Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * OpenRISC process.c
  3 *
  4 * Linux architectural port borrowing liberally from similar works of
  5 * others.  All original copyrights apply as per the original source
  6 * declaration.
  7 *
  8 * Modifications for the OpenRISC architecture:
  9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 *
 17 * This file handles the architecture-dependent parts of process handling...
 18 */
 19
 20#define __KERNEL_SYSCALLS__
 21#include <stdarg.h>
 22
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 25#include <linux/sched/debug.h>
 26#include <linux/sched/task.h>
 27#include <linux/sched/task_stack.h>
 28#include <linux/kernel.h>
 29#include <linux/export.h>
 30#include <linux/mm.h>
 31#include <linux/stddef.h>
 32#include <linux/unistd.h>
 33#include <linux/ptrace.h>
 34#include <linux/slab.h>
 35#include <linux/elfcore.h>
 36#include <linux/interrupt.h>
 37#include <linux/delay.h>
 38#include <linux/init_task.h>
 39#include <linux/mqueue.h>
 40#include <linux/fs.h>
 41
 42#include <linux/uaccess.h>
 43#include <asm/pgtable.h>
 44#include <asm/io.h>
 45#include <asm/processor.h>
 46#include <asm/spr_defs.h>
 47
 48#include <linux/smp.h>
 49
 50/*
 51 * Pointer to Current thread info structure.
 52 *
 53 * Used at user space -> kernel transitions.
 54 */
 55struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 56
 57void machine_restart(void)
 58{
 59	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 60	__asm__("l.nop 1");
 61}
 62
 63/*
 64 * Similar to machine_power_off, but don't shut off power.  Add code
 65 * here to freeze the system for e.g. post-mortem debug purpose when
 66 * possible.  This halt has nothing to do with the idle halt.
 67 */
 68void machine_halt(void)
 69{
 70	printk(KERN_INFO "*** MACHINE HALT ***\n");
 71	__asm__("l.nop 1");
 72}
 73
 74/* If or when software power-off is implemented, add code here.  */
 75void machine_power_off(void)
 76{
 77	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 78	__asm__("l.nop 1");
 79}
 80
 81/*
 82 * Send the doze signal to the cpu if available.
 83 * Make sure, that all interrupts are enabled
 84 */
 85void arch_cpu_idle(void)
 86{
 87	local_irq_enable();
 88	if (mfspr(SPR_UPR) & SPR_UPR_PMP)
 89		mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
 90}
 91
 92void (*pm_power_off) (void) = machine_power_off;
 93EXPORT_SYMBOL(pm_power_off);
 94
 95/*
 96 * When a process does an "exec", machine state like FPU and debug
 97 * registers need to be reset.  This is a hook function for that.
 98 * Currently we don't have any such state to reset, so this is empty.
 99 */
100void flush_thread(void)
101{
102}
103
104void show_regs(struct pt_regs *regs)
105{
106	extern void show_registers(struct pt_regs *regs);
107
108	show_regs_print_info(KERN_DEFAULT);
109	/* __PHX__ cleanup this mess */
110	show_registers(regs);
111}
112
 
 
 
 
 
113void release_thread(struct task_struct *dead_task)
114{
115}
116
117/*
118 * Copy the thread-specific (arch specific) info from the current
119 * process to the new one p
120 */
121extern asmlinkage void ret_from_fork(void);
122
123/*
124 * copy_thread
125 * @clone_flags: flags
126 * @usp: user stack pointer or fn for kernel thread
127 * @arg: arg to fn for kernel thread; always NULL for userspace thread
128 * @p: the newly created task
129 * @regs: CPU context to copy for userspace thread; always NULL for kthread
130 *
131 * At the top of a newly initialized kernel stack are two stacked pt_reg
132 * structures.  The first (topmost) is the userspace context of the thread.
133 * The second is the kernelspace context of the thread.
134 *
135 * A kernel thread will not be returning to userspace, so the topmost pt_regs
136 * struct can be uninitialized; it _does_ need to exist, though, because
137 * a kernel thread can become a userspace thread by doing a kernel_execve, in
138 * which case the topmost context will be initialized and used for 'returning'
139 * to userspace.
140 *
141 * The second pt_reg struct needs to be initialized to 'return' to
142 * ret_from_fork.  A kernel thread will need to set r20 to the address of
143 * a function to call into (with arg in r22); userspace threads need to set
144 * r20 to NULL in which case ret_from_fork will just continue a return to
145 * userspace.
146 *
147 * A kernel thread 'fn' may return; this is effectively what happens when
148 * kernel_execve is called.  In that case, the userspace pt_regs must have
149 * been initialized (which kernel_execve takes care of, see start_thread
150 * below); ret_from_fork will then continue its execution causing the
151 * 'kernel thread' to return to userspace as a userspace thread.
152 */
153
154int
155copy_thread(unsigned long clone_flags, unsigned long usp,
156	    unsigned long arg, struct task_struct *p)
157{
158	struct pt_regs *userregs;
159	struct pt_regs *kregs;
160	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 
161	unsigned long top_of_kernel_stack;
162
163	top_of_kernel_stack = sp;
164
165	/* Locate userspace context on stack... */
166	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
167	sp -= sizeof(struct pt_regs);
168	userregs = (struct pt_regs *) sp;
169
170	/* ...and kernel context */
171	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
 
172	sp -= sizeof(struct pt_regs);
173	kregs = (struct pt_regs *)sp;
174
175	if (unlikely(p->flags & PF_KTHREAD)) {
176		memset(kregs, 0, sizeof(struct pt_regs));
177		kregs->gpr[20] = usp; /* fn, kernel thread */
178		kregs->gpr[22] = arg;
179	} else {
180		*userregs = *current_pt_regs();
181
182		if (usp)
183			userregs->sp = usp;
184
185		/*
186		 * For CLONE_SETTLS set "tp" (r10) to the TLS pointer passed to sys_clone.
187		 *
188		 * The kernel entry is:
189		 *	int clone (long flags, void *child_stack, int *parent_tid,
190		 *		int *child_tid, struct void *tls)
191		 *
192		 * This makes the source r7 in the kernel registers.
193		 */
194		if (clone_flags & CLONE_SETTLS)
195			userregs->gpr[10] = userregs->gpr[7];
196
197		userregs->gpr[11] = 0;	/* Result from fork() */
198
199		kregs->gpr[20] = 0;	/* Userspace thread */
200	}
201
 
 
202	/*
203	 * _switch wants the kernel stack page in pt_regs->sp so that it
204	 * can restore it to thread_info->ksp... see _switch for details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205	 */
206	kregs->sp = top_of_kernel_stack;
 
 
207	kregs->gpr[9] = (unsigned long)ret_from_fork;
208
209	task_thread_info(p)->ksp = (unsigned long)kregs;
210
211	return 0;
212}
213
214/*
215 * Set up a thread for executing a new program
216 */
217void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
218{
219	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
220
221	memset(regs, 0, sizeof(struct pt_regs));
 
222
223	regs->pc = pc;
224	regs->sr = sr;
225	regs->sp = sp;
 
 
226}
227
228/* Fill in the fpu structure for a core dump.  */
229int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
230{
231	/* TODO */
232	return 0;
233}
234
235extern struct thread_info *_switch(struct thread_info *old_ti,
236				   struct thread_info *new_ti);
237extern int lwa_flag;
238
239struct task_struct *__switch_to(struct task_struct *old,
240				struct task_struct *new)
241{
242	struct task_struct *last;
243	struct thread_info *new_ti, *old_ti;
244	unsigned long flags;
245
246	local_irq_save(flags);
247
248	/* current_set is an array of saved current pointers
249	 * (one for each cpu). we need them at user->kernel transition,
250	 * while we save them at kernel->user transition
251	 */
252	new_ti = new->stack;
253	old_ti = old->stack;
254
255	lwa_flag = 0;
256
257	current_thread_info_set[smp_processor_id()] = new_ti;
258	last = (_switch(old_ti, new_ti))->task;
259
260	local_irq_restore(flags);
261
262	return last;
263}
264
265/*
266 * Write out registers in core dump format, as defined by the
267 * struct user_regs_struct
268 */
269void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
270{
271	dest[0] = 0; /* r0 */
272	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
273	dest[32] = regs->pc;
274	dest[33] = regs->sr;
275	dest[34] = 0;
276	dest[35] = 0;
277}
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279unsigned long get_wchan(struct task_struct *p)
280{
281	/* TODO */
282
283	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284}
v3.5.6
  1/*
  2 * OpenRISC process.c
  3 *
  4 * Linux architectural port borrowing liberally from similar works of
  5 * others.  All original copyrights apply as per the original source
  6 * declaration.
  7 *
  8 * Modifications for the OpenRISC architecture:
  9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 *
 17 * This file handles the architecture-dependent parts of process handling...
 18 */
 19
 20#define __KERNEL_SYSCALLS__
 21#include <stdarg.h>
 22
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 
 
 
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/mm.h>
 28#include <linux/stddef.h>
 29#include <linux/unistd.h>
 30#include <linux/ptrace.h>
 31#include <linux/slab.h>
 32#include <linux/elfcore.h>
 33#include <linux/interrupt.h>
 34#include <linux/delay.h>
 35#include <linux/init_task.h>
 36#include <linux/mqueue.h>
 37#include <linux/fs.h>
 38
 39#include <asm/uaccess.h>
 40#include <asm/pgtable.h>
 41#include <asm/io.h>
 42#include <asm/processor.h>
 43#include <asm/spr_defs.h>
 44
 45#include <linux/smp.h>
 46
 47/*
 48 * Pointer to Current thread info structure.
 49 *
 50 * Used at user space -> kernel transitions.
 51 */
 52struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 53
 54void machine_restart(void)
 55{
 56	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 57	__asm__("l.nop 1");
 58}
 59
 60/*
 61 * Similar to machine_power_off, but don't shut off power.  Add code
 62 * here to freeze the system for e.g. post-mortem debug purpose when
 63 * possible.  This halt has nothing to do with the idle halt.
 64 */
 65void machine_halt(void)
 66{
 67	printk(KERN_INFO "*** MACHINE HALT ***\n");
 68	__asm__("l.nop 1");
 69}
 70
 71/* If or when software power-off is implemented, add code here.  */
 72void machine_power_off(void)
 73{
 74	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 75	__asm__("l.nop 1");
 76}
 77
 
 
 
 
 
 
 
 
 
 
 
 78void (*pm_power_off) (void) = machine_power_off;
 
 79
 80/*
 81 * When a process does an "exec", machine state like FPU and debug
 82 * registers need to be reset.  This is a hook function for that.
 83 * Currently we don't have any such state to reset, so this is empty.
 84 */
 85void flush_thread(void)
 86{
 87}
 88
 89void show_regs(struct pt_regs *regs)
 90{
 91	extern void show_registers(struct pt_regs *regs);
 92
 
 93	/* __PHX__ cleanup this mess */
 94	show_registers(regs);
 95}
 96
 97unsigned long thread_saved_pc(struct task_struct *t)
 98{
 99	return (unsigned long)user_regs(t->stack)->pc;
100}
101
102void release_thread(struct task_struct *dead_task)
103{
104}
105
106/*
107 * Copy the thread-specific (arch specific) info from the current
108 * process to the new one p
109 */
110extern asmlinkage void ret_from_fork(void);
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112int
113copy_thread(unsigned long clone_flags, unsigned long usp,
114	    unsigned long unused, struct task_struct *p, struct pt_regs *regs)
115{
116	struct pt_regs *childregs;
117	struct pt_regs *kregs;
118	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
119	struct thread_info *ti;
120	unsigned long top_of_kernel_stack;
121
122	top_of_kernel_stack = sp;
123
124	p->set_child_tid = p->clear_child_tid = NULL;
 
 
 
125
126	/* Copy registers */
127	/* redzone */
128	sp -= STACK_FRAME_OVERHEAD;
129	sp -= sizeof(struct pt_regs);
130	childregs = (struct pt_regs *)sp;
131
132	/* Copy parent registers */
133	*childregs = *regs;
 
 
 
 
134
135	if ((childregs->sr & SPR_SR_SM) == 1) {
136		/* for kernel thread, set `current_thread_info'
137		 * and stackptr in new task
 
 
 
 
 
 
 
 
138		 */
139		childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
140		childregs->gpr[10] = (unsigned long)task_thread_info(p);
141	} else {
142		childregs->sp = usp;
 
 
143	}
144
145	childregs->gpr[11] = 0;	/* Result from fork() */
146
147	/*
148	 * The way this works is that at some point in the future
149	 * some task will call _switch to switch to the new task.
150	 * That will pop off the stack frame created below and start
151	 * the new task running at ret_from_fork.  The new task will
152	 * do some house keeping and then return from the fork or clone
153	 * system call, using the stack frame created above.
154	 */
155	/* redzone */
156	sp -= STACK_FRAME_OVERHEAD;
157	sp -= sizeof(struct pt_regs);
158	kregs = (struct pt_regs *)sp;
159
160	ti = task_thread_info(p);
161	ti->ksp = sp;
162
163	/* kregs->sp must store the location of the 'pre-switch' kernel stack
164	 * pointer... for a newly forked process, this is simply the top of
165	 * the kernel stack.
166	 */
167	kregs->sp = top_of_kernel_stack;
168	kregs->gpr[3] = (unsigned long)current;	/* arg to schedule_tail */
169	kregs->gpr[10] = (unsigned long)task_thread_info(p);
170	kregs->gpr[9] = (unsigned long)ret_from_fork;
171
 
 
172	return 0;
173}
174
175/*
176 * Set up a thread for executing a new program
177 */
178void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
179{
180	unsigned long sr = regs->sr & ~SPR_SR_SM;
181
182	set_fs(USER_DS);
183	memset(regs->gpr, 0, sizeof(regs->gpr));
184
185	regs->pc = pc;
186	regs->sr = sr;
187	regs->sp = sp;
188
189/*	printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
190}
191
192/* Fill in the fpu structure for a core dump.  */
193int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
194{
195	/* TODO */
196	return 0;
197}
198
199extern struct thread_info *_switch(struct thread_info *old_ti,
200				   struct thread_info *new_ti);
 
201
202struct task_struct *__switch_to(struct task_struct *old,
203				struct task_struct *new)
204{
205	struct task_struct *last;
206	struct thread_info *new_ti, *old_ti;
207	unsigned long flags;
208
209	local_irq_save(flags);
210
211	/* current_set is an array of saved current pointers
212	 * (one for each cpu). we need them at user->kernel transition,
213	 * while we save them at kernel->user transition
214	 */
215	new_ti = new->stack;
216	old_ti = old->stack;
217
 
 
218	current_thread_info_set[smp_processor_id()] = new_ti;
219	last = (_switch(old_ti, new_ti))->task;
220
221	local_irq_restore(flags);
222
223	return last;
224}
225
226/*
227 * Write out registers in core dump format, as defined by the
228 * struct user_regs_struct
229 */
230void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
231{
232	dest[0] = 0; /* r0 */
233	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
234	dest[32] = regs->pc;
235	dest[33] = regs->sr;
236	dest[34] = 0;
237	dest[35] = 0;
238}
239
240extern void _kernel_thread_helper(void);
241
242void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
243{
244	do_exit(fn(arg));
245}
246
247/*
248 * Create a kernel thread.
249 */
250int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
251{
252	struct pt_regs regs;
253
254	memset(&regs, 0, sizeof(regs));
255
256	regs.gpr[20] = (unsigned long)fn;
257	regs.gpr[22] = (unsigned long)arg;
258	regs.sr = mfspr(SPR_SR);
259	regs.pc = (unsigned long)_kernel_thread_helper;
260
261	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
262		       0, &regs, 0, NULL, NULL);
263}
264
265/*
266 * sys_execve() executes a new program.
267 */
268asmlinkage long _sys_execve(const char __user *name,
269			    const char __user * const __user *argv,
270			    const char __user * const __user *envp,
271			    struct pt_regs *regs)
272{
273	int error;
274	char *filename;
275
276	filename = getname(name);
277	error = PTR_ERR(filename);
278
279	if (IS_ERR(filename))
280		goto out;
281
282	error = do_execve(filename, argv, envp, regs);
283	putname(filename);
284
285out:
286	return error;
287}
288
289unsigned long get_wchan(struct task_struct *p)
290{
291	/* TODO */
292
293	return 0;
294}
295
296int kernel_execve(const char *filename, char *const argv[], char *const envp[])
297{
298	register long __res asm("r11") = __NR_execve;
299	register long __a asm("r3") = (long)(filename);
300	register long __b asm("r4") = (long)(argv);
301	register long __c asm("r5") = (long)(envp);
302	__asm__ volatile ("l.sys 1"
303			  : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
304			  : "0"(__res), "1"(__a), "2"(__b), "3"(__c)
305			  : "r6", "r7", "r8", "r12", "r13", "r15",
306			    "r17", "r19", "r21", "r23", "r25", "r27",
307			    "r29", "r31");
308	__asm__ volatile ("l.nop");
309	return __res;
310}