Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.17
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     i_pages lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   i_pages lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/pagemap.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/slab.h>
  55#include <linux/init.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/rcupdate.h>
  59#include <linux/export.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/migrate.h>
  63#include <linux/hugetlb.h>
  64#include <linux/backing-dev.h>
  65#include <linux/page_idle.h>
  66#include <linux/memremap.h>
  67
  68#include <asm/tlbflush.h>
  69
  70#include <trace/events/tlb.h>
  71
  72#include "internal.h"
  73
  74static struct kmem_cache *anon_vma_cachep;
  75static struct kmem_cache *anon_vma_chain_cachep;
  76
  77static inline struct anon_vma *anon_vma_alloc(void)
  78{
  79	struct anon_vma *anon_vma;
  80
  81	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  82	if (anon_vma) {
  83		atomic_set(&anon_vma->refcount, 1);
  84		anon_vma->degree = 1;	/* Reference for first vma */
  85		anon_vma->parent = anon_vma;
  86		/*
  87		 * Initialise the anon_vma root to point to itself. If called
  88		 * from fork, the root will be reset to the parents anon_vma.
  89		 */
  90		anon_vma->root = anon_vma;
  91	}
  92
  93	return anon_vma;
  94}
  95
  96static inline void anon_vma_free(struct anon_vma *anon_vma)
  97{
  98	VM_BUG_ON(atomic_read(&anon_vma->refcount));
  99
 100	/*
 101	 * Synchronize against page_lock_anon_vma_read() such that
 102	 * we can safely hold the lock without the anon_vma getting
 103	 * freed.
 104	 *
 105	 * Relies on the full mb implied by the atomic_dec_and_test() from
 106	 * put_anon_vma() against the acquire barrier implied by
 107	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 108	 *
 109	 * page_lock_anon_vma_read()	VS	put_anon_vma()
 110	 *   down_read_trylock()		  atomic_dec_and_test()
 111	 *   LOCK				  MB
 112	 *   atomic_read()			  rwsem_is_locked()
 113	 *
 114	 * LOCK should suffice since the actual taking of the lock must
 115	 * happen _before_ what follows.
 116	 */
 117	might_sleep();
 118	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 119		anon_vma_lock_write(anon_vma);
 120		anon_vma_unlock_write(anon_vma);
 121	}
 122
 123	kmem_cache_free(anon_vma_cachep, anon_vma);
 124}
 125
 126static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 127{
 128	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 129}
 130
 131static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 132{
 133	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 134}
 135
 136static void anon_vma_chain_link(struct vm_area_struct *vma,
 137				struct anon_vma_chain *avc,
 138				struct anon_vma *anon_vma)
 139{
 140	avc->vma = vma;
 141	avc->anon_vma = anon_vma;
 142	list_add(&avc->same_vma, &vma->anon_vma_chain);
 143	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 144}
 145
 146/**
 147 * __anon_vma_prepare - attach an anon_vma to a memory region
 148 * @vma: the memory region in question
 149 *
 150 * This makes sure the memory mapping described by 'vma' has
 151 * an 'anon_vma' attached to it, so that we can associate the
 152 * anonymous pages mapped into it with that anon_vma.
 153 *
 154 * The common case will be that we already have one, which
 155 * is handled inline by anon_vma_prepare(). But if
 156 * not we either need to find an adjacent mapping that we
 157 * can re-use the anon_vma from (very common when the only
 158 * reason for splitting a vma has been mprotect()), or we
 159 * allocate a new one.
 160 *
 161 * Anon-vma allocations are very subtle, because we may have
 162 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 163 * and that may actually touch the spinlock even in the newly
 164 * allocated vma (it depends on RCU to make sure that the
 165 * anon_vma isn't actually destroyed).
 166 *
 167 * As a result, we need to do proper anon_vma locking even
 168 * for the new allocation. At the same time, we do not want
 169 * to do any locking for the common case of already having
 170 * an anon_vma.
 171 *
 172 * This must be called with the mmap_sem held for reading.
 173 */
 174int __anon_vma_prepare(struct vm_area_struct *vma)
 175{
 176	struct mm_struct *mm = vma->vm_mm;
 177	struct anon_vma *anon_vma, *allocated;
 178	struct anon_vma_chain *avc;
 179
 180	might_sleep();
 
 
 
 
 
 
 
 181
 182	avc = anon_vma_chain_alloc(GFP_KERNEL);
 183	if (!avc)
 184		goto out_enomem;
 185
 186	anon_vma = find_mergeable_anon_vma(vma);
 187	allocated = NULL;
 188	if (!anon_vma) {
 189		anon_vma = anon_vma_alloc();
 190		if (unlikely(!anon_vma))
 191			goto out_enomem_free_avc;
 192		allocated = anon_vma;
 193	}
 194
 195	anon_vma_lock_write(anon_vma);
 196	/* page_table_lock to protect against threads */
 197	spin_lock(&mm->page_table_lock);
 198	if (likely(!vma->anon_vma)) {
 199		vma->anon_vma = anon_vma;
 200		anon_vma_chain_link(vma, avc, anon_vma);
 201		/* vma reference or self-parent link for new root */
 202		anon_vma->degree++;
 203		allocated = NULL;
 204		avc = NULL;
 205	}
 206	spin_unlock(&mm->page_table_lock);
 207	anon_vma_unlock_write(anon_vma);
 
 
 208
 209	if (unlikely(allocated))
 210		put_anon_vma(allocated);
 211	if (unlikely(avc))
 212		anon_vma_chain_free(avc);
 
 
 
 
 
 
 
 213
 
 
 
 
 
 214	return 0;
 215
 216 out_enomem_free_avc:
 217	anon_vma_chain_free(avc);
 218 out_enomem:
 219	return -ENOMEM;
 220}
 221
 222/*
 223 * This is a useful helper function for locking the anon_vma root as
 224 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 225 * have the same vma.
 226 *
 227 * Such anon_vma's should have the same root, so you'd expect to see
 228 * just a single mutex_lock for the whole traversal.
 229 */
 230static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 231{
 232	struct anon_vma *new_root = anon_vma->root;
 233	if (new_root != root) {
 234		if (WARN_ON_ONCE(root))
 235			up_write(&root->rwsem);
 236		root = new_root;
 237		down_write(&root->rwsem);
 238	}
 239	return root;
 240}
 241
 242static inline void unlock_anon_vma_root(struct anon_vma *root)
 243{
 244	if (root)
 245		up_write(&root->rwsem);
 246}
 247
 248/*
 249 * Attach the anon_vmas from src to dst.
 250 * Returns 0 on success, -ENOMEM on failure.
 251 *
 252 * If dst->anon_vma is NULL this function tries to find and reuse existing
 253 * anon_vma which has no vmas and only one child anon_vma. This prevents
 254 * degradation of anon_vma hierarchy to endless linear chain in case of
 255 * constantly forking task. On the other hand, an anon_vma with more than one
 256 * child isn't reused even if there was no alive vma, thus rmap walker has a
 257 * good chance of avoiding scanning the whole hierarchy when it searches where
 258 * page is mapped.
 259 */
 260int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 261{
 262	struct anon_vma_chain *avc, *pavc;
 263	struct anon_vma *root = NULL;
 264
 265	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 266		struct anon_vma *anon_vma;
 267
 268		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 269		if (unlikely(!avc)) {
 270			unlock_anon_vma_root(root);
 271			root = NULL;
 272			avc = anon_vma_chain_alloc(GFP_KERNEL);
 273			if (!avc)
 274				goto enomem_failure;
 275		}
 276		anon_vma = pavc->anon_vma;
 277		root = lock_anon_vma_root(root, anon_vma);
 278		anon_vma_chain_link(dst, avc, anon_vma);
 279
 280		/*
 281		 * Reuse existing anon_vma if its degree lower than two,
 282		 * that means it has no vma and only one anon_vma child.
 283		 *
 284		 * Do not chose parent anon_vma, otherwise first child
 285		 * will always reuse it. Root anon_vma is never reused:
 286		 * it has self-parent reference and at least one child.
 287		 */
 288		if (!dst->anon_vma && anon_vma != src->anon_vma &&
 289				anon_vma->degree < 2)
 290			dst->anon_vma = anon_vma;
 291	}
 292	if (dst->anon_vma)
 293		dst->anon_vma->degree++;
 294	unlock_anon_vma_root(root);
 295	return 0;
 296
 297 enomem_failure:
 298	/*
 299	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 300	 * decremented in unlink_anon_vmas().
 301	 * We can safely do this because callers of anon_vma_clone() don't care
 302	 * about dst->anon_vma if anon_vma_clone() failed.
 303	 */
 304	dst->anon_vma = NULL;
 305	unlink_anon_vmas(dst);
 306	return -ENOMEM;
 307}
 308
 309/*
 310 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 311 * the corresponding VMA in the parent process is attached to.
 312 * Returns 0 on success, non-zero on failure.
 313 */
 314int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 315{
 316	struct anon_vma_chain *avc;
 317	struct anon_vma *anon_vma;
 318	int error;
 319
 320	/* Don't bother if the parent process has no anon_vma here. */
 321	if (!pvma->anon_vma)
 322		return 0;
 323
 324	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 325	vma->anon_vma = NULL;
 326
 327	/*
 328	 * First, attach the new VMA to the parent VMA's anon_vmas,
 329	 * so rmap can find non-COWed pages in child processes.
 330	 */
 331	error = anon_vma_clone(vma, pvma);
 332	if (error)
 333		return error;
 334
 335	/* An existing anon_vma has been reused, all done then. */
 336	if (vma->anon_vma)
 337		return 0;
 338
 339	/* Then add our own anon_vma. */
 340	anon_vma = anon_vma_alloc();
 341	if (!anon_vma)
 342		goto out_error;
 343	avc = anon_vma_chain_alloc(GFP_KERNEL);
 344	if (!avc)
 345		goto out_error_free_anon_vma;
 346
 347	/*
 348	 * The root anon_vma's spinlock is the lock actually used when we
 349	 * lock any of the anon_vmas in this anon_vma tree.
 350	 */
 351	anon_vma->root = pvma->anon_vma->root;
 352	anon_vma->parent = pvma->anon_vma;
 353	/*
 354	 * With refcounts, an anon_vma can stay around longer than the
 355	 * process it belongs to. The root anon_vma needs to be pinned until
 356	 * this anon_vma is freed, because the lock lives in the root.
 357	 */
 358	get_anon_vma(anon_vma->root);
 359	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 360	vma->anon_vma = anon_vma;
 361	anon_vma_lock_write(anon_vma);
 362	anon_vma_chain_link(vma, avc, anon_vma);
 363	anon_vma->parent->degree++;
 364	anon_vma_unlock_write(anon_vma);
 365
 366	return 0;
 367
 368 out_error_free_anon_vma:
 369	put_anon_vma(anon_vma);
 370 out_error:
 371	unlink_anon_vmas(vma);
 372	return -ENOMEM;
 373}
 374
 375void unlink_anon_vmas(struct vm_area_struct *vma)
 376{
 377	struct anon_vma_chain *avc, *next;
 378	struct anon_vma *root = NULL;
 379
 380	/*
 381	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 382	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 383	 */
 384	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 385		struct anon_vma *anon_vma = avc->anon_vma;
 386
 387		root = lock_anon_vma_root(root, anon_vma);
 388		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 389
 390		/*
 391		 * Leave empty anon_vmas on the list - we'll need
 392		 * to free them outside the lock.
 393		 */
 394		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 395			anon_vma->parent->degree--;
 396			continue;
 397		}
 398
 399		list_del(&avc->same_vma);
 400		anon_vma_chain_free(avc);
 401	}
 402	if (vma->anon_vma)
 403		vma->anon_vma->degree--;
 404	unlock_anon_vma_root(root);
 405
 406	/*
 407	 * Iterate the list once more, it now only contains empty and unlinked
 408	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 409	 * needing to write-acquire the anon_vma->root->rwsem.
 410	 */
 411	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 412		struct anon_vma *anon_vma = avc->anon_vma;
 413
 414		VM_WARN_ON(anon_vma->degree);
 415		put_anon_vma(anon_vma);
 416
 417		list_del(&avc->same_vma);
 418		anon_vma_chain_free(avc);
 419	}
 420}
 421
 422static void anon_vma_ctor(void *data)
 423{
 424	struct anon_vma *anon_vma = data;
 425
 426	init_rwsem(&anon_vma->rwsem);
 427	atomic_set(&anon_vma->refcount, 0);
 428	anon_vma->rb_root = RB_ROOT_CACHED;
 429}
 430
 431void __init anon_vma_init(void)
 432{
 433	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 434			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 435			anon_vma_ctor);
 436	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 437			SLAB_PANIC|SLAB_ACCOUNT);
 438}
 439
 440/*
 441 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 442 *
 443 * Since there is no serialization what so ever against page_remove_rmap()
 444 * the best this function can do is return a locked anon_vma that might
 445 * have been relevant to this page.
 446 *
 447 * The page might have been remapped to a different anon_vma or the anon_vma
 448 * returned may already be freed (and even reused).
 449 *
 450 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 451 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 452 * ensure that any anon_vma obtained from the page will still be valid for as
 453 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 454 *
 455 * All users of this function must be very careful when walking the anon_vma
 456 * chain and verify that the page in question is indeed mapped in it
 457 * [ something equivalent to page_mapped_in_vma() ].
 458 *
 459 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 460 * that the anon_vma pointer from page->mapping is valid if there is a
 461 * mapcount, we can dereference the anon_vma after observing those.
 462 */
 463struct anon_vma *page_get_anon_vma(struct page *page)
 464{
 465	struct anon_vma *anon_vma = NULL;
 466	unsigned long anon_mapping;
 467
 468	rcu_read_lock();
 469	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 470	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 471		goto out;
 472	if (!page_mapped(page))
 473		goto out;
 474
 475	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 476	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 477		anon_vma = NULL;
 478		goto out;
 479	}
 480
 481	/*
 482	 * If this page is still mapped, then its anon_vma cannot have been
 483	 * freed.  But if it has been unmapped, we have no security against the
 484	 * anon_vma structure being freed and reused (for another anon_vma:
 485	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 486	 * above cannot corrupt).
 487	 */
 488	if (!page_mapped(page)) {
 489		rcu_read_unlock();
 490		put_anon_vma(anon_vma);
 491		return NULL;
 492	}
 493out:
 494	rcu_read_unlock();
 495
 496	return anon_vma;
 497}
 498
 499/*
 500 * Similar to page_get_anon_vma() except it locks the anon_vma.
 501 *
 502 * Its a little more complex as it tries to keep the fast path to a single
 503 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 504 * reference like with page_get_anon_vma() and then block on the mutex.
 505 */
 506struct anon_vma *page_lock_anon_vma_read(struct page *page)
 507{
 508	struct anon_vma *anon_vma = NULL;
 509	struct anon_vma *root_anon_vma;
 510	unsigned long anon_mapping;
 511
 512	rcu_read_lock();
 513	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 514	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 515		goto out;
 516	if (!page_mapped(page))
 517		goto out;
 518
 519	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 520	root_anon_vma = READ_ONCE(anon_vma->root);
 521	if (down_read_trylock(&root_anon_vma->rwsem)) {
 522		/*
 523		 * If the page is still mapped, then this anon_vma is still
 524		 * its anon_vma, and holding the mutex ensures that it will
 525		 * not go away, see anon_vma_free().
 526		 */
 527		if (!page_mapped(page)) {
 528			up_read(&root_anon_vma->rwsem);
 529			anon_vma = NULL;
 530		}
 531		goto out;
 532	}
 533
 534	/* trylock failed, we got to sleep */
 535	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 536		anon_vma = NULL;
 537		goto out;
 538	}
 539
 540	if (!page_mapped(page)) {
 541		rcu_read_unlock();
 542		put_anon_vma(anon_vma);
 543		return NULL;
 
 544	}
 545
 546	/* we pinned the anon_vma, its safe to sleep */
 547	rcu_read_unlock();
 548	anon_vma_lock_read(anon_vma);
 549
 550	if (atomic_dec_and_test(&anon_vma->refcount)) {
 551		/*
 552		 * Oops, we held the last refcount, release the lock
 553		 * and bail -- can't simply use put_anon_vma() because
 554		 * we'll deadlock on the anon_vma_lock_write() recursion.
 555		 */
 556		anon_vma_unlock_read(anon_vma);
 557		__put_anon_vma(anon_vma);
 558		anon_vma = NULL;
 559	}
 560
 561	return anon_vma;
 562
 563out:
 564	rcu_read_unlock();
 565	return anon_vma;
 566}
 567
 568void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 569{
 570	anon_vma_unlock_read(anon_vma);
 571}
 572
 573#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 574/*
 575 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 576 * important if a PTE was dirty when it was unmapped that it's flushed
 577 * before any IO is initiated on the page to prevent lost writes. Similarly,
 578 * it must be flushed before freeing to prevent data leakage.
 579 */
 580void try_to_unmap_flush(void)
 
 581{
 582	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 583
 584	if (!tlb_ubc->flush_required)
 585		return;
 586
 587	arch_tlbbatch_flush(&tlb_ubc->arch);
 588	tlb_ubc->flush_required = false;
 589	tlb_ubc->writable = false;
 590}
 591
 592/* Flush iff there are potentially writable TLB entries that can race with IO */
 593void try_to_unmap_flush_dirty(void)
 594{
 595	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 596
 597	if (tlb_ubc->writable)
 598		try_to_unmap_flush();
 599}
 600
 601static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 
 602{
 603	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 604
 605	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 606	tlb_ubc->flush_required = true;
 607
 608	/*
 609	 * Ensure compiler does not re-order the setting of tlb_flush_batched
 610	 * before the PTE is cleared.
 611	 */
 612	barrier();
 613	mm->tlb_flush_batched = true;
 614
 615	/*
 616	 * If the PTE was dirty then it's best to assume it's writable. The
 617	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 618	 * before the page is queued for IO.
 619	 */
 620	if (writable)
 621		tlb_ubc->writable = true;
 622}
 623
 624/*
 625 * Returns true if the TLB flush should be deferred to the end of a batch of
 626 * unmap operations to reduce IPIs.
 627 */
 628static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 629{
 630	bool should_defer = false;
 631
 632	if (!(flags & TTU_BATCH_FLUSH))
 633		return false;
 634
 635	/* If remote CPUs need to be flushed then defer batch the flush */
 636	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 637		should_defer = true;
 638	put_cpu();
 639
 640	return should_defer;
 641}
 642
 643/*
 644 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 645 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 646 * operation such as mprotect or munmap to race between reclaim unmapping
 647 * the page and flushing the page. If this race occurs, it potentially allows
 648 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 649 * batching in flight would be expensive during reclaim so instead track
 650 * whether TLB batching occurred in the past and if so then do a flush here
 651 * if required. This will cost one additional flush per reclaim cycle paid
 652 * by the first operation at risk such as mprotect and mumap.
 653 *
 654 * This must be called under the PTL so that an access to tlb_flush_batched
 655 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 656 * via the PTL.
 657 */
 658void flush_tlb_batched_pending(struct mm_struct *mm)
 659{
 660	if (mm->tlb_flush_batched) {
 661		flush_tlb_mm(mm);
 662
 663		/*
 664		 * Do not allow the compiler to re-order the clearing of
 665		 * tlb_flush_batched before the tlb is flushed.
 666		 */
 667		barrier();
 668		mm->tlb_flush_batched = false;
 669	}
 670}
 671#else
 672static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 673{
 674}
 675
 676static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 677{
 678	return false;
 679}
 680#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 681
 682/*
 683 * At what user virtual address is page expected in vma?
 684 * Caller should check the page is actually part of the vma.
 685 */
 686unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 687{
 688	unsigned long address;
 689	if (PageAnon(page)) {
 690		struct anon_vma *page__anon_vma = page_anon_vma(page);
 691		/*
 692		 * Note: swapoff's unuse_vma() is more efficient with this
 693		 * check, and needs it to match anon_vma when KSM is active.
 694		 */
 695		if (!vma->anon_vma || !page__anon_vma ||
 696		    vma->anon_vma->root != page__anon_vma->root)
 697			return -EFAULT;
 698	} else if (page->mapping) {
 699		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 
 700			return -EFAULT;
 701	} else
 702		return -EFAULT;
 703	address = __vma_address(page, vma);
 704	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 705		return -EFAULT;
 706	return address;
 707}
 708
 709pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 710{
 711	pgd_t *pgd;
 712	p4d_t *p4d;
 713	pud_t *pud;
 714	pmd_t *pmd = NULL;
 715	pmd_t pmde;
 716
 717	pgd = pgd_offset(mm, address);
 718	if (!pgd_present(*pgd))
 719		goto out;
 720
 721	p4d = p4d_offset(pgd, address);
 722	if (!p4d_present(*p4d))
 723		goto out;
 724
 725	pud = pud_offset(p4d, address);
 726	if (!pud_present(*pud))
 727		goto out;
 728
 729	pmd = pmd_offset(pud, address);
 730	/*
 731	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 732	 * without holding anon_vma lock for write.  So when looking for a
 733	 * genuine pmde (in which to find pte), test present and !THP together.
 734	 */
 735	pmde = *pmd;
 736	barrier();
 737	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 738		pmd = NULL;
 739out:
 740	return pmd;
 741}
 742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743struct page_referenced_arg {
 744	int mapcount;
 745	int referenced;
 746	unsigned long vm_flags;
 747	struct mem_cgroup *memcg;
 748};
 749/*
 750 * arg: page_referenced_arg will be passed
 751 */
 752static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 753			unsigned long address, void *arg)
 754{
 755	struct page_referenced_arg *pra = arg;
 756	struct page_vma_mapped_walk pvmw = {
 757		.page = page,
 758		.vma = vma,
 759		.address = address,
 760	};
 761	int referenced = 0;
 
 762
 763	while (page_vma_mapped_walk(&pvmw)) {
 764		address = pvmw.address;
 
 
 
 
 
 
 
 
 
 765
 766		if (vma->vm_flags & VM_LOCKED) {
 767			page_vma_mapped_walk_done(&pvmw);
 768			pra->vm_flags |= VM_LOCKED;
 769			return false; /* To break the loop */
 770		}
 771
 772		if (pvmw.pte) {
 773			if (ptep_clear_flush_young_notify(vma, address,
 774						pvmw.pte)) {
 775				/*
 776				 * Don't treat a reference through
 777				 * a sequentially read mapping as such.
 778				 * If the page has been used in another mapping,
 779				 * we will catch it; if this other mapping is
 780				 * already gone, the unmap path will have set
 781				 * PG_referenced or activated the page.
 782				 */
 783				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 784					referenced++;
 785			}
 786		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 787			if (pmdp_clear_flush_young_notify(vma, address,
 788						pvmw.pmd))
 789				referenced++;
 790		} else {
 791			/* unexpected pmd-mapped page? */
 792			WARN_ON_ONCE(1);
 793		}
 794
 795		pra->mapcount--;
 
 
 
 
 
 
 
 
 
 
 
 796	}
 797
 798	if (referenced)
 799		clear_page_idle(page);
 800	if (test_and_clear_page_young(page))
 801		referenced++;
 802
 803	if (referenced) {
 804		pra->referenced++;
 805		pra->vm_flags |= vma->vm_flags;
 806	}
 807
 
 808	if (!pra->mapcount)
 809		return false; /* To break the loop */
 810
 811	return true;
 812}
 813
 814static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 815{
 816	struct page_referenced_arg *pra = arg;
 817	struct mem_cgroup *memcg = pra->memcg;
 818
 819	if (!mm_match_cgroup(vma->vm_mm, memcg))
 820		return true;
 821
 822	return false;
 823}
 824
 825/**
 826 * page_referenced - test if the page was referenced
 827 * @page: the page to test
 828 * @is_locked: caller holds lock on the page
 829 * @memcg: target memory cgroup
 830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 831 *
 832 * Quick test_and_clear_referenced for all mappings to a page,
 833 * returns the number of ptes which referenced the page.
 834 */
 835int page_referenced(struct page *page,
 836		    int is_locked,
 837		    struct mem_cgroup *memcg,
 838		    unsigned long *vm_flags)
 839{
 
 840	int we_locked = 0;
 841	struct page_referenced_arg pra = {
 842		.mapcount = total_mapcount(page),
 843		.memcg = memcg,
 844	};
 845	struct rmap_walk_control rwc = {
 846		.rmap_one = page_referenced_one,
 847		.arg = (void *)&pra,
 848		.anon_lock = page_lock_anon_vma_read,
 849	};
 850
 851	*vm_flags = 0;
 852	if (!page_mapped(page))
 853		return 0;
 854
 855	if (!page_rmapping(page))
 856		return 0;
 857
 858	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 859		we_locked = trylock_page(page);
 860		if (!we_locked)
 861			return 1;
 862	}
 863
 864	/*
 865	 * If we are reclaiming on behalf of a cgroup, skip
 866	 * counting on behalf of references from different
 867	 * cgroups
 868	 */
 869	if (memcg) {
 870		rwc.invalid_vma = invalid_page_referenced_vma;
 871	}
 872
 873	rmap_walk(page, &rwc);
 874	*vm_flags = pra.vm_flags;
 875
 876	if (we_locked)
 877		unlock_page(page);
 878
 879	return pra.referenced;
 880}
 881
 882static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 883			    unsigned long address, void *arg)
 884{
 885	struct page_vma_mapped_walk pvmw = {
 886		.page = page,
 887		.vma = vma,
 888		.address = address,
 889		.flags = PVMW_SYNC,
 890	};
 891	unsigned long start = address, end;
 892	int *cleaned = arg;
 893
 894	/*
 895	 * We have to assume the worse case ie pmd for invalidation. Note that
 896	 * the page can not be free from this function.
 897	 */
 898	end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
 899	mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
 900
 901	while (page_vma_mapped_walk(&pvmw)) {
 902		unsigned long cstart;
 903		int ret = 0;
 904
 905		cstart = address = pvmw.address;
 906		if (pvmw.pte) {
 907			pte_t entry;
 908			pte_t *pte = pvmw.pte;
 909
 910			if (!pte_dirty(*pte) && !pte_write(*pte))
 911				continue;
 912
 913			flush_cache_page(vma, address, pte_pfn(*pte));
 914			entry = ptep_clear_flush(vma, address, pte);
 915			entry = pte_wrprotect(entry);
 916			entry = pte_mkclean(entry);
 917			set_pte_at(vma->vm_mm, address, pte, entry);
 918			ret = 1;
 919		} else {
 920#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 921			pmd_t *pmd = pvmw.pmd;
 922			pmd_t entry;
 923
 924			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 925				continue;
 926
 927			flush_cache_page(vma, address, page_to_pfn(page));
 928			entry = pmdp_huge_clear_flush(vma, address, pmd);
 929			entry = pmd_wrprotect(entry);
 930			entry = pmd_mkclean(entry);
 931			set_pmd_at(vma->vm_mm, address, pmd, entry);
 932			cstart &= PMD_MASK;
 933			ret = 1;
 934#else
 935			/* unexpected pmd-mapped page? */
 936			WARN_ON_ONCE(1);
 937#endif
 938		}
 939
 940		/*
 941		 * No need to call mmu_notifier_invalidate_range() as we are
 942		 * downgrading page table protection not changing it to point
 943		 * to a new page.
 944		 *
 945		 * See Documentation/vm/mmu_notifier.txt
 946		 */
 947		if (ret)
 948			(*cleaned)++;
 
 
 
 
 949	}
 950
 951	mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 952
 953	return true;
 954}
 955
 956static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 957{
 958	if (vma->vm_flags & VM_SHARED)
 959		return false;
 960
 961	return true;
 962}
 963
 964int page_mkclean(struct page *page)
 965{
 966	int cleaned = 0;
 967	struct address_space *mapping;
 968	struct rmap_walk_control rwc = {
 969		.arg = (void *)&cleaned,
 970		.rmap_one = page_mkclean_one,
 971		.invalid_vma = invalid_mkclean_vma,
 972	};
 973
 974	BUG_ON(!PageLocked(page));
 975
 976	if (!page_mapped(page))
 977		return 0;
 978
 979	mapping = page_mapping(page);
 980	if (!mapping)
 981		return 0;
 982
 983	rmap_walk(page, &rwc);
 984
 985	return cleaned;
 986}
 987EXPORT_SYMBOL_GPL(page_mkclean);
 988
 989/**
 990 * page_move_anon_rmap - move a page to our anon_vma
 991 * @page:	the page to move to our anon_vma
 992 * @vma:	the vma the page belongs to
 
 993 *
 994 * When a page belongs exclusively to one process after a COW event,
 995 * that page can be moved into the anon_vma that belongs to just that
 996 * process, so the rmap code will not search the parent or sibling
 997 * processes.
 998 */
 999void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
 
1000{
1001	struct anon_vma *anon_vma = vma->anon_vma;
1002
1003	page = compound_head(page);
1004
1005	VM_BUG_ON_PAGE(!PageLocked(page), page);
1006	VM_BUG_ON_VMA(!anon_vma, vma);
 
1007
1008	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1009	/*
1010	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1011	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1012	 * PageAnon()) will not see one without the other.
1013	 */
1014	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1015}
1016
1017/**
1018 * __page_set_anon_rmap - set up new anonymous rmap
1019 * @page:	Page to add to rmap	
1020 * @vma:	VM area to add page to.
1021 * @address:	User virtual address of the mapping	
1022 * @exclusive:	the page is exclusively owned by the current process
1023 */
1024static void __page_set_anon_rmap(struct page *page,
1025	struct vm_area_struct *vma, unsigned long address, int exclusive)
1026{
1027	struct anon_vma *anon_vma = vma->anon_vma;
1028
1029	BUG_ON(!anon_vma);
1030
1031	if (PageAnon(page))
1032		return;
1033
1034	/*
1035	 * If the page isn't exclusively mapped into this vma,
1036	 * we must use the _oldest_ possible anon_vma for the
1037	 * page mapping!
1038	 */
1039	if (!exclusive)
1040		anon_vma = anon_vma->root;
1041
1042	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1043	page->mapping = (struct address_space *) anon_vma;
1044	page->index = linear_page_index(vma, address);
1045}
1046
1047/**
1048 * __page_check_anon_rmap - sanity check anonymous rmap addition
1049 * @page:	the page to add the mapping to
1050 * @vma:	the vm area in which the mapping is added
1051 * @address:	the user virtual address mapped
1052 */
1053static void __page_check_anon_rmap(struct page *page,
1054	struct vm_area_struct *vma, unsigned long address)
1055{
1056#ifdef CONFIG_DEBUG_VM
1057	/*
1058	 * The page's anon-rmap details (mapping and index) are guaranteed to
1059	 * be set up correctly at this point.
1060	 *
1061	 * We have exclusion against page_add_anon_rmap because the caller
1062	 * always holds the page locked, except if called from page_dup_rmap,
1063	 * in which case the page is already known to be setup.
1064	 *
1065	 * We have exclusion against page_add_new_anon_rmap because those pages
1066	 * are initially only visible via the pagetables, and the pte is locked
1067	 * over the call to page_add_new_anon_rmap.
1068	 */
1069	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1070	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1071#endif
1072}
1073
1074/**
1075 * page_add_anon_rmap - add pte mapping to an anonymous page
1076 * @page:	the page to add the mapping to
1077 * @vma:	the vm area in which the mapping is added
1078 * @address:	the user virtual address mapped
1079 * @compound:	charge the page as compound or small page
1080 *
1081 * The caller needs to hold the pte lock, and the page must be locked in
1082 * the anon_vma case: to serialize mapping,index checking after setting,
1083 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1084 * (but PageKsm is never downgraded to PageAnon).
1085 */
1086void page_add_anon_rmap(struct page *page,
1087	struct vm_area_struct *vma, unsigned long address, bool compound)
1088{
1089	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1090}
1091
1092/*
1093 * Special version of the above for do_swap_page, which often runs
1094 * into pages that are exclusively owned by the current process.
1095 * Everybody else should continue to use page_add_anon_rmap above.
1096 */
1097void do_page_add_anon_rmap(struct page *page,
1098	struct vm_area_struct *vma, unsigned long address, int flags)
1099{
1100	bool compound = flags & RMAP_COMPOUND;
1101	bool first;
1102
1103	if (compound) {
1104		atomic_t *mapcount;
1105		VM_BUG_ON_PAGE(!PageLocked(page), page);
1106		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1107		mapcount = compound_mapcount_ptr(page);
1108		first = atomic_inc_and_test(mapcount);
1109	} else {
1110		first = atomic_inc_and_test(&page->_mapcount);
1111	}
1112
1113	if (first) {
1114		int nr = compound ? hpage_nr_pages(page) : 1;
1115		/*
1116		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1117		 * these counters are not modified in interrupt context, and
1118		 * pte lock(a spinlock) is held, which implies preemption
1119		 * disabled.
1120		 */
1121		if (compound)
1122			__inc_node_page_state(page, NR_ANON_THPS);
1123		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1124	}
1125	if (unlikely(PageKsm(page)))
1126		return;
1127
1128	VM_BUG_ON_PAGE(!PageLocked(page), page);
1129
1130	/* address might be in next vma when migration races vma_adjust */
1131	if (first)
1132		__page_set_anon_rmap(page, vma, address,
1133				flags & RMAP_EXCLUSIVE);
1134	else
1135		__page_check_anon_rmap(page, vma, address);
1136}
1137
1138/**
1139 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1140 * @page:	the page to add the mapping to
1141 * @vma:	the vm area in which the mapping is added
1142 * @address:	the user virtual address mapped
1143 * @compound:	charge the page as compound or small page
1144 *
1145 * Same as page_add_anon_rmap but must only be called on *new* pages.
1146 * This means the inc-and-test can be bypassed.
1147 * Page does not have to be locked.
1148 */
1149void page_add_new_anon_rmap(struct page *page,
1150	struct vm_area_struct *vma, unsigned long address, bool compound)
1151{
1152	int nr = compound ? hpage_nr_pages(page) : 1;
1153
1154	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1155	__SetPageSwapBacked(page);
1156	if (compound) {
1157		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1158		/* increment count (starts at -1) */
1159		atomic_set(compound_mapcount_ptr(page), 0);
1160		__inc_node_page_state(page, NR_ANON_THPS);
1161	} else {
1162		/* Anon THP always mapped first with PMD */
1163		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1164		/* increment count (starts at -1) */
1165		atomic_set(&page->_mapcount, 0);
1166	}
1167	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1168	__page_set_anon_rmap(page, vma, address, 1);
 
 
 
 
 
1169}
1170
1171/**
1172 * page_add_file_rmap - add pte mapping to a file page
1173 * @page: the page to add the mapping to
1174 * @compound: charge the page as compound or small page
1175 *
1176 * The caller needs to hold the pte lock.
1177 */
1178void page_add_file_rmap(struct page *page, bool compound)
1179{
1180	int i, nr = 1;
1181
1182	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1183	lock_page_memcg(page);
1184	if (compound && PageTransHuge(page)) {
1185		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1186			if (atomic_inc_and_test(&page[i]._mapcount))
1187				nr++;
1188		}
1189		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1190			goto out;
1191		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1192		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1193	} else {
1194		if (PageTransCompound(page) && page_mapping(page)) {
1195			VM_WARN_ON_ONCE(!PageLocked(page));
1196
1197			SetPageDoubleMap(compound_head(page));
1198			if (PageMlocked(page))
1199				clear_page_mlock(compound_head(page));
1200		}
1201		if (!atomic_inc_and_test(&page->_mapcount))
1202			goto out;
1203	}
1204	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1205out:
1206	unlock_page_memcg(page);
1207}
1208
1209static void page_remove_file_rmap(struct page *page, bool compound)
1210{
1211	int i, nr = 1;
1212
1213	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1214	lock_page_memcg(page);
1215
1216	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1217	if (unlikely(PageHuge(page))) {
1218		/* hugetlb pages are always mapped with pmds */
1219		atomic_dec(compound_mapcount_ptr(page));
1220		goto out;
1221	}
1222
1223	/* page still mapped by someone else? */
1224	if (compound && PageTransHuge(page)) {
1225		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1226			if (atomic_add_negative(-1, &page[i]._mapcount))
1227				nr++;
1228		}
1229		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1230			goto out;
1231		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1232		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1233	} else {
1234		if (!atomic_add_negative(-1, &page->_mapcount))
1235			goto out;
1236	}
1237
1238	/*
1239	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1240	 * these counters are not modified in interrupt context, and
1241	 * pte lock(a spinlock) is held, which implies preemption disabled.
1242	 */
1243	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1244
1245	if (unlikely(PageMlocked(page)))
1246		clear_page_mlock(page);
1247out:
1248	unlock_page_memcg(page);
1249}
1250
1251static void page_remove_anon_compound_rmap(struct page *page)
1252{
1253	int i, nr;
1254
1255	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1256		return;
1257
1258	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1259	if (unlikely(PageHuge(page)))
1260		return;
1261
1262	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1263		return;
1264
1265	__dec_node_page_state(page, NR_ANON_THPS);
1266
1267	if (TestClearPageDoubleMap(page)) {
1268		/*
1269		 * Subpages can be mapped with PTEs too. Check how many of
1270		 * themi are still mapped.
1271		 */
1272		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1273			if (atomic_add_negative(-1, &page[i]._mapcount))
1274				nr++;
1275		}
1276	} else {
1277		nr = HPAGE_PMD_NR;
1278	}
1279
1280	if (unlikely(PageMlocked(page)))
1281		clear_page_mlock(page);
1282
1283	if (nr) {
1284		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1285		deferred_split_huge_page(page);
1286	}
 
1287}
1288
1289/**
1290 * page_remove_rmap - take down pte mapping from a page
1291 * @page:	page to remove mapping from
1292 * @compound:	uncharge the page as compound or small page
1293 *
1294 * The caller needs to hold the pte lock.
1295 */
1296void page_remove_rmap(struct page *page, bool compound)
1297{
1298	if (!PageAnon(page))
1299		return page_remove_file_rmap(page, compound);
 
1300
1301	if (compound)
1302		return page_remove_anon_compound_rmap(page);
 
 
 
 
 
1303
1304	/* page still mapped by someone else? */
1305	if (!atomic_add_negative(-1, &page->_mapcount))
1306		return;
1307
1308	/*
1309	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1310	 * these counters are not modified in interrupt context, and
1311	 * pte lock(a spinlock) is held, which implies preemption disabled.
1312	 */
1313	__dec_node_page_state(page, NR_ANON_MAPPED);
1314
 
 
 
 
 
 
 
 
 
 
 
 
1315	if (unlikely(PageMlocked(page)))
1316		clear_page_mlock(page);
1317
1318	if (PageTransCompound(page))
1319		deferred_split_huge_page(compound_head(page));
1320
1321	/*
1322	 * It would be tidy to reset the PageAnon mapping here,
1323	 * but that might overwrite a racing page_add_anon_rmap
1324	 * which increments mapcount after us but sets mapping
1325	 * before us: so leave the reset to free_unref_page,
1326	 * and remember that it's only reliable while mapped.
1327	 * Leaving it set also helps swapoff to reinstate ptes
1328	 * faster for those pages still in swapcache.
1329	 */
 
 
 
 
1330}
1331
1332/*
1333 * @arg: enum ttu_flags will be passed to this argument
1334 */
1335static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1336		     unsigned long address, void *arg)
1337{
1338	struct mm_struct *mm = vma->vm_mm;
1339	struct page_vma_mapped_walk pvmw = {
1340		.page = page,
1341		.vma = vma,
1342		.address = address,
1343	};
1344	pte_t pteval;
1345	struct page *subpage;
1346	bool ret = true;
1347	unsigned long start = address, end;
1348	enum ttu_flags flags = (enum ttu_flags)arg;
1349
1350	/* munlock has nothing to gain from examining un-locked vmas */
1351	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1352		return true;
1353
1354	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1355	    is_zone_device_page(page) && !is_device_private_page(page))
1356		return true;
1357
1358	if (flags & TTU_SPLIT_HUGE_PMD) {
1359		split_huge_pmd_address(vma, address,
1360				flags & TTU_SPLIT_FREEZE, page);
1361	}
1362
1363	/*
1364	 * We have to assume the worse case ie pmd for invalidation. Note that
1365	 * the page can not be free in this function as call of try_to_unmap()
1366	 * must hold a reference on the page.
1367	 */
1368	end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1369	mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1370
1371	while (page_vma_mapped_walk(&pvmw)) {
1372#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1373		/* PMD-mapped THP migration entry */
1374		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1375			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1376
1377			set_pmd_migration_entry(&pvmw, page);
1378			continue;
1379		}
1380#endif
1381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382		/*
1383		 * If the page is mlock()d, we cannot swap it out.
1384		 * If it's recently referenced (perhaps page_referenced
1385		 * skipped over this mm) then we should reactivate it.
1386		 */
1387		if (!(flags & TTU_IGNORE_MLOCK)) {
1388			if (vma->vm_flags & VM_LOCKED) {
1389				/* PTE-mapped THP are never mlocked */
1390				if (!PageTransCompound(page)) {
1391					/*
1392					 * Holding pte lock, we do *not* need
1393					 * mmap_sem here
1394					 */
1395					mlock_vma_page(page);
1396				}
1397				ret = false;
1398				page_vma_mapped_walk_done(&pvmw);
1399				break;
1400			}
1401			if (flags & TTU_MUNLOCK)
1402				continue;
1403		}
1404
1405		/* Unexpected PMD-mapped THP? */
1406		VM_BUG_ON_PAGE(!pvmw.pte, page);
1407
1408		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1409		address = pvmw.address;
1410
1411
1412		if (IS_ENABLED(CONFIG_MIGRATION) &&
1413		    (flags & TTU_MIGRATION) &&
1414		    is_zone_device_page(page)) {
1415			swp_entry_t entry;
1416			pte_t swp_pte;
1417
1418			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420			/*
1421			 * Store the pfn of the page in a special migration
1422			 * pte. do_swap_page() will wait until the migration
1423			 * pte is removed and then restart fault handling.
1424			 */
1425			entry = make_migration_entry(page, 0);
1426			swp_pte = swp_entry_to_pte(entry);
1427			if (pte_soft_dirty(pteval))
1428				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1429			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1430			/*
1431			 * No need to invalidate here it will synchronize on
1432			 * against the special swap migration pte.
1433			 */
1434			goto discard;
1435		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437		if (!(flags & TTU_IGNORE_ACCESS)) {
1438			if (ptep_clear_flush_young_notify(vma, address,
1439						pvmw.pte)) {
1440				ret = false;
1441				page_vma_mapped_walk_done(&pvmw);
1442				break;
1443			}
1444		}
 
 
 
 
1445
1446		/* Nuke the page table entry. */
1447		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1448		if (should_defer_flush(mm, flags)) {
1449			/*
1450			 * We clear the PTE but do not flush so potentially
1451			 * a remote CPU could still be writing to the page.
1452			 * If the entry was previously clean then the
1453			 * architecture must guarantee that a clear->dirty
1454			 * transition on a cached TLB entry is written through
1455			 * and traps if the PTE is unmapped.
1456			 */
1457			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1458
1459			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1460		} else {
1461			pteval = ptep_clear_flush(vma, address, pvmw.pte);
 
 
 
 
 
 
 
 
 
1462		}
 
 
 
 
1463
1464		/* Move the dirty bit to the page. Now the pte is gone. */
1465		if (pte_dirty(pteval))
1466			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467
1468		/* Update high watermark before we lower rss */
1469		update_hiwater_rss(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
1470
1471		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1472			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1473			if (PageHuge(page)) {
1474				int nr = 1 << compound_order(page);
1475				hugetlb_count_sub(nr, mm);
1476				set_huge_swap_pte_at(mm, address,
1477						     pvmw.pte, pteval,
1478						     vma_mmu_pagesize(vma));
1479			} else {
1480				dec_mm_counter(mm, mm_counter(page));
1481				set_pte_at(mm, address, pvmw.pte, pteval);
1482			}
1483
1484		} else if (pte_unused(pteval)) {
1485			/*
1486			 * The guest indicated that the page content is of no
1487			 * interest anymore. Simply discard the pte, vmscan
1488			 * will take care of the rest.
1489			 */
1490			dec_mm_counter(mm, mm_counter(page));
1491			/* We have to invalidate as we cleared the pte */
1492			mmu_notifier_invalidate_range(mm, address,
1493						      address + PAGE_SIZE);
1494		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1495				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1496			swp_entry_t entry;
1497			pte_t swp_pte;
1498
1499			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1500				set_pte_at(mm, address, pvmw.pte, pteval);
1501				ret = false;
1502				page_vma_mapped_walk_done(&pvmw);
1503				break;
1504			}
1505
1506			/*
1507			 * Store the pfn of the page in a special migration
1508			 * pte. do_swap_page() will wait until the migration
1509			 * pte is removed and then restart fault handling.
1510			 */
1511			entry = make_migration_entry(subpage,
1512					pte_write(pteval));
1513			swp_pte = swp_entry_to_pte(entry);
1514			if (pte_soft_dirty(pteval))
1515				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1516			set_pte_at(mm, address, pvmw.pte, swp_pte);
1517			/*
1518			 * No need to invalidate here it will synchronize on
1519			 * against the special swap migration pte.
1520			 */
1521		} else if (PageAnon(page)) {
1522			swp_entry_t entry = { .val = page_private(subpage) };
1523			pte_t swp_pte;
1524			/*
1525			 * Store the swap location in the pte.
1526			 * See handle_pte_fault() ...
1527			 */
1528			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1529				WARN_ON_ONCE(1);
1530				ret = false;
1531				/* We have to invalidate as we cleared the pte */
1532				mmu_notifier_invalidate_range(mm, address,
1533							address + PAGE_SIZE);
1534				page_vma_mapped_walk_done(&pvmw);
1535				break;
1536			}
1537
1538			/* MADV_FREE page check */
1539			if (!PageSwapBacked(page)) {
1540				if (!PageDirty(page)) {
1541					/* Invalidate as we cleared the pte */
1542					mmu_notifier_invalidate_range(mm,
1543						address, address + PAGE_SIZE);
1544					dec_mm_counter(mm, MM_ANONPAGES);
1545					goto discard;
1546				}
1547
 
 
 
 
 
 
 
 
 
 
 
 
1548				/*
1549				 * If the page was redirtied, it cannot be
1550				 * discarded. Remap the page to page table.
 
1551				 */
1552				set_pte_at(mm, address, pvmw.pte, pteval);
1553				SetPageSwapBacked(page);
1554				ret = false;
1555				page_vma_mapped_walk_done(&pvmw);
1556				break;
1557			}
 
 
1558
1559			if (swap_duplicate(entry) < 0) {
1560				set_pte_at(mm, address, pvmw.pte, pteval);
1561				ret = false;
1562				page_vma_mapped_walk_done(&pvmw);
1563				break;
1564			}
1565			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1566				set_pte_at(mm, address, pvmw.pte, pteval);
1567				ret = false;
1568				page_vma_mapped_walk_done(&pvmw);
1569				break;
1570			}
1571			if (list_empty(&mm->mmlist)) {
1572				spin_lock(&mmlist_lock);
1573				if (list_empty(&mm->mmlist))
1574					list_add(&mm->mmlist, &init_mm.mmlist);
1575				spin_unlock(&mmlist_lock);
1576			}
1577			dec_mm_counter(mm, MM_ANONPAGES);
1578			inc_mm_counter(mm, MM_SWAPENTS);
1579			swp_pte = swp_entry_to_pte(entry);
1580			if (pte_soft_dirty(pteval))
1581				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1582			set_pte_at(mm, address, pvmw.pte, swp_pte);
1583			/* Invalidate as we cleared the pte */
1584			mmu_notifier_invalidate_range(mm, address,
1585						      address + PAGE_SIZE);
1586		} else {
1587			/*
1588			 * We should not need to notify here as we reach this
1589			 * case only from freeze_page() itself only call from
1590			 * split_huge_page_to_list() so everything below must
1591			 * be true:
1592			 *   - page is not anonymous
1593			 *   - page is locked
1594			 *
1595			 * So as it is a locked file back page thus it can not
1596			 * be remove from the page cache and replace by a new
1597			 * page before mmu_notifier_invalidate_range_end so no
1598			 * concurrent thread might update its page table to
1599			 * point at new page while a device still is using this
1600			 * page.
1601			 *
1602			 * See Documentation/vm/mmu_notifier.txt
1603			 */
1604			dec_mm_counter(mm, mm_counter_file(page));
1605		}
1606discard:
1607		/*
1608		 * No need to call mmu_notifier_invalidate_range() it has be
1609		 * done above for all cases requiring it to happen under page
1610		 * table lock before mmu_notifier_invalidate_range_end()
1611		 *
1612		 * See Documentation/vm/mmu_notifier.txt
1613		 */
1614		page_remove_rmap(subpage, PageHuge(page));
1615		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616	}
1617
1618	mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620	return ret;
1621}
1622
1623bool is_vma_temporary_stack(struct vm_area_struct *vma)
1624{
1625	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1626
1627	if (!maybe_stack)
1628		return false;
1629
1630	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1631						VM_STACK_INCOMPLETE_SETUP)
1632		return true;
1633
1634	return false;
1635}
1636
1637static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1638{
1639	return is_vma_temporary_stack(vma);
1640}
1641
1642static int page_mapcount_is_zero(struct page *page)
1643{
1644	return !total_mapcount(page);
1645}
1646
1647/**
1648 * try_to_unmap - try to remove all page table mappings to a page
1649 * @page: the page to get unmapped
1650 * @flags: action and flags
1651 *
1652 * Tries to remove all the page table entries which are mapping this
1653 * page, used in the pageout path.  Caller must hold the page lock.
 
1654 *
1655 * If unmap is successful, return true. Otherwise, false.
 
 
 
1656 */
1657bool try_to_unmap(struct page *page, enum ttu_flags flags)
1658{
 
1659	struct rmap_walk_control rwc = {
1660		.rmap_one = try_to_unmap_one,
1661		.arg = (void *)flags,
1662		.done = page_mapcount_is_zero,
 
1663		.anon_lock = page_lock_anon_vma_read,
1664	};
1665
 
 
1666	/*
1667	 * During exec, a temporary VMA is setup and later moved.
1668	 * The VMA is moved under the anon_vma lock but not the
1669	 * page tables leading to a race where migration cannot
1670	 * find the migration ptes. Rather than increasing the
1671	 * locking requirements of exec(), migration skips
1672	 * temporary VMAs until after exec() completes.
1673	 */
1674	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1675	    && !PageKsm(page) && PageAnon(page))
1676		rwc.invalid_vma = invalid_migration_vma;
1677
1678	if (flags & TTU_RMAP_LOCKED)
1679		rmap_walk_locked(page, &rwc);
1680	else
1681		rmap_walk(page, &rwc);
1682
1683	return !page_mapcount(page) ? true : false;
 
 
1684}
1685
1686static int page_not_mapped(struct page *page)
1687{
1688	return !page_mapped(page);
1689};
1690
1691/**
1692 * try_to_munlock - try to munlock a page
1693 * @page: the page to be munlocked
1694 *
1695 * Called from munlock code.  Checks all of the VMAs mapping the page
1696 * to make sure nobody else has this page mlocked. The page will be
1697 * returned with PG_mlocked cleared if no other vmas have it mlocked.
 
 
 
 
 
 
 
1698 */
1699
1700void try_to_munlock(struct page *page)
1701{
 
1702	struct rmap_walk_control rwc = {
1703		.rmap_one = try_to_unmap_one,
1704		.arg = (void *)TTU_MUNLOCK,
1705		.done = page_not_mapped,
 
 
 
 
 
 
1706		.anon_lock = page_lock_anon_vma_read,
1707
1708	};
1709
1710	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1711	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1712
1713	rmap_walk(page, &rwc);
 
1714}
1715
1716void __put_anon_vma(struct anon_vma *anon_vma)
1717{
1718	struct anon_vma *root = anon_vma->root;
1719
1720	anon_vma_free(anon_vma);
1721	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1722		anon_vma_free(root);
1723}
1724
1725static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1726					struct rmap_walk_control *rwc)
1727{
1728	struct anon_vma *anon_vma;
1729
1730	if (rwc->anon_lock)
1731		return rwc->anon_lock(page);
1732
1733	/*
1734	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1735	 * because that depends on page_mapped(); but not all its usages
1736	 * are holding mmap_sem. Users without mmap_sem are required to
1737	 * take a reference count to prevent the anon_vma disappearing
1738	 */
1739	anon_vma = page_anon_vma(page);
1740	if (!anon_vma)
1741		return NULL;
1742
1743	anon_vma_lock_read(anon_vma);
1744	return anon_vma;
1745}
1746
1747/*
1748 * rmap_walk_anon - do something to anonymous page using the object-based
1749 * rmap method
1750 * @page: the page to be handled
1751 * @rwc: control variable according to each walk type
1752 *
1753 * Find all the mappings of a page using the mapping pointer and the vma chains
1754 * contained in the anon_vma struct it points to.
1755 *
1756 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1757 * where the page was found will be held for write.  So, we won't recheck
1758 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1759 * LOCKED.
1760 */
1761static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1762		bool locked)
1763{
1764	struct anon_vma *anon_vma;
1765	pgoff_t pgoff_start, pgoff_end;
1766	struct anon_vma_chain *avc;
 
1767
1768	if (locked) {
1769		anon_vma = page_anon_vma(page);
1770		/* anon_vma disappear under us? */
1771		VM_BUG_ON_PAGE(!anon_vma, page);
1772	} else {
1773		anon_vma = rmap_walk_anon_lock(page, rwc);
1774	}
1775	if (!anon_vma)
1776		return;
1777
1778	pgoff_start = page_to_pgoff(page);
1779	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1780	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1781			pgoff_start, pgoff_end) {
1782		struct vm_area_struct *vma = avc->vma;
1783		unsigned long address = vma_address(page, vma);
1784
1785		cond_resched();
1786
1787		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1788			continue;
1789
1790		if (!rwc->rmap_one(page, vma, address, rwc->arg))
 
1791			break;
1792		if (rwc->done && rwc->done(page))
1793			break;
1794	}
1795
1796	if (!locked)
1797		anon_vma_unlock_read(anon_vma);
1798}
1799
1800/*
1801 * rmap_walk_file - do something to file page using the object-based rmap method
1802 * @page: the page to be handled
1803 * @rwc: control variable according to each walk type
1804 *
1805 * Find all the mappings of a page using the mapping pointer and the vma chains
1806 * contained in the address_space struct it points to.
1807 *
1808 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1809 * where the page was found will be held for write.  So, we won't recheck
1810 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1811 * LOCKED.
1812 */
1813static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1814		bool locked)
1815{
1816	struct address_space *mapping = page_mapping(page);
1817	pgoff_t pgoff_start, pgoff_end;
1818	struct vm_area_struct *vma;
 
1819
1820	/*
1821	 * The page lock not only makes sure that page->mapping cannot
1822	 * suddenly be NULLified by truncation, it makes sure that the
1823	 * structure at mapping cannot be freed and reused yet,
1824	 * so we can safely take mapping->i_mmap_rwsem.
1825	 */
1826	VM_BUG_ON_PAGE(!PageLocked(page), page);
1827
1828	if (!mapping)
1829		return;
1830
1831	pgoff_start = page_to_pgoff(page);
1832	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1833	if (!locked)
1834		i_mmap_lock_read(mapping);
1835	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1836			pgoff_start, pgoff_end) {
1837		unsigned long address = vma_address(page, vma);
1838
1839		cond_resched();
1840
1841		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1842			continue;
1843
1844		if (!rwc->rmap_one(page, vma, address, rwc->arg))
 
1845			goto done;
1846		if (rwc->done && rwc->done(page))
1847			goto done;
1848	}
1849
 
 
 
 
 
 
 
 
1850done:
1851	if (!locked)
1852		i_mmap_unlock_read(mapping);
1853}
1854
1855void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1856{
1857	if (unlikely(PageKsm(page)))
1858		rmap_walk_ksm(page, rwc);
1859	else if (PageAnon(page))
1860		rmap_walk_anon(page, rwc, false);
1861	else
1862		rmap_walk_file(page, rwc, false);
1863}
1864
1865/* Like rmap_walk, but caller holds relevant rmap lock */
1866void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1867{
1868	/* no ksm support for now */
1869	VM_BUG_ON_PAGE(PageKsm(page), page);
1870	if (PageAnon(page))
1871		rmap_walk_anon(page, rwc, true);
1872	else
1873		rmap_walk_file(page, rwc, true);
1874}
1875
1876#ifdef CONFIG_HUGETLB_PAGE
1877/*
1878 * The following three functions are for anonymous (private mapped) hugepages.
1879 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1880 * and no lru code, because we handle hugepages differently from common pages.
1881 */
1882static void __hugepage_set_anon_rmap(struct page *page,
1883	struct vm_area_struct *vma, unsigned long address, int exclusive)
1884{
1885	struct anon_vma *anon_vma = vma->anon_vma;
1886
1887	BUG_ON(!anon_vma);
1888
1889	if (PageAnon(page))
1890		return;
1891	if (!exclusive)
1892		anon_vma = anon_vma->root;
1893
1894	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1895	page->mapping = (struct address_space *) anon_vma;
1896	page->index = linear_page_index(vma, address);
1897}
1898
1899void hugepage_add_anon_rmap(struct page *page,
1900			    struct vm_area_struct *vma, unsigned long address)
1901{
1902	struct anon_vma *anon_vma = vma->anon_vma;
1903	int first;
1904
1905	BUG_ON(!PageLocked(page));
1906	BUG_ON(!anon_vma);
1907	/* address might be in next vma when migration races vma_adjust */
1908	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1909	if (first)
1910		__hugepage_set_anon_rmap(page, vma, address, 0);
1911}
1912
1913void hugepage_add_new_anon_rmap(struct page *page,
1914			struct vm_area_struct *vma, unsigned long address)
1915{
1916	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1917	atomic_set(compound_mapcount_ptr(page), 0);
1918	__hugepage_set_anon_rmap(page, vma, address, 1);
1919}
1920#endif /* CONFIG_HUGETLB_PAGE */
v3.15
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       mapping->i_mmap_mutex
  27 *         anon_vma->rwsem
  28 *           mm->page_table_lock or pte_lock
  29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30 *             swap_lock (in swap_duplicate, swap_info_get)
  31 *               mmlist_lock (in mmput, drain_mmlist and others)
  32 *               mapping->private_lock (in __set_page_dirty_buffers)
  33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within bdi.wb->list_lock in __sync_single_inode)
 
 
 
  39 *
  40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  41 *   ->tasklist_lock
  42 *     pte map lock
  43 */
  44
  45#include <linux/mm.h>
 
 
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/slab.h>
  50#include <linux/init.h>
  51#include <linux/ksm.h>
  52#include <linux/rmap.h>
  53#include <linux/rcupdate.h>
  54#include <linux/export.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/migrate.h>
  58#include <linux/hugetlb.h>
  59#include <linux/backing-dev.h>
 
 
  60
  61#include <asm/tlbflush.h>
  62
 
 
  63#include "internal.h"
  64
  65static struct kmem_cache *anon_vma_cachep;
  66static struct kmem_cache *anon_vma_chain_cachep;
  67
  68static inline struct anon_vma *anon_vma_alloc(void)
  69{
  70	struct anon_vma *anon_vma;
  71
  72	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  73	if (anon_vma) {
  74		atomic_set(&anon_vma->refcount, 1);
 
 
  75		/*
  76		 * Initialise the anon_vma root to point to itself. If called
  77		 * from fork, the root will be reset to the parents anon_vma.
  78		 */
  79		anon_vma->root = anon_vma;
  80	}
  81
  82	return anon_vma;
  83}
  84
  85static inline void anon_vma_free(struct anon_vma *anon_vma)
  86{
  87	VM_BUG_ON(atomic_read(&anon_vma->refcount));
  88
  89	/*
  90	 * Synchronize against page_lock_anon_vma_read() such that
  91	 * we can safely hold the lock without the anon_vma getting
  92	 * freed.
  93	 *
  94	 * Relies on the full mb implied by the atomic_dec_and_test() from
  95	 * put_anon_vma() against the acquire barrier implied by
  96	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  97	 *
  98	 * page_lock_anon_vma_read()	VS	put_anon_vma()
  99	 *   down_read_trylock()		  atomic_dec_and_test()
 100	 *   LOCK				  MB
 101	 *   atomic_read()			  rwsem_is_locked()
 102	 *
 103	 * LOCK should suffice since the actual taking of the lock must
 104	 * happen _before_ what follows.
 105	 */
 
 106	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 107		anon_vma_lock_write(anon_vma);
 108		anon_vma_unlock_write(anon_vma);
 109	}
 110
 111	kmem_cache_free(anon_vma_cachep, anon_vma);
 112}
 113
 114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 115{
 116	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 117}
 118
 119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 120{
 121	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 122}
 123
 124static void anon_vma_chain_link(struct vm_area_struct *vma,
 125				struct anon_vma_chain *avc,
 126				struct anon_vma *anon_vma)
 127{
 128	avc->vma = vma;
 129	avc->anon_vma = anon_vma;
 130	list_add(&avc->same_vma, &vma->anon_vma_chain);
 131	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 132}
 133
 134/**
 135 * anon_vma_prepare - attach an anon_vma to a memory region
 136 * @vma: the memory region in question
 137 *
 138 * This makes sure the memory mapping described by 'vma' has
 139 * an 'anon_vma' attached to it, so that we can associate the
 140 * anonymous pages mapped into it with that anon_vma.
 141 *
 142 * The common case will be that we already have one, but if
 
 143 * not we either need to find an adjacent mapping that we
 144 * can re-use the anon_vma from (very common when the only
 145 * reason for splitting a vma has been mprotect()), or we
 146 * allocate a new one.
 147 *
 148 * Anon-vma allocations are very subtle, because we may have
 149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 150 * and that may actually touch the spinlock even in the newly
 151 * allocated vma (it depends on RCU to make sure that the
 152 * anon_vma isn't actually destroyed).
 153 *
 154 * As a result, we need to do proper anon_vma locking even
 155 * for the new allocation. At the same time, we do not want
 156 * to do any locking for the common case of already having
 157 * an anon_vma.
 158 *
 159 * This must be called with the mmap_sem held for reading.
 160 */
 161int anon_vma_prepare(struct vm_area_struct *vma)
 162{
 163	struct anon_vma *anon_vma = vma->anon_vma;
 
 164	struct anon_vma_chain *avc;
 165
 166	might_sleep();
 167	if (unlikely(!anon_vma)) {
 168		struct mm_struct *mm = vma->vm_mm;
 169		struct anon_vma *allocated;
 170
 171		avc = anon_vma_chain_alloc(GFP_KERNEL);
 172		if (!avc)
 173			goto out_enomem;
 174
 175		anon_vma = find_mergeable_anon_vma(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176		allocated = NULL;
 177		if (!anon_vma) {
 178			anon_vma = anon_vma_alloc();
 179			if (unlikely(!anon_vma))
 180				goto out_enomem_free_avc;
 181			allocated = anon_vma;
 182		}
 183
 184		anon_vma_lock_write(anon_vma);
 185		/* page_table_lock to protect against threads */
 186		spin_lock(&mm->page_table_lock);
 187		if (likely(!vma->anon_vma)) {
 188			vma->anon_vma = anon_vma;
 189			anon_vma_chain_link(vma, avc, anon_vma);
 190			allocated = NULL;
 191			avc = NULL;
 192		}
 193		spin_unlock(&mm->page_table_lock);
 194		anon_vma_unlock_write(anon_vma);
 195
 196		if (unlikely(allocated))
 197			put_anon_vma(allocated);
 198		if (unlikely(avc))
 199			anon_vma_chain_free(avc);
 200	}
 201	return 0;
 202
 203 out_enomem_free_avc:
 204	anon_vma_chain_free(avc);
 205 out_enomem:
 206	return -ENOMEM;
 207}
 208
 209/*
 210 * This is a useful helper function for locking the anon_vma root as
 211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 212 * have the same vma.
 213 *
 214 * Such anon_vma's should have the same root, so you'd expect to see
 215 * just a single mutex_lock for the whole traversal.
 216 */
 217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 218{
 219	struct anon_vma *new_root = anon_vma->root;
 220	if (new_root != root) {
 221		if (WARN_ON_ONCE(root))
 222			up_write(&root->rwsem);
 223		root = new_root;
 224		down_write(&root->rwsem);
 225	}
 226	return root;
 227}
 228
 229static inline void unlock_anon_vma_root(struct anon_vma *root)
 230{
 231	if (root)
 232		up_write(&root->rwsem);
 233}
 234
 235/*
 236 * Attach the anon_vmas from src to dst.
 237 * Returns 0 on success, -ENOMEM on failure.
 
 
 
 
 
 
 
 
 238 */
 239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 240{
 241	struct anon_vma_chain *avc, *pavc;
 242	struct anon_vma *root = NULL;
 243
 244	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 245		struct anon_vma *anon_vma;
 246
 247		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 248		if (unlikely(!avc)) {
 249			unlock_anon_vma_root(root);
 250			root = NULL;
 251			avc = anon_vma_chain_alloc(GFP_KERNEL);
 252			if (!avc)
 253				goto enomem_failure;
 254		}
 255		anon_vma = pavc->anon_vma;
 256		root = lock_anon_vma_root(root, anon_vma);
 257		anon_vma_chain_link(dst, avc, anon_vma);
 
 
 
 
 
 
 
 
 
 
 
 
 258	}
 
 
 259	unlock_anon_vma_root(root);
 260	return 0;
 261
 262 enomem_failure:
 
 
 
 
 
 
 
 263	unlink_anon_vmas(dst);
 264	return -ENOMEM;
 265}
 266
 267/*
 268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 269 * the corresponding VMA in the parent process is attached to.
 270 * Returns 0 on success, non-zero on failure.
 271 */
 272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 273{
 274	struct anon_vma_chain *avc;
 275	struct anon_vma *anon_vma;
 
 276
 277	/* Don't bother if the parent process has no anon_vma here. */
 278	if (!pvma->anon_vma)
 279		return 0;
 280
 
 
 
 281	/*
 282	 * First, attach the new VMA to the parent VMA's anon_vmas,
 283	 * so rmap can find non-COWed pages in child processes.
 284	 */
 285	if (anon_vma_clone(vma, pvma))
 286		return -ENOMEM;
 
 
 
 
 
 287
 288	/* Then add our own anon_vma. */
 289	anon_vma = anon_vma_alloc();
 290	if (!anon_vma)
 291		goto out_error;
 292	avc = anon_vma_chain_alloc(GFP_KERNEL);
 293	if (!avc)
 294		goto out_error_free_anon_vma;
 295
 296	/*
 297	 * The root anon_vma's spinlock is the lock actually used when we
 298	 * lock any of the anon_vmas in this anon_vma tree.
 299	 */
 300	anon_vma->root = pvma->anon_vma->root;
 
 301	/*
 302	 * With refcounts, an anon_vma can stay around longer than the
 303	 * process it belongs to. The root anon_vma needs to be pinned until
 304	 * this anon_vma is freed, because the lock lives in the root.
 305	 */
 306	get_anon_vma(anon_vma->root);
 307	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 308	vma->anon_vma = anon_vma;
 309	anon_vma_lock_write(anon_vma);
 310	anon_vma_chain_link(vma, avc, anon_vma);
 
 311	anon_vma_unlock_write(anon_vma);
 312
 313	return 0;
 314
 315 out_error_free_anon_vma:
 316	put_anon_vma(anon_vma);
 317 out_error:
 318	unlink_anon_vmas(vma);
 319	return -ENOMEM;
 320}
 321
 322void unlink_anon_vmas(struct vm_area_struct *vma)
 323{
 324	struct anon_vma_chain *avc, *next;
 325	struct anon_vma *root = NULL;
 326
 327	/*
 328	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 329	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 330	 */
 331	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 332		struct anon_vma *anon_vma = avc->anon_vma;
 333
 334		root = lock_anon_vma_root(root, anon_vma);
 335		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 336
 337		/*
 338		 * Leave empty anon_vmas on the list - we'll need
 339		 * to free them outside the lock.
 340		 */
 341		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
 
 342			continue;
 
 343
 344		list_del(&avc->same_vma);
 345		anon_vma_chain_free(avc);
 346	}
 
 
 347	unlock_anon_vma_root(root);
 348
 349	/*
 350	 * Iterate the list once more, it now only contains empty and unlinked
 351	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 352	 * needing to write-acquire the anon_vma->root->rwsem.
 353	 */
 354	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 355		struct anon_vma *anon_vma = avc->anon_vma;
 356
 
 357		put_anon_vma(anon_vma);
 358
 359		list_del(&avc->same_vma);
 360		anon_vma_chain_free(avc);
 361	}
 362}
 363
 364static void anon_vma_ctor(void *data)
 365{
 366	struct anon_vma *anon_vma = data;
 367
 368	init_rwsem(&anon_vma->rwsem);
 369	atomic_set(&anon_vma->refcount, 0);
 370	anon_vma->rb_root = RB_ROOT;
 371}
 372
 373void __init anon_vma_init(void)
 374{
 375	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 376			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 377	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 
 
 378}
 379
 380/*
 381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 382 *
 383 * Since there is no serialization what so ever against page_remove_rmap()
 384 * the best this function can do is return a locked anon_vma that might
 385 * have been relevant to this page.
 386 *
 387 * The page might have been remapped to a different anon_vma or the anon_vma
 388 * returned may already be freed (and even reused).
 389 *
 390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 392 * ensure that any anon_vma obtained from the page will still be valid for as
 393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 394 *
 395 * All users of this function must be very careful when walking the anon_vma
 396 * chain and verify that the page in question is indeed mapped in it
 397 * [ something equivalent to page_mapped_in_vma() ].
 398 *
 399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 400 * that the anon_vma pointer from page->mapping is valid if there is a
 401 * mapcount, we can dereference the anon_vma after observing those.
 402 */
 403struct anon_vma *page_get_anon_vma(struct page *page)
 404{
 405	struct anon_vma *anon_vma = NULL;
 406	unsigned long anon_mapping;
 407
 408	rcu_read_lock();
 409	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 410	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 411		goto out;
 412	if (!page_mapped(page))
 413		goto out;
 414
 415	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 416	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 417		anon_vma = NULL;
 418		goto out;
 419	}
 420
 421	/*
 422	 * If this page is still mapped, then its anon_vma cannot have been
 423	 * freed.  But if it has been unmapped, we have no security against the
 424	 * anon_vma structure being freed and reused (for another anon_vma:
 425	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 426	 * above cannot corrupt).
 427	 */
 428	if (!page_mapped(page)) {
 
 429		put_anon_vma(anon_vma);
 430		anon_vma = NULL;
 431	}
 432out:
 433	rcu_read_unlock();
 434
 435	return anon_vma;
 436}
 437
 438/*
 439 * Similar to page_get_anon_vma() except it locks the anon_vma.
 440 *
 441 * Its a little more complex as it tries to keep the fast path to a single
 442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 443 * reference like with page_get_anon_vma() and then block on the mutex.
 444 */
 445struct anon_vma *page_lock_anon_vma_read(struct page *page)
 446{
 447	struct anon_vma *anon_vma = NULL;
 448	struct anon_vma *root_anon_vma;
 449	unsigned long anon_mapping;
 450
 451	rcu_read_lock();
 452	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 453	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 454		goto out;
 455	if (!page_mapped(page))
 456		goto out;
 457
 458	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 459	root_anon_vma = ACCESS_ONCE(anon_vma->root);
 460	if (down_read_trylock(&root_anon_vma->rwsem)) {
 461		/*
 462		 * If the page is still mapped, then this anon_vma is still
 463		 * its anon_vma, and holding the mutex ensures that it will
 464		 * not go away, see anon_vma_free().
 465		 */
 466		if (!page_mapped(page)) {
 467			up_read(&root_anon_vma->rwsem);
 468			anon_vma = NULL;
 469		}
 470		goto out;
 471	}
 472
 473	/* trylock failed, we got to sleep */
 474	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 475		anon_vma = NULL;
 476		goto out;
 477	}
 478
 479	if (!page_mapped(page)) {
 
 480		put_anon_vma(anon_vma);
 481		anon_vma = NULL;
 482		goto out;
 483	}
 484
 485	/* we pinned the anon_vma, its safe to sleep */
 486	rcu_read_unlock();
 487	anon_vma_lock_read(anon_vma);
 488
 489	if (atomic_dec_and_test(&anon_vma->refcount)) {
 490		/*
 491		 * Oops, we held the last refcount, release the lock
 492		 * and bail -- can't simply use put_anon_vma() because
 493		 * we'll deadlock on the anon_vma_lock_write() recursion.
 494		 */
 495		anon_vma_unlock_read(anon_vma);
 496		__put_anon_vma(anon_vma);
 497		anon_vma = NULL;
 498	}
 499
 500	return anon_vma;
 501
 502out:
 503	rcu_read_unlock();
 504	return anon_vma;
 505}
 506
 507void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 508{
 509	anon_vma_unlock_read(anon_vma);
 510}
 511
 
 512/*
 513 * At what user virtual address is page expected in @vma?
 
 
 
 514 */
 515static inline unsigned long
 516__vma_address(struct page *page, struct vm_area_struct *vma)
 517{
 518	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 
 
 
 
 
 
 
 
 519
 520	if (unlikely(is_vm_hugetlb_page(vma)))
 521		pgoff = page->index << huge_page_order(page_hstate(page));
 
 
 522
 523	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 
 524}
 525
 526inline unsigned long
 527vma_address(struct page *page, struct vm_area_struct *vma)
 528{
 529	unsigned long address = __vma_address(page, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	/* page should be within @vma mapping range */
 532	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 
 
 
 
 
 533
 534	return address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535}
 
 536
 537/*
 538 * At what user virtual address is page expected in vma?
 539 * Caller should check the page is actually part of the vma.
 540 */
 541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 542{
 543	unsigned long address;
 544	if (PageAnon(page)) {
 545		struct anon_vma *page__anon_vma = page_anon_vma(page);
 546		/*
 547		 * Note: swapoff's unuse_vma() is more efficient with this
 548		 * check, and needs it to match anon_vma when KSM is active.
 549		 */
 550		if (!vma->anon_vma || !page__anon_vma ||
 551		    vma->anon_vma->root != page__anon_vma->root)
 552			return -EFAULT;
 553	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 554		if (!vma->vm_file ||
 555		    vma->vm_file->f_mapping != page->mapping)
 556			return -EFAULT;
 557	} else
 558		return -EFAULT;
 559	address = __vma_address(page, vma);
 560	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 561		return -EFAULT;
 562	return address;
 563}
 564
 565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 566{
 567	pgd_t *pgd;
 
 568	pud_t *pud;
 569	pmd_t *pmd = NULL;
 
 570
 571	pgd = pgd_offset(mm, address);
 572	if (!pgd_present(*pgd))
 573		goto out;
 574
 575	pud = pud_offset(pgd, address);
 
 
 
 
 576	if (!pud_present(*pud))
 577		goto out;
 578
 579	pmd = pmd_offset(pud, address);
 580	if (!pmd_present(*pmd))
 
 
 
 
 
 
 
 581		pmd = NULL;
 582out:
 583	return pmd;
 584}
 585
 586/*
 587 * Check that @page is mapped at @address into @mm.
 588 *
 589 * If @sync is false, page_check_address may perform a racy check to avoid
 590 * the page table lock when the pte is not present (helpful when reclaiming
 591 * highly shared pages).
 592 *
 593 * On success returns with pte mapped and locked.
 594 */
 595pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 596			  unsigned long address, spinlock_t **ptlp, int sync)
 597{
 598	pmd_t *pmd;
 599	pte_t *pte;
 600	spinlock_t *ptl;
 601
 602	if (unlikely(PageHuge(page))) {
 603		/* when pud is not present, pte will be NULL */
 604		pte = huge_pte_offset(mm, address);
 605		if (!pte)
 606			return NULL;
 607
 608		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 609		goto check;
 610	}
 611
 612	pmd = mm_find_pmd(mm, address);
 613	if (!pmd)
 614		return NULL;
 615
 616	if (pmd_trans_huge(*pmd))
 617		return NULL;
 618
 619	pte = pte_offset_map(pmd, address);
 620	/* Make a quick check before getting the lock */
 621	if (!sync && !pte_present(*pte)) {
 622		pte_unmap(pte);
 623		return NULL;
 624	}
 625
 626	ptl = pte_lockptr(mm, pmd);
 627check:
 628	spin_lock(ptl);
 629	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 630		*ptlp = ptl;
 631		return pte;
 632	}
 633	pte_unmap_unlock(pte, ptl);
 634	return NULL;
 635}
 636
 637/**
 638 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 639 * @page: the page to test
 640 * @vma: the VMA to test
 641 *
 642 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 643 * if the page is not mapped into the page tables of this VMA.  Only
 644 * valid for normal file or anonymous VMAs.
 645 */
 646int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 647{
 648	unsigned long address;
 649	pte_t *pte;
 650	spinlock_t *ptl;
 651
 652	address = __vma_address(page, vma);
 653	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 654		return 0;
 655	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 656	if (!pte)			/* the page is not in this mm */
 657		return 0;
 658	pte_unmap_unlock(pte, ptl);
 659
 660	return 1;
 661}
 662
 663struct page_referenced_arg {
 664	int mapcount;
 665	int referenced;
 666	unsigned long vm_flags;
 667	struct mem_cgroup *memcg;
 668};
 669/*
 670 * arg: page_referenced_arg will be passed
 671 */
 672int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 673			unsigned long address, void *arg)
 674{
 675	struct mm_struct *mm = vma->vm_mm;
 676	spinlock_t *ptl;
 
 
 
 
 677	int referenced = 0;
 678	struct page_referenced_arg *pra = arg;
 679
 680	if (unlikely(PageTransHuge(page))) {
 681		pmd_t *pmd;
 682
 683		/*
 684		 * rmap might return false positives; we must filter
 685		 * these out using page_check_address_pmd().
 686		 */
 687		pmd = page_check_address_pmd(page, mm, address,
 688					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
 689		if (!pmd)
 690			return SWAP_AGAIN;
 691
 692		if (vma->vm_flags & VM_LOCKED) {
 693			spin_unlock(ptl);
 694			pra->vm_flags |= VM_LOCKED;
 695			return SWAP_FAIL; /* To break the loop */
 696		}
 697
 698		/* go ahead even if the pmd is pmd_trans_splitting() */
 699		if (pmdp_clear_flush_young_notify(vma, address, pmd))
 700			referenced++;
 701		spin_unlock(ptl);
 702	} else {
 703		pte_t *pte;
 704
 705		/*
 706		 * rmap might return false positives; we must filter
 707		 * these out using page_check_address().
 708		 */
 709		pte = page_check_address(page, mm, address, &ptl, 0);
 710		if (!pte)
 711			return SWAP_AGAIN;
 712
 713		if (vma->vm_flags & VM_LOCKED) {
 714			pte_unmap_unlock(pte, ptl);
 715			pra->vm_flags |= VM_LOCKED;
 716			return SWAP_FAIL; /* To break the loop */
 
 
 717		}
 718
 719		if (ptep_clear_flush_young_notify(vma, address, pte)) {
 720			/*
 721			 * Don't treat a reference through a sequentially read
 722			 * mapping as such.  If the page has been used in
 723			 * another mapping, we will catch it; if this other
 724			 * mapping is already gone, the unmap path will have
 725			 * set PG_referenced or activated the page.
 726			 */
 727			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 728				referenced++;
 729		}
 730		pte_unmap_unlock(pte, ptl);
 731	}
 732
 
 
 
 
 
 733	if (referenced) {
 734		pra->referenced++;
 735		pra->vm_flags |= vma->vm_flags;
 736	}
 737
 738	pra->mapcount--;
 739	if (!pra->mapcount)
 740		return SWAP_SUCCESS; /* To break the loop */
 741
 742	return SWAP_AGAIN;
 743}
 744
 745static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 746{
 747	struct page_referenced_arg *pra = arg;
 748	struct mem_cgroup *memcg = pra->memcg;
 749
 750	if (!mm_match_cgroup(vma->vm_mm, memcg))
 751		return true;
 752
 753	return false;
 754}
 755
 756/**
 757 * page_referenced - test if the page was referenced
 758 * @page: the page to test
 759 * @is_locked: caller holds lock on the page
 760 * @memcg: target memory cgroup
 761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 762 *
 763 * Quick test_and_clear_referenced for all mappings to a page,
 764 * returns the number of ptes which referenced the page.
 765 */
 766int page_referenced(struct page *page,
 767		    int is_locked,
 768		    struct mem_cgroup *memcg,
 769		    unsigned long *vm_flags)
 770{
 771	int ret;
 772	int we_locked = 0;
 773	struct page_referenced_arg pra = {
 774		.mapcount = page_mapcount(page),
 775		.memcg = memcg,
 776	};
 777	struct rmap_walk_control rwc = {
 778		.rmap_one = page_referenced_one,
 779		.arg = (void *)&pra,
 780		.anon_lock = page_lock_anon_vma_read,
 781	};
 782
 783	*vm_flags = 0;
 784	if (!page_mapped(page))
 785		return 0;
 786
 787	if (!page_rmapping(page))
 788		return 0;
 789
 790	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 791		we_locked = trylock_page(page);
 792		if (!we_locked)
 793			return 1;
 794	}
 795
 796	/*
 797	 * If we are reclaiming on behalf of a cgroup, skip
 798	 * counting on behalf of references from different
 799	 * cgroups
 800	 */
 801	if (memcg) {
 802		rwc.invalid_vma = invalid_page_referenced_vma;
 803	}
 804
 805	ret = rmap_walk(page, &rwc);
 806	*vm_flags = pra.vm_flags;
 807
 808	if (we_locked)
 809		unlock_page(page);
 810
 811	return pra.referenced;
 812}
 813
 814static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 815			    unsigned long address, void *arg)
 816{
 817	struct mm_struct *mm = vma->vm_mm;
 818	pte_t *pte;
 819	spinlock_t *ptl;
 820	int ret = 0;
 
 
 
 821	int *cleaned = arg;
 822
 823	pte = page_check_address(page, mm, address, &ptl, 1);
 824	if (!pte)
 825		goto out;
 
 
 
 826
 827	if (pte_dirty(*pte) || pte_write(*pte)) {
 828		pte_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830		flush_cache_page(vma, address, pte_pfn(*pte));
 831		entry = ptep_clear_flush(vma, address, pte);
 832		entry = pte_wrprotect(entry);
 833		entry = pte_mkclean(entry);
 834		set_pte_at(mm, address, pte, entry);
 835		ret = 1;
 836	}
 837
 838	pte_unmap_unlock(pte, ptl);
 839
 840	if (ret) {
 841		mmu_notifier_invalidate_page(mm, address);
 842		(*cleaned)++;
 843	}
 844out:
 845	return SWAP_AGAIN;
 
 
 846}
 847
 848static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 849{
 850	if (vma->vm_flags & VM_SHARED)
 851		return false;
 852
 853	return true;
 854}
 855
 856int page_mkclean(struct page *page)
 857{
 858	int cleaned = 0;
 859	struct address_space *mapping;
 860	struct rmap_walk_control rwc = {
 861		.arg = (void *)&cleaned,
 862		.rmap_one = page_mkclean_one,
 863		.invalid_vma = invalid_mkclean_vma,
 864	};
 865
 866	BUG_ON(!PageLocked(page));
 867
 868	if (!page_mapped(page))
 869		return 0;
 870
 871	mapping = page_mapping(page);
 872	if (!mapping)
 873		return 0;
 874
 875	rmap_walk(page, &rwc);
 876
 877	return cleaned;
 878}
 879EXPORT_SYMBOL_GPL(page_mkclean);
 880
 881/**
 882 * page_move_anon_rmap - move a page to our anon_vma
 883 * @page:	the page to move to our anon_vma
 884 * @vma:	the vma the page belongs to
 885 * @address:	the user virtual address mapped
 886 *
 887 * When a page belongs exclusively to one process after a COW event,
 888 * that page can be moved into the anon_vma that belongs to just that
 889 * process, so the rmap code will not search the parent or sibling
 890 * processes.
 891 */
 892void page_move_anon_rmap(struct page *page,
 893	struct vm_area_struct *vma, unsigned long address)
 894{
 895	struct anon_vma *anon_vma = vma->anon_vma;
 896
 
 
 897	VM_BUG_ON_PAGE(!PageLocked(page), page);
 898	VM_BUG_ON(!anon_vma);
 899	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
 900
 901	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 902	page->mapping = (struct address_space *) anon_vma;
 
 
 
 
 
 903}
 904
 905/**
 906 * __page_set_anon_rmap - set up new anonymous rmap
 907 * @page:	Page to add to rmap	
 908 * @vma:	VM area to add page to.
 909 * @address:	User virtual address of the mapping	
 910 * @exclusive:	the page is exclusively owned by the current process
 911 */
 912static void __page_set_anon_rmap(struct page *page,
 913	struct vm_area_struct *vma, unsigned long address, int exclusive)
 914{
 915	struct anon_vma *anon_vma = vma->anon_vma;
 916
 917	BUG_ON(!anon_vma);
 918
 919	if (PageAnon(page))
 920		return;
 921
 922	/*
 923	 * If the page isn't exclusively mapped into this vma,
 924	 * we must use the _oldest_ possible anon_vma for the
 925	 * page mapping!
 926	 */
 927	if (!exclusive)
 928		anon_vma = anon_vma->root;
 929
 930	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 931	page->mapping = (struct address_space *) anon_vma;
 932	page->index = linear_page_index(vma, address);
 933}
 934
 935/**
 936 * __page_check_anon_rmap - sanity check anonymous rmap addition
 937 * @page:	the page to add the mapping to
 938 * @vma:	the vm area in which the mapping is added
 939 * @address:	the user virtual address mapped
 940 */
 941static void __page_check_anon_rmap(struct page *page,
 942	struct vm_area_struct *vma, unsigned long address)
 943{
 944#ifdef CONFIG_DEBUG_VM
 945	/*
 946	 * The page's anon-rmap details (mapping and index) are guaranteed to
 947	 * be set up correctly at this point.
 948	 *
 949	 * We have exclusion against page_add_anon_rmap because the caller
 950	 * always holds the page locked, except if called from page_dup_rmap,
 951	 * in which case the page is already known to be setup.
 952	 *
 953	 * We have exclusion against page_add_new_anon_rmap because those pages
 954	 * are initially only visible via the pagetables, and the pte is locked
 955	 * over the call to page_add_new_anon_rmap.
 956	 */
 957	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
 958	BUG_ON(page->index != linear_page_index(vma, address));
 959#endif
 960}
 961
 962/**
 963 * page_add_anon_rmap - add pte mapping to an anonymous page
 964 * @page:	the page to add the mapping to
 965 * @vma:	the vm area in which the mapping is added
 966 * @address:	the user virtual address mapped
 
 967 *
 968 * The caller needs to hold the pte lock, and the page must be locked in
 969 * the anon_vma case: to serialize mapping,index checking after setting,
 970 * and to ensure that PageAnon is not being upgraded racily to PageKsm
 971 * (but PageKsm is never downgraded to PageAnon).
 972 */
 973void page_add_anon_rmap(struct page *page,
 974	struct vm_area_struct *vma, unsigned long address)
 975{
 976	do_page_add_anon_rmap(page, vma, address, 0);
 977}
 978
 979/*
 980 * Special version of the above for do_swap_page, which often runs
 981 * into pages that are exclusively owned by the current process.
 982 * Everybody else should continue to use page_add_anon_rmap above.
 983 */
 984void do_page_add_anon_rmap(struct page *page,
 985	struct vm_area_struct *vma, unsigned long address, int exclusive)
 986{
 987	int first = atomic_inc_and_test(&page->_mapcount);
 
 
 
 
 
 
 
 
 
 
 
 
 988	if (first) {
 989		if (PageTransHuge(page))
 990			__inc_zone_page_state(page,
 991					      NR_ANON_TRANSPARENT_HUGEPAGES);
 992		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
 993				hpage_nr_pages(page));
 
 
 
 
 
 994	}
 995	if (unlikely(PageKsm(page)))
 996		return;
 997
 998	VM_BUG_ON_PAGE(!PageLocked(page), page);
 
 999	/* address might be in next vma when migration races vma_adjust */
1000	if (first)
1001		__page_set_anon_rmap(page, vma, address, exclusive);
 
1002	else
1003		__page_check_anon_rmap(page, vma, address);
1004}
1005
1006/**
1007 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1008 * @page:	the page to add the mapping to
1009 * @vma:	the vm area in which the mapping is added
1010 * @address:	the user virtual address mapped
 
1011 *
1012 * Same as page_add_anon_rmap but must only be called on *new* pages.
1013 * This means the inc-and-test can be bypassed.
1014 * Page does not have to be locked.
1015 */
1016void page_add_new_anon_rmap(struct page *page,
1017	struct vm_area_struct *vma, unsigned long address)
1018{
1019	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1020	SetPageSwapBacked(page);
1021	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1022	if (PageTransHuge(page))
1023		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1024	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1025			hpage_nr_pages(page));
 
 
 
 
 
 
 
 
 
1026	__page_set_anon_rmap(page, vma, address, 1);
1027	if (!mlocked_vma_newpage(vma, page)) {
1028		SetPageActive(page);
1029		lru_cache_add(page);
1030	} else
1031		add_page_to_unevictable_list(page);
1032}
1033
1034/**
1035 * page_add_file_rmap - add pte mapping to a file page
1036 * @page: the page to add the mapping to
 
1037 *
1038 * The caller needs to hold the pte lock.
1039 */
1040void page_add_file_rmap(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041{
1042	bool locked;
1043	unsigned long flags;
 
 
 
 
 
 
 
 
 
1044
1045	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1046	if (atomic_inc_and_test(&page->_mapcount)) {
1047		__inc_zone_page_state(page, NR_FILE_MAPPED);
1048		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049	}
1050	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1051}
1052
1053/**
1054 * page_remove_rmap - take down pte mapping from a page
1055 * @page: page to remove mapping from
 
1056 *
1057 * The caller needs to hold the pte lock.
1058 */
1059void page_remove_rmap(struct page *page)
1060{
1061	bool anon = PageAnon(page);
1062	bool locked;
1063	unsigned long flags;
1064
1065	/*
1066	 * The anon case has no mem_cgroup page_stat to update; but may
1067	 * uncharge_page() below, where the lock ordering can deadlock if
1068	 * we hold the lock against page_stat move: so avoid it on anon.
1069	 */
1070	if (!anon)
1071		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072
1073	/* page still mapped by someone else? */
1074	if (!atomic_add_negative(-1, &page->_mapcount))
1075		goto out;
1076
1077	/*
1078	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1079	 * and not charged by memcg for now.
 
1080	 */
1081	if (unlikely(PageHuge(page)))
1082		goto out;
1083	if (anon) {
1084		mem_cgroup_uncharge_page(page);
1085		if (PageTransHuge(page))
1086			__dec_zone_page_state(page,
1087					      NR_ANON_TRANSPARENT_HUGEPAGES);
1088		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089				-hpage_nr_pages(page));
1090	} else {
1091		__dec_zone_page_state(page, NR_FILE_MAPPED);
1092		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1093		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1094	}
1095	if (unlikely(PageMlocked(page)))
1096		clear_page_mlock(page);
 
 
 
 
1097	/*
1098	 * It would be tidy to reset the PageAnon mapping here,
1099	 * but that might overwrite a racing page_add_anon_rmap
1100	 * which increments mapcount after us but sets mapping
1101	 * before us: so leave the reset to free_hot_cold_page,
1102	 * and remember that it's only reliable while mapped.
1103	 * Leaving it set also helps swapoff to reinstate ptes
1104	 * faster for those pages still in swapcache.
1105	 */
1106	return;
1107out:
1108	if (!anon)
1109		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1110}
1111
1112/*
1113 * @arg: enum ttu_flags will be passed to this argument
1114 */
1115int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1116		     unsigned long address, void *arg)
1117{
1118	struct mm_struct *mm = vma->vm_mm;
1119	pte_t *pte;
 
 
 
 
1120	pte_t pteval;
1121	spinlock_t *ptl;
1122	int ret = SWAP_AGAIN;
 
1123	enum ttu_flags flags = (enum ttu_flags)arg;
1124
1125	pte = page_check_address(page, mm, address, &ptl, 0);
1126	if (!pte)
1127		goto out;
 
 
 
 
 
 
 
 
 
1128
1129	/*
1130	 * If the page is mlock()d, we cannot swap it out.
1131	 * If it's recently referenced (perhaps page_referenced
1132	 * skipped over this mm) then we should reactivate it.
1133	 */
1134	if (!(flags & TTU_IGNORE_MLOCK)) {
1135		if (vma->vm_flags & VM_LOCKED)
1136			goto out_mlock;
1137
1138		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1139			goto out_unmap;
1140	}
1141	if (!(flags & TTU_IGNORE_ACCESS)) {
1142		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1143			ret = SWAP_FAIL;
1144			goto out_unmap;
1145		}
1146  	}
1147
1148	/* Nuke the page table entry. */
1149	flush_cache_page(vma, address, page_to_pfn(page));
1150	pteval = ptep_clear_flush(vma, address, pte);
1151
1152	/* Move the dirty bit to the physical page now the pte is gone. */
1153	if (pte_dirty(pteval))
1154		set_page_dirty(page);
1155
1156	/* Update high watermark before we lower rss */
1157	update_hiwater_rss(mm);
1158
1159	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1160		if (!PageHuge(page)) {
1161			if (PageAnon(page))
1162				dec_mm_counter(mm, MM_ANONPAGES);
1163			else
1164				dec_mm_counter(mm, MM_FILEPAGES);
1165		}
1166		set_pte_at(mm, address, pte,
1167			   swp_entry_to_pte(make_hwpoison_entry(page)));
1168	} else if (pte_unused(pteval)) {
1169		/*
1170		 * The guest indicated that the page content is of no
1171		 * interest anymore. Simply discard the pte, vmscan
1172		 * will take care of the rest.
1173		 */
1174		if (PageAnon(page))
1175			dec_mm_counter(mm, MM_ANONPAGES);
1176		else
1177			dec_mm_counter(mm, MM_FILEPAGES);
1178	} else if (PageAnon(page)) {
1179		swp_entry_t entry = { .val = page_private(page) };
1180		pte_t swp_pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181
1182		if (PageSwapCache(page)) {
1183			/*
1184			 * Store the swap location in the pte.
1185			 * See handle_pte_fault() ...
1186			 */
1187			if (swap_duplicate(entry) < 0) {
1188				set_pte_at(mm, address, pte, pteval);
1189				ret = SWAP_FAIL;
1190				goto out_unmap;
1191			}
1192			if (list_empty(&mm->mmlist)) {
1193				spin_lock(&mmlist_lock);
1194				if (list_empty(&mm->mmlist))
1195					list_add(&mm->mmlist, &init_mm.mmlist);
1196				spin_unlock(&mmlist_lock);
1197			}
1198			dec_mm_counter(mm, MM_ANONPAGES);
1199			inc_mm_counter(mm, MM_SWAPENTS);
1200		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1201			/*
1202			 * Store the pfn of the page in a special migration
1203			 * pte. do_swap_page() will wait until the migration
1204			 * pte is removed and then restart fault handling.
1205			 */
1206			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1207			entry = make_migration_entry(page, pte_write(pteval));
 
 
 
 
 
 
 
 
1208		}
1209		swp_pte = swp_entry_to_pte(entry);
1210		if (pte_soft_dirty(pteval))
1211			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1212		set_pte_at(mm, address, pte, swp_pte);
1213		BUG_ON(pte_file(*pte));
1214	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1215		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1216		/* Establish migration entry for a file page */
1217		swp_entry_t entry;
1218		entry = make_migration_entry(page, pte_write(pteval));
1219		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1220	} else
1221		dec_mm_counter(mm, MM_FILEPAGES);
1222
1223	page_remove_rmap(page);
1224	page_cache_release(page);
1225
1226out_unmap:
1227	pte_unmap_unlock(pte, ptl);
1228	if (ret != SWAP_FAIL)
1229		mmu_notifier_invalidate_page(mm, address);
1230out:
1231	return ret;
1232
1233out_mlock:
1234	pte_unmap_unlock(pte, ptl);
1235
 
 
 
 
 
 
 
 
 
 
 
 
1236
1237	/*
1238	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1239	 * unstable result and race. Plus, We can't wait here because
1240	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1241	 * if trylock failed, the page remain in evictable lru and later
1242	 * vmscan could retry to move the page to unevictable lru if the
1243	 * page is actually mlocked.
1244	 */
1245	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1246		if (vma->vm_flags & VM_LOCKED) {
1247			mlock_vma_page(page);
1248			ret = SWAP_MLOCK;
1249		}
1250		up_read(&vma->vm_mm->mmap_sem);
1251	}
1252	return ret;
1253}
1254
1255/*
1256 * objrmap doesn't work for nonlinear VMAs because the assumption that
1257 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1258 * Consequently, given a particular page and its ->index, we cannot locate the
1259 * ptes which are mapping that page without an exhaustive linear search.
1260 *
1261 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1262 * maps the file to which the target page belongs.  The ->vm_private_data field
1263 * holds the current cursor into that scan.  Successive searches will circulate
1264 * around the vma's virtual address space.
1265 *
1266 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1267 * more scanning pressure is placed against them as well.   Eventually pages
1268 * will become fully unmapped and are eligible for eviction.
1269 *
1270 * For very sparsely populated VMAs this is a little inefficient - chances are
1271 * there there won't be many ptes located within the scan cluster.  In this case
1272 * maybe we could scan further - to the end of the pte page, perhaps.
1273 *
1274 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1275 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1276 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1277 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1278 */
1279#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1280#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1281
1282static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1283		struct vm_area_struct *vma, struct page *check_page)
1284{
1285	struct mm_struct *mm = vma->vm_mm;
1286	pmd_t *pmd;
1287	pte_t *pte;
1288	pte_t pteval;
1289	spinlock_t *ptl;
1290	struct page *page;
1291	unsigned long address;
1292	unsigned long mmun_start;	/* For mmu_notifiers */
1293	unsigned long mmun_end;		/* For mmu_notifiers */
1294	unsigned long end;
1295	int ret = SWAP_AGAIN;
1296	int locked_vma = 0;
1297
1298	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1299	end = address + CLUSTER_SIZE;
1300	if (address < vma->vm_start)
1301		address = vma->vm_start;
1302	if (end > vma->vm_end)
1303		end = vma->vm_end;
 
 
 
 
 
 
1304
1305	pmd = mm_find_pmd(mm, address);
1306	if (!pmd)
1307		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
1309	mmun_start = address;
1310	mmun_end   = end;
1311	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1312
1313	/*
1314	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1315	 * keep the sem while scanning the cluster for mlocking pages.
1316	 */
1317	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1318		locked_vma = (vma->vm_flags & VM_LOCKED);
1319		if (!locked_vma)
1320			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1321	}
1322
1323	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324
1325	/* Update high watermark before we lower rss */
1326	update_hiwater_rss(mm);
 
 
 
 
 
 
 
1327
1328	for (; address < end; pte++, address += PAGE_SIZE) {
1329		if (!pte_present(*pte))
1330			continue;
1331		page = vm_normal_page(vma, address, *pte);
1332		BUG_ON(!page || PageAnon(page));
1333
1334		if (locked_vma) {
1335			if (page == check_page) {
1336				/* we know we have check_page locked */
1337				mlock_vma_page(page);
1338				ret = SWAP_MLOCK;
1339			} else if (trylock_page(page)) {
1340				/*
1341				 * If we can lock the page, perform mlock.
1342				 * Otherwise leave the page alone, it will be
1343				 * eventually encountered again later.
1344				 */
1345				mlock_vma_page(page);
1346				unlock_page(page);
 
 
 
1347			}
1348			continue;	/* don't unmap */
1349		}
1350
1351		if (ptep_clear_flush_young_notify(vma, address, pte))
1352			continue;
1353
1354		/* Nuke the page table entry. */
1355		flush_cache_page(vma, address, pte_pfn(*pte));
1356		pteval = ptep_clear_flush(vma, address, pte);
1357
1358		/* If nonlinear, store the file page offset in the pte. */
1359		if (page->index != linear_page_index(vma, address)) {
1360			pte_t ptfile = pgoff_to_pte(page->index);
 
 
 
 
 
 
 
 
 
 
 
1361			if (pte_soft_dirty(pteval))
1362				pte_file_mksoft_dirty(ptfile);
1363			set_pte_at(mm, address, pte, ptfile);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364		}
1365
1366		/* Move the dirty bit to the physical page now the pte is gone. */
1367		if (pte_dirty(pteval))
1368			set_page_dirty(page);
1369
1370		page_remove_rmap(page);
1371		page_cache_release(page);
1372		dec_mm_counter(mm, MM_FILEPAGES);
1373		(*mapcount)--;
1374	}
1375	pte_unmap_unlock(pte - 1, ptl);
1376	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1377	if (locked_vma)
1378		up_read(&vma->vm_mm->mmap_sem);
1379	return ret;
1380}
1381
1382static int try_to_unmap_nonlinear(struct page *page,
1383		struct address_space *mapping, void *arg)
1384{
1385	struct vm_area_struct *vma;
1386	int ret = SWAP_AGAIN;
1387	unsigned long cursor;
1388	unsigned long max_nl_cursor = 0;
1389	unsigned long max_nl_size = 0;
1390	unsigned int mapcount;
1391
1392	list_for_each_entry(vma,
1393		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1394
1395		cursor = (unsigned long) vma->vm_private_data;
1396		if (cursor > max_nl_cursor)
1397			max_nl_cursor = cursor;
1398		cursor = vma->vm_end - vma->vm_start;
1399		if (cursor > max_nl_size)
1400			max_nl_size = cursor;
1401	}
1402
1403	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1404		return SWAP_FAIL;
1405	}
1406
1407	/*
1408	 * We don't try to search for this page in the nonlinear vmas,
1409	 * and page_referenced wouldn't have found it anyway.  Instead
1410	 * just walk the nonlinear vmas trying to age and unmap some.
1411	 * The mapcount of the page we came in with is irrelevant,
1412	 * but even so use it as a guide to how hard we should try?
1413	 */
1414	mapcount = page_mapcount(page);
1415	if (!mapcount)
1416		return ret;
1417
1418	cond_resched();
1419
1420	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1421	if (max_nl_cursor == 0)
1422		max_nl_cursor = CLUSTER_SIZE;
1423
1424	do {
1425		list_for_each_entry(vma,
1426			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1427
1428			cursor = (unsigned long) vma->vm_private_data;
1429			while (cursor < max_nl_cursor &&
1430				cursor < vma->vm_end - vma->vm_start) {
1431				if (try_to_unmap_cluster(cursor, &mapcount,
1432						vma, page) == SWAP_MLOCK)
1433					ret = SWAP_MLOCK;
1434				cursor += CLUSTER_SIZE;
1435				vma->vm_private_data = (void *) cursor;
1436				if ((int)mapcount <= 0)
1437					return ret;
1438			}
1439			vma->vm_private_data = (void *) max_nl_cursor;
1440		}
1441		cond_resched();
1442		max_nl_cursor += CLUSTER_SIZE;
1443	} while (max_nl_cursor <= max_nl_size);
1444
1445	/*
1446	 * Don't loop forever (perhaps all the remaining pages are
1447	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1448	 * vmas, now forgetting on which ones it had fallen behind.
1449	 */
1450	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1451		vma->vm_private_data = NULL;
1452
1453	return ret;
1454}
1455
1456bool is_vma_temporary_stack(struct vm_area_struct *vma)
1457{
1458	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1459
1460	if (!maybe_stack)
1461		return false;
1462
1463	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1464						VM_STACK_INCOMPLETE_SETUP)
1465		return true;
1466
1467	return false;
1468}
1469
1470static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1471{
1472	return is_vma_temporary_stack(vma);
1473}
1474
1475static int page_not_mapped(struct page *page)
1476{
1477	return !page_mapped(page);
1478};
1479
1480/**
1481 * try_to_unmap - try to remove all page table mappings to a page
1482 * @page: the page to get unmapped
1483 * @flags: action and flags
1484 *
1485 * Tries to remove all the page table entries which are mapping this
1486 * page, used in the pageout path.  Caller must hold the page lock.
1487 * Return values are:
1488 *
1489 * SWAP_SUCCESS	- we succeeded in removing all mappings
1490 * SWAP_AGAIN	- we missed a mapping, try again later
1491 * SWAP_FAIL	- the page is unswappable
1492 * SWAP_MLOCK	- page is mlocked.
1493 */
1494int try_to_unmap(struct page *page, enum ttu_flags flags)
1495{
1496	int ret;
1497	struct rmap_walk_control rwc = {
1498		.rmap_one = try_to_unmap_one,
1499		.arg = (void *)flags,
1500		.done = page_not_mapped,
1501		.file_nonlinear = try_to_unmap_nonlinear,
1502		.anon_lock = page_lock_anon_vma_read,
1503	};
1504
1505	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1506
1507	/*
1508	 * During exec, a temporary VMA is setup and later moved.
1509	 * The VMA is moved under the anon_vma lock but not the
1510	 * page tables leading to a race where migration cannot
1511	 * find the migration ptes. Rather than increasing the
1512	 * locking requirements of exec(), migration skips
1513	 * temporary VMAs until after exec() completes.
1514	 */
1515	if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
 
1516		rwc.invalid_vma = invalid_migration_vma;
1517
1518	ret = rmap_walk(page, &rwc);
 
 
 
1519
1520	if (ret != SWAP_MLOCK && !page_mapped(page))
1521		ret = SWAP_SUCCESS;
1522	return ret;
1523}
1524
 
 
 
 
 
1525/**
1526 * try_to_munlock - try to munlock a page
1527 * @page: the page to be munlocked
1528 *
1529 * Called from munlock code.  Checks all of the VMAs mapping the page
1530 * to make sure nobody else has this page mlocked. The page will be
1531 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1532 *
1533 * Return values are:
1534 *
1535 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1536 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1537 * SWAP_FAIL	- page cannot be located at present
1538 * SWAP_MLOCK	- page is now mlocked.
1539 */
1540int try_to_munlock(struct page *page)
 
1541{
1542	int ret;
1543	struct rmap_walk_control rwc = {
1544		.rmap_one = try_to_unmap_one,
1545		.arg = (void *)TTU_MUNLOCK,
1546		.done = page_not_mapped,
1547		/*
1548		 * We don't bother to try to find the munlocked page in
1549		 * nonlinears. It's costly. Instead, later, page reclaim logic
1550		 * may call try_to_unmap() and recover PG_mlocked lazily.
1551		 */
1552		.file_nonlinear = NULL,
1553		.anon_lock = page_lock_anon_vma_read,
1554
1555	};
1556
1557	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
 
1558
1559	ret = rmap_walk(page, &rwc);
1560	return ret;
1561}
1562
1563void __put_anon_vma(struct anon_vma *anon_vma)
1564{
1565	struct anon_vma *root = anon_vma->root;
1566
1567	anon_vma_free(anon_vma);
1568	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1569		anon_vma_free(root);
1570}
1571
1572static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1573					struct rmap_walk_control *rwc)
1574{
1575	struct anon_vma *anon_vma;
1576
1577	if (rwc->anon_lock)
1578		return rwc->anon_lock(page);
1579
1580	/*
1581	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1582	 * because that depends on page_mapped(); but not all its usages
1583	 * are holding mmap_sem. Users without mmap_sem are required to
1584	 * take a reference count to prevent the anon_vma disappearing
1585	 */
1586	anon_vma = page_anon_vma(page);
1587	if (!anon_vma)
1588		return NULL;
1589
1590	anon_vma_lock_read(anon_vma);
1591	return anon_vma;
1592}
1593
1594/*
1595 * rmap_walk_anon - do something to anonymous page using the object-based
1596 * rmap method
1597 * @page: the page to be handled
1598 * @rwc: control variable according to each walk type
1599 *
1600 * Find all the mappings of a page using the mapping pointer and the vma chains
1601 * contained in the anon_vma struct it points to.
1602 *
1603 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1604 * where the page was found will be held for write.  So, we won't recheck
1605 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1606 * LOCKED.
1607 */
1608static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
 
1609{
1610	struct anon_vma *anon_vma;
1611	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1612	struct anon_vma_chain *avc;
1613	int ret = SWAP_AGAIN;
1614
1615	anon_vma = rmap_walk_anon_lock(page, rwc);
 
 
 
 
 
 
1616	if (!anon_vma)
1617		return ret;
1618
1619	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
 
 
 
1620		struct vm_area_struct *vma = avc->vma;
1621		unsigned long address = vma_address(page, vma);
1622
 
 
1623		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1624			continue;
1625
1626		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1627		if (ret != SWAP_AGAIN)
1628			break;
1629		if (rwc->done && rwc->done(page))
1630			break;
1631	}
1632	anon_vma_unlock_read(anon_vma);
1633	return ret;
 
1634}
1635
1636/*
1637 * rmap_walk_file - do something to file page using the object-based rmap method
1638 * @page: the page to be handled
1639 * @rwc: control variable according to each walk type
1640 *
1641 * Find all the mappings of a page using the mapping pointer and the vma chains
1642 * contained in the address_space struct it points to.
1643 *
1644 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1645 * where the page was found will be held for write.  So, we won't recheck
1646 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1647 * LOCKED.
1648 */
1649static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
 
1650{
1651	struct address_space *mapping = page->mapping;
1652	pgoff_t pgoff = page->index << compound_order(page);
1653	struct vm_area_struct *vma;
1654	int ret = SWAP_AGAIN;
1655
1656	/*
1657	 * The page lock not only makes sure that page->mapping cannot
1658	 * suddenly be NULLified by truncation, it makes sure that the
1659	 * structure at mapping cannot be freed and reused yet,
1660	 * so we can safely take mapping->i_mmap_mutex.
1661	 */
1662	VM_BUG_ON(!PageLocked(page));
1663
1664	if (!mapping)
1665		return ret;
1666	mutex_lock(&mapping->i_mmap_mutex);
1667	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 
 
 
 
 
1668		unsigned long address = vma_address(page, vma);
1669
 
 
1670		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1671			continue;
1672
1673		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1674		if (ret != SWAP_AGAIN)
1675			goto done;
1676		if (rwc->done && rwc->done(page))
1677			goto done;
1678	}
1679
1680	if (!rwc->file_nonlinear)
1681		goto done;
1682
1683	if (list_empty(&mapping->i_mmap_nonlinear))
1684		goto done;
1685
1686	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1687
1688done:
1689	mutex_unlock(&mapping->i_mmap_mutex);
1690	return ret;
1691}
1692
1693int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1694{
1695	if (unlikely(PageKsm(page)))
1696		return rmap_walk_ksm(page, rwc);
1697	else if (PageAnon(page))
1698		return rmap_walk_anon(page, rwc);
 
 
 
 
 
 
 
 
 
 
 
1699	else
1700		return rmap_walk_file(page, rwc);
1701}
1702
1703#ifdef CONFIG_HUGETLB_PAGE
1704/*
1705 * The following three functions are for anonymous (private mapped) hugepages.
1706 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1707 * and no lru code, because we handle hugepages differently from common pages.
1708 */
1709static void __hugepage_set_anon_rmap(struct page *page,
1710	struct vm_area_struct *vma, unsigned long address, int exclusive)
1711{
1712	struct anon_vma *anon_vma = vma->anon_vma;
1713
1714	BUG_ON(!anon_vma);
1715
1716	if (PageAnon(page))
1717		return;
1718	if (!exclusive)
1719		anon_vma = anon_vma->root;
1720
1721	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1722	page->mapping = (struct address_space *) anon_vma;
1723	page->index = linear_page_index(vma, address);
1724}
1725
1726void hugepage_add_anon_rmap(struct page *page,
1727			    struct vm_area_struct *vma, unsigned long address)
1728{
1729	struct anon_vma *anon_vma = vma->anon_vma;
1730	int first;
1731
1732	BUG_ON(!PageLocked(page));
1733	BUG_ON(!anon_vma);
1734	/* address might be in next vma when migration races vma_adjust */
1735	first = atomic_inc_and_test(&page->_mapcount);
1736	if (first)
1737		__hugepage_set_anon_rmap(page, vma, address, 0);
1738}
1739
1740void hugepage_add_new_anon_rmap(struct page *page,
1741			struct vm_area_struct *vma, unsigned long address)
1742{
1743	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1744	atomic_set(&page->_mapcount, 0);
1745	__hugepage_set_anon_rmap(page, vma, address, 1);
1746}
1747#endif /* CONFIG_HUGETLB_PAGE */