Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
  24#include <linux/workqueue.h>
  25#include <linux/can.h>
  26#include <linux/can/dev.h>
  27#include <linux/can/skb.h>
  28#include <linux/can/netlink.h>
  29#include <linux/can/led.h>
  30#include <linux/of.h>
  31#include <net/rtnetlink.h>
  32
  33#define MOD_DESC "CAN device driver interface"
  34
  35MODULE_DESCRIPTION(MOD_DESC);
  36MODULE_LICENSE("GPL v2");
  37MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  38
  39/* CAN DLC to real data length conversion helpers */
  40
  41static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  42			     8, 12, 16, 20, 24, 32, 48, 64};
  43
  44/* get data length from can_dlc with sanitized can_dlc */
  45u8 can_dlc2len(u8 can_dlc)
  46{
  47	return dlc2len[can_dlc & 0x0F];
  48}
  49EXPORT_SYMBOL_GPL(can_dlc2len);
  50
  51static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  52			     9, 9, 9, 9,			/* 9 - 12 */
  53			     10, 10, 10, 10,			/* 13 - 16 */
  54			     11, 11, 11, 11,			/* 17 - 20 */
  55			     12, 12, 12, 12,			/* 21 - 24 */
  56			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  57			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  58			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  59			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  60			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  61
  62/* map the sanitized data length to an appropriate data length code */
  63u8 can_len2dlc(u8 len)
  64{
  65	if (unlikely(len > 64))
  66		return 0xF;
  67
  68	return len2dlc[len];
  69}
  70EXPORT_SYMBOL_GPL(can_len2dlc);
  71
  72#ifdef CONFIG_CAN_CALC_BITTIMING
  73#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  74#define CAN_CALC_SYNC_SEG 1
  75
  76/*
  77 * Bit-timing calculation derived from:
  78 *
  79 * Code based on LinCAN sources and H8S2638 project
  80 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  81 * Copyright 2005      Stanislav Marek
  82 * email: pisa@cmp.felk.cvut.cz
  83 *
  84 * Calculates proper bit-timing parameters for a specified bit-rate
  85 * and sample-point, which can then be used to set the bit-timing
  86 * registers of the CAN controller. You can find more information
  87 * in the header file linux/can/netlink.h.
  88 */
  89static int can_update_sample_point(const struct can_bittiming_const *btc,
  90			  unsigned int sample_point_nominal, unsigned int tseg,
  91			  unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
  92			  unsigned int *sample_point_error_ptr)
  93{
  94	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
  95	unsigned int sample_point, best_sample_point = 0;
  96	unsigned int tseg1, tseg2;
  97	int i;
  98
  99	for (i = 0; i <= 1; i++) {
 100		tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
 101		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
 102		tseg1 = tseg - tseg2;
 103		if (tseg1 > btc->tseg1_max) {
 104			tseg1 = btc->tseg1_max;
 105			tseg2 = tseg - tseg1;
 106		}
 107
 108		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
 109		sample_point_error = abs(sample_point_nominal - sample_point);
 110
 111		if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
 112			best_sample_point = sample_point;
 113			best_sample_point_error = sample_point_error;
 114			*tseg1_ptr = tseg1;
 115			*tseg2_ptr = tseg2;
 116		}
 117	}
 118
 119	if (sample_point_error_ptr)
 120		*sample_point_error_ptr = best_sample_point_error;
 121
 122	return best_sample_point;
 123}
 124
 125static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 126			      const struct can_bittiming_const *btc)
 127{
 128	struct can_priv *priv = netdev_priv(dev);
 129	unsigned int bitrate;			/* current bitrate */
 130	unsigned int bitrate_error;		/* difference between current and nominal value */
 131	unsigned int best_bitrate_error = UINT_MAX;
 132	unsigned int sample_point_error;	/* difference between current and nominal value */
 133	unsigned int best_sample_point_error = UINT_MAX;
 134	unsigned int sample_point_nominal;	/* nominal sample point */
 135	unsigned int best_tseg = 0;		/* current best value for tseg */
 136	unsigned int best_brp = 0;		/* current best value for brp */
 137	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 138	u64 v64;
 139
 140	/* Use CiA recommended sample points */
 
 
 
 141	if (bt->sample_point) {
 142		sample_point_nominal = bt->sample_point;
 143	} else {
 144		if (bt->bitrate > 800000)
 145			sample_point_nominal = 750;
 146		else if (bt->bitrate > 500000)
 147			sample_point_nominal = 800;
 148		else
 149			sample_point_nominal = 875;
 150	}
 151
 152	/* tseg even = round down, odd = round up */
 153	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 154	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 155		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
 156
 157		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 158		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 159
 160		/* choose brp step which is possible in system */
 161		brp = (brp / btc->brp_inc) * btc->brp_inc;
 162		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 163			continue;
 164
 165		bitrate = priv->clock.freq / (brp * tsegall);
 166		bitrate_error = abs(bt->bitrate - bitrate);
 167
 168		/* tseg brp biterror */
 169		if (bitrate_error > best_bitrate_error)
 170			continue;
 171
 172		/* reset sample point error if we have a better bitrate */
 173		if (bitrate_error < best_bitrate_error)
 174			best_sample_point_error = UINT_MAX;
 175
 176		can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
 177		if (sample_point_error > best_sample_point_error)
 178			continue;
 179
 180		best_sample_point_error = sample_point_error;
 181		best_bitrate_error = bitrate_error;
 
 
 
 
 
 
 
 
 182		best_tseg = tseg / 2;
 183		best_brp = brp;
 184
 185		if (bitrate_error == 0 && sample_point_error == 0)
 186			break;
 187	}
 188
 189	if (best_bitrate_error) {
 190		/* Error in one-tenth of a percent */
 191		v64 = (u64)best_bitrate_error * 1000;
 192		do_div(v64, bt->bitrate);
 193		bitrate_error = (u32)v64;
 194		if (bitrate_error > CAN_CALC_MAX_ERROR) {
 195			netdev_err(dev,
 196				   "bitrate error %d.%d%% too high\n",
 197				   bitrate_error / 10, bitrate_error % 10);
 198			return -EDOM;
 
 
 
 199		}
 200		netdev_warn(dev, "bitrate error %d.%d%%\n",
 201			    bitrate_error / 10, bitrate_error % 10);
 202	}
 203
 204	/* real sample point */
 205	bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
 206					  &tseg1, &tseg2, NULL);
 207
 208	v64 = (u64)best_brp * 1000 * 1000 * 1000;
 209	do_div(v64, priv->clock.freq);
 210	bt->tq = (u32)v64;
 211	bt->prop_seg = tseg1 / 2;
 212	bt->phase_seg1 = tseg1 - bt->prop_seg;
 213	bt->phase_seg2 = tseg2;
 214
 215	/* check for sjw user settings */
 216	if (!bt->sjw || !btc->sjw_max) {
 217		bt->sjw = 1;
 218	} else {
 219		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 220		if (bt->sjw > btc->sjw_max)
 221			bt->sjw = btc->sjw_max;
 222		/* bt->sjw must not be higher than tseg2 */
 223		if (tseg2 < bt->sjw)
 224			bt->sjw = tseg2;
 225	}
 226
 227	bt->brp = best_brp;
 228
 229	/* real bitrate */
 230	bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
 231
 232	return 0;
 233}
 234#else /* !CONFIG_CAN_CALC_BITTIMING */
 235static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 236			      const struct can_bittiming_const *btc)
 237{
 238	netdev_err(dev, "bit-timing calculation not available\n");
 239	return -EINVAL;
 240}
 241#endif /* CONFIG_CAN_CALC_BITTIMING */
 242
 243/*
 244 * Checks the validity of the specified bit-timing parameters prop_seg,
 245 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 246 * prescaler value brp. You can find more information in the header
 247 * file linux/can/netlink.h.
 248 */
 249static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 250			       const struct can_bittiming_const *btc)
 251{
 252	struct can_priv *priv = netdev_priv(dev);
 
 253	int tseg1, alltseg;
 254	u64 brp64;
 255
 
 
 
 256	tseg1 = bt->prop_seg + bt->phase_seg1;
 257	if (!bt->sjw)
 258		bt->sjw = 1;
 259	if (bt->sjw > btc->sjw_max ||
 260	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 261	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 262		return -ERANGE;
 263
 264	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 265	if (btc->brp_inc > 1)
 266		do_div(brp64, btc->brp_inc);
 267	brp64 += 500000000UL - 1;
 268	do_div(brp64, 1000000000UL); /* the practicable BRP */
 269	if (btc->brp_inc > 1)
 270		brp64 *= btc->brp_inc;
 271	bt->brp = (u32)brp64;
 272
 273	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 274		return -EINVAL;
 275
 276	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 277	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 278	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 279
 280	return 0;
 281}
 282
 283/* Checks the validity of predefined bitrate settings */
 284static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
 285				const u32 *bitrate_const,
 286				const unsigned int bitrate_const_cnt)
 287{
 288	struct can_priv *priv = netdev_priv(dev);
 289	unsigned int i;
 290
 291	for (i = 0; i < bitrate_const_cnt; i++) {
 292		if (bt->bitrate == bitrate_const[i])
 293			break;
 294	}
 295
 296	if (i >= priv->bitrate_const_cnt)
 297		return -EINVAL;
 298
 299	return 0;
 300}
 301
 302static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 303			     const struct can_bittiming_const *btc,
 304			     const u32 *bitrate_const,
 305			     const unsigned int bitrate_const_cnt)
 306{
 307	int err;
 308
 309	/*
 310	 * Depending on the given can_bittiming parameter structure the CAN
 311	 * timing parameters are calculated based on the provided bitrate OR
 312	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 313	 * provided directly which are then checked and fixed up.
 314	 */
 315	if (!bt->tq && bt->bitrate && btc)
 316		err = can_calc_bittiming(dev, bt, btc);
 317	else if (bt->tq && !bt->bitrate && btc)
 318		err = can_fixup_bittiming(dev, bt, btc);
 319	else if (!bt->tq && bt->bitrate && bitrate_const)
 320		err = can_validate_bitrate(dev, bt, bitrate_const,
 321					   bitrate_const_cnt);
 322	else
 323		err = -EINVAL;
 324
 325	return err;
 326}
 327
 328static void can_update_state_error_stats(struct net_device *dev,
 329					 enum can_state new_state)
 330{
 331	struct can_priv *priv = netdev_priv(dev);
 332
 333	if (new_state <= priv->state)
 334		return;
 335
 336	switch (new_state) {
 337	case CAN_STATE_ERROR_WARNING:
 338		priv->can_stats.error_warning++;
 339		break;
 340	case CAN_STATE_ERROR_PASSIVE:
 341		priv->can_stats.error_passive++;
 342		break;
 343	case CAN_STATE_BUS_OFF:
 344		priv->can_stats.bus_off++;
 345		break;
 346	default:
 347		break;
 348	}
 349}
 350
 351static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 352{
 353	switch (state) {
 354	case CAN_STATE_ERROR_ACTIVE:
 355		return CAN_ERR_CRTL_ACTIVE;
 356	case CAN_STATE_ERROR_WARNING:
 357		return CAN_ERR_CRTL_TX_WARNING;
 358	case CAN_STATE_ERROR_PASSIVE:
 359		return CAN_ERR_CRTL_TX_PASSIVE;
 360	default:
 361		return 0;
 362	}
 363}
 364
 365static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 366{
 367	switch (state) {
 368	case CAN_STATE_ERROR_ACTIVE:
 369		return CAN_ERR_CRTL_ACTIVE;
 370	case CAN_STATE_ERROR_WARNING:
 371		return CAN_ERR_CRTL_RX_WARNING;
 372	case CAN_STATE_ERROR_PASSIVE:
 373		return CAN_ERR_CRTL_RX_PASSIVE;
 374	default:
 375		return 0;
 376	}
 377}
 378
 379void can_change_state(struct net_device *dev, struct can_frame *cf,
 380		      enum can_state tx_state, enum can_state rx_state)
 381{
 382	struct can_priv *priv = netdev_priv(dev);
 383	enum can_state new_state = max(tx_state, rx_state);
 384
 385	if (unlikely(new_state == priv->state)) {
 386		netdev_warn(dev, "%s: oops, state did not change", __func__);
 387		return;
 388	}
 389
 390	netdev_dbg(dev, "New error state: %d\n", new_state);
 391
 392	can_update_state_error_stats(dev, new_state);
 393	priv->state = new_state;
 394
 395	if (!cf)
 396		return;
 397
 398	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 399		cf->can_id |= CAN_ERR_BUSOFF;
 400		return;
 401	}
 402
 403	cf->can_id |= CAN_ERR_CRTL;
 404	cf->data[1] |= tx_state >= rx_state ?
 405		       can_tx_state_to_frame(dev, tx_state) : 0;
 406	cf->data[1] |= tx_state <= rx_state ?
 407		       can_rx_state_to_frame(dev, rx_state) : 0;
 408}
 409EXPORT_SYMBOL_GPL(can_change_state);
 410
 411/*
 412 * Local echo of CAN messages
 413 *
 414 * CAN network devices *should* support a local echo functionality
 415 * (see Documentation/networking/can.rst). To test the handling of CAN
 416 * interfaces that do not support the local echo both driver types are
 417 * implemented. In the case that the driver does not support the echo
 418 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 419 * to perform the echo as a fallback solution.
 420 */
 421static void can_flush_echo_skb(struct net_device *dev)
 422{
 423	struct can_priv *priv = netdev_priv(dev);
 424	struct net_device_stats *stats = &dev->stats;
 425	int i;
 426
 427	for (i = 0; i < priv->echo_skb_max; i++) {
 428		if (priv->echo_skb[i]) {
 429			kfree_skb(priv->echo_skb[i]);
 430			priv->echo_skb[i] = NULL;
 431			stats->tx_dropped++;
 432			stats->tx_aborted_errors++;
 433		}
 434	}
 435}
 436
 437/*
 438 * Put the skb on the stack to be looped backed locally lateron
 439 *
 440 * The function is typically called in the start_xmit function
 441 * of the device driver. The driver must protect access to
 442 * priv->echo_skb, if necessary.
 443 */
 444void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 445		      unsigned int idx)
 446{
 447	struct can_priv *priv = netdev_priv(dev);
 448
 449	BUG_ON(idx >= priv->echo_skb_max);
 450
 451	/* check flag whether this packet has to be looped back */
 452	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 453	    (skb->protocol != htons(ETH_P_CAN) &&
 454	     skb->protocol != htons(ETH_P_CANFD))) {
 455		kfree_skb(skb);
 456		return;
 457	}
 458
 459	if (!priv->echo_skb[idx]) {
 
 
 
 
 
 
 
 
 
 
 
 460
 461		skb = can_create_echo_skb(skb);
 462		if (!skb)
 463			return;
 464
 465		/* make settings for echo to reduce code in irq context */
 
 466		skb->pkt_type = PACKET_BROADCAST;
 467		skb->ip_summed = CHECKSUM_UNNECESSARY;
 468		skb->dev = dev;
 469
 470		/* save this skb for tx interrupt echo handling */
 471		priv->echo_skb[idx] = skb;
 472	} else {
 473		/* locking problem with netif_stop_queue() ?? */
 474		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 475		kfree_skb(skb);
 476	}
 477}
 478EXPORT_SYMBOL_GPL(can_put_echo_skb);
 479
 480/*
 481 * Get the skb from the stack and loop it back locally
 482 *
 483 * The function is typically called when the TX done interrupt
 484 * is handled in the device driver. The driver must protect
 485 * access to priv->echo_skb, if necessary.
 486 */
 487unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 488{
 489	struct can_priv *priv = netdev_priv(dev);
 490
 491	BUG_ON(idx >= priv->echo_skb_max);
 492
 493	if (priv->echo_skb[idx]) {
 494		struct sk_buff *skb = priv->echo_skb[idx];
 495		struct can_frame *cf = (struct can_frame *)skb->data;
 496		u8 dlc = cf->can_dlc;
 497
 498		netif_rx(priv->echo_skb[idx]);
 499		priv->echo_skb[idx] = NULL;
 500
 501		return dlc;
 502	}
 503
 504	return 0;
 505}
 506EXPORT_SYMBOL_GPL(can_get_echo_skb);
 507
 508/*
 509  * Remove the skb from the stack and free it.
 510  *
 511  * The function is typically called when TX failed.
 512  */
 513void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 514{
 515	struct can_priv *priv = netdev_priv(dev);
 516
 517	BUG_ON(idx >= priv->echo_skb_max);
 518
 519	if (priv->echo_skb[idx]) {
 520		dev_kfree_skb_any(priv->echo_skb[idx]);
 521		priv->echo_skb[idx] = NULL;
 522	}
 523}
 524EXPORT_SYMBOL_GPL(can_free_echo_skb);
 525
 526/*
 527 * CAN device restart for bus-off recovery
 528 */
 529static void can_restart(struct net_device *dev)
 530{
 
 531	struct can_priv *priv = netdev_priv(dev);
 532	struct net_device_stats *stats = &dev->stats;
 533	struct sk_buff *skb;
 534	struct can_frame *cf;
 535	int err;
 536
 537	BUG_ON(netif_carrier_ok(dev));
 538
 539	/*
 540	 * No synchronization needed because the device is bus-off and
 541	 * no messages can come in or go out.
 542	 */
 543	can_flush_echo_skb(dev);
 544
 545	/* send restart message upstream */
 546	skb = alloc_can_err_skb(dev, &cf);
 547	if (skb == NULL) {
 548		err = -ENOMEM;
 549		goto restart;
 550	}
 551	cf->can_id |= CAN_ERR_RESTARTED;
 552
 553	netif_rx(skb);
 554
 555	stats->rx_packets++;
 556	stats->rx_bytes += cf->can_dlc;
 557
 558restart:
 559	netdev_dbg(dev, "restarted\n");
 560	priv->can_stats.restarts++;
 561
 562	/* Now restart the device */
 563	err = priv->do_set_mode(dev, CAN_MODE_START);
 564
 565	netif_carrier_on(dev);
 566	if (err)
 567		netdev_err(dev, "Error %d during restart", err);
 568}
 569
 570static void can_restart_work(struct work_struct *work)
 571{
 572	struct delayed_work *dwork = to_delayed_work(work);
 573	struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
 574
 575	can_restart(priv->dev);
 576}
 577
 578int can_restart_now(struct net_device *dev)
 579{
 580	struct can_priv *priv = netdev_priv(dev);
 581
 582	/*
 583	 * A manual restart is only permitted if automatic restart is
 584	 * disabled and the device is in the bus-off state
 585	 */
 586	if (priv->restart_ms)
 587		return -EINVAL;
 588	if (priv->state != CAN_STATE_BUS_OFF)
 589		return -EBUSY;
 590
 591	cancel_delayed_work_sync(&priv->restart_work);
 592	can_restart(dev);
 593
 594	return 0;
 595}
 596
 597/*
 598 * CAN bus-off
 599 *
 600 * This functions should be called when the device goes bus-off to
 601 * tell the netif layer that no more packets can be sent or received.
 602 * If enabled, a timer is started to trigger bus-off recovery.
 603 */
 604void can_bus_off(struct net_device *dev)
 605{
 606	struct can_priv *priv = netdev_priv(dev);
 607
 608	netdev_info(dev, "bus-off\n");
 609
 610	netif_carrier_off(dev);
 
 611
 612	if (priv->restart_ms)
 613		schedule_delayed_work(&priv->restart_work,
 614				      msecs_to_jiffies(priv->restart_ms));
 615}
 616EXPORT_SYMBOL_GPL(can_bus_off);
 617
 618static void can_setup(struct net_device *dev)
 619{
 620	dev->type = ARPHRD_CAN;
 621	dev->mtu = CAN_MTU;
 622	dev->hard_header_len = 0;
 623	dev->addr_len = 0;
 624	dev->tx_queue_len = 10;
 625
 626	/* New-style flags. */
 627	dev->flags = IFF_NOARP;
 628	dev->features = NETIF_F_HW_CSUM;
 629}
 630
 631struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 632{
 633	struct sk_buff *skb;
 634
 635	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 636			       sizeof(struct can_frame));
 637	if (unlikely(!skb))
 638		return NULL;
 639
 640	skb->protocol = htons(ETH_P_CAN);
 641	skb->pkt_type = PACKET_BROADCAST;
 642	skb->ip_summed = CHECKSUM_UNNECESSARY;
 643
 644	skb_reset_mac_header(skb);
 645	skb_reset_network_header(skb);
 646	skb_reset_transport_header(skb);
 647
 648	can_skb_reserve(skb);
 649	can_skb_prv(skb)->ifindex = dev->ifindex;
 650	can_skb_prv(skb)->skbcnt = 0;
 651
 652	*cf = skb_put(skb, sizeof(struct can_frame));
 653	memset(*cf, 0, sizeof(struct can_frame));
 654
 655	return skb;
 656}
 657EXPORT_SYMBOL_GPL(alloc_can_skb);
 658
 659struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 660				struct canfd_frame **cfd)
 661{
 662	struct sk_buff *skb;
 663
 664	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 665			       sizeof(struct canfd_frame));
 666	if (unlikely(!skb))
 667		return NULL;
 668
 669	skb->protocol = htons(ETH_P_CANFD);
 670	skb->pkt_type = PACKET_BROADCAST;
 671	skb->ip_summed = CHECKSUM_UNNECESSARY;
 672
 673	skb_reset_mac_header(skb);
 674	skb_reset_network_header(skb);
 675	skb_reset_transport_header(skb);
 676
 677	can_skb_reserve(skb);
 678	can_skb_prv(skb)->ifindex = dev->ifindex;
 679	can_skb_prv(skb)->skbcnt = 0;
 680
 681	*cfd = skb_put(skb, sizeof(struct canfd_frame));
 682	memset(*cfd, 0, sizeof(struct canfd_frame));
 683
 684	return skb;
 685}
 686EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 687
 688struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 689{
 690	struct sk_buff *skb;
 691
 692	skb = alloc_can_skb(dev, cf);
 693	if (unlikely(!skb))
 694		return NULL;
 695
 696	(*cf)->can_id = CAN_ERR_FLAG;
 697	(*cf)->can_dlc = CAN_ERR_DLC;
 698
 699	return skb;
 700}
 701EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 702
 703/*
 704 * Allocate and setup space for the CAN network device
 705 */
 706struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 707{
 708	struct net_device *dev;
 709	struct can_priv *priv;
 710	int size;
 711
 712	if (echo_skb_max)
 713		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 714			echo_skb_max * sizeof(struct sk_buff *);
 715	else
 716		size = sizeof_priv;
 717
 718	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 719	if (!dev)
 720		return NULL;
 721
 722	priv = netdev_priv(dev);
 723	priv->dev = dev;
 724
 725	if (echo_skb_max) {
 726		priv->echo_skb_max = echo_skb_max;
 727		priv->echo_skb = (void *)priv +
 728			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 729	}
 730
 731	priv->state = CAN_STATE_STOPPED;
 732
 733	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
 734
 735	return dev;
 736}
 737EXPORT_SYMBOL_GPL(alloc_candev);
 738
 739/*
 740 * Free space of the CAN network device
 741 */
 742void free_candev(struct net_device *dev)
 743{
 744	free_netdev(dev);
 745}
 746EXPORT_SYMBOL_GPL(free_candev);
 747
 748/*
 749 * changing MTU and control mode for CAN/CANFD devices
 750 */
 751int can_change_mtu(struct net_device *dev, int new_mtu)
 752{
 753	struct can_priv *priv = netdev_priv(dev);
 754
 755	/* Do not allow changing the MTU while running */
 756	if (dev->flags & IFF_UP)
 757		return -EBUSY;
 758
 759	/* allow change of MTU according to the CANFD ability of the device */
 760	switch (new_mtu) {
 761	case CAN_MTU:
 762		/* 'CANFD-only' controllers can not switch to CAN_MTU */
 763		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
 764			return -EINVAL;
 765
 766		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 767		break;
 768
 769	case CANFD_MTU:
 770		/* check for potential CANFD ability */
 771		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
 772		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
 773			return -EINVAL;
 774
 775		priv->ctrlmode |= CAN_CTRLMODE_FD;
 776		break;
 777
 778	default:
 779		return -EINVAL;
 780	}
 781
 782	dev->mtu = new_mtu;
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(can_change_mtu);
 786
 787/*
 788 * Common open function when the device gets opened.
 789 *
 790 * This function should be called in the open function of the device
 791 * driver.
 792 */
 793int open_candev(struct net_device *dev)
 794{
 795	struct can_priv *priv = netdev_priv(dev);
 796
 797	if (!priv->bittiming.bitrate) {
 798		netdev_err(dev, "bit-timing not yet defined\n");
 799		return -EINVAL;
 800	}
 801
 802	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 803	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 804	    (!priv->data_bittiming.bitrate ||
 805	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 806		netdev_err(dev, "incorrect/missing data bit-timing\n");
 807		return -EINVAL;
 808	}
 809
 810	/* Switch carrier on if device was stopped while in bus-off state */
 811	if (!netif_carrier_ok(dev))
 812		netif_carrier_on(dev);
 813
 
 
 814	return 0;
 815}
 816EXPORT_SYMBOL_GPL(open_candev);
 817
 818#ifdef CONFIG_OF
 819/* Common function that can be used to understand the limitation of
 820 * a transceiver when it provides no means to determine these limitations
 821 * at runtime.
 822 */
 823void of_can_transceiver(struct net_device *dev)
 824{
 825	struct device_node *dn;
 826	struct can_priv *priv = netdev_priv(dev);
 827	struct device_node *np = dev->dev.parent->of_node;
 828	int ret;
 829
 830	dn = of_get_child_by_name(np, "can-transceiver");
 831	if (!dn)
 832		return;
 833
 834	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
 835	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
 836		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
 837}
 838EXPORT_SYMBOL_GPL(of_can_transceiver);
 839#endif
 840
 841/*
 842 * Common close function for cleanup before the device gets closed.
 843 *
 844 * This function should be called in the close function of the device
 845 * driver.
 846 */
 847void close_candev(struct net_device *dev)
 848{
 849	struct can_priv *priv = netdev_priv(dev);
 850
 851	cancel_delayed_work_sync(&priv->restart_work);
 
 852	can_flush_echo_skb(dev);
 853}
 854EXPORT_SYMBOL_GPL(close_candev);
 855
 856/*
 857 * CAN netlink interface
 858 */
 859static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 860	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 861	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 862	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 863	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 864	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 865	[IFLA_CAN_BITTIMING_CONST]
 866				= { .len = sizeof(struct can_bittiming_const) },
 867	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 868	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 869	[IFLA_CAN_DATA_BITTIMING]
 870				= { .len = sizeof(struct can_bittiming) },
 871	[IFLA_CAN_DATA_BITTIMING_CONST]
 872				= { .len = sizeof(struct can_bittiming_const) },
 873};
 874
 875static int can_validate(struct nlattr *tb[], struct nlattr *data[],
 876			struct netlink_ext_ack *extack)
 877{
 878	bool is_can_fd = false;
 879
 880	/* Make sure that valid CAN FD configurations always consist of
 881	 * - nominal/arbitration bittiming
 882	 * - data bittiming
 883	 * - control mode with CAN_CTRLMODE_FD set
 884	 */
 885
 886	if (!data)
 887		return 0;
 888
 889	if (data[IFLA_CAN_CTRLMODE]) {
 890		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 891
 892		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
 893	}
 894
 895	if (is_can_fd) {
 896		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
 897			return -EOPNOTSUPP;
 898	}
 899
 900	if (data[IFLA_CAN_DATA_BITTIMING]) {
 901		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
 
 
 
 902			return -EOPNOTSUPP;
 
 
 903	}
 904
 905	return 0;
 906}
 907
 908static int can_changelink(struct net_device *dev, struct nlattr *tb[],
 909			  struct nlattr *data[],
 910			  struct netlink_ext_ack *extack)
 911{
 912	struct can_priv *priv = netdev_priv(dev);
 913	int err;
 914
 915	/* We need synchronization with dev->stop() */
 916	ASSERT_RTNL();
 917
 918	if (data[IFLA_CAN_BITTIMING]) {
 919		struct can_bittiming bt;
 920
 921		/* Do not allow changing bittiming while running */
 922		if (dev->flags & IFF_UP)
 923			return -EBUSY;
 924
 925		/* Calculate bittiming parameters based on
 926		 * bittiming_const if set, otherwise pass bitrate
 927		 * directly via do_set_bitrate(). Bail out if neither
 928		 * is given.
 929		 */
 930		if (!priv->bittiming_const && !priv->do_set_bittiming)
 931			return -EOPNOTSUPP;
 932
 933		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 934		err = can_get_bittiming(dev, &bt,
 935					priv->bittiming_const,
 936					priv->bitrate_const,
 937					priv->bitrate_const_cnt);
 938		if (err)
 939			return err;
 940
 941		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
 942			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
 943				   priv->bitrate_max);
 944			return -EINVAL;
 945		}
 946
 947		memcpy(&priv->bittiming, &bt, sizeof(bt));
 948
 949		if (priv->do_set_bittiming) {
 950			/* Finally, set the bit-timing registers */
 951			err = priv->do_set_bittiming(dev);
 952			if (err)
 953				return err;
 954		}
 955	}
 956
 957	if (data[IFLA_CAN_CTRLMODE]) {
 958		struct can_ctrlmode *cm;
 959		u32 ctrlstatic;
 960		u32 maskedflags;
 961
 962		/* Do not allow changing controller mode while running */
 963		if (dev->flags & IFF_UP)
 964			return -EBUSY;
 965		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 966		ctrlstatic = priv->ctrlmode_static;
 967		maskedflags = cm->flags & cm->mask;
 968
 969		/* check whether provided bits are allowed to be passed */
 970		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
 971			return -EOPNOTSUPP;
 972
 973		/* do not check for static fd-non-iso if 'fd' is disabled */
 974		if (!(maskedflags & CAN_CTRLMODE_FD))
 975			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
 976
 977		/* make sure static options are provided by configuration */
 978		if ((maskedflags & ctrlstatic) != ctrlstatic)
 979			return -EOPNOTSUPP;
 980
 981		/* clear bits to be modified and copy the flag values */
 982		priv->ctrlmode &= ~cm->mask;
 983		priv->ctrlmode |= maskedflags;
 984
 985		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 986		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 987			dev->mtu = CANFD_MTU;
 988		else
 989			dev->mtu = CAN_MTU;
 990	}
 991
 992	if (data[IFLA_CAN_RESTART_MS]) {
 993		/* Do not allow changing restart delay while running */
 994		if (dev->flags & IFF_UP)
 995			return -EBUSY;
 996		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 997	}
 998
 999	if (data[IFLA_CAN_RESTART]) {
1000		/* Do not allow a restart while not running */
1001		if (!(dev->flags & IFF_UP))
1002			return -EINVAL;
1003		err = can_restart_now(dev);
1004		if (err)
1005			return err;
1006	}
1007
1008	if (data[IFLA_CAN_DATA_BITTIMING]) {
1009		struct can_bittiming dbt;
1010
1011		/* Do not allow changing bittiming while running */
1012		if (dev->flags & IFF_UP)
1013			return -EBUSY;
1014
1015		/* Calculate bittiming parameters based on
1016		 * data_bittiming_const if set, otherwise pass bitrate
1017		 * directly via do_set_bitrate(). Bail out if neither
1018		 * is given.
1019		 */
1020		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1021			return -EOPNOTSUPP;
1022
1023		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1024		       sizeof(dbt));
1025		err = can_get_bittiming(dev, &dbt,
1026					priv->data_bittiming_const,
1027					priv->data_bitrate_const,
1028					priv->data_bitrate_const_cnt);
1029		if (err)
1030			return err;
1031
1032		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1033			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1034				   priv->bitrate_max);
1035			return -EINVAL;
1036		}
1037
1038		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1039
1040		if (priv->do_set_data_bittiming) {
1041			/* Finally, set the bit-timing registers */
1042			err = priv->do_set_data_bittiming(dev);
1043			if (err)
1044				return err;
1045		}
1046	}
1047
1048	if (data[IFLA_CAN_TERMINATION]) {
1049		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1050		const unsigned int num_term = priv->termination_const_cnt;
1051		unsigned int i;
1052
1053		if (!priv->do_set_termination)
1054			return -EOPNOTSUPP;
1055
1056		/* check whether given value is supported by the interface */
1057		for (i = 0; i < num_term; i++) {
1058			if (termval == priv->termination_const[i])
1059				break;
1060		}
1061		if (i >= num_term)
1062			return -EINVAL;
1063
1064		/* Finally, set the termination value */
1065		err = priv->do_set_termination(dev, termval);
1066		if (err)
1067			return err;
1068
1069		priv->termination = termval;
1070	}
1071
1072	return 0;
1073}
1074
1075static size_t can_get_size(const struct net_device *dev)
1076{
1077	struct can_priv *priv = netdev_priv(dev);
1078	size_t size = 0;
1079
1080	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1081		size += nla_total_size(sizeof(struct can_bittiming));
1082	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1083		size += nla_total_size(sizeof(struct can_bittiming_const));
1084	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1085	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1086	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1087	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1088	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1089		size += nla_total_size(sizeof(struct can_berr_counter));
1090	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1091		size += nla_total_size(sizeof(struct can_bittiming));
1092	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1093		size += nla_total_size(sizeof(struct can_bittiming_const));
1094	if (priv->termination_const) {
1095		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1096		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1097				       priv->termination_const_cnt);
1098	}
1099	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1100		size += nla_total_size(sizeof(*priv->bitrate_const) *
1101				       priv->bitrate_const_cnt);
1102	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1103		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1104				       priv->data_bitrate_const_cnt);
1105	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1106
1107	return size;
1108}
1109
1110static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1111{
1112	struct can_priv *priv = netdev_priv(dev);
1113	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1114	struct can_berr_counter bec;
1115	enum can_state state = priv->state;
1116
1117	if (priv->do_get_state)
1118		priv->do_get_state(dev, &state);
1119
1120	if ((priv->bittiming.bitrate &&
1121	     nla_put(skb, IFLA_CAN_BITTIMING,
1122		     sizeof(priv->bittiming), &priv->bittiming)) ||
1123
1124	    (priv->bittiming_const &&
1125	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1126		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1127
1128	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1129	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1130	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1131	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1132
 
 
1133	    (priv->do_get_berr_counter &&
1134	     !priv->do_get_berr_counter(dev, &bec) &&
1135	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1136
1137	    (priv->data_bittiming.bitrate &&
1138	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1139		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1140
1141	    (priv->data_bittiming_const &&
1142	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1143		     sizeof(*priv->data_bittiming_const),
1144		     priv->data_bittiming_const)) ||
1145
1146	    (priv->termination_const &&
1147	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1148	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1149		      sizeof(*priv->termination_const) *
1150		      priv->termination_const_cnt,
1151		      priv->termination_const))) ||
1152
1153	    (priv->bitrate_const &&
1154	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1155		     sizeof(*priv->bitrate_const) *
1156		     priv->bitrate_const_cnt,
1157		     priv->bitrate_const)) ||
1158
1159	    (priv->data_bitrate_const &&
1160	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1161		     sizeof(*priv->data_bitrate_const) *
1162		     priv->data_bitrate_const_cnt,
1163		     priv->data_bitrate_const)) ||
1164
1165	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1166		     sizeof(priv->bitrate_max),
1167		     &priv->bitrate_max))
1168	    )
1169
1170		return -EMSGSIZE;
1171
1172	return 0;
 
 
 
1173}
1174
1175static size_t can_get_xstats_size(const struct net_device *dev)
1176{
1177	return sizeof(struct can_device_stats);
1178}
1179
1180static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1181{
1182	struct can_priv *priv = netdev_priv(dev);
1183
1184	if (nla_put(skb, IFLA_INFO_XSTATS,
1185		    sizeof(priv->can_stats), &priv->can_stats))
1186		goto nla_put_failure;
1187	return 0;
1188
1189nla_put_failure:
1190	return -EMSGSIZE;
1191}
1192
1193static int can_newlink(struct net *src_net, struct net_device *dev,
1194		       struct nlattr *tb[], struct nlattr *data[],
1195		       struct netlink_ext_ack *extack)
1196{
1197	return -EOPNOTSUPP;
1198}
1199
1200static void can_dellink(struct net_device *dev, struct list_head *head)
1201{
1202	return;
1203}
1204
1205static struct rtnl_link_ops can_link_ops __read_mostly = {
1206	.kind		= "can",
1207	.maxtype	= IFLA_CAN_MAX,
1208	.policy		= can_policy,
1209	.setup		= can_setup,
1210	.validate	= can_validate,
1211	.newlink	= can_newlink,
1212	.changelink	= can_changelink,
1213	.dellink	= can_dellink,
1214	.get_size	= can_get_size,
1215	.fill_info	= can_fill_info,
1216	.get_xstats_size = can_get_xstats_size,
1217	.fill_xstats	= can_fill_xstats,
1218};
1219
1220/*
1221 * Register the CAN network device
1222 */
1223int register_candev(struct net_device *dev)
1224{
1225	struct can_priv *priv = netdev_priv(dev);
1226
1227	/* Ensure termination_const, termination_const_cnt and
1228	 * do_set_termination consistency. All must be either set or
1229	 * unset.
1230	 */
1231	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1232	    (!priv->termination_const != !priv->do_set_termination))
1233		return -EINVAL;
1234
1235	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1236		return -EINVAL;
1237
1238	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1239		return -EINVAL;
1240
1241	dev->rtnl_link_ops = &can_link_ops;
1242	return register_netdev(dev);
1243}
1244EXPORT_SYMBOL_GPL(register_candev);
1245
1246/*
1247 * Unregister the CAN network device
1248 */
1249void unregister_candev(struct net_device *dev)
1250{
1251	unregister_netdev(dev);
1252}
1253EXPORT_SYMBOL_GPL(unregister_candev);
1254
1255/*
1256 * Test if a network device is a candev based device
1257 * and return the can_priv* if so.
1258 */
1259struct can_priv *safe_candev_priv(struct net_device *dev)
1260{
1261	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1262		return NULL;
1263
1264	return netdev_priv(dev);
1265}
1266EXPORT_SYMBOL_GPL(safe_candev_priv);
1267
1268static __init int can_dev_init(void)
1269{
1270	int err;
1271
1272	can_led_notifier_init();
1273
1274	err = rtnl_link_register(&can_link_ops);
1275	if (!err)
1276		printk(KERN_INFO MOD_DESC "\n");
1277
1278	return err;
1279}
1280module_init(can_dev_init);
1281
1282static __exit void can_dev_exit(void)
1283{
1284	rtnl_link_unregister(&can_link_ops);
1285
1286	can_led_notifier_exit();
1287}
1288module_exit(can_dev_exit);
1289
1290MODULE_ALIAS_RTNL_LINK("can");
v3.5.6
  1/*
  2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the version 2 of the GNU General Public License
  8 * as published by the Free Software Foundation
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/kernel.h>
 22#include <linux/slab.h>
 23#include <linux/netdevice.h>
 24#include <linux/if_arp.h>
 
 25#include <linux/can.h>
 26#include <linux/can/dev.h>
 
 27#include <linux/can/netlink.h>
 
 
 28#include <net/rtnetlink.h>
 29
 30#define MOD_DESC "CAN device driver interface"
 31
 32MODULE_DESCRIPTION(MOD_DESC);
 33MODULE_LICENSE("GPL v2");
 34MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36#ifdef CONFIG_CAN_CALC_BITTIMING
 37#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 
 38
 39/*
 40 * Bit-timing calculation derived from:
 41 *
 42 * Code based on LinCAN sources and H8S2638 project
 43 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 44 * Copyright 2005      Stanislav Marek
 45 * email: pisa@cmp.felk.cvut.cz
 46 *
 47 * Calculates proper bit-timing parameters for a specified bit-rate
 48 * and sample-point, which can then be used to set the bit-timing
 49 * registers of the CAN controller. You can find more information
 50 * in the header file linux/can/netlink.h.
 51 */
 52static int can_update_spt(const struct can_bittiming_const *btc,
 53			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54{
 55	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 56	if (*tseg2 < btc->tseg2_min)
 57		*tseg2 = btc->tseg2_min;
 58	if (*tseg2 > btc->tseg2_max)
 59		*tseg2 = btc->tseg2_max;
 60	*tseg1 = tseg - *tseg2;
 61	if (*tseg1 > btc->tseg1_max) {
 62		*tseg1 = btc->tseg1_max;
 63		*tseg2 = tseg - *tseg1;
 64	}
 65	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 66}
 67
 68static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 69{
 70	struct can_priv *priv = netdev_priv(dev);
 71	const struct can_bittiming_const *btc = priv->bittiming_const;
 72	long rate, best_rate = 0;
 73	long best_error = 1000000000, error = 0;
 74	int best_tseg = 0, best_brp = 0, brp = 0;
 75	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 76	int spt_error = 1000, spt = 0, sampl_pt;
 77	u64 v64;
 78
 79	if (!priv->bittiming_const)
 80		return -ENOTSUPP;
 81
 82	/* Use CIA recommended sample points */
 83	if (bt->sample_point) {
 84		sampl_pt = bt->sample_point;
 85	} else {
 86		if (bt->bitrate > 800000)
 87			sampl_pt = 750;
 88		else if (bt->bitrate > 500000)
 89			sampl_pt = 800;
 90		else
 91			sampl_pt = 875;
 92	}
 93
 94	/* tseg even = round down, odd = round up */
 95	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 96	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 97		tsegall = 1 + tseg / 2;
 
 98		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 99		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100		/* chose brp step which is possible in system */
 
101		brp = (brp / btc->brp_inc) * btc->brp_inc;
102		if ((brp < btc->brp_min) || (brp > btc->brp_max))
103			continue;
104		rate = priv->clock.freq / (brp * tsegall);
105		error = bt->bitrate - rate;
 
 
106		/* tseg brp biterror */
107		if (error < 0)
108			error = -error;
109		if (error > best_error)
 
 
 
 
 
 
110			continue;
111		best_error = error;
112		if (error == 0) {
113			spt = can_update_spt(btc, sampl_pt, tseg / 2,
114					     &tseg1, &tseg2);
115			error = sampl_pt - spt;
116			if (error < 0)
117				error = -error;
118			if (error > spt_error)
119				continue;
120			spt_error = error;
121		}
122		best_tseg = tseg / 2;
123		best_brp = brp;
124		best_rate = rate;
125		if (error == 0)
126			break;
127	}
128
129	if (best_error) {
130		/* Error in one-tenth of a percent */
131		error = (best_error * 1000) / bt->bitrate;
132		if (error > CAN_CALC_MAX_ERROR) {
 
 
133			netdev_err(dev,
134				   "bitrate error %ld.%ld%% too high\n",
135				   error / 10, error % 10);
136			return -EDOM;
137		} else {
138			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
139				    error / 10, error % 10);
140		}
 
 
141	}
142
143	/* real sample point */
144	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145					  &tseg1, &tseg2);
146
147	v64 = (u64)best_brp * 1000000000UL;
148	do_div(v64, priv->clock.freq);
149	bt->tq = (u32)v64;
150	bt->prop_seg = tseg1 / 2;
151	bt->phase_seg1 = tseg1 - bt->prop_seg;
152	bt->phase_seg2 = tseg2;
153
154	/* check for sjw user settings */
155	if (!bt->sjw || !btc->sjw_max)
156		bt->sjw = 1;
157	else {
158		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
159		if (bt->sjw > btc->sjw_max)
160			bt->sjw = btc->sjw_max;
161		/* bt->sjw must not be higher than tseg2 */
162		if (tseg2 < bt->sjw)
163			bt->sjw = tseg2;
164	}
165
166	bt->brp = best_brp;
167	/* real bit-rate */
168	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 
169
170	return 0;
171}
172#else /* !CONFIG_CAN_CALC_BITTIMING */
173static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
174{
175	netdev_err(dev, "bit-timing calculation not available\n");
176	return -EINVAL;
177}
178#endif /* CONFIG_CAN_CALC_BITTIMING */
179
180/*
181 * Checks the validity of the specified bit-timing parameters prop_seg,
182 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
183 * prescaler value brp. You can find more information in the header
184 * file linux/can/netlink.h.
185 */
186static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
187{
188	struct can_priv *priv = netdev_priv(dev);
189	const struct can_bittiming_const *btc = priv->bittiming_const;
190	int tseg1, alltseg;
191	u64 brp64;
192
193	if (!priv->bittiming_const)
194		return -ENOTSUPP;
195
196	tseg1 = bt->prop_seg + bt->phase_seg1;
197	if (!bt->sjw)
198		bt->sjw = 1;
199	if (bt->sjw > btc->sjw_max ||
200	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
201	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
202		return -ERANGE;
203
204	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
205	if (btc->brp_inc > 1)
206		do_div(brp64, btc->brp_inc);
207	brp64 += 500000000UL - 1;
208	do_div(brp64, 1000000000UL); /* the practicable BRP */
209	if (btc->brp_inc > 1)
210		brp64 *= btc->brp_inc;
211	bt->brp = (u32)brp64;
212
213	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
214		return -EINVAL;
215
216	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
217	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
218	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
219
220	return 0;
221}
222
223static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
 
 
224{
225	struct can_priv *priv = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226	int err;
227
228	/* Check if the CAN device has bit-timing parameters */
229	if (priv->bittiming_const) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
231		/* Non-expert mode? Check if the bitrate has been pre-defined */
232		if (!bt->tq)
233			/* Determine bit-timing parameters */
234			err = can_calc_bittiming(dev, bt);
235		else
236			/* Check bit-timing params and calculate proper brp */
237			err = can_fixup_bittiming(dev, bt);
238		if (err)
239			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240	}
241
242	return 0;
 
 
 
 
243}
 
244
245/*
246 * Local echo of CAN messages
247 *
248 * CAN network devices *should* support a local echo functionality
249 * (see Documentation/networking/can.txt). To test the handling of CAN
250 * interfaces that do not support the local echo both driver types are
251 * implemented. In the case that the driver does not support the echo
252 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
253 * to perform the echo as a fallback solution.
254 */
255static void can_flush_echo_skb(struct net_device *dev)
256{
257	struct can_priv *priv = netdev_priv(dev);
258	struct net_device_stats *stats = &dev->stats;
259	int i;
260
261	for (i = 0; i < priv->echo_skb_max; i++) {
262		if (priv->echo_skb[i]) {
263			kfree_skb(priv->echo_skb[i]);
264			priv->echo_skb[i] = NULL;
265			stats->tx_dropped++;
266			stats->tx_aborted_errors++;
267		}
268	}
269}
270
271/*
272 * Put the skb on the stack to be looped backed locally lateron
273 *
274 * The function is typically called in the start_xmit function
275 * of the device driver. The driver must protect access to
276 * priv->echo_skb, if necessary.
277 */
278void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
279		      unsigned int idx)
280{
281	struct can_priv *priv = netdev_priv(dev);
282
283	BUG_ON(idx >= priv->echo_skb_max);
284
285	/* check flag whether this packet has to be looped back */
286	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
 
 
287		kfree_skb(skb);
288		return;
289	}
290
291	if (!priv->echo_skb[idx]) {
292		struct sock *srcsk = skb->sk;
293
294		if (atomic_read(&skb->users) != 1) {
295			struct sk_buff *old_skb = skb;
296
297			skb = skb_clone(old_skb, GFP_ATOMIC);
298			kfree_skb(old_skb);
299			if (!skb)
300				return;
301		} else
302			skb_orphan(skb);
303
304		skb->sk = srcsk;
 
 
305
306		/* make settings for echo to reduce code in irq context */
307		skb->protocol = htons(ETH_P_CAN);
308		skb->pkt_type = PACKET_BROADCAST;
309		skb->ip_summed = CHECKSUM_UNNECESSARY;
310		skb->dev = dev;
311
312		/* save this skb for tx interrupt echo handling */
313		priv->echo_skb[idx] = skb;
314	} else {
315		/* locking problem with netif_stop_queue() ?? */
316		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
317		kfree_skb(skb);
318	}
319}
320EXPORT_SYMBOL_GPL(can_put_echo_skb);
321
322/*
323 * Get the skb from the stack and loop it back locally
324 *
325 * The function is typically called when the TX done interrupt
326 * is handled in the device driver. The driver must protect
327 * access to priv->echo_skb, if necessary.
328 */
329unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
330{
331	struct can_priv *priv = netdev_priv(dev);
332
333	BUG_ON(idx >= priv->echo_skb_max);
334
335	if (priv->echo_skb[idx]) {
336		struct sk_buff *skb = priv->echo_skb[idx];
337		struct can_frame *cf = (struct can_frame *)skb->data;
338		u8 dlc = cf->can_dlc;
339
340		netif_rx(priv->echo_skb[idx]);
341		priv->echo_skb[idx] = NULL;
342
343		return dlc;
344	}
345
346	return 0;
347}
348EXPORT_SYMBOL_GPL(can_get_echo_skb);
349
350/*
351  * Remove the skb from the stack and free it.
352  *
353  * The function is typically called when TX failed.
354  */
355void can_free_echo_skb(struct net_device *dev, unsigned int idx)
356{
357	struct can_priv *priv = netdev_priv(dev);
358
359	BUG_ON(idx >= priv->echo_skb_max);
360
361	if (priv->echo_skb[idx]) {
362		kfree_skb(priv->echo_skb[idx]);
363		priv->echo_skb[idx] = NULL;
364	}
365}
366EXPORT_SYMBOL_GPL(can_free_echo_skb);
367
368/*
369 * CAN device restart for bus-off recovery
370 */
371void can_restart(unsigned long data)
372{
373	struct net_device *dev = (struct net_device *)data;
374	struct can_priv *priv = netdev_priv(dev);
375	struct net_device_stats *stats = &dev->stats;
376	struct sk_buff *skb;
377	struct can_frame *cf;
378	int err;
379
380	BUG_ON(netif_carrier_ok(dev));
381
382	/*
383	 * No synchronization needed because the device is bus-off and
384	 * no messages can come in or go out.
385	 */
386	can_flush_echo_skb(dev);
387
388	/* send restart message upstream */
389	skb = alloc_can_err_skb(dev, &cf);
390	if (skb == NULL) {
391		err = -ENOMEM;
392		goto restart;
393	}
394	cf->can_id |= CAN_ERR_RESTARTED;
395
396	netif_rx(skb);
397
398	stats->rx_packets++;
399	stats->rx_bytes += cf->can_dlc;
400
401restart:
402	netdev_dbg(dev, "restarted\n");
403	priv->can_stats.restarts++;
404
405	/* Now restart the device */
406	err = priv->do_set_mode(dev, CAN_MODE_START);
407
408	netif_carrier_on(dev);
409	if (err)
410		netdev_err(dev, "Error %d during restart", err);
411}
412
 
 
 
 
 
 
 
 
413int can_restart_now(struct net_device *dev)
414{
415	struct can_priv *priv = netdev_priv(dev);
416
417	/*
418	 * A manual restart is only permitted if automatic restart is
419	 * disabled and the device is in the bus-off state
420	 */
421	if (priv->restart_ms)
422		return -EINVAL;
423	if (priv->state != CAN_STATE_BUS_OFF)
424		return -EBUSY;
425
426	/* Runs as soon as possible in the timer context */
427	mod_timer(&priv->restart_timer, jiffies);
428
429	return 0;
430}
431
432/*
433 * CAN bus-off
434 *
435 * This functions should be called when the device goes bus-off to
436 * tell the netif layer that no more packets can be sent or received.
437 * If enabled, a timer is started to trigger bus-off recovery.
438 */
439void can_bus_off(struct net_device *dev)
440{
441	struct can_priv *priv = netdev_priv(dev);
442
443	netdev_dbg(dev, "bus-off\n");
444
445	netif_carrier_off(dev);
446	priv->can_stats.bus_off++;
447
448	if (priv->restart_ms)
449		mod_timer(&priv->restart_timer,
450			  jiffies + (priv->restart_ms * HZ) / 1000);
451}
452EXPORT_SYMBOL_GPL(can_bus_off);
453
454static void can_setup(struct net_device *dev)
455{
456	dev->type = ARPHRD_CAN;
457	dev->mtu = sizeof(struct can_frame);
458	dev->hard_header_len = 0;
459	dev->addr_len = 0;
460	dev->tx_queue_len = 10;
461
462	/* New-style flags. */
463	dev->flags = IFF_NOARP;
464	dev->features = NETIF_F_HW_CSUM;
465}
466
467struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
468{
469	struct sk_buff *skb;
470
471	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
 
472	if (unlikely(!skb))
473		return NULL;
474
475	skb->protocol = htons(ETH_P_CAN);
476	skb->pkt_type = PACKET_BROADCAST;
477	skb->ip_summed = CHECKSUM_UNNECESSARY;
478	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 
 
 
 
 
 
 
 
 
479	memset(*cf, 0, sizeof(struct can_frame));
480
481	return skb;
482}
483EXPORT_SYMBOL_GPL(alloc_can_skb);
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
486{
487	struct sk_buff *skb;
488
489	skb = alloc_can_skb(dev, cf);
490	if (unlikely(!skb))
491		return NULL;
492
493	(*cf)->can_id = CAN_ERR_FLAG;
494	(*cf)->can_dlc = CAN_ERR_DLC;
495
496	return skb;
497}
498EXPORT_SYMBOL_GPL(alloc_can_err_skb);
499
500/*
501 * Allocate and setup space for the CAN network device
502 */
503struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
504{
505	struct net_device *dev;
506	struct can_priv *priv;
507	int size;
508
509	if (echo_skb_max)
510		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
511			echo_skb_max * sizeof(struct sk_buff *);
512	else
513		size = sizeof_priv;
514
515	dev = alloc_netdev(size, "can%d", can_setup);
516	if (!dev)
517		return NULL;
518
519	priv = netdev_priv(dev);
 
520
521	if (echo_skb_max) {
522		priv->echo_skb_max = echo_skb_max;
523		priv->echo_skb = (void *)priv +
524			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
525	}
526
527	priv->state = CAN_STATE_STOPPED;
528
529	init_timer(&priv->restart_timer);
530
531	return dev;
532}
533EXPORT_SYMBOL_GPL(alloc_candev);
534
535/*
536 * Free space of the CAN network device
537 */
538void free_candev(struct net_device *dev)
539{
540	free_netdev(dev);
541}
542EXPORT_SYMBOL_GPL(free_candev);
543
544/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545 * Common open function when the device gets opened.
546 *
547 * This function should be called in the open function of the device
548 * driver.
549 */
550int open_candev(struct net_device *dev)
551{
552	struct can_priv *priv = netdev_priv(dev);
553
554	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
555		netdev_err(dev, "bit-timing not yet defined\n");
556		return -EINVAL;
557	}
558
 
 
 
 
 
 
 
 
559	/* Switch carrier on if device was stopped while in bus-off state */
560	if (!netif_carrier_ok(dev))
561		netif_carrier_on(dev);
562
563	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
564
565	return 0;
566}
567EXPORT_SYMBOL_GPL(open_candev);
568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569/*
570 * Common close function for cleanup before the device gets closed.
571 *
572 * This function should be called in the close function of the device
573 * driver.
574 */
575void close_candev(struct net_device *dev)
576{
577	struct can_priv *priv = netdev_priv(dev);
578
579	if (del_timer_sync(&priv->restart_timer))
580		dev_put(dev);
581	can_flush_echo_skb(dev);
582}
583EXPORT_SYMBOL_GPL(close_candev);
584
585/*
586 * CAN netlink interface
587 */
588static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
589	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
590	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
591	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
592	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
593	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
594	[IFLA_CAN_BITTIMING_CONST]
595				= { .len = sizeof(struct can_bittiming_const) },
596	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
597	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 
 
 
 
598};
599
600static int can_changelink(struct net_device *dev,
601			  struct nlattr *tb[], struct nlattr *data[])
602{
603	struct can_priv *priv = netdev_priv(dev);
604	int err;
 
 
 
 
 
605
606	/* We need synchronization with dev->stop() */
607	ASSERT_RTNL();
608
609	if (data[IFLA_CAN_CTRLMODE]) {
610		struct can_ctrlmode *cm;
 
 
 
 
 
 
 
 
611
612		/* Do not allow changing controller mode while running */
613		if (dev->flags & IFF_UP)
614			return -EBUSY;
615		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
616		if (cm->flags & ~priv->ctrlmode_supported)
617			return -EOPNOTSUPP;
618		priv->ctrlmode &= ~cm->mask;
619		priv->ctrlmode |= cm->flags;
620	}
621
 
 
 
 
 
 
 
 
 
 
 
 
 
622	if (data[IFLA_CAN_BITTIMING]) {
623		struct can_bittiming bt;
624
625		/* Do not allow changing bittiming while running */
626		if (dev->flags & IFF_UP)
627			return -EBUSY;
 
 
 
 
 
 
 
 
 
628		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
629		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
630			return -EINVAL;
631		err = can_get_bittiming(dev, &bt);
 
632		if (err)
633			return err;
 
 
 
 
 
 
 
634		memcpy(&priv->bittiming, &bt, sizeof(bt));
635
636		if (priv->do_set_bittiming) {
637			/* Finally, set the bit-timing registers */
638			err = priv->do_set_bittiming(dev);
639			if (err)
640				return err;
641		}
642	}
643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644	if (data[IFLA_CAN_RESTART_MS]) {
645		/* Do not allow changing restart delay while running */
646		if (dev->flags & IFF_UP)
647			return -EBUSY;
648		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
649	}
650
651	if (data[IFLA_CAN_RESTART]) {
652		/* Do not allow a restart while not running */
653		if (!(dev->flags & IFF_UP))
654			return -EINVAL;
655		err = can_restart_now(dev);
656		if (err)
657			return err;
658	}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	return 0;
661}
662
663static size_t can_get_size(const struct net_device *dev)
664{
665	struct can_priv *priv = netdev_priv(dev);
666	size_t size;
667
668	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
669	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
670	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
671	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
672	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
673	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
674		size += sizeof(struct can_berr_counter);
675	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
676		size += sizeof(struct can_bittiming_const);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
678	return size;
679}
680
681static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
682{
683	struct can_priv *priv = netdev_priv(dev);
684	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
685	struct can_berr_counter bec;
686	enum can_state state = priv->state;
687
688	if (priv->do_get_state)
689		priv->do_get_state(dev, &state);
690	if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 
 
 
 
 
 
 
 
 
 
691	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
692	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
693	    nla_put(skb, IFLA_CAN_BITTIMING,
694		    sizeof(priv->bittiming), &priv->bittiming) ||
695	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
696	    (priv->do_get_berr_counter &&
697	     !priv->do_get_berr_counter(dev, &bec) &&
698	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
699	    (priv->bittiming_const &&
700	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
701		     sizeof(*priv->bittiming_const), priv->bittiming_const)))
702		goto nla_put_failure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
703	return 0;
704
705nla_put_failure:
706	return -EMSGSIZE;
707}
708
709static size_t can_get_xstats_size(const struct net_device *dev)
710{
711	return sizeof(struct can_device_stats);
712}
713
714static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
715{
716	struct can_priv *priv = netdev_priv(dev);
717
718	if (nla_put(skb, IFLA_INFO_XSTATS,
719		    sizeof(priv->can_stats), &priv->can_stats))
720		goto nla_put_failure;
721	return 0;
722
723nla_put_failure:
724	return -EMSGSIZE;
725}
726
727static int can_newlink(struct net *src_net, struct net_device *dev,
728		       struct nlattr *tb[], struct nlattr *data[])
 
729{
730	return -EOPNOTSUPP;
731}
732
 
 
 
 
 
733static struct rtnl_link_ops can_link_ops __read_mostly = {
734	.kind		= "can",
735	.maxtype	= IFLA_CAN_MAX,
736	.policy		= can_policy,
737	.setup		= can_setup,
 
738	.newlink	= can_newlink,
739	.changelink	= can_changelink,
 
740	.get_size	= can_get_size,
741	.fill_info	= can_fill_info,
742	.get_xstats_size = can_get_xstats_size,
743	.fill_xstats	= can_fill_xstats,
744};
745
746/*
747 * Register the CAN network device
748 */
749int register_candev(struct net_device *dev)
750{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751	dev->rtnl_link_ops = &can_link_ops;
752	return register_netdev(dev);
753}
754EXPORT_SYMBOL_GPL(register_candev);
755
756/*
757 * Unregister the CAN network device
758 */
759void unregister_candev(struct net_device *dev)
760{
761	unregister_netdev(dev);
762}
763EXPORT_SYMBOL_GPL(unregister_candev);
764
 
 
 
 
 
 
 
 
 
 
 
 
 
765static __init int can_dev_init(void)
766{
767	int err;
768
 
 
769	err = rtnl_link_register(&can_link_ops);
770	if (!err)
771		printk(KERN_INFO MOD_DESC "\n");
772
773	return err;
774}
775module_init(can_dev_init);
776
777static __exit void can_dev_exit(void)
778{
779	rtnl_link_unregister(&can_link_ops);
 
 
780}
781module_exit(can_dev_exit);
782
783MODULE_ALIAS_RTNL_LINK("can");