Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7
   8#define ICE_PF_RESET_WAIT_COUNT	200
   9
  10#define ICE_NIC_FLX_ENTRY(hw, mdid, idx) \
  11	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(ICE_RXDID_FLEX_NIC), \
  12	     ((ICE_RX_OPC_MDID << \
  13	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
  14	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
  15	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
  16	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
  17
  18#define ICE_NIC_FLX_FLG_ENTRY(hw, flg_0, flg_1, flg_2, flg_3, idx) \
  19	wr32((hw), GLFLXP_RXDID_FLAGS(ICE_RXDID_FLEX_NIC, idx), \
  20	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
  21	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
  22	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
  23	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
  24	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
  25	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
  26	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
  27	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
  28
  29/**
  30 * ice_set_mac_type - Sets MAC type
  31 * @hw: pointer to the HW structure
  32 *
  33 * This function sets the MAC type of the adapter based on the
  34 * vendor ID and device ID stored in the hw structure.
  35 */
  36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
  37{
  38	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  39		return ICE_ERR_DEVICE_NOT_SUPPORTED;
  40
  41	hw->mac_type = ICE_MAC_GENERIC;
  42	return 0;
  43}
  44
  45/**
  46 * ice_clear_pf_cfg - Clear PF configuration
  47 * @hw: pointer to the hardware structure
  48 */
  49enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
  50{
  51	struct ice_aq_desc desc;
  52
  53	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
  54
  55	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
  56}
  57
  58/**
  59 * ice_aq_manage_mac_read - manage MAC address read command
  60 * @hw: pointer to the hw struct
  61 * @buf: a virtual buffer to hold the manage MAC read response
  62 * @buf_size: Size of the virtual buffer
  63 * @cd: pointer to command details structure or NULL
  64 *
  65 * This function is used to return per PF station MAC address (0x0107).
  66 * NOTE: Upon successful completion of this command, MAC address information
  67 * is returned in user specified buffer. Please interpret user specified
  68 * buffer as "manage_mac_read" response.
  69 * Response such as various MAC addresses are stored in HW struct (port.mac)
  70 * ice_aq_discover_caps is expected to be called before this function is called.
  71 */
  72static enum ice_status
  73ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
  74		       struct ice_sq_cd *cd)
  75{
  76	struct ice_aqc_manage_mac_read_resp *resp;
  77	struct ice_aqc_manage_mac_read *cmd;
  78	struct ice_aq_desc desc;
  79	enum ice_status status;
  80	u16 flags;
  81	u8 i;
  82
  83	cmd = &desc.params.mac_read;
  84
  85	if (buf_size < sizeof(*resp))
  86		return ICE_ERR_BUF_TOO_SHORT;
  87
  88	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
  89
  90	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
  91	if (status)
  92		return status;
  93
  94	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
  95	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
  96
  97	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
  98		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
  99		return ICE_ERR_CFG;
 100	}
 101
 102	/* A single port can report up to two (LAN and WoL) addresses */
 103	for (i = 0; i < cmd->num_addr; i++)
 104		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 105			ether_addr_copy(hw->port_info->mac.lan_addr,
 106					resp[i].mac_addr);
 107			ether_addr_copy(hw->port_info->mac.perm_addr,
 108					resp[i].mac_addr);
 109			break;
 110		}
 111
 112	return 0;
 113}
 114
 115/**
 116 * ice_aq_get_phy_caps - returns PHY capabilities
 117 * @pi: port information structure
 118 * @qual_mods: report qualified modules
 119 * @report_mode: report mode capabilities
 120 * @pcaps: structure for PHY capabilities to be filled
 121 * @cd: pointer to command details structure or NULL
 122 *
 123 * Returns the various PHY capabilities supported on the Port (0x0600)
 124 */
 125static enum ice_status
 126ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 127		    struct ice_aqc_get_phy_caps_data *pcaps,
 128		    struct ice_sq_cd *cd)
 129{
 130	struct ice_aqc_get_phy_caps *cmd;
 131	u16 pcaps_size = sizeof(*pcaps);
 132	struct ice_aq_desc desc;
 133	enum ice_status status;
 134
 135	cmd = &desc.params.get_phy;
 136
 137	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 138		return ICE_ERR_PARAM;
 139
 140	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 141
 142	if (qual_mods)
 143		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 144
 145	cmd->param0 |= cpu_to_le16(report_mode);
 146	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
 147
 148	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
 149		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 150
 151	return status;
 152}
 153
 154/**
 155 * ice_get_media_type - Gets media type
 156 * @pi: port information structure
 157 */
 158static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 159{
 160	struct ice_link_status *hw_link_info;
 161
 162	if (!pi)
 163		return ICE_MEDIA_UNKNOWN;
 164
 165	hw_link_info = &pi->phy.link_info;
 166
 167	if (hw_link_info->phy_type_low) {
 168		switch (hw_link_info->phy_type_low) {
 169		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 170		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 171		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 172		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 173		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 174		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 175		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 176		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 177		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 178		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 179			return ICE_MEDIA_FIBER;
 180		case ICE_PHY_TYPE_LOW_100BASE_TX:
 181		case ICE_PHY_TYPE_LOW_1000BASE_T:
 182		case ICE_PHY_TYPE_LOW_2500BASE_T:
 183		case ICE_PHY_TYPE_LOW_5GBASE_T:
 184		case ICE_PHY_TYPE_LOW_10GBASE_T:
 185		case ICE_PHY_TYPE_LOW_25GBASE_T:
 186			return ICE_MEDIA_BASET;
 187		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 188		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 189		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 190		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 191		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 192			return ICE_MEDIA_DA;
 193		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 194		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 195		case ICE_PHY_TYPE_LOW_2500BASE_X:
 196		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 197		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 198		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 199		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 200		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 201		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 202			return ICE_MEDIA_BACKPLANE;
 203		}
 204	}
 205
 206	return ICE_MEDIA_UNKNOWN;
 207}
 208
 209/**
 210 * ice_aq_get_link_info
 211 * @pi: port information structure
 212 * @ena_lse: enable/disable LinkStatusEvent reporting
 213 * @link: pointer to link status structure - optional
 214 * @cd: pointer to command details structure or NULL
 215 *
 216 * Get Link Status (0x607). Returns the link status of the adapter.
 217 */
 218enum ice_status
 219ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 220		     struct ice_link_status *link, struct ice_sq_cd *cd)
 221{
 222	struct ice_link_status *hw_link_info_old, *hw_link_info;
 223	struct ice_aqc_get_link_status_data link_data = { 0 };
 224	struct ice_aqc_get_link_status *resp;
 225	enum ice_media_type *hw_media_type;
 226	struct ice_fc_info *hw_fc_info;
 227	bool tx_pause, rx_pause;
 228	struct ice_aq_desc desc;
 229	enum ice_status status;
 230	u16 cmd_flags;
 231
 232	if (!pi)
 233		return ICE_ERR_PARAM;
 234	hw_link_info_old = &pi->phy.link_info_old;
 235	hw_media_type = &pi->phy.media_type;
 236	hw_link_info = &pi->phy.link_info;
 237	hw_fc_info = &pi->fc;
 238
 239	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 240	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 241	resp = &desc.params.get_link_status;
 242	resp->cmd_flags = cpu_to_le16(cmd_flags);
 243	resp->lport_num = pi->lport;
 244
 245	status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
 246				 cd);
 247
 248	if (status)
 249		return status;
 250
 251	/* save off old link status information */
 252	*hw_link_info_old = *hw_link_info;
 253
 254	/* update current link status information */
 255	hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
 256	hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 257	*hw_media_type = ice_get_media_type(pi);
 258	hw_link_info->link_info = link_data.link_info;
 259	hw_link_info->an_info = link_data.an_info;
 260	hw_link_info->ext_info = link_data.ext_info;
 261	hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 262	hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
 263
 264	/* update fc info */
 265	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 266	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 267	if (tx_pause && rx_pause)
 268		hw_fc_info->current_mode = ICE_FC_FULL;
 269	else if (tx_pause)
 270		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 271	else if (rx_pause)
 272		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 273	else
 274		hw_fc_info->current_mode = ICE_FC_NONE;
 275
 276	hw_link_info->lse_ena =
 277		!!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 278
 279	/* save link status information */
 280	if (link)
 281		*link = *hw_link_info;
 282
 283	/* flag cleared so calling functions don't call AQ again */
 284	pi->phy.get_link_info = false;
 285
 286	return status;
 287}
 288
 289/**
 290 * ice_init_flex_parser - initialize rx flex parser
 291 * @hw: pointer to the hardware structure
 292 *
 293 * Function to initialize flex descriptors
 294 */
 295static void ice_init_flex_parser(struct ice_hw *hw)
 296{
 297	u8 idx = 0;
 298
 299	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_LOW, 0);
 300	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_HIGH, 1);
 301	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_LOWER, 2);
 302	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_HIGH, 3);
 303	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_FRG, ICE_RXFLG_UDP_GRE,
 304			      ICE_RXFLG_PKT_DSI, ICE_RXFLG_FIN, idx++);
 305	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_SYN, ICE_RXFLG_RST,
 306			      ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
 307	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI,
 308			      ICE_RXFLG_EVLAN_x8100, ICE_RXFLG_EVLAN_x9100,
 309			      idx++);
 310	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_VLAN_x8100, ICE_RXFLG_TNL_VLAN,
 311			      ICE_RXFLG_TNL_MAC, ICE_RXFLG_TNL0, idx++);
 312	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
 313			      ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
 314}
 315
 316/**
 317 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 318 * @hw: pointer to the hw struct
 319 */
 320static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 321{
 322	struct ice_switch_info *sw;
 323
 324	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 325				       sizeof(*hw->switch_info), GFP_KERNEL);
 326	sw = hw->switch_info;
 327
 328	if (!sw)
 329		return ICE_ERR_NO_MEMORY;
 330
 331	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 332
 333	mutex_init(&sw->mac_list_lock);
 334	INIT_LIST_HEAD(&sw->mac_list_head);
 335
 336	mutex_init(&sw->vlan_list_lock);
 337	INIT_LIST_HEAD(&sw->vlan_list_head);
 338
 339	mutex_init(&sw->eth_m_list_lock);
 340	INIT_LIST_HEAD(&sw->eth_m_list_head);
 341
 342	mutex_init(&sw->promisc_list_lock);
 343	INIT_LIST_HEAD(&sw->promisc_list_head);
 344
 345	mutex_init(&sw->mac_vlan_list_lock);
 346	INIT_LIST_HEAD(&sw->mac_vlan_list_head);
 347
 348	return 0;
 349}
 350
 351/**
 352 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 353 * @hw: pointer to the hw struct
 354 */
 355static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 356{
 357	struct ice_switch_info *sw = hw->switch_info;
 358	struct ice_vsi_list_map_info *v_pos_map;
 359	struct ice_vsi_list_map_info *v_tmp_map;
 360
 361	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 362				 list_entry) {
 363		list_del(&v_pos_map->list_entry);
 364		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 365	}
 366
 367	mutex_destroy(&sw->mac_list_lock);
 368	mutex_destroy(&sw->vlan_list_lock);
 369	mutex_destroy(&sw->eth_m_list_lock);
 370	mutex_destroy(&sw->promisc_list_lock);
 371	mutex_destroy(&sw->mac_vlan_list_lock);
 372
 373	devm_kfree(ice_hw_to_dev(hw), sw);
 374}
 375
 376/**
 377 * ice_init_hw - main hardware initialization routine
 378 * @hw: pointer to the hardware structure
 379 */
 380enum ice_status ice_init_hw(struct ice_hw *hw)
 381{
 382	struct ice_aqc_get_phy_caps_data *pcaps;
 383	enum ice_status status;
 384	u16 mac_buf_len;
 385	void *mac_buf;
 386
 387	/* Set MAC type based on DeviceID */
 388	status = ice_set_mac_type(hw);
 389	if (status)
 390		return status;
 391
 392	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 393			 PF_FUNC_RID_FUNC_NUM_M) >>
 394		PF_FUNC_RID_FUNC_NUM_S;
 395
 396	status = ice_reset(hw, ICE_RESET_PFR);
 397	if (status)
 398		return status;
 399
 400	/* set these values to minimum allowed */
 401	hw->itr_gran_200 = ICE_ITR_GRAN_MIN_200;
 402	hw->itr_gran_100 = ICE_ITR_GRAN_MIN_100;
 403	hw->itr_gran_50 = ICE_ITR_GRAN_MIN_50;
 404	hw->itr_gran_25 = ICE_ITR_GRAN_MIN_25;
 405
 406	status = ice_init_all_ctrlq(hw);
 407	if (status)
 408		goto err_unroll_cqinit;
 409
 410	status = ice_clear_pf_cfg(hw);
 411	if (status)
 412		goto err_unroll_cqinit;
 413
 414	ice_clear_pxe_mode(hw);
 415
 416	status = ice_init_nvm(hw);
 417	if (status)
 418		goto err_unroll_cqinit;
 419
 420	status = ice_get_caps(hw);
 421	if (status)
 422		goto err_unroll_cqinit;
 423
 424	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 425				     sizeof(*hw->port_info), GFP_KERNEL);
 426	if (!hw->port_info) {
 427		status = ICE_ERR_NO_MEMORY;
 428		goto err_unroll_cqinit;
 429	}
 430
 431	/* set the back pointer to hw */
 432	hw->port_info->hw = hw;
 433
 434	/* Initialize port_info struct with switch configuration data */
 435	status = ice_get_initial_sw_cfg(hw);
 436	if (status)
 437		goto err_unroll_alloc;
 438
 439	hw->evb_veb = true;
 440
 441	/* Query the allocated resources for tx scheduler */
 442	status = ice_sched_query_res_alloc(hw);
 443	if (status) {
 444		ice_debug(hw, ICE_DBG_SCHED,
 445			  "Failed to get scheduler allocated resources\n");
 446		goto err_unroll_alloc;
 447	}
 448
 449	/* Initialize port_info struct with scheduler data */
 450	status = ice_sched_init_port(hw->port_info);
 451	if (status)
 452		goto err_unroll_sched;
 453
 454	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 455	if (!pcaps) {
 456		status = ICE_ERR_NO_MEMORY;
 457		goto err_unroll_sched;
 458	}
 459
 460	/* Initialize port_info struct with PHY capabilities */
 461	status = ice_aq_get_phy_caps(hw->port_info, false,
 462				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
 463	devm_kfree(ice_hw_to_dev(hw), pcaps);
 464	if (status)
 465		goto err_unroll_sched;
 466
 467	/* Initialize port_info struct with link information */
 468	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
 469	if (status)
 470		goto err_unroll_sched;
 471
 472	status = ice_init_fltr_mgmt_struct(hw);
 473	if (status)
 474		goto err_unroll_sched;
 475
 476	/* Get MAC information */
 477	/* A single port can report up to two (LAN and WoL) addresses */
 478	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
 479			       sizeof(struct ice_aqc_manage_mac_read_resp),
 480			       GFP_KERNEL);
 481	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
 482
 483	if (!mac_buf) {
 484		status = ICE_ERR_NO_MEMORY;
 485		goto err_unroll_fltr_mgmt_struct;
 486	}
 487
 488	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 489	devm_kfree(ice_hw_to_dev(hw), mac_buf);
 490
 491	if (status)
 492		goto err_unroll_fltr_mgmt_struct;
 493
 494	ice_init_flex_parser(hw);
 495
 496	return 0;
 497
 498err_unroll_fltr_mgmt_struct:
 499	ice_cleanup_fltr_mgmt_struct(hw);
 500err_unroll_sched:
 501	ice_sched_cleanup_all(hw);
 502err_unroll_alloc:
 503	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 504err_unroll_cqinit:
 505	ice_shutdown_all_ctrlq(hw);
 506	return status;
 507}
 508
 509/**
 510 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 511 * @hw: pointer to the hardware structure
 512 */
 513void ice_deinit_hw(struct ice_hw *hw)
 514{
 515	ice_sched_cleanup_all(hw);
 516	ice_shutdown_all_ctrlq(hw);
 517
 518	if (hw->port_info) {
 519		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 520		hw->port_info = NULL;
 521	}
 522
 523	ice_cleanup_fltr_mgmt_struct(hw);
 524}
 525
 526/**
 527 * ice_check_reset - Check to see if a global reset is complete
 528 * @hw: pointer to the hardware structure
 529 */
 530enum ice_status ice_check_reset(struct ice_hw *hw)
 531{
 532	u32 cnt, reg = 0, grst_delay;
 533
 534	/* Poll for Device Active state in case a recent CORER, GLOBR,
 535	 * or EMPR has occurred. The grst delay value is in 100ms units.
 536	 * Add 1sec for outstanding AQ commands that can take a long time.
 537	 */
 538	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
 539		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
 540
 541	for (cnt = 0; cnt < grst_delay; cnt++) {
 542		mdelay(100);
 543		reg = rd32(hw, GLGEN_RSTAT);
 544		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
 545			break;
 546	}
 547
 548	if (cnt == grst_delay) {
 549		ice_debug(hw, ICE_DBG_INIT,
 550			  "Global reset polling failed to complete.\n");
 551		return ICE_ERR_RESET_FAILED;
 552	}
 553
 554#define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
 555				 GLNVM_ULD_GLOBR_DONE_M)
 556
 557	/* Device is Active; check Global Reset processes are done */
 558	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 559		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
 560		if (reg == ICE_RESET_DONE_MASK) {
 561			ice_debug(hw, ICE_DBG_INIT,
 562				  "Global reset processes done. %d\n", cnt);
 563			break;
 564		}
 565		mdelay(10);
 566	}
 567
 568	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 569		ice_debug(hw, ICE_DBG_INIT,
 570			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 571			  reg);
 572		return ICE_ERR_RESET_FAILED;
 573	}
 574
 575	return 0;
 576}
 577
 578/**
 579 * ice_pf_reset - Reset the PF
 580 * @hw: pointer to the hardware structure
 581 *
 582 * If a global reset has been triggered, this function checks
 583 * for its completion and then issues the PF reset
 584 */
 585static enum ice_status ice_pf_reset(struct ice_hw *hw)
 586{
 587	u32 cnt, reg;
 588
 589	/* If at function entry a global reset was already in progress, i.e.
 590	 * state is not 'device active' or any of the reset done bits are not
 591	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
 592	 * global reset is done.
 593	 */
 594	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
 595	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
 596		/* poll on global reset currently in progress until done */
 597		if (ice_check_reset(hw))
 598			return ICE_ERR_RESET_FAILED;
 599
 600		return 0;
 601	}
 602
 603	/* Reset the PF */
 604	reg = rd32(hw, PFGEN_CTRL);
 605
 606	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
 607
 608	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 609		reg = rd32(hw, PFGEN_CTRL);
 610		if (!(reg & PFGEN_CTRL_PFSWR_M))
 611			break;
 612
 613		mdelay(1);
 614	}
 615
 616	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 617		ice_debug(hw, ICE_DBG_INIT,
 618			  "PF reset polling failed to complete.\n");
 619		return ICE_ERR_RESET_FAILED;
 620	}
 621
 622	return 0;
 623}
 624
 625/**
 626 * ice_reset - Perform different types of reset
 627 * @hw: pointer to the hardware structure
 628 * @req: reset request
 629 *
 630 * This function triggers a reset as specified by the req parameter.
 631 *
 632 * Note:
 633 * If anything other than a PF reset is triggered, PXE mode is restored.
 634 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
 635 * interface has been restored in the rebuild flow.
 636 */
 637enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
 638{
 639	u32 val = 0;
 640
 641	switch (req) {
 642	case ICE_RESET_PFR:
 643		return ice_pf_reset(hw);
 644	case ICE_RESET_CORER:
 645		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
 646		val = GLGEN_RTRIG_CORER_M;
 647		break;
 648	case ICE_RESET_GLOBR:
 649		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
 650		val = GLGEN_RTRIG_GLOBR_M;
 651		break;
 652	}
 653
 654	val |= rd32(hw, GLGEN_RTRIG);
 655	wr32(hw, GLGEN_RTRIG, val);
 656	ice_flush(hw);
 657
 658	/* wait for the FW to be ready */
 659	return ice_check_reset(hw);
 660}
 661
 662/**
 663 * ice_copy_rxq_ctx_to_hw
 664 * @hw: pointer to the hardware structure
 665 * @ice_rxq_ctx: pointer to the rxq context
 666 * @rxq_index: the index of the rx queue
 667 *
 668 * Copies rxq context from dense structure to hw register space
 669 */
 670static enum ice_status
 671ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
 672{
 673	u8 i;
 674
 675	if (!ice_rxq_ctx)
 676		return ICE_ERR_BAD_PTR;
 677
 678	if (rxq_index > QRX_CTRL_MAX_INDEX)
 679		return ICE_ERR_PARAM;
 680
 681	/* Copy each dword separately to hw */
 682	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
 683		wr32(hw, QRX_CONTEXT(i, rxq_index),
 684		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
 685
 686		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
 687			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
 688	}
 689
 690	return 0;
 691}
 692
 693/* LAN Rx Queue Context */
 694static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
 695	/* Field		Width	LSB */
 696	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
 697	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
 698	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
 699	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
 700	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
 701	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
 702	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
 703	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
 704	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
 705	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
 706	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
 707	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
 708	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
 709	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
 710	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
 711	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
 712	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
 713	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
 714	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
 715	{ 0 }
 716};
 717
 718/**
 719 * ice_write_rxq_ctx
 720 * @hw: pointer to the hardware structure
 721 * @rlan_ctx: pointer to the rxq context
 722 * @rxq_index: the index of the rx queue
 723 *
 724 * Converts rxq context from sparse to dense structure and then writes
 725 * it to hw register space
 726 */
 727enum ice_status
 728ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
 729		  u32 rxq_index)
 730{
 731	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
 732
 733	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
 734	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
 735}
 736
 737/* LAN Tx Queue Context */
 738const struct ice_ctx_ele ice_tlan_ctx_info[] = {
 739				    /* Field			Width	LSB */
 740	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
 741	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
 742	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
 743	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
 744	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
 745	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
 746	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
 747	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
 748	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
 749	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
 750	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
 751	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
 752	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
 753	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
 754	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
 755	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
 756	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
 757	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
 758	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
 759	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
 760	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
 761	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
 762	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
 763	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
 764	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
 765	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
 766	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		110,	171),
 767	{ 0 }
 768};
 769
 770/**
 771 * ice_debug_cq
 772 * @hw: pointer to the hardware structure
 773 * @mask: debug mask
 774 * @desc: pointer to control queue descriptor
 775 * @buf: pointer to command buffer
 776 * @buf_len: max length of buf
 777 *
 778 * Dumps debug log about control command with descriptor contents.
 779 */
 780void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
 781		  void *buf, u16 buf_len)
 782{
 783	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
 784	u16 len;
 785
 786#ifndef CONFIG_DYNAMIC_DEBUG
 787	if (!(mask & hw->debug_mask))
 788		return;
 789#endif
 790
 791	if (!desc)
 792		return;
 793
 794	len = le16_to_cpu(cq_desc->datalen);
 795
 796	ice_debug(hw, mask,
 797		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
 798		  le16_to_cpu(cq_desc->opcode),
 799		  le16_to_cpu(cq_desc->flags),
 800		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
 801	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
 802		  le32_to_cpu(cq_desc->cookie_high),
 803		  le32_to_cpu(cq_desc->cookie_low));
 804	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
 805		  le32_to_cpu(cq_desc->params.generic.param0),
 806		  le32_to_cpu(cq_desc->params.generic.param1));
 807	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
 808		  le32_to_cpu(cq_desc->params.generic.addr_high),
 809		  le32_to_cpu(cq_desc->params.generic.addr_low));
 810	if (buf && cq_desc->datalen != 0) {
 811		ice_debug(hw, mask, "Buffer:\n");
 812		if (buf_len < len)
 813			len = buf_len;
 814
 815		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
 816	}
 817}
 818
 819/* FW Admin Queue command wrappers */
 820
 821/**
 822 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
 823 * @hw: pointer to the hw struct
 824 * @desc: descriptor describing the command
 825 * @buf: buffer to use for indirect commands (NULL for direct commands)
 826 * @buf_size: size of buffer for indirect commands (0 for direct commands)
 827 * @cd: pointer to command details structure
 828 *
 829 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
 830 */
 831enum ice_status
 832ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
 833		u16 buf_size, struct ice_sq_cd *cd)
 834{
 835	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
 836}
 837
 838/**
 839 * ice_aq_get_fw_ver
 840 * @hw: pointer to the hw struct
 841 * @cd: pointer to command details structure or NULL
 842 *
 843 * Get the firmware version (0x0001) from the admin queue commands
 844 */
 845enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
 846{
 847	struct ice_aqc_get_ver *resp;
 848	struct ice_aq_desc desc;
 849	enum ice_status status;
 850
 851	resp = &desc.params.get_ver;
 852
 853	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
 854
 855	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 856
 857	if (!status) {
 858		hw->fw_branch = resp->fw_branch;
 859		hw->fw_maj_ver = resp->fw_major;
 860		hw->fw_min_ver = resp->fw_minor;
 861		hw->fw_patch = resp->fw_patch;
 862		hw->fw_build = le32_to_cpu(resp->fw_build);
 863		hw->api_branch = resp->api_branch;
 864		hw->api_maj_ver = resp->api_major;
 865		hw->api_min_ver = resp->api_minor;
 866		hw->api_patch = resp->api_patch;
 867	}
 868
 869	return status;
 870}
 871
 872/**
 873 * ice_aq_q_shutdown
 874 * @hw: pointer to the hw struct
 875 * @unloading: is the driver unloading itself
 876 *
 877 * Tell the Firmware that we're shutting down the AdminQ and whether
 878 * or not the driver is unloading as well (0x0003).
 879 */
 880enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
 881{
 882	struct ice_aqc_q_shutdown *cmd;
 883	struct ice_aq_desc desc;
 884
 885	cmd = &desc.params.q_shutdown;
 886
 887	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
 888
 889	if (unloading)
 890		cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
 891
 892	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 893}
 894
 895/**
 896 * ice_aq_req_res
 897 * @hw: pointer to the hw struct
 898 * @res: resource id
 899 * @access: access type
 900 * @sdp_number: resource number
 901 * @timeout: the maximum time in ms that the driver may hold the resource
 902 * @cd: pointer to command details structure or NULL
 903 *
 904 * requests common resource using the admin queue commands (0x0008)
 905 */
 906static enum ice_status
 907ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
 908	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
 909	       struct ice_sq_cd *cd)
 910{
 911	struct ice_aqc_req_res *cmd_resp;
 912	struct ice_aq_desc desc;
 913	enum ice_status status;
 914
 915	cmd_resp = &desc.params.res_owner;
 916
 917	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
 918
 919	cmd_resp->res_id = cpu_to_le16(res);
 920	cmd_resp->access_type = cpu_to_le16(access);
 921	cmd_resp->res_number = cpu_to_le32(sdp_number);
 922
 923	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 924	/* The completion specifies the maximum time in ms that the driver
 925	 * may hold the resource in the Timeout field.
 926	 * If the resource is held by someone else, the command completes with
 927	 * busy return value and the timeout field indicates the maximum time
 928	 * the current owner of the resource has to free it.
 929	 */
 930	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
 931		*timeout = le32_to_cpu(cmd_resp->timeout);
 932
 933	return status;
 934}
 935
 936/**
 937 * ice_aq_release_res
 938 * @hw: pointer to the hw struct
 939 * @res: resource id
 940 * @sdp_number: resource number
 941 * @cd: pointer to command details structure or NULL
 942 *
 943 * release common resource using the admin queue commands (0x0009)
 944 */
 945static enum ice_status
 946ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
 947		   struct ice_sq_cd *cd)
 948{
 949	struct ice_aqc_req_res *cmd;
 950	struct ice_aq_desc desc;
 951
 952	cmd = &desc.params.res_owner;
 953
 954	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
 955
 956	cmd->res_id = cpu_to_le16(res);
 957	cmd->res_number = cpu_to_le32(sdp_number);
 958
 959	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 960}
 961
 962/**
 963 * ice_acquire_res
 964 * @hw: pointer to the HW structure
 965 * @res: resource id
 966 * @access: access type (read or write)
 967 *
 968 * This function will attempt to acquire the ownership of a resource.
 969 */
 970enum ice_status
 971ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
 972		enum ice_aq_res_access_type access)
 973{
 974#define ICE_RES_POLLING_DELAY_MS	10
 975	u32 delay = ICE_RES_POLLING_DELAY_MS;
 976	enum ice_status status;
 977	u32 time_left = 0;
 978	u32 timeout;
 979
 980	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
 981
 982	/* An admin queue return code of ICE_AQ_RC_EEXIST means that another
 983	 * driver has previously acquired the resource and performed any
 984	 * necessary updates; in this case the caller does not obtain the
 985	 * resource and has no further work to do.
 986	 */
 987	if (hw->adminq.sq_last_status == ICE_AQ_RC_EEXIST) {
 988		status = ICE_ERR_AQ_NO_WORK;
 989		goto ice_acquire_res_exit;
 990	}
 991
 992	if (status)
 993		ice_debug(hw, ICE_DBG_RES,
 994			  "resource %d acquire type %d failed.\n", res, access);
 995
 996	/* If necessary, poll until the current lock owner timeouts */
 997	timeout = time_left;
 998	while (status && timeout && time_left) {
 999		mdelay(delay);
1000		timeout = (timeout > delay) ? timeout - delay : 0;
1001		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1002
1003		if (hw->adminq.sq_last_status == ICE_AQ_RC_EEXIST) {
1004			/* lock free, but no work to do */
1005			status = ICE_ERR_AQ_NO_WORK;
1006			break;
1007		}
1008
1009		if (!status)
1010			/* lock acquired */
1011			break;
1012	}
1013	if (status && status != ICE_ERR_AQ_NO_WORK)
1014		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1015
1016ice_acquire_res_exit:
1017	if (status == ICE_ERR_AQ_NO_WORK) {
1018		if (access == ICE_RES_WRITE)
1019			ice_debug(hw, ICE_DBG_RES,
1020				  "resource indicates no work to do.\n");
1021		else
1022			ice_debug(hw, ICE_DBG_RES,
1023				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1024	}
1025	return status;
1026}
1027
1028/**
1029 * ice_release_res
1030 * @hw: pointer to the HW structure
1031 * @res: resource id
1032 *
1033 * This function will release a resource using the proper Admin Command.
1034 */
1035void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1036{
1037	enum ice_status status;
1038	u32 total_delay = 0;
1039
1040	status = ice_aq_release_res(hw, res, 0, NULL);
1041
1042	/* there are some rare cases when trying to release the resource
1043	 * results in an admin Q timeout, so handle them correctly
1044	 */
1045	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1046	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1047		mdelay(1);
1048		status = ice_aq_release_res(hw, res, 0, NULL);
1049		total_delay++;
1050	}
1051}
1052
1053/**
1054 * ice_parse_caps - parse function/device capabilities
1055 * @hw: pointer to the hw struct
1056 * @buf: pointer to a buffer containing function/device capability records
1057 * @cap_count: number of capability records in the list
1058 * @opc: type of capabilities list to parse
1059 *
1060 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1061 */
1062static void
1063ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1064	       enum ice_adminq_opc opc)
1065{
1066	struct ice_aqc_list_caps_elem *cap_resp;
1067	struct ice_hw_func_caps *func_p = NULL;
1068	struct ice_hw_dev_caps *dev_p = NULL;
1069	struct ice_hw_common_caps *caps;
1070	u32 i;
1071
1072	if (!buf)
1073		return;
1074
1075	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1076
1077	if (opc == ice_aqc_opc_list_dev_caps) {
1078		dev_p = &hw->dev_caps;
1079		caps = &dev_p->common_cap;
1080	} else if (opc == ice_aqc_opc_list_func_caps) {
1081		func_p = &hw->func_caps;
1082		caps = &func_p->common_cap;
1083	} else {
1084		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1085		return;
1086	}
1087
1088	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1089		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1090		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1091		u32 number = le32_to_cpu(cap_resp->number);
1092		u16 cap = le16_to_cpu(cap_resp->cap);
1093
1094		switch (cap) {
1095		case ICE_AQC_CAPS_VSI:
1096			if (dev_p) {
1097				dev_p->num_vsi_allocd_to_host = number;
1098				ice_debug(hw, ICE_DBG_INIT,
1099					  "HW caps: Dev.VSI cnt = %d\n",
1100					  dev_p->num_vsi_allocd_to_host);
1101			} else if (func_p) {
1102				func_p->guaranteed_num_vsi = number;
1103				ice_debug(hw, ICE_DBG_INIT,
1104					  "HW caps: Func.VSI cnt = %d\n",
1105					  func_p->guaranteed_num_vsi);
1106			}
1107			break;
1108		case ICE_AQC_CAPS_RSS:
1109			caps->rss_table_size = number;
1110			caps->rss_table_entry_width = logical_id;
1111			ice_debug(hw, ICE_DBG_INIT,
1112				  "HW caps: RSS table size = %d\n",
1113				  caps->rss_table_size);
1114			ice_debug(hw, ICE_DBG_INIT,
1115				  "HW caps: RSS table width = %d\n",
1116				  caps->rss_table_entry_width);
1117			break;
1118		case ICE_AQC_CAPS_RXQS:
1119			caps->num_rxq = number;
1120			caps->rxq_first_id = phys_id;
1121			ice_debug(hw, ICE_DBG_INIT,
1122				  "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1123			ice_debug(hw, ICE_DBG_INIT,
1124				  "HW caps: Rx first queue ID = %d\n",
1125				  caps->rxq_first_id);
1126			break;
1127		case ICE_AQC_CAPS_TXQS:
1128			caps->num_txq = number;
1129			caps->txq_first_id = phys_id;
1130			ice_debug(hw, ICE_DBG_INIT,
1131				  "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1132			ice_debug(hw, ICE_DBG_INIT,
1133				  "HW caps: Tx first queue ID = %d\n",
1134				  caps->txq_first_id);
1135			break;
1136		case ICE_AQC_CAPS_MSIX:
1137			caps->num_msix_vectors = number;
1138			caps->msix_vector_first_id = phys_id;
1139			ice_debug(hw, ICE_DBG_INIT,
1140				  "HW caps: MSIX vector count = %d\n",
1141				  caps->num_msix_vectors);
1142			ice_debug(hw, ICE_DBG_INIT,
1143				  "HW caps: MSIX first vector index = %d\n",
1144				  caps->msix_vector_first_id);
1145			break;
1146		case ICE_AQC_CAPS_MAX_MTU:
1147			caps->max_mtu = number;
1148			if (dev_p)
1149				ice_debug(hw, ICE_DBG_INIT,
1150					  "HW caps: Dev.MaxMTU = %d\n",
1151					  caps->max_mtu);
1152			else if (func_p)
1153				ice_debug(hw, ICE_DBG_INIT,
1154					  "HW caps: func.MaxMTU = %d\n",
1155					  caps->max_mtu);
1156			break;
1157		default:
1158			ice_debug(hw, ICE_DBG_INIT,
1159				  "HW caps: Unknown capability[%d]: 0x%x\n", i,
1160				  cap);
1161			break;
1162		}
1163	}
1164}
1165
1166/**
1167 * ice_aq_discover_caps - query function/device capabilities
1168 * @hw: pointer to the hw struct
1169 * @buf: a virtual buffer to hold the capabilities
1170 * @buf_size: Size of the virtual buffer
1171 * @data_size: Size of the returned data, or buf size needed if AQ err==ENOMEM
1172 * @opc: capabilities type to discover - pass in the command opcode
1173 * @cd: pointer to command details structure or NULL
1174 *
1175 * Get the function(0x000a)/device(0x000b) capabilities description from
1176 * the firmware.
1177 */
1178static enum ice_status
1179ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u16 *data_size,
1180		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1181{
1182	struct ice_aqc_list_caps *cmd;
1183	struct ice_aq_desc desc;
1184	enum ice_status status;
1185
1186	cmd = &desc.params.get_cap;
1187
1188	if (opc != ice_aqc_opc_list_func_caps &&
1189	    opc != ice_aqc_opc_list_dev_caps)
1190		return ICE_ERR_PARAM;
1191
1192	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1193
1194	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1195	if (!status)
1196		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1197	*data_size = le16_to_cpu(desc.datalen);
1198
1199	return status;
1200}
1201
1202/**
1203 * ice_get_caps - get info about the HW
1204 * @hw: pointer to the hardware structure
1205 */
1206enum ice_status ice_get_caps(struct ice_hw *hw)
1207{
1208	enum ice_status status;
1209	u16 data_size = 0;
1210	u16 cbuf_len;
1211	u8 retries;
1212
1213	/* The driver doesn't know how many capabilities the device will return
1214	 * so the buffer size required isn't known ahead of time. The driver
1215	 * starts with cbuf_len and if this turns out to be insufficient, the
1216	 * device returns ICE_AQ_RC_ENOMEM and also the buffer size it needs.
1217	 * The driver then allocates the buffer of this size and retries the
1218	 * operation. So it follows that the retry count is 2.
1219	 */
1220#define ICE_GET_CAP_BUF_COUNT	40
1221#define ICE_GET_CAP_RETRY_COUNT	2
1222
1223	cbuf_len = ICE_GET_CAP_BUF_COUNT *
1224		sizeof(struct ice_aqc_list_caps_elem);
1225
1226	retries = ICE_GET_CAP_RETRY_COUNT;
1227
1228	do {
1229		void *cbuf;
1230
1231		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1232		if (!cbuf)
1233			return ICE_ERR_NO_MEMORY;
1234
1235		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &data_size,
1236					      ice_aqc_opc_list_func_caps, NULL);
1237		devm_kfree(ice_hw_to_dev(hw), cbuf);
1238
1239		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1240			break;
1241
1242		/* If ENOMEM is returned, try again with bigger buffer */
1243		cbuf_len = data_size;
1244	} while (--retries);
1245
1246	return status;
1247}
1248
1249/**
1250 * ice_aq_manage_mac_write - manage MAC address write command
1251 * @hw: pointer to the hw struct
1252 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1253 * @flags: flags to control write behavior
1254 * @cd: pointer to command details structure or NULL
1255 *
1256 * This function is used to write MAC address to the NVM (0x0108).
1257 */
1258enum ice_status
1259ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
1260			struct ice_sq_cd *cd)
1261{
1262	struct ice_aqc_manage_mac_write *cmd;
1263	struct ice_aq_desc desc;
1264
1265	cmd = &desc.params.mac_write;
1266	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1267
1268	cmd->flags = flags;
1269
1270	/* Prep values for flags, sah, sal */
1271	cmd->sah = htons(*((u16 *)mac_addr));
1272	cmd->sal = htonl(*((u32 *)(mac_addr + 2)));
1273
1274	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1275}
1276
1277/**
1278 * ice_aq_clear_pxe_mode
1279 * @hw: pointer to the hw struct
1280 *
1281 * Tell the firmware that the driver is taking over from PXE (0x0110).
1282 */
1283static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1284{
1285	struct ice_aq_desc desc;
1286
1287	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1288	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1289
1290	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1291}
1292
1293/**
1294 * ice_clear_pxe_mode - clear pxe operations mode
1295 * @hw: pointer to the hw struct
1296 *
1297 * Make sure all PXE mode settings are cleared, including things
1298 * like descriptor fetch/write-back mode.
1299 */
1300void ice_clear_pxe_mode(struct ice_hw *hw)
1301{
1302	if (ice_check_sq_alive(hw, &hw->adminq))
1303		ice_aq_clear_pxe_mode(hw);
1304}
1305
1306/**
1307 * ice_aq_set_phy_cfg
1308 * @hw: pointer to the hw struct
1309 * @lport: logical port number
1310 * @cfg: structure with PHY configuration data to be set
1311 * @cd: pointer to command details structure or NULL
1312 *
1313 * Set the various PHY configuration parameters supported on the Port.
1314 * One or more of the Set PHY config parameters may be ignored in an MFP
1315 * mode as the PF may not have the privilege to set some of the PHY Config
1316 * parameters. This status will be indicated by the command response (0x0601).
1317 */
1318static enum ice_status
1319ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1320		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1321{
1322	struct ice_aqc_set_phy_cfg *cmd;
1323	struct ice_aq_desc desc;
1324
1325	if (!cfg)
1326		return ICE_ERR_PARAM;
1327
1328	cmd = &desc.params.set_phy;
1329	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1330	cmd->lport_num = lport;
1331
1332	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1333}
1334
1335/**
1336 * ice_update_link_info - update status of the HW network link
1337 * @pi: port info structure of the interested logical port
1338 */
1339static enum ice_status
1340ice_update_link_info(struct ice_port_info *pi)
1341{
1342	struct ice_aqc_get_phy_caps_data *pcaps;
1343	struct ice_phy_info *phy_info;
1344	enum ice_status status;
1345	struct ice_hw *hw;
1346
1347	if (!pi)
1348		return ICE_ERR_PARAM;
1349
1350	hw = pi->hw;
1351
1352	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1353	if (!pcaps)
1354		return ICE_ERR_NO_MEMORY;
1355
1356	phy_info = &pi->phy;
1357	status = ice_aq_get_link_info(pi, true, NULL, NULL);
1358	if (status)
1359		goto out;
1360
1361	if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1362		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1363					     pcaps, NULL);
1364		if (status)
1365			goto out;
1366
1367		memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1368		       sizeof(phy_info->link_info.module_type));
1369	}
1370out:
1371	devm_kfree(ice_hw_to_dev(hw), pcaps);
1372	return status;
1373}
1374
1375/**
1376 * ice_set_fc
1377 * @pi: port information structure
1378 * @aq_failures: pointer to status code, specific to ice_set_fc routine
1379 * @atomic_restart: enable automatic link update
1380 *
1381 * Set the requested flow control mode.
1382 */
1383enum ice_status
1384ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool atomic_restart)
1385{
1386	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1387	struct ice_aqc_get_phy_caps_data *pcaps;
1388	enum ice_status status;
1389	u8 pause_mask = 0x0;
1390	struct ice_hw *hw;
1391
1392	if (!pi)
1393		return ICE_ERR_PARAM;
1394	hw = pi->hw;
1395	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1396
1397	switch (pi->fc.req_mode) {
1398	case ICE_FC_FULL:
1399		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1400		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1401		break;
1402	case ICE_FC_RX_PAUSE:
1403		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1404		break;
1405	case ICE_FC_TX_PAUSE:
1406		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1407		break;
1408	default:
1409		break;
1410	}
1411
1412	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1413	if (!pcaps)
1414		return ICE_ERR_NO_MEMORY;
1415
1416	/* Get the current phy config */
1417	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1418				     NULL);
1419	if (status) {
1420		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
1421		goto out;
1422	}
1423
1424	/* clear the old pause settings */
1425	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
1426				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
1427	/* set the new capabilities */
1428	cfg.caps |= pause_mask;
1429	/* If the capabilities have changed, then set the new config */
1430	if (cfg.caps != pcaps->caps) {
1431		int retry_count, retry_max = 10;
1432
1433		/* Auto restart link so settings take effect */
1434		if (atomic_restart)
1435			cfg.caps |= ICE_AQ_PHY_ENA_ATOMIC_LINK;
1436		/* Copy over all the old settings */
1437		cfg.phy_type_low = pcaps->phy_type_low;
1438		cfg.low_power_ctrl = pcaps->low_power_ctrl;
1439		cfg.eee_cap = pcaps->eee_cap;
1440		cfg.eeer_value = pcaps->eeer_value;
1441		cfg.link_fec_opt = pcaps->link_fec_options;
1442
1443		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
1444		if (status) {
1445			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
1446			goto out;
1447		}
1448
1449		/* Update the link info
1450		 * It sometimes takes a really long time for link to
1451		 * come back from the atomic reset. Thus, we wait a
1452		 * little bit.
1453		 */
1454		for (retry_count = 0; retry_count < retry_max; retry_count++) {
1455			status = ice_update_link_info(pi);
1456
1457			if (!status)
1458				break;
1459
1460			mdelay(100);
1461		}
1462
1463		if (status)
1464			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
1465	}
1466
1467out:
1468	devm_kfree(ice_hw_to_dev(hw), pcaps);
1469	return status;
1470}
1471
1472/**
1473 * ice_get_link_status - get status of the HW network link
1474 * @pi: port information structure
1475 * @link_up: pointer to bool (true/false = linkup/linkdown)
1476 *
1477 * Variable link_up is true if link is up, false if link is down.
1478 * The variable link_up is invalid if status is non zero. As a
1479 * result of this call, link status reporting becomes enabled
1480 */
1481enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
1482{
1483	struct ice_phy_info *phy_info;
1484	enum ice_status status = 0;
1485
1486	if (!pi)
1487		return ICE_ERR_PARAM;
1488
1489	phy_info = &pi->phy;
1490
1491	if (phy_info->get_link_info) {
1492		status = ice_update_link_info(pi);
1493
1494		if (status)
1495			ice_debug(pi->hw, ICE_DBG_LINK,
1496				  "get link status error, status = %d\n",
1497				  status);
1498	}
1499
1500	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
1501
1502	return status;
1503}
1504
1505/**
1506 * ice_aq_set_link_restart_an
1507 * @pi: pointer to the port information structure
1508 * @ena_link: if true: enable link, if false: disable link
1509 * @cd: pointer to command details structure or NULL
1510 *
1511 * Sets up the link and restarts the Auto-Negotiation over the link.
1512 */
1513enum ice_status
1514ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
1515			   struct ice_sq_cd *cd)
1516{
1517	struct ice_aqc_restart_an *cmd;
1518	struct ice_aq_desc desc;
1519
1520	cmd = &desc.params.restart_an;
1521
1522	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
1523
1524	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
1525	cmd->lport_num = pi->lport;
1526	if (ena_link)
1527		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
1528	else
1529		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
1530
1531	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
1532}
1533
1534/**
1535 * ice_aq_set_event_mask
1536 * @hw: pointer to the hw struct
1537 * @port_num: port number of the physical function
1538 * @mask: event mask to be set
1539 * @cd: pointer to command details structure or NULL
1540 *
1541 * Set event mask (0x0613)
1542 */
1543enum ice_status
1544ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
1545		      struct ice_sq_cd *cd)
1546{
1547	struct ice_aqc_set_event_mask *cmd;
1548	struct ice_aq_desc desc;
1549
1550	cmd = &desc.params.set_event_mask;
1551
1552	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
1553
1554	cmd->lport_num = port_num;
1555
1556	cmd->event_mask = cpu_to_le16(mask);
1557
1558	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1559}
1560
1561/**
1562 * __ice_aq_get_set_rss_lut
1563 * @hw: pointer to the hardware structure
1564 * @vsi_id: VSI FW index
1565 * @lut_type: LUT table type
1566 * @lut: pointer to the LUT buffer provided by the caller
1567 * @lut_size: size of the LUT buffer
1568 * @glob_lut_idx: global LUT index
1569 * @set: set true to set the table, false to get the table
1570 *
1571 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
1572 */
1573static enum ice_status
1574__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1575			 u16 lut_size, u8 glob_lut_idx, bool set)
1576{
1577	struct ice_aqc_get_set_rss_lut *cmd_resp;
1578	struct ice_aq_desc desc;
1579	enum ice_status status;
1580	u16 flags = 0;
1581
1582	cmd_resp = &desc.params.get_set_rss_lut;
1583
1584	if (set) {
1585		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
1586		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1587	} else {
1588		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
1589	}
1590
1591	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1592					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
1593					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
1594				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
1595
1596	switch (lut_type) {
1597	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
1598	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
1599	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
1600		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
1601			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
1602		break;
1603	default:
1604		status = ICE_ERR_PARAM;
1605		goto ice_aq_get_set_rss_lut_exit;
1606	}
1607
1608	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
1609		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
1610			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
1611
1612		if (!set)
1613			goto ice_aq_get_set_rss_lut_send;
1614	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1615		if (!set)
1616			goto ice_aq_get_set_rss_lut_send;
1617	} else {
1618		goto ice_aq_get_set_rss_lut_send;
1619	}
1620
1621	/* LUT size is only valid for Global and PF table types */
1622	if (lut_size == ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128) {
1623		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
1624			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1625			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1626	} else if (lut_size == ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512) {
1627		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
1628			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1629			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1630	} else if ((lut_size == ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K) &&
1631		   (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF)) {
1632		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
1633			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1634			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1635	} else {
1636		status = ICE_ERR_PARAM;
1637		goto ice_aq_get_set_rss_lut_exit;
1638	}
1639
1640ice_aq_get_set_rss_lut_send:
1641	cmd_resp->flags = cpu_to_le16(flags);
1642	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
1643
1644ice_aq_get_set_rss_lut_exit:
1645	return status;
1646}
1647
1648/**
1649 * ice_aq_get_rss_lut
1650 * @hw: pointer to the hardware structure
1651 * @vsi_id: VSI FW index
1652 * @lut_type: LUT table type
1653 * @lut: pointer to the LUT buffer provided by the caller
1654 * @lut_size: size of the LUT buffer
1655 *
1656 * get the RSS lookup table, PF or VSI type
1657 */
1658enum ice_status
1659ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1660		   u16 lut_size)
1661{
1662	return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1663					false);
1664}
1665
1666/**
1667 * ice_aq_set_rss_lut
1668 * @hw: pointer to the hardware structure
1669 * @vsi_id: VSI FW index
1670 * @lut_type: LUT table type
1671 * @lut: pointer to the LUT buffer provided by the caller
1672 * @lut_size: size of the LUT buffer
1673 *
1674 * set the RSS lookup table, PF or VSI type
1675 */
1676enum ice_status
1677ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1678		   u16 lut_size)
1679{
1680	return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1681					true);
1682}
1683
1684/**
1685 * __ice_aq_get_set_rss_key
1686 * @hw: pointer to the hw struct
1687 * @vsi_id: VSI FW index
1688 * @key: pointer to key info struct
1689 * @set: set true to set the key, false to get the key
1690 *
1691 * get (0x0B04) or set (0x0B02) the RSS key per VSI
1692 */
1693static enum
1694ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1695				    struct ice_aqc_get_set_rss_keys *key,
1696				    bool set)
1697{
1698	struct ice_aqc_get_set_rss_key *cmd_resp;
1699	u16 key_size = sizeof(*key);
1700	struct ice_aq_desc desc;
1701
1702	cmd_resp = &desc.params.get_set_rss_key;
1703
1704	if (set) {
1705		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
1706		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1707	} else {
1708		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
1709	}
1710
1711	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1712					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
1713					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
1714				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
1715
1716	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
1717}
1718
1719/**
1720 * ice_aq_get_rss_key
1721 * @hw: pointer to the hw struct
1722 * @vsi_id: VSI FW index
1723 * @key: pointer to key info struct
1724 *
1725 * get the RSS key per VSI
1726 */
1727enum ice_status
1728ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_id,
1729		   struct ice_aqc_get_set_rss_keys *key)
1730{
1731	return __ice_aq_get_set_rss_key(hw, vsi_id, key, false);
1732}
1733
1734/**
1735 * ice_aq_set_rss_key
1736 * @hw: pointer to the hw struct
1737 * @vsi_id: VSI FW index
1738 * @keys: pointer to key info struct
1739 *
1740 * set the RSS key per VSI
1741 */
1742enum ice_status
1743ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1744		   struct ice_aqc_get_set_rss_keys *keys)
1745{
1746	return __ice_aq_get_set_rss_key(hw, vsi_id, keys, true);
1747}
1748
1749/**
1750 * ice_aq_add_lan_txq
1751 * @hw: pointer to the hardware structure
1752 * @num_qgrps: Number of added queue groups
1753 * @qg_list: list of queue groups to be added
1754 * @buf_size: size of buffer for indirect command
1755 * @cd: pointer to command details structure or NULL
1756 *
1757 * Add Tx LAN queue (0x0C30)
1758 *
1759 * NOTE:
1760 * Prior to calling add Tx LAN queue:
1761 * Initialize the following as part of the Tx queue context:
1762 * Completion queue ID if the queue uses Completion queue, Quanta profile,
1763 * Cache profile and Packet shaper profile.
1764 *
1765 * After add Tx LAN queue AQ command is completed:
1766 * Interrupts should be associated with specific queues,
1767 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
1768 * flow.
1769 */
1770static enum ice_status
1771ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1772		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
1773		   struct ice_sq_cd *cd)
1774{
1775	u16 i, sum_header_size, sum_q_size = 0;
1776	struct ice_aqc_add_tx_qgrp *list;
1777	struct ice_aqc_add_txqs *cmd;
1778	struct ice_aq_desc desc;
1779
1780	cmd = &desc.params.add_txqs;
1781
1782	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
1783
1784	if (!qg_list)
1785		return ICE_ERR_PARAM;
1786
1787	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1788		return ICE_ERR_PARAM;
1789
1790	sum_header_size = num_qgrps *
1791		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
1792
1793	list = qg_list;
1794	for (i = 0; i < num_qgrps; i++) {
1795		struct ice_aqc_add_txqs_perq *q = list->txqs;
1796
1797		sum_q_size += list->num_txqs * sizeof(*q);
1798		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
1799	}
1800
1801	if (buf_size != (sum_header_size + sum_q_size))
1802		return ICE_ERR_PARAM;
1803
1804	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1805
1806	cmd->num_qgrps = num_qgrps;
1807
1808	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
1809}
1810
1811/**
1812 * ice_aq_dis_lan_txq
1813 * @hw: pointer to the hardware structure
1814 * @num_qgrps: number of groups in the list
1815 * @qg_list: the list of groups to disable
1816 * @buf_size: the total size of the qg_list buffer in bytes
1817 * @cd: pointer to command details structure or NULL
1818 *
1819 * Disable LAN Tx queue (0x0C31)
1820 */
1821static enum ice_status
1822ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1823		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
1824		   struct ice_sq_cd *cd)
1825{
1826	struct ice_aqc_dis_txqs *cmd;
1827	struct ice_aq_desc desc;
1828	u16 i, sz = 0;
1829
1830	cmd = &desc.params.dis_txqs;
1831	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
1832
1833	if (!qg_list)
1834		return ICE_ERR_PARAM;
1835
1836	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1837		return ICE_ERR_PARAM;
1838	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1839	cmd->num_entries = num_qgrps;
1840
1841	for (i = 0; i < num_qgrps; ++i) {
1842		/* Calculate the size taken up by the queue IDs in this group */
1843		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
1844
1845		/* Add the size of the group header */
1846		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
1847
1848		/* If the num of queues is even, add 2 bytes of padding */
1849		if ((qg_list[i].num_qs % 2) == 0)
1850			sz += 2;
1851	}
1852
1853	if (buf_size != sz)
1854		return ICE_ERR_PARAM;
1855
1856	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
1857}
1858
1859/* End of FW Admin Queue command wrappers */
1860
1861/**
1862 * ice_write_byte - write a byte to a packed context structure
1863 * @src_ctx:  the context structure to read from
1864 * @dest_ctx: the context to be written to
1865 * @ce_info:  a description of the struct to be filled
1866 */
1867static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
1868			   const struct ice_ctx_ele *ce_info)
1869{
1870	u8 src_byte, dest_byte, mask;
1871	u8 *from, *dest;
1872	u16 shift_width;
1873
1874	/* copy from the next struct field */
1875	from = src_ctx + ce_info->offset;
1876
1877	/* prepare the bits and mask */
1878	shift_width = ce_info->lsb % 8;
1879	mask = (u8)(BIT(ce_info->width) - 1);
1880
1881	src_byte = *from;
1882	src_byte &= mask;
1883
1884	/* shift to correct alignment */
1885	mask <<= shift_width;
1886	src_byte <<= shift_width;
1887
1888	/* get the current bits from the target bit string */
1889	dest = dest_ctx + (ce_info->lsb / 8);
1890
1891	memcpy(&dest_byte, dest, sizeof(dest_byte));
1892
1893	dest_byte &= ~mask;	/* get the bits not changing */
1894	dest_byte |= src_byte;	/* add in the new bits */
1895
1896	/* put it all back */
1897	memcpy(dest, &dest_byte, sizeof(dest_byte));
1898}
1899
1900/**
1901 * ice_write_word - write a word to a packed context structure
1902 * @src_ctx:  the context structure to read from
1903 * @dest_ctx: the context to be written to
1904 * @ce_info:  a description of the struct to be filled
1905 */
1906static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
1907			   const struct ice_ctx_ele *ce_info)
1908{
1909	u16 src_word, mask;
1910	__le16 dest_word;
1911	u8 *from, *dest;
1912	u16 shift_width;
1913
1914	/* copy from the next struct field */
1915	from = src_ctx + ce_info->offset;
1916
1917	/* prepare the bits and mask */
1918	shift_width = ce_info->lsb % 8;
1919	mask = BIT(ce_info->width) - 1;
1920
1921	/* don't swizzle the bits until after the mask because the mask bits
1922	 * will be in a different bit position on big endian machines
1923	 */
1924	src_word = *(u16 *)from;
1925	src_word &= mask;
1926
1927	/* shift to correct alignment */
1928	mask <<= shift_width;
1929	src_word <<= shift_width;
1930
1931	/* get the current bits from the target bit string */
1932	dest = dest_ctx + (ce_info->lsb / 8);
1933
1934	memcpy(&dest_word, dest, sizeof(dest_word));
1935
1936	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
1937	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
1938
1939	/* put it all back */
1940	memcpy(dest, &dest_word, sizeof(dest_word));
1941}
1942
1943/**
1944 * ice_write_dword - write a dword to a packed context structure
1945 * @src_ctx:  the context structure to read from
1946 * @dest_ctx: the context to be written to
1947 * @ce_info:  a description of the struct to be filled
1948 */
1949static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
1950			    const struct ice_ctx_ele *ce_info)
1951{
1952	u32 src_dword, mask;
1953	__le32 dest_dword;
1954	u8 *from, *dest;
1955	u16 shift_width;
1956
1957	/* copy from the next struct field */
1958	from = src_ctx + ce_info->offset;
1959
1960	/* prepare the bits and mask */
1961	shift_width = ce_info->lsb % 8;
1962
1963	/* if the field width is exactly 32 on an x86 machine, then the shift
1964	 * operation will not work because the SHL instructions count is masked
1965	 * to 5 bits so the shift will do nothing
1966	 */
1967	if (ce_info->width < 32)
1968		mask = BIT(ce_info->width) - 1;
1969	else
1970		mask = (u32)~0;
1971
1972	/* don't swizzle the bits until after the mask because the mask bits
1973	 * will be in a different bit position on big endian machines
1974	 */
1975	src_dword = *(u32 *)from;
1976	src_dword &= mask;
1977
1978	/* shift to correct alignment */
1979	mask <<= shift_width;
1980	src_dword <<= shift_width;
1981
1982	/* get the current bits from the target bit string */
1983	dest = dest_ctx + (ce_info->lsb / 8);
1984
1985	memcpy(&dest_dword, dest, sizeof(dest_dword));
1986
1987	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
1988	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
1989
1990	/* put it all back */
1991	memcpy(dest, &dest_dword, sizeof(dest_dword));
1992}
1993
1994/**
1995 * ice_write_qword - write a qword to a packed context structure
1996 * @src_ctx:  the context structure to read from
1997 * @dest_ctx: the context to be written to
1998 * @ce_info:  a description of the struct to be filled
1999 */
2000static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2001			    const struct ice_ctx_ele *ce_info)
2002{
2003	u64 src_qword, mask;
2004	__le64 dest_qword;
2005	u8 *from, *dest;
2006	u16 shift_width;
2007
2008	/* copy from the next struct field */
2009	from = src_ctx + ce_info->offset;
2010
2011	/* prepare the bits and mask */
2012	shift_width = ce_info->lsb % 8;
2013
2014	/* if the field width is exactly 64 on an x86 machine, then the shift
2015	 * operation will not work because the SHL instructions count is masked
2016	 * to 6 bits so the shift will do nothing
2017	 */
2018	if (ce_info->width < 64)
2019		mask = BIT_ULL(ce_info->width) - 1;
2020	else
2021		mask = (u64)~0;
2022
2023	/* don't swizzle the bits until after the mask because the mask bits
2024	 * will be in a different bit position on big endian machines
2025	 */
2026	src_qword = *(u64 *)from;
2027	src_qword &= mask;
2028
2029	/* shift to correct alignment */
2030	mask <<= shift_width;
2031	src_qword <<= shift_width;
2032
2033	/* get the current bits from the target bit string */
2034	dest = dest_ctx + (ce_info->lsb / 8);
2035
2036	memcpy(&dest_qword, dest, sizeof(dest_qword));
2037
2038	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
2039	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
2040
2041	/* put it all back */
2042	memcpy(dest, &dest_qword, sizeof(dest_qword));
2043}
2044
2045/**
2046 * ice_set_ctx - set context bits in packed structure
2047 * @src_ctx:  pointer to a generic non-packed context structure
2048 * @dest_ctx: pointer to memory for the packed structure
2049 * @ce_info:  a description of the structure to be transformed
2050 */
2051enum ice_status
2052ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2053{
2054	int f;
2055
2056	for (f = 0; ce_info[f].width; f++) {
2057		/* We have to deal with each element of the FW response
2058		 * using the correct size so that we are correct regardless
2059		 * of the endianness of the machine.
2060		 */
2061		switch (ce_info[f].size_of) {
2062		case sizeof(u8):
2063			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2064			break;
2065		case sizeof(u16):
2066			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2067			break;
2068		case sizeof(u32):
2069			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2070			break;
2071		case sizeof(u64):
2072			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2073			break;
2074		default:
2075			return ICE_ERR_INVAL_SIZE;
2076		}
2077	}
2078
2079	return 0;
2080}
2081
2082/**
2083 * ice_ena_vsi_txq
2084 * @pi: port information structure
2085 * @vsi_id: VSI id
2086 * @tc: tc number
2087 * @num_qgrps: Number of added queue groups
2088 * @buf: list of queue groups to be added
2089 * @buf_size: size of buffer for indirect command
2090 * @cd: pointer to command details structure or NULL
2091 *
2092 * This function adds one lan q
2093 */
2094enum ice_status
2095ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_id, u8 tc, u8 num_qgrps,
2096		struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2097		struct ice_sq_cd *cd)
2098{
2099	struct ice_aqc_txsched_elem_data node = { 0 };
2100	struct ice_sched_node *parent;
2101	enum ice_status status;
2102	struct ice_hw *hw;
2103
2104	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2105		return ICE_ERR_CFG;
2106
2107	if (num_qgrps > 1 || buf->num_txqs > 1)
2108		return ICE_ERR_MAX_LIMIT;
2109
2110	hw = pi->hw;
2111
2112	mutex_lock(&pi->sched_lock);
2113
2114	/* find a parent node */
2115	parent = ice_sched_get_free_qparent(pi, vsi_id, tc,
2116					    ICE_SCHED_NODE_OWNER_LAN);
2117	if (!parent) {
2118		status = ICE_ERR_PARAM;
2119		goto ena_txq_exit;
2120	}
2121	buf->parent_teid = parent->info.node_teid;
2122	node.parent_teid = parent->info.node_teid;
2123	/* Mark that the values in the "generic" section as valid. The default
2124	 * value in the "generic" section is zero. This means that :
2125	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2126	 * - 0 priority among siblings, indicated by Bit 1-3.
2127	 * - WFQ, indicated by Bit 4.
2128	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2129	 * Bit 5-6.
2130	 * - Bit 7 is reserved.
2131	 * Without setting the generic section as valid in valid_sections, the
2132	 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2133	 */
2134	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2135
2136	/* add the lan q */
2137	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2138	if (status)
2139		goto ena_txq_exit;
2140
2141	node.node_teid = buf->txqs[0].q_teid;
2142	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2143
2144	/* add a leaf node into schduler tree q layer */
2145	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2146
2147ena_txq_exit:
2148	mutex_unlock(&pi->sched_lock);
2149	return status;
2150}
2151
2152/**
2153 * ice_dis_vsi_txq
2154 * @pi: port information structure
2155 * @num_queues: number of queues
2156 * @q_ids: pointer to the q_id array
2157 * @q_teids: pointer to queue node teids
2158 * @cd: pointer to command details structure or NULL
2159 *
2160 * This function removes queues and their corresponding nodes in SW DB
2161 */
2162enum ice_status
2163ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
2164		u32 *q_teids, struct ice_sq_cd *cd)
2165{
2166	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2167	struct ice_aqc_dis_txq_item qg_list;
2168	u16 i;
2169
2170	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2171		return ICE_ERR_CFG;
2172
2173	mutex_lock(&pi->sched_lock);
2174
2175	for (i = 0; i < num_queues; i++) {
2176		struct ice_sched_node *node;
2177
2178		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2179		if (!node)
2180			continue;
2181		qg_list.parent_teid = node->info.parent_teid;
2182		qg_list.num_qs = 1;
2183		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2184		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2185					    sizeof(qg_list), cd);
2186
2187		if (status)
2188			break;
2189		ice_free_sched_node(pi, node);
2190	}
2191	mutex_unlock(&pi->sched_lock);
2192	return status;
2193}
2194
2195/**
2196 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2197 * @pi: port information structure
2198 * @vsi_id: VSI Id
2199 * @tc_bitmap: TC bitmap
2200 * @maxqs: max queues array per TC
2201 * @owner: lan or rdma
2202 *
2203 * This function adds/updates the VSI queues per TC.
2204 */
2205static enum ice_status
2206ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2207	       u16 *maxqs, u8 owner)
2208{
2209	enum ice_status status = 0;
2210	u8 i;
2211
2212	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2213		return ICE_ERR_CFG;
2214
2215	mutex_lock(&pi->sched_lock);
2216
2217	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2218		/* configuration is possible only if TC node is present */
2219		if (!ice_sched_get_tc_node(pi, i))
2220			continue;
2221
2222		status = ice_sched_cfg_vsi(pi, vsi_id, i, maxqs[i], owner,
2223					   ice_is_tc_ena(tc_bitmap, i));
2224		if (status)
2225			break;
2226	}
2227
2228	mutex_unlock(&pi->sched_lock);
2229	return status;
2230}
2231
2232/**
2233 * ice_cfg_vsi_lan - configure VSI lan queues
2234 * @pi: port information structure
2235 * @vsi_id: VSI Id
2236 * @tc_bitmap: TC bitmap
2237 * @max_lanqs: max lan queues array per TC
2238 *
2239 * This function adds/updates the VSI lan queues per TC.
2240 */
2241enum ice_status
2242ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2243		u16 *max_lanqs)
2244{
2245	return ice_cfg_vsi_qs(pi, vsi_id, tc_bitmap, max_lanqs,
2246			      ICE_SCHED_NODE_OWNER_LAN);
2247}