Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mman.h>
 15#include <linux/swap.h>
 16#include <linux/swapops.h>
 17#include <linux/security.h>
 18#include <linux/module.h>
 19#include <linux/debugfs.h>
 20#include <linux/frontswap.h>
 21#include <linux/swapfile.h>
 22
 23DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
 24
 25/*
 26 * frontswap_ops are added by frontswap_register_ops, and provide the
 27 * frontswap "backend" implementation functions.  Multiple implementations
 28 * may be registered, but implementations can never deregister.  This
 29 * is a simple singly-linked list of all registered implementations.
 30 */
 31static struct frontswap_ops *frontswap_ops __read_mostly;
 32
 33#define for_each_frontswap_ops(ops)		\
 34	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
 35
 36/*
 37 * If enabled, frontswap_store will return failure even on success.  As
 38 * a result, the swap subsystem will always write the page to swap, in
 39 * effect converting frontswap into a writethrough cache.  In this mode,
 40 * there is no direct reduction in swap writes, but a frontswap backend
 41 * can unilaterally "reclaim" any pages in use with no data loss, thus
 42 * providing increases control over maximum memory usage due to frontswap.
 43 */
 44static bool frontswap_writethrough_enabled __read_mostly;
 45
 46/*
 47 * If enabled, the underlying tmem implementation is capable of doing
 48 * exclusive gets, so frontswap_load, on a successful tmem_get must
 49 * mark the page as no longer in frontswap AND mark it dirty.
 50 */
 51static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 52
 53#ifdef CONFIG_DEBUG_FS
 54/*
 55 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 56 * properly configured).  These are for information only so are not protected
 57 * against increment races.
 58 */
 59static u64 frontswap_loads;
 60static u64 frontswap_succ_stores;
 61static u64 frontswap_failed_stores;
 62static u64 frontswap_invalidates;
 63
 64static inline void inc_frontswap_loads(void) {
 65	frontswap_loads++;
 66}
 67static inline void inc_frontswap_succ_stores(void) {
 68	frontswap_succ_stores++;
 69}
 70static inline void inc_frontswap_failed_stores(void) {
 71	frontswap_failed_stores++;
 72}
 73static inline void inc_frontswap_invalidates(void) {
 74	frontswap_invalidates++;
 75}
 76#else
 77static inline void inc_frontswap_loads(void) { }
 78static inline void inc_frontswap_succ_stores(void) { }
 79static inline void inc_frontswap_failed_stores(void) { }
 80static inline void inc_frontswap_invalidates(void) { }
 81#endif
 82
 83/*
 84 * Due to the asynchronous nature of the backends loading potentially
 85 * _after_ the swap system has been activated, we have chokepoints
 86 * on all frontswap functions to not call the backend until the backend
 87 * has registered.
 88 *
 
 
 
 
 
 
 
 
 
 89 * This would not guards us against the user deciding to call swapoff right as
 90 * we are calling the backend to initialize (so swapon is in action).
 91 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 92 * OK. The other scenario where calls to frontswap_store (called via
 93 * swap_writepage) is racing with frontswap_invalidate_area (called via
 94 * swapoff) is again guarded by the swap subsystem.
 95 *
 96 * While no backend is registered all calls to frontswap_[store|load|
 97 * invalidate_area|invalidate_page] are ignored or fail.
 98 *
 99 * The time between the backend being registered and the swap file system
100 * calling the backend (via the frontswap_* functions) is indeterminate as
101 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
102 * That is OK as we are comfortable missing some of these calls to the newly
103 * registered backend.
104 *
105 * Obviously the opposite (unloading the backend) must be done after all
106 * the frontswap_[store|load|invalidate_area|invalidate_page] start
107 * ignoring or failing the requests.  However, there is currently no way
108 * to unload a backend once it is registered.
109 */
 
110
111/*
112 * Register operations for frontswap
 
113 */
114void frontswap_register_ops(struct frontswap_ops *ops)
115{
116	DECLARE_BITMAP(a, MAX_SWAPFILES);
117	DECLARE_BITMAP(b, MAX_SWAPFILES);
118	struct swap_info_struct *si;
119	unsigned int i;
120
121	bitmap_zero(a, MAX_SWAPFILES);
122	bitmap_zero(b, MAX_SWAPFILES);
123
124	spin_lock(&swap_lock);
125	plist_for_each_entry(si, &swap_active_head, list) {
126		if (!WARN_ON(!si->frontswap_map))
127			set_bit(si->type, a);
128	}
129	spin_unlock(&swap_lock);
130
131	/* the new ops needs to know the currently active swap devices */
132	for_each_set_bit(i, a, MAX_SWAPFILES)
133		ops->init(i);
134
135	/*
136	 * Setting frontswap_ops must happen after the ops->init() calls
137	 * above; cmpxchg implies smp_mb() which will ensure the init is
138	 * complete at this point.
139	 */
140	do {
141		ops->next = frontswap_ops;
142	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
143
144	static_branch_inc(&frontswap_enabled_key);
145
146	spin_lock(&swap_lock);
147	plist_for_each_entry(si, &swap_active_head, list) {
148		if (si->frontswap_map)
149			set_bit(si->type, b);
150	}
151	spin_unlock(&swap_lock);
152
153	/*
154	 * On the very unlikely chance that a swap device was added or
155	 * removed between setting the "a" list bits and the ops init
156	 * calls, we re-check and do init or invalidate for any changed
157	 * bits.
158	 */
159	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
160		for (i = 0; i < MAX_SWAPFILES; i++) {
161			if (!test_bit(i, a) && test_bit(i, b))
162				ops->init(i);
163			else if (test_bit(i, a) && !test_bit(i, b))
164				ops->invalidate_area(i);
165		}
166	}
167}
168EXPORT_SYMBOL(frontswap_register_ops);
169
170/*
171 * Enable/disable frontswap writethrough (see above).
172 */
173void frontswap_writethrough(bool enable)
174{
175	frontswap_writethrough_enabled = enable;
176}
177EXPORT_SYMBOL(frontswap_writethrough);
178
179/*
180 * Enable/disable frontswap exclusive gets (see above).
181 */
182void frontswap_tmem_exclusive_gets(bool enable)
183{
184	frontswap_tmem_exclusive_gets_enabled = enable;
185}
186EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
187
188/*
189 * Called when a swap device is swapon'd.
190 */
191void __frontswap_init(unsigned type, unsigned long *map)
192{
193	struct swap_info_struct *sis = swap_info[type];
194	struct frontswap_ops *ops;
195
196	VM_BUG_ON(sis == NULL);
197
198	/*
199	 * p->frontswap is a bitmap that we MUST have to figure out which page
200	 * has gone in frontswap. Without it there is no point of continuing.
201	 */
202	if (WARN_ON(!map))
203		return;
204	/*
205	 * Irregardless of whether the frontswap backend has been loaded
206	 * before this function or it will be later, we _MUST_ have the
207	 * p->frontswap set to something valid to work properly.
208	 */
209	frontswap_map_set(sis, map);
210
211	for_each_frontswap_ops(ops)
212		ops->init(type);
 
 
 
213}
214EXPORT_SYMBOL(__frontswap_init);
215
216bool __frontswap_test(struct swap_info_struct *sis,
217				pgoff_t offset)
218{
219	if (sis->frontswap_map)
220		return test_bit(offset, sis->frontswap_map);
221	return false;
222}
223EXPORT_SYMBOL(__frontswap_test);
224
225static inline void __frontswap_set(struct swap_info_struct *sis,
226				   pgoff_t offset)
227{
228	set_bit(offset, sis->frontswap_map);
229	atomic_inc(&sis->frontswap_pages);
230}
 
231
232static inline void __frontswap_clear(struct swap_info_struct *sis,
233				     pgoff_t offset)
234{
235	clear_bit(offset, sis->frontswap_map);
236	atomic_dec(&sis->frontswap_pages);
237}
238
239/*
240 * "Store" data from a page to frontswap and associate it with the page's
241 * swaptype and offset.  Page must be locked and in the swap cache.
242 * If frontswap already contains a page with matching swaptype and
243 * offset, the frontswap implementation may either overwrite the data and
244 * return success or invalidate the page from frontswap and return failure.
245 */
246int __frontswap_store(struct page *page)
247{
248	int ret = -1;
249	swp_entry_t entry = { .val = page_private(page), };
250	int type = swp_type(entry);
251	struct swap_info_struct *sis = swap_info[type];
252	pgoff_t offset = swp_offset(entry);
253	struct frontswap_ops *ops;
254
255	VM_BUG_ON(!frontswap_ops);
256	VM_BUG_ON(!PageLocked(page));
257	VM_BUG_ON(sis == NULL);
258
259	/*
260	 * If a dup, we must remove the old page first; we can't leave the
261	 * old page no matter if the store of the new page succeeds or fails,
262	 * and we can't rely on the new page replacing the old page as we may
263	 * not store to the same implementation that contains the old page.
264	 */
265	if (__frontswap_test(sis, offset)) {
266		__frontswap_clear(sis, offset);
267		for_each_frontswap_ops(ops)
268			ops->invalidate_page(type, offset);
269	}
270
271	/* Try to store in each implementation, until one succeeds. */
272	for_each_frontswap_ops(ops) {
273		ret = ops->store(type, offset, page);
274		if (!ret) /* successful store */
275			break;
276	}
277	if (ret == 0) {
278		__frontswap_set(sis, offset);
279		inc_frontswap_succ_stores();
 
 
280	} else {
 
 
 
 
281		inc_frontswap_failed_stores();
 
 
282	}
283	if (frontswap_writethrough_enabled)
284		/* report failure so swap also writes to swap device */
285		ret = -1;
286	return ret;
287}
288EXPORT_SYMBOL(__frontswap_store);
289
290/*
291 * "Get" data from frontswap associated with swaptype and offset that were
292 * specified when the data was put to frontswap and use it to fill the
293 * specified page with data. Page must be locked and in the swap cache.
294 */
295int __frontswap_load(struct page *page)
296{
297	int ret = -1;
298	swp_entry_t entry = { .val = page_private(page), };
299	int type = swp_type(entry);
300	struct swap_info_struct *sis = swap_info[type];
301	pgoff_t offset = swp_offset(entry);
302	struct frontswap_ops *ops;
303
304	VM_BUG_ON(!frontswap_ops);
305	VM_BUG_ON(!PageLocked(page));
306	VM_BUG_ON(sis == NULL);
307
308	if (!__frontswap_test(sis, offset))
309		return -1;
310
311	/* Try loading from each implementation, until one succeeds. */
312	for_each_frontswap_ops(ops) {
313		ret = ops->load(type, offset, page);
314		if (!ret) /* successful load */
315			break;
316	}
317	if (ret == 0) {
318		inc_frontswap_loads();
319		if (frontswap_tmem_exclusive_gets_enabled) {
320			SetPageDirty(page);
321			__frontswap_clear(sis, offset);
322		}
323	}
324	return ret;
325}
326EXPORT_SYMBOL(__frontswap_load);
327
328/*
329 * Invalidate any data from frontswap associated with the specified swaptype
330 * and offset so that a subsequent "get" will fail.
331 */
332void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
333{
334	struct swap_info_struct *sis = swap_info[type];
335	struct frontswap_ops *ops;
336
337	VM_BUG_ON(!frontswap_ops);
338	VM_BUG_ON(sis == NULL);
339
340	if (!__frontswap_test(sis, offset))
341		return;
342
343	for_each_frontswap_ops(ops)
344		ops->invalidate_page(type, offset);
345	__frontswap_clear(sis, offset);
346	inc_frontswap_invalidates();
 
 
 
 
 
347}
348EXPORT_SYMBOL(__frontswap_invalidate_page);
349
350/*
351 * Invalidate all data from frontswap associated with all offsets for the
352 * specified swaptype.
353 */
354void __frontswap_invalidate_area(unsigned type)
355{
356	struct swap_info_struct *sis = swap_info[type];
357	struct frontswap_ops *ops;
358
359	VM_BUG_ON(!frontswap_ops);
360	VM_BUG_ON(sis == NULL);
361
362	if (sis->frontswap_map == NULL)
363		return;
364
365	for_each_frontswap_ops(ops)
366		ops->invalidate_area(type);
367	atomic_set(&sis->frontswap_pages, 0);
368	bitmap_zero(sis->frontswap_map, sis->max);
369}
370EXPORT_SYMBOL(__frontswap_invalidate_area);
371
372static unsigned long __frontswap_curr_pages(void)
373{
 
374	unsigned long totalpages = 0;
375	struct swap_info_struct *si = NULL;
376
377	assert_spin_locked(&swap_lock);
378	plist_for_each_entry(si, &swap_active_head, list)
 
379		totalpages += atomic_read(&si->frontswap_pages);
 
380	return totalpages;
381}
382
383static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
384					int *swapid)
385{
386	int ret = -EINVAL;
387	struct swap_info_struct *si = NULL;
388	int si_frontswap_pages;
389	unsigned long total_pages_to_unuse = total;
390	unsigned long pages = 0, pages_to_unuse = 0;
 
391
392	assert_spin_locked(&swap_lock);
393	plist_for_each_entry(si, &swap_active_head, list) {
 
394		si_frontswap_pages = atomic_read(&si->frontswap_pages);
395		if (total_pages_to_unuse < si_frontswap_pages) {
396			pages = pages_to_unuse = total_pages_to_unuse;
397		} else {
398			pages = si_frontswap_pages;
399			pages_to_unuse = 0; /* unuse all */
400		}
401		/* ensure there is enough RAM to fetch pages from frontswap */
402		if (security_vm_enough_memory_mm(current->mm, pages)) {
403			ret = -ENOMEM;
404			continue;
405		}
406		vm_unacct_memory(pages);
407		*unused = pages_to_unuse;
408		*swapid = si->type;
409		ret = 0;
410		break;
411	}
412
413	return ret;
414}
415
416/*
417 * Used to check if it's necessory and feasible to unuse pages.
418 * Return 1 when nothing to do, 0 when need to shink pages,
419 * error code when there is an error.
420 */
421static int __frontswap_shrink(unsigned long target_pages,
422				unsigned long *pages_to_unuse,
423				int *type)
424{
425	unsigned long total_pages = 0, total_pages_to_unuse;
426
427	assert_spin_locked(&swap_lock);
428
429	total_pages = __frontswap_curr_pages();
430	if (total_pages <= target_pages) {
431		/* Nothing to do */
432		*pages_to_unuse = 0;
433		return 1;
434	}
435	total_pages_to_unuse = total_pages - target_pages;
436	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
437}
438
439/*
440 * Frontswap, like a true swap device, may unnecessarily retain pages
441 * under certain circumstances; "shrink" frontswap is essentially a
442 * "partial swapoff" and works by calling try_to_unuse to attempt to
443 * unuse enough frontswap pages to attempt to -- subject to memory
444 * constraints -- reduce the number of pages in frontswap to the
445 * number given in the parameter target_pages.
446 */
447void frontswap_shrink(unsigned long target_pages)
448{
449	unsigned long pages_to_unuse = 0;
450	int uninitialized_var(type), ret;
451
452	/*
453	 * we don't want to hold swap_lock while doing a very
454	 * lengthy try_to_unuse, but swap_list may change
455	 * so restart scan from swap_active_head each time
456	 */
457	spin_lock(&swap_lock);
458	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
459	spin_unlock(&swap_lock);
460	if (ret == 0)
461		try_to_unuse(type, true, pages_to_unuse);
462	return;
463}
464EXPORT_SYMBOL(frontswap_shrink);
465
466/*
467 * Count and return the number of frontswap pages across all
468 * swap devices.  This is exported so that backend drivers can
469 * determine current usage without reading debugfs.
470 */
471unsigned long frontswap_curr_pages(void)
472{
473	unsigned long totalpages = 0;
474
475	spin_lock(&swap_lock);
476	totalpages = __frontswap_curr_pages();
477	spin_unlock(&swap_lock);
478
479	return totalpages;
480}
481EXPORT_SYMBOL(frontswap_curr_pages);
482
483static int __init init_frontswap(void)
484{
485#ifdef CONFIG_DEBUG_FS
486	struct dentry *root = debugfs_create_dir("frontswap", NULL);
487	if (root == NULL)
488		return -ENXIO;
489	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
490	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
491	debugfs_create_u64("failed_stores", S_IRUGO, root,
492				&frontswap_failed_stores);
493	debugfs_create_u64("invalidates", S_IRUGO,
494				root, &frontswap_invalidates);
495#endif
496	return 0;
497}
498
499module_init(init_frontswap);
v3.15
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mman.h>
 15#include <linux/swap.h>
 16#include <linux/swapops.h>
 17#include <linux/security.h>
 18#include <linux/module.h>
 19#include <linux/debugfs.h>
 20#include <linux/frontswap.h>
 21#include <linux/swapfile.h>
 22
 
 
 23/*
 24 * frontswap_ops is set by frontswap_register_ops to contain the pointers
 25 * to the frontswap "backend" implementation functions.
 
 
 26 */
 27static struct frontswap_ops *frontswap_ops __read_mostly;
 28
 
 
 
 29/*
 30 * If enabled, frontswap_store will return failure even on success.  As
 31 * a result, the swap subsystem will always write the page to swap, in
 32 * effect converting frontswap into a writethrough cache.  In this mode,
 33 * there is no direct reduction in swap writes, but a frontswap backend
 34 * can unilaterally "reclaim" any pages in use with no data loss, thus
 35 * providing increases control over maximum memory usage due to frontswap.
 36 */
 37static bool frontswap_writethrough_enabled __read_mostly;
 38
 39/*
 40 * If enabled, the underlying tmem implementation is capable of doing
 41 * exclusive gets, so frontswap_load, on a successful tmem_get must
 42 * mark the page as no longer in frontswap AND mark it dirty.
 43 */
 44static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 45
 46#ifdef CONFIG_DEBUG_FS
 47/*
 48 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 49 * properly configured).  These are for information only so are not protected
 50 * against increment races.
 51 */
 52static u64 frontswap_loads;
 53static u64 frontswap_succ_stores;
 54static u64 frontswap_failed_stores;
 55static u64 frontswap_invalidates;
 56
 57static inline void inc_frontswap_loads(void) {
 58	frontswap_loads++;
 59}
 60static inline void inc_frontswap_succ_stores(void) {
 61	frontswap_succ_stores++;
 62}
 63static inline void inc_frontswap_failed_stores(void) {
 64	frontswap_failed_stores++;
 65}
 66static inline void inc_frontswap_invalidates(void) {
 67	frontswap_invalidates++;
 68}
 69#else
 70static inline void inc_frontswap_loads(void) { }
 71static inline void inc_frontswap_succ_stores(void) { }
 72static inline void inc_frontswap_failed_stores(void) { }
 73static inline void inc_frontswap_invalidates(void) { }
 74#endif
 75
 76/*
 77 * Due to the asynchronous nature of the backends loading potentially
 78 * _after_ the swap system has been activated, we have chokepoints
 79 * on all frontswap functions to not call the backend until the backend
 80 * has registered.
 81 *
 82 * Specifically when no backend is registered (nobody called
 83 * frontswap_register_ops) all calls to frontswap_init (which is done via
 84 * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
 85 * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
 86 * backend registers with frontswap at some later point the previous
 87 * calls to frontswap_init are executed (by iterating over the need_init
 88 * bitmap) to create tmem_pools and set the respective poolids. All of that is
 89 * guarded by us using atomic bit operations on the 'need_init' bitmap.
 90 *
 91 * This would not guards us against the user deciding to call swapoff right as
 92 * we are calling the backend to initialize (so swapon is in action).
 93 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 94 * OK. The other scenario where calls to frontswap_store (called via
 95 * swap_writepage) is racing with frontswap_invalidate_area (called via
 96 * swapoff) is again guarded by the swap subsystem.
 97 *
 98 * While no backend is registered all calls to frontswap_[store|load|
 99 * invalidate_area|invalidate_page] are ignored or fail.
100 *
101 * The time between the backend being registered and the swap file system
102 * calling the backend (via the frontswap_* functions) is indeterminate as
103 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
104 * That is OK as we are comfortable missing some of these calls to the newly
105 * registered backend.
106 *
107 * Obviously the opposite (unloading the backend) must be done after all
108 * the frontswap_[store|load|invalidate_area|invalidate_page] start
109 * ignorning or failing the requests - at which point frontswap_ops
110 * would have to be made in some fashion atomic.
111 */
112static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
113
114/*
115 * Register operations for frontswap, returning previous thus allowing
116 * detection of multiple backends and possible nesting.
117 */
118struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
119{
120	struct frontswap_ops *old = frontswap_ops;
121	int i;
 
 
 
 
 
 
 
 
 
 
 
 
122
123	for (i = 0; i < MAX_SWAPFILES; i++) {
124		if (test_and_clear_bit(i, need_init)) {
125			struct swap_info_struct *sis = swap_info[i];
126			/* __frontswap_init _should_ have set it! */
127			if (!sis->frontswap_map)
128				return ERR_PTR(-EINVAL);
129			ops->init(i);
130		}
 
 
 
 
 
 
 
 
 
 
 
131	}
 
 
132	/*
133	 * We MUST have frontswap_ops set _after_ the frontswap_init's
134	 * have been called. Otherwise __frontswap_store might fail. Hence
135	 * the barrier to make sure compiler does not re-order us.
 
136	 */
137	barrier();
138	frontswap_ops = ops;
139	return old;
 
 
 
 
 
140}
141EXPORT_SYMBOL(frontswap_register_ops);
142
143/*
144 * Enable/disable frontswap writethrough (see above).
145 */
146void frontswap_writethrough(bool enable)
147{
148	frontswap_writethrough_enabled = enable;
149}
150EXPORT_SYMBOL(frontswap_writethrough);
151
152/*
153 * Enable/disable frontswap exclusive gets (see above).
154 */
155void frontswap_tmem_exclusive_gets(bool enable)
156{
157	frontswap_tmem_exclusive_gets_enabled = enable;
158}
159EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
160
161/*
162 * Called when a swap device is swapon'd.
163 */
164void __frontswap_init(unsigned type, unsigned long *map)
165{
166	struct swap_info_struct *sis = swap_info[type];
 
167
168	BUG_ON(sis == NULL);
169
170	/*
171	 * p->frontswap is a bitmap that we MUST have to figure out which page
172	 * has gone in frontswap. Without it there is no point of continuing.
173	 */
174	if (WARN_ON(!map))
175		return;
176	/*
177	 * Irregardless of whether the frontswap backend has been loaded
178	 * before this function or it will be later, we _MUST_ have the
179	 * p->frontswap set to something valid to work properly.
180	 */
181	frontswap_map_set(sis, map);
182	if (frontswap_ops)
183		frontswap_ops->init(type);
184	else {
185		BUG_ON(type > MAX_SWAPFILES);
186		set_bit(type, need_init);
187	}
188}
189EXPORT_SYMBOL(__frontswap_init);
190
191bool __frontswap_test(struct swap_info_struct *sis,
192				pgoff_t offset)
193{
194	bool ret = false;
 
 
 
 
195
196	if (frontswap_ops && sis->frontswap_map)
197		ret = test_bit(offset, sis->frontswap_map);
198	return ret;
 
 
199}
200EXPORT_SYMBOL(__frontswap_test);
201
202static inline void __frontswap_clear(struct swap_info_struct *sis,
203				pgoff_t offset)
204{
205	clear_bit(offset, sis->frontswap_map);
206	atomic_dec(&sis->frontswap_pages);
207}
208
209/*
210 * "Store" data from a page to frontswap and associate it with the page's
211 * swaptype and offset.  Page must be locked and in the swap cache.
212 * If frontswap already contains a page with matching swaptype and
213 * offset, the frontswap implementation may either overwrite the data and
214 * return success or invalidate the page from frontswap and return failure.
215 */
216int __frontswap_store(struct page *page)
217{
218	int ret = -1, dup = 0;
219	swp_entry_t entry = { .val = page_private(page), };
220	int type = swp_type(entry);
221	struct swap_info_struct *sis = swap_info[type];
222	pgoff_t offset = swp_offset(entry);
 
 
 
 
 
223
224	/*
225	 * Return if no backend registed.
226	 * Don't need to inc frontswap_failed_stores here.
 
 
227	 */
228	if (!frontswap_ops)
229		return ret;
 
 
 
230
231	BUG_ON(!PageLocked(page));
232	BUG_ON(sis == NULL);
233	if (__frontswap_test(sis, offset))
234		dup = 1;
235	ret = frontswap_ops->store(type, offset, page);
 
236	if (ret == 0) {
237		set_bit(offset, sis->frontswap_map);
238		inc_frontswap_succ_stores();
239		if (!dup)
240			atomic_inc(&sis->frontswap_pages);
241	} else {
242		/*
243		  failed dup always results in automatic invalidate of
244		  the (older) page from frontswap
245		 */
246		inc_frontswap_failed_stores();
247		if (dup)
248			__frontswap_clear(sis, offset);
249	}
250	if (frontswap_writethrough_enabled)
251		/* report failure so swap also writes to swap device */
252		ret = -1;
253	return ret;
254}
255EXPORT_SYMBOL(__frontswap_store);
256
257/*
258 * "Get" data from frontswap associated with swaptype and offset that were
259 * specified when the data was put to frontswap and use it to fill the
260 * specified page with data. Page must be locked and in the swap cache.
261 */
262int __frontswap_load(struct page *page)
263{
264	int ret = -1;
265	swp_entry_t entry = { .val = page_private(page), };
266	int type = swp_type(entry);
267	struct swap_info_struct *sis = swap_info[type];
268	pgoff_t offset = swp_offset(entry);
 
269
270	BUG_ON(!PageLocked(page));
271	BUG_ON(sis == NULL);
272	/*
273	 * __frontswap_test() will check whether there is backend registered
274	 */
275	if (__frontswap_test(sis, offset))
276		ret = frontswap_ops->load(type, offset, page);
 
 
 
 
 
 
277	if (ret == 0) {
278		inc_frontswap_loads();
279		if (frontswap_tmem_exclusive_gets_enabled) {
280			SetPageDirty(page);
281			__frontswap_clear(sis, offset);
282		}
283	}
284	return ret;
285}
286EXPORT_SYMBOL(__frontswap_load);
287
288/*
289 * Invalidate any data from frontswap associated with the specified swaptype
290 * and offset so that a subsequent "get" will fail.
291 */
292void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
293{
294	struct swap_info_struct *sis = swap_info[type];
 
 
 
 
 
 
 
295
296	BUG_ON(sis == NULL);
297	/*
298	 * __frontswap_test() will check whether there is backend registered
299	 */
300	if (__frontswap_test(sis, offset)) {
301		frontswap_ops->invalidate_page(type, offset);
302		__frontswap_clear(sis, offset);
303		inc_frontswap_invalidates();
304	}
305}
306EXPORT_SYMBOL(__frontswap_invalidate_page);
307
308/*
309 * Invalidate all data from frontswap associated with all offsets for the
310 * specified swaptype.
311 */
312void __frontswap_invalidate_area(unsigned type)
313{
314	struct swap_info_struct *sis = swap_info[type];
 
315
316	if (frontswap_ops) {
317		BUG_ON(sis == NULL);
318		if (sis->frontswap_map == NULL)
319			return;
320		frontswap_ops->invalidate_area(type);
321		atomic_set(&sis->frontswap_pages, 0);
322		bitmap_zero(sis->frontswap_map, sis->max);
323	}
324	clear_bit(type, need_init);
 
325}
326EXPORT_SYMBOL(__frontswap_invalidate_area);
327
328static unsigned long __frontswap_curr_pages(void)
329{
330	int type;
331	unsigned long totalpages = 0;
332	struct swap_info_struct *si = NULL;
333
334	assert_spin_locked(&swap_lock);
335	for (type = swap_list.head; type >= 0; type = si->next) {
336		si = swap_info[type];
337		totalpages += atomic_read(&si->frontswap_pages);
338	}
339	return totalpages;
340}
341
342static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
343					int *swapid)
344{
345	int ret = -EINVAL;
346	struct swap_info_struct *si = NULL;
347	int si_frontswap_pages;
348	unsigned long total_pages_to_unuse = total;
349	unsigned long pages = 0, pages_to_unuse = 0;
350	int type;
351
352	assert_spin_locked(&swap_lock);
353	for (type = swap_list.head; type >= 0; type = si->next) {
354		si = swap_info[type];
355		si_frontswap_pages = atomic_read(&si->frontswap_pages);
356		if (total_pages_to_unuse < si_frontswap_pages) {
357			pages = pages_to_unuse = total_pages_to_unuse;
358		} else {
359			pages = si_frontswap_pages;
360			pages_to_unuse = 0; /* unuse all */
361		}
362		/* ensure there is enough RAM to fetch pages from frontswap */
363		if (security_vm_enough_memory_mm(current->mm, pages)) {
364			ret = -ENOMEM;
365			continue;
366		}
367		vm_unacct_memory(pages);
368		*unused = pages_to_unuse;
369		*swapid = type;
370		ret = 0;
371		break;
372	}
373
374	return ret;
375}
376
377/*
378 * Used to check if it's necessory and feasible to unuse pages.
379 * Return 1 when nothing to do, 0 when need to shink pages,
380 * error code when there is an error.
381 */
382static int __frontswap_shrink(unsigned long target_pages,
383				unsigned long *pages_to_unuse,
384				int *type)
385{
386	unsigned long total_pages = 0, total_pages_to_unuse;
387
388	assert_spin_locked(&swap_lock);
389
390	total_pages = __frontswap_curr_pages();
391	if (total_pages <= target_pages) {
392		/* Nothing to do */
393		*pages_to_unuse = 0;
394		return 1;
395	}
396	total_pages_to_unuse = total_pages - target_pages;
397	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
398}
399
400/*
401 * Frontswap, like a true swap device, may unnecessarily retain pages
402 * under certain circumstances; "shrink" frontswap is essentially a
403 * "partial swapoff" and works by calling try_to_unuse to attempt to
404 * unuse enough frontswap pages to attempt to -- subject to memory
405 * constraints -- reduce the number of pages in frontswap to the
406 * number given in the parameter target_pages.
407 */
408void frontswap_shrink(unsigned long target_pages)
409{
410	unsigned long pages_to_unuse = 0;
411	int uninitialized_var(type), ret;
412
413	/*
414	 * we don't want to hold swap_lock while doing a very
415	 * lengthy try_to_unuse, but swap_list may change
416	 * so restart scan from swap_list.head each time
417	 */
418	spin_lock(&swap_lock);
419	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
420	spin_unlock(&swap_lock);
421	if (ret == 0)
422		try_to_unuse(type, true, pages_to_unuse);
423	return;
424}
425EXPORT_SYMBOL(frontswap_shrink);
426
427/*
428 * Count and return the number of frontswap pages across all
429 * swap devices.  This is exported so that backend drivers can
430 * determine current usage without reading debugfs.
431 */
432unsigned long frontswap_curr_pages(void)
433{
434	unsigned long totalpages = 0;
435
436	spin_lock(&swap_lock);
437	totalpages = __frontswap_curr_pages();
438	spin_unlock(&swap_lock);
439
440	return totalpages;
441}
442EXPORT_SYMBOL(frontswap_curr_pages);
443
444static int __init init_frontswap(void)
445{
446#ifdef CONFIG_DEBUG_FS
447	struct dentry *root = debugfs_create_dir("frontswap", NULL);
448	if (root == NULL)
449		return -ENXIO;
450	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
451	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
452	debugfs_create_u64("failed_stores", S_IRUGO, root,
453				&frontswap_failed_stores);
454	debugfs_create_u64("invalidates", S_IRUGO,
455				root, &frontswap_invalidates);
456#endif
457	return 0;
458}
459
460module_init(init_frontswap);