Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * linux/fs/jbd2/revoke.c
  4 *
  5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  6 *
  7 * Copyright 2000 Red Hat corp --- All Rights Reserved
  8 *
 
 
 
 
  9 * Journal revoke routines for the generic filesystem journaling code;
 10 * part of the ext2fs journaling system.
 11 *
 12 * Revoke is the mechanism used to prevent old log records for deleted
 13 * metadata from being replayed on top of newer data using the same
 14 * blocks.  The revoke mechanism is used in two separate places:
 15 *
 16 * + Commit: during commit we write the entire list of the current
 17 *   transaction's revoked blocks to the journal
 18 *
 19 * + Recovery: during recovery we record the transaction ID of all
 20 *   revoked blocks.  If there are multiple revoke records in the log
 21 *   for a single block, only the last one counts, and if there is a log
 22 *   entry for a block beyond the last revoke, then that log entry still
 23 *   gets replayed.
 24 *
 25 * We can get interactions between revokes and new log data within a
 26 * single transaction:
 27 *
 28 * Block is revoked and then journaled:
 29 *   The desired end result is the journaling of the new block, so we
 30 *   cancel the revoke before the transaction commits.
 31 *
 32 * Block is journaled and then revoked:
 33 *   The revoke must take precedence over the write of the block, so we
 34 *   need either to cancel the journal entry or to write the revoke
 35 *   later in the log than the log block.  In this case, we choose the
 36 *   latter: journaling a block cancels any revoke record for that block
 37 *   in the current transaction, so any revoke for that block in the
 38 *   transaction must have happened after the block was journaled and so
 39 *   the revoke must take precedence.
 40 *
 41 * Block is revoked and then written as data:
 42 *   The data write is allowed to succeed, but the revoke is _not_
 43 *   cancelled.  We still need to prevent old log records from
 44 *   overwriting the new data.  We don't even need to clear the revoke
 45 *   bit here.
 46 *
 47 * We cache revoke status of a buffer in the current transaction in b_states
 48 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 49 * status of a buffer is valid and we can rely on the cached status.
 50 *
 51 * Revoke information on buffers is a tri-state value:
 52 *
 53 * RevokeValid clear:	no cached revoke status, need to look it up
 54 * RevokeValid set, Revoked clear:
 55 *			buffer has not been revoked, and cancel_revoke
 56 *			need do nothing.
 57 * RevokeValid set, Revoked set:
 58 *			buffer has been revoked.
 59 *
 60 * Locking rules:
 61 * We keep two hash tables of revoke records. One hashtable belongs to the
 62 * running transaction (is pointed to by journal->j_revoke), the other one
 63 * belongs to the committing transaction. Accesses to the second hash table
 64 * happen only from the kjournald and no other thread touches this table.  Also
 65 * journal_switch_revoke_table() which switches which hashtable belongs to the
 66 * running and which to the committing transaction is called only from
 67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 68 * to the committing transaction.
 69 *
 70 * All users operating on the hash table belonging to the running transaction
 71 * have a handle to the transaction. Therefore they are safe from kjournald
 72 * switching hash tables under them. For operations on the lists of entries in
 73 * the hash table j_revoke_lock is used.
 74 *
 75 * Finally, also replay code uses the hash tables but at this moment no one else
 76 * can touch them (filesystem isn't mounted yet) and hence no locking is
 77 * needed.
 78 */
 79
 80#ifndef __KERNEL__
 81#include "jfs_user.h"
 82#else
 83#include <linux/time.h>
 84#include <linux/fs.h>
 85#include <linux/jbd2.h>
 86#include <linux/errno.h>
 87#include <linux/slab.h>
 88#include <linux/list.h>
 89#include <linux/init.h>
 90#include <linux/bio.h>
 91#include <linux/log2.h>
 92#include <linux/hash.h>
 93#endif
 
 94
 95static struct kmem_cache *jbd2_revoke_record_cache;
 96static struct kmem_cache *jbd2_revoke_table_cache;
 97
 98/* Each revoke record represents one single revoked block.  During
 99   journal replay, this involves recording the transaction ID of the
100   last transaction to revoke this block. */
101
102struct jbd2_revoke_record_s
103{
104	struct list_head  hash;
105	tid_t		  sequence;	/* Used for recovery only */
106	unsigned long long	  blocknr;
107};
108
109
110/* The revoke table is just a simple hash table of revoke records. */
111struct jbd2_revoke_table_s
112{
113	/* It is conceivable that we might want a larger hash table
114	 * for recovery.  Must be a power of two. */
115	int		  hash_size;
116	int		  hash_shift;
117	struct list_head *hash_table;
118};
119
120
121#ifdef __KERNEL__
122static void write_one_revoke_record(transaction_t *,
123				    struct list_head *,
124				    struct buffer_head **, int *,
125				    struct jbd2_revoke_record_s *);
126static void flush_descriptor(journal_t *, struct buffer_head *, int);
127#endif
128
129/* Utility functions to maintain the revoke table */
130
 
131static inline int hash(journal_t *journal, unsigned long long block)
132{
133	return hash_64(block, journal->j_revoke->hash_shift);
 
 
 
 
 
 
134}
135
136static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137			      tid_t seq)
138{
139	struct list_head *hash_list;
140	struct jbd2_revoke_record_s *record;
141	gfp_t gfp_mask = GFP_NOFS;
142
143	if (journal_oom_retry)
144		gfp_mask |= __GFP_NOFAIL;
145	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146	if (!record)
147		return -ENOMEM;
148
149	record->sequence = seq;
150	record->blocknr = blocknr;
151	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152	spin_lock(&journal->j_revoke_lock);
153	list_add(&record->hash, hash_list);
154	spin_unlock(&journal->j_revoke_lock);
155	return 0;
 
 
 
 
 
 
 
156}
157
158/* Find a revoke record in the journal's hash table. */
159
160static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161						      unsigned long long blocknr)
162{
163	struct list_head *hash_list;
164	struct jbd2_revoke_record_s *record;
165
166	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
167
168	spin_lock(&journal->j_revoke_lock);
169	record = (struct jbd2_revoke_record_s *) hash_list->next;
170	while (&(record->hash) != hash_list) {
171		if (record->blocknr == blocknr) {
172			spin_unlock(&journal->j_revoke_lock);
173			return record;
174		}
175		record = (struct jbd2_revoke_record_s *) record->hash.next;
176	}
177	spin_unlock(&journal->j_revoke_lock);
178	return NULL;
179}
180
181void jbd2_journal_destroy_revoke_caches(void)
182{
183	if (jbd2_revoke_record_cache) {
184		kmem_cache_destroy(jbd2_revoke_record_cache);
185		jbd2_revoke_record_cache = NULL;
186	}
187	if (jbd2_revoke_table_cache) {
188		kmem_cache_destroy(jbd2_revoke_table_cache);
189		jbd2_revoke_table_cache = NULL;
190	}
191}
192
193int __init jbd2_journal_init_revoke_caches(void)
194{
195	J_ASSERT(!jbd2_revoke_record_cache);
196	J_ASSERT(!jbd2_revoke_table_cache);
197
198	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
199					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
200	if (!jbd2_revoke_record_cache)
201		goto record_cache_failure;
202
203	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
204					     SLAB_TEMPORARY);
205	if (!jbd2_revoke_table_cache)
206		goto table_cache_failure;
207	return 0;
208table_cache_failure:
209	jbd2_journal_destroy_revoke_caches();
210record_cache_failure:
211		return -ENOMEM;
212}
213
214static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
215{
216	int shift = 0;
217	int tmp = hash_size;
218	struct jbd2_revoke_table_s *table;
219
220	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
221	if (!table)
222		goto out;
223
224	while((tmp >>= 1UL) != 0UL)
225		shift++;
226
227	table->hash_size = hash_size;
228	table->hash_shift = shift;
229	table->hash_table =
230		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
231	if (!table->hash_table) {
232		kmem_cache_free(jbd2_revoke_table_cache, table);
233		table = NULL;
234		goto out;
235	}
236
237	for (tmp = 0; tmp < hash_size; tmp++)
238		INIT_LIST_HEAD(&table->hash_table[tmp]);
239
240out:
241	return table;
242}
243
244static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
245{
246	int i;
247	struct list_head *hash_list;
248
249	for (i = 0; i < table->hash_size; i++) {
250		hash_list = &table->hash_table[i];
251		J_ASSERT(list_empty(hash_list));
252	}
253
254	kfree(table->hash_table);
255	kmem_cache_free(jbd2_revoke_table_cache, table);
256}
257
258/* Initialise the revoke table for a given journal to a given size. */
259int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
260{
261	J_ASSERT(journal->j_revoke_table[0] == NULL);
262	J_ASSERT(is_power_of_2(hash_size));
263
264	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
265	if (!journal->j_revoke_table[0])
266		goto fail0;
267
268	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
269	if (!journal->j_revoke_table[1])
270		goto fail1;
271
272	journal->j_revoke = journal->j_revoke_table[1];
273
274	spin_lock_init(&journal->j_revoke_lock);
275
276	return 0;
277
278fail1:
279	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
280	journal->j_revoke_table[0] = NULL;
281fail0:
282	return -ENOMEM;
283}
284
285/* Destroy a journal's revoke table.  The table must already be empty! */
286void jbd2_journal_destroy_revoke(journal_t *journal)
287{
288	journal->j_revoke = NULL;
289	if (journal->j_revoke_table[0])
290		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
291	if (journal->j_revoke_table[1])
292		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
293}
294
295
296#ifdef __KERNEL__
297
298/*
299 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
300 * prevents the block from being replayed during recovery if we take a
301 * crash after this current transaction commits.  Any subsequent
302 * metadata writes of the buffer in this transaction cancel the
303 * revoke.
304 *
305 * Note that this call may block --- it is up to the caller to make
306 * sure that there are no further calls to journal_write_metadata
307 * before the revoke is complete.  In ext3, this implies calling the
308 * revoke before clearing the block bitmap when we are deleting
309 * metadata.
310 *
311 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
312 * parameter, but does _not_ forget the buffer_head if the bh was only
313 * found implicitly.
314 *
315 * bh_in may not be a journalled buffer - it may have come off
316 * the hash tables without an attached journal_head.
317 *
318 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
319 * by one.
320 */
321
322int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
323		   struct buffer_head *bh_in)
324{
325	struct buffer_head *bh = NULL;
326	journal_t *journal;
327	struct block_device *bdev;
328	int err;
329
330	might_sleep();
331	if (bh_in)
332		BUFFER_TRACE(bh_in, "enter");
333
334	journal = handle->h_transaction->t_journal;
335	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
336		J_ASSERT (!"Cannot set revoke feature!");
337		return -EINVAL;
338	}
339
340	bdev = journal->j_fs_dev;
341	bh = bh_in;
342
343	if (!bh) {
344		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
345		if (bh)
346			BUFFER_TRACE(bh, "found on hash");
347	}
348#ifdef JBD2_EXPENSIVE_CHECKING
349	else {
350		struct buffer_head *bh2;
351
352		/* If there is a different buffer_head lying around in
353		 * memory anywhere... */
354		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
355		if (bh2) {
356			/* ... and it has RevokeValid status... */
357			if (bh2 != bh && buffer_revokevalid(bh2))
358				/* ...then it better be revoked too,
359				 * since it's illegal to create a revoke
360				 * record against a buffer_head which is
361				 * not marked revoked --- that would
362				 * risk missing a subsequent revoke
363				 * cancel. */
364				J_ASSERT_BH(bh2, buffer_revoked(bh2));
365			put_bh(bh2);
366		}
367	}
368#endif
369
370	/* We really ought not ever to revoke twice in a row without
371           first having the revoke cancelled: it's illegal to free a
372           block twice without allocating it in between! */
373	if (bh) {
374		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
375				 "inconsistent data on disk")) {
376			if (!bh_in)
377				brelse(bh);
378			return -EIO;
379		}
380		set_buffer_revoked(bh);
381		set_buffer_revokevalid(bh);
382		if (bh_in) {
383			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
384			jbd2_journal_forget(handle, bh_in);
385		} else {
386			BUFFER_TRACE(bh, "call brelse");
387			__brelse(bh);
388		}
389	}
390
391	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
392	err = insert_revoke_hash(journal, blocknr,
393				handle->h_transaction->t_tid);
394	BUFFER_TRACE(bh_in, "exit");
395	return err;
396}
397
398/*
399 * Cancel an outstanding revoke.  For use only internally by the
400 * journaling code (called from jbd2_journal_get_write_access).
401 *
402 * We trust buffer_revoked() on the buffer if the buffer is already
403 * being journaled: if there is no revoke pending on the buffer, then we
404 * don't do anything here.
405 *
406 * This would break if it were possible for a buffer to be revoked and
407 * discarded, and then reallocated within the same transaction.  In such
408 * a case we would have lost the revoked bit, but when we arrived here
409 * the second time we would still have a pending revoke to cancel.  So,
410 * do not trust the Revoked bit on buffers unless RevokeValid is also
411 * set.
412 */
413int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
414{
415	struct jbd2_revoke_record_s *record;
416	journal_t *journal = handle->h_transaction->t_journal;
417	int need_cancel;
418	int did_revoke = 0;	/* akpm: debug */
419	struct buffer_head *bh = jh2bh(jh);
420
421	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
422
423	/* Is the existing Revoke bit valid?  If so, we trust it, and
424	 * only perform the full cancel if the revoke bit is set.  If
425	 * not, we can't trust the revoke bit, and we need to do the
426	 * full search for a revoke record. */
427	if (test_set_buffer_revokevalid(bh)) {
428		need_cancel = test_clear_buffer_revoked(bh);
429	} else {
430		need_cancel = 1;
431		clear_buffer_revoked(bh);
432	}
433
434	if (need_cancel) {
435		record = find_revoke_record(journal, bh->b_blocknr);
436		if (record) {
437			jbd_debug(4, "cancelled existing revoke on "
438				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
439			spin_lock(&journal->j_revoke_lock);
440			list_del(&record->hash);
441			spin_unlock(&journal->j_revoke_lock);
442			kmem_cache_free(jbd2_revoke_record_cache, record);
443			did_revoke = 1;
444		}
445	}
446
447#ifdef JBD2_EXPENSIVE_CHECKING
448	/* There better not be one left behind by now! */
449	record = find_revoke_record(journal, bh->b_blocknr);
450	J_ASSERT_JH(jh, record == NULL);
451#endif
452
453	/* Finally, have we just cleared revoke on an unhashed
454	 * buffer_head?  If so, we'd better make sure we clear the
455	 * revoked status on any hashed alias too, otherwise the revoke
456	 * state machine will get very upset later on. */
457	if (need_cancel) {
458		struct buffer_head *bh2;
459		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
460		if (bh2) {
461			if (bh2 != bh)
462				clear_buffer_revoked(bh2);
463			__brelse(bh2);
464		}
465	}
466	return did_revoke;
467}
468
469/*
470 * journal_clear_revoked_flag clears revoked flag of buffers in
471 * revoke table to reflect there is no revoked buffers in the next
472 * transaction which is going to be started.
473 */
474void jbd2_clear_buffer_revoked_flags(journal_t *journal)
475{
476	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
477	int i = 0;
478
479	for (i = 0; i < revoke->hash_size; i++) {
480		struct list_head *hash_list;
481		struct list_head *list_entry;
482		hash_list = &revoke->hash_table[i];
483
484		list_for_each(list_entry, hash_list) {
485			struct jbd2_revoke_record_s *record;
486			struct buffer_head *bh;
487			record = (struct jbd2_revoke_record_s *)list_entry;
488			bh = __find_get_block(journal->j_fs_dev,
489					      record->blocknr,
490					      journal->j_blocksize);
491			if (bh) {
492				clear_buffer_revoked(bh);
493				__brelse(bh);
494			}
495		}
496	}
497}
498
499/* journal_switch_revoke table select j_revoke for next transaction
500 * we do not want to suspend any processing until all revokes are
501 * written -bzzz
502 */
503void jbd2_journal_switch_revoke_table(journal_t *journal)
504{
505	int i;
506
507	if (journal->j_revoke == journal->j_revoke_table[0])
508		journal->j_revoke = journal->j_revoke_table[1];
509	else
510		journal->j_revoke = journal->j_revoke_table[0];
511
512	for (i = 0; i < journal->j_revoke->hash_size; i++)
513		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
514}
515
516/*
517 * Write revoke records to the journal for all entries in the current
518 * revoke hash, deleting the entries as we go.
519 */
520void jbd2_journal_write_revoke_records(transaction_t *transaction,
521				       struct list_head *log_bufs)
 
522{
523	journal_t *journal = transaction->t_journal;
524	struct buffer_head *descriptor;
525	struct jbd2_revoke_record_s *record;
526	struct jbd2_revoke_table_s *revoke;
527	struct list_head *hash_list;
528	int i, offset, count;
529
530	descriptor = NULL;
531	offset = 0;
532	count = 0;
533
534	/* select revoke table for committing transaction */
535	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
536		journal->j_revoke_table[1] : journal->j_revoke_table[0];
537
538	for (i = 0; i < revoke->hash_size; i++) {
539		hash_list = &revoke->hash_table[i];
540
541		while (!list_empty(hash_list)) {
542			record = (struct jbd2_revoke_record_s *)
543				hash_list->next;
544			write_one_revoke_record(transaction, log_bufs,
545						&descriptor, &offset, record);
 
546			count++;
547			list_del(&record->hash);
548			kmem_cache_free(jbd2_revoke_record_cache, record);
549		}
550	}
551	if (descriptor)
552		flush_descriptor(journal, descriptor, offset);
553	jbd_debug(1, "Wrote %d revoke records\n", count);
554}
555
556/*
557 * Write out one revoke record.  We need to create a new descriptor
558 * block if the old one is full or if we have not already created one.
559 */
560
561static void write_one_revoke_record(transaction_t *transaction,
562				    struct list_head *log_bufs,
563				    struct buffer_head **descriptorp,
564				    int *offsetp,
565				    struct jbd2_revoke_record_s *record)
 
566{
567	journal_t *journal = transaction->t_journal;
568	int csum_size = 0;
569	struct buffer_head *descriptor;
570	int sz, offset;
 
571
572	/* If we are already aborting, this all becomes a noop.  We
573           still need to go round the loop in
574           jbd2_journal_write_revoke_records in order to free all of the
575           revoke records: only the IO to the journal is omitted. */
576	if (is_journal_aborted(journal))
577		return;
578
579	descriptor = *descriptorp;
580	offset = *offsetp;
581
582	/* Do we need to leave space at the end for a checksum? */
583	if (jbd2_journal_has_csum_v2or3(journal))
584		csum_size = sizeof(struct jbd2_journal_block_tail);
585
586	if (jbd2_has_feature_64bit(journal))
587		sz = 8;
588	else
589		sz = 4;
590
591	/* Make sure we have a descriptor with space left for the record */
592	if (descriptor) {
593		if (offset + sz > journal->j_blocksize - csum_size) {
594			flush_descriptor(journal, descriptor, offset);
595			descriptor = NULL;
596		}
597	}
598
599	if (!descriptor) {
600		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
601							JBD2_REVOKE_BLOCK);
602		if (!descriptor)
603			return;
 
 
 
 
604
605		/* Record it so that we can wait for IO completion later */
606		BUFFER_TRACE(descriptor, "file in log_bufs");
607		jbd2_file_log_bh(log_bufs, descriptor);
608
609		offset = sizeof(jbd2_journal_revoke_header_t);
610		*descriptorp = descriptor;
611	}
612
613	if (jbd2_has_feature_64bit(journal))
614		* ((__be64 *)(&descriptor->b_data[offset])) =
615			cpu_to_be64(record->blocknr);
616	else
617		* ((__be32 *)(&descriptor->b_data[offset])) =
 
 
618			cpu_to_be32(record->blocknr);
619	offset += sz;
 
620
621	*offsetp = offset;
622}
623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624/*
625 * Flush a revoke descriptor out to the journal.  If we are aborting,
626 * this is a noop; otherwise we are generating a buffer which needs to
627 * be waited for during commit, so it has to go onto the appropriate
628 * journal buffer list.
629 */
630
631static void flush_descriptor(journal_t *journal,
632			     struct buffer_head *descriptor,
633			     int offset)
634{
635	jbd2_journal_revoke_header_t *header;
 
636
637	if (is_journal_aborted(journal)) {
638		put_bh(descriptor);
639		return;
640	}
641
642	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
643	header->r_count = cpu_to_be32(offset);
644	jbd2_descriptor_block_csum_set(journal, descriptor);
645
646	set_buffer_jwrite(descriptor);
647	BUFFER_TRACE(descriptor, "write");
648	set_buffer_dirty(descriptor);
649	write_dirty_buffer(descriptor, REQ_SYNC);
650}
651#endif
652
653/*
654 * Revoke support for recovery.
655 *
656 * Recovery needs to be able to:
657 *
658 *  record all revoke records, including the tid of the latest instance
659 *  of each revoke in the journal
660 *
661 *  check whether a given block in a given transaction should be replayed
662 *  (ie. has not been revoked by a revoke record in that or a subsequent
663 *  transaction)
664 *
665 *  empty the revoke table after recovery.
666 */
667
668/*
669 * First, setting revoke records.  We create a new revoke record for
670 * every block ever revoked in the log as we scan it for recovery, and
671 * we update the existing records if we find multiple revokes for a
672 * single block.
673 */
674
675int jbd2_journal_set_revoke(journal_t *journal,
676		       unsigned long long blocknr,
677		       tid_t sequence)
678{
679	struct jbd2_revoke_record_s *record;
680
681	record = find_revoke_record(journal, blocknr);
682	if (record) {
683		/* If we have multiple occurrences, only record the
684		 * latest sequence number in the hashed record */
685		if (tid_gt(sequence, record->sequence))
686			record->sequence = sequence;
687		return 0;
688	}
689	return insert_revoke_hash(journal, blocknr, sequence);
690}
691
692/*
693 * Test revoke records.  For a given block referenced in the log, has
694 * that block been revoked?  A revoke record with a given transaction
695 * sequence number revokes all blocks in that transaction and earlier
696 * ones, but later transactions still need replayed.
697 */
698
699int jbd2_journal_test_revoke(journal_t *journal,
700			unsigned long long blocknr,
701			tid_t sequence)
702{
703	struct jbd2_revoke_record_s *record;
704
705	record = find_revoke_record(journal, blocknr);
706	if (!record)
707		return 0;
708	if (tid_gt(sequence, record->sequence))
709		return 0;
710	return 1;
711}
712
713/*
714 * Finally, once recovery is over, we need to clear the revoke table so
715 * that it can be reused by the running filesystem.
716 */
717
718void jbd2_journal_clear_revoke(journal_t *journal)
719{
720	int i;
721	struct list_head *hash_list;
722	struct jbd2_revoke_record_s *record;
723	struct jbd2_revoke_table_s *revoke;
724
725	revoke = journal->j_revoke;
726
727	for (i = 0; i < revoke->hash_size; i++) {
728		hash_list = &revoke->hash_table[i];
729		while (!list_empty(hash_list)) {
730			record = (struct jbd2_revoke_record_s*) hash_list->next;
731			list_del(&record->hash);
732			kmem_cache_free(jbd2_revoke_record_cache, record);
733		}
734	}
735}
v3.5.6
 
  1/*
  2 * linux/fs/jbd2/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd2.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 
 
 94#endif
 95#include <linux/log2.h>
 96
 97static struct kmem_cache *jbd2_revoke_record_cache;
 98static struct kmem_cache *jbd2_revoke_table_cache;
 99
100/* Each revoke record represents one single revoked block.  During
101   journal replay, this involves recording the transaction ID of the
102   last transaction to revoke this block. */
103
104struct jbd2_revoke_record_s
105{
106	struct list_head  hash;
107	tid_t		  sequence;	/* Used for recovery only */
108	unsigned long long	  blocknr;
109};
110
111
112/* The revoke table is just a simple hash table of revoke records. */
113struct jbd2_revoke_table_s
114{
115	/* It is conceivable that we might want a larger hash table
116	 * for recovery.  Must be a power of two. */
117	int		  hash_size;
118	int		  hash_shift;
119	struct list_head *hash_table;
120};
121
122
123#ifdef __KERNEL__
124static void write_one_revoke_record(journal_t *, transaction_t *,
125				    struct journal_head **, int *,
126				    struct jbd2_revoke_record_s *, int);
127static void flush_descriptor(journal_t *, struct journal_head *, int, int);
 
128#endif
129
130/* Utility functions to maintain the revoke table */
131
132/* Borrowed from buffer.c: this is a tried and tested block hash function */
133static inline int hash(journal_t *journal, unsigned long long block)
134{
135	struct jbd2_revoke_table_s *table = journal->j_revoke;
136	int hash_shift = table->hash_shift;
137	int hash = (int)block ^ (int)((block >> 31) >> 1);
138
139	return ((hash << (hash_shift - 6)) ^
140		(hash >> 13) ^
141		(hash << (hash_shift - 12))) & (table->hash_size - 1);
142}
143
144static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
145			      tid_t seq)
146{
147	struct list_head *hash_list;
148	struct jbd2_revoke_record_s *record;
 
149
150repeat:
151	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
 
152	if (!record)
153		goto oom;
154
155	record->sequence = seq;
156	record->blocknr = blocknr;
157	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
158	spin_lock(&journal->j_revoke_lock);
159	list_add(&record->hash, hash_list);
160	spin_unlock(&journal->j_revoke_lock);
161	return 0;
162
163oom:
164	if (!journal_oom_retry)
165		return -ENOMEM;
166	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
167	yield();
168	goto repeat;
169}
170
171/* Find a revoke record in the journal's hash table. */
172
173static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
174						      unsigned long long blocknr)
175{
176	struct list_head *hash_list;
177	struct jbd2_revoke_record_s *record;
178
179	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
180
181	spin_lock(&journal->j_revoke_lock);
182	record = (struct jbd2_revoke_record_s *) hash_list->next;
183	while (&(record->hash) != hash_list) {
184		if (record->blocknr == blocknr) {
185			spin_unlock(&journal->j_revoke_lock);
186			return record;
187		}
188		record = (struct jbd2_revoke_record_s *) record->hash.next;
189	}
190	spin_unlock(&journal->j_revoke_lock);
191	return NULL;
192}
193
194void jbd2_journal_destroy_revoke_caches(void)
195{
196	if (jbd2_revoke_record_cache) {
197		kmem_cache_destroy(jbd2_revoke_record_cache);
198		jbd2_revoke_record_cache = NULL;
199	}
200	if (jbd2_revoke_table_cache) {
201		kmem_cache_destroy(jbd2_revoke_table_cache);
202		jbd2_revoke_table_cache = NULL;
203	}
204}
205
206int __init jbd2_journal_init_revoke_caches(void)
207{
208	J_ASSERT(!jbd2_revoke_record_cache);
209	J_ASSERT(!jbd2_revoke_table_cache);
210
211	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
212					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
213	if (!jbd2_revoke_record_cache)
214		goto record_cache_failure;
215
216	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
217					     SLAB_TEMPORARY);
218	if (!jbd2_revoke_table_cache)
219		goto table_cache_failure;
220	return 0;
221table_cache_failure:
222	jbd2_journal_destroy_revoke_caches();
223record_cache_failure:
224		return -ENOMEM;
225}
226
227static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
228{
229	int shift = 0;
230	int tmp = hash_size;
231	struct jbd2_revoke_table_s *table;
232
233	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
234	if (!table)
235		goto out;
236
237	while((tmp >>= 1UL) != 0UL)
238		shift++;
239
240	table->hash_size = hash_size;
241	table->hash_shift = shift;
242	table->hash_table =
243		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
244	if (!table->hash_table) {
245		kmem_cache_free(jbd2_revoke_table_cache, table);
246		table = NULL;
247		goto out;
248	}
249
250	for (tmp = 0; tmp < hash_size; tmp++)
251		INIT_LIST_HEAD(&table->hash_table[tmp]);
252
253out:
254	return table;
255}
256
257static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
258{
259	int i;
260	struct list_head *hash_list;
261
262	for (i = 0; i < table->hash_size; i++) {
263		hash_list = &table->hash_table[i];
264		J_ASSERT(list_empty(hash_list));
265	}
266
267	kfree(table->hash_table);
268	kmem_cache_free(jbd2_revoke_table_cache, table);
269}
270
271/* Initialise the revoke table for a given journal to a given size. */
272int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
273{
274	J_ASSERT(journal->j_revoke_table[0] == NULL);
275	J_ASSERT(is_power_of_2(hash_size));
276
277	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
278	if (!journal->j_revoke_table[0])
279		goto fail0;
280
281	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
282	if (!journal->j_revoke_table[1])
283		goto fail1;
284
285	journal->j_revoke = journal->j_revoke_table[1];
286
287	spin_lock_init(&journal->j_revoke_lock);
288
289	return 0;
290
291fail1:
292	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
 
293fail0:
294	return -ENOMEM;
295}
296
297/* Destroy a journal's revoke table.  The table must already be empty! */
298void jbd2_journal_destroy_revoke(journal_t *journal)
299{
300	journal->j_revoke = NULL;
301	if (journal->j_revoke_table[0])
302		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
303	if (journal->j_revoke_table[1])
304		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
305}
306
307
308#ifdef __KERNEL__
309
310/*
311 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
312 * prevents the block from being replayed during recovery if we take a
313 * crash after this current transaction commits.  Any subsequent
314 * metadata writes of the buffer in this transaction cancel the
315 * revoke.
316 *
317 * Note that this call may block --- it is up to the caller to make
318 * sure that there are no further calls to journal_write_metadata
319 * before the revoke is complete.  In ext3, this implies calling the
320 * revoke before clearing the block bitmap when we are deleting
321 * metadata.
322 *
323 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
324 * parameter, but does _not_ forget the buffer_head if the bh was only
325 * found implicitly.
326 *
327 * bh_in may not be a journalled buffer - it may have come off
328 * the hash tables without an attached journal_head.
329 *
330 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
331 * by one.
332 */
333
334int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
335		   struct buffer_head *bh_in)
336{
337	struct buffer_head *bh = NULL;
338	journal_t *journal;
339	struct block_device *bdev;
340	int err;
341
342	might_sleep();
343	if (bh_in)
344		BUFFER_TRACE(bh_in, "enter");
345
346	journal = handle->h_transaction->t_journal;
347	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
348		J_ASSERT (!"Cannot set revoke feature!");
349		return -EINVAL;
350	}
351
352	bdev = journal->j_fs_dev;
353	bh = bh_in;
354
355	if (!bh) {
356		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
357		if (bh)
358			BUFFER_TRACE(bh, "found on hash");
359	}
360#ifdef JBD2_EXPENSIVE_CHECKING
361	else {
362		struct buffer_head *bh2;
363
364		/* If there is a different buffer_head lying around in
365		 * memory anywhere... */
366		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
367		if (bh2) {
368			/* ... and it has RevokeValid status... */
369			if (bh2 != bh && buffer_revokevalid(bh2))
370				/* ...then it better be revoked too,
371				 * since it's illegal to create a revoke
372				 * record against a buffer_head which is
373				 * not marked revoked --- that would
374				 * risk missing a subsequent revoke
375				 * cancel. */
376				J_ASSERT_BH(bh2, buffer_revoked(bh2));
377			put_bh(bh2);
378		}
379	}
380#endif
381
382	/* We really ought not ever to revoke twice in a row without
383           first having the revoke cancelled: it's illegal to free a
384           block twice without allocating it in between! */
385	if (bh) {
386		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
387				 "inconsistent data on disk")) {
388			if (!bh_in)
389				brelse(bh);
390			return -EIO;
391		}
392		set_buffer_revoked(bh);
393		set_buffer_revokevalid(bh);
394		if (bh_in) {
395			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
396			jbd2_journal_forget(handle, bh_in);
397		} else {
398			BUFFER_TRACE(bh, "call brelse");
399			__brelse(bh);
400		}
401	}
402
403	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
404	err = insert_revoke_hash(journal, blocknr,
405				handle->h_transaction->t_tid);
406	BUFFER_TRACE(bh_in, "exit");
407	return err;
408}
409
410/*
411 * Cancel an outstanding revoke.  For use only internally by the
412 * journaling code (called from jbd2_journal_get_write_access).
413 *
414 * We trust buffer_revoked() on the buffer if the buffer is already
415 * being journaled: if there is no revoke pending on the buffer, then we
416 * don't do anything here.
417 *
418 * This would break if it were possible for a buffer to be revoked and
419 * discarded, and then reallocated within the same transaction.  In such
420 * a case we would have lost the revoked bit, but when we arrived here
421 * the second time we would still have a pending revoke to cancel.  So,
422 * do not trust the Revoked bit on buffers unless RevokeValid is also
423 * set.
424 */
425int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
426{
427	struct jbd2_revoke_record_s *record;
428	journal_t *journal = handle->h_transaction->t_journal;
429	int need_cancel;
430	int did_revoke = 0;	/* akpm: debug */
431	struct buffer_head *bh = jh2bh(jh);
432
433	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
434
435	/* Is the existing Revoke bit valid?  If so, we trust it, and
436	 * only perform the full cancel if the revoke bit is set.  If
437	 * not, we can't trust the revoke bit, and we need to do the
438	 * full search for a revoke record. */
439	if (test_set_buffer_revokevalid(bh)) {
440		need_cancel = test_clear_buffer_revoked(bh);
441	} else {
442		need_cancel = 1;
443		clear_buffer_revoked(bh);
444	}
445
446	if (need_cancel) {
447		record = find_revoke_record(journal, bh->b_blocknr);
448		if (record) {
449			jbd_debug(4, "cancelled existing revoke on "
450				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
451			spin_lock(&journal->j_revoke_lock);
452			list_del(&record->hash);
453			spin_unlock(&journal->j_revoke_lock);
454			kmem_cache_free(jbd2_revoke_record_cache, record);
455			did_revoke = 1;
456		}
457	}
458
459#ifdef JBD2_EXPENSIVE_CHECKING
460	/* There better not be one left behind by now! */
461	record = find_revoke_record(journal, bh->b_blocknr);
462	J_ASSERT_JH(jh, record == NULL);
463#endif
464
465	/* Finally, have we just cleared revoke on an unhashed
466	 * buffer_head?  If so, we'd better make sure we clear the
467	 * revoked status on any hashed alias too, otherwise the revoke
468	 * state machine will get very upset later on. */
469	if (need_cancel) {
470		struct buffer_head *bh2;
471		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
472		if (bh2) {
473			if (bh2 != bh)
474				clear_buffer_revoked(bh2);
475			__brelse(bh2);
476		}
477	}
478	return did_revoke;
479}
480
481/*
482 * journal_clear_revoked_flag clears revoked flag of buffers in
483 * revoke table to reflect there is no revoked buffers in the next
484 * transaction which is going to be started.
485 */
486void jbd2_clear_buffer_revoked_flags(journal_t *journal)
487{
488	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
489	int i = 0;
490
491	for (i = 0; i < revoke->hash_size; i++) {
492		struct list_head *hash_list;
493		struct list_head *list_entry;
494		hash_list = &revoke->hash_table[i];
495
496		list_for_each(list_entry, hash_list) {
497			struct jbd2_revoke_record_s *record;
498			struct buffer_head *bh;
499			record = (struct jbd2_revoke_record_s *)list_entry;
500			bh = __find_get_block(journal->j_fs_dev,
501					      record->blocknr,
502					      journal->j_blocksize);
503			if (bh) {
504				clear_buffer_revoked(bh);
505				__brelse(bh);
506			}
507		}
508	}
509}
510
511/* journal_switch_revoke table select j_revoke for next transaction
512 * we do not want to suspend any processing until all revokes are
513 * written -bzzz
514 */
515void jbd2_journal_switch_revoke_table(journal_t *journal)
516{
517	int i;
518
519	if (journal->j_revoke == journal->j_revoke_table[0])
520		journal->j_revoke = journal->j_revoke_table[1];
521	else
522		journal->j_revoke = journal->j_revoke_table[0];
523
524	for (i = 0; i < journal->j_revoke->hash_size; i++)
525		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
526}
527
528/*
529 * Write revoke records to the journal for all entries in the current
530 * revoke hash, deleting the entries as we go.
531 */
532void jbd2_journal_write_revoke_records(journal_t *journal,
533				       transaction_t *transaction,
534				       int write_op)
535{
536	struct journal_head *descriptor;
 
537	struct jbd2_revoke_record_s *record;
538	struct jbd2_revoke_table_s *revoke;
539	struct list_head *hash_list;
540	int i, offset, count;
541
542	descriptor = NULL;
543	offset = 0;
544	count = 0;
545
546	/* select revoke table for committing transaction */
547	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
548		journal->j_revoke_table[1] : journal->j_revoke_table[0];
549
550	for (i = 0; i < revoke->hash_size; i++) {
551		hash_list = &revoke->hash_table[i];
552
553		while (!list_empty(hash_list)) {
554			record = (struct jbd2_revoke_record_s *)
555				hash_list->next;
556			write_one_revoke_record(journal, transaction,
557						&descriptor, &offset,
558						record, write_op);
559			count++;
560			list_del(&record->hash);
561			kmem_cache_free(jbd2_revoke_record_cache, record);
562		}
563	}
564	if (descriptor)
565		flush_descriptor(journal, descriptor, offset, write_op);
566	jbd_debug(1, "Wrote %d revoke records\n", count);
567}
568
569/*
570 * Write out one revoke record.  We need to create a new descriptor
571 * block if the old one is full or if we have not already created one.
572 */
573
574static void write_one_revoke_record(journal_t *journal,
575				    transaction_t *transaction,
576				    struct journal_head **descriptorp,
577				    int *offsetp,
578				    struct jbd2_revoke_record_s *record,
579				    int write_op)
580{
 
581	int csum_size = 0;
582	struct journal_head *descriptor;
583	int offset;
584	journal_header_t *header;
585
586	/* If we are already aborting, this all becomes a noop.  We
587           still need to go round the loop in
588           jbd2_journal_write_revoke_records in order to free all of the
589           revoke records: only the IO to the journal is omitted. */
590	if (is_journal_aborted(journal))
591		return;
592
593	descriptor = *descriptorp;
594	offset = *offsetp;
595
596	/* Do we need to leave space at the end for a checksum? */
597	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
598		csum_size = sizeof(struct jbd2_journal_revoke_tail);
 
 
 
 
 
599
600	/* Make sure we have a descriptor with space left for the record */
601	if (descriptor) {
602		if (offset >= journal->j_blocksize - csum_size) {
603			flush_descriptor(journal, descriptor, offset, write_op);
604			descriptor = NULL;
605		}
606	}
607
608	if (!descriptor) {
609		descriptor = jbd2_journal_get_descriptor_buffer(journal);
 
610		if (!descriptor)
611			return;
612		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
613		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
614		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
615		header->h_sequence  = cpu_to_be32(transaction->t_tid);
616
617		/* Record it so that we can wait for IO completion later */
618		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
619		jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
620
621		offset = sizeof(jbd2_journal_revoke_header_t);
622		*descriptorp = descriptor;
623	}
624
625	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
626		* ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
627			cpu_to_be64(record->blocknr);
628		offset += 8;
629
630	} else {
631		* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
632			cpu_to_be32(record->blocknr);
633		offset += 4;
634	}
635
636	*offsetp = offset;
637}
638
639static void jbd2_revoke_csum_set(journal_t *j,
640				 struct journal_head *descriptor)
641{
642	struct jbd2_journal_revoke_tail *tail;
643	__u32 csum;
644
645	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
646		return;
647
648	tail = (struct jbd2_journal_revoke_tail *)
649			(jh2bh(descriptor)->b_data + j->j_blocksize -
650			sizeof(struct jbd2_journal_revoke_tail));
651	tail->r_checksum = 0;
652	csum = jbd2_chksum(j, j->j_csum_seed, jh2bh(descriptor)->b_data,
653			   j->j_blocksize);
654	tail->r_checksum = cpu_to_be32(csum);
655}
656
657/*
658 * Flush a revoke descriptor out to the journal.  If we are aborting,
659 * this is a noop; otherwise we are generating a buffer which needs to
660 * be waited for during commit, so it has to go onto the appropriate
661 * journal buffer list.
662 */
663
664static void flush_descriptor(journal_t *journal,
665			     struct journal_head *descriptor,
666			     int offset, int write_op)
667{
668	jbd2_journal_revoke_header_t *header;
669	struct buffer_head *bh = jh2bh(descriptor);
670
671	if (is_journal_aborted(journal)) {
672		put_bh(bh);
673		return;
674	}
675
676	header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
677	header->r_count = cpu_to_be32(offset);
678	jbd2_revoke_csum_set(journal, descriptor);
679
680	set_buffer_jwrite(bh);
681	BUFFER_TRACE(bh, "write");
682	set_buffer_dirty(bh);
683	write_dirty_buffer(bh, write_op);
684}
685#endif
686
687/*
688 * Revoke support for recovery.
689 *
690 * Recovery needs to be able to:
691 *
692 *  record all revoke records, including the tid of the latest instance
693 *  of each revoke in the journal
694 *
695 *  check whether a given block in a given transaction should be replayed
696 *  (ie. has not been revoked by a revoke record in that or a subsequent
697 *  transaction)
698 *
699 *  empty the revoke table after recovery.
700 */
701
702/*
703 * First, setting revoke records.  We create a new revoke record for
704 * every block ever revoked in the log as we scan it for recovery, and
705 * we update the existing records if we find multiple revokes for a
706 * single block.
707 */
708
709int jbd2_journal_set_revoke(journal_t *journal,
710		       unsigned long long blocknr,
711		       tid_t sequence)
712{
713	struct jbd2_revoke_record_s *record;
714
715	record = find_revoke_record(journal, blocknr);
716	if (record) {
717		/* If we have multiple occurrences, only record the
718		 * latest sequence number in the hashed record */
719		if (tid_gt(sequence, record->sequence))
720			record->sequence = sequence;
721		return 0;
722	}
723	return insert_revoke_hash(journal, blocknr, sequence);
724}
725
726/*
727 * Test revoke records.  For a given block referenced in the log, has
728 * that block been revoked?  A revoke record with a given transaction
729 * sequence number revokes all blocks in that transaction and earlier
730 * ones, but later transactions still need replayed.
731 */
732
733int jbd2_journal_test_revoke(journal_t *journal,
734			unsigned long long blocknr,
735			tid_t sequence)
736{
737	struct jbd2_revoke_record_s *record;
738
739	record = find_revoke_record(journal, blocknr);
740	if (!record)
741		return 0;
742	if (tid_gt(sequence, record->sequence))
743		return 0;
744	return 1;
745}
746
747/*
748 * Finally, once recovery is over, we need to clear the revoke table so
749 * that it can be reused by the running filesystem.
750 */
751
752void jbd2_journal_clear_revoke(journal_t *journal)
753{
754	int i;
755	struct list_head *hash_list;
756	struct jbd2_revoke_record_s *record;
757	struct jbd2_revoke_table_s *revoke;
758
759	revoke = journal->j_revoke;
760
761	for (i = 0; i < revoke->hash_size; i++) {
762		hash_list = &revoke->hash_table[i];
763		while (!list_empty(hash_list)) {
764			record = (struct jbd2_revoke_record_s*) hash_list->next;
765			list_del(&record->hash);
766			kmem_cache_free(jbd2_revoke_record_cache, record);
767		}
768	}
769}