Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1/*
  2 * Blackfin architecture-dependent process handling
  3 *
  4 * Copyright 2004-2009 Analog Devices Inc.
  5 *
  6 * Licensed under the GPL-2 or later
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/unistd.h>
 11#include <linux/user.h>
 12#include <linux/uaccess.h>
 13#include <linux/slab.h>
 14#include <linux/sched.h>
 15#include <linux/tick.h>
 16#include <linux/fs.h>
 17#include <linux/err.h>
 18
 19#include <asm/blackfin.h>
 20#include <asm/fixed_code.h>
 21#include <asm/mem_map.h>
 22#include <asm/irq.h>
 23
 24asmlinkage void ret_from_fork(void);
 25
 26/* Points to the SDRAM backup memory for the stack that is currently in
 27 * L1 scratchpad memory.
 28 */
 29void *current_l1_stack_save;
 30
 31/* The number of tasks currently using a L1 stack area.  The SRAM is
 32 * allocated/deallocated whenever this changes from/to zero.
 33 */
 34int nr_l1stack_tasks;
 35
 36/* Start and length of the area in L1 scratchpad memory which we've allocated
 37 * for process stacks.
 38 */
 39void *l1_stack_base;
 40unsigned long l1_stack_len;
 41
 42/*
 43 * Powermanagement idle function, if any..
 44 */
 45void (*pm_idle)(void) = NULL;
 46EXPORT_SYMBOL(pm_idle);
 47
 48void (*pm_power_off)(void) = NULL;
 49EXPORT_SYMBOL(pm_power_off);
 50
 51/*
 52 * The idle loop on BFIN
 53 */
 54#ifdef CONFIG_IDLE_L1
 55static void default_idle(void)__attribute__((l1_text));
 56void cpu_idle(void)__attribute__((l1_text));
 57#endif
 58
 59/*
 60 * This is our default idle handler.  We need to disable
 61 * interrupts here to ensure we don't miss a wakeup call.
 62 */
 63static void default_idle(void)
 64{
 65#ifdef CONFIG_IPIPE
 66	ipipe_suspend_domain();
 67#endif
 68	hard_local_irq_disable();
 69	if (!need_resched())
 70		idle_with_irq_disabled();
 71
 72	hard_local_irq_enable();
 73}
 74
 75/*
 76 * The idle thread.  We try to conserve power, while trying to keep
 77 * overall latency low.  The architecture specific idle is passed
 78 * a value to indicate the level of "idleness" of the system.
 79 */
 80void cpu_idle(void)
 81{
 82	/* endless idle loop with no priority at all */
 83	while (1) {
 84		void (*idle)(void) = pm_idle;
 85
 86#ifdef CONFIG_HOTPLUG_CPU
 87		if (cpu_is_offline(smp_processor_id()))
 88			cpu_die();
 89#endif
 90		if (!idle)
 91			idle = default_idle;
 92		tick_nohz_idle_enter();
 93		rcu_idle_enter();
 94		while (!need_resched())
 95			idle();
 96		rcu_idle_exit();
 97		tick_nohz_idle_exit();
 98		preempt_enable_no_resched();
 99		schedule();
100		preempt_disable();
101	}
102}
103
104/*
105 * This gets run with P1 containing the
106 * function to call, and R1 containing
107 * the "args".  Note P0 is clobbered on the way here.
108 */
109void kernel_thread_helper(void);
110__asm__(".section .text\n"
111	".align 4\n"
112	"_kernel_thread_helper:\n\t"
113	"\tsp += -12;\n\t"
114	"\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
115
116/*
117 * Create a kernel thread.
118 */
119pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
120{
121	struct pt_regs regs;
122
123	memset(&regs, 0, sizeof(regs));
124
125	regs.r1 = (unsigned long)arg;
126	regs.p1 = (unsigned long)fn;
127	regs.pc = (unsigned long)kernel_thread_helper;
128	regs.orig_p0 = -1;
129	/* Set bit 2 to tell ret_from_fork we should be returning to kernel
130	   mode.  */
131	regs.ipend = 0x8002;
132	__asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
133	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
134		       NULL);
135}
136EXPORT_SYMBOL(kernel_thread);
137
138/*
139 * Do necessary setup to start up a newly executed thread.
140 *
141 * pass the data segment into user programs if it exists,
142 * it can't hurt anything as far as I can tell
143 */
144void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
145{
146	regs->pc = new_ip;
147	if (current->mm)
148		regs->p5 = current->mm->start_data;
149#ifndef CONFIG_SMP
150	task_thread_info(current)->l1_task_info.stack_start =
151		(void *)current->mm->context.stack_start;
152	task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
153	memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
154	       sizeof(*L1_SCRATCH_TASK_INFO));
155#endif
156	wrusp(new_sp);
157}
158EXPORT_SYMBOL_GPL(start_thread);
159
160void flush_thread(void)
161{
162}
163
164asmlinkage int bfin_vfork(struct pt_regs *regs)
165{
166	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
167		       NULL);
168}
169
170asmlinkage int bfin_clone(struct pt_regs *regs)
171{
172	unsigned long clone_flags;
173	unsigned long newsp;
174
175#ifdef __ARCH_SYNC_CORE_DCACHE
176	if (current->nr_cpus_allowed == num_possible_cpus())
177		set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
178#endif
179
180	/* syscall2 puts clone_flags in r0 and usp in r1 */
181	clone_flags = regs->r0;
182	newsp = regs->r1;
183	if (!newsp)
184		newsp = rdusp();
185	else
186		newsp -= 12;
187	return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
188}
189
190int
191copy_thread(unsigned long clone_flags,
192	    unsigned long usp, unsigned long topstk,
193	    struct task_struct *p, struct pt_regs *regs)
194{
195	struct pt_regs *childregs;
196
197	childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
198	*childregs = *regs;
199	childregs->r0 = 0;
200
201	p->thread.usp = usp;
202	p->thread.ksp = (unsigned long)childregs;
203	p->thread.pc = (unsigned long)ret_from_fork;
204
205	return 0;
206}
207
208/*
209 * sys_execve() executes a new program.
210 */
211asmlinkage int sys_execve(const char __user *name,
212			  const char __user *const __user *argv,
213			  const char __user *const __user *envp)
214{
215	int error;
216	char *filename;
217	struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
218
219	filename = getname(name);
220	error = PTR_ERR(filename);
221	if (IS_ERR(filename))
222		return error;
223	error = do_execve(filename, argv, envp, regs);
224	putname(filename);
225	return error;
226}
227
228unsigned long get_wchan(struct task_struct *p)
229{
230	unsigned long fp, pc;
231	unsigned long stack_page;
232	int count = 0;
233	if (!p || p == current || p->state == TASK_RUNNING)
234		return 0;
235
236	stack_page = (unsigned long)p;
237	fp = p->thread.usp;
238	do {
239		if (fp < stack_page + sizeof(struct thread_info) ||
240		    fp >= 8184 + stack_page)
241			return 0;
242		pc = ((unsigned long *)fp)[1];
243		if (!in_sched_functions(pc))
244			return pc;
245		fp = *(unsigned long *)fp;
246	}
247	while (count++ < 16);
248	return 0;
249}
250
251void finish_atomic_sections (struct pt_regs *regs)
252{
253	int __user *up0 = (int __user *)regs->p0;
254
255	switch (regs->pc) {
256	default:
257		/* not in middle of an atomic step, so resume like normal */
258		return;
259
260	case ATOMIC_XCHG32 + 2:
261		put_user(regs->r1, up0);
262		break;
263
264	case ATOMIC_CAS32 + 2:
265	case ATOMIC_CAS32 + 4:
266		if (regs->r0 == regs->r1)
267	case ATOMIC_CAS32 + 6:
268			put_user(regs->r2, up0);
269		break;
270
271	case ATOMIC_ADD32 + 2:
272		regs->r0 = regs->r1 + regs->r0;
273		/* fall through */
274	case ATOMIC_ADD32 + 4:
275		put_user(regs->r0, up0);
276		break;
277
278	case ATOMIC_SUB32 + 2:
279		regs->r0 = regs->r1 - regs->r0;
280		/* fall through */
281	case ATOMIC_SUB32 + 4:
282		put_user(regs->r0, up0);
283		break;
284
285	case ATOMIC_IOR32 + 2:
286		regs->r0 = regs->r1 | regs->r0;
287		/* fall through */
288	case ATOMIC_IOR32 + 4:
289		put_user(regs->r0, up0);
290		break;
291
292	case ATOMIC_AND32 + 2:
293		regs->r0 = regs->r1 & regs->r0;
294		/* fall through */
295	case ATOMIC_AND32 + 4:
296		put_user(regs->r0, up0);
297		break;
298
299	case ATOMIC_XOR32 + 2:
300		regs->r0 = regs->r1 ^ regs->r0;
301		/* fall through */
302	case ATOMIC_XOR32 + 4:
303		put_user(regs->r0, up0);
304		break;
305	}
306
307	/*
308	 * We've finished the atomic section, and the only thing left for
309	 * userspace is to do a RTS, so we might as well handle that too
310	 * since we need to update the PC anyways.
311	 */
312	regs->pc = regs->rets;
313}
314
315static inline
316int in_mem(unsigned long addr, unsigned long size,
317           unsigned long start, unsigned long end)
318{
319	return addr >= start && addr + size <= end;
320}
321static inline
322int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
323                     unsigned long const_addr, unsigned long const_size)
324{
325	return const_size &&
326	       in_mem(addr, size, const_addr + off, const_addr + const_size);
327}
328static inline
329int in_mem_const(unsigned long addr, unsigned long size,
330                 unsigned long const_addr, unsigned long const_size)
331{
332	return in_mem_const_off(addr, size, 0, const_addr, const_size);
333}
334#ifdef CONFIG_BF60x
335#define ASYNC_ENABLED(bnum, bctlnum)	1
336#else
337#define ASYNC_ENABLED(bnum, bctlnum) \
338({ \
339	(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
340	bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
341	1; \
342})
343#endif
344/*
345 * We can't read EBIU banks that aren't enabled or we end up hanging
346 * on the access to the async space.  Make sure we validate accesses
347 * that cross async banks too.
348 *	0 - found, but unusable
349 *	1 - found & usable
350 *	2 - not found
351 */
352static
353int in_async(unsigned long addr, unsigned long size)
354{
355	if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
356		if (!ASYNC_ENABLED(0, 0))
357			return 0;
358		if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
359			return 1;
360		size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
361		addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
362	}
363	if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
364		if (!ASYNC_ENABLED(1, 0))
365			return 0;
366		if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
367			return 1;
368		size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
369		addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
370	}
371	if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
372		if (!ASYNC_ENABLED(2, 1))
373			return 0;
374		if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
375			return 1;
376		size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
377		addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
378	}
379	if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
380		if (ASYNC_ENABLED(3, 1))
381			return 0;
382		if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
383			return 1;
384		return 0;
385	}
386
387	/* not within async bounds */
388	return 2;
389}
390
391int bfin_mem_access_type(unsigned long addr, unsigned long size)
392{
393	int cpu = raw_smp_processor_id();
394
395	/* Check that things do not wrap around */
396	if (addr > ULONG_MAX - size)
397		return -EFAULT;
398
399	if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
400		return BFIN_MEM_ACCESS_CORE;
401
402	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
403		return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
404	if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
405		return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
406	if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
407		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
408	if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
409		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
410#ifdef COREB_L1_CODE_START
411	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
412		return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
413	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
414		return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
415	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
416		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
417	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
418		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
419#endif
420	if (in_mem_const(addr, size, L2_START, L2_LENGTH))
421		return BFIN_MEM_ACCESS_CORE;
422
423	if (addr >= SYSMMR_BASE)
424		return BFIN_MEM_ACCESS_CORE_ONLY;
425
426	switch (in_async(addr, size)) {
427	case 0: return -EFAULT;
428	case 1: return BFIN_MEM_ACCESS_CORE;
429	case 2: /* fall through */;
430	}
431
432	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
433		return BFIN_MEM_ACCESS_CORE;
434	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
435		return BFIN_MEM_ACCESS_DMA;
436
437	return -EFAULT;
438}
439
440#if defined(CONFIG_ACCESS_CHECK)
441#ifdef CONFIG_ACCESS_OK_L1
442__attribute__((l1_text))
443#endif
444/* Return 1 if access to memory range is OK, 0 otherwise */
445int _access_ok(unsigned long addr, unsigned long size)
446{
447	int aret;
448
449	if (size == 0)
450		return 1;
451	/* Check that things do not wrap around */
452	if (addr > ULONG_MAX - size)
453		return 0;
454	if (segment_eq(get_fs(), KERNEL_DS))
455		return 1;
456#ifdef CONFIG_MTD_UCLINUX
457	if (1)
458#else
459	if (0)
460#endif
461	{
462		if (in_mem(addr, size, memory_start, memory_end))
463			return 1;
464		if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
465			return 1;
466# ifndef CONFIG_ROMFS_ON_MTD
467		if (0)
468# endif
469			/* For XIP, allow user space to use pointers within the ROMFS.  */
470			if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
471				return 1;
472	} else {
473		if (in_mem(addr, size, memory_start, physical_mem_end))
474			return 1;
475	}
476
477	if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
478		return 1;
479
480	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
481		return 1;
482	if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
483		return 1;
484	if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
485		return 1;
486	if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
487		return 1;
488#ifdef COREB_L1_CODE_START
489	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
490		return 1;
491	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
492		return 1;
493	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
494		return 1;
495	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
496		return 1;
497#endif
498
499#ifndef CONFIG_EXCEPTION_L1_SCRATCH
500	if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
501		return 1;
502#endif
503
504	aret = in_async(addr, size);
505	if (aret < 2)
506		return aret;
507
508	if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
509		return 1;
510
511	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
512		return 1;
513	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
514		return 1;
515
516	return 0;
517}
518EXPORT_SYMBOL(_access_ok);
519#endif /* CONFIG_ACCESS_CHECK */