Linux Audio

Check our new training course

Loading...
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/export.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 19#include <linux/dma-contiguous.h>
 20
 21#include <asm/cache.h>
 22#include <asm/cpu-type.h>
 23#include <asm/io.h>
 24
 25#include <dma-coherence.h>
 26
 27#if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
 28/* User defined DMA coherency from command line. */
 29enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
 30EXPORT_SYMBOL_GPL(coherentio);
 31int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 32
 33static int __init setcoherentio(char *str)
 34{
 35	coherentio = IO_COHERENCE_ENABLED;
 36	pr_info("Hardware DMA cache coherency (command line)\n");
 37	return 0;
 38}
 39early_param("coherentio", setcoherentio);
 40
 41static int __init setnocoherentio(char *str)
 42{
 43	coherentio = IO_COHERENCE_DISABLED;
 44	pr_info("Software DMA cache coherency (command line)\n");
 45	return 0;
 46}
 47early_param("nocoherentio", setnocoherentio);
 48#endif
 49
 50static inline struct page *dma_addr_to_page(struct device *dev,
 51	dma_addr_t dma_addr)
 52{
 53	return pfn_to_page(
 54		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 55}
 56
 57/*
 58 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 59 * speculatively fill random cachelines with stale data at any time,
 60 * requiring an extra flush post-DMA.
 61 *
 62 * Warning on the terminology - Linux calls an uncached area coherent;
 63 * MIPS terminology calls memory areas with hardware maintained coherency
 64 * coherent.
 65 *
 66 * Note that the R14000 and R16000 should also be checked for in this
 67 * condition.  However this function is only called on non-I/O-coherent
 68 * systems and only the R10000 and R12000 are used in such systems, the
 69 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
 70 */
 71static inline bool cpu_needs_post_dma_flush(struct device *dev)
 72{
 73	if (plat_device_is_coherent(dev))
 74		return false;
 75
 76	switch (boot_cpu_type()) {
 77	case CPU_R10000:
 78	case CPU_R12000:
 79	case CPU_BMIPS5000:
 80		return true;
 81
 82	default:
 83		/*
 84		 * Presence of MAARs suggests that the CPU supports
 85		 * speculatively prefetching data, and therefore requires
 86		 * the post-DMA flush/invalidate.
 87		 */
 88		return cpu_has_maar;
 89	}
 90}
 91
 92static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 93{
 94	gfp_t dma_flag;
 95
 
 
 
 96#ifdef CONFIG_ISA
 97	if (dev == NULL)
 98		dma_flag = __GFP_DMA;
 99	else
100#endif
101#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
102	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
103			dma_flag = __GFP_DMA;
104	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
105			dma_flag = __GFP_DMA32;
106	else
107#endif
108#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
109	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
110		dma_flag = __GFP_DMA32;
111	else
112#endif
113#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
114	     if (dev == NULL ||
115		 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
116		dma_flag = __GFP_DMA;
117	else
118#endif
119		dma_flag = 0;
120
121	/* Don't invoke OOM killer */
122	gfp |= __GFP_NORETRY;
123
124	return gfp | dma_flag;
125}
126
127static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
128	dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
129{
130	void *ret;
131	struct page *page = NULL;
132	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
133
134	gfp = massage_gfp_flags(dev, gfp);
135
136	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
137		page = dma_alloc_from_contiguous(dev, count, get_order(size),
138						 gfp);
139	if (!page)
140		page = alloc_pages(gfp, get_order(size));
141
142	if (!page)
143		return NULL;
144
145	ret = page_address(page);
146	memset(ret, 0, size);
147	*dma_handle = plat_map_dma_mem(dev, ret, size);
148	if (!(attrs & DMA_ATTR_NON_CONSISTENT) &&
149	    !plat_device_is_coherent(dev)) {
150		dma_cache_wback_inv((unsigned long) ret, size);
151		ret = UNCAC_ADDR(ret);
152	}
153
154	return ret;
155}
 
156
157static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
158	dma_addr_t dma_handle, unsigned long attrs)
159{
160	unsigned long addr = (unsigned long) vaddr;
161	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
162	struct page *page = NULL;
163
164	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 
165
166	if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !plat_device_is_coherent(dev))
167		addr = CAC_ADDR(addr);
168
169	page = virt_to_page((void *) addr);
170
171	if (!dma_release_from_contiguous(dev, page, count))
172		__free_pages(page, get_order(size));
 
 
 
 
 
 
 
 
 
173}
174
175static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
176	void *cpu_addr, dma_addr_t dma_addr, size_t size,
177	unsigned long attrs)
178{
179	unsigned long user_count = vma_pages(vma);
180	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
181	unsigned long addr = (unsigned long)cpu_addr;
182	unsigned long off = vma->vm_pgoff;
183	unsigned long pfn;
184	int ret = -ENXIO;
185
186	if (!plat_device_is_coherent(dev))
187		addr = CAC_ADDR(addr);
 
 
 
 
 
188
189	pfn = page_to_pfn(virt_to_page((void *)addr));
 
 
 
 
190
191	if (attrs & DMA_ATTR_WRITE_COMBINE)
192		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
193	else
194		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
195
196	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
197		return ret;
198
199	if (off < count && user_count <= (count - off)) {
200		ret = remap_pfn_range(vma, vma->vm_start,
201				      pfn + off,
202				      user_count << PAGE_SHIFT,
203				      vma->vm_page_prot);
204	}
205
206	return ret;
207}
208
209static inline void __dma_sync_virtual(void *addr, size_t size,
210	enum dma_data_direction direction)
211{
212	switch (direction) {
213	case DMA_TO_DEVICE:
214		dma_cache_wback((unsigned long)addr, size);
215		break;
216
217	case DMA_FROM_DEVICE:
218		dma_cache_inv((unsigned long)addr, size);
219		break;
220
221	case DMA_BIDIRECTIONAL:
222		dma_cache_wback_inv((unsigned long)addr, size);
223		break;
224
225	default:
226		BUG();
227	}
228}
229
230/*
231 * A single sg entry may refer to multiple physically contiguous
232 * pages. But we still need to process highmem pages individually.
233 * If highmem is not configured then the bulk of this loop gets
234 * optimized out.
235 */
236static inline void __dma_sync(struct page *page,
237	unsigned long offset, size_t size, enum dma_data_direction direction)
238{
239	size_t left = size;
240
241	do {
242		size_t len = left;
243
244		if (PageHighMem(page)) {
245			void *addr;
246
247			if (offset + len > PAGE_SIZE) {
248				if (offset >= PAGE_SIZE) {
249					page += offset >> PAGE_SHIFT;
250					offset &= ~PAGE_MASK;
251				}
252				len = PAGE_SIZE - offset;
253			}
254
255			addr = kmap_atomic(page);
256			__dma_sync_virtual(addr + offset, len, direction);
257			kunmap_atomic(addr);
258		} else
259			__dma_sync_virtual(page_address(page) + offset,
260					   size, direction);
261		offset = 0;
262		page++;
263		left -= len;
264	} while (left);
265}
266
267static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
268	size_t size, enum dma_data_direction direction, unsigned long attrs)
269{
270	if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
271		__dma_sync(dma_addr_to_page(dev, dma_addr),
272			   dma_addr & ~PAGE_MASK, size, direction);
273	plat_post_dma_flush(dev);
274	plat_unmap_dma_mem(dev, dma_addr, size, direction);
275}
276
277static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
278	int nents, enum dma_data_direction direction, unsigned long attrs)
279{
280	int i;
281	struct scatterlist *sg;
282
283	for_each_sg(sglist, sg, nents, i) {
284		if (!plat_device_is_coherent(dev) &&
285		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
286			__dma_sync(sg_page(sg), sg->offset, sg->length,
287				   direction);
288#ifdef CONFIG_NEED_SG_DMA_LENGTH
289		sg->dma_length = sg->length;
290#endif
291		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
292				  sg->offset;
293	}
294
295	return nents;
296}
297
298static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
299	unsigned long offset, size_t size, enum dma_data_direction direction,
300	unsigned long attrs)
301{
302	if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
303		__dma_sync(page, offset, size, direction);
304
305	return plat_map_dma_mem_page(dev, page) + offset;
306}
307
308static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
309	int nhwentries, enum dma_data_direction direction,
310	unsigned long attrs)
311{
312	int i;
313	struct scatterlist *sg;
314
315	for_each_sg(sglist, sg, nhwentries, i) {
316		if (!plat_device_is_coherent(dev) &&
317		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
318		    direction != DMA_TO_DEVICE)
319			__dma_sync(sg_page(sg), sg->offset, sg->length,
320				   direction);
321		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
322	}
323}
324
325static void mips_dma_sync_single_for_cpu(struct device *dev,
326	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
327{
328	if (cpu_needs_post_dma_flush(dev))
329		__dma_sync(dma_addr_to_page(dev, dma_handle),
330			   dma_handle & ~PAGE_MASK, size, direction);
331	plat_post_dma_flush(dev);
332}
333
334static void mips_dma_sync_single_for_device(struct device *dev,
335	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
336{
 
337	if (!plat_device_is_coherent(dev))
338		__dma_sync(dma_addr_to_page(dev, dma_handle),
339			   dma_handle & ~PAGE_MASK, size, direction);
340}
341
342static void mips_dma_sync_sg_for_cpu(struct device *dev,
343	struct scatterlist *sglist, int nelems,
344	enum dma_data_direction direction)
345{
346	int i;
347	struct scatterlist *sg;
348
349	if (cpu_needs_post_dma_flush(dev)) {
350		for_each_sg(sglist, sg, nelems, i) {
 
351			__dma_sync(sg_page(sg), sg->offset, sg->length,
352				   direction);
353		}
354	}
355	plat_post_dma_flush(dev);
356}
357
358static void mips_dma_sync_sg_for_device(struct device *dev,
359	struct scatterlist *sglist, int nelems,
360	enum dma_data_direction direction)
361{
362	int i;
363	struct scatterlist *sg;
364
365	if (!plat_device_is_coherent(dev)) {
366		for_each_sg(sglist, sg, nelems, i) {
 
367			__dma_sync(sg_page(sg), sg->offset, sg->length,
368				   direction);
369		}
370	}
371}
372
373static int mips_dma_supported(struct device *dev, u64 mask)
 
 
 
 
 
374{
375	return plat_dma_supported(dev, mask);
376}
377
378static void mips_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
379			 enum dma_data_direction direction)
380{
381	BUG_ON(direction == DMA_NONE);
382
 
383	if (!plat_device_is_coherent(dev))
384		__dma_sync_virtual(vaddr, size, direction);
385}
386
387static const struct dma_map_ops mips_default_dma_map_ops = {
 
 
388	.alloc = mips_dma_alloc_coherent,
389	.free = mips_dma_free_coherent,
390	.mmap = mips_dma_mmap,
391	.map_page = mips_dma_map_page,
392	.unmap_page = mips_dma_unmap_page,
393	.map_sg = mips_dma_map_sg,
394	.unmap_sg = mips_dma_unmap_sg,
395	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
396	.sync_single_for_device = mips_dma_sync_single_for_device,
397	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
398	.sync_sg_for_device = mips_dma_sync_sg_for_device,
399	.dma_supported = mips_dma_supported,
400	.cache_sync = mips_dma_cache_sync,
401};
402
403const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
404EXPORT_SYMBOL(mips_dma_map_ops);
405
406#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
407
408static int __init mips_dma_init(void)
409{
410	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
411
412	return 0;
413}
414fs_initcall(mips_dma_init);
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 
 19
 20#include <asm/cache.h>
 
 21#include <asm/io.h>
 22
 23#include <dma-coherence.h>
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25static inline struct page *dma_addr_to_page(struct device *dev,
 26	dma_addr_t dma_addr)
 27{
 28	return pfn_to_page(
 29		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 30}
 31
 32/*
 
 
 
 
 33 * Warning on the terminology - Linux calls an uncached area coherent;
 34 * MIPS terminology calls memory areas with hardware maintained coherency
 35 * coherent.
 
 
 
 
 
 36 */
 
 
 
 
 37
 38static inline int cpu_is_noncoherent_r10000(struct device *dev)
 39{
 40	return !plat_device_is_coherent(dev) &&
 41	       (current_cpu_type() == CPU_R10000 ||
 42	       current_cpu_type() == CPU_R12000);
 
 
 
 
 
 
 
 
 
 43}
 44
 45static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 46{
 47	gfp_t dma_flag;
 48
 49	/* ignore region specifiers */
 50	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 51
 52#ifdef CONFIG_ISA
 53	if (dev == NULL)
 54		dma_flag = __GFP_DMA;
 55	else
 56#endif
 57#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 58	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 59			dma_flag = __GFP_DMA;
 60	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 61			dma_flag = __GFP_DMA32;
 62	else
 63#endif
 64#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 65	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 66		dma_flag = __GFP_DMA32;
 67	else
 68#endif
 69#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 70	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 
 71		dma_flag = __GFP_DMA;
 72	else
 73#endif
 74		dma_flag = 0;
 75
 76	/* Don't invoke OOM killer */
 77	gfp |= __GFP_NORETRY;
 78
 79	return gfp | dma_flag;
 80}
 81
 82void *dma_alloc_noncoherent(struct device *dev, size_t size,
 83	dma_addr_t * dma_handle, gfp_t gfp)
 84{
 85	void *ret;
 
 
 86
 87	gfp = massage_gfp_flags(dev, gfp);
 88
 89	ret = (void *) __get_free_pages(gfp, get_order(size));
 90
 91	if (ret != NULL) {
 92		memset(ret, 0, size);
 93		*dma_handle = plat_map_dma_mem(dev, ret, size);
 
 
 
 
 
 
 
 
 
 
 
 94	}
 95
 96	return ret;
 97}
 98EXPORT_SYMBOL(dma_alloc_noncoherent);
 99
100static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
101	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
102{
103	void *ret;
 
 
104
105	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
106		return ret;
107
108	gfp = massage_gfp_flags(dev, gfp);
 
109
110	ret = (void *) __get_free_pages(gfp, get_order(size));
111
112	if (ret) {
113		memset(ret, 0, size);
114		*dma_handle = plat_map_dma_mem(dev, ret, size);
115
116		if (!plat_device_is_coherent(dev)) {
117			dma_cache_wback_inv((unsigned long) ret, size);
118			ret = UNCAC_ADDR(ret);
119		}
120	}
121
122	return ret;
123}
124
 
 
 
 
 
 
 
 
 
 
125
126void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
127	dma_addr_t dma_handle)
128{
129	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
130	free_pages((unsigned long) vaddr, get_order(size));
131}
132EXPORT_SYMBOL(dma_free_noncoherent);
133
134static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
135	dma_addr_t dma_handle, struct dma_attrs *attrs)
136{
137	unsigned long addr = (unsigned long) vaddr;
138	int order = get_order(size);
139
140	if (dma_release_from_coherent(dev, order, vaddr))
141		return;
 
 
142
143	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 
144
145	if (!plat_device_is_coherent(dev))
146		addr = CAC_ADDR(addr);
 
 
 
 
147
148	free_pages(addr, get_order(size));
149}
150
151static inline void __dma_sync_virtual(void *addr, size_t size,
152	enum dma_data_direction direction)
153{
154	switch (direction) {
155	case DMA_TO_DEVICE:
156		dma_cache_wback((unsigned long)addr, size);
157		break;
158
159	case DMA_FROM_DEVICE:
160		dma_cache_inv((unsigned long)addr, size);
161		break;
162
163	case DMA_BIDIRECTIONAL:
164		dma_cache_wback_inv((unsigned long)addr, size);
165		break;
166
167	default:
168		BUG();
169	}
170}
171
172/*
173 * A single sg entry may refer to multiple physically contiguous
174 * pages. But we still need to process highmem pages individually.
175 * If highmem is not configured then the bulk of this loop gets
176 * optimized out.
177 */
178static inline void __dma_sync(struct page *page,
179	unsigned long offset, size_t size, enum dma_data_direction direction)
180{
181	size_t left = size;
182
183	do {
184		size_t len = left;
185
186		if (PageHighMem(page)) {
187			void *addr;
188
189			if (offset + len > PAGE_SIZE) {
190				if (offset >= PAGE_SIZE) {
191					page += offset >> PAGE_SHIFT;
192					offset &= ~PAGE_MASK;
193				}
194				len = PAGE_SIZE - offset;
195			}
196
197			addr = kmap_atomic(page);
198			__dma_sync_virtual(addr + offset, len, direction);
199			kunmap_atomic(addr);
200		} else
201			__dma_sync_virtual(page_address(page) + offset,
202					   size, direction);
203		offset = 0;
204		page++;
205		left -= len;
206	} while (left);
207}
208
209static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
210	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
211{
212	if (cpu_is_noncoherent_r10000(dev))
213		__dma_sync(dma_addr_to_page(dev, dma_addr),
214			   dma_addr & ~PAGE_MASK, size, direction);
215
216	plat_unmap_dma_mem(dev, dma_addr, size, direction);
217}
218
219static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
220	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
221{
222	int i;
 
223
224	for (i = 0; i < nents; i++, sg++) {
225		if (!plat_device_is_coherent(dev))
 
226			__dma_sync(sg_page(sg), sg->offset, sg->length,
227				   direction);
 
 
 
228		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
229				  sg->offset;
230	}
231
232	return nents;
233}
234
235static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
236	unsigned long offset, size_t size, enum dma_data_direction direction,
237	struct dma_attrs *attrs)
238{
239	if (!plat_device_is_coherent(dev))
240		__dma_sync(page, offset, size, direction);
241
242	return plat_map_dma_mem_page(dev, page) + offset;
243}
244
245static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
246	int nhwentries, enum dma_data_direction direction,
247	struct dma_attrs *attrs)
248{
249	int i;
 
250
251	for (i = 0; i < nhwentries; i++, sg++) {
252		if (!plat_device_is_coherent(dev) &&
 
253		    direction != DMA_TO_DEVICE)
254			__dma_sync(sg_page(sg), sg->offset, sg->length,
255				   direction);
256		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257	}
258}
259
260static void mips_dma_sync_single_for_cpu(struct device *dev,
261	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
262{
263	if (cpu_is_noncoherent_r10000(dev))
264		__dma_sync(dma_addr_to_page(dev, dma_handle),
265			   dma_handle & ~PAGE_MASK, size, direction);
 
266}
267
268static void mips_dma_sync_single_for_device(struct device *dev,
269	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
270{
271	plat_extra_sync_for_device(dev);
272	if (!plat_device_is_coherent(dev))
273		__dma_sync(dma_addr_to_page(dev, dma_handle),
274			   dma_handle & ~PAGE_MASK, size, direction);
275}
276
277static void mips_dma_sync_sg_for_cpu(struct device *dev,
278	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
279{
280	int i;
 
281
282	/* Make sure that gcc doesn't leave the empty loop body.  */
283	for (i = 0; i < nelems; i++, sg++) {
284		if (cpu_is_noncoherent_r10000(dev))
285			__dma_sync(sg_page(sg), sg->offset, sg->length,
286				   direction);
 
287	}
 
288}
289
290static void mips_dma_sync_sg_for_device(struct device *dev,
291	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
292{
293	int i;
 
294
295	/* Make sure that gcc doesn't leave the empty loop body.  */
296	for (i = 0; i < nelems; i++, sg++) {
297		if (!plat_device_is_coherent(dev))
298			__dma_sync(sg_page(sg), sg->offset, sg->length,
299				   direction);
 
300	}
301}
302
303int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
304{
305	return plat_dma_mapping_error(dev, dma_addr);
306}
307
308int mips_dma_supported(struct device *dev, u64 mask)
309{
310	return plat_dma_supported(dev, mask);
311}
312
313void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
314			 enum dma_data_direction direction)
315{
316	BUG_ON(direction == DMA_NONE);
317
318	plat_extra_sync_for_device(dev);
319	if (!plat_device_is_coherent(dev))
320		__dma_sync_virtual(vaddr, size, direction);
321}
322
323EXPORT_SYMBOL(dma_cache_sync);
324
325static struct dma_map_ops mips_default_dma_map_ops = {
326	.alloc = mips_dma_alloc_coherent,
327	.free = mips_dma_free_coherent,
 
328	.map_page = mips_dma_map_page,
329	.unmap_page = mips_dma_unmap_page,
330	.map_sg = mips_dma_map_sg,
331	.unmap_sg = mips_dma_unmap_sg,
332	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
333	.sync_single_for_device = mips_dma_sync_single_for_device,
334	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
335	.sync_sg_for_device = mips_dma_sync_sg_for_device,
336	.mapping_error = mips_dma_mapping_error,
337	.dma_supported = mips_dma_supported
338};
339
340struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
341EXPORT_SYMBOL(mips_dma_map_ops);
342
343#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
344
345static int __init mips_dma_init(void)
346{
347	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
348
349	return 0;
350}
351fs_initcall(mips_dma_init);