Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 12
 13/*
 14 * Read a root item from the tree. In case we detect a root item smaller then
 15 * sizeof(root_item), we know it's an old version of the root structure and
 16 * initialize all new fields to zero. The same happens if we detect mismatching
 17 * generation numbers as then we know the root was once mounted with an older
 18 * kernel that was not aware of the root item structure change.
 19 */
 20static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 21				struct btrfs_root_item *item)
 22{
 23	uuid_le uuid;
 24	int len;
 25	int need_reset = 0;
 26
 27	len = btrfs_item_size_nr(eb, slot);
 28	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 29			min_t(int, len, (int)sizeof(*item)));
 30	if (len < sizeof(*item))
 31		need_reset = 1;
 32	if (!need_reset && btrfs_root_generation(item)
 33		!= btrfs_root_generation_v2(item)) {
 34		if (btrfs_root_generation_v2(item) != 0) {
 35			btrfs_warn(eb->fs_info,
 36					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 37		}
 38		need_reset = 1;
 39	}
 40	if (need_reset) {
 41		memset(&item->generation_v2, 0,
 42			sizeof(*item) - offsetof(struct btrfs_root_item,
 43					generation_v2));
 44
 45		uuid_le_gen(&uuid);
 46		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 47	}
 48}
 49
 50/*
 51 * btrfs_find_root - lookup the root by the key.
 52 * root: the root of the root tree
 53 * search_key: the key to search
 54 * path: the path we search
 55 * root_item: the root item of the tree we look for
 56 * root_key: the root key of the tree we look for
 57 *
 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 59 * of the search key, just lookup the root with the highest offset for a
 60 * given objectid.
 61 *
 62 * If we find something return 0, otherwise > 0, < 0 on error.
 63 */
 64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 66		    struct btrfs_key *root_key)
 67{
 
 
 68	struct btrfs_key found_key;
 69	struct extent_buffer *l;
 70	int ret;
 71	int slot;
 72
 73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 
 
 
 
 
 
 
 74	if (ret < 0)
 75		return ret;
 76
 77	if (search_key->offset != -1ULL) {	/* the search key is exact */
 78		if (ret > 0)
 79			goto out;
 80	} else {
 81		BUG_ON(ret == 0);		/* Logical error */
 82		if (path->slots[0] == 0)
 83			goto out;
 84		path->slots[0]--;
 85		ret = 0;
 86	}
 87
 88	l = path->nodes[0];
 89	slot = path->slots[0];
 90
 91	btrfs_item_key_to_cpu(l, &found_key, slot);
 92	if (found_key.objectid != search_key->objectid ||
 93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 94		ret = 1;
 95		goto out;
 96	}
 97
 98	if (root_item)
 99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
 
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0) {
136		btrfs_abort_transaction(trans, ret);
137		goto out;
138	}
139
140	if (ret != 0) {
141		btrfs_print_leaf(path->nodes[0]);
142		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
143			   key->objectid, key->type, key->offset);
 
144		BUG_ON(1);
145	}
146
147	l = path->nodes[0];
148	slot = path->slots[0];
149	ptr = btrfs_item_ptr_offset(l, slot);
150	old_len = btrfs_item_size_nr(l, slot);
151
152	/*
153	 * If this is the first time we update the root item which originated
154	 * from an older kernel, we need to enlarge the item size to make room
155	 * for the added fields.
156	 */
157	if (old_len < sizeof(*item)) {
158		btrfs_release_path(path);
159		ret = btrfs_search_slot(trans, root, key, path,
160				-1, 1);
161		if (ret < 0) {
162			btrfs_abort_transaction(trans, ret);
163			goto out;
164		}
165
166		ret = btrfs_del_item(trans, root, path);
167		if (ret < 0) {
168			btrfs_abort_transaction(trans, ret);
169			goto out;
170		}
171		btrfs_release_path(path);
172		ret = btrfs_insert_empty_item(trans, root, path,
173				key, sizeof(*item));
174		if (ret < 0) {
175			btrfs_abort_transaction(trans, ret);
176			goto out;
177		}
178		l = path->nodes[0];
179		slot = path->slots[0];
180		ptr = btrfs_item_ptr_offset(l, slot);
181	}
182
183	/*
184	 * Update generation_v2 so at the next mount we know the new root
185	 * fields are valid.
186	 */
187	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
188
189	write_extent_buffer(l, item, ptr, sizeof(*item));
190	btrfs_mark_buffer_dirty(path->nodes[0]);
191out:
192	btrfs_free_path(path);
193	return ret;
194}
195
196int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
197		      const struct btrfs_key *key, struct btrfs_root_item *item)
198{
199	/*
200	 * Make sure generation v1 and v2 match. See update_root for details.
201	 */
202	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
203	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
204}
205
206int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207{
208	struct btrfs_root *tree_root = fs_info->tree_root;
209	struct extent_buffer *leaf;
210	struct btrfs_path *path;
211	struct btrfs_key key;
212	struct btrfs_key root_key;
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
225	root_key.type = BTRFS_ROOT_ITEM_KEY;
226	root_key.offset = (u64)-1;
227
228	while (1) {
229		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
230		if (ret < 0) {
231			err = ret;
232			break;
233		}
234
235		leaf = path->nodes[0];
236		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
237			ret = btrfs_next_leaf(tree_root, path);
238			if (ret < 0)
239				err = ret;
240			if (ret != 0)
241				break;
242			leaf = path->nodes[0];
243		}
244
245		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
246		btrfs_release_path(path);
247
248		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
249		    key.type != BTRFS_ORPHAN_ITEM_KEY)
250			break;
251
252		root_key.objectid = key.offset;
253		key.offset++;
254
255		/*
256		 * The root might have been inserted already, as before we look
257		 * for orphan roots, log replay might have happened, which
258		 * triggers a transaction commit and qgroup accounting, which
259		 * in turn reads and inserts fs roots while doing backref
260		 * walking.
261		 */
262		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
263		if (root) {
264			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
265					  &root->state));
266			if (btrfs_root_refs(&root->root_item) == 0)
267				btrfs_add_dead_root(root);
268			continue;
269		}
270
271		root = btrfs_read_fs_root(tree_root, &root_key);
272		err = PTR_ERR_OR_ZERO(root);
273		if (err && err != -ENOENT) {
274			break;
275		} else if (err == -ENOENT) {
276			struct btrfs_trans_handle *trans;
277
278			btrfs_release_path(path);
279
280			trans = btrfs_join_transaction(tree_root);
281			if (IS_ERR(trans)) {
282				err = PTR_ERR(trans);
283				btrfs_handle_fs_error(fs_info, err,
284					    "Failed to start trans to delete orphan item");
285				break;
286			}
287			err = btrfs_del_orphan_item(trans, tree_root,
288						    root_key.objectid);
289			btrfs_end_transaction(trans);
290			if (err) {
291				btrfs_handle_fs_error(fs_info, err,
292					    "Failed to delete root orphan item");
293				break;
294			}
295			continue;
296		}
297
298		err = btrfs_init_fs_root(root);
299		if (err) {
300			btrfs_free_fs_root(root);
301			break;
302		}
303
304		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
305
306		err = btrfs_insert_fs_root(fs_info, root);
307		if (err) {
308			BUG_ON(err == -EEXIST);
309			btrfs_free_fs_root(root);
310			break;
311		}
312
313		if (btrfs_root_refs(&root->root_item) == 0)
314			btrfs_add_dead_root(root);
315	}
316
317	btrfs_free_path(path);
318	return err;
319}
320
321/* drop the root item for 'key' from the tree root */
322int btrfs_del_root(struct btrfs_trans_handle *trans,
323		   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
324{
325	struct btrfs_root *root = fs_info->tree_root;
326	struct btrfs_path *path;
327	int ret;
 
 
328
329	path = btrfs_alloc_path();
330	if (!path)
331		return -ENOMEM;
332	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
333	if (ret < 0)
334		goto out;
335
336	BUG_ON(ret != 0);
 
 
337
338	ret = btrfs_del_item(trans, root, path);
339out:
340	btrfs_free_path(path);
341	return ret;
342}
343
344int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
345		       struct btrfs_fs_info *fs_info,
346		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
347		       const char *name, int name_len)
348
349{
350	struct btrfs_root *tree_root = fs_info->tree_root;
351	struct btrfs_path *path;
352	struct btrfs_root_ref *ref;
353	struct extent_buffer *leaf;
354	struct btrfs_key key;
355	unsigned long ptr;
356	int err = 0;
357	int ret;
358
359	path = btrfs_alloc_path();
360	if (!path)
361		return -ENOMEM;
362
363	key.objectid = root_id;
364	key.type = BTRFS_ROOT_BACKREF_KEY;
365	key.offset = ref_id;
366again:
367	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
368	BUG_ON(ret < 0);
369	if (ret == 0) {
370		leaf = path->nodes[0];
371		ref = btrfs_item_ptr(leaf, path->slots[0],
372				     struct btrfs_root_ref);
373
374		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
375		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
376		ptr = (unsigned long)(ref + 1);
377		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
378		*sequence = btrfs_root_ref_sequence(leaf, ref);
379
380		ret = btrfs_del_item(trans, tree_root, path);
381		if (ret) {
382			err = ret;
383			goto out;
384		}
385	} else
386		err = -ENOENT;
387
388	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
389		btrfs_release_path(path);
390		key.objectid = ref_id;
391		key.type = BTRFS_ROOT_REF_KEY;
392		key.offset = root_id;
393		goto again;
394	}
395
396out:
397	btrfs_free_path(path);
398	return err;
399}
400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401/*
402 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
403 * or BTRFS_ROOT_BACKREF_KEY.
404 *
405 * The dirid, sequence, name and name_len refer to the directory entry
406 * that is referencing the root.
407 *
408 * For a forward ref, the root_id is the id of the tree referencing
409 * the root and ref_id is the id of the subvol  or snapshot.
410 *
411 * For a back ref the root_id is the id of the subvol or snapshot and
412 * ref_id is the id of the tree referencing it.
413 *
414 * Will return 0, -ENOMEM, or anything from the CoW path
415 */
416int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
417		       struct btrfs_fs_info *fs_info,
418		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
419		       const char *name, int name_len)
420{
421	struct btrfs_root *tree_root = fs_info->tree_root;
422	struct btrfs_key key;
423	int ret;
424	struct btrfs_path *path;
425	struct btrfs_root_ref *ref;
426	struct extent_buffer *leaf;
427	unsigned long ptr;
428
429	path = btrfs_alloc_path();
430	if (!path)
431		return -ENOMEM;
432
433	key.objectid = root_id;
434	key.type = BTRFS_ROOT_BACKREF_KEY;
435	key.offset = ref_id;
436again:
437	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
438				      sizeof(*ref) + name_len);
439	if (ret) {
440		btrfs_abort_transaction(trans, ret);
441		btrfs_free_path(path);
442		return ret;
443	}
444
445	leaf = path->nodes[0];
446	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
447	btrfs_set_root_ref_dirid(leaf, ref, dirid);
448	btrfs_set_root_ref_sequence(leaf, ref, sequence);
449	btrfs_set_root_ref_name_len(leaf, ref, name_len);
450	ptr = (unsigned long)(ref + 1);
451	write_extent_buffer(leaf, name, ptr, name_len);
452	btrfs_mark_buffer_dirty(leaf);
453
454	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
455		btrfs_release_path(path);
456		key.objectid = ref_id;
457		key.type = BTRFS_ROOT_REF_KEY;
458		key.offset = root_id;
459		goto again;
460	}
461
462	btrfs_free_path(path);
463	return 0;
464}
465
466/*
467 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
468 * for subvolumes. To work around this problem, we steal a bit from
469 * root_item->inode_item->flags, and use it to indicate if those fields
470 * have been properly initialized.
471 */
472void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
473{
474	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
475
476	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
477		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
478		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
479		btrfs_set_root_flags(root_item, 0);
480		btrfs_set_root_limit(root_item, 0);
481	}
482}
483
484void btrfs_update_root_times(struct btrfs_trans_handle *trans,
485			     struct btrfs_root *root)
486{
487	struct btrfs_root_item *item = &root->root_item;
488	struct timespec ct;
489
490	ktime_get_real_ts(&ct);
491	spin_lock(&root->root_item_lock);
492	btrfs_set_root_ctransid(item, trans->transid);
493	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
494	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
495	spin_unlock(&root->root_item_lock);
496}
v3.5.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 
 
 19#include "ctree.h"
 20#include "transaction.h"
 21#include "disk-io.h"
 22#include "print-tree.h"
 23
 24/*
 25 * lookup the root with the highest offset for a given objectid.  The key we do
 26 * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
 27 * on error.
 
 
 28 */
 29int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
 30			struct btrfs_root_item *item, struct btrfs_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	struct btrfs_path *path;
 33	struct btrfs_key search_key;
 34	struct btrfs_key found_key;
 35	struct extent_buffer *l;
 36	int ret;
 37	int slot;
 38
 39	search_key.objectid = objectid;
 40	search_key.type = BTRFS_ROOT_ITEM_KEY;
 41	search_key.offset = (u64)-1;
 42
 43	path = btrfs_alloc_path();
 44	if (!path)
 45		return -ENOMEM;
 46	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 47	if (ret < 0)
 48		goto out;
 49
 50	BUG_ON(ret == 0);
 51	if (path->slots[0] == 0) {
 52		ret = 1;
 53		goto out;
 
 
 
 
 
 54	}
 
 55	l = path->nodes[0];
 56	slot = path->slots[0] - 1;
 
 57	btrfs_item_key_to_cpu(l, &found_key, slot);
 58	if (found_key.objectid != objectid ||
 59	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 60		ret = 1;
 61		goto out;
 62	}
 63	if (item)
 64		read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
 65				   sizeof(*item));
 66	if (key)
 67		memcpy(key, &found_key, sizeof(found_key));
 68	ret = 0;
 69out:
 70	btrfs_free_path(path);
 71	return ret;
 72}
 73
 74void btrfs_set_root_node(struct btrfs_root_item *item,
 75			 struct extent_buffer *node)
 76{
 77	btrfs_set_root_bytenr(item, node->start);
 78	btrfs_set_root_level(item, btrfs_header_level(node));
 79	btrfs_set_root_generation(item, btrfs_header_generation(node));
 80}
 81
 82/*
 83 * copy the data in 'item' into the btree
 84 */
 85int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
 86		      *root, struct btrfs_key *key, struct btrfs_root_item
 87		      *item)
 88{
 
 89	struct btrfs_path *path;
 90	struct extent_buffer *l;
 91	int ret;
 92	int slot;
 93	unsigned long ptr;
 
 94
 95	path = btrfs_alloc_path();
 96	if (!path)
 97		return -ENOMEM;
 98
 99	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
100	if (ret < 0) {
101		btrfs_abort_transaction(trans, root, ret);
102		goto out;
103	}
104
105	if (ret != 0) {
106		btrfs_print_leaf(root, path->nodes[0]);
107		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
108		       (unsigned long long)key->objectid, key->type,
109		       (unsigned long long)key->offset);
110		BUG_ON(1);
111	}
112
113	l = path->nodes[0];
114	slot = path->slots[0];
115	ptr = btrfs_item_ptr_offset(l, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116	write_extent_buffer(l, item, ptr, sizeof(*item));
117	btrfs_mark_buffer_dirty(path->nodes[0]);
118out:
119	btrfs_free_path(path);
120	return ret;
121}
122
123int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
124		      struct btrfs_key *key, struct btrfs_root_item *item)
125{
 
 
 
 
126	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
127}
128
129/*
130 * at mount time we want to find all the old transaction snapshots that were in
131 * the process of being deleted if we crashed.  This is any root item with an
132 * offset lower than the latest root.  They need to be queued for deletion to
133 * finish what was happening when we crashed.
134 */
135int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
136{
137	struct btrfs_root *dead_root;
138	struct btrfs_root_item *ri;
139	struct btrfs_key key;
140	struct btrfs_key found_key;
141	struct btrfs_path *path;
142	int ret;
143	u32 nritems;
144	struct extent_buffer *leaf;
145	int slot;
146
147	key.objectid = objectid;
148	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
149	key.offset = 0;
150	path = btrfs_alloc_path();
151	if (!path)
152		return -ENOMEM;
153
154again:
155	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
156	if (ret < 0)
157		goto err;
158	while (1) {
159		leaf = path->nodes[0];
160		nritems = btrfs_header_nritems(leaf);
161		slot = path->slots[0];
162		if (slot >= nritems) {
163			ret = btrfs_next_leaf(root, path);
164			if (ret)
165				break;
166			leaf = path->nodes[0];
167			nritems = btrfs_header_nritems(leaf);
168			slot = path->slots[0];
169		}
170		btrfs_item_key_to_cpu(leaf, &key, slot);
171		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
172			goto next;
173
174		if (key.objectid < objectid)
175			goto next;
176
177		if (key.objectid > objectid)
178			break;
179
180		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
181		if (btrfs_disk_root_refs(leaf, ri) != 0)
182			goto next;
183
184		memcpy(&found_key, &key, sizeof(key));
185		key.offset++;
186		btrfs_release_path(path);
187		dead_root =
188			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
189						    &found_key);
190		if (IS_ERR(dead_root)) {
191			ret = PTR_ERR(dead_root);
192			goto err;
193		}
194
195		ret = btrfs_add_dead_root(dead_root);
196		if (ret)
197			goto err;
198		goto again;
199next:
200		slot++;
201		path->slots[0]++;
202	}
203	ret = 0;
204err:
205	btrfs_free_path(path);
206	return ret;
207}
208
209int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
210{
 
211	struct extent_buffer *leaf;
212	struct btrfs_path *path;
213	struct btrfs_key key;
214	struct btrfs_key root_key;
215	struct btrfs_root *root;
216	int err = 0;
217	int ret;
218
219	path = btrfs_alloc_path();
220	if (!path)
221		return -ENOMEM;
222
223	key.objectid = BTRFS_ORPHAN_OBJECTID;
224	key.type = BTRFS_ORPHAN_ITEM_KEY;
225	key.offset = 0;
226
227	root_key.type = BTRFS_ROOT_ITEM_KEY;
228	root_key.offset = (u64)-1;
229
230	while (1) {
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_key.objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
258						  &root_key);
259		if (!IS_ERR(root))
 
 
 
 
 
 
 
 
 
 
260			continue;
 
261
262		ret = PTR_ERR(root);
263		if (ret != -ENOENT) {
264			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265			break;
266		}
267
268		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
269		if (ret) {
270			err = ret;
 
 
 
271			break;
272		}
 
 
 
273	}
274
275	btrfs_free_path(path);
276	return err;
277}
278
279/* drop the root item for 'key' from 'root' */
280int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
281		   struct btrfs_key *key)
282{
 
283	struct btrfs_path *path;
284	int ret;
285	struct btrfs_root_item *ri;
286	struct extent_buffer *leaf;
287
288	path = btrfs_alloc_path();
289	if (!path)
290		return -ENOMEM;
291	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
292	if (ret < 0)
293		goto out;
294
295	BUG_ON(ret != 0);
296	leaf = path->nodes[0];
297	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
298
299	ret = btrfs_del_item(trans, root, path);
300out:
301	btrfs_free_path(path);
302	return ret;
303}
304
305int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
306		       struct btrfs_root *tree_root,
307		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
308		       const char *name, int name_len)
309
310{
 
311	struct btrfs_path *path;
312	struct btrfs_root_ref *ref;
313	struct extent_buffer *leaf;
314	struct btrfs_key key;
315	unsigned long ptr;
316	int err = 0;
317	int ret;
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322
323	key.objectid = root_id;
324	key.type = BTRFS_ROOT_BACKREF_KEY;
325	key.offset = ref_id;
326again:
327	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
328	BUG_ON(ret < 0);
329	if (ret == 0) {
330		leaf = path->nodes[0];
331		ref = btrfs_item_ptr(leaf, path->slots[0],
332				     struct btrfs_root_ref);
333
334		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
335		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
336		ptr = (unsigned long)(ref + 1);
337		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
338		*sequence = btrfs_root_ref_sequence(leaf, ref);
339
340		ret = btrfs_del_item(trans, tree_root, path);
341		if (ret) {
342			err = ret;
343			goto out;
344		}
345	} else
346		err = -ENOENT;
347
348	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
349		btrfs_release_path(path);
350		key.objectid = ref_id;
351		key.type = BTRFS_ROOT_REF_KEY;
352		key.offset = root_id;
353		goto again;
354	}
355
356out:
357	btrfs_free_path(path);
358	return err;
359}
360
361int btrfs_find_root_ref(struct btrfs_root *tree_root,
362		   struct btrfs_path *path,
363		   u64 root_id, u64 ref_id)
364{
365	struct btrfs_key key;
366	int ret;
367
368	key.objectid = root_id;
369	key.type = BTRFS_ROOT_REF_KEY;
370	key.offset = ref_id;
371
372	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
373	return ret;
374}
375
376/*
377 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
378 * or BTRFS_ROOT_BACKREF_KEY.
379 *
380 * The dirid, sequence, name and name_len refer to the directory entry
381 * that is referencing the root.
382 *
383 * For a forward ref, the root_id is the id of the tree referencing
384 * the root and ref_id is the id of the subvol  or snapshot.
385 *
386 * For a back ref the root_id is the id of the subvol or snapshot and
387 * ref_id is the id of the tree referencing it.
388 *
389 * Will return 0, -ENOMEM, or anything from the CoW path
390 */
391int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
392		       struct btrfs_root *tree_root,
393		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
394		       const char *name, int name_len)
395{
 
396	struct btrfs_key key;
397	int ret;
398	struct btrfs_path *path;
399	struct btrfs_root_ref *ref;
400	struct extent_buffer *leaf;
401	unsigned long ptr;
402
403	path = btrfs_alloc_path();
404	if (!path)
405		return -ENOMEM;
406
407	key.objectid = root_id;
408	key.type = BTRFS_ROOT_BACKREF_KEY;
409	key.offset = ref_id;
410again:
411	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
412				      sizeof(*ref) + name_len);
413	if (ret) {
414		btrfs_abort_transaction(trans, tree_root, ret);
415		btrfs_free_path(path);
416		return ret;
417	}
418
419	leaf = path->nodes[0];
420	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
421	btrfs_set_root_ref_dirid(leaf, ref, dirid);
422	btrfs_set_root_ref_sequence(leaf, ref, sequence);
423	btrfs_set_root_ref_name_len(leaf, ref, name_len);
424	ptr = (unsigned long)(ref + 1);
425	write_extent_buffer(leaf, name, ptr, name_len);
426	btrfs_mark_buffer_dirty(leaf);
427
428	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
429		btrfs_release_path(path);
430		key.objectid = ref_id;
431		key.type = BTRFS_ROOT_REF_KEY;
432		key.offset = root_id;
433		goto again;
434	}
435
436	btrfs_free_path(path);
437	return 0;
438}
439
440/*
441 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
442 * for subvolumes. To work around this problem, we steal a bit from
443 * root_item->inode_item->flags, and use it to indicate if those fields
444 * have been properly initialized.
445 */
446void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
447{
448	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
449
450	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
451		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
452		root_item->inode.flags = cpu_to_le64(inode_flags);
453		root_item->flags = 0;
454		root_item->byte_limit = 0;
455	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456}