Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 45};
 46
 47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 48static bool stop_machine_initialized = false;
 49
 50/* static data for stop_cpus */
 51static DEFINE_MUTEX(stop_cpus_mutex);
 52static bool stop_cpus_in_progress;
 53
 54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 55{
 56	memset(done, 0, sizeof(*done));
 57	atomic_set(&done->nr_todo, nr_todo);
 58	init_completion(&done->completion);
 59}
 60
 61/* signal completion unless @done is NULL */
 62static void cpu_stop_signal_done(struct cpu_stop_done *done)
 63{
 64	if (atomic_dec_and_test(&done->nr_todo))
 65		complete(&done->completion);
 66}
 67
 68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 69					struct cpu_stop_work *work,
 70					struct wake_q_head *wakeq)
 71{
 72	list_add_tail(&work->list, &stopper->works);
 73	wake_q_add(wakeq, stopper->thread);
 
 
 
 
 74}
 75
 76/* queue @work to @stopper.  if offline, @work is completed immediately */
 77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 
 78{
 79	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 80	DEFINE_WAKE_Q(wakeq);
 81	unsigned long flags;
 82	bool enabled;
 83
 84	spin_lock_irqsave(&stopper->lock, flags);
 85	enabled = stopper->enabled;
 86	if (enabled)
 87		__cpu_stop_queue_work(stopper, work, &wakeq);
 88	else if (work->done)
 89		cpu_stop_signal_done(work->done);
 90	spin_unlock_irqrestore(&stopper->lock, flags);
 91
 92	wake_up_q(&wakeq);
 
 
 
 
 93
 94	return enabled;
 95}
 96
 97/**
 98 * stop_one_cpu - stop a cpu
 99 * @cpu: cpu to stop
100 * @fn: function to execute
101 * @arg: argument to @fn
102 *
103 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104 * the highest priority preempting any task on the cpu and
105 * monopolizing it.  This function returns after the execution is
106 * complete.
107 *
108 * This function doesn't guarantee @cpu stays online till @fn
109 * completes.  If @cpu goes down in the middle, execution may happen
110 * partially or fully on different cpus.  @fn should either be ready
111 * for that or the caller should ensure that @cpu stays online until
112 * this function completes.
113 *
114 * CONTEXT:
115 * Might sleep.
116 *
117 * RETURNS:
118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119 * otherwise, the return value of @fn.
120 */
121int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122{
123	struct cpu_stop_done done;
124	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125
126	cpu_stop_init_done(&done, 1);
127	if (!cpu_stop_queue_work(cpu, &work))
128		return -ENOENT;
129	/*
130	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131	 * cycle by doing a preemption:
132	 */
133	cond_resched();
134	wait_for_completion(&done.completion);
135	return done.ret;
136}
137
138/* This controls the threads on each CPU. */
139enum multi_stop_state {
140	/* Dummy starting state for thread. */
141	MULTI_STOP_NONE,
142	/* Awaiting everyone to be scheduled. */
143	MULTI_STOP_PREPARE,
144	/* Disable interrupts. */
145	MULTI_STOP_DISABLE_IRQ,
146	/* Run the function */
147	MULTI_STOP_RUN,
148	/* Exit */
149	MULTI_STOP_EXIT,
150};
151
152struct multi_stop_data {
153	cpu_stop_fn_t		fn;
154	void			*data;
155	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156	unsigned int		num_threads;
157	const struct cpumask	*active_cpus;
158
159	enum multi_stop_state	state;
160	atomic_t		thread_ack;
161};
162
163static void set_state(struct multi_stop_data *msdata,
164		      enum multi_stop_state newstate)
165{
166	/* Reset ack counter. */
167	atomic_set(&msdata->thread_ack, msdata->num_threads);
168	smp_wmb();
169	msdata->state = newstate;
170}
171
172/* Last one to ack a state moves to the next state. */
173static void ack_state(struct multi_stop_data *msdata)
174{
175	if (atomic_dec_and_test(&msdata->thread_ack))
176		set_state(msdata, msdata->state + 1);
177}
178
179/* This is the cpu_stop function which stops the CPU. */
180static int multi_cpu_stop(void *data)
181{
182	struct multi_stop_data *msdata = data;
183	enum multi_stop_state curstate = MULTI_STOP_NONE;
184	int cpu = smp_processor_id(), err = 0;
185	unsigned long flags;
186	bool is_active;
187
188	/*
189	 * When called from stop_machine_from_inactive_cpu(), irq might
190	 * already be disabled.  Save the state and restore it on exit.
191	 */
192	local_save_flags(flags);
193
194	if (!msdata->active_cpus)
195		is_active = cpu == cpumask_first(cpu_online_mask);
196	else
197		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198
199	/* Simple state machine */
200	do {
201		/* Chill out and ensure we re-read multi_stop_state. */
202		cpu_relax_yield();
203		if (msdata->state != curstate) {
204			curstate = msdata->state;
205			switch (curstate) {
206			case MULTI_STOP_DISABLE_IRQ:
207				local_irq_disable();
208				hard_irq_disable();
209				break;
210			case MULTI_STOP_RUN:
211				if (is_active)
212					err = msdata->fn(msdata->data);
213				break;
214			default:
215				break;
216			}
217			ack_state(msdata);
218		} else if (curstate > MULTI_STOP_PREPARE) {
219			/*
220			 * At this stage all other CPUs we depend on must spin
221			 * in the same loop. Any reason for hard-lockup should
222			 * be detected and reported on their side.
223			 */
224			touch_nmi_watchdog();
225		}
226	} while (curstate != MULTI_STOP_EXIT);
227
228	local_irq_restore(flags);
229	return err;
230}
231
232static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233				    int cpu2, struct cpu_stop_work *work2)
234{
235	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237	DEFINE_WAKE_Q(wakeq);
238	int err;
239retry:
240	spin_lock_irq(&stopper1->lock);
241	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
242
243	err = -ENOENT;
244	if (!stopper1->enabled || !stopper2->enabled)
245		goto unlock;
246	/*
247	 * Ensure that if we race with __stop_cpus() the stoppers won't get
248	 * queued up in reverse order leading to system deadlock.
249	 *
250	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
251	 * queued a work on cpu1 but not on cpu2, we hold both locks.
252	 *
253	 * It can be falsely true but it is safe to spin until it is cleared,
254	 * queue_stop_cpus_work() does everything under preempt_disable().
255	 */
256	err = -EDEADLK;
257	if (unlikely(stop_cpus_in_progress))
258			goto unlock;
259
260	err = 0;
261	__cpu_stop_queue_work(stopper1, work1, &wakeq);
262	__cpu_stop_queue_work(stopper2, work2, &wakeq);
263unlock:
264	spin_unlock(&stopper2->lock);
265	spin_unlock_irq(&stopper1->lock);
266
267	if (unlikely(err == -EDEADLK)) {
268		while (stop_cpus_in_progress)
269			cpu_relax();
270		goto retry;
271	}
272
273	wake_up_q(&wakeq);
274
275	return err;
276}
277/**
278 * stop_two_cpus - stops two cpus
279 * @cpu1: the cpu to stop
280 * @cpu2: the other cpu to stop
281 * @fn: function to execute
282 * @arg: argument to @fn
283 *
284 * Stops both the current and specified CPU and runs @fn on one of them.
285 *
286 * returns when both are completed.
287 */
288int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
289{
290	struct cpu_stop_done done;
291	struct cpu_stop_work work1, work2;
292	struct multi_stop_data msdata;
293
294	msdata = (struct multi_stop_data){
295		.fn = fn,
296		.data = arg,
297		.num_threads = 2,
298		.active_cpus = cpumask_of(cpu1),
299	};
300
301	work1 = work2 = (struct cpu_stop_work){
302		.fn = multi_cpu_stop,
303		.arg = &msdata,
304		.done = &done
305	};
306
307	cpu_stop_init_done(&done, 2);
308	set_state(&msdata, MULTI_STOP_PREPARE);
309
310	if (cpu1 > cpu2)
311		swap(cpu1, cpu2);
312	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
313		return -ENOENT;
314
315	wait_for_completion(&done.completion);
316	return done.ret;
317}
318
319/**
320 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
321 * @cpu: cpu to stop
322 * @fn: function to execute
323 * @arg: argument to @fn
324 * @work_buf: pointer to cpu_stop_work structure
325 *
326 * Similar to stop_one_cpu() but doesn't wait for completion.  The
327 * caller is responsible for ensuring @work_buf is currently unused
328 * and will remain untouched until stopper starts executing @fn.
329 *
330 * CONTEXT:
331 * Don't care.
332 *
333 * RETURNS:
334 * true if cpu_stop_work was queued successfully and @fn will be called,
335 * false otherwise.
336 */
337bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
338			struct cpu_stop_work *work_buf)
339{
340	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
341	return cpu_stop_queue_work(cpu, work_buf);
342}
343
344static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 
 
 
 
345				 cpu_stop_fn_t fn, void *arg,
346				 struct cpu_stop_done *done)
347{
348	struct cpu_stop_work *work;
349	unsigned int cpu;
350	bool queued = false;
 
 
 
 
 
 
 
351
352	/*
353	 * Disable preemption while queueing to avoid getting
354	 * preempted by a stopper which might wait for other stoppers
355	 * to enter @fn which can lead to deadlock.
356	 */
357	preempt_disable();
358	stop_cpus_in_progress = true;
359	for_each_cpu(cpu, cpumask) {
360		work = &per_cpu(cpu_stopper.stop_work, cpu);
361		work->fn = fn;
362		work->arg = arg;
363		work->done = done;
364		if (cpu_stop_queue_work(cpu, work))
365			queued = true;
366	}
367	stop_cpus_in_progress = false;
368	preempt_enable();
369
370	return queued;
371}
372
373static int __stop_cpus(const struct cpumask *cpumask,
374		       cpu_stop_fn_t fn, void *arg)
375{
376	struct cpu_stop_done done;
377
378	cpu_stop_init_done(&done, cpumask_weight(cpumask));
379	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
380		return -ENOENT;
381	wait_for_completion(&done.completion);
382	return done.ret;
383}
384
385/**
386 * stop_cpus - stop multiple cpus
387 * @cpumask: cpus to stop
388 * @fn: function to execute
389 * @arg: argument to @fn
390 *
391 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
392 * @fn is run in a process context with the highest priority
393 * preempting any task on the cpu and monopolizing it.  This function
394 * returns after all executions are complete.
395 *
396 * This function doesn't guarantee the cpus in @cpumask stay online
397 * till @fn completes.  If some cpus go down in the middle, execution
398 * on the cpu may happen partially or fully on different cpus.  @fn
399 * should either be ready for that or the caller should ensure that
400 * the cpus stay online until this function completes.
401 *
402 * All stop_cpus() calls are serialized making it safe for @fn to wait
403 * for all cpus to start executing it.
404 *
405 * CONTEXT:
406 * Might sleep.
407 *
408 * RETURNS:
409 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
410 * @cpumask were offline; otherwise, 0 if all executions of @fn
411 * returned 0, any non zero return value if any returned non zero.
412 */
413int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
414{
415	int ret;
416
417	/* static works are used, process one request at a time */
418	mutex_lock(&stop_cpus_mutex);
419	ret = __stop_cpus(cpumask, fn, arg);
420	mutex_unlock(&stop_cpus_mutex);
421	return ret;
422}
423
424/**
425 * try_stop_cpus - try to stop multiple cpus
426 * @cpumask: cpus to stop
427 * @fn: function to execute
428 * @arg: argument to @fn
429 *
430 * Identical to stop_cpus() except that it fails with -EAGAIN if
431 * someone else is already using the facility.
432 *
433 * CONTEXT:
434 * Might sleep.
435 *
436 * RETURNS:
437 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
438 * @fn(@arg) was not executed at all because all cpus in @cpumask were
439 * offline; otherwise, 0 if all executions of @fn returned 0, any non
440 * zero return value if any returned non zero.
441 */
442int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
443{
444	int ret;
445
446	/* static works are used, process one request at a time */
447	if (!mutex_trylock(&stop_cpus_mutex))
448		return -EAGAIN;
449	ret = __stop_cpus(cpumask, fn, arg);
450	mutex_unlock(&stop_cpus_mutex);
451	return ret;
452}
453
454static int cpu_stop_should_run(unsigned int cpu)
455{
456	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
457	unsigned long flags;
458	int run;
459
460	spin_lock_irqsave(&stopper->lock, flags);
461	run = !list_empty(&stopper->works);
462	spin_unlock_irqrestore(&stopper->lock, flags);
463	return run;
464}
465
466static void cpu_stopper_thread(unsigned int cpu)
467{
468	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
469	struct cpu_stop_work *work;
 
470
471repeat:
 
 
 
 
 
 
 
472	work = NULL;
473	spin_lock_irq(&stopper->lock);
474	if (!list_empty(&stopper->works)) {
475		work = list_first_entry(&stopper->works,
476					struct cpu_stop_work, list);
477		list_del_init(&work->list);
478	}
479	spin_unlock_irq(&stopper->lock);
480
481	if (work) {
482		cpu_stop_fn_t fn = work->fn;
483		void *arg = work->arg;
484		struct cpu_stop_done *done = work->done;
485		int ret;
 
 
 
 
 
486
487		/* cpu stop callbacks must not sleep, make in_atomic() == T */
488		preempt_count_inc();
489		ret = fn(arg);
490		if (done) {
491			if (ret)
492				done->ret = ret;
493			cpu_stop_signal_done(done);
494		}
495		preempt_count_dec();
496		WARN_ONCE(preempt_count(),
497			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
498		goto repeat;
499	}
500}
 
 
 
501
502void stop_machine_park(int cpu)
503{
504	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
505	/*
506	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
507	 * the pending works before it parks, until then it is fine to queue
508	 * the new works.
509	 */
510	stopper->enabled = false;
511	kthread_park(stopper->thread);
512}
513
514extern void sched_set_stop_task(int cpu, struct task_struct *stop);
515
516static void cpu_stop_create(unsigned int cpu)
517{
518	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
519}
520
521static void cpu_stop_park(unsigned int cpu)
522{
 
523	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
524
525	WARN_ON(!list_empty(&stopper->works));
526}
527
528void stop_machine_unpark(int cpu)
529{
530	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531
532	stopper->enabled = true;
533	kthread_unpark(stopper->thread);
534}
535
536static struct smp_hotplug_thread cpu_stop_threads = {
537	.store			= &cpu_stopper.thread,
538	.thread_should_run	= cpu_stop_should_run,
539	.thread_fn		= cpu_stopper_thread,
540	.thread_comm		= "migration/%u",
541	.create			= cpu_stop_create,
542	.park			= cpu_stop_park,
543	.selfparking		= true,
544};
545
546static int __init cpu_stop_init(void)
547{
 
548	unsigned int cpu;
 
549
550	for_each_possible_cpu(cpu) {
551		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
552
553		spin_lock_init(&stopper->lock);
554		INIT_LIST_HEAD(&stopper->works);
555	}
556
557	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
558	stop_machine_unpark(raw_smp_processor_id());
 
 
 
 
 
559	stop_machine_initialized = true;
 
560	return 0;
561}
562early_initcall(cpu_stop_init);
563
564int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
565			    const struct cpumask *cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566{
567	struct multi_stop_data msdata = {
568		.fn = fn,
569		.data = data,
570		.num_threads = num_online_cpus(),
571		.active_cpus = cpus,
572	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573
574	lockdep_assert_cpus_held();
 
 
 
 
 
 
 
 
575
576	if (!stop_machine_initialized) {
577		/*
578		 * Handle the case where stop_machine() is called
579		 * early in boot before stop_machine() has been
580		 * initialized.
581		 */
582		unsigned long flags;
583		int ret;
584
585		WARN_ON_ONCE(msdata.num_threads != 1);
586
587		local_irq_save(flags);
588		hard_irq_disable();
589		ret = (*fn)(data);
590		local_irq_restore(flags);
591
592		return ret;
593	}
594
595	/* Set the initial state and stop all online cpus. */
596	set_state(&msdata, MULTI_STOP_PREPARE);
597	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
598}
599
600int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
601{
602	int ret;
603
604	/* No CPUs can come up or down during this. */
605	cpus_read_lock();
606	ret = stop_machine_cpuslocked(fn, data, cpus);
607	cpus_read_unlock();
608	return ret;
609}
610EXPORT_SYMBOL_GPL(stop_machine);
611
612/**
613 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
614 * @fn: the function to run
615 * @data: the data ptr for the @fn()
616 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
617 *
618 * This is identical to stop_machine() but can be called from a CPU which
619 * is not active.  The local CPU is in the process of hotplug (so no other
620 * CPU hotplug can start) and not marked active and doesn't have enough
621 * context to sleep.
622 *
623 * This function provides stop_machine() functionality for such state by
624 * using busy-wait for synchronization and executing @fn directly for local
625 * CPU.
626 *
627 * CONTEXT:
628 * Local CPU is inactive.  Temporarily stops all active CPUs.
629 *
630 * RETURNS:
631 * 0 if all executions of @fn returned 0, any non zero return value if any
632 * returned non zero.
633 */
634int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
635				  const struct cpumask *cpus)
636{
637	struct multi_stop_data msdata = { .fn = fn, .data = data,
638					    .active_cpus = cpus };
639	struct cpu_stop_done done;
640	int ret;
641
642	/* Local CPU must be inactive and CPU hotplug in progress. */
643	BUG_ON(cpu_active(raw_smp_processor_id()));
644	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
645
646	/* No proper task established and can't sleep - busy wait for lock. */
647	while (!mutex_trylock(&stop_cpus_mutex))
648		cpu_relax();
649
650	/* Schedule work on other CPUs and execute directly for local CPU */
651	set_state(&msdata, MULTI_STOP_PREPARE);
652	cpu_stop_init_done(&done, num_active_cpus());
653	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
654			     &done);
655	ret = multi_cpu_stop(&msdata);
656
657	/* Busy wait for completion. */
658	while (!completion_done(&done.completion))
659		cpu_relax();
660
661	mutex_unlock(&stop_cpus_mutex);
662	return ret ?: done.ret;
663}
v3.5.6
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21
 22#include <linux/atomic.h>
 
 
 23
 24/*
 25 * Structure to determine completion condition and record errors.  May
 26 * be shared by works on different cpus.
 27 */
 28struct cpu_stop_done {
 29	atomic_t		nr_todo;	/* nr left to execute */
 30	bool			executed;	/* actually executed? */
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 
 
 37	spinlock_t		lock;
 38	bool			enabled;	/* is this stopper enabled? */
 39	struct list_head	works;		/* list of pending works */
 40	struct task_struct	*thread;	/* stopper thread */
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static bool stop_machine_initialized = false;
 45
 
 
 
 
 46static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 47{
 48	memset(done, 0, sizeof(*done));
 49	atomic_set(&done->nr_todo, nr_todo);
 50	init_completion(&done->completion);
 51}
 52
 53/* signal completion unless @done is NULL */
 54static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 
 
 
 
 
 
 
 
 55{
 56	if (done) {
 57		if (executed)
 58			done->executed = true;
 59		if (atomic_dec_and_test(&done->nr_todo))
 60			complete(&done->completion);
 61	}
 62}
 63
 64/* queue @work to @stopper.  if offline, @work is completed immediately */
 65static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 66				struct cpu_stop_work *work)
 67{
 
 
 68	unsigned long flags;
 
 69
 70	spin_lock_irqsave(&stopper->lock, flags);
 
 
 
 
 
 
 71
 72	if (stopper->enabled) {
 73		list_add_tail(&work->list, &stopper->works);
 74		wake_up_process(stopper->thread);
 75	} else
 76		cpu_stop_signal_done(work->done, false);
 77
 78	spin_unlock_irqrestore(&stopper->lock, flags);
 79}
 80
 81/**
 82 * stop_one_cpu - stop a cpu
 83 * @cpu: cpu to stop
 84 * @fn: function to execute
 85 * @arg: argument to @fn
 86 *
 87 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 88 * the highest priority preempting any task on the cpu and
 89 * monopolizing it.  This function returns after the execution is
 90 * complete.
 91 *
 92 * This function doesn't guarantee @cpu stays online till @fn
 93 * completes.  If @cpu goes down in the middle, execution may happen
 94 * partially or fully on different cpus.  @fn should either be ready
 95 * for that or the caller should ensure that @cpu stays online until
 96 * this function completes.
 97 *
 98 * CONTEXT:
 99 * Might sleep.
100 *
101 * RETURNS:
102 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
103 * otherwise, the return value of @fn.
104 */
105int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
106{
107	struct cpu_stop_done done;
108	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
109
110	cpu_stop_init_done(&done, 1);
111	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
 
 
 
 
 
 
112	wait_for_completion(&done.completion);
113	return done.executed ? done.ret : -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114}
115
116/**
117 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
118 * @cpu: cpu to stop
119 * @fn: function to execute
120 * @arg: argument to @fn
 
121 *
122 * Similar to stop_one_cpu() but doesn't wait for completion.  The
123 * caller is responsible for ensuring @work_buf is currently unused
124 * and will remain untouched until stopper starts executing @fn.
125 *
126 * CONTEXT:
127 * Don't care.
 
 
 
 
128 */
129void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
130			struct cpu_stop_work *work_buf)
131{
132	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
133	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
134}
135
136/* static data for stop_cpus */
137static DEFINE_MUTEX(stop_cpus_mutex);
138static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
139
140static void queue_stop_cpus_work(const struct cpumask *cpumask,
141				 cpu_stop_fn_t fn, void *arg,
142				 struct cpu_stop_done *done)
143{
144	struct cpu_stop_work *work;
145	unsigned int cpu;
146
147	/* initialize works and done */
148	for_each_cpu(cpu, cpumask) {
149		work = &per_cpu(stop_cpus_work, cpu);
150		work->fn = fn;
151		work->arg = arg;
152		work->done = done;
153	}
154
155	/*
156	 * Disable preemption while queueing to avoid getting
157	 * preempted by a stopper which might wait for other stoppers
158	 * to enter @fn which can lead to deadlock.
159	 */
160	preempt_disable();
161	for_each_cpu(cpu, cpumask)
162		cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
163				    &per_cpu(stop_cpus_work, cpu));
 
 
 
 
 
 
 
164	preempt_enable();
 
 
165}
166
167static int __stop_cpus(const struct cpumask *cpumask,
168		       cpu_stop_fn_t fn, void *arg)
169{
170	struct cpu_stop_done done;
171
172	cpu_stop_init_done(&done, cpumask_weight(cpumask));
173	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
174	wait_for_completion(&done.completion);
175	return done.executed ? done.ret : -ENOENT;
176}
177
178/**
179 * stop_cpus - stop multiple cpus
180 * @cpumask: cpus to stop
181 * @fn: function to execute
182 * @arg: argument to @fn
183 *
184 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
185 * @fn is run in a process context with the highest priority
186 * preempting any task on the cpu and monopolizing it.  This function
187 * returns after all executions are complete.
188 *
189 * This function doesn't guarantee the cpus in @cpumask stay online
190 * till @fn completes.  If some cpus go down in the middle, execution
191 * on the cpu may happen partially or fully on different cpus.  @fn
192 * should either be ready for that or the caller should ensure that
193 * the cpus stay online until this function completes.
194 *
195 * All stop_cpus() calls are serialized making it safe for @fn to wait
196 * for all cpus to start executing it.
197 *
198 * CONTEXT:
199 * Might sleep.
200 *
201 * RETURNS:
202 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
203 * @cpumask were offline; otherwise, 0 if all executions of @fn
204 * returned 0, any non zero return value if any returned non zero.
205 */
206int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
207{
208	int ret;
209
210	/* static works are used, process one request at a time */
211	mutex_lock(&stop_cpus_mutex);
212	ret = __stop_cpus(cpumask, fn, arg);
213	mutex_unlock(&stop_cpus_mutex);
214	return ret;
215}
216
217/**
218 * try_stop_cpus - try to stop multiple cpus
219 * @cpumask: cpus to stop
220 * @fn: function to execute
221 * @arg: argument to @fn
222 *
223 * Identical to stop_cpus() except that it fails with -EAGAIN if
224 * someone else is already using the facility.
225 *
226 * CONTEXT:
227 * Might sleep.
228 *
229 * RETURNS:
230 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
231 * @fn(@arg) was not executed at all because all cpus in @cpumask were
232 * offline; otherwise, 0 if all executions of @fn returned 0, any non
233 * zero return value if any returned non zero.
234 */
235int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
236{
237	int ret;
238
239	/* static works are used, process one request at a time */
240	if (!mutex_trylock(&stop_cpus_mutex))
241		return -EAGAIN;
242	ret = __stop_cpus(cpumask, fn, arg);
243	mutex_unlock(&stop_cpus_mutex);
244	return ret;
245}
246
247static int cpu_stopper_thread(void *data)
 
 
 
 
 
 
 
 
 
 
 
 
248{
249	struct cpu_stopper *stopper = data;
250	struct cpu_stop_work *work;
251	int ret;
252
253repeat:
254	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
255
256	if (kthread_should_stop()) {
257		__set_current_state(TASK_RUNNING);
258		return 0;
259	}
260
261	work = NULL;
262	spin_lock_irq(&stopper->lock);
263	if (!list_empty(&stopper->works)) {
264		work = list_first_entry(&stopper->works,
265					struct cpu_stop_work, list);
266		list_del_init(&work->list);
267	}
268	spin_unlock_irq(&stopper->lock);
269
270	if (work) {
271		cpu_stop_fn_t fn = work->fn;
272		void *arg = work->arg;
273		struct cpu_stop_done *done = work->done;
274		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
275
276		__set_current_state(TASK_RUNNING);
277
278		/* cpu stop callbacks are not allowed to sleep */
279		preempt_disable();
280
 
 
281		ret = fn(arg);
282		if (ret)
283			done->ret = ret;
284
285		/* restore preemption and check it's still balanced */
286		preempt_enable();
 
287		WARN_ONCE(preempt_count(),
288			  "cpu_stop: %s(%p) leaked preempt count\n",
289			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
290					  ksym_buf), arg);
291
292		cpu_stop_signal_done(done, true);
293	} else
294		schedule();
295
296	goto repeat;
 
 
 
 
 
 
 
 
 
297}
298
299extern void sched_set_stop_task(int cpu, struct task_struct *stop);
300
301/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
302static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
303					   unsigned long action, void *hcpu)
 
 
 
304{
305	unsigned int cpu = (unsigned long)hcpu;
306	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
307	struct task_struct *p;
308
309	switch (action & ~CPU_TASKS_FROZEN) {
310	case CPU_UP_PREPARE:
311		BUG_ON(stopper->thread || stopper->enabled ||
312		       !list_empty(&stopper->works));
313		p = kthread_create_on_node(cpu_stopper_thread,
314					   stopper,
315					   cpu_to_node(cpu),
316					   "migration/%d", cpu);
317		if (IS_ERR(p))
318			return notifier_from_errno(PTR_ERR(p));
319		get_task_struct(p);
320		kthread_bind(p, cpu);
321		sched_set_stop_task(cpu, p);
322		stopper->thread = p;
323		break;
324
325	case CPU_ONLINE:
326		/* strictly unnecessary, as first user will wake it */
327		wake_up_process(stopper->thread);
328		/* mark enabled */
329		spin_lock_irq(&stopper->lock);
330		stopper->enabled = true;
331		spin_unlock_irq(&stopper->lock);
332		break;
333
334#ifdef CONFIG_HOTPLUG_CPU
335	case CPU_UP_CANCELED:
336	case CPU_POST_DEAD:
337	{
338		struct cpu_stop_work *work;
339
340		sched_set_stop_task(cpu, NULL);
341		/* kill the stopper */
342		kthread_stop(stopper->thread);
343		/* drain remaining works */
344		spin_lock_irq(&stopper->lock);
345		list_for_each_entry(work, &stopper->works, list)
346			cpu_stop_signal_done(work->done, false);
347		stopper->enabled = false;
348		spin_unlock_irq(&stopper->lock);
349		/* release the stopper */
350		put_task_struct(stopper->thread);
351		stopper->thread = NULL;
352		break;
353	}
354#endif
355	}
356
357	return NOTIFY_OK;
 
358}
359
360/*
361 * Give it a higher priority so that cpu stopper is available to other
362 * cpu notifiers.  It currently shares the same priority as sched
363 * migration_notifier.
364 */
365static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
366	.notifier_call	= cpu_stop_cpu_callback,
367	.priority	= 10,
368};
369
370static int __init cpu_stop_init(void)
371{
372	void *bcpu = (void *)(long)smp_processor_id();
373	unsigned int cpu;
374	int err;
375
376	for_each_possible_cpu(cpu) {
377		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
378
379		spin_lock_init(&stopper->lock);
380		INIT_LIST_HEAD(&stopper->works);
381	}
382
383	/* start one for the boot cpu */
384	err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
385				    bcpu);
386	BUG_ON(err != NOTIFY_OK);
387	cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
388	register_cpu_notifier(&cpu_stop_cpu_notifier);
389
390	stop_machine_initialized = true;
391
392	return 0;
393}
394early_initcall(cpu_stop_init);
395
396#ifdef CONFIG_STOP_MACHINE
397
398/* This controls the threads on each CPU. */
399enum stopmachine_state {
400	/* Dummy starting state for thread. */
401	STOPMACHINE_NONE,
402	/* Awaiting everyone to be scheduled. */
403	STOPMACHINE_PREPARE,
404	/* Disable interrupts. */
405	STOPMACHINE_DISABLE_IRQ,
406	/* Run the function */
407	STOPMACHINE_RUN,
408	/* Exit */
409	STOPMACHINE_EXIT,
410};
411
412struct stop_machine_data {
413	int			(*fn)(void *);
414	void			*data;
415	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
416	unsigned int		num_threads;
417	const struct cpumask	*active_cpus;
418
419	enum stopmachine_state	state;
420	atomic_t		thread_ack;
421};
422
423static void set_state(struct stop_machine_data *smdata,
424		      enum stopmachine_state newstate)
425{
426	/* Reset ack counter. */
427	atomic_set(&smdata->thread_ack, smdata->num_threads);
428	smp_wmb();
429	smdata->state = newstate;
430}
431
432/* Last one to ack a state moves to the next state. */
433static void ack_state(struct stop_machine_data *smdata)
434{
435	if (atomic_dec_and_test(&smdata->thread_ack))
436		set_state(smdata, smdata->state + 1);
437}
438
439/* This is the cpu_stop function which stops the CPU. */
440static int stop_machine_cpu_stop(void *data)
441{
442	struct stop_machine_data *smdata = data;
443	enum stopmachine_state curstate = STOPMACHINE_NONE;
444	int cpu = smp_processor_id(), err = 0;
445	unsigned long flags;
446	bool is_active;
447
448	/*
449	 * When called from stop_machine_from_inactive_cpu(), irq might
450	 * already be disabled.  Save the state and restore it on exit.
451	 */
452	local_save_flags(flags);
453
454	if (!smdata->active_cpus)
455		is_active = cpu == cpumask_first(cpu_online_mask);
456	else
457		is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
458
459	/* Simple state machine */
460	do {
461		/* Chill out and ensure we re-read stopmachine_state. */
462		cpu_relax();
463		if (smdata->state != curstate) {
464			curstate = smdata->state;
465			switch (curstate) {
466			case STOPMACHINE_DISABLE_IRQ:
467				local_irq_disable();
468				hard_irq_disable();
469				break;
470			case STOPMACHINE_RUN:
471				if (is_active)
472					err = smdata->fn(smdata->data);
473				break;
474			default:
475				break;
476			}
477			ack_state(smdata);
478		}
479	} while (curstate != STOPMACHINE_EXIT);
480
481	local_irq_restore(flags);
482	return err;
483}
484
485int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
486{
487	struct stop_machine_data smdata = { .fn = fn, .data = data,
488					    .num_threads = num_online_cpus(),
489					    .active_cpus = cpus };
490
491	if (!stop_machine_initialized) {
492		/*
493		 * Handle the case where stop_machine() is called
494		 * early in boot before stop_machine() has been
495		 * initialized.
496		 */
497		unsigned long flags;
498		int ret;
499
500		WARN_ON_ONCE(smdata.num_threads != 1);
501
502		local_irq_save(flags);
503		hard_irq_disable();
504		ret = (*fn)(data);
505		local_irq_restore(flags);
506
507		return ret;
508	}
509
510	/* Set the initial state and stop all online cpus. */
511	set_state(&smdata, STOPMACHINE_PREPARE);
512	return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
513}
514
515int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
516{
517	int ret;
518
519	/* No CPUs can come up or down during this. */
520	get_online_cpus();
521	ret = __stop_machine(fn, data, cpus);
522	put_online_cpus();
523	return ret;
524}
525EXPORT_SYMBOL_GPL(stop_machine);
526
527/**
528 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
529 * @fn: the function to run
530 * @data: the data ptr for the @fn()
531 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
532 *
533 * This is identical to stop_machine() but can be called from a CPU which
534 * is not active.  The local CPU is in the process of hotplug (so no other
535 * CPU hotplug can start) and not marked active and doesn't have enough
536 * context to sleep.
537 *
538 * This function provides stop_machine() functionality for such state by
539 * using busy-wait for synchronization and executing @fn directly for local
540 * CPU.
541 *
542 * CONTEXT:
543 * Local CPU is inactive.  Temporarily stops all active CPUs.
544 *
545 * RETURNS:
546 * 0 if all executions of @fn returned 0, any non zero return value if any
547 * returned non zero.
548 */
549int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
550				  const struct cpumask *cpus)
551{
552	struct stop_machine_data smdata = { .fn = fn, .data = data,
553					    .active_cpus = cpus };
554	struct cpu_stop_done done;
555	int ret;
556
557	/* Local CPU must be inactive and CPU hotplug in progress. */
558	BUG_ON(cpu_active(raw_smp_processor_id()));
559	smdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
560
561	/* No proper task established and can't sleep - busy wait for lock. */
562	while (!mutex_trylock(&stop_cpus_mutex))
563		cpu_relax();
564
565	/* Schedule work on other CPUs and execute directly for local CPU */
566	set_state(&smdata, STOPMACHINE_PREPARE);
567	cpu_stop_init_done(&done, num_active_cpus());
568	queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
569			     &done);
570	ret = stop_machine_cpu_stop(&smdata);
571
572	/* Busy wait for completion. */
573	while (!completion_done(&done.completion))
574		cpu_relax();
575
576	mutex_unlock(&stop_cpus_mutex);
577	return ret ?: done.ret;
578}
579
580#endif	/* CONFIG_STOP_MACHINE */