Linux Audio

Check our new training course

Loading...
v4.17
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2006-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include <linux/bitops.h>
 12#include <linux/delay.h>
 13#include <linux/interrupt.h>
 14#include <linux/pci.h>
 15#include <linux/module.h>
 16#include <linux/seq_file.h>
 17#include <linux/cpu_rmap.h>
 18#include "net_driver.h"
 19#include "bitfield.h"
 20#include "efx.h"
 21#include "nic.h"
 22#include "ef10_regs.h"
 23#include "farch_regs.h"
 24#include "io.h"
 25#include "workarounds.h"
 26
 27/**************************************************************************
 28 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29 * Generic buffer handling
 30 * These buffers are used for interrupt status, MAC stats, etc.
 31 *
 32 **************************************************************************/
 33
 34int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 35			 unsigned int len, gfp_t gfp_flags)
 36{
 37	buffer->addr = dma_zalloc_coherent(&efx->pci_dev->dev, len,
 38					   &buffer->dma_addr, gfp_flags);
 39	if (!buffer->addr)
 40		return -ENOMEM;
 41	buffer->len = len;
 
 42	return 0;
 43}
 44
 45void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 46{
 47	if (buffer->addr) {
 48		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
 49				  buffer->addr, buffer->dma_addr);
 50		buffer->addr = NULL;
 51	}
 52}
 53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54/* Check whether an event is present in the eventq at the current
 55 * read pointer.  Only useful for self-test.
 56 */
 57bool efx_nic_event_present(struct efx_channel *channel)
 58{
 59	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
 60}
 61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62void efx_nic_event_test_start(struct efx_channel *channel)
 63{
 64	channel->event_test_cpu = -1;
 65	smp_wmb();
 66	channel->efx->type->ev_test_generate(channel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67}
 68
 69int efx_nic_irq_test_start(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
 
 70{
 71	efx->last_irq_cpu = -1;
 72	smp_wmb();
 73	return efx->type->irq_test_generate(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74}
 75
 76/* Hook interrupt handler(s)
 77 * Try MSI and then legacy interrupts.
 78 */
 79int efx_nic_init_interrupt(struct efx_nic *efx)
 80{
 81	struct efx_channel *channel;
 82	unsigned int n_irqs;
 83	int rc;
 84
 85	if (!EFX_INT_MODE_USE_MSI(efx)) {
 86		rc = request_irq(efx->legacy_irq,
 87				 efx->type->irq_handle_legacy, IRQF_SHARED,
 
 
 
 
 
 88				 efx->name, efx);
 89		if (rc) {
 90			netif_err(efx, drv, efx->net_dev,
 91				  "failed to hook legacy IRQ %d\n",
 92				  efx->pci_dev->irq);
 93			goto fail1;
 94		}
 95		return 0;
 96	}
 97
 98#ifdef CONFIG_RFS_ACCEL
 99	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
100		efx->net_dev->rx_cpu_rmap =
101			alloc_irq_cpu_rmap(efx->n_rx_channels);
102		if (!efx->net_dev->rx_cpu_rmap) {
103			rc = -ENOMEM;
104			goto fail1;
105		}
106	}
107#endif
108
109	/* Hook MSI or MSI-X interrupt */
110	n_irqs = 0;
111	efx_for_each_channel(channel, efx) {
112		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
113				 IRQF_PROBE_SHARED, /* Not shared */
114				 efx->msi_context[channel->channel].name,
115				 &efx->msi_context[channel->channel]);
116		if (rc) {
117			netif_err(efx, drv, efx->net_dev,
118				  "failed to hook IRQ %d\n", channel->irq);
119			goto fail2;
120		}
121		++n_irqs;
122
123#ifdef CONFIG_RFS_ACCEL
124		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
125		    channel->channel < efx->n_rx_channels) {
126			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
127					      channel->irq);
128			if (rc)
129				goto fail2;
130		}
131#endif
132	}
133
134	return 0;
135
136 fail2:
137#ifdef CONFIG_RFS_ACCEL
138	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
139	efx->net_dev->rx_cpu_rmap = NULL;
140#endif
141	efx_for_each_channel(channel, efx) {
142		if (n_irqs-- == 0)
143			break;
144		free_irq(channel->irq, &efx->msi_context[channel->channel]);
145	}
146 fail1:
147	return rc;
148}
149
150void efx_nic_fini_interrupt(struct efx_nic *efx)
151{
152	struct efx_channel *channel;
 
153
154#ifdef CONFIG_RFS_ACCEL
155	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
156	efx->net_dev->rx_cpu_rmap = NULL;
157#endif
 
158
159	if (EFX_INT_MODE_USE_MSI(efx)) {
160		/* Disable MSI/MSI-X interrupts */
161		efx_for_each_channel(channel, efx)
162			free_irq(channel->irq,
163				 &efx->msi_context[channel->channel]);
164	} else {
165		/* Disable legacy interrupt */
 
166		free_irq(efx->legacy_irq, efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167	}
168}
169
170/* Register dump */
171
172#define REGISTER_REVISION_FA	1
173#define REGISTER_REVISION_FB	2
174#define REGISTER_REVISION_FC	3
175#define REGISTER_REVISION_FZ	3	/* last Falcon arch revision */
176#define REGISTER_REVISION_ED	4
177#define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
178
179struct efx_nic_reg {
180	u32 offset:24;
181	u32 min_revision:3, max_revision:3;
182};
183
184#define REGISTER(name, arch, min_rev, max_rev) {			\
185	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
186	REGISTER_REVISION_ ## arch ## min_rev,				\
187	REGISTER_REVISION_ ## arch ## max_rev				\
188}
189#define REGISTER_AA(name) REGISTER(name, F, A, A)
190#define REGISTER_AB(name) REGISTER(name, F, A, B)
191#define REGISTER_AZ(name) REGISTER(name, F, A, Z)
192#define REGISTER_BB(name) REGISTER(name, F, B, B)
193#define REGISTER_BZ(name) REGISTER(name, F, B, Z)
194#define REGISTER_CZ(name) REGISTER(name, F, C, Z)
195#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
196
197static const struct efx_nic_reg efx_nic_regs[] = {
198	REGISTER_AZ(ADR_REGION),
199	REGISTER_AZ(INT_EN_KER),
200	REGISTER_BZ(INT_EN_CHAR),
201	REGISTER_AZ(INT_ADR_KER),
202	REGISTER_BZ(INT_ADR_CHAR),
203	/* INT_ACK_KER is WO */
204	/* INT_ISR0 is RC */
205	REGISTER_AZ(HW_INIT),
206	REGISTER_CZ(USR_EV_CFG),
207	REGISTER_AB(EE_SPI_HCMD),
208	REGISTER_AB(EE_SPI_HADR),
209	REGISTER_AB(EE_SPI_HDATA),
210	REGISTER_AB(EE_BASE_PAGE),
211	REGISTER_AB(EE_VPD_CFG0),
212	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
213	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
214	/* PCIE_CORE_INDIRECT is indirect */
215	REGISTER_AB(NIC_STAT),
216	REGISTER_AB(GPIO_CTL),
217	REGISTER_AB(GLB_CTL),
218	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
219	REGISTER_BZ(DP_CTRL),
220	REGISTER_AZ(MEM_STAT),
221	REGISTER_AZ(CS_DEBUG),
222	REGISTER_AZ(ALTERA_BUILD),
223	REGISTER_AZ(CSR_SPARE),
224	REGISTER_AB(PCIE_SD_CTL0123),
225	REGISTER_AB(PCIE_SD_CTL45),
226	REGISTER_AB(PCIE_PCS_CTL_STAT),
227	/* DEBUG_DATA_OUT is not used */
228	/* DRV_EV is WO */
229	REGISTER_AZ(EVQ_CTL),
230	REGISTER_AZ(EVQ_CNT1),
231	REGISTER_AZ(EVQ_CNT2),
232	REGISTER_AZ(BUF_TBL_CFG),
233	REGISTER_AZ(SRM_RX_DC_CFG),
234	REGISTER_AZ(SRM_TX_DC_CFG),
235	REGISTER_AZ(SRM_CFG),
236	/* BUF_TBL_UPD is WO */
237	REGISTER_AZ(SRM_UPD_EVQ),
238	REGISTER_AZ(SRAM_PARITY),
239	REGISTER_AZ(RX_CFG),
240	REGISTER_BZ(RX_FILTER_CTL),
241	/* RX_FLUSH_DESCQ is WO */
242	REGISTER_AZ(RX_DC_CFG),
243	REGISTER_AZ(RX_DC_PF_WM),
244	REGISTER_BZ(RX_RSS_TKEY),
245	/* RX_NODESC_DROP is RC */
246	REGISTER_AA(RX_SELF_RST),
247	/* RX_DEBUG, RX_PUSH_DROP are not used */
248	REGISTER_CZ(RX_RSS_IPV6_REG1),
249	REGISTER_CZ(RX_RSS_IPV6_REG2),
250	REGISTER_CZ(RX_RSS_IPV6_REG3),
251	/* TX_FLUSH_DESCQ is WO */
252	REGISTER_AZ(TX_DC_CFG),
253	REGISTER_AA(TX_CHKSM_CFG),
254	REGISTER_AZ(TX_CFG),
255	/* TX_PUSH_DROP is not used */
256	REGISTER_AZ(TX_RESERVED),
257	REGISTER_BZ(TX_PACE),
258	/* TX_PACE_DROP_QID is RC */
259	REGISTER_BB(TX_VLAN),
260	REGISTER_BZ(TX_IPFIL_PORTEN),
261	REGISTER_AB(MD_TXD),
262	REGISTER_AB(MD_RXD),
263	REGISTER_AB(MD_CS),
264	REGISTER_AB(MD_PHY_ADR),
265	REGISTER_AB(MD_ID),
266	/* MD_STAT is RC */
267	REGISTER_AB(MAC_STAT_DMA),
268	REGISTER_AB(MAC_CTRL),
269	REGISTER_BB(GEN_MODE),
270	REGISTER_AB(MAC_MC_HASH_REG0),
271	REGISTER_AB(MAC_MC_HASH_REG1),
272	REGISTER_AB(GM_CFG1),
273	REGISTER_AB(GM_CFG2),
274	/* GM_IPG and GM_HD are not used */
275	REGISTER_AB(GM_MAX_FLEN),
276	/* GM_TEST is not used */
277	REGISTER_AB(GM_ADR1),
278	REGISTER_AB(GM_ADR2),
279	REGISTER_AB(GMF_CFG0),
280	REGISTER_AB(GMF_CFG1),
281	REGISTER_AB(GMF_CFG2),
282	REGISTER_AB(GMF_CFG3),
283	REGISTER_AB(GMF_CFG4),
284	REGISTER_AB(GMF_CFG5),
285	REGISTER_BB(TX_SRC_MAC_CTL),
286	REGISTER_AB(XM_ADR_LO),
287	REGISTER_AB(XM_ADR_HI),
288	REGISTER_AB(XM_GLB_CFG),
289	REGISTER_AB(XM_TX_CFG),
290	REGISTER_AB(XM_RX_CFG),
291	REGISTER_AB(XM_MGT_INT_MASK),
292	REGISTER_AB(XM_FC),
293	REGISTER_AB(XM_PAUSE_TIME),
294	REGISTER_AB(XM_TX_PARAM),
295	REGISTER_AB(XM_RX_PARAM),
296	/* XM_MGT_INT_MSK (note no 'A') is RC */
297	REGISTER_AB(XX_PWR_RST),
298	REGISTER_AB(XX_SD_CTL),
299	REGISTER_AB(XX_TXDRV_CTL),
300	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
301	/* XX_CORE_STAT is partly RC */
302	REGISTER_DZ(BIU_HW_REV_ID),
303	REGISTER_DZ(MC_DB_LWRD),
304	REGISTER_DZ(MC_DB_HWRD),
305};
306
307struct efx_nic_reg_table {
308	u32 offset:24;
309	u32 min_revision:3, max_revision:3;
310	u32 step:6, rows:21;
311};
312
313#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
314	offset,								\
315	REGISTER_REVISION_ ## arch ## min_rev,				\
316	REGISTER_REVISION_ ## arch ## max_rev,				\
317	step, rows							\
318}
319#define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
320	REGISTER_TABLE_DIMENSIONS(					\
321		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
322		arch, min_rev, max_rev,					\
323		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
324		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
325#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
326#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
327#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
328#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
329#define REGISTER_TABLE_BB_CZ(name)					\
330	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B,	\
331				  FR_BZ_ ## name ## _STEP,		\
332				  FR_BB_ ## name ## _ROWS),		\
333	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z,	\
334				  FR_BZ_ ## name ## _STEP,		\
335				  FR_CZ_ ## name ## _ROWS)
336#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
337#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
338
339static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
340	/* DRIVER is not used */
341	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
342	REGISTER_TABLE_BB(TX_IPFIL_TBL),
343	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
344	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
345	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
346	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
347	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
348	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
349	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
350	/* We can't reasonably read all of the buffer table (up to 8MB!).
351	 * However this driver will only use a few entries.  Reading
352	 * 1K entries allows for some expansion of queue count and
353	 * size before we need to change the version. */
354	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
355				  F, A, A, 8, 1024),
356	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
357				  F, B, Z, 8, 1024),
358	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
359	REGISTER_TABLE_BB_CZ(TIMER_TBL),
360	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
361	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
362	/* TX_FILTER_TBL0 is huge and not used by this driver */
363	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
364	REGISTER_TABLE_CZ(MC_TREG_SMEM),
365	/* MSIX_PBA_TABLE is not mapped */
366	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
367	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
368	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
369};
370
371size_t efx_nic_get_regs_len(struct efx_nic *efx)
372{
373	const struct efx_nic_reg *reg;
374	const struct efx_nic_reg_table *table;
375	size_t len = 0;
376
377	for (reg = efx_nic_regs;
378	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
379	     reg++)
380		if (efx->type->revision >= reg->min_revision &&
381		    efx->type->revision <= reg->max_revision)
382			len += sizeof(efx_oword_t);
383
384	for (table = efx_nic_reg_tables;
385	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
386	     table++)
387		if (efx->type->revision >= table->min_revision &&
388		    efx->type->revision <= table->max_revision)
389			len += table->rows * min_t(size_t, table->step, 16);
390
391	return len;
392}
393
394void efx_nic_get_regs(struct efx_nic *efx, void *buf)
395{
396	const struct efx_nic_reg *reg;
397	const struct efx_nic_reg_table *table;
398
399	for (reg = efx_nic_regs;
400	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
401	     reg++) {
402		if (efx->type->revision >= reg->min_revision &&
403		    efx->type->revision <= reg->max_revision) {
404			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
405			buf += sizeof(efx_oword_t);
406		}
407	}
408
409	for (table = efx_nic_reg_tables;
410	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
411	     table++) {
412		size_t size, i;
413
414		if (!(efx->type->revision >= table->min_revision &&
415		      efx->type->revision <= table->max_revision))
416			continue;
417
418		size = min_t(size_t, table->step, 16);
419
420		for (i = 0; i < table->rows; i++) {
421			switch (table->step) {
422			case 4: /* 32-bit SRAM */
423				efx_readd(efx, buf, table->offset + 4 * i);
424				break;
425			case 8: /* 64-bit SRAM */
426				efx_sram_readq(efx,
427					       efx->membase + table->offset,
428					       buf, i);
429				break;
430			case 16: /* 128-bit-readable register */
431				efx_reado_table(efx, buf, table->offset, i);
432				break;
433			case 32: /* 128-bit register, interleaved */
434				efx_reado_table(efx, buf, table->offset, 2 * i);
435				break;
436			default:
437				WARN_ON(1);
438				return;
439			}
440			buf += size;
441		}
442	}
443}
444
445/**
446 * efx_nic_describe_stats - Describe supported statistics for ethtool
447 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
448 * @count: Length of the @desc array
449 * @mask: Bitmask of which elements of @desc are enabled
450 * @names: Buffer to copy names to, or %NULL.  The names are copied
451 *	starting at intervals of %ETH_GSTRING_LEN bytes.
452 *
453 * Returns the number of visible statistics, i.e. the number of set
454 * bits in the first @count bits of @mask for which a name is defined.
455 */
456size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
457			      const unsigned long *mask, u8 *names)
458{
459	size_t visible = 0;
460	size_t index;
461
462	for_each_set_bit(index, mask, count) {
463		if (desc[index].name) {
464			if (names) {
465				strlcpy(names, desc[index].name,
466					ETH_GSTRING_LEN);
467				names += ETH_GSTRING_LEN;
468			}
469			++visible;
470		}
471	}
472
473	return visible;
474}
475
476/**
477 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
478 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
479 *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
480 *	the width is specified as 0 the corresponding element of
481 *	@stats is not updated.
482 * @count: Length of the @desc array
483 * @mask: Bitmask of which elements of @desc are enabled
484 * @stats: Buffer to update with the converted statistics.  The length
485 *	of this array must be at least @count.
486 * @dma_buf: DMA buffer containing hardware statistics
487 * @accumulate: If set, the converted values will be added rather than
488 *	directly stored to the corresponding elements of @stats
489 */
490void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
491			  const unsigned long *mask,
492			  u64 *stats, const void *dma_buf, bool accumulate)
493{
494	size_t index;
495
496	for_each_set_bit(index, mask, count) {
497		if (desc[index].dma_width) {
498			const void *addr = dma_buf + desc[index].offset;
499			u64 val;
500
501			switch (desc[index].dma_width) {
502			case 16:
503				val = le16_to_cpup((__le16 *)addr);
504				break;
505			case 32:
506				val = le32_to_cpup((__le32 *)addr);
507				break;
508			case 64:
509				val = le64_to_cpup((__le64 *)addr);
510				break;
511			default:
512				WARN_ON(1);
513				val = 0;
514				break;
515			}
516
517			if (accumulate)
518				stats[index] += val;
519			else
520				stats[index] = val;
521		}
522	}
523}
524
525void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
526{
527	/* if down, or this is the first update after coming up */
528	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
529		efx->rx_nodesc_drops_while_down +=
530			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
531	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
532	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
533	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
534}
v3.5.6
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2011 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
 
  17#include "net_driver.h"
  18#include "bitfield.h"
  19#include "efx.h"
  20#include "nic.h"
  21#include "regs.h"
 
  22#include "io.h"
  23#include "workarounds.h"
  24
  25/**************************************************************************
  26 *
  27 * Configurable values
  28 *
  29 **************************************************************************
  30 */
  31
  32/* This is set to 16 for a good reason.  In summary, if larger than
  33 * 16, the descriptor cache holds more than a default socket
  34 * buffer's worth of packets (for UDP we can only have at most one
  35 * socket buffer's worth outstanding).  This combined with the fact
  36 * that we only get 1 TX event per descriptor cache means the NIC
  37 * goes idle.
  38 */
  39#define TX_DC_ENTRIES 16
  40#define TX_DC_ENTRIES_ORDER 1
  41
  42#define RX_DC_ENTRIES 64
  43#define RX_DC_ENTRIES_ORDER 3
  44
  45/* If EFX_MAX_INT_ERRORS internal errors occur within
  46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  47 * disable it.
  48 */
  49#define EFX_INT_ERROR_EXPIRE 3600
  50#define EFX_MAX_INT_ERRORS 5
  51
  52/* Depth of RX flush request fifo */
  53#define EFX_RX_FLUSH_COUNT 4
  54
  55/* Driver generated events */
  56#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  57#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  58#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  59#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  60
  61#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  62#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  63
  64#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  65	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  66#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  67	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  68			   efx_rx_queue_index(_rx_queue))
  69#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  71			   efx_rx_queue_index(_rx_queue))
  72#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  73	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  74			   (_tx_queue)->queue)
  75
  76/**************************************************************************
  77 *
  78 * Solarstorm hardware access
  79 *
  80 **************************************************************************/
  81
  82static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  83				     unsigned int index)
  84{
  85	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  86			value, index);
  87}
  88
  89/* Read the current event from the event queue */
  90static inline efx_qword_t *efx_event(struct efx_channel *channel,
  91				     unsigned int index)
  92{
  93	return ((efx_qword_t *) (channel->eventq.addr)) +
  94		(index & channel->eventq_mask);
  95}
  96
  97/* See if an event is present
  98 *
  99 * We check both the high and low dword of the event for all ones.  We
 100 * wrote all ones when we cleared the event, and no valid event can
 101 * have all ones in either its high or low dwords.  This approach is
 102 * robust against reordering.
 103 *
 104 * Note that using a single 64-bit comparison is incorrect; even
 105 * though the CPU read will be atomic, the DMA write may not be.
 106 */
 107static inline int efx_event_present(efx_qword_t *event)
 108{
 109	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
 110		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
 111}
 112
 113static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
 114				     const efx_oword_t *mask)
 115{
 116	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 117		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 118}
 119
 120int efx_nic_test_registers(struct efx_nic *efx,
 121			   const struct efx_nic_register_test *regs,
 122			   size_t n_regs)
 123{
 124	unsigned address = 0, i, j;
 125	efx_oword_t mask, imask, original, reg, buf;
 126
 127	/* Falcon should be in loopback to isolate the XMAC from the PHY */
 128	WARN_ON(!LOOPBACK_INTERNAL(efx));
 129
 130	for (i = 0; i < n_regs; ++i) {
 131		address = regs[i].address;
 132		mask = imask = regs[i].mask;
 133		EFX_INVERT_OWORD(imask);
 134
 135		efx_reado(efx, &original, address);
 136
 137		/* bit sweep on and off */
 138		for (j = 0; j < 128; j++) {
 139			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 140				continue;
 141
 142			/* Test this testable bit can be set in isolation */
 143			EFX_AND_OWORD(reg, original, mask);
 144			EFX_SET_OWORD32(reg, j, j, 1);
 145
 146			efx_writeo(efx, &reg, address);
 147			efx_reado(efx, &buf, address);
 148
 149			if (efx_masked_compare_oword(&reg, &buf, &mask))
 150				goto fail;
 151
 152			/* Test this testable bit can be cleared in isolation */
 153			EFX_OR_OWORD(reg, original, mask);
 154			EFX_SET_OWORD32(reg, j, j, 0);
 155
 156			efx_writeo(efx, &reg, address);
 157			efx_reado(efx, &buf, address);
 158
 159			if (efx_masked_compare_oword(&reg, &buf, &mask))
 160				goto fail;
 161		}
 162
 163		efx_writeo(efx, &original, address);
 164	}
 165
 166	return 0;
 167
 168fail:
 169	netif_err(efx, hw, efx->net_dev,
 170		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 171		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 172		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 173	return -EIO;
 174}
 175
 176/**************************************************************************
 177 *
 178 * Special buffer handling
 179 * Special buffers are used for event queues and the TX and RX
 180 * descriptor rings.
 181 *
 182 *************************************************************************/
 183
 184/*
 185 * Initialise a special buffer
 186 *
 187 * This will define a buffer (previously allocated via
 188 * efx_alloc_special_buffer()) in the buffer table, allowing
 189 * it to be used for event queues, descriptor rings etc.
 190 */
 191static void
 192efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 193{
 194	efx_qword_t buf_desc;
 195	unsigned int index;
 196	dma_addr_t dma_addr;
 197	int i;
 198
 199	EFX_BUG_ON_PARANOID(!buffer->addr);
 200
 201	/* Write buffer descriptors to NIC */
 202	for (i = 0; i < buffer->entries; i++) {
 203		index = buffer->index + i;
 204		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
 205		netif_dbg(efx, probe, efx->net_dev,
 206			  "mapping special buffer %d at %llx\n",
 207			  index, (unsigned long long)dma_addr);
 208		EFX_POPULATE_QWORD_3(buf_desc,
 209				     FRF_AZ_BUF_ADR_REGION, 0,
 210				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 211				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 212		efx_write_buf_tbl(efx, &buf_desc, index);
 213	}
 214}
 215
 216/* Unmaps a buffer and clears the buffer table entries */
 217static void
 218efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 219{
 220	efx_oword_t buf_tbl_upd;
 221	unsigned int start = buffer->index;
 222	unsigned int end = (buffer->index + buffer->entries - 1);
 223
 224	if (!buffer->entries)
 225		return;
 226
 227	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 228		  buffer->index, buffer->index + buffer->entries - 1);
 229
 230	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 231			     FRF_AZ_BUF_UPD_CMD, 0,
 232			     FRF_AZ_BUF_CLR_CMD, 1,
 233			     FRF_AZ_BUF_CLR_END_ID, end,
 234			     FRF_AZ_BUF_CLR_START_ID, start);
 235	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 236}
 237
 238/*
 239 * Allocate a new special buffer
 240 *
 241 * This allocates memory for a new buffer, clears it and allocates a
 242 * new buffer ID range.  It does not write into the buffer table.
 243 *
 244 * This call will allocate 4KB buffers, since 8KB buffers can't be
 245 * used for event queues and descriptor rings.
 246 */
 247static int efx_alloc_special_buffer(struct efx_nic *efx,
 248				    struct efx_special_buffer *buffer,
 249				    unsigned int len)
 250{
 251	len = ALIGN(len, EFX_BUF_SIZE);
 252
 253	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
 254					  &buffer->dma_addr, GFP_KERNEL);
 255	if (!buffer->addr)
 256		return -ENOMEM;
 257	buffer->len = len;
 258	buffer->entries = len / EFX_BUF_SIZE;
 259	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
 260
 261	/* All zeros is a potentially valid event so memset to 0xff */
 262	memset(buffer->addr, 0xff, len);
 263
 264	/* Select new buffer ID */
 265	buffer->index = efx->next_buffer_table;
 266	efx->next_buffer_table += buffer->entries;
 267#ifdef CONFIG_SFC_SRIOV
 268	BUG_ON(efx_sriov_enabled(efx) &&
 269	       efx->vf_buftbl_base < efx->next_buffer_table);
 270#endif
 271
 272	netif_dbg(efx, probe, efx->net_dev,
 273		  "allocating special buffers %d-%d at %llx+%x "
 274		  "(virt %p phys %llx)\n", buffer->index,
 275		  buffer->index + buffer->entries - 1,
 276		  (u64)buffer->dma_addr, len,
 277		  buffer->addr, (u64)virt_to_phys(buffer->addr));
 278
 279	return 0;
 280}
 281
 282static void
 283efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 284{
 285	if (!buffer->addr)
 286		return;
 287
 288	netif_dbg(efx, hw, efx->net_dev,
 289		  "deallocating special buffers %d-%d at %llx+%x "
 290		  "(virt %p phys %llx)\n", buffer->index,
 291		  buffer->index + buffer->entries - 1,
 292		  (u64)buffer->dma_addr, buffer->len,
 293		  buffer->addr, (u64)virt_to_phys(buffer->addr));
 294
 295	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
 296			  buffer->dma_addr);
 297	buffer->addr = NULL;
 298	buffer->entries = 0;
 299}
 300
 301/**************************************************************************
 302 *
 303 * Generic buffer handling
 304 * These buffers are used for interrupt status and MAC stats
 305 *
 306 **************************************************************************/
 307
 308int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 309			 unsigned int len)
 310{
 311	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 312					    &buffer->dma_addr);
 313	if (!buffer->addr)
 314		return -ENOMEM;
 315	buffer->len = len;
 316	memset(buffer->addr, 0, len);
 317	return 0;
 318}
 319
 320void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 321{
 322	if (buffer->addr) {
 323		pci_free_consistent(efx->pci_dev, buffer->len,
 324				    buffer->addr, buffer->dma_addr);
 325		buffer->addr = NULL;
 326	}
 327}
 328
 329/**************************************************************************
 330 *
 331 * TX path
 332 *
 333 **************************************************************************/
 334
 335/* Returns a pointer to the specified transmit descriptor in the TX
 336 * descriptor queue belonging to the specified channel.
 337 */
 338static inline efx_qword_t *
 339efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
 340{
 341	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
 342}
 343
 344/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 345static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
 346{
 347	unsigned write_ptr;
 348	efx_dword_t reg;
 349
 350	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 351	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 352	efx_writed_page(tx_queue->efx, &reg,
 353			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 354}
 355
 356/* Write pointer and first descriptor for TX descriptor ring */
 357static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
 358				    const efx_qword_t *txd)
 359{
 360	unsigned write_ptr;
 361	efx_oword_t reg;
 362
 363	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 364	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 365
 366	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 367	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 368			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 369	reg.qword[0] = *txd;
 370	efx_writeo_page(tx_queue->efx, &reg,
 371			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 372}
 373
 374static inline bool
 375efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
 376{
 377	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
 378
 379	if (empty_read_count == 0)
 380		return false;
 381
 382	tx_queue->empty_read_count = 0;
 383	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
 384}
 385
 386/* For each entry inserted into the software descriptor ring, create a
 387 * descriptor in the hardware TX descriptor ring (in host memory), and
 388 * write a doorbell.
 389 */
 390void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 391{
 392
 393	struct efx_tx_buffer *buffer;
 394	efx_qword_t *txd;
 395	unsigned write_ptr;
 396	unsigned old_write_count = tx_queue->write_count;
 397
 398	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 399
 400	do {
 401		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 402		buffer = &tx_queue->buffer[write_ptr];
 403		txd = efx_tx_desc(tx_queue, write_ptr);
 404		++tx_queue->write_count;
 405
 406		/* Create TX descriptor ring entry */
 407		EFX_POPULATE_QWORD_4(*txd,
 408				     FSF_AZ_TX_KER_CONT, buffer->continuation,
 409				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 410				     FSF_AZ_TX_KER_BUF_REGION, 0,
 411				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 412	} while (tx_queue->write_count != tx_queue->insert_count);
 413
 414	wmb(); /* Ensure descriptors are written before they are fetched */
 415
 416	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
 417		txd = efx_tx_desc(tx_queue,
 418				  old_write_count & tx_queue->ptr_mask);
 419		efx_push_tx_desc(tx_queue, txd);
 420		++tx_queue->pushes;
 421	} else {
 422		efx_notify_tx_desc(tx_queue);
 423	}
 424}
 425
 426/* Allocate hardware resources for a TX queue */
 427int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 428{
 429	struct efx_nic *efx = tx_queue->efx;
 430	unsigned entries;
 431
 432	entries = tx_queue->ptr_mask + 1;
 433	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 434					entries * sizeof(efx_qword_t));
 435}
 436
 437void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 438{
 439	struct efx_nic *efx = tx_queue->efx;
 440	efx_oword_t reg;
 441
 442	/* Pin TX descriptor ring */
 443	efx_init_special_buffer(efx, &tx_queue->txd);
 444
 445	/* Push TX descriptor ring to card */
 446	EFX_POPULATE_OWORD_10(reg,
 447			      FRF_AZ_TX_DESCQ_EN, 1,
 448			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 449			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 450			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 451			      FRF_AZ_TX_DESCQ_EVQ_ID,
 452			      tx_queue->channel->channel,
 453			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 454			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 455			      FRF_AZ_TX_DESCQ_SIZE,
 456			      __ffs(tx_queue->txd.entries),
 457			      FRF_AZ_TX_DESCQ_TYPE, 0,
 458			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 459
 460	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 461		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 462		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 463		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 464				    !csum);
 465	}
 466
 467	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 468			 tx_queue->queue);
 469
 470	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 471		/* Only 128 bits in this register */
 472		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 473
 474		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 475		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 476			clear_bit_le(tx_queue->queue, (void *)&reg);
 477		else
 478			set_bit_le(tx_queue->queue, (void *)&reg);
 479		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 480	}
 481
 482	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 483		EFX_POPULATE_OWORD_1(reg,
 484				     FRF_BZ_TX_PACE,
 485				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 486				     FFE_BZ_TX_PACE_OFF :
 487				     FFE_BZ_TX_PACE_RESERVED);
 488		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 489				 tx_queue->queue);
 490	}
 491}
 492
 493static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
 494{
 495	struct efx_nic *efx = tx_queue->efx;
 496	efx_oword_t tx_flush_descq;
 497
 498	EFX_POPULATE_OWORD_2(tx_flush_descq,
 499			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 500			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 501	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 502}
 503
 504void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
 505{
 506	struct efx_nic *efx = tx_queue->efx;
 507	efx_oword_t tx_desc_ptr;
 508
 509	/* Remove TX descriptor ring from card */
 510	EFX_ZERO_OWORD(tx_desc_ptr);
 511	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 512			 tx_queue->queue);
 513
 514	/* Unpin TX descriptor ring */
 515	efx_fini_special_buffer(efx, &tx_queue->txd);
 516}
 517
 518/* Free buffers backing TX queue */
 519void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 520{
 521	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 522}
 523
 524/**************************************************************************
 525 *
 526 * RX path
 527 *
 528 **************************************************************************/
 529
 530/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 531static inline efx_qword_t *
 532efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 533{
 534	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
 535}
 536
 537/* This creates an entry in the RX descriptor queue */
 538static inline void
 539efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 540{
 541	struct efx_rx_buffer *rx_buf;
 542	efx_qword_t *rxd;
 543
 544	rxd = efx_rx_desc(rx_queue, index);
 545	rx_buf = efx_rx_buffer(rx_queue, index);
 546	EFX_POPULATE_QWORD_3(*rxd,
 547			     FSF_AZ_RX_KER_BUF_SIZE,
 548			     rx_buf->len -
 549			     rx_queue->efx->type->rx_buffer_padding,
 550			     FSF_AZ_RX_KER_BUF_REGION, 0,
 551			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 552}
 553
 554/* This writes to the RX_DESC_WPTR register for the specified receive
 555 * descriptor ring.
 556 */
 557void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 558{
 559	struct efx_nic *efx = rx_queue->efx;
 560	efx_dword_t reg;
 561	unsigned write_ptr;
 562
 563	while (rx_queue->notified_count != rx_queue->added_count) {
 564		efx_build_rx_desc(
 565			rx_queue,
 566			rx_queue->notified_count & rx_queue->ptr_mask);
 567		++rx_queue->notified_count;
 568	}
 569
 570	wmb();
 571	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 572	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 573	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 574			efx_rx_queue_index(rx_queue));
 575}
 576
 577int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 578{
 579	struct efx_nic *efx = rx_queue->efx;
 580	unsigned entries;
 581
 582	entries = rx_queue->ptr_mask + 1;
 583	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 584					entries * sizeof(efx_qword_t));
 585}
 586
 587void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 588{
 589	efx_oword_t rx_desc_ptr;
 590	struct efx_nic *efx = rx_queue->efx;
 591	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 592	bool iscsi_digest_en = is_b0;
 593
 594	netif_dbg(efx, hw, efx->net_dev,
 595		  "RX queue %d ring in special buffers %d-%d\n",
 596		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 597		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 598
 599	/* Pin RX descriptor ring */
 600	efx_init_special_buffer(efx, &rx_queue->rxd);
 601
 602	/* Push RX descriptor ring to card */
 603	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 604			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 605			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 606			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 607			      FRF_AZ_RX_DESCQ_EVQ_ID,
 608			      efx_rx_queue_channel(rx_queue)->channel,
 609			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 610			      FRF_AZ_RX_DESCQ_LABEL,
 611			      efx_rx_queue_index(rx_queue),
 612			      FRF_AZ_RX_DESCQ_SIZE,
 613			      __ffs(rx_queue->rxd.entries),
 614			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 615			      /* For >=B0 this is scatter so disable */
 616			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
 617			      FRF_AZ_RX_DESCQ_EN, 1);
 618	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 619			 efx_rx_queue_index(rx_queue));
 620}
 621
 622static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
 623{
 624	struct efx_nic *efx = rx_queue->efx;
 625	efx_oword_t rx_flush_descq;
 626
 627	EFX_POPULATE_OWORD_2(rx_flush_descq,
 628			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 629			     FRF_AZ_RX_FLUSH_DESCQ,
 630			     efx_rx_queue_index(rx_queue));
 631	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 632}
 633
 634void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
 635{
 636	efx_oword_t rx_desc_ptr;
 637	struct efx_nic *efx = rx_queue->efx;
 638
 639	/* Remove RX descriptor ring from card */
 640	EFX_ZERO_OWORD(rx_desc_ptr);
 641	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 642			 efx_rx_queue_index(rx_queue));
 643
 644	/* Unpin RX descriptor ring */
 645	efx_fini_special_buffer(efx, &rx_queue->rxd);
 646}
 647
 648/* Free buffers backing RX queue */
 649void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 650{
 651	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 652}
 653
 654/**************************************************************************
 655 *
 656 * Flush handling
 657 *
 658 **************************************************************************/
 659
 660/* efx_nic_flush_queues() must be woken up when all flushes are completed,
 661 * or more RX flushes can be kicked off.
 662 */
 663static bool efx_flush_wake(struct efx_nic *efx)
 664{
 665	/* Ensure that all updates are visible to efx_nic_flush_queues() */
 666	smp_mb();
 667
 668	return (atomic_read(&efx->drain_pending) == 0 ||
 669		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 670		 && atomic_read(&efx->rxq_flush_pending) > 0));
 671}
 672
 673/* Flush all the transmit queues, and continue flushing receive queues until
 674 * they're all flushed. Wait for the DRAIN events to be recieved so that there
 675 * are no more RX and TX events left on any channel. */
 676int efx_nic_flush_queues(struct efx_nic *efx)
 677{
 678	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 679	struct efx_channel *channel;
 680	struct efx_rx_queue *rx_queue;
 681	struct efx_tx_queue *tx_queue;
 682	int rc = 0;
 683
 684	efx->fc_disable++;
 685	efx->type->prepare_flush(efx);
 686
 687	efx_for_each_channel(channel, efx) {
 688		efx_for_each_channel_tx_queue(tx_queue, channel) {
 689			atomic_inc(&efx->drain_pending);
 690			efx_flush_tx_queue(tx_queue);
 691		}
 692		efx_for_each_channel_rx_queue(rx_queue, channel) {
 693			atomic_inc(&efx->drain_pending);
 694			rx_queue->flush_pending = true;
 695			atomic_inc(&efx->rxq_flush_pending);
 696		}
 697	}
 698
 699	while (timeout && atomic_read(&efx->drain_pending) > 0) {
 700		/* If SRIOV is enabled, then offload receive queue flushing to
 701		 * the firmware (though we will still have to poll for
 702		 * completion). If that fails, fall back to the old scheme.
 703		 */
 704		if (efx_sriov_enabled(efx)) {
 705			rc = efx_mcdi_flush_rxqs(efx);
 706			if (!rc)
 707				goto wait;
 708		}
 709
 710		/* The hardware supports four concurrent rx flushes, each of
 711		 * which may need to be retried if there is an outstanding
 712		 * descriptor fetch
 713		 */
 714		efx_for_each_channel(channel, efx) {
 715			efx_for_each_channel_rx_queue(rx_queue, channel) {
 716				if (atomic_read(&efx->rxq_flush_outstanding) >=
 717				    EFX_RX_FLUSH_COUNT)
 718					break;
 719
 720				if (rx_queue->flush_pending) {
 721					rx_queue->flush_pending = false;
 722					atomic_dec(&efx->rxq_flush_pending);
 723					atomic_inc(&efx->rxq_flush_outstanding);
 724					efx_flush_rx_queue(rx_queue);
 725				}
 726			}
 727		}
 728
 729	wait:
 730		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
 731					     timeout);
 732	}
 733
 734	if (atomic_read(&efx->drain_pending)) {
 735		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 736			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
 737			  atomic_read(&efx->rxq_flush_outstanding),
 738			  atomic_read(&efx->rxq_flush_pending));
 739		rc = -ETIMEDOUT;
 740
 741		atomic_set(&efx->drain_pending, 0);
 742		atomic_set(&efx->rxq_flush_pending, 0);
 743		atomic_set(&efx->rxq_flush_outstanding, 0);
 744	}
 745
 746	efx->fc_disable--;
 747
 748	return rc;
 749}
 750
 751/**************************************************************************
 752 *
 753 * Event queue processing
 754 * Event queues are processed by per-channel tasklets.
 755 *
 756 **************************************************************************/
 757
 758/* Update a channel's event queue's read pointer (RPTR) register
 759 *
 760 * This writes the EVQ_RPTR_REG register for the specified channel's
 761 * event queue.
 762 */
 763void efx_nic_eventq_read_ack(struct efx_channel *channel)
 764{
 765	efx_dword_t reg;
 766	struct efx_nic *efx = channel->efx;
 767
 768	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 769			     channel->eventq_read_ptr & channel->eventq_mask);
 770	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
 771			 channel->channel);
 772}
 773
 774/* Use HW to insert a SW defined event */
 775void efx_generate_event(struct efx_nic *efx, unsigned int evq,
 776			efx_qword_t *event)
 777{
 778	efx_oword_t drv_ev_reg;
 779
 780	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 781		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 782	drv_ev_reg.u32[0] = event->u32[0];
 783	drv_ev_reg.u32[1] = event->u32[1];
 784	drv_ev_reg.u32[2] = 0;
 785	drv_ev_reg.u32[3] = 0;
 786	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 787	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 788}
 789
 790static void efx_magic_event(struct efx_channel *channel, u32 magic)
 791{
 792	efx_qword_t event;
 793
 794	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 795			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 796			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 797	efx_generate_event(channel->efx, channel->channel, &event);
 798}
 799
 800/* Handle a transmit completion event
 801 *
 802 * The NIC batches TX completion events; the message we receive is of
 803 * the form "complete all TX events up to this index".
 804 */
 805static int
 806efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 807{
 808	unsigned int tx_ev_desc_ptr;
 809	unsigned int tx_ev_q_label;
 810	struct efx_tx_queue *tx_queue;
 811	struct efx_nic *efx = channel->efx;
 812	int tx_packets = 0;
 813
 814	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 815		return 0;
 816
 817	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 818		/* Transmit completion */
 819		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 820		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 821		tx_queue = efx_channel_get_tx_queue(
 822			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 823		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 824			      tx_queue->ptr_mask);
 825		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 826	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 827		/* Rewrite the FIFO write pointer */
 828		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 829		tx_queue = efx_channel_get_tx_queue(
 830			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 831
 832		netif_tx_lock(efx->net_dev);
 833		efx_notify_tx_desc(tx_queue);
 834		netif_tx_unlock(efx->net_dev);
 835	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
 836		   EFX_WORKAROUND_10727(efx)) {
 837		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 838	} else {
 839		netif_err(efx, tx_err, efx->net_dev,
 840			  "channel %d unexpected TX event "
 841			  EFX_QWORD_FMT"\n", channel->channel,
 842			  EFX_QWORD_VAL(*event));
 843	}
 844
 845	return tx_packets;
 846}
 847
 848/* Detect errors included in the rx_evt_pkt_ok bit. */
 849static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 850				const efx_qword_t *event)
 851{
 852	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 853	struct efx_nic *efx = rx_queue->efx;
 854	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 855	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 856	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 857	bool rx_ev_other_err, rx_ev_pause_frm;
 858	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 859	unsigned rx_ev_pkt_type;
 860
 861	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 862	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 863	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 864	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 865	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 866						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 867	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 868						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 869	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 870						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 871	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 872	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 873	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 874			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 875	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 876
 877	/* Every error apart from tobe_disc and pause_frm */
 878	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 879			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 880			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 881
 882	/* Count errors that are not in MAC stats.  Ignore expected
 883	 * checksum errors during self-test. */
 884	if (rx_ev_frm_trunc)
 885		++channel->n_rx_frm_trunc;
 886	else if (rx_ev_tobe_disc)
 887		++channel->n_rx_tobe_disc;
 888	else if (!efx->loopback_selftest) {
 889		if (rx_ev_ip_hdr_chksum_err)
 890			++channel->n_rx_ip_hdr_chksum_err;
 891		else if (rx_ev_tcp_udp_chksum_err)
 892			++channel->n_rx_tcp_udp_chksum_err;
 893	}
 894
 895	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 896	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 897	 * to a FIFO overflow.
 898	 */
 899#ifdef DEBUG
 900	if (rx_ev_other_err && net_ratelimit()) {
 901		netif_dbg(efx, rx_err, efx->net_dev,
 902			  " RX queue %d unexpected RX event "
 903			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 904			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 905			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 906			  rx_ev_ip_hdr_chksum_err ?
 907			  " [IP_HDR_CHKSUM_ERR]" : "",
 908			  rx_ev_tcp_udp_chksum_err ?
 909			  " [TCP_UDP_CHKSUM_ERR]" : "",
 910			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 911			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 912			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 913			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 914			  rx_ev_pause_frm ? " [PAUSE]" : "");
 915	}
 916#endif
 917
 918	/* The frame must be discarded if any of these are true. */
 919	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 920		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 921		EFX_RX_PKT_DISCARD : 0;
 922}
 923
 924/* Handle receive events that are not in-order. */
 925static void
 926efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 927{
 928	struct efx_nic *efx = rx_queue->efx;
 929	unsigned expected, dropped;
 930
 931	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 932	dropped = (index - expected) & rx_queue->ptr_mask;
 933	netif_info(efx, rx_err, efx->net_dev,
 934		   "dropped %d events (index=%d expected=%d)\n",
 935		   dropped, index, expected);
 936
 937	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 938			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 939}
 940
 941/* Handle a packet received event
 942 *
 943 * The NIC gives a "discard" flag if it's a unicast packet with the
 944 * wrong destination address
 945 * Also "is multicast" and "matches multicast filter" flags can be used to
 946 * discard non-matching multicast packets.
 947 */
 948static void
 949efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 950{
 951	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 952	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 953	unsigned expected_ptr;
 954	bool rx_ev_pkt_ok;
 955	u16 flags;
 956	struct efx_rx_queue *rx_queue;
 957	struct efx_nic *efx = channel->efx;
 958
 959	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 960		return;
 961
 962	/* Basic packet information */
 963	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
 964	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
 965	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 966	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
 967	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
 968	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 969		channel->channel);
 970
 971	rx_queue = efx_channel_get_rx_queue(channel);
 972
 973	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 974	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
 975	if (unlikely(rx_ev_desc_ptr != expected_ptr))
 976		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
 977
 978	if (likely(rx_ev_pkt_ok)) {
 979		/* If packet is marked as OK and packet type is TCP/IP or
 980		 * UDP/IP, then we can rely on the hardware checksum.
 981		 */
 982		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
 983			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
 984			EFX_RX_PKT_CSUMMED : 0;
 985	} else {
 986		flags = efx_handle_rx_not_ok(rx_queue, event);
 987	}
 988
 989	/* Detect multicast packets that didn't match the filter */
 990	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 991	if (rx_ev_mcast_pkt) {
 992		unsigned int rx_ev_mcast_hash_match =
 993			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
 994
 995		if (unlikely(!rx_ev_mcast_hash_match)) {
 996			++channel->n_rx_mcast_mismatch;
 997			flags |= EFX_RX_PKT_DISCARD;
 998		}
 999	}
1000
1001	channel->irq_mod_score += 2;
1002
1003	/* Handle received packet */
1004	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1005}
1006
1007/* If this flush done event corresponds to a &struct efx_tx_queue, then
1008 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1009 * of all transmit completions.
1010 */
1011static void
1012efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1013{
1014	struct efx_tx_queue *tx_queue;
1015	int qid;
1016
1017	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1018	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1019		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1020					    qid % EFX_TXQ_TYPES);
1021
1022		efx_magic_event(tx_queue->channel,
1023				EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1024	}
1025}
1026
1027/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1028 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1029 * the RX queue back to the mask of RX queues in need of flushing.
1030 */
1031static void
1032efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1033{
1034	struct efx_channel *channel;
1035	struct efx_rx_queue *rx_queue;
1036	int qid;
1037	bool failed;
1038
1039	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1040	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1041	if (qid >= efx->n_channels)
1042		return;
1043	channel = efx_get_channel(efx, qid);
1044	if (!efx_channel_has_rx_queue(channel))
1045		return;
1046	rx_queue = efx_channel_get_rx_queue(channel);
1047
1048	if (failed) {
1049		netif_info(efx, hw, efx->net_dev,
1050			   "RXQ %d flush retry\n", qid);
1051		rx_queue->flush_pending = true;
1052		atomic_inc(&efx->rxq_flush_pending);
1053	} else {
1054		efx_magic_event(efx_rx_queue_channel(rx_queue),
1055				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1056	}
1057	atomic_dec(&efx->rxq_flush_outstanding);
1058	if (efx_flush_wake(efx))
1059		wake_up(&efx->flush_wq);
1060}
1061
1062static void
1063efx_handle_drain_event(struct efx_channel *channel)
1064{
1065	struct efx_nic *efx = channel->efx;
1066
1067	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1068	atomic_dec(&efx->drain_pending);
1069	if (efx_flush_wake(efx))
1070		wake_up(&efx->flush_wq);
1071}
1072
1073static void
1074efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1075{
1076	struct efx_nic *efx = channel->efx;
1077	struct efx_rx_queue *rx_queue =
1078		efx_channel_has_rx_queue(channel) ?
1079		efx_channel_get_rx_queue(channel) : NULL;
1080	unsigned magic, code;
1081
1082	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1083	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1084
1085	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1086		channel->event_test_cpu = raw_smp_processor_id();
1087	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1088		/* The queue must be empty, so we won't receive any rx
1089		 * events, so efx_process_channel() won't refill the
1090		 * queue. Refill it here */
1091		efx_fast_push_rx_descriptors(rx_queue);
1092	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1093		rx_queue->enabled = false;
1094		efx_handle_drain_event(channel);
1095	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1096		efx_handle_drain_event(channel);
1097	} else {
1098		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1099			  "generated event "EFX_QWORD_FMT"\n",
1100			  channel->channel, EFX_QWORD_VAL(*event));
1101	}
1102}
1103
1104static void
1105efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1106{
1107	struct efx_nic *efx = channel->efx;
1108	unsigned int ev_sub_code;
1109	unsigned int ev_sub_data;
1110
1111	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1112	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1113
1114	switch (ev_sub_code) {
1115	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1116		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1117			   channel->channel, ev_sub_data);
1118		efx_handle_tx_flush_done(efx, event);
1119		efx_sriov_tx_flush_done(efx, event);
1120		break;
1121	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1122		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1123			   channel->channel, ev_sub_data);
1124		efx_handle_rx_flush_done(efx, event);
1125		efx_sriov_rx_flush_done(efx, event);
1126		break;
1127	case FSE_AZ_EVQ_INIT_DONE_EV:
1128		netif_dbg(efx, hw, efx->net_dev,
1129			  "channel %d EVQ %d initialised\n",
1130			  channel->channel, ev_sub_data);
1131		break;
1132	case FSE_AZ_SRM_UPD_DONE_EV:
1133		netif_vdbg(efx, hw, efx->net_dev,
1134			   "channel %d SRAM update done\n", channel->channel);
1135		break;
1136	case FSE_AZ_WAKE_UP_EV:
1137		netif_vdbg(efx, hw, efx->net_dev,
1138			   "channel %d RXQ %d wakeup event\n",
1139			   channel->channel, ev_sub_data);
1140		break;
1141	case FSE_AZ_TIMER_EV:
1142		netif_vdbg(efx, hw, efx->net_dev,
1143			   "channel %d RX queue %d timer expired\n",
1144			   channel->channel, ev_sub_data);
1145		break;
1146	case FSE_AA_RX_RECOVER_EV:
1147		netif_err(efx, rx_err, efx->net_dev,
1148			  "channel %d seen DRIVER RX_RESET event. "
1149			"Resetting.\n", channel->channel);
1150		atomic_inc(&efx->rx_reset);
1151		efx_schedule_reset(efx,
1152				   EFX_WORKAROUND_6555(efx) ?
1153				   RESET_TYPE_RX_RECOVERY :
1154				   RESET_TYPE_DISABLE);
1155		break;
1156	case FSE_BZ_RX_DSC_ERROR_EV:
1157		if (ev_sub_data < EFX_VI_BASE) {
1158			netif_err(efx, rx_err, efx->net_dev,
1159				  "RX DMA Q %d reports descriptor fetch error."
1160				  " RX Q %d is disabled.\n", ev_sub_data,
1161				  ev_sub_data);
1162			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1163		} else
1164			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1165		break;
1166	case FSE_BZ_TX_DSC_ERROR_EV:
1167		if (ev_sub_data < EFX_VI_BASE) {
1168			netif_err(efx, tx_err, efx->net_dev,
1169				  "TX DMA Q %d reports descriptor fetch error."
1170				  " TX Q %d is disabled.\n", ev_sub_data,
1171				  ev_sub_data);
1172			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1173		} else
1174			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1175		break;
1176	default:
1177		netif_vdbg(efx, hw, efx->net_dev,
1178			   "channel %d unknown driver event code %d "
1179			   "data %04x\n", channel->channel, ev_sub_code,
1180			   ev_sub_data);
1181		break;
1182	}
1183}
1184
1185int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1186{
1187	struct efx_nic *efx = channel->efx;
1188	unsigned int read_ptr;
1189	efx_qword_t event, *p_event;
1190	int ev_code;
1191	int tx_packets = 0;
1192	int spent = 0;
1193
1194	read_ptr = channel->eventq_read_ptr;
1195
1196	for (;;) {
1197		p_event = efx_event(channel, read_ptr);
1198		event = *p_event;
1199
1200		if (!efx_event_present(&event))
1201			/* End of events */
1202			break;
1203
1204		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1205			   "channel %d event is "EFX_QWORD_FMT"\n",
1206			   channel->channel, EFX_QWORD_VAL(event));
1207
1208		/* Clear this event by marking it all ones */
1209		EFX_SET_QWORD(*p_event);
1210
1211		++read_ptr;
1212
1213		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1214
1215		switch (ev_code) {
1216		case FSE_AZ_EV_CODE_RX_EV:
1217			efx_handle_rx_event(channel, &event);
1218			if (++spent == budget)
1219				goto out;
1220			break;
1221		case FSE_AZ_EV_CODE_TX_EV:
1222			tx_packets += efx_handle_tx_event(channel, &event);
1223			if (tx_packets > efx->txq_entries) {
1224				spent = budget;
1225				goto out;
1226			}
1227			break;
1228		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1229			efx_handle_generated_event(channel, &event);
1230			break;
1231		case FSE_AZ_EV_CODE_DRIVER_EV:
1232			efx_handle_driver_event(channel, &event);
1233			break;
1234		case FSE_CZ_EV_CODE_USER_EV:
1235			efx_sriov_event(channel, &event);
1236			break;
1237		case FSE_CZ_EV_CODE_MCDI_EV:
1238			efx_mcdi_process_event(channel, &event);
1239			break;
1240		case FSE_AZ_EV_CODE_GLOBAL_EV:
1241			if (efx->type->handle_global_event &&
1242			    efx->type->handle_global_event(channel, &event))
1243				break;
1244			/* else fall through */
1245		default:
1246			netif_err(channel->efx, hw, channel->efx->net_dev,
1247				  "channel %d unknown event type %d (data "
1248				  EFX_QWORD_FMT ")\n", channel->channel,
1249				  ev_code, EFX_QWORD_VAL(event));
1250		}
1251	}
1252
1253out:
1254	channel->eventq_read_ptr = read_ptr;
1255	return spent;
1256}
1257
1258/* Check whether an event is present in the eventq at the current
1259 * read pointer.  Only useful for self-test.
1260 */
1261bool efx_nic_event_present(struct efx_channel *channel)
1262{
1263	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1264}
1265
1266/* Allocate buffer table entries for event queue */
1267int efx_nic_probe_eventq(struct efx_channel *channel)
1268{
1269	struct efx_nic *efx = channel->efx;
1270	unsigned entries;
1271
1272	entries = channel->eventq_mask + 1;
1273	return efx_alloc_special_buffer(efx, &channel->eventq,
1274					entries * sizeof(efx_qword_t));
1275}
1276
1277void efx_nic_init_eventq(struct efx_channel *channel)
1278{
1279	efx_oword_t reg;
1280	struct efx_nic *efx = channel->efx;
1281
1282	netif_dbg(efx, hw, efx->net_dev,
1283		  "channel %d event queue in special buffers %d-%d\n",
1284		  channel->channel, channel->eventq.index,
1285		  channel->eventq.index + channel->eventq.entries - 1);
1286
1287	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1288		EFX_POPULATE_OWORD_3(reg,
1289				     FRF_CZ_TIMER_Q_EN, 1,
1290				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1291				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1292		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1293	}
1294
1295	/* Pin event queue buffer */
1296	efx_init_special_buffer(efx, &channel->eventq);
1297
1298	/* Fill event queue with all ones (i.e. empty events) */
1299	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1300
1301	/* Push event queue to card */
1302	EFX_POPULATE_OWORD_3(reg,
1303			     FRF_AZ_EVQ_EN, 1,
1304			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1305			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1306	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1307			 channel->channel);
1308
1309	efx->type->push_irq_moderation(channel);
1310}
1311
1312void efx_nic_fini_eventq(struct efx_channel *channel)
1313{
1314	efx_oword_t reg;
1315	struct efx_nic *efx = channel->efx;
1316
1317	/* Remove event queue from card */
1318	EFX_ZERO_OWORD(reg);
1319	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1320			 channel->channel);
1321	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1322		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1323
1324	/* Unpin event queue */
1325	efx_fini_special_buffer(efx, &channel->eventq);
1326}
1327
1328/* Free buffers backing event queue */
1329void efx_nic_remove_eventq(struct efx_channel *channel)
1330{
1331	efx_free_special_buffer(channel->efx, &channel->eventq);
1332}
1333
1334
1335void efx_nic_event_test_start(struct efx_channel *channel)
1336{
1337	channel->event_test_cpu = -1;
1338	smp_wmb();
1339	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1340}
1341
1342void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1343{
1344	efx_magic_event(efx_rx_queue_channel(rx_queue),
1345			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1346}
1347
1348/**************************************************************************
1349 *
1350 * Hardware interrupts
1351 * The hardware interrupt handler does very little work; all the event
1352 * queue processing is carried out by per-channel tasklets.
1353 *
1354 **************************************************************************/
1355
1356/* Enable/disable/generate interrupts */
1357static inline void efx_nic_interrupts(struct efx_nic *efx,
1358				      bool enabled, bool force)
1359{
1360	efx_oword_t int_en_reg_ker;
1361
1362	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1363			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1364			     FRF_AZ_KER_INT_KER, force,
1365			     FRF_AZ_DRV_INT_EN_KER, enabled);
1366	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1367}
1368
1369void efx_nic_enable_interrupts(struct efx_nic *efx)
1370{
1371	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1372	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1373
1374	efx_nic_interrupts(efx, true, false);
1375}
1376
1377void efx_nic_disable_interrupts(struct efx_nic *efx)
1378{
1379	/* Disable interrupts */
1380	efx_nic_interrupts(efx, false, false);
1381}
1382
1383/* Generate a test interrupt
1384 * Interrupt must already have been enabled, otherwise nasty things
1385 * may happen.
1386 */
1387void efx_nic_irq_test_start(struct efx_nic *efx)
1388{
1389	efx->last_irq_cpu = -1;
1390	smp_wmb();
1391	efx_nic_interrupts(efx, true, true);
1392}
1393
1394/* Process a fatal interrupt
1395 * Disable bus mastering ASAP and schedule a reset
1396 */
1397irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1398{
1399	struct falcon_nic_data *nic_data = efx->nic_data;
1400	efx_oword_t *int_ker = efx->irq_status.addr;
1401	efx_oword_t fatal_intr;
1402	int error, mem_perr;
1403
1404	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1405	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1406
1407	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1408		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1409		  EFX_OWORD_VAL(fatal_intr),
1410		  error ? "disabling bus mastering" : "no recognised error");
1411
1412	/* If this is a memory parity error dump which blocks are offending */
1413	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1414		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1415	if (mem_perr) {
1416		efx_oword_t reg;
1417		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1418		netif_err(efx, hw, efx->net_dev,
1419			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1420			  EFX_OWORD_VAL(reg));
1421	}
1422
1423	/* Disable both devices */
1424	pci_clear_master(efx->pci_dev);
1425	if (efx_nic_is_dual_func(efx))
1426		pci_clear_master(nic_data->pci_dev2);
1427	efx_nic_disable_interrupts(efx);
1428
1429	/* Count errors and reset or disable the NIC accordingly */
1430	if (efx->int_error_count == 0 ||
1431	    time_after(jiffies, efx->int_error_expire)) {
1432		efx->int_error_count = 0;
1433		efx->int_error_expire =
1434			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1435	}
1436	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1437		netif_err(efx, hw, efx->net_dev,
1438			  "SYSTEM ERROR - reset scheduled\n");
1439		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1440	} else {
1441		netif_err(efx, hw, efx->net_dev,
1442			  "SYSTEM ERROR - max number of errors seen."
1443			  "NIC will be disabled\n");
1444		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1445	}
1446
1447	return IRQ_HANDLED;
1448}
1449
1450/* Handle a legacy interrupt
1451 * Acknowledges the interrupt and schedule event queue processing.
1452 */
1453static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1454{
1455	struct efx_nic *efx = dev_id;
1456	efx_oword_t *int_ker = efx->irq_status.addr;
1457	irqreturn_t result = IRQ_NONE;
1458	struct efx_channel *channel;
1459	efx_dword_t reg;
1460	u32 queues;
1461	int syserr;
1462
1463	/* Could this be ours?  If interrupts are disabled then the
1464	 * channel state may not be valid.
1465	 */
1466	if (!efx->legacy_irq_enabled)
1467		return result;
1468
1469	/* Read the ISR which also ACKs the interrupts */
1470	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1471	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1472
1473	/* Handle non-event-queue sources */
1474	if (queues & (1U << efx->irq_level)) {
1475		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1476		if (unlikely(syserr))
1477			return efx_nic_fatal_interrupt(efx);
1478		efx->last_irq_cpu = raw_smp_processor_id();
1479	}
1480
1481	if (queues != 0) {
1482		if (EFX_WORKAROUND_15783(efx))
1483			efx->irq_zero_count = 0;
1484
1485		/* Schedule processing of any interrupting queues */
1486		efx_for_each_channel(channel, efx) {
1487			if (queues & 1)
1488				efx_schedule_channel_irq(channel);
1489			queues >>= 1;
1490		}
1491		result = IRQ_HANDLED;
1492
1493	} else if (EFX_WORKAROUND_15783(efx)) {
1494		efx_qword_t *event;
1495
1496		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1497		 * because this might be a shared interrupt. */
1498		if (efx->irq_zero_count++ == 0)
1499			result = IRQ_HANDLED;
1500
1501		/* Ensure we schedule or rearm all event queues */
1502		efx_for_each_channel(channel, efx) {
1503			event = efx_event(channel, channel->eventq_read_ptr);
1504			if (efx_event_present(event))
1505				efx_schedule_channel_irq(channel);
1506			else
1507				efx_nic_eventq_read_ack(channel);
1508		}
1509	}
1510
1511	if (result == IRQ_HANDLED)
1512		netif_vdbg(efx, intr, efx->net_dev,
1513			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1514			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1515
1516	return result;
1517}
1518
1519/* Handle an MSI interrupt
1520 *
1521 * Handle an MSI hardware interrupt.  This routine schedules event
1522 * queue processing.  No interrupt acknowledgement cycle is necessary.
1523 * Also, we never need to check that the interrupt is for us, since
1524 * MSI interrupts cannot be shared.
1525 */
1526static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1527{
1528	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1529	struct efx_nic *efx = channel->efx;
1530	efx_oword_t *int_ker = efx->irq_status.addr;
1531	int syserr;
1532
1533	netif_vdbg(efx, intr, efx->net_dev,
1534		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1535		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1536
1537	/* Handle non-event-queue sources */
1538	if (channel->channel == efx->irq_level) {
1539		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1540		if (unlikely(syserr))
1541			return efx_nic_fatal_interrupt(efx);
1542		efx->last_irq_cpu = raw_smp_processor_id();
1543	}
1544
1545	/* Schedule processing of the channel */
1546	efx_schedule_channel_irq(channel);
1547
1548	return IRQ_HANDLED;
1549}
1550
1551
1552/* Setup RSS indirection table.
1553 * This maps from the hash value of the packet to RXQ
1554 */
1555void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1556{
1557	size_t i = 0;
1558	efx_dword_t dword;
1559
1560	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1561		return;
1562
1563	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1564		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1565
1566	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1567		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1568				     efx->rx_indir_table[i]);
1569		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1570	}
1571}
1572
1573/* Hook interrupt handler(s)
1574 * Try MSI and then legacy interrupts.
1575 */
1576int efx_nic_init_interrupt(struct efx_nic *efx)
1577{
1578	struct efx_channel *channel;
 
1579	int rc;
1580
1581	if (!EFX_INT_MODE_USE_MSI(efx)) {
1582		irq_handler_t handler;
1583		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1584			handler = efx_legacy_interrupt;
1585		else
1586			handler = falcon_legacy_interrupt_a1;
1587
1588		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1589				 efx->name, efx);
1590		if (rc) {
1591			netif_err(efx, drv, efx->net_dev,
1592				  "failed to hook legacy IRQ %d\n",
1593				  efx->pci_dev->irq);
1594			goto fail1;
1595		}
1596		return 0;
1597	}
1598
 
 
 
 
 
 
 
 
 
 
 
1599	/* Hook MSI or MSI-X interrupt */
 
1600	efx_for_each_channel(channel, efx) {
1601		rc = request_irq(channel->irq, efx_msi_interrupt,
1602				 IRQF_PROBE_SHARED, /* Not shared */
1603				 efx->channel_name[channel->channel],
1604				 &efx->channel[channel->channel]);
1605		if (rc) {
1606			netif_err(efx, drv, efx->net_dev,
1607				  "failed to hook IRQ %d\n", channel->irq);
1608			goto fail2;
1609		}
 
 
 
 
 
 
 
 
 
 
 
1610	}
1611
1612	return 0;
1613
1614 fail2:
1615	efx_for_each_channel(channel, efx)
1616		free_irq(channel->irq, &efx->channel[channel->channel]);
 
 
 
 
 
 
 
1617 fail1:
1618	return rc;
1619}
1620
1621void efx_nic_fini_interrupt(struct efx_nic *efx)
1622{
1623	struct efx_channel *channel;
1624	efx_oword_t reg;
1625
1626	/* Disable MSI/MSI-X interrupts */
1627	efx_for_each_channel(channel, efx) {
1628		if (channel->irq)
1629			free_irq(channel->irq, &efx->channel[channel->channel]);
1630	}
1631
1632	/* ACK legacy interrupt */
1633	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1634		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1635	else
1636		falcon_irq_ack_a1(efx);
1637
1638	/* Disable legacy interrupt */
1639	if (efx->legacy_irq)
1640		free_irq(efx->legacy_irq, efx);
1641}
1642
1643/* Looks at available SRAM resources and works out how many queues we
1644 * can support, and where things like descriptor caches should live.
1645 *
1646 * SRAM is split up as follows:
1647 * 0                          buftbl entries for channels
1648 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1649 * efx->rx_dc_base            RX descriptor caches
1650 * efx->tx_dc_base            TX descriptor caches
1651 */
1652void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1653{
1654	unsigned vi_count, buftbl_min;
1655
1656	/* Account for the buffer table entries backing the datapath channels
1657	 * and the descriptor caches for those channels.
1658	 */
1659	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1660		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1661		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1662		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1663	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1664
1665#ifdef CONFIG_SFC_SRIOV
1666	if (efx_sriov_wanted(efx)) {
1667		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1668
1669		efx->vf_buftbl_base = buftbl_min;
1670
1671		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1672		vi_count = max(vi_count, EFX_VI_BASE);
1673		buftbl_free = (sram_lim_qw - buftbl_min -
1674			       vi_count * vi_dc_entries);
1675
1676		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1677				  efx_vf_size(efx));
1678		vf_limit = min(buftbl_free / entries_per_vf,
1679			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1680
1681		if (efx->vf_count > vf_limit) {
1682			netif_err(efx, probe, efx->net_dev,
1683				  "Reducing VF count from from %d to %d\n",
1684				  efx->vf_count, vf_limit);
1685			efx->vf_count = vf_limit;
1686		}
1687		vi_count += efx->vf_count * efx_vf_size(efx);
1688	}
1689#endif
1690
1691	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1692	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1693}
1694
1695u32 efx_nic_fpga_ver(struct efx_nic *efx)
1696{
1697	efx_oword_t altera_build;
1698	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1699	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1700}
1701
1702void efx_nic_init_common(struct efx_nic *efx)
1703{
1704	efx_oword_t temp;
1705
1706	/* Set positions of descriptor caches in SRAM. */
1707	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1708	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1709	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1710	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1711
1712	/* Set TX descriptor cache size. */
1713	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1714	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1715	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1716
1717	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1718	 * this allows most efficient prefetching.
1719	 */
1720	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1721	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1722	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1723	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1724	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1725
1726	/* Program INT_KER address */
1727	EFX_POPULATE_OWORD_2(temp,
1728			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1729			     EFX_INT_MODE_USE_MSI(efx),
1730			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1731	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1732
1733	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1734		/* Use an interrupt level unused by event queues */
1735		efx->irq_level = 0x1f;
1736	else
1737		/* Use a valid MSI-X vector */
1738		efx->irq_level = 0;
1739
1740	/* Enable all the genuinely fatal interrupts.  (They are still
1741	 * masked by the overall interrupt mask, controlled by
1742	 * falcon_interrupts()).
1743	 *
1744	 * Note: All other fatal interrupts are enabled
1745	 */
1746	EFX_POPULATE_OWORD_3(temp,
1747			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1748			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1749			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1750	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1751		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1752	EFX_INVERT_OWORD(temp);
1753	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1754
1755	efx_nic_push_rx_indir_table(efx);
1756
1757	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1758	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1759	 */
1760	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1761	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1762	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1763	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1764	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1765	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1766	/* Enable SW_EV to inherit in char driver - assume harmless here */
1767	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1768	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1769	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1770	/* Disable hardware watchdog which can misfire */
1771	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1772	/* Squash TX of packets of 16 bytes or less */
1773	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1774		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1775	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1776
1777	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1778		EFX_POPULATE_OWORD_4(temp,
1779				     /* Default values */
1780				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1781				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1782				     FRF_BZ_TX_PACE_FB_BASE, 0,
1783				     /* Allow large pace values in the
1784				      * fast bin. */
1785				     FRF_BZ_TX_PACE_BIN_TH,
1786				     FFE_BZ_TX_PACE_RESERVED);
1787		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1788	}
1789}
1790
1791/* Register dump */
1792
1793#define REGISTER_REVISION_A	1
1794#define REGISTER_REVISION_B	2
1795#define REGISTER_REVISION_C	3
1796#define REGISTER_REVISION_Z	3	/* latest revision */
 
 
1797
1798struct efx_nic_reg {
1799	u32 offset:24;
1800	u32 min_revision:2, max_revision:2;
1801};
1802
1803#define REGISTER(name, min_rev, max_rev) {				\
1804	FR_ ## min_rev ## max_rev ## _ ## name,				\
1805	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1806}
1807#define REGISTER_AA(name) REGISTER(name, A, A)
1808#define REGISTER_AB(name) REGISTER(name, A, B)
1809#define REGISTER_AZ(name) REGISTER(name, A, Z)
1810#define REGISTER_BB(name) REGISTER(name, B, B)
1811#define REGISTER_BZ(name) REGISTER(name, B, Z)
1812#define REGISTER_CZ(name) REGISTER(name, C, Z)
 
 
1813
1814static const struct efx_nic_reg efx_nic_regs[] = {
1815	REGISTER_AZ(ADR_REGION),
1816	REGISTER_AZ(INT_EN_KER),
1817	REGISTER_BZ(INT_EN_CHAR),
1818	REGISTER_AZ(INT_ADR_KER),
1819	REGISTER_BZ(INT_ADR_CHAR),
1820	/* INT_ACK_KER is WO */
1821	/* INT_ISR0 is RC */
1822	REGISTER_AZ(HW_INIT),
1823	REGISTER_CZ(USR_EV_CFG),
1824	REGISTER_AB(EE_SPI_HCMD),
1825	REGISTER_AB(EE_SPI_HADR),
1826	REGISTER_AB(EE_SPI_HDATA),
1827	REGISTER_AB(EE_BASE_PAGE),
1828	REGISTER_AB(EE_VPD_CFG0),
1829	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1830	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1831	/* PCIE_CORE_INDIRECT is indirect */
1832	REGISTER_AB(NIC_STAT),
1833	REGISTER_AB(GPIO_CTL),
1834	REGISTER_AB(GLB_CTL),
1835	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1836	REGISTER_BZ(DP_CTRL),
1837	REGISTER_AZ(MEM_STAT),
1838	REGISTER_AZ(CS_DEBUG),
1839	REGISTER_AZ(ALTERA_BUILD),
1840	REGISTER_AZ(CSR_SPARE),
1841	REGISTER_AB(PCIE_SD_CTL0123),
1842	REGISTER_AB(PCIE_SD_CTL45),
1843	REGISTER_AB(PCIE_PCS_CTL_STAT),
1844	/* DEBUG_DATA_OUT is not used */
1845	/* DRV_EV is WO */
1846	REGISTER_AZ(EVQ_CTL),
1847	REGISTER_AZ(EVQ_CNT1),
1848	REGISTER_AZ(EVQ_CNT2),
1849	REGISTER_AZ(BUF_TBL_CFG),
1850	REGISTER_AZ(SRM_RX_DC_CFG),
1851	REGISTER_AZ(SRM_TX_DC_CFG),
1852	REGISTER_AZ(SRM_CFG),
1853	/* BUF_TBL_UPD is WO */
1854	REGISTER_AZ(SRM_UPD_EVQ),
1855	REGISTER_AZ(SRAM_PARITY),
1856	REGISTER_AZ(RX_CFG),
1857	REGISTER_BZ(RX_FILTER_CTL),
1858	/* RX_FLUSH_DESCQ is WO */
1859	REGISTER_AZ(RX_DC_CFG),
1860	REGISTER_AZ(RX_DC_PF_WM),
1861	REGISTER_BZ(RX_RSS_TKEY),
1862	/* RX_NODESC_DROP is RC */
1863	REGISTER_AA(RX_SELF_RST),
1864	/* RX_DEBUG, RX_PUSH_DROP are not used */
1865	REGISTER_CZ(RX_RSS_IPV6_REG1),
1866	REGISTER_CZ(RX_RSS_IPV6_REG2),
1867	REGISTER_CZ(RX_RSS_IPV6_REG3),
1868	/* TX_FLUSH_DESCQ is WO */
1869	REGISTER_AZ(TX_DC_CFG),
1870	REGISTER_AA(TX_CHKSM_CFG),
1871	REGISTER_AZ(TX_CFG),
1872	/* TX_PUSH_DROP is not used */
1873	REGISTER_AZ(TX_RESERVED),
1874	REGISTER_BZ(TX_PACE),
1875	/* TX_PACE_DROP_QID is RC */
1876	REGISTER_BB(TX_VLAN),
1877	REGISTER_BZ(TX_IPFIL_PORTEN),
1878	REGISTER_AB(MD_TXD),
1879	REGISTER_AB(MD_RXD),
1880	REGISTER_AB(MD_CS),
1881	REGISTER_AB(MD_PHY_ADR),
1882	REGISTER_AB(MD_ID),
1883	/* MD_STAT is RC */
1884	REGISTER_AB(MAC_STAT_DMA),
1885	REGISTER_AB(MAC_CTRL),
1886	REGISTER_BB(GEN_MODE),
1887	REGISTER_AB(MAC_MC_HASH_REG0),
1888	REGISTER_AB(MAC_MC_HASH_REG1),
1889	REGISTER_AB(GM_CFG1),
1890	REGISTER_AB(GM_CFG2),
1891	/* GM_IPG and GM_HD are not used */
1892	REGISTER_AB(GM_MAX_FLEN),
1893	/* GM_TEST is not used */
1894	REGISTER_AB(GM_ADR1),
1895	REGISTER_AB(GM_ADR2),
1896	REGISTER_AB(GMF_CFG0),
1897	REGISTER_AB(GMF_CFG1),
1898	REGISTER_AB(GMF_CFG2),
1899	REGISTER_AB(GMF_CFG3),
1900	REGISTER_AB(GMF_CFG4),
1901	REGISTER_AB(GMF_CFG5),
1902	REGISTER_BB(TX_SRC_MAC_CTL),
1903	REGISTER_AB(XM_ADR_LO),
1904	REGISTER_AB(XM_ADR_HI),
1905	REGISTER_AB(XM_GLB_CFG),
1906	REGISTER_AB(XM_TX_CFG),
1907	REGISTER_AB(XM_RX_CFG),
1908	REGISTER_AB(XM_MGT_INT_MASK),
1909	REGISTER_AB(XM_FC),
1910	REGISTER_AB(XM_PAUSE_TIME),
1911	REGISTER_AB(XM_TX_PARAM),
1912	REGISTER_AB(XM_RX_PARAM),
1913	/* XM_MGT_INT_MSK (note no 'A') is RC */
1914	REGISTER_AB(XX_PWR_RST),
1915	REGISTER_AB(XX_SD_CTL),
1916	REGISTER_AB(XX_TXDRV_CTL),
1917	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1918	/* XX_CORE_STAT is partly RC */
 
 
 
1919};
1920
1921struct efx_nic_reg_table {
1922	u32 offset:24;
1923	u32 min_revision:2, max_revision:2;
1924	u32 step:6, rows:21;
1925};
1926
1927#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1928	offset,								\
1929	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
 
1930	step, rows							\
1931}
1932#define REGISTER_TABLE(name, min_rev, max_rev)				\
1933	REGISTER_TABLE_DIMENSIONS(					\
1934		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1935		min_rev, max_rev,					\
1936		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1937		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1938#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1939#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1940#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1941#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1942#define REGISTER_TABLE_BB_CZ(name)					\
1943	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1944				  FR_BZ_ ## name ## _STEP,		\
1945				  FR_BB_ ## name ## _ROWS),		\
1946	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1947				  FR_BZ_ ## name ## _STEP,		\
1948				  FR_CZ_ ## name ## _ROWS)
1949#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
 
1950
1951static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1952	/* DRIVER is not used */
1953	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1954	REGISTER_TABLE_BB(TX_IPFIL_TBL),
1955	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1956	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1957	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1958	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1959	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1960	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1961	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1962	/* We can't reasonably read all of the buffer table (up to 8MB!).
1963	 * However this driver will only use a few entries.  Reading
1964	 * 1K entries allows for some expansion of queue count and
1965	 * size before we need to change the version. */
1966	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1967				  A, A, 8, 1024),
1968	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1969				  B, Z, 8, 1024),
1970	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1971	REGISTER_TABLE_BB_CZ(TIMER_TBL),
1972	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1973	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1974	/* TX_FILTER_TBL0 is huge and not used by this driver */
1975	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1976	REGISTER_TABLE_CZ(MC_TREG_SMEM),
1977	/* MSIX_PBA_TABLE is not mapped */
1978	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1979	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
 
1980};
1981
1982size_t efx_nic_get_regs_len(struct efx_nic *efx)
1983{
1984	const struct efx_nic_reg *reg;
1985	const struct efx_nic_reg_table *table;
1986	size_t len = 0;
1987
1988	for (reg = efx_nic_regs;
1989	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1990	     reg++)
1991		if (efx->type->revision >= reg->min_revision &&
1992		    efx->type->revision <= reg->max_revision)
1993			len += sizeof(efx_oword_t);
1994
1995	for (table = efx_nic_reg_tables;
1996	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1997	     table++)
1998		if (efx->type->revision >= table->min_revision &&
1999		    efx->type->revision <= table->max_revision)
2000			len += table->rows * min_t(size_t, table->step, 16);
2001
2002	return len;
2003}
2004
2005void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2006{
2007	const struct efx_nic_reg *reg;
2008	const struct efx_nic_reg_table *table;
2009
2010	for (reg = efx_nic_regs;
2011	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2012	     reg++) {
2013		if (efx->type->revision >= reg->min_revision &&
2014		    efx->type->revision <= reg->max_revision) {
2015			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2016			buf += sizeof(efx_oword_t);
2017		}
2018	}
2019
2020	for (table = efx_nic_reg_tables;
2021	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2022	     table++) {
2023		size_t size, i;
2024
2025		if (!(efx->type->revision >= table->min_revision &&
2026		      efx->type->revision <= table->max_revision))
2027			continue;
2028
2029		size = min_t(size_t, table->step, 16);
2030
2031		for (i = 0; i < table->rows; i++) {
2032			switch (table->step) {
2033			case 4: /* 32-bit register or SRAM */
2034				efx_readd_table(efx, buf, table->offset, i);
2035				break;
2036			case 8: /* 64-bit SRAM */
2037				efx_sram_readq(efx,
2038					       efx->membase + table->offset,
2039					       buf, i);
2040				break;
2041			case 16: /* 128-bit register */
2042				efx_reado_table(efx, buf, table->offset, i);
2043				break;
2044			case 32: /* 128-bit register, interleaved */
2045				efx_reado_table(efx, buf, table->offset, 2 * i);
2046				break;
2047			default:
2048				WARN_ON(1);
2049				return;
2050			}
2051			buf += size;
2052		}
2053	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054}