Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.17
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 118
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *	Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134	.family =		AF_INET,
 135	.solicit =		arp_solicit,
 136	.error_report =		arp_error_report,
 137	.output =		neigh_resolve_output,
 138	.connected_output =	neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142	.family =		AF_INET,
 143	.solicit =		arp_solicit,
 144	.error_report =		arp_error_report,
 145	.output =		neigh_resolve_output,
 146	.connected_output =	neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150	.family =		AF_INET,
 151	.output =		neigh_direct_output,
 152	.connected_output =	neigh_direct_output,
 153};
 154
 
 
 
 
 
 
 
 
 155struct neigh_table arp_tbl = {
 156	.family		= AF_INET,
 157	.key_len	= 4,
 158	.protocol	= cpu_to_be16(ETH_P_IP),
 159	.hash		= arp_hash,
 160	.key_eq		= arp_key_eq,
 161	.constructor	= arp_constructor,
 162	.proxy_redo	= parp_redo,
 163	.id		= "arp_cache",
 164	.parms		= {
 165		.tbl			= &arp_tbl,
 
 
 
 166		.reachable_time		= 30 * HZ,
 167		.data	= {
 168			[NEIGH_VAR_MCAST_PROBES] = 3,
 169			[NEIGH_VAR_UCAST_PROBES] = 3,
 170			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 175			[NEIGH_VAR_PROXY_QLEN] = 64,
 176			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 178			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179		},
 180	},
 181	.gc_interval	= 30 * HZ,
 182	.gc_thresh1	= 128,
 183	.gc_thresh2	= 512,
 184	.gc_thresh3	= 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190	switch (dev->type) {
 191	case ARPHRD_ETHER:
 192	case ARPHRD_FDDI:
 193	case ARPHRD_IEEE802:
 194		ip_eth_mc_map(addr, haddr);
 195		return 0;
 196	case ARPHRD_INFINIBAND:
 197		ip_ib_mc_map(addr, dev->broadcast, haddr);
 198		return 0;
 199	case ARPHRD_IPGRE:
 200		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	default:
 203		if (dir) {
 204			memcpy(haddr, dev->broadcast, dev->addr_len);
 205			return 0;
 206		}
 207	}
 208	return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213		    const struct net_device *dev,
 214		    __u32 *hash_rnd)
 215{
 216	return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221	return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226	__be32 addr;
 227	struct net_device *dev = neigh->dev;
 228	struct in_device *in_dev;
 229	struct neigh_parms *parms;
 230	u32 inaddr_any = INADDR_ANY;
 231
 232	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 233		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 234
 235	addr = *(__be32 *)neigh->primary_key;
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (!in_dev) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		if (neigh->type == RTN_MULTICAST) {
 271			neigh->nud_state = NUD_NOARP;
 272			arp_mc_map(addr, neigh->ha, dev, 1);
 273		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 274			neigh->nud_state = NUD_NOARP;
 275			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 276		} else if (neigh->type == RTN_BROADCAST ||
 277			   (dev->flags & IFF_POINTOPOINT)) {
 278			neigh->nud_state = NUD_NOARP;
 279			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 280		}
 281
 282		if (dev->header_ops->cache)
 283			neigh->ops = &arp_hh_ops;
 284		else
 285			neigh->ops = &arp_generic_ops;
 286
 287		if (neigh->nud_state & NUD_VALID)
 288			neigh->output = neigh->ops->connected_output;
 289		else
 290			neigh->output = neigh->ops->output;
 291	}
 292	return 0;
 293}
 294
 295static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 296{
 297	dst_link_failure(skb);
 298	kfree_skb(skb);
 299}
 300
 301/* Create and send an arp packet. */
 302static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 303			 struct net_device *dev, __be32 src_ip,
 304			 const unsigned char *dest_hw,
 305			 const unsigned char *src_hw,
 306			 const unsigned char *target_hw,
 307			 struct dst_entry *dst)
 308{
 309	struct sk_buff *skb;
 310
 311	/* arp on this interface. */
 312	if (dev->flags & IFF_NOARP)
 313		return;
 314
 315	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 316			 dest_hw, src_hw, target_hw);
 317	if (!skb)
 318		return;
 319
 320	skb_dst_set(skb, dst_clone(dst));
 321	arp_xmit(skb);
 322}
 323
 324void arp_send(int type, int ptype, __be32 dest_ip,
 325	      struct net_device *dev, __be32 src_ip,
 326	      const unsigned char *dest_hw, const unsigned char *src_hw,
 327	      const unsigned char *target_hw)
 328{
 329	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 330		     target_hw, NULL);
 331}
 332EXPORT_SYMBOL(arp_send);
 333
 334static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 335{
 336	__be32 saddr = 0;
 337	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 338	struct net_device *dev = neigh->dev;
 339	__be32 target = *(__be32 *)neigh->primary_key;
 340	int probes = atomic_read(&neigh->probes);
 341	struct in_device *in_dev;
 342	struct dst_entry *dst = NULL;
 343
 344	rcu_read_lock();
 345	in_dev = __in_dev_get_rcu(dev);
 346	if (!in_dev) {
 347		rcu_read_unlock();
 348		return;
 349	}
 350	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 351	default:
 352	case 0:		/* By default announce any local IP */
 353		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 354					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 355			saddr = ip_hdr(skb)->saddr;
 356		break;
 357	case 1:		/* Restrict announcements of saddr in same subnet */
 358		if (!skb)
 359			break;
 360		saddr = ip_hdr(skb)->saddr;
 361		if (inet_addr_type_dev_table(dev_net(dev), dev,
 362					     saddr) == RTN_LOCAL) {
 363			/* saddr should be known to target */
 364			if (inet_addr_onlink(in_dev, target, saddr))
 365				break;
 366		}
 367		saddr = 0;
 368		break;
 369	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 370		break;
 371	}
 372	rcu_read_unlock();
 373
 374	if (!saddr)
 375		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 376
 377	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 378	if (probes < 0) {
 379		if (!(neigh->nud_state & NUD_VALID))
 380			pr_debug("trying to ucast probe in NUD_INVALID\n");
 381		neigh_ha_snapshot(dst_ha, neigh, dev);
 382		dst_hw = dst_ha;
 383	} else {
 384		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 385		if (probes < 0) {
 
 386			neigh_app_ns(neigh);
 
 387			return;
 388		}
 389	}
 390
 391	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 392		dst = skb_dst(skb);
 393	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 394		     dst_hw, dev->dev_addr, NULL, dst);
 395}
 396
 397static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 398{
 399	struct net *net = dev_net(in_dev->dev);
 400	int scope;
 401
 402	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 403	case 0:	/* Reply, the tip is already validated */
 404		return 0;
 405	case 1:	/* Reply only if tip is configured on the incoming interface */
 406		sip = 0;
 407		scope = RT_SCOPE_HOST;
 408		break;
 409	case 2:	/*
 410		 * Reply only if tip is configured on the incoming interface
 411		 * and is in same subnet as sip
 412		 */
 413		scope = RT_SCOPE_HOST;
 414		break;
 415	case 3:	/* Do not reply for scope host addresses */
 416		sip = 0;
 417		scope = RT_SCOPE_LINK;
 418		in_dev = NULL;
 419		break;
 420	case 4:	/* Reserved */
 421	case 5:
 422	case 6:
 423	case 7:
 424		return 0;
 425	case 8:	/* Do not reply */
 426		return 1;
 427	default:
 428		return 0;
 429	}
 430	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 431}
 432
 433static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 434{
 435	struct rtable *rt;
 436	int flag = 0;
 437	/*unsigned long now; */
 438	struct net *net = dev_net(dev);
 439
 440	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 441	if (IS_ERR(rt))
 442		return 1;
 443	if (rt->dst.dev != dev) {
 444		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 445		flag = 1;
 446	}
 447	ip_rt_put(rt);
 448	return flag;
 449}
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451/*
 452 * Check if we can use proxy ARP for this path
 453 */
 454static inline int arp_fwd_proxy(struct in_device *in_dev,
 455				struct net_device *dev,	struct rtable *rt)
 456{
 457	struct in_device *out_dev;
 458	int imi, omi = -1;
 459
 460	if (rt->dst.dev == dev)
 461		return 0;
 462
 463	if (!IN_DEV_PROXY_ARP(in_dev))
 464		return 0;
 465	imi = IN_DEV_MEDIUM_ID(in_dev);
 466	if (imi == 0)
 467		return 1;
 468	if (imi == -1)
 469		return 0;
 470
 471	/* place to check for proxy_arp for routes */
 472
 473	out_dev = __in_dev_get_rcu(rt->dst.dev);
 474	if (out_dev)
 475		omi = IN_DEV_MEDIUM_ID(out_dev);
 476
 477	return omi != imi && omi != -1;
 478}
 479
 480/*
 481 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 482 *
 483 * RFC3069 supports proxy arp replies back to the same interface.  This
 484 * is done to support (ethernet) switch features, like RFC 3069, where
 485 * the individual ports are not allowed to communicate with each
 486 * other, BUT they are allowed to talk to the upstream router.  As
 487 * described in RFC 3069, it is possible to allow these hosts to
 488 * communicate through the upstream router, by proxy_arp'ing.
 489 *
 490 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 491 *
 492 *  This technology is known by different names:
 493 *    In RFC 3069 it is called VLAN Aggregation.
 494 *    Cisco and Allied Telesyn call it Private VLAN.
 495 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 496 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 497 *
 498 */
 499static inline int arp_fwd_pvlan(struct in_device *in_dev,
 500				struct net_device *dev,	struct rtable *rt,
 501				__be32 sip, __be32 tip)
 502{
 503	/* Private VLAN is only concerned about the same ethernet segment */
 504	if (rt->dst.dev != dev)
 505		return 0;
 506
 507	/* Don't reply on self probes (often done by windowz boxes)*/
 508	if (sip == tip)
 509		return 0;
 510
 511	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 512		return 1;
 513	else
 514		return 0;
 515}
 516
 517/*
 518 *	Interface to link layer: send routine and receive handler.
 519 */
 520
 521/*
 522 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 523 *	message.
 524 */
 525struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 526			   struct net_device *dev, __be32 src_ip,
 527			   const unsigned char *dest_hw,
 528			   const unsigned char *src_hw,
 529			   const unsigned char *target_hw)
 530{
 531	struct sk_buff *skb;
 532	struct arphdr *arp;
 533	unsigned char *arp_ptr;
 534	int hlen = LL_RESERVED_SPACE(dev);
 535	int tlen = dev->needed_tailroom;
 536
 537	/*
 538	 *	Allocate a buffer
 539	 */
 540
 541	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 542	if (!skb)
 543		return NULL;
 544
 545	skb_reserve(skb, hlen);
 546	skb_reset_network_header(skb);
 547	arp = skb_put(skb, arp_hdr_len(dev));
 548	skb->dev = dev;
 549	skb->protocol = htons(ETH_P_ARP);
 550	if (!src_hw)
 551		src_hw = dev->dev_addr;
 552	if (!dest_hw)
 553		dest_hw = dev->broadcast;
 554
 555	/*
 556	 *	Fill the device header for the ARP frame
 557	 */
 558	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 559		goto out;
 560
 561	/*
 562	 * Fill out the arp protocol part.
 563	 *
 564	 * The arp hardware type should match the device type, except for FDDI,
 565	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 566	 */
 567	/*
 568	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 569	 *	DIX code for the protocol. Make these device structure fields.
 570	 */
 571	switch (dev->type) {
 572	default:
 573		arp->ar_hrd = htons(dev->type);
 574		arp->ar_pro = htons(ETH_P_IP);
 575		break;
 576
 577#if IS_ENABLED(CONFIG_AX25)
 578	case ARPHRD_AX25:
 579		arp->ar_hrd = htons(ARPHRD_AX25);
 580		arp->ar_pro = htons(AX25_P_IP);
 581		break;
 582
 583#if IS_ENABLED(CONFIG_NETROM)
 584	case ARPHRD_NETROM:
 585		arp->ar_hrd = htons(ARPHRD_NETROM);
 586		arp->ar_pro = htons(AX25_P_IP);
 587		break;
 588#endif
 589#endif
 590
 591#if IS_ENABLED(CONFIG_FDDI)
 592	case ARPHRD_FDDI:
 593		arp->ar_hrd = htons(ARPHRD_ETHER);
 594		arp->ar_pro = htons(ETH_P_IP);
 595		break;
 596#endif
 597	}
 598
 599	arp->ar_hln = dev->addr_len;
 600	arp->ar_pln = 4;
 601	arp->ar_op = htons(type);
 602
 603	arp_ptr = (unsigned char *)(arp + 1);
 604
 605	memcpy(arp_ptr, src_hw, dev->addr_len);
 606	arp_ptr += dev->addr_len;
 607	memcpy(arp_ptr, &src_ip, 4);
 608	arp_ptr += 4;
 609
 610	switch (dev->type) {
 611#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 612	case ARPHRD_IEEE1394:
 613		break;
 614#endif
 615	default:
 616		if (target_hw)
 617			memcpy(arp_ptr, target_hw, dev->addr_len);
 618		else
 619			memset(arp_ptr, 0, dev->addr_len);
 620		arp_ptr += dev->addr_len;
 621	}
 622	memcpy(arp_ptr, &dest_ip, 4);
 623
 624	return skb;
 625
 626out:
 627	kfree_skb(skb);
 628	return NULL;
 629}
 630EXPORT_SYMBOL(arp_create);
 631
 632static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 633{
 634	return dev_queue_xmit(skb);
 635}
 636
 637/*
 638 *	Send an arp packet.
 639 */
 640void arp_xmit(struct sk_buff *skb)
 641{
 642	/* Send it off, maybe filter it using firewalling first.  */
 643	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 644		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 645		arp_xmit_finish);
 646}
 647EXPORT_SYMBOL(arp_xmit);
 648
 649static bool arp_is_garp(struct net *net, struct net_device *dev,
 650			int *addr_type, __be16 ar_op,
 651			__be32 sip, __be32 tip,
 652			unsigned char *sha, unsigned char *tha)
 
 
 
 653{
 654	bool is_garp = tip == sip;
 655
 656	/* Gratuitous ARP _replies_ also require target hwaddr to be
 657	 * the same as source.
 658	 */
 659	if (is_garp && ar_op == htons(ARPOP_REPLY))
 660		is_garp =
 661			/* IPv4 over IEEE 1394 doesn't provide target
 662			 * hardware address field in its ARP payload.
 663			 */
 664			tha &&
 665			!memcmp(tha, sha, dev->addr_len);
 666
 667	if (is_garp) {
 668		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 669		if (*addr_type != RTN_UNICAST)
 670			is_garp = false;
 671	}
 672	return is_garp;
 673}
 
 674
 675/*
 676 *	Process an arp request.
 677 */
 678
 679static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 680{
 681	struct net_device *dev = skb->dev;
 682	struct in_device *in_dev = __in_dev_get_rcu(dev);
 683	struct arphdr *arp;
 684	unsigned char *arp_ptr;
 685	struct rtable *rt;
 686	unsigned char *sha;
 687	unsigned char *tha = NULL;
 688	__be32 sip, tip;
 689	u16 dev_type = dev->type;
 690	int addr_type;
 691	struct neighbour *n;
 692	struct dst_entry *reply_dst = NULL;
 693	bool is_garp = false;
 694
 695	/* arp_rcv below verifies the ARP header and verifies the device
 696	 * is ARP'able.
 697	 */
 698
 699	if (!in_dev)
 700		goto out_free_skb;
 701
 702	arp = arp_hdr(skb);
 703
 704	switch (dev_type) {
 705	default:
 706		if (arp->ar_pro != htons(ETH_P_IP) ||
 707		    htons(dev_type) != arp->ar_hrd)
 708			goto out_free_skb;
 709		break;
 710	case ARPHRD_ETHER:
 711	case ARPHRD_FDDI:
 712	case ARPHRD_IEEE802:
 713		/*
 714		 * ETHERNET, and Fibre Channel (which are IEEE 802
 715		 * devices, according to RFC 2625) devices will accept ARP
 716		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 717		 * This is the case also of FDDI, where the RFC 1390 says that
 718		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 719		 * however, to be more robust, we'll accept both 1 (Ethernet)
 720		 * or 6 (IEEE 802.2)
 721		 */
 722		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 723		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 724		    arp->ar_pro != htons(ETH_P_IP))
 725			goto out_free_skb;
 726		break;
 727	case ARPHRD_AX25:
 728		if (arp->ar_pro != htons(AX25_P_IP) ||
 729		    arp->ar_hrd != htons(ARPHRD_AX25))
 730			goto out_free_skb;
 731		break;
 732	case ARPHRD_NETROM:
 733		if (arp->ar_pro != htons(AX25_P_IP) ||
 734		    arp->ar_hrd != htons(ARPHRD_NETROM))
 735			goto out_free_skb;
 736		break;
 737	}
 738
 739	/* Understand only these message types */
 740
 741	if (arp->ar_op != htons(ARPOP_REPLY) &&
 742	    arp->ar_op != htons(ARPOP_REQUEST))
 743		goto out_free_skb;
 744
 745/*
 746 *	Extract fields
 747 */
 748	arp_ptr = (unsigned char *)(arp + 1);
 749	sha	= arp_ptr;
 750	arp_ptr += dev->addr_len;
 751	memcpy(&sip, arp_ptr, 4);
 752	arp_ptr += 4;
 753	switch (dev_type) {
 754#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 755	case ARPHRD_IEEE1394:
 756		break;
 757#endif
 758	default:
 759		tha = arp_ptr;
 760		arp_ptr += dev->addr_len;
 761	}
 762	memcpy(&tip, arp_ptr, 4);
 763/*
 764 *	Check for bad requests for 127.x.x.x and requests for multicast
 765 *	addresses.  If this is one such, delete it.
 766 */
 767	if (ipv4_is_multicast(tip) ||
 768	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 769		goto out_free_skb;
 770
 771 /*
 772  *	For some 802.11 wireless deployments (and possibly other networks),
 773  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 774  *	and thus should not be accepted.
 775  */
 776	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 777		goto out_free_skb;
 778
 779/*
 780 *     Special case: We must set Frame Relay source Q.922 address
 781 */
 782	if (dev_type == ARPHRD_DLCI)
 783		sha = dev->broadcast;
 784
 785/*
 786 *  Process entry.  The idea here is we want to send a reply if it is a
 787 *  request for us or if it is a request for someone else that we hold
 788 *  a proxy for.  We want to add an entry to our cache if it is a reply
 789 *  to us or if it is a request for our address.
 790 *  (The assumption for this last is that if someone is requesting our
 791 *  address, they are probably intending to talk to us, so it saves time
 792 *  if we cache their address.  Their address is also probably not in
 793 *  our cache, since ours is not in their cache.)
 794 *
 795 *  Putting this another way, we only care about replies if they are to
 796 *  us, in which case we add them to the cache.  For requests, we care
 797 *  about those for us and those for our proxies.  We reply to both,
 798 *  and in the case of requests for us we add the requester to the arp
 799 *  cache.
 800 */
 801
 802	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 803		reply_dst = (struct dst_entry *)
 804			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 805						    GFP_ATOMIC);
 806
 807	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 808	if (sip == 0) {
 809		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 810		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 811		    !arp_ignore(in_dev, sip, tip))
 812			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 813				     sha, dev->dev_addr, sha, reply_dst);
 814		goto out_consume_skb;
 815	}
 816
 817	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 818	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 819
 820		rt = skb_rtable(skb);
 821		addr_type = rt->rt_type;
 822
 823		if (addr_type == RTN_LOCAL) {
 824			int dont_send;
 825
 826			dont_send = arp_ignore(in_dev, sip, tip);
 827			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 828				dont_send = arp_filter(sip, tip, dev);
 829			if (!dont_send) {
 830				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 831				if (n) {
 832					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 833						     sip, dev, tip, sha,
 834						     dev->dev_addr, sha,
 835						     reply_dst);
 836					neigh_release(n);
 837				}
 838			}
 839			goto out_consume_skb;
 840		} else if (IN_DEV_FORWARD(in_dev)) {
 841			if (addr_type == RTN_UNICAST  &&
 842			    (arp_fwd_proxy(in_dev, dev, rt) ||
 843			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 844			     (rt->dst.dev != dev &&
 845			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 846				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 847				if (n)
 848					neigh_release(n);
 849
 850				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 851				    skb->pkt_type == PACKET_HOST ||
 852				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 853					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 854						     sip, dev, tip, sha,
 855						     dev->dev_addr, sha,
 856						     reply_dst);
 857				} else {
 858					pneigh_enqueue(&arp_tbl,
 859						       in_dev->arp_parms, skb);
 860					goto out_free_dst;
 861				}
 862				goto out_consume_skb;
 863			}
 864		}
 865	}
 866
 867	/* Update our ARP tables */
 868
 869	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 870
 871	addr_type = -1;
 872	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 873		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 874				      sip, tip, sha, tha);
 875	}
 876
 877	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 878		/* Unsolicited ARP is not accepted by default.
 879		   It is possible, that this option should be enabled for some
 880		   devices (strip is candidate)
 881		 */
 882		if (!n &&
 883		    (is_garp ||
 884		     (arp->ar_op == htons(ARPOP_REPLY) &&
 885		      (addr_type == RTN_UNICAST ||
 886		       (addr_type < 0 &&
 887			/* postpone calculation to as late as possible */
 888			inet_addr_type_dev_table(net, dev, sip) ==
 889				RTN_UNICAST)))))
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies,
 903				      n->updated +
 904				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 905			   is_garp;
 906
 907		/* Broadcast replies and request packets
 908		   do not assert neighbour reachability.
 909		 */
 910		if (arp->ar_op != htons(ARPOP_REPLY) ||
 911		    skb->pkt_type != PACKET_HOST)
 912			state = NUD_STALE;
 913		neigh_update(n, sha, state,
 914			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 915		neigh_release(n);
 916	}
 917
 918out_consume_skb:
 919	consume_skb(skb);
 920
 921out_free_dst:
 922	dst_release(reply_dst);
 923	return NET_RX_SUCCESS;
 924
 925out_free_skb:
 926	kfree_skb(skb);
 927	return NET_RX_DROP;
 928}
 929
 930static void parp_redo(struct sk_buff *skb)
 931{
 932	arp_process(dev_net(skb->dev), NULL, skb);
 933}
 934
 935
 936/*
 937 *	Receive an arp request from the device layer.
 938 */
 939
 940static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 941		   struct packet_type *pt, struct net_device *orig_dev)
 942{
 943	const struct arphdr *arp;
 944
 945	/* do not tweak dropwatch on an ARP we will ignore */
 946	if (dev->flags & IFF_NOARP ||
 947	    skb->pkt_type == PACKET_OTHERHOST ||
 948	    skb->pkt_type == PACKET_LOOPBACK)
 949		goto consumeskb;
 950
 951	skb = skb_share_check(skb, GFP_ATOMIC);
 952	if (!skb)
 953		goto out_of_mem;
 954
 955	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 956	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 957		goto freeskb;
 958
 959	arp = arp_hdr(skb);
 960	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 961		goto freeskb;
 962
 
 
 
 
 963	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 964
 965	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 966		       dev_net(dev), NULL, skb, dev, NULL,
 967		       arp_process);
 968
 969consumeskb:
 970	consume_skb(skb);
 971	return NET_RX_SUCCESS;
 972freeskb:
 973	kfree_skb(skb);
 974out_of_mem:
 975	return NET_RX_DROP;
 976}
 977
 978/*
 979 *	User level interface (ioctl)
 980 */
 981
 982/*
 983 *	Set (create) an ARP cache entry.
 984 */
 985
 986static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 987{
 988	if (!dev) {
 989		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 990		return 0;
 991	}
 992	if (__in_dev_get_rtnl(dev)) {
 993		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 994		return 0;
 995	}
 996	return -ENXIO;
 997}
 998
 999static int arp_req_set_public(struct net *net, struct arpreq *r,
1000		struct net_device *dev)
1001{
1002	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1003	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1004
1005	if (mask && mask != htonl(0xFFFFFFFF))
1006		return -EINVAL;
1007	if (!dev && (r->arp_flags & ATF_COM)) {
1008		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1009				      r->arp_ha.sa_data);
1010		if (!dev)
1011			return -ENODEV;
1012	}
1013	if (mask) {
1014		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1015			return -ENOBUFS;
1016		return 0;
1017	}
1018
1019	return arp_req_set_proxy(net, dev, 1);
1020}
1021
1022static int arp_req_set(struct net *net, struct arpreq *r,
1023		       struct net_device *dev)
1024{
1025	__be32 ip;
1026	struct neighbour *neigh;
1027	int err;
1028
1029	if (r->arp_flags & ATF_PUBL)
1030		return arp_req_set_public(net, r, dev);
1031
1032	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033	if (r->arp_flags & ATF_PERM)
1034		r->arp_flags |= ATF_COM;
1035	if (!dev) {
1036		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1037
1038		if (IS_ERR(rt))
1039			return PTR_ERR(rt);
1040		dev = rt->dst.dev;
1041		ip_rt_put(rt);
1042		if (!dev)
1043			return -EINVAL;
1044	}
1045	switch (dev->type) {
1046#if IS_ENABLED(CONFIG_FDDI)
1047	case ARPHRD_FDDI:
1048		/*
1049		 * According to RFC 1390, FDDI devices should accept ARP
1050		 * hardware types of 1 (Ethernet).  However, to be more
1051		 * robust, we'll accept hardware types of either 1 (Ethernet)
1052		 * or 6 (IEEE 802.2).
1053		 */
1054		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1055		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1056		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1057			return -EINVAL;
1058		break;
1059#endif
1060	default:
1061		if (r->arp_ha.sa_family != dev->type)
1062			return -EINVAL;
1063		break;
1064	}
1065
1066	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1067	err = PTR_ERR(neigh);
1068	if (!IS_ERR(neigh)) {
1069		unsigned int state = NUD_STALE;
1070		if (r->arp_flags & ATF_PERM)
1071			state = NUD_PERMANENT;
1072		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1073				   r->arp_ha.sa_data : NULL, state,
1074				   NEIGH_UPDATE_F_OVERRIDE |
1075				   NEIGH_UPDATE_F_ADMIN, 0);
1076		neigh_release(neigh);
1077	}
1078	return err;
1079}
1080
1081static unsigned int arp_state_to_flags(struct neighbour *neigh)
1082{
1083	if (neigh->nud_state&NUD_PERMANENT)
1084		return ATF_PERM | ATF_COM;
1085	else if (neigh->nud_state&NUD_VALID)
1086		return ATF_COM;
1087	else
1088		return 0;
1089}
1090
1091/*
1092 *	Get an ARP cache entry.
1093 */
1094
1095static int arp_req_get(struct arpreq *r, struct net_device *dev)
1096{
1097	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098	struct neighbour *neigh;
1099	int err = -ENXIO;
1100
1101	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102	if (neigh) {
1103		if (!(neigh->nud_state & NUD_NOARP)) {
1104			read_lock_bh(&neigh->lock);
1105			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1106			r->arp_flags = arp_state_to_flags(neigh);
1107			read_unlock_bh(&neigh->lock);
1108			r->arp_ha.sa_family = dev->type;
1109			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1110			err = 0;
1111		}
1112		neigh_release(neigh);
 
1113	}
1114	return err;
1115}
1116
1117static int arp_invalidate(struct net_device *dev, __be32 ip)
1118{
1119	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120	int err = -ENXIO;
1121	struct neigh_table *tbl = &arp_tbl;
1122
1123	if (neigh) {
1124		if (neigh->nud_state & ~NUD_NOARP)
1125			err = neigh_update(neigh, NULL, NUD_FAILED,
1126					   NEIGH_UPDATE_F_OVERRIDE|
1127					   NEIGH_UPDATE_F_ADMIN, 0);
1128		write_lock_bh(&tbl->lock);
1129		neigh_release(neigh);
1130		neigh_remove_one(neigh, tbl);
1131		write_unlock_bh(&tbl->lock);
1132	}
1133
1134	return err;
1135}
 
1136
1137static int arp_req_delete_public(struct net *net, struct arpreq *r,
1138		struct net_device *dev)
1139{
1140	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1141	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1142
1143	if (mask == htonl(0xFFFFFFFF))
1144		return pneigh_delete(&arp_tbl, net, &ip, dev);
1145
1146	if (mask)
1147		return -EINVAL;
1148
1149	return arp_req_set_proxy(net, dev, 0);
1150}
1151
1152static int arp_req_delete(struct net *net, struct arpreq *r,
1153			  struct net_device *dev)
1154{
1155	__be32 ip;
1156
1157	if (r->arp_flags & ATF_PUBL)
1158		return arp_req_delete_public(net, r, dev);
1159
1160	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1161	if (!dev) {
1162		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1163		if (IS_ERR(rt))
1164			return PTR_ERR(rt);
1165		dev = rt->dst.dev;
1166		ip_rt_put(rt);
1167		if (!dev)
1168			return -EINVAL;
1169	}
1170	return arp_invalidate(dev, ip);
1171}
1172
1173/*
1174 *	Handle an ARP layer I/O control request.
1175 */
1176
1177int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1178{
1179	int err;
1180	struct arpreq r;
1181	struct net_device *dev = NULL;
1182
1183	switch (cmd) {
1184	case SIOCDARP:
1185	case SIOCSARP:
1186		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1187			return -EPERM;
1188		/* fall through */
1189	case SIOCGARP:
1190		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1191		if (err)
1192			return -EFAULT;
1193		break;
1194	default:
1195		return -EINVAL;
1196	}
1197
1198	if (r.arp_pa.sa_family != AF_INET)
1199		return -EPFNOSUPPORT;
1200
1201	if (!(r.arp_flags & ATF_PUBL) &&
1202	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1203		return -EINVAL;
1204	if (!(r.arp_flags & ATF_NETMASK))
1205		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1206							   htonl(0xFFFFFFFFUL);
1207	rtnl_lock();
1208	if (r.arp_dev[0]) {
1209		err = -ENODEV;
1210		dev = __dev_get_by_name(net, r.arp_dev);
1211		if (!dev)
1212			goto out;
1213
1214		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1215		if (!r.arp_ha.sa_family)
1216			r.arp_ha.sa_family = dev->type;
1217		err = -EINVAL;
1218		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1219			goto out;
1220	} else if (cmd == SIOCGARP) {
1221		err = -ENODEV;
1222		goto out;
1223	}
1224
1225	switch (cmd) {
1226	case SIOCDARP:
1227		err = arp_req_delete(net, &r, dev);
1228		break;
1229	case SIOCSARP:
1230		err = arp_req_set(net, &r, dev);
1231		break;
1232	case SIOCGARP:
1233		err = arp_req_get(&r, dev);
1234		break;
1235	}
1236out:
1237	rtnl_unlock();
1238	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1239		err = -EFAULT;
1240	return err;
1241}
1242
1243static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1244			    void *ptr)
1245{
1246	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1247	struct netdev_notifier_change_info *change_info;
1248
1249	switch (event) {
1250	case NETDEV_CHANGEADDR:
1251		neigh_changeaddr(&arp_tbl, dev);
1252		rt_cache_flush(dev_net(dev));
1253		break;
1254	case NETDEV_CHANGE:
1255		change_info = ptr;
1256		if (change_info->flags_changed & IFF_NOARP)
1257			neigh_changeaddr(&arp_tbl, dev);
1258		break;
1259	default:
1260		break;
1261	}
1262
1263	return NOTIFY_DONE;
1264}
1265
1266static struct notifier_block arp_netdev_notifier = {
1267	.notifier_call = arp_netdev_event,
1268};
1269
1270/* Note, that it is not on notifier chain.
1271   It is necessary, that this routine was called after route cache will be
1272   flushed.
1273 */
1274void arp_ifdown(struct net_device *dev)
1275{
1276	neigh_ifdown(&arp_tbl, dev);
1277}
1278
1279
1280/*
1281 *	Called once on startup.
1282 */
1283
1284static struct packet_type arp_packet_type __read_mostly = {
1285	.type =	cpu_to_be16(ETH_P_ARP),
1286	.func =	arp_rcv,
1287};
1288
1289static int arp_proc_init(void);
1290
1291void __init arp_init(void)
1292{
1293	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1294
1295	dev_add_pack(&arp_packet_type);
1296	arp_proc_init();
1297#ifdef CONFIG_SYSCTL
1298	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1299#endif
1300	register_netdevice_notifier(&arp_netdev_notifier);
1301}
1302
1303#ifdef CONFIG_PROC_FS
1304#if IS_ENABLED(CONFIG_AX25)
1305
1306/* ------------------------------------------------------------------------ */
1307/*
1308 *	ax25 -> ASCII conversion
1309 */
1310static void ax2asc2(ax25_address *a, char *buf)
1311{
1312	char c, *s;
1313	int n;
1314
1315	for (n = 0, s = buf; n < 6; n++) {
1316		c = (a->ax25_call[n] >> 1) & 0x7F;
1317
1318		if (c != ' ')
1319			*s++ = c;
1320	}
1321
1322	*s++ = '-';
1323	n = (a->ax25_call[6] >> 1) & 0x0F;
1324	if (n > 9) {
1325		*s++ = '1';
1326		n -= 10;
1327	}
1328
1329	*s++ = n + '0';
1330	*s++ = '\0';
1331
1332	if (*buf == '\0' || *buf == '-') {
1333		buf[0] = '*';
1334		buf[1] = '\0';
1335	}
1336}
1337#endif /* CONFIG_AX25 */
1338
1339#define HBUFFERLEN 30
1340
1341static void arp_format_neigh_entry(struct seq_file *seq,
1342				   struct neighbour *n)
1343{
1344	char hbuffer[HBUFFERLEN];
1345	int k, j;
1346	char tbuf[16];
1347	struct net_device *dev = n->dev;
1348	int hatype = dev->type;
1349
1350	read_lock(&n->lock);
1351	/* Convert hardware address to XX:XX:XX:XX ... form. */
1352#if IS_ENABLED(CONFIG_AX25)
1353	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1354		ax2asc2((ax25_address *)n->ha, hbuffer);
1355	else {
1356#endif
1357	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1358		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1359		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1360		hbuffer[k++] = ':';
1361	}
1362	if (k != 0)
1363		--k;
1364	hbuffer[k] = 0;
1365#if IS_ENABLED(CONFIG_AX25)
1366	}
1367#endif
1368	sprintf(tbuf, "%pI4", n->primary_key);
1369	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1370		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1371	read_unlock(&n->lock);
1372}
1373
1374static void arp_format_pneigh_entry(struct seq_file *seq,
1375				    struct pneigh_entry *n)
1376{
1377	struct net_device *dev = n->dev;
1378	int hatype = dev ? dev->type : 0;
1379	char tbuf[16];
1380
1381	sprintf(tbuf, "%pI4", n->key);
1382	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1383		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1384		   dev ? dev->name : "*");
1385}
1386
1387static int arp_seq_show(struct seq_file *seq, void *v)
1388{
1389	if (v == SEQ_START_TOKEN) {
1390		seq_puts(seq, "IP address       HW type     Flags       "
1391			      "HW address            Mask     Device\n");
1392	} else {
1393		struct neigh_seq_state *state = seq->private;
1394
1395		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1396			arp_format_pneigh_entry(seq, v);
1397		else
1398			arp_format_neigh_entry(seq, v);
1399	}
1400
1401	return 0;
1402}
1403
1404static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1405{
1406	/* Don't want to confuse "arp -a" w/ magic entries,
1407	 * so we tell the generic iterator to skip NUD_NOARP.
1408	 */
1409	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1410}
1411
1412/* ------------------------------------------------------------------------ */
1413
1414static const struct seq_operations arp_seq_ops = {
1415	.start	= arp_seq_start,
1416	.next	= neigh_seq_next,
1417	.stop	= neigh_seq_stop,
1418	.show	= arp_seq_show,
1419};
1420
1421static int arp_seq_open(struct inode *inode, struct file *file)
1422{
1423	return seq_open_net(inode, file, &arp_seq_ops,
1424			    sizeof(struct neigh_seq_state));
1425}
1426
1427static const struct file_operations arp_seq_fops = {
 
1428	.open           = arp_seq_open,
1429	.read           = seq_read,
1430	.llseek         = seq_lseek,
1431	.release	= seq_release_net,
1432};
1433
1434
1435static int __net_init arp_net_init(struct net *net)
1436{
1437	if (!proc_create("arp", 0444, net->proc_net, &arp_seq_fops))
1438		return -ENOMEM;
1439	return 0;
1440}
1441
1442static void __net_exit arp_net_exit(struct net *net)
1443{
1444	remove_proc_entry("arp", net->proc_net);
1445}
1446
1447static struct pernet_operations arp_net_ops = {
1448	.init = arp_net_init,
1449	.exit = arp_net_exit,
1450};
1451
1452static int __init arp_proc_init(void)
1453{
1454	return register_pernet_subsys(&arp_net_ops);
1455}
1456
1457#else /* CONFIG_PROC_FS */
1458
1459static int __init arp_proc_init(void)
1460{
1461	return 0;
1462}
1463
1464#endif /* CONFIG_PROC_FS */
v3.5.6
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 
 163	.hash		= arp_hash,
 
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.base_reachable_time	= 30 * HZ,
 170		.retrans_time		= 1 * HZ,
 171		.gc_staletime		= 60 * HZ,
 172		.reachable_time		= 30 * HZ,
 173		.delay_probe_time	= 5 * HZ,
 174		.queue_len_bytes	= 64*1024,
 175		.ucast_probes		= 3,
 176		.mcast_probes		= 3,
 177		.anycast_delay		= 1 * HZ,
 178		.proxy_delay		= (8 * HZ) / 10,
 179		.proxy_qlen		= 64,
 180		.locktime		= 1 * HZ,
 
 
 
 
 
 181	},
 182	.gc_interval	= 30 * HZ,
 183	.gc_thresh1	= 128,
 184	.gc_thresh2	= 512,
 185	.gc_thresh3	= 1024,
 186};
 187EXPORT_SYMBOL(arp_tbl);
 188
 189int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 190{
 191	switch (dev->type) {
 192	case ARPHRD_ETHER:
 193	case ARPHRD_FDDI:
 194	case ARPHRD_IEEE802:
 195		ip_eth_mc_map(addr, haddr);
 196		return 0;
 197	case ARPHRD_INFINIBAND:
 198		ip_ib_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	case ARPHRD_IPGRE:
 201		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 202		return 0;
 203	default:
 204		if (dir) {
 205			memcpy(haddr, dev->broadcast, dev->addr_len);
 206			return 0;
 207		}
 208	}
 209	return -EINVAL;
 210}
 211
 212
 213static u32 arp_hash(const void *pkey,
 214		    const struct net_device *dev,
 215		    __u32 *hash_rnd)
 216{
 217	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 
 
 
 
 
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222	__be32 addr = *(__be32 *)neigh->primary_key;
 223	struct net_device *dev = neigh->dev;
 224	struct in_device *in_dev;
 225	struct neigh_parms *parms;
 
 226
 
 
 
 
 227	rcu_read_lock();
 228	in_dev = __in_dev_get_rcu(dev);
 229	if (in_dev == NULL) {
 230		rcu_read_unlock();
 231		return -EINVAL;
 232	}
 233
 234	neigh->type = inet_addr_type(dev_net(dev), addr);
 235
 236	parms = in_dev->arp_parms;
 237	__neigh_parms_put(neigh->parms);
 238	neigh->parms = neigh_parms_clone(parms);
 239	rcu_read_unlock();
 240
 241	if (!dev->header_ops) {
 242		neigh->nud_state = NUD_NOARP;
 243		neigh->ops = &arp_direct_ops;
 244		neigh->output = neigh_direct_output;
 245	} else {
 246		/* Good devices (checked by reading texts, but only Ethernet is
 247		   tested)
 248
 249		   ARPHRD_ETHER: (ethernet, apfddi)
 250		   ARPHRD_FDDI: (fddi)
 251		   ARPHRD_IEEE802: (tr)
 252		   ARPHRD_METRICOM: (strip)
 253		   ARPHRD_ARCNET:
 254		   etc. etc. etc.
 255
 256		   ARPHRD_IPDDP will also work, if author repairs it.
 257		   I did not it, because this driver does not work even
 258		   in old paradigm.
 259		 */
 260
 261#if 1
 262		/* So... these "amateur" devices are hopeless.
 263		   The only thing, that I can say now:
 264		   It is very sad that we need to keep ugly obsolete
 265		   code to make them happy.
 266
 267		   They should be moved to more reasonable state, now
 268		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 269		   Besides that, they are sort of out of date
 270		   (a lot of redundant clones/copies, useless in 2.1),
 271		   I wonder why people believe that they work.
 272		 */
 273		switch (dev->type) {
 274		default:
 275			break;
 276		case ARPHRD_ROSE:
 277#if IS_ENABLED(CONFIG_AX25)
 278		case ARPHRD_AX25:
 279#if IS_ENABLED(CONFIG_NETROM)
 280		case ARPHRD_NETROM:
 281#endif
 282			neigh->ops = &arp_broken_ops;
 283			neigh->output = neigh->ops->output;
 284			return 0;
 285#else
 286			break;
 287#endif
 288		}
 289#endif
 290		if (neigh->type == RTN_MULTICAST) {
 291			neigh->nud_state = NUD_NOARP;
 292			arp_mc_map(addr, neigh->ha, dev, 1);
 293		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 294			neigh->nud_state = NUD_NOARP;
 295			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 296		} else if (neigh->type == RTN_BROADCAST ||
 297			   (dev->flags & IFF_POINTOPOINT)) {
 298			neigh->nud_state = NUD_NOARP;
 299			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 300		}
 301
 302		if (dev->header_ops->cache)
 303			neigh->ops = &arp_hh_ops;
 304		else
 305			neigh->ops = &arp_generic_ops;
 306
 307		if (neigh->nud_state & NUD_VALID)
 308			neigh->output = neigh->ops->connected_output;
 309		else
 310			neigh->output = neigh->ops->output;
 311	}
 312	return 0;
 313}
 314
 315static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 316{
 317	dst_link_failure(skb);
 318	kfree_skb(skb);
 319}
 320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 322{
 323	__be32 saddr = 0;
 324	u8  *dst_ha = NULL;
 325	struct net_device *dev = neigh->dev;
 326	__be32 target = *(__be32 *)neigh->primary_key;
 327	int probes = atomic_read(&neigh->probes);
 328	struct in_device *in_dev;
 
 329
 330	rcu_read_lock();
 331	in_dev = __in_dev_get_rcu(dev);
 332	if (!in_dev) {
 333		rcu_read_unlock();
 334		return;
 335	}
 336	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 337	default:
 338	case 0:		/* By default announce any local IP */
 339		if (skb && inet_addr_type(dev_net(dev),
 340					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 341			saddr = ip_hdr(skb)->saddr;
 342		break;
 343	case 1:		/* Restrict announcements of saddr in same subnet */
 344		if (!skb)
 345			break;
 346		saddr = ip_hdr(skb)->saddr;
 347		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 348			/* saddr should be known to target */
 349			if (inet_addr_onlink(in_dev, target, saddr))
 350				break;
 351		}
 352		saddr = 0;
 353		break;
 354	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 355		break;
 356	}
 357	rcu_read_unlock();
 358
 359	if (!saddr)
 360		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 361
 362	probes -= neigh->parms->ucast_probes;
 363	if (probes < 0) {
 364		if (!(neigh->nud_state & NUD_VALID))
 365			pr_debug("trying to ucast probe in NUD_INVALID\n");
 366		dst_ha = neigh->ha;
 367		read_lock_bh(&neigh->lock);
 368	} else {
 369		probes -= neigh->parms->app_probes;
 370		if (probes < 0) {
 371#ifdef CONFIG_ARPD
 372			neigh_app_ns(neigh);
 373#endif
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_ha, dev->dev_addr, NULL);
 380	if (dst_ha)
 381		read_unlock_bh(&neigh->lock);
 382}
 383
 384static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 385{
 
 386	int scope;
 387
 388	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 389	case 0:	/* Reply, the tip is already validated */
 390		return 0;
 391	case 1:	/* Reply only if tip is configured on the incoming interface */
 392		sip = 0;
 393		scope = RT_SCOPE_HOST;
 394		break;
 395	case 2:	/*
 396		 * Reply only if tip is configured on the incoming interface
 397		 * and is in same subnet as sip
 398		 */
 399		scope = RT_SCOPE_HOST;
 400		break;
 401	case 3:	/* Do not reply for scope host addresses */
 402		sip = 0;
 403		scope = RT_SCOPE_LINK;
 
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = skb_rtable(skb)->rt_gateway;
 479
 480	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 481			       paddr, dev))
 482		return 0;
 483
 484	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 485
 486	if (n) {
 487		n->used = jiffies;
 488		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 489			neigh_ha_snapshot(haddr, n, dev);
 490			neigh_release(n);
 491			return 0;
 492		}
 493		neigh_release(n);
 494	} else
 495		kfree_skb(skb);
 496	return 1;
 497}
 498EXPORT_SYMBOL(arp_find);
 499
 500/* END OF OBSOLETE FUNCTIONS */
 501
 502/*
 503 * Check if we can use proxy ARP for this path
 504 */
 505static inline int arp_fwd_proxy(struct in_device *in_dev,
 506				struct net_device *dev,	struct rtable *rt)
 507{
 508	struct in_device *out_dev;
 509	int imi, omi = -1;
 510
 511	if (rt->dst.dev == dev)
 512		return 0;
 513
 514	if (!IN_DEV_PROXY_ARP(in_dev))
 515		return 0;
 516	imi = IN_DEV_MEDIUM_ID(in_dev);
 517	if (imi == 0)
 518		return 1;
 519	if (imi == -1)
 520		return 0;
 521
 522	/* place to check for proxy_arp for routes */
 523
 524	out_dev = __in_dev_get_rcu(rt->dst.dev);
 525	if (out_dev)
 526		omi = IN_DEV_MEDIUM_ID(out_dev);
 527
 528	return omi != imi && omi != -1;
 529}
 530
 531/*
 532 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 533 *
 534 * RFC3069 supports proxy arp replies back to the same interface.  This
 535 * is done to support (ethernet) switch features, like RFC 3069, where
 536 * the individual ports are not allowed to communicate with each
 537 * other, BUT they are allowed to talk to the upstream router.  As
 538 * described in RFC 3069, it is possible to allow these hosts to
 539 * communicate through the upstream router, by proxy_arp'ing.
 540 *
 541 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 542 *
 543 *  This technology is known by different names:
 544 *    In RFC 3069 it is called VLAN Aggregation.
 545 *    Cisco and Allied Telesyn call it Private VLAN.
 546 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 547 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 548 *
 549 */
 550static inline int arp_fwd_pvlan(struct in_device *in_dev,
 551				struct net_device *dev,	struct rtable *rt,
 552				__be32 sip, __be32 tip)
 553{
 554	/* Private VLAN is only concerned about the same ethernet segment */
 555	if (rt->dst.dev != dev)
 556		return 0;
 557
 558	/* Don't reply on self probes (often done by windowz boxes)*/
 559	if (sip == tip)
 560		return 0;
 561
 562	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 563		return 1;
 564	else
 565		return 0;
 566}
 567
 568/*
 569 *	Interface to link layer: send routine and receive handler.
 570 */
 571
 572/*
 573 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 574 *	message.
 575 */
 576struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 577			   struct net_device *dev, __be32 src_ip,
 578			   const unsigned char *dest_hw,
 579			   const unsigned char *src_hw,
 580			   const unsigned char *target_hw)
 581{
 582	struct sk_buff *skb;
 583	struct arphdr *arp;
 584	unsigned char *arp_ptr;
 585	int hlen = LL_RESERVED_SPACE(dev);
 586	int tlen = dev->needed_tailroom;
 587
 588	/*
 589	 *	Allocate a buffer
 590	 */
 591
 592	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 593	if (skb == NULL)
 594		return NULL;
 595
 596	skb_reserve(skb, hlen);
 597	skb_reset_network_header(skb);
 598	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 599	skb->dev = dev;
 600	skb->protocol = htons(ETH_P_ARP);
 601	if (src_hw == NULL)
 602		src_hw = dev->dev_addr;
 603	if (dest_hw == NULL)
 604		dest_hw = dev->broadcast;
 605
 606	/*
 607	 *	Fill the device header for the ARP frame
 608	 */
 609	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 610		goto out;
 611
 612	/*
 613	 * Fill out the arp protocol part.
 614	 *
 615	 * The arp hardware type should match the device type, except for FDDI,
 616	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 617	 */
 618	/*
 619	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 620	 *	DIX code for the protocol. Make these device structure fields.
 621	 */
 622	switch (dev->type) {
 623	default:
 624		arp->ar_hrd = htons(dev->type);
 625		arp->ar_pro = htons(ETH_P_IP);
 626		break;
 627
 628#if IS_ENABLED(CONFIG_AX25)
 629	case ARPHRD_AX25:
 630		arp->ar_hrd = htons(ARPHRD_AX25);
 631		arp->ar_pro = htons(AX25_P_IP);
 632		break;
 633
 634#if IS_ENABLED(CONFIG_NETROM)
 635	case ARPHRD_NETROM:
 636		arp->ar_hrd = htons(ARPHRD_NETROM);
 637		arp->ar_pro = htons(AX25_P_IP);
 638		break;
 639#endif
 640#endif
 641
 642#if IS_ENABLED(CONFIG_FDDI)
 643	case ARPHRD_FDDI:
 644		arp->ar_hrd = htons(ARPHRD_ETHER);
 645		arp->ar_pro = htons(ETH_P_IP);
 646		break;
 647#endif
 648	}
 649
 650	arp->ar_hln = dev->addr_len;
 651	arp->ar_pln = 4;
 652	arp->ar_op = htons(type);
 653
 654	arp_ptr = (unsigned char *)(arp + 1);
 655
 656	memcpy(arp_ptr, src_hw, dev->addr_len);
 657	arp_ptr += dev->addr_len;
 658	memcpy(arp_ptr, &src_ip, 4);
 659	arp_ptr += 4;
 660	if (target_hw != NULL)
 661		memcpy(arp_ptr, target_hw, dev->addr_len);
 662	else
 663		memset(arp_ptr, 0, dev->addr_len);
 664	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 665	memcpy(arp_ptr, &dest_ip, 4);
 666
 667	return skb;
 668
 669out:
 670	kfree_skb(skb);
 671	return NULL;
 672}
 673EXPORT_SYMBOL(arp_create);
 674
 
 
 
 
 
 675/*
 676 *	Send an arp packet.
 677 */
 678void arp_xmit(struct sk_buff *skb)
 679{
 680	/* Send it off, maybe filter it using firewalling first.  */
 681	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 682}
 683EXPORT_SYMBOL(arp_xmit);
 684
 685/*
 686 *	Create and send an arp packet.
 687 */
 688void arp_send(int type, int ptype, __be32 dest_ip,
 689	      struct net_device *dev, __be32 src_ip,
 690	      const unsigned char *dest_hw, const unsigned char *src_hw,
 691	      const unsigned char *target_hw)
 692{
 693	struct sk_buff *skb;
 694
 695	/*
 696	 *	No arp on this interface.
 697	 */
 698
 699	if (dev->flags&IFF_NOARP)
 700		return;
 701
 702	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 703			 dest_hw, src_hw, target_hw);
 704	if (skb == NULL)
 705		return;
 706
 707	arp_xmit(skb);
 
 
 
 
 708}
 709EXPORT_SYMBOL(arp_send);
 710
 711/*
 712 *	Process an arp request.
 713 */
 714
 715static int arp_process(struct sk_buff *skb)
 716{
 717	struct net_device *dev = skb->dev;
 718	struct in_device *in_dev = __in_dev_get_rcu(dev);
 719	struct arphdr *arp;
 720	unsigned char *arp_ptr;
 721	struct rtable *rt;
 722	unsigned char *sha;
 
 723	__be32 sip, tip;
 724	u16 dev_type = dev->type;
 725	int addr_type;
 726	struct neighbour *n;
 727	struct net *net = dev_net(dev);
 
 728
 729	/* arp_rcv below verifies the ARP header and verifies the device
 730	 * is ARP'able.
 731	 */
 732
 733	if (in_dev == NULL)
 734		goto out;
 735
 736	arp = arp_hdr(skb);
 737
 738	switch (dev_type) {
 739	default:
 740		if (arp->ar_pro != htons(ETH_P_IP) ||
 741		    htons(dev_type) != arp->ar_hrd)
 742			goto out;
 743		break;
 744	case ARPHRD_ETHER:
 745	case ARPHRD_FDDI:
 746	case ARPHRD_IEEE802:
 747		/*
 748		 * ETHERNET, and Fibre Channel (which are IEEE 802
 749		 * devices, according to RFC 2625) devices will accept ARP
 750		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 751		 * This is the case also of FDDI, where the RFC 1390 says that
 752		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 753		 * however, to be more robust, we'll accept both 1 (Ethernet)
 754		 * or 6 (IEEE 802.2)
 755		 */
 756		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 757		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 758		    arp->ar_pro != htons(ETH_P_IP))
 759			goto out;
 760		break;
 761	case ARPHRD_AX25:
 762		if (arp->ar_pro != htons(AX25_P_IP) ||
 763		    arp->ar_hrd != htons(ARPHRD_AX25))
 764			goto out;
 765		break;
 766	case ARPHRD_NETROM:
 767		if (arp->ar_pro != htons(AX25_P_IP) ||
 768		    arp->ar_hrd != htons(ARPHRD_NETROM))
 769			goto out;
 770		break;
 771	}
 772
 773	/* Understand only these message types */
 774
 775	if (arp->ar_op != htons(ARPOP_REPLY) &&
 776	    arp->ar_op != htons(ARPOP_REQUEST))
 777		goto out;
 778
 779/*
 780 *	Extract fields
 781 */
 782	arp_ptr = (unsigned char *)(arp + 1);
 783	sha	= arp_ptr;
 784	arp_ptr += dev->addr_len;
 785	memcpy(&sip, arp_ptr, 4);
 786	arp_ptr += 4;
 787	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 788	memcpy(&tip, arp_ptr, 4);
 789/*
 790 *	Check for bad requests for 127.x.x.x and requests for multicast
 791 *	addresses.  If this is one such, delete it.
 792 */
 793	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 794		goto out;
 
 
 
 
 
 
 
 
 
 795
 796/*
 797 *     Special case: We must set Frame Relay source Q.922 address
 798 */
 799	if (dev_type == ARPHRD_DLCI)
 800		sha = dev->broadcast;
 801
 802/*
 803 *  Process entry.  The idea here is we want to send a reply if it is a
 804 *  request for us or if it is a request for someone else that we hold
 805 *  a proxy for.  We want to add an entry to our cache if it is a reply
 806 *  to us or if it is a request for our address.
 807 *  (The assumption for this last is that if someone is requesting our
 808 *  address, they are probably intending to talk to us, so it saves time
 809 *  if we cache their address.  Their address is also probably not in
 810 *  our cache, since ours is not in their cache.)
 811 *
 812 *  Putting this another way, we only care about replies if they are to
 813 *  us, in which case we add them to the cache.  For requests, we care
 814 *  about those for us and those for our proxies.  We reply to both,
 815 *  and in the case of requests for us we add the requester to the arp
 816 *  cache.
 817 */
 818
 
 
 
 
 
 819	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 820	if (sip == 0) {
 821		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 822		    inet_addr_type(net, tip) == RTN_LOCAL &&
 823		    !arp_ignore(in_dev, sip, tip))
 824			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 825				 dev->dev_addr, sha);
 826		goto out;
 827	}
 828
 829	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 830	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 831
 832		rt = skb_rtable(skb);
 833		addr_type = rt->rt_type;
 834
 835		if (addr_type == RTN_LOCAL) {
 836			int dont_send;
 837
 838			dont_send = arp_ignore(in_dev, sip, tip);
 839			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 840				dont_send = arp_filter(sip, tip, dev);
 841			if (!dont_send) {
 842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843				if (n) {
 844					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 845						 dev, tip, sha, dev->dev_addr,
 846						 sha);
 
 847					neigh_release(n);
 848				}
 849			}
 850			goto out;
 851		} else if (IN_DEV_FORWARD(in_dev)) {
 852			if (addr_type == RTN_UNICAST  &&
 853			    (arp_fwd_proxy(in_dev, dev, rt) ||
 854			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 855			     (rt->dst.dev != dev &&
 856			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n)
 859					neigh_release(n);
 860
 861				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 862				    skb->pkt_type == PACKET_HOST ||
 863				    in_dev->arp_parms->proxy_delay == 0) {
 864					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 865						 dev, tip, sha, dev->dev_addr,
 866						 sha);
 
 867				} else {
 868					pneigh_enqueue(&arp_tbl,
 869						       in_dev->arp_parms, skb);
 870					return 0;
 871				}
 872				goto out;
 873			}
 874		}
 875	}
 876
 877	/* Update our ARP tables */
 878
 879	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 880
 
 
 
 
 
 
 881	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 882		/* Unsolicited ARP is not accepted by default.
 883		   It is possible, that this option should be enabled for some
 884		   devices (strip is candidate)
 885		 */
 886		if (n == NULL &&
 887		    (arp->ar_op == htons(ARPOP_REPLY) ||
 888		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 889		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 903
 904		/* Broadcast replies and request packets
 905		   do not assert neighbour reachability.
 906		 */
 907		if (arp->ar_op != htons(ARPOP_REPLY) ||
 908		    skb->pkt_type != PACKET_HOST)
 909			state = NUD_STALE;
 910		neigh_update(n, sha, state,
 911			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 912		neigh_release(n);
 913	}
 914
 915out:
 916	consume_skb(skb);
 917	return 0;
 
 
 
 
 
 
 
 918}
 919
 920static void parp_redo(struct sk_buff *skb)
 921{
 922	arp_process(skb);
 923}
 924
 925
 926/*
 927 *	Receive an arp request from the device layer.
 928 */
 929
 930static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 931		   struct packet_type *pt, struct net_device *orig_dev)
 932{
 933	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 934
 935	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 936	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 937		goto freeskb;
 938
 939	arp = arp_hdr(skb);
 940	if (arp->ar_hln != dev->addr_len ||
 941	    dev->flags & IFF_NOARP ||
 942	    skb->pkt_type == PACKET_OTHERHOST ||
 943	    skb->pkt_type == PACKET_LOOPBACK ||
 944	    arp->ar_pln != 4)
 945		goto freeskb;
 946
 947	skb = skb_share_check(skb, GFP_ATOMIC);
 948	if (skb == NULL)
 949		goto out_of_mem;
 950
 951	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 952
 953	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 954
 
 
 
 955freeskb:
 956	kfree_skb(skb);
 957out_of_mem:
 958	return 0;
 959}
 960
 961/*
 962 *	User level interface (ioctl)
 963 */
 964
 965/*
 966 *	Set (create) an ARP cache entry.
 967 */
 968
 969static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 970{
 971	if (dev == NULL) {
 972		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 973		return 0;
 974	}
 975	if (__in_dev_get_rtnl(dev)) {
 976		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 977		return 0;
 978	}
 979	return -ENXIO;
 980}
 981
 982static int arp_req_set_public(struct net *net, struct arpreq *r,
 983		struct net_device *dev)
 984{
 985	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 986	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 987
 988	if (mask && mask != htonl(0xFFFFFFFF))
 989		return -EINVAL;
 990	if (!dev && (r->arp_flags & ATF_COM)) {
 991		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 992				      r->arp_ha.sa_data);
 993		if (!dev)
 994			return -ENODEV;
 995	}
 996	if (mask) {
 997		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
 998			return -ENOBUFS;
 999		return 0;
1000	}
1001
1002	return arp_req_set_proxy(net, dev, 1);
1003}
1004
1005static int arp_req_set(struct net *net, struct arpreq *r,
1006		       struct net_device *dev)
1007{
1008	__be32 ip;
1009	struct neighbour *neigh;
1010	int err;
1011
1012	if (r->arp_flags & ATF_PUBL)
1013		return arp_req_set_public(net, r, dev);
1014
1015	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1016	if (r->arp_flags & ATF_PERM)
1017		r->arp_flags |= ATF_COM;
1018	if (dev == NULL) {
1019		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1020
1021		if (IS_ERR(rt))
1022			return PTR_ERR(rt);
1023		dev = rt->dst.dev;
1024		ip_rt_put(rt);
1025		if (!dev)
1026			return -EINVAL;
1027	}
1028	switch (dev->type) {
1029#if IS_ENABLED(CONFIG_FDDI)
1030	case ARPHRD_FDDI:
1031		/*
1032		 * According to RFC 1390, FDDI devices should accept ARP
1033		 * hardware types of 1 (Ethernet).  However, to be more
1034		 * robust, we'll accept hardware types of either 1 (Ethernet)
1035		 * or 6 (IEEE 802.2).
1036		 */
1037		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1038		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1039		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1040			return -EINVAL;
1041		break;
1042#endif
1043	default:
1044		if (r->arp_ha.sa_family != dev->type)
1045			return -EINVAL;
1046		break;
1047	}
1048
1049	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1050	err = PTR_ERR(neigh);
1051	if (!IS_ERR(neigh)) {
1052		unsigned int state = NUD_STALE;
1053		if (r->arp_flags & ATF_PERM)
1054			state = NUD_PERMANENT;
1055		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1056				   r->arp_ha.sa_data : NULL, state,
1057				   NEIGH_UPDATE_F_OVERRIDE |
1058				   NEIGH_UPDATE_F_ADMIN);
1059		neigh_release(neigh);
1060	}
1061	return err;
1062}
1063
1064static unsigned int arp_state_to_flags(struct neighbour *neigh)
1065{
1066	if (neigh->nud_state&NUD_PERMANENT)
1067		return ATF_PERM | ATF_COM;
1068	else if (neigh->nud_state&NUD_VALID)
1069		return ATF_COM;
1070	else
1071		return 0;
1072}
1073
1074/*
1075 *	Get an ARP cache entry.
1076 */
1077
1078static int arp_req_get(struct arpreq *r, struct net_device *dev)
1079{
1080	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1081	struct neighbour *neigh;
1082	int err = -ENXIO;
1083
1084	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1085	if (neigh) {
1086		read_lock_bh(&neigh->lock);
1087		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1088		r->arp_flags = arp_state_to_flags(neigh);
1089		read_unlock_bh(&neigh->lock);
1090		r->arp_ha.sa_family = dev->type;
1091		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1092		neigh_release(neigh);
1093		err = 0;
1094	}
1095	return err;
1096}
1097
1098int arp_invalidate(struct net_device *dev, __be32 ip)
1099{
1100	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1101	int err = -ENXIO;
 
1102
1103	if (neigh) {
1104		if (neigh->nud_state & ~NUD_NOARP)
1105			err = neigh_update(neigh, NULL, NUD_FAILED,
1106					   NEIGH_UPDATE_F_OVERRIDE|
1107					   NEIGH_UPDATE_F_ADMIN);
 
1108		neigh_release(neigh);
 
 
1109	}
1110
1111	return err;
1112}
1113EXPORT_SYMBOL(arp_invalidate);
1114
1115static int arp_req_delete_public(struct net *net, struct arpreq *r,
1116		struct net_device *dev)
1117{
1118	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1119	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1120
1121	if (mask == htonl(0xFFFFFFFF))
1122		return pneigh_delete(&arp_tbl, net, &ip, dev);
1123
1124	if (mask)
1125		return -EINVAL;
1126
1127	return arp_req_set_proxy(net, dev, 0);
1128}
1129
1130static int arp_req_delete(struct net *net, struct arpreq *r,
1131			  struct net_device *dev)
1132{
1133	__be32 ip;
1134
1135	if (r->arp_flags & ATF_PUBL)
1136		return arp_req_delete_public(net, r, dev);
1137
1138	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1139	if (dev == NULL) {
1140		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1141		if (IS_ERR(rt))
1142			return PTR_ERR(rt);
1143		dev = rt->dst.dev;
1144		ip_rt_put(rt);
1145		if (!dev)
1146			return -EINVAL;
1147	}
1148	return arp_invalidate(dev, ip);
1149}
1150
1151/*
1152 *	Handle an ARP layer I/O control request.
1153 */
1154
1155int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1156{
1157	int err;
1158	struct arpreq r;
1159	struct net_device *dev = NULL;
1160
1161	switch (cmd) {
1162	case SIOCDARP:
1163	case SIOCSARP:
1164		if (!capable(CAP_NET_ADMIN))
1165			return -EPERM;
 
1166	case SIOCGARP:
1167		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1168		if (err)
1169			return -EFAULT;
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174
1175	if (r.arp_pa.sa_family != AF_INET)
1176		return -EPFNOSUPPORT;
1177
1178	if (!(r.arp_flags & ATF_PUBL) &&
1179	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1180		return -EINVAL;
1181	if (!(r.arp_flags & ATF_NETMASK))
1182		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1183							   htonl(0xFFFFFFFFUL);
1184	rtnl_lock();
1185	if (r.arp_dev[0]) {
1186		err = -ENODEV;
1187		dev = __dev_get_by_name(net, r.arp_dev);
1188		if (dev == NULL)
1189			goto out;
1190
1191		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1192		if (!r.arp_ha.sa_family)
1193			r.arp_ha.sa_family = dev->type;
1194		err = -EINVAL;
1195		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1196			goto out;
1197	} else if (cmd == SIOCGARP) {
1198		err = -ENODEV;
1199		goto out;
1200	}
1201
1202	switch (cmd) {
1203	case SIOCDARP:
1204		err = arp_req_delete(net, &r, dev);
1205		break;
1206	case SIOCSARP:
1207		err = arp_req_set(net, &r, dev);
1208		break;
1209	case SIOCGARP:
1210		err = arp_req_get(&r, dev);
1211		break;
1212	}
1213out:
1214	rtnl_unlock();
1215	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1216		err = -EFAULT;
1217	return err;
1218}
1219
1220static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1221			    void *ptr)
1222{
1223	struct net_device *dev = ptr;
 
1224
1225	switch (event) {
1226	case NETDEV_CHANGEADDR:
1227		neigh_changeaddr(&arp_tbl, dev);
1228		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
1229		break;
1230	default:
1231		break;
1232	}
1233
1234	return NOTIFY_DONE;
1235}
1236
1237static struct notifier_block arp_netdev_notifier = {
1238	.notifier_call = arp_netdev_event,
1239};
1240
1241/* Note, that it is not on notifier chain.
1242   It is necessary, that this routine was called after route cache will be
1243   flushed.
1244 */
1245void arp_ifdown(struct net_device *dev)
1246{
1247	neigh_ifdown(&arp_tbl, dev);
1248}
1249
1250
1251/*
1252 *	Called once on startup.
1253 */
1254
1255static struct packet_type arp_packet_type __read_mostly = {
1256	.type =	cpu_to_be16(ETH_P_ARP),
1257	.func =	arp_rcv,
1258};
1259
1260static int arp_proc_init(void);
1261
1262void __init arp_init(void)
1263{
1264	neigh_table_init(&arp_tbl);
1265
1266	dev_add_pack(&arp_packet_type);
1267	arp_proc_init();
1268#ifdef CONFIG_SYSCTL
1269	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1270#endif
1271	register_netdevice_notifier(&arp_netdev_notifier);
1272}
1273
1274#ifdef CONFIG_PROC_FS
1275#if IS_ENABLED(CONFIG_AX25)
1276
1277/* ------------------------------------------------------------------------ */
1278/*
1279 *	ax25 -> ASCII conversion
1280 */
1281static char *ax2asc2(ax25_address *a, char *buf)
1282{
1283	char c, *s;
1284	int n;
1285
1286	for (n = 0, s = buf; n < 6; n++) {
1287		c = (a->ax25_call[n] >> 1) & 0x7F;
1288
1289		if (c != ' ')
1290			*s++ = c;
1291	}
1292
1293	*s++ = '-';
1294	n = (a->ax25_call[6] >> 1) & 0x0F;
1295	if (n > 9) {
1296		*s++ = '1';
1297		n -= 10;
1298	}
1299
1300	*s++ = n + '0';
1301	*s++ = '\0';
1302
1303	if (*buf == '\0' || *buf == '-')
1304		return "*";
1305
1306	return buf;
1307}
1308#endif /* CONFIG_AX25 */
1309
1310#define HBUFFERLEN 30
1311
1312static void arp_format_neigh_entry(struct seq_file *seq,
1313				   struct neighbour *n)
1314{
1315	char hbuffer[HBUFFERLEN];
1316	int k, j;
1317	char tbuf[16];
1318	struct net_device *dev = n->dev;
1319	int hatype = dev->type;
1320
1321	read_lock(&n->lock);
1322	/* Convert hardware address to XX:XX:XX:XX ... form. */
1323#if IS_ENABLED(CONFIG_AX25)
1324	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1325		ax2asc2((ax25_address *)n->ha, hbuffer);
1326	else {
1327#endif
1328	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1329		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1330		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1331		hbuffer[k++] = ':';
1332	}
1333	if (k != 0)
1334		--k;
1335	hbuffer[k] = 0;
1336#if IS_ENABLED(CONFIG_AX25)
1337	}
1338#endif
1339	sprintf(tbuf, "%pI4", n->primary_key);
1340	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1342	read_unlock(&n->lock);
1343}
1344
1345static void arp_format_pneigh_entry(struct seq_file *seq,
1346				    struct pneigh_entry *n)
1347{
1348	struct net_device *dev = n->dev;
1349	int hatype = dev ? dev->type : 0;
1350	char tbuf[16];
1351
1352	sprintf(tbuf, "%pI4", n->key);
1353	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1354		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1355		   dev ? dev->name : "*");
1356}
1357
1358static int arp_seq_show(struct seq_file *seq, void *v)
1359{
1360	if (v == SEQ_START_TOKEN) {
1361		seq_puts(seq, "IP address       HW type     Flags       "
1362			      "HW address            Mask     Device\n");
1363	} else {
1364		struct neigh_seq_state *state = seq->private;
1365
1366		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1367			arp_format_pneigh_entry(seq, v);
1368		else
1369			arp_format_neigh_entry(seq, v);
1370	}
1371
1372	return 0;
1373}
1374
1375static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1376{
1377	/* Don't want to confuse "arp -a" w/ magic entries,
1378	 * so we tell the generic iterator to skip NUD_NOARP.
1379	 */
1380	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1381}
1382
1383/* ------------------------------------------------------------------------ */
1384
1385static const struct seq_operations arp_seq_ops = {
1386	.start	= arp_seq_start,
1387	.next	= neigh_seq_next,
1388	.stop	= neigh_seq_stop,
1389	.show	= arp_seq_show,
1390};
1391
1392static int arp_seq_open(struct inode *inode, struct file *file)
1393{
1394	return seq_open_net(inode, file, &arp_seq_ops,
1395			    sizeof(struct neigh_seq_state));
1396}
1397
1398static const struct file_operations arp_seq_fops = {
1399	.owner		= THIS_MODULE,
1400	.open           = arp_seq_open,
1401	.read           = seq_read,
1402	.llseek         = seq_lseek,
1403	.release	= seq_release_net,
1404};
1405
1406
1407static int __net_init arp_net_init(struct net *net)
1408{
1409	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1410		return -ENOMEM;
1411	return 0;
1412}
1413
1414static void __net_exit arp_net_exit(struct net *net)
1415{
1416	proc_net_remove(net, "arp");
1417}
1418
1419static struct pernet_operations arp_net_ops = {
1420	.init = arp_net_init,
1421	.exit = arp_net_exit,
1422};
1423
1424static int __init arp_proc_init(void)
1425{
1426	return register_pernet_subsys(&arp_net_ops);
1427}
1428
1429#else /* CONFIG_PROC_FS */
1430
1431static int __init arp_proc_init(void)
1432{
1433	return 0;
1434}
1435
1436#endif /* CONFIG_PROC_FS */