Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Tty buffer allocation management
4 */
5
6#include <linux/types.h>
7#include <linux/errno.h>
8#include <linux/tty.h>
9#include <linux/tty_driver.h>
10#include <linux/tty_flip.h>
11#include <linux/timer.h>
12#include <linux/string.h>
13#include <linux/slab.h>
14#include <linux/sched.h>
15#include <linux/wait.h>
16#include <linux/bitops.h>
17#include <linux/delay.h>
18#include <linux/module.h>
19#include <linux/ratelimit.h>
20
21
22#define MIN_TTYB_SIZE 256
23#define TTYB_ALIGN_MASK 255
24
25/*
26 * Byte threshold to limit memory consumption for flip buffers.
27 * The actual memory limit is > 2x this amount.
28 */
29#define TTYB_DEFAULT_MEM_LIMIT 65536
30
31/*
32 * We default to dicing tty buffer allocations to this many characters
33 * in order to avoid multiple page allocations. We know the size of
34 * tty_buffer itself but it must also be taken into account that the
35 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
36 * logic this must match
37 */
38
39#define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
40
41/**
42 * tty_buffer_lock_exclusive - gain exclusive access to buffer
43 * tty_buffer_unlock_exclusive - release exclusive access
44 *
45 * @port - tty_port owning the flip buffer
46 *
47 * Guarantees safe use of the line discipline's receive_buf() method by
48 * excluding the buffer work and any pending flush from using the flip
49 * buffer. Data can continue to be added concurrently to the flip buffer
50 * from the driver side.
51 *
52 * On release, the buffer work is restarted if there is data in the
53 * flip buffer
54 */
55
56void tty_buffer_lock_exclusive(struct tty_port *port)
57{
58 struct tty_bufhead *buf = &port->buf;
59
60 atomic_inc(&buf->priority);
61 mutex_lock(&buf->lock);
62}
63EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
64
65void tty_buffer_unlock_exclusive(struct tty_port *port)
66{
67 struct tty_bufhead *buf = &port->buf;
68 int restart;
69
70 restart = buf->head->commit != buf->head->read;
71
72 atomic_dec(&buf->priority);
73 mutex_unlock(&buf->lock);
74 if (restart)
75 queue_work(system_unbound_wq, &buf->work);
76}
77EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
78
79/**
80 * tty_buffer_space_avail - return unused buffer space
81 * @port - tty_port owning the flip buffer
82 *
83 * Returns the # of bytes which can be written by the driver without
84 * reaching the buffer limit.
85 *
86 * Note: this does not guarantee that memory is available to write
87 * the returned # of bytes (use tty_prepare_flip_string_xxx() to
88 * pre-allocate if memory guarantee is required).
89 */
90
91int tty_buffer_space_avail(struct tty_port *port)
92{
93 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
94 return max(space, 0);
95}
96EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
97
98static void tty_buffer_reset(struct tty_buffer *p, size_t size)
99{
100 p->used = 0;
101 p->size = size;
102 p->next = NULL;
103 p->commit = 0;
104 p->read = 0;
105 p->flags = 0;
106}
107
108/**
109 * tty_buffer_free_all - free buffers used by a tty
110 * @tty: tty to free from
111 *
112 * Remove all the buffers pending on a tty whether queued with data
113 * or in the free ring. Must be called when the tty is no longer in use
114 */
115
116void tty_buffer_free_all(struct tty_port *port)
117{
118 struct tty_bufhead *buf = &port->buf;
119 struct tty_buffer *p, *next;
120 struct llist_node *llist;
121
122 while ((p = buf->head) != NULL) {
123 buf->head = p->next;
124 if (p->size > 0)
125 kfree(p);
126 }
127 llist = llist_del_all(&buf->free);
128 llist_for_each_entry_safe(p, next, llist, free)
129 kfree(p);
130
131 tty_buffer_reset(&buf->sentinel, 0);
132 buf->head = &buf->sentinel;
133 buf->tail = &buf->sentinel;
134
135 atomic_set(&buf->mem_used, 0);
136}
137
138/**
139 * tty_buffer_alloc - allocate a tty buffer
140 * @tty: tty device
141 * @size: desired size (characters)
142 *
143 * Allocate a new tty buffer to hold the desired number of characters.
144 * We round our buffers off in 256 character chunks to get better
145 * allocation behaviour.
146 * Return NULL if out of memory or the allocation would exceed the
147 * per device queue
148 */
149
150static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
151{
152 struct llist_node *free;
153 struct tty_buffer *p;
154
155 /* Round the buffer size out */
156 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
157
158 if (size <= MIN_TTYB_SIZE) {
159 free = llist_del_first(&port->buf.free);
160 if (free) {
161 p = llist_entry(free, struct tty_buffer, free);
162 goto found;
163 }
164 }
165
166 /* Should possibly check if this fails for the largest buffer we
167 have queued and recycle that ? */
168 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
169 return NULL;
170 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
171 if (p == NULL)
172 return NULL;
173
174found:
175 tty_buffer_reset(p, size);
176 atomic_add(size, &port->buf.mem_used);
177 return p;
178}
179
180/**
181 * tty_buffer_free - free a tty buffer
182 * @tty: tty owning the buffer
183 * @b: the buffer to free
184 *
185 * Free a tty buffer, or add it to the free list according to our
186 * internal strategy
187 */
188
189static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
190{
191 struct tty_bufhead *buf = &port->buf;
192
193 /* Dumb strategy for now - should keep some stats */
194 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
195
196 if (b->size > MIN_TTYB_SIZE)
197 kfree(b);
198 else if (b->size > 0)
199 llist_add(&b->free, &buf->free);
200}
201
202/**
203 * tty_buffer_flush - flush full tty buffers
204 * @tty: tty to flush
205 * @ld: optional ldisc ptr (must be referenced)
206 *
207 * flush all the buffers containing receive data. If ld != NULL,
208 * flush the ldisc input buffer.
209 *
210 * Locking: takes buffer lock to ensure single-threaded flip buffer
211 * 'consumer'
212 */
213
214void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
215{
216 struct tty_port *port = tty->port;
217 struct tty_bufhead *buf = &port->buf;
218 struct tty_buffer *next;
219
220 atomic_inc(&buf->priority);
221
222 mutex_lock(&buf->lock);
223 /* paired w/ release in __tty_buffer_request_room; ensures there are
224 * no pending memory accesses to the freed buffer
225 */
226 while ((next = smp_load_acquire(&buf->head->next)) != NULL) {
227 tty_buffer_free(port, buf->head);
228 buf->head = next;
229 }
230 buf->head->read = buf->head->commit;
231
232 if (ld && ld->ops->flush_buffer)
233 ld->ops->flush_buffer(tty);
234
235 atomic_dec(&buf->priority);
236 mutex_unlock(&buf->lock);
237}
238
239/**
240 * tty_buffer_request_room - grow tty buffer if needed
241 * @tty: tty structure
242 * @size: size desired
243 * @flags: buffer flags if new buffer allocated (default = 0)
244 *
245 * Make at least size bytes of linear space available for the tty
246 * buffer. If we fail return the size we managed to find.
247 *
248 * Will change over to a new buffer if the current buffer is encoded as
249 * TTY_NORMAL (so has no flags buffer) and the new buffer requires
250 * a flags buffer.
251 */
252static int __tty_buffer_request_room(struct tty_port *port, size_t size,
253 int flags)
254{
255 struct tty_bufhead *buf = &port->buf;
256 struct tty_buffer *b, *n;
257 int left, change;
258
259 b = buf->tail;
260 if (b->flags & TTYB_NORMAL)
261 left = 2 * b->size - b->used;
262 else
263 left = b->size - b->used;
264
265 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
266 if (change || left < size) {
267 /* This is the slow path - looking for new buffers to use */
268 n = tty_buffer_alloc(port, size);
269 if (n != NULL) {
270 n->flags = flags;
271 buf->tail = n;
272 /* paired w/ acquire in flush_to_ldisc(); ensures
273 * flush_to_ldisc() sees buffer data.
274 */
275 smp_store_release(&b->commit, b->used);
276 /* paired w/ acquire in flush_to_ldisc(); ensures the
277 * latest commit value can be read before the head is
278 * advanced to the next buffer
279 */
280 smp_store_release(&b->next, n);
281 } else if (change)
282 size = 0;
283 else
284 size = left;
285 }
286 return size;
287}
288
289int tty_buffer_request_room(struct tty_port *port, size_t size)
290{
291 return __tty_buffer_request_room(port, size, 0);
292}
293EXPORT_SYMBOL_GPL(tty_buffer_request_room);
294
295/**
296 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
297 * @port: tty port
298 * @chars: characters
299 * @flag: flag value for each character
300 * @size: size
301 *
302 * Queue a series of bytes to the tty buffering. All the characters
303 * passed are marked with the supplied flag. Returns the number added.
304 */
305
306int tty_insert_flip_string_fixed_flag(struct tty_port *port,
307 const unsigned char *chars, char flag, size_t size)
308{
309 int copied = 0;
310 do {
311 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
312 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
313 int space = __tty_buffer_request_room(port, goal, flags);
314 struct tty_buffer *tb = port->buf.tail;
315 if (unlikely(space == 0))
316 break;
317 memcpy(char_buf_ptr(tb, tb->used), chars, space);
318 if (~tb->flags & TTYB_NORMAL)
319 memset(flag_buf_ptr(tb, tb->used), flag, space);
320 tb->used += space;
321 copied += space;
322 chars += space;
323 /* There is a small chance that we need to split the data over
324 several buffers. If this is the case we must loop */
325 } while (unlikely(size > copied));
326 return copied;
327}
328EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
329
330/**
331 * tty_insert_flip_string_flags - Add characters to the tty buffer
332 * @port: tty port
333 * @chars: characters
334 * @flags: flag bytes
335 * @size: size
336 *
337 * Queue a series of bytes to the tty buffering. For each character
338 * the flags array indicates the status of the character. Returns the
339 * number added.
340 */
341
342int tty_insert_flip_string_flags(struct tty_port *port,
343 const unsigned char *chars, const char *flags, size_t size)
344{
345 int copied = 0;
346 do {
347 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
348 int space = tty_buffer_request_room(port, goal);
349 struct tty_buffer *tb = port->buf.tail;
350 if (unlikely(space == 0))
351 break;
352 memcpy(char_buf_ptr(tb, tb->used), chars, space);
353 memcpy(flag_buf_ptr(tb, tb->used), flags, space);
354 tb->used += space;
355 copied += space;
356 chars += space;
357 flags += space;
358 /* There is a small chance that we need to split the data over
359 several buffers. If this is the case we must loop */
360 } while (unlikely(size > copied));
361 return copied;
362}
363EXPORT_SYMBOL(tty_insert_flip_string_flags);
364
365/**
366 * __tty_insert_flip_char - Add one character to the tty buffer
367 * @port: tty port
368 * @ch: character
369 * @flag: flag byte
370 *
371 * Queue a single byte to the tty buffering, with an optional flag.
372 * This is the slow path of tty_insert_flip_char.
373 */
374int __tty_insert_flip_char(struct tty_port *port, unsigned char ch, char flag)
375{
376 struct tty_buffer *tb;
377 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
378
379 if (!__tty_buffer_request_room(port, 1, flags))
380 return 0;
381
382 tb = port->buf.tail;
383 if (~tb->flags & TTYB_NORMAL)
384 *flag_buf_ptr(tb, tb->used) = flag;
385 *char_buf_ptr(tb, tb->used++) = ch;
386
387 return 1;
388}
389EXPORT_SYMBOL(__tty_insert_flip_char);
390
391/**
392 * tty_schedule_flip - push characters to ldisc
393 * @port: tty port to push from
394 *
395 * Takes any pending buffers and transfers their ownership to the
396 * ldisc side of the queue. It then schedules those characters for
397 * processing by the line discipline.
398 */
399
400void tty_schedule_flip(struct tty_port *port)
401{
402 struct tty_bufhead *buf = &port->buf;
403
404 /* paired w/ acquire in flush_to_ldisc(); ensures
405 * flush_to_ldisc() sees buffer data.
406 */
407 smp_store_release(&buf->tail->commit, buf->tail->used);
408 queue_work(system_unbound_wq, &buf->work);
409}
410EXPORT_SYMBOL(tty_schedule_flip);
411
412/**
413 * tty_prepare_flip_string - make room for characters
414 * @port: tty port
415 * @chars: return pointer for character write area
416 * @size: desired size
417 *
418 * Prepare a block of space in the buffer for data. Returns the length
419 * available and buffer pointer to the space which is now allocated and
420 * accounted for as ready for normal characters. This is used for drivers
421 * that need their own block copy routines into the buffer. There is no
422 * guarantee the buffer is a DMA target!
423 */
424
425int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
426 size_t size)
427{
428 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
429 if (likely(space)) {
430 struct tty_buffer *tb = port->buf.tail;
431 *chars = char_buf_ptr(tb, tb->used);
432 if (~tb->flags & TTYB_NORMAL)
433 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
434 tb->used += space;
435 }
436 return space;
437}
438EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
439
440/**
441 * tty_ldisc_receive_buf - forward data to line discipline
442 * @ld: line discipline to process input
443 * @p: char buffer
444 * @f: TTY_* flags buffer
445 * @count: number of bytes to process
446 *
447 * Callers other than flush_to_ldisc() need to exclude the kworker
448 * from concurrent use of the line discipline, see paste_selection().
449 *
450 * Returns the number of bytes processed
451 */
452int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p,
453 char *f, int count)
454{
455 if (ld->ops->receive_buf2)
456 count = ld->ops->receive_buf2(ld->tty, p, f, count);
457 else {
458 count = min_t(int, count, ld->tty->receive_room);
459 if (count && ld->ops->receive_buf)
460 ld->ops->receive_buf(ld->tty, p, f, count);
461 }
462 return count;
463}
464EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf);
465
466static int
467receive_buf(struct tty_port *port, struct tty_buffer *head, int count)
468{
469 unsigned char *p = char_buf_ptr(head, head->read);
470 char *f = NULL;
471
472 if (~head->flags & TTYB_NORMAL)
473 f = flag_buf_ptr(head, head->read);
474
475 return port->client_ops->receive_buf(port, p, f, count);
476}
477
478/**
479 * flush_to_ldisc
480 * @work: tty structure passed from work queue.
481 *
482 * This routine is called out of the software interrupt to flush data
483 * from the buffer chain to the line discipline.
484 *
485 * The receive_buf method is single threaded for each tty instance.
486 *
487 * Locking: takes buffer lock to ensure single-threaded flip buffer
488 * 'consumer'
489 */
490
491static void flush_to_ldisc(struct work_struct *work)
492{
493 struct tty_port *port = container_of(work, struct tty_port, buf.work);
494 struct tty_bufhead *buf = &port->buf;
495
496 mutex_lock(&buf->lock);
497
498 while (1) {
499 struct tty_buffer *head = buf->head;
500 struct tty_buffer *next;
501 int count;
502
503 /* Ldisc or user is trying to gain exclusive access */
504 if (atomic_read(&buf->priority))
505 break;
506
507 /* paired w/ release in __tty_buffer_request_room();
508 * ensures commit value read is not stale if the head
509 * is advancing to the next buffer
510 */
511 next = smp_load_acquire(&head->next);
512 /* paired w/ release in __tty_buffer_request_room() or in
513 * tty_buffer_flush(); ensures we see the committed buffer data
514 */
515 count = smp_load_acquire(&head->commit) - head->read;
516 if (!count) {
517 if (next == NULL)
518 break;
519 buf->head = next;
520 tty_buffer_free(port, head);
521 continue;
522 }
523
524 count = receive_buf(port, head, count);
525 if (!count)
526 break;
527 head->read += count;
528 }
529
530 mutex_unlock(&buf->lock);
531
532}
533
534/**
535 * tty_flip_buffer_push - terminal
536 * @port: tty port to push
537 *
538 * Queue a push of the terminal flip buffers to the line discipline.
539 * Can be called from IRQ/atomic context.
540 *
541 * In the event of the queue being busy for flipping the work will be
542 * held off and retried later.
543 */
544
545void tty_flip_buffer_push(struct tty_port *port)
546{
547 tty_schedule_flip(port);
548}
549EXPORT_SYMBOL(tty_flip_buffer_push);
550
551/**
552 * tty_buffer_init - prepare a tty buffer structure
553 * @tty: tty to initialise
554 *
555 * Set up the initial state of the buffer management for a tty device.
556 * Must be called before the other tty buffer functions are used.
557 */
558
559void tty_buffer_init(struct tty_port *port)
560{
561 struct tty_bufhead *buf = &port->buf;
562
563 mutex_init(&buf->lock);
564 tty_buffer_reset(&buf->sentinel, 0);
565 buf->head = &buf->sentinel;
566 buf->tail = &buf->sentinel;
567 init_llist_head(&buf->free);
568 atomic_set(&buf->mem_used, 0);
569 atomic_set(&buf->priority, 0);
570 INIT_WORK(&buf->work, flush_to_ldisc);
571 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
572}
573
574/**
575 * tty_buffer_set_limit - change the tty buffer memory limit
576 * @port: tty port to change
577 *
578 * Change the tty buffer memory limit.
579 * Must be called before the other tty buffer functions are used.
580 */
581
582int tty_buffer_set_limit(struct tty_port *port, int limit)
583{
584 if (limit < MIN_TTYB_SIZE)
585 return -EINVAL;
586 port->buf.mem_limit = limit;
587 return 0;
588}
589EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
590
591/* slave ptys can claim nested buffer lock when handling BRK and INTR */
592void tty_buffer_set_lock_subclass(struct tty_port *port)
593{
594 lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
595}
596
597bool tty_buffer_restart_work(struct tty_port *port)
598{
599 return queue_work(system_unbound_wq, &port->buf.work);
600}
601
602bool tty_buffer_cancel_work(struct tty_port *port)
603{
604 return cancel_work_sync(&port->buf.work);
605}
606
607void tty_buffer_flush_work(struct tty_port *port)
608{
609 flush_work(&port->buf.work);
610}
1/*
2 * Tty buffer allocation management
3 */
4
5#include <linux/types.h>
6#include <linux/errno.h>
7#include <linux/tty.h>
8#include <linux/tty_driver.h>
9#include <linux/tty_flip.h>
10#include <linux/timer.h>
11#include <linux/string.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/init.h>
15#include <linux/wait.h>
16#include <linux/bitops.h>
17#include <linux/delay.h>
18#include <linux/module.h>
19
20/**
21 * tty_buffer_free_all - free buffers used by a tty
22 * @tty: tty to free from
23 *
24 * Remove all the buffers pending on a tty whether queued with data
25 * or in the free ring. Must be called when the tty is no longer in use
26 *
27 * Locking: none
28 */
29
30void tty_buffer_free_all(struct tty_struct *tty)
31{
32 struct tty_buffer *thead;
33 while ((thead = tty->buf.head) != NULL) {
34 tty->buf.head = thead->next;
35 kfree(thead);
36 }
37 while ((thead = tty->buf.free) != NULL) {
38 tty->buf.free = thead->next;
39 kfree(thead);
40 }
41 tty->buf.tail = NULL;
42 tty->buf.memory_used = 0;
43}
44
45/**
46 * tty_buffer_alloc - allocate a tty buffer
47 * @tty: tty device
48 * @size: desired size (characters)
49 *
50 * Allocate a new tty buffer to hold the desired number of characters.
51 * Return NULL if out of memory or the allocation would exceed the
52 * per device queue
53 *
54 * Locking: Caller must hold tty->buf.lock
55 */
56
57static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
58{
59 struct tty_buffer *p;
60
61 if (tty->buf.memory_used + size > 65536)
62 return NULL;
63 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
64 if (p == NULL)
65 return NULL;
66 p->used = 0;
67 p->size = size;
68 p->next = NULL;
69 p->commit = 0;
70 p->read = 0;
71 p->char_buf_ptr = (char *)(p->data);
72 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
73 tty->buf.memory_used += size;
74 return p;
75}
76
77/**
78 * tty_buffer_free - free a tty buffer
79 * @tty: tty owning the buffer
80 * @b: the buffer to free
81 *
82 * Free a tty buffer, or add it to the free list according to our
83 * internal strategy
84 *
85 * Locking: Caller must hold tty->buf.lock
86 */
87
88static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
89{
90 /* Dumb strategy for now - should keep some stats */
91 tty->buf.memory_used -= b->size;
92 WARN_ON(tty->buf.memory_used < 0);
93
94 if (b->size >= 512)
95 kfree(b);
96 else {
97 b->next = tty->buf.free;
98 tty->buf.free = b;
99 }
100}
101
102/**
103 * __tty_buffer_flush - flush full tty buffers
104 * @tty: tty to flush
105 *
106 * flush all the buffers containing receive data. Caller must
107 * hold the buffer lock and must have ensured no parallel flush to
108 * ldisc is running.
109 *
110 * Locking: Caller must hold tty->buf.lock
111 */
112
113static void __tty_buffer_flush(struct tty_struct *tty)
114{
115 struct tty_buffer *thead;
116
117 while ((thead = tty->buf.head) != NULL) {
118 tty->buf.head = thead->next;
119 tty_buffer_free(tty, thead);
120 }
121 tty->buf.tail = NULL;
122}
123
124/**
125 * tty_buffer_flush - flush full tty buffers
126 * @tty: tty to flush
127 *
128 * flush all the buffers containing receive data. If the buffer is
129 * being processed by flush_to_ldisc then we defer the processing
130 * to that function
131 *
132 * Locking: none
133 */
134
135void tty_buffer_flush(struct tty_struct *tty)
136{
137 unsigned long flags;
138 spin_lock_irqsave(&tty->buf.lock, flags);
139
140 /* If the data is being pushed to the tty layer then we can't
141 process it here. Instead set a flag and the flush_to_ldisc
142 path will process the flush request before it exits */
143 if (test_bit(TTY_FLUSHING, &tty->flags)) {
144 set_bit(TTY_FLUSHPENDING, &tty->flags);
145 spin_unlock_irqrestore(&tty->buf.lock, flags);
146 wait_event(tty->read_wait,
147 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
148 return;
149 } else
150 __tty_buffer_flush(tty);
151 spin_unlock_irqrestore(&tty->buf.lock, flags);
152}
153
154/**
155 * tty_buffer_find - find a free tty buffer
156 * @tty: tty owning the buffer
157 * @size: characters wanted
158 *
159 * Locate an existing suitable tty buffer or if we are lacking one then
160 * allocate a new one. We round our buffers off in 256 character chunks
161 * to get better allocation behaviour.
162 *
163 * Locking: Caller must hold tty->buf.lock
164 */
165
166static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
167{
168 struct tty_buffer **tbh = &tty->buf.free;
169 while ((*tbh) != NULL) {
170 struct tty_buffer *t = *tbh;
171 if (t->size >= size) {
172 *tbh = t->next;
173 t->next = NULL;
174 t->used = 0;
175 t->commit = 0;
176 t->read = 0;
177 tty->buf.memory_used += t->size;
178 return t;
179 }
180 tbh = &((*tbh)->next);
181 }
182 /* Round the buffer size out */
183 size = (size + 0xFF) & ~0xFF;
184 return tty_buffer_alloc(tty, size);
185 /* Should possibly check if this fails for the largest buffer we
186 have queued and recycle that ? */
187}
188/**
189 * __tty_buffer_request_room - grow tty buffer if needed
190 * @tty: tty structure
191 * @size: size desired
192 *
193 * Make at least size bytes of linear space available for the tty
194 * buffer. If we fail return the size we managed to find.
195 * Locking: Caller must hold tty->buf.lock
196 */
197static int __tty_buffer_request_room(struct tty_struct *tty, size_t size)
198{
199 struct tty_buffer *b, *n;
200 int left;
201 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
202 remove this conditional if its worth it. This would be invisible
203 to the callers */
204 if ((b = tty->buf.tail) != NULL)
205 left = b->size - b->used;
206 else
207 left = 0;
208
209 if (left < size) {
210 /* This is the slow path - looking for new buffers to use */
211 if ((n = tty_buffer_find(tty, size)) != NULL) {
212 if (b != NULL) {
213 b->next = n;
214 b->commit = b->used;
215 } else
216 tty->buf.head = n;
217 tty->buf.tail = n;
218 } else
219 size = left;
220 }
221
222 return size;
223}
224
225
226/**
227 * tty_buffer_request_room - grow tty buffer if needed
228 * @tty: tty structure
229 * @size: size desired
230 *
231 * Make at least size bytes of linear space available for the tty
232 * buffer. If we fail return the size we managed to find.
233 *
234 * Locking: Takes tty->buf.lock
235 */
236int tty_buffer_request_room(struct tty_struct *tty, size_t size)
237{
238 unsigned long flags;
239 int length;
240
241 spin_lock_irqsave(&tty->buf.lock, flags);
242 length = __tty_buffer_request_room(tty, size);
243 spin_unlock_irqrestore(&tty->buf.lock, flags);
244 return length;
245}
246EXPORT_SYMBOL_GPL(tty_buffer_request_room);
247
248/**
249 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
250 * @tty: tty structure
251 * @chars: characters
252 * @flag: flag value for each character
253 * @size: size
254 *
255 * Queue a series of bytes to the tty buffering. All the characters
256 * passed are marked with the supplied flag. Returns the number added.
257 *
258 * Locking: Called functions may take tty->buf.lock
259 */
260
261int tty_insert_flip_string_fixed_flag(struct tty_struct *tty,
262 const unsigned char *chars, char flag, size_t size)
263{
264 int copied = 0;
265 do {
266 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
267 int space;
268 unsigned long flags;
269 struct tty_buffer *tb;
270
271 spin_lock_irqsave(&tty->buf.lock, flags);
272 space = __tty_buffer_request_room(tty, goal);
273 tb = tty->buf.tail;
274 /* If there is no space then tb may be NULL */
275 if (unlikely(space == 0)) {
276 spin_unlock_irqrestore(&tty->buf.lock, flags);
277 break;
278 }
279 memcpy(tb->char_buf_ptr + tb->used, chars, space);
280 memset(tb->flag_buf_ptr + tb->used, flag, space);
281 tb->used += space;
282 spin_unlock_irqrestore(&tty->buf.lock, flags);
283 copied += space;
284 chars += space;
285 /* There is a small chance that we need to split the data over
286 several buffers. If this is the case we must loop */
287 } while (unlikely(size > copied));
288 return copied;
289}
290EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
291
292/**
293 * tty_insert_flip_string_flags - Add characters to the tty buffer
294 * @tty: tty structure
295 * @chars: characters
296 * @flags: flag bytes
297 * @size: size
298 *
299 * Queue a series of bytes to the tty buffering. For each character
300 * the flags array indicates the status of the character. Returns the
301 * number added.
302 *
303 * Locking: Called functions may take tty->buf.lock
304 */
305
306int tty_insert_flip_string_flags(struct tty_struct *tty,
307 const unsigned char *chars, const char *flags, size_t size)
308{
309 int copied = 0;
310 do {
311 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
312 int space;
313 unsigned long __flags;
314 struct tty_buffer *tb;
315
316 spin_lock_irqsave(&tty->buf.lock, __flags);
317 space = __tty_buffer_request_room(tty, goal);
318 tb = tty->buf.tail;
319 /* If there is no space then tb may be NULL */
320 if (unlikely(space == 0)) {
321 spin_unlock_irqrestore(&tty->buf.lock, __flags);
322 break;
323 }
324 memcpy(tb->char_buf_ptr + tb->used, chars, space);
325 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
326 tb->used += space;
327 spin_unlock_irqrestore(&tty->buf.lock, __flags);
328 copied += space;
329 chars += space;
330 flags += space;
331 /* There is a small chance that we need to split the data over
332 several buffers. If this is the case we must loop */
333 } while (unlikely(size > copied));
334 return copied;
335}
336EXPORT_SYMBOL(tty_insert_flip_string_flags);
337
338/**
339 * tty_schedule_flip - push characters to ldisc
340 * @tty: tty to push from
341 *
342 * Takes any pending buffers and transfers their ownership to the
343 * ldisc side of the queue. It then schedules those characters for
344 * processing by the line discipline.
345 *
346 * Locking: Takes tty->buf.lock
347 */
348
349void tty_schedule_flip(struct tty_struct *tty)
350{
351 unsigned long flags;
352 spin_lock_irqsave(&tty->buf.lock, flags);
353 if (tty->buf.tail != NULL)
354 tty->buf.tail->commit = tty->buf.tail->used;
355 spin_unlock_irqrestore(&tty->buf.lock, flags);
356 schedule_work(&tty->buf.work);
357}
358EXPORT_SYMBOL(tty_schedule_flip);
359
360/**
361 * tty_prepare_flip_string - make room for characters
362 * @tty: tty
363 * @chars: return pointer for character write area
364 * @size: desired size
365 *
366 * Prepare a block of space in the buffer for data. Returns the length
367 * available and buffer pointer to the space which is now allocated and
368 * accounted for as ready for normal characters. This is used for drivers
369 * that need their own block copy routines into the buffer. There is no
370 * guarantee the buffer is a DMA target!
371 *
372 * Locking: May call functions taking tty->buf.lock
373 */
374
375int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
376 size_t size)
377{
378 int space;
379 unsigned long flags;
380 struct tty_buffer *tb;
381
382 spin_lock_irqsave(&tty->buf.lock, flags);
383 space = __tty_buffer_request_room(tty, size);
384
385 tb = tty->buf.tail;
386 if (likely(space)) {
387 *chars = tb->char_buf_ptr + tb->used;
388 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
389 tb->used += space;
390 }
391 spin_unlock_irqrestore(&tty->buf.lock, flags);
392 return space;
393}
394EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
395
396/**
397 * tty_prepare_flip_string_flags - make room for characters
398 * @tty: tty
399 * @chars: return pointer for character write area
400 * @flags: return pointer for status flag write area
401 * @size: desired size
402 *
403 * Prepare a block of space in the buffer for data. Returns the length
404 * available and buffer pointer to the space which is now allocated and
405 * accounted for as ready for characters. This is used for drivers
406 * that need their own block copy routines into the buffer. There is no
407 * guarantee the buffer is a DMA target!
408 *
409 * Locking: May call functions taking tty->buf.lock
410 */
411
412int tty_prepare_flip_string_flags(struct tty_struct *tty,
413 unsigned char **chars, char **flags, size_t size)
414{
415 int space;
416 unsigned long __flags;
417 struct tty_buffer *tb;
418
419 spin_lock_irqsave(&tty->buf.lock, __flags);
420 space = __tty_buffer_request_room(tty, size);
421
422 tb = tty->buf.tail;
423 if (likely(space)) {
424 *chars = tb->char_buf_ptr + tb->used;
425 *flags = tb->flag_buf_ptr + tb->used;
426 tb->used += space;
427 }
428 spin_unlock_irqrestore(&tty->buf.lock, __flags);
429 return space;
430}
431EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
432
433
434
435/**
436 * flush_to_ldisc
437 * @work: tty structure passed from work queue.
438 *
439 * This routine is called out of the software interrupt to flush data
440 * from the buffer chain to the line discipline.
441 *
442 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
443 * while invoking the line discipline receive_buf method. The
444 * receive_buf method is single threaded for each tty instance.
445 */
446
447static void flush_to_ldisc(struct work_struct *work)
448{
449 struct tty_struct *tty =
450 container_of(work, struct tty_struct, buf.work);
451 unsigned long flags;
452 struct tty_ldisc *disc;
453
454 disc = tty_ldisc_ref(tty);
455 if (disc == NULL) /* !TTY_LDISC */
456 return;
457
458 spin_lock_irqsave(&tty->buf.lock, flags);
459
460 if (!test_and_set_bit(TTY_FLUSHING, &tty->flags)) {
461 struct tty_buffer *head;
462 while ((head = tty->buf.head) != NULL) {
463 int count;
464 char *char_buf;
465 unsigned char *flag_buf;
466
467 count = head->commit - head->read;
468 if (!count) {
469 if (head->next == NULL)
470 break;
471 tty->buf.head = head->next;
472 tty_buffer_free(tty, head);
473 continue;
474 }
475 /* Ldisc or user is trying to flush the buffers
476 we are feeding to the ldisc, stop feeding the
477 line discipline as we want to empty the queue */
478 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
479 break;
480 if (!tty->receive_room)
481 break;
482 if (count > tty->receive_room)
483 count = tty->receive_room;
484 char_buf = head->char_buf_ptr + head->read;
485 flag_buf = head->flag_buf_ptr + head->read;
486 head->read += count;
487 spin_unlock_irqrestore(&tty->buf.lock, flags);
488 disc->ops->receive_buf(tty, char_buf,
489 flag_buf, count);
490 spin_lock_irqsave(&tty->buf.lock, flags);
491 }
492 clear_bit(TTY_FLUSHING, &tty->flags);
493 }
494
495 /* We may have a deferred request to flush the input buffer,
496 if so pull the chain under the lock and empty the queue */
497 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
498 __tty_buffer_flush(tty);
499 clear_bit(TTY_FLUSHPENDING, &tty->flags);
500 wake_up(&tty->read_wait);
501 }
502 spin_unlock_irqrestore(&tty->buf.lock, flags);
503
504 tty_ldisc_deref(disc);
505}
506
507/**
508 * tty_flush_to_ldisc
509 * @tty: tty to push
510 *
511 * Push the terminal flip buffers to the line discipline.
512 *
513 * Must not be called from IRQ context.
514 */
515void tty_flush_to_ldisc(struct tty_struct *tty)
516{
517 flush_work(&tty->buf.work);
518}
519
520/**
521 * tty_flip_buffer_push - terminal
522 * @tty: tty to push
523 *
524 * Queue a push of the terminal flip buffers to the line discipline. This
525 * function must not be called from IRQ context if tty->low_latency is set.
526 *
527 * In the event of the queue being busy for flipping the work will be
528 * held off and retried later.
529 *
530 * Locking: tty buffer lock. Driver locks in low latency mode.
531 */
532
533void tty_flip_buffer_push(struct tty_struct *tty)
534{
535 unsigned long flags;
536 spin_lock_irqsave(&tty->buf.lock, flags);
537 if (tty->buf.tail != NULL)
538 tty->buf.tail->commit = tty->buf.tail->used;
539 spin_unlock_irqrestore(&tty->buf.lock, flags);
540
541 if (tty->low_latency)
542 flush_to_ldisc(&tty->buf.work);
543 else
544 schedule_work(&tty->buf.work);
545}
546EXPORT_SYMBOL(tty_flip_buffer_push);
547
548/**
549 * tty_buffer_init - prepare a tty buffer structure
550 * @tty: tty to initialise
551 *
552 * Set up the initial state of the buffer management for a tty device.
553 * Must be called before the other tty buffer functions are used.
554 *
555 * Locking: none
556 */
557
558void tty_buffer_init(struct tty_struct *tty)
559{
560 spin_lock_init(&tty->buf.lock);
561 tty->buf.head = NULL;
562 tty->buf.tail = NULL;
563 tty->buf.free = NULL;
564 tty->buf.memory_used = 0;
565 INIT_WORK(&tty->buf.work, flush_to_ldisc);
566}
567