183	ldf.fill f11=[base1],32
184	;;
185	ldf.fill f12=[base0],32
186	ldf.fill f13=[base1],32
187	;;
188	ldf.fill f14=[base0],32
189	ldf.fill f15=[base1],32
190	mov r15=__NR_rt_sigreturn
191	.restore sp				// pop .prologue
192	break __BREAK_SYSCALL
193
194	.prologue
195	SIGTRAMP_SAVES
196setup_rbs:
197	mov ar.rsc=0				// put RSE into enforced lazy mode
198	;;
199	.save ar.rnat, r19
200	mov r19=ar.rnat				// save RNaT before switching backing store area
201	adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp
202
203	mov r18=ar.bspstore
204	mov ar.bspstore=r15			// switch over to new register backing store area
205	;;
206
207	.spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
208	st8 [r14]=r19				// save sc_ar_rnat
209	.body
210	mov.m r16=ar.bsp			// sc_loadrs <- (new bsp - new bspstore) << 16
211	adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp
212	;;
213	invala
214	sub r15=r16,r15
215	extr.u r20=r18,3,6
216	;;
217	mov ar.rsc=0xf				// set RSE into eager mode, pl 3
218	cmp.eq p8,p0=63,r20
219	shl r15=r15,16
220	;;
221	st8 [r14]=r15				// save sc_loadrs
222(p8)	st8 [r18]=r19		// if bspstore points at RNaT slot, store RNaT there now
223	.restore sp				// pop .prologue
224	br.cond.sptk back_from_setup_rbs
225
226	.prologue
227	SIGTRAMP_SAVES
228	.spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
229	.body
230restore_rbs:
231	// On input:
232	//	r14 = bsp1 (bsp at the time of return from signal handler)
233	//	r15 = bsp0 (bsp at the time the signal occurred)
234	//
235	// Here, we need to calculate bspstore0, the value that ar.bspstore needs
236	// to be set to, based on bsp0 and the size of the dirty partition on
237	// the alternate stack (sc_loadrs >> 16).  This can be done with the
238	// following algorithm:
239	//
240	//  bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1));
241	//
242	// This is what the code below does.
243	//
244	alloc r2=ar.pfs,0,0,0,0			// alloc null frame
245	adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp
246	adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp
247	;;
248	ld8 r17=[r16]
249	ld8 r16=[r18]			// get new rnat
250	extr.u r18=r15,3,6	// r18 <- rse_slot_num(bsp0)
251	;;
252	mov ar.rsc=r17			// put RSE into enforced lazy mode
253	shr.u r17=r17,16
254	;;
255	sub r14=r14,r17		// r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16)
256	shr.u r17=r17,3		// r17 <- (sc_loadrs >> 19)
257	;;
258	loadrs			// restore dirty partition
259	extr.u r14=r14,3,6	// r14 <- rse_slot_num(bspstore1)
260	;;
261	add r14=r14,r17		// r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19)
262	;;
263	shr.u r14=r14,6		// r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40
264	;;
265	sub r14=r14,r17		// r14 <- -rse_num_regs(bspstore1, bsp1)
266	movl r17=0x8208208208208209
267	;;
268	add r18=r18,r14		// r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1)
269	setf.sig f7=r17
270	cmp.lt p7,p0=r14,r0	// p7 <- (r14 < 0)?
271	;;
272(p7)	adds r18=-62,r18	// delta -= 62
273	;;
274	setf.sig f6=r18
275	;;
276	xmpy.h f6=f6,f7
277	;;
278	getf.sig r17=f6
279	;;
280	add r17=r17,r18
281	shr r18=r18,63
282	;;
283	shr r17=r17,5
284	;;
285	sub r17=r17,r18		// r17 = delta/63
286	;;
287	add r17=r14,r17		// r17 <- delta/63 - rse_num_regs(bspstore1, bsp1)
288	;;
289	shladd r15=r17,3,r15	// r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1))
290	;;
291	mov ar.bspstore=r15			// switch back to old register backing store area
292	;;
293	mov ar.rnat=r16				// restore RNaT
294	mov ar.rsc=0xf				// (will be restored later on from sc_ar_rsc)
295	// invala not necessary as that will happen when returning to user-mode
296	br.cond.sptk back_from_restore_rbs
297END(__kernel_sigtramp)
298
299/*
300 * On entry:
301 *	r11 = saved ar.pfs
302 *	r15 = system call #
303 *	b0  = saved return address
304 *	b6  = return address
305 * On exit:
306 *	r11 = saved ar.pfs
307 *	r15 = system call #
308 *	b0  = saved return address
309 *	all other "scratch" registers:	undefined
310 *	all "preserved" registers:	same as on entry
311 */
312
313GLOBAL_ENTRY(__kernel_syscall_via_epc)
314	.prologue
315	.altrp b6
316	.body
317{
318	/*
319	 * Note: the kernel cannot assume that the first two instructions in this
320	 * bundle get executed.  The remaining code must be safe even if
321	 * they do not get executed.
322	 */
323	adds r17=-1024,r15			// A
324	mov r10=0				// A    default to successful syscall execution
325	epc					// B	causes split-issue
326}
327	;;
328	RSM_PSR_BE_I(r20, r22)			// M2 (5 cyc to srlz.d)
329	LOAD_FSYSCALL_TABLE(r14)		// X
330	;;
331	mov r16=IA64_KR(CURRENT)		// M2 (12 cyc)
332	shladd r18=r17,3,r14			// A
333	mov r19=NR_syscalls-1			// A
334	;;
335	lfetch [r18]				// M0|1
336	MOV_FROM_PSR(p0, r29, r8)		// M2 (12 cyc)
337	// If r17 is a NaT, p6 will be zero
338	cmp.geu p6,p7=r19,r17			// A    (sysnr > 0 && sysnr < 1024+NR_syscalls)?
339	;;
340	mov r21=ar.fpsr				// M2 (12 cyc)
341	tnat.nz p10,p9=r15			// I0
342	mov.i r26=ar.pfs			// I0 (would stall anyhow due to srlz.d...)
343	;;
344	srlz.d					// M0 (forces split-issue) ensure PSR.BE==0
345(p6)	ld8 r18=[r18]				// M0|1
346	nop.i 0
347	;;
348	nop.m 0
349(p6)	tbit.z.unc p8,p0=r18,0			// I0 (dual-issues with "mov b7=r18"!)
350	nop.i 0
351	;;
352	SSM_PSR_I(p8, p14, r25)
353(p6)	mov b7=r18				// I0
354(p8)	br.dptk.many b7				// B
355
356	mov r27=ar.rsc				// M2 (12 cyc)
357/*
358 * brl.cond doesn't work as intended because the linker would convert this branch
359 * into a branch to a PLT.  Perhaps there will be a way to avoid this with some
360 * future version of the linker.  In the meantime, we just use an indirect branch
361 * instead.
362 */
363#ifdef CONFIG_ITANIUM
364(p6)	add r14=-8,r14				// r14 <- addr of fsys_bubble_down entry
365	;;
366(p6)	ld8 r14=[r14]				// r14 <- fsys_bubble_down
367	;;
368(p6)	mov b7=r14
369(p6)	br.sptk.many b7
370#else
371	BRL_COND_FSYS_BUBBLE_DOWN(p6)
372#endif
373	SSM_PSR_I(p0, p14, r10)
374	mov r10=-1
375(p10)	mov r8=EINVAL
376(p9)	mov r8=ENOSYS
377	FSYS_RETURN
378
379#ifdef CONFIG_PARAVIRT
380	/*
381	 * padd to make the size of this symbol constant
382	 * independent of paravirtualization.
383	 */
384	.align PAGE_SIZE / 8
385#endif
386END(__kernel_syscall_via_epc)