Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/debug.h>
 24#include <linux/alarmtimer.h>
 25#include <linux/mutex.h>
 26#include <linux/platform_device.h>
 27#include <linux/posix-timers.h>
 28#include <linux/workqueue.h>
 29#include <linux/freezer.h>
 30#include <linux/compat.h>
 31#include <linux/module.h>
 32
 33#include "posix-timers.h"
 34
 35#define CREATE_TRACE_POINTS
 36#include <trace/events/alarmtimer.h>
 37
 38/**
 39 * struct alarm_base - Alarm timer bases
 40 * @lock:		Lock for syncrhonized access to the base
 41 * @timerqueue:		Timerqueue head managing the list of events
 
 42 * @gettime:		Function to read the time correlating to the base
 43 * @base_clockid:	clockid for the base
 44 */
 45static struct alarm_base {
 46	spinlock_t		lock;
 47	struct timerqueue_head	timerqueue;
 48	ktime_t			(*gettime)(void);
 49	clockid_t		base_clockid;
 50} alarm_bases[ALARM_NUMTYPE];
 51
 52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53/* freezer information to handle clock_nanosleep triggered wakeups */
 54static enum alarmtimer_type freezer_alarmtype;
 55static ktime_t freezer_expires;
 56static ktime_t freezer_delta;
 57static DEFINE_SPINLOCK(freezer_delta_lock);
 58#endif
 59
 60#ifdef CONFIG_RTC_CLASS
 61static struct wakeup_source *ws;
 62
 
 63/* rtc timer and device for setting alarm wakeups at suspend */
 64static struct rtc_timer		rtctimer;
 65static struct rtc_device	*rtcdev;
 66static DEFINE_SPINLOCK(rtcdev_lock);
 67
 68/**
 69 * alarmtimer_get_rtcdev - Return selected rtcdevice
 70 *
 71 * This function returns the rtc device to use for wakealarms.
 72 * If one has not already been chosen, it checks to see if a
 73 * functional rtc device is available.
 74 */
 75struct rtc_device *alarmtimer_get_rtcdev(void)
 76{
 77	unsigned long flags;
 78	struct rtc_device *ret;
 79
 80	spin_lock_irqsave(&rtcdev_lock, flags);
 81	ret = rtcdev;
 82	spin_unlock_irqrestore(&rtcdev_lock, flags);
 83
 84	return ret;
 85}
 86EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 87
 88static int alarmtimer_rtc_add_device(struct device *dev,
 89				struct class_interface *class_intf)
 90{
 91	unsigned long flags;
 92	struct rtc_device *rtc = to_rtc_device(dev);
 93	struct wakeup_source *__ws;
 94
 95	if (rtcdev)
 96		return -EBUSY;
 97
 98	if (!rtc->ops->set_alarm)
 99		return -1;
100	if (!device_may_wakeup(rtc->dev.parent))
101		return -1;
102
103	__ws = wakeup_source_register("alarmtimer");
104
105	spin_lock_irqsave(&rtcdev_lock, flags);
106	if (!rtcdev) {
107		if (!try_module_get(rtc->owner)) {
108			spin_unlock_irqrestore(&rtcdev_lock, flags);
109			return -1;
110		}
111
112		rtcdev = rtc;
113		/* hold a reference so it doesn't go away */
114		get_device(dev);
115		ws = __ws;
116		__ws = NULL;
117	}
118	spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120	wakeup_source_unregister(__ws);
121
122	return 0;
123}
124
125static inline void alarmtimer_rtc_timer_init(void)
126{
127	rtc_timer_init(&rtctimer, NULL, NULL);
128}
129
130static struct class_interface alarmtimer_rtc_interface = {
131	.add_dev = &alarmtimer_rtc_add_device,
132};
133
134static int alarmtimer_rtc_interface_setup(void)
135{
136	alarmtimer_rtc_interface.class = rtc_class;
137	return class_interface_register(&alarmtimer_rtc_interface);
138}
139static void alarmtimer_rtc_interface_remove(void)
140{
141	class_interface_unregister(&alarmtimer_rtc_interface);
142}
143#else
144struct rtc_device *alarmtimer_get_rtcdev(void)
145{
146	return NULL;
147}
148#define rtcdev (NULL)
149static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150static inline void alarmtimer_rtc_interface_remove(void) { }
151static inline void alarmtimer_rtc_timer_init(void) { }
152#endif
153
154/**
155 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156 * @base: pointer to the base where the timer is being run
157 * @alarm: pointer to alarm being enqueued.
158 *
159 * Adds alarm to a alarm_base timerqueue
160 *
161 * Must hold base->lock when calling.
162 */
163static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164{
165	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166		timerqueue_del(&base->timerqueue, &alarm->node);
167
168	timerqueue_add(&base->timerqueue, &alarm->node);
169	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170}
171
172/**
173 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174 * @base: pointer to the base where the timer is running
175 * @alarm: pointer to alarm being removed
176 *
177 * Removes alarm to a alarm_base timerqueue
178 *
179 * Must hold base->lock when calling.
180 */
181static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182{
183	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184		return;
185
186	timerqueue_del(&base->timerqueue, &alarm->node);
187	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188}
189
190
191/**
192 * alarmtimer_fired - Handles alarm hrtimer being fired.
193 * @timer: pointer to hrtimer being run
194 *
195 * When a alarm timer fires, this runs through the timerqueue to
196 * see which alarms expired, and runs those. If there are more alarm
197 * timers queued for the future, we set the hrtimer to fire when
198 * when the next future alarm timer expires.
199 */
200static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201{
202	struct alarm *alarm = container_of(timer, struct alarm, timer);
203	struct alarm_base *base = &alarm_bases[alarm->type];
204	unsigned long flags;
205	int ret = HRTIMER_NORESTART;
206	int restart = ALARMTIMER_NORESTART;
207
208	spin_lock_irqsave(&base->lock, flags);
209	alarmtimer_dequeue(base, alarm);
210	spin_unlock_irqrestore(&base->lock, flags);
211
212	if (alarm->function)
213		restart = alarm->function(alarm, base->gettime());
214
215	spin_lock_irqsave(&base->lock, flags);
216	if (restart != ALARMTIMER_NORESTART) {
217		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218		alarmtimer_enqueue(base, alarm);
219		ret = HRTIMER_RESTART;
220	}
221	spin_unlock_irqrestore(&base->lock, flags);
222
223	trace_alarmtimer_fired(alarm, base->gettime());
224	return ret;
225
226}
227
228ktime_t alarm_expires_remaining(const struct alarm *alarm)
229{
230	struct alarm_base *base = &alarm_bases[alarm->type];
231	return ktime_sub(alarm->node.expires, base->gettime());
232}
233EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
248	ktime_t min, now, expires;
249	int i, ret, type;
250	struct rtc_device *rtc;
251	unsigned long flags;
252	struct rtc_time tm;
 
 
 
 
 
253
254	spin_lock_irqsave(&freezer_delta_lock, flags);
255	min = freezer_delta;
256	expires = freezer_expires;
257	type = freezer_alarmtype;
258	freezer_delta = 0;
259	spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261	rtc = alarmtimer_get_rtcdev();
262	/* If we have no rtcdev, just return */
263	if (!rtc)
264		return 0;
265
266	/* Find the soonest timer to expire*/
267	for (i = 0; i < ALARM_NUMTYPE; i++) {
268		struct alarm_base *base = &alarm_bases[i];
269		struct timerqueue_node *next;
270		ktime_t delta;
271
272		spin_lock_irqsave(&base->lock, flags);
273		next = timerqueue_getnext(&base->timerqueue);
274		spin_unlock_irqrestore(&base->lock, flags);
275		if (!next)
276			continue;
277		delta = ktime_sub(next->expires, base->gettime());
278		if (!min || (delta < min)) {
279			expires = next->expires;
280			min = delta;
281			type = i;
282		}
283	}
284	if (min == 0)
285		return 0;
286
287	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289		return -EBUSY;
290	}
291
292	trace_alarmtimer_suspend(expires, type);
293
294	/* Setup an rtc timer to fire that far in the future */
295	rtc_timer_cancel(rtc, &rtctimer);
296	rtc_read_time(rtc, &tm);
297	now = rtc_tm_to_ktime(tm);
298	now = ktime_add(now, min);
299
300	/* Set alarm, if in the past reject suspend briefly to handle */
301	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302	if (ret < 0)
303		__pm_wakeup_event(ws, MSEC_PER_SEC);
304	return ret;
305}
306
307static int alarmtimer_resume(struct device *dev)
308{
309	struct rtc_device *rtc;
310
311	rtc = alarmtimer_get_rtcdev();
312	if (rtc)
313		rtc_timer_cancel(rtc, &rtctimer);
314	return 0;
315}
316
317#else
318static int alarmtimer_suspend(struct device *dev)
319{
320	return 0;
321}
322
323static int alarmtimer_resume(struct device *dev)
324{
325	return 0;
326}
327#endif
328
329static void
330__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332{
333	timerqueue_init(&alarm->node);
334	alarm->timer.function = alarmtimer_fired;
335	alarm->function = function;
336	alarm->type = type;
337	alarm->state = ALARMTIMER_STATE_INACTIVE;
 
 
 
 
 
338}
339
 
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
 
349	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350		     HRTIMER_MODE_ABS);
351	__alarm_init(alarm, type, function);
 
 
 
352}
353EXPORT_SYMBOL_GPL(alarm_init);
354
355/**
356 * alarm_start - Sets an absolute alarm to fire
357 * @alarm: ptr to alarm to set
358 * @start: time to run the alarm
359 */
360void alarm_start(struct alarm *alarm, ktime_t start)
361{
362	struct alarm_base *base = &alarm_bases[alarm->type];
363	unsigned long flags;
 
364
365	spin_lock_irqsave(&base->lock, flags);
366	alarm->node.expires = start;
367	alarmtimer_enqueue(base, alarm);
368	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
 
369	spin_unlock_irqrestore(&base->lock, flags);
370
371	trace_alarmtimer_start(alarm, base->gettime());
372}
373EXPORT_SYMBOL_GPL(alarm_start);
374
375/**
376 * alarm_start_relative - Sets a relative alarm to fire
377 * @alarm: ptr to alarm to set
378 * @start: time relative to now to run the alarm
379 */
380void alarm_start_relative(struct alarm *alarm, ktime_t start)
381{
382	struct alarm_base *base = &alarm_bases[alarm->type];
383
384	start = ktime_add_safe(start, base->gettime());
385	alarm_start(alarm, start);
386}
387EXPORT_SYMBOL_GPL(alarm_start_relative);
388
389void alarm_restart(struct alarm *alarm)
390{
391	struct alarm_base *base = &alarm_bases[alarm->type];
392	unsigned long flags;
393
394	spin_lock_irqsave(&base->lock, flags);
395	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396	hrtimer_restart(&alarm->timer);
397	alarmtimer_enqueue(base, alarm);
398	spin_unlock_irqrestore(&base->lock, flags);
399}
400EXPORT_SYMBOL_GPL(alarm_restart);
401
402/**
403 * alarm_try_to_cancel - Tries to cancel an alarm timer
404 * @alarm: ptr to alarm to be canceled
405 *
406 * Returns 1 if the timer was canceled, 0 if it was not running,
407 * and -1 if the callback was running
408 */
409int alarm_try_to_cancel(struct alarm *alarm)
410{
411	struct alarm_base *base = &alarm_bases[alarm->type];
412	unsigned long flags;
413	int ret;
414
415	spin_lock_irqsave(&base->lock, flags);
416	ret = hrtimer_try_to_cancel(&alarm->timer);
417	if (ret >= 0)
418		alarmtimer_dequeue(base, alarm);
419	spin_unlock_irqrestore(&base->lock, flags);
420
421	trace_alarmtimer_cancel(alarm, base->gettime());
422	return ret;
423}
424EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425
426
427/**
428 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429 * @alarm: ptr to alarm to be canceled
430 *
431 * Returns 1 if the timer was canceled, 0 if it was not active.
432 */
433int alarm_cancel(struct alarm *alarm)
434{
435	for (;;) {
436		int ret = alarm_try_to_cancel(alarm);
437		if (ret >= 0)
438			return ret;
439		cpu_relax();
440	}
441}
442EXPORT_SYMBOL_GPL(alarm_cancel);
443
444
445u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446{
447	u64 overrun = 1;
448	ktime_t delta;
449
450	delta = ktime_sub(now, alarm->node.expires);
451
452	if (delta < 0)
453		return 0;
454
455	if (unlikely(delta >= interval)) {
456		s64 incr = ktime_to_ns(interval);
457
458		overrun = ktime_divns(delta, incr);
459
460		alarm->node.expires = ktime_add_ns(alarm->node.expires,
461							incr*overrun);
462
463		if (alarm->node.expires > now)
464			return overrun;
465		/*
466		 * This (and the ktime_add() below) is the
467		 * correction for exact:
468		 */
469		overrun++;
470	}
471
472	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473	return overrun;
474}
475EXPORT_SYMBOL_GPL(alarm_forward);
476
477u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478{
479	struct alarm_base *base = &alarm_bases[alarm->type];
480
481	return alarm_forward(alarm, base->gettime(), interval);
482}
483EXPORT_SYMBOL_GPL(alarm_forward_now);
484
485#ifdef CONFIG_POSIX_TIMERS
486
487static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488{
489	struct alarm_base *base;
490	unsigned long flags;
491	ktime_t delta;
492
493	switch(type) {
494	case ALARM_REALTIME:
495		base = &alarm_bases[ALARM_REALTIME];
496		type = ALARM_REALTIME_FREEZER;
497		break;
498	case ALARM_BOOTTIME:
499		base = &alarm_bases[ALARM_BOOTTIME];
500		type = ALARM_BOOTTIME_FREEZER;
501		break;
502	default:
503		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504		return;
505	}
506
507	delta = ktime_sub(absexp, base->gettime());
508
509	spin_lock_irqsave(&freezer_delta_lock, flags);
510	if (!freezer_delta || (delta < freezer_delta)) {
511		freezer_delta = delta;
512		freezer_expires = absexp;
513		freezer_alarmtype = type;
514	}
515	spin_unlock_irqrestore(&freezer_delta_lock, flags);
516}
517
518/**
519 * clock2alarm - helper that converts from clockid to alarmtypes
520 * @clockid: clockid.
521 */
522static enum alarmtimer_type clock2alarm(clockid_t clockid)
523{
524	if (clockid == CLOCK_REALTIME_ALARM)
525		return ALARM_REALTIME;
526	if (clockid == CLOCK_BOOTTIME_ALARM)
527		return ALARM_BOOTTIME;
528	return -1;
529}
530
531/**
532 * alarm_handle_timer - Callback for posix timers
533 * @alarm: alarm that fired
534 *
535 * Posix timer callback for expired alarm timers.
536 */
537static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538							ktime_t now)
539{
540	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541					    it.alarm.alarmtimer);
542	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543	unsigned long flags;
544	int si_private = 0;
545
546	spin_lock_irqsave(&ptr->it_lock, flags);
547
548	ptr->it_active = 0;
549	if (ptr->it_interval)
550		si_private = ++ptr->it_requeue_pending;
551
552	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553		/*
554		 * Handle ignored signals and rearm the timer. This will go
555		 * away once we handle ignored signals proper.
556		 */
557		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558		++ptr->it_requeue_pending;
559		ptr->it_active = 1;
560		result = ALARMTIMER_RESTART;
561	}
562	spin_unlock_irqrestore(&ptr->it_lock, flags);
563
564	return result;
565}
566
567/**
568 * alarm_timer_rearm - Posix timer callback for rearming timer
569 * @timr:	Pointer to the posixtimer data struct
570 */
571static void alarm_timer_rearm(struct k_itimer *timr)
572{
573	struct alarm *alarm = &timr->it.alarm.alarmtimer;
574
575	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576	alarm_start(alarm, alarm->node.expires);
577}
578
579/**
580 * alarm_timer_forward - Posix timer callback for forwarding timer
581 * @timr:	Pointer to the posixtimer data struct
582 * @now:	Current time to forward the timer against
583 */
584static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585{
586	struct alarm *alarm = &timr->it.alarm.alarmtimer;
587
588	return (int) alarm_forward(alarm, timr->it_interval, now);
589}
590
591/**
592 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593 * @timr:	Pointer to the posixtimer data struct
594 * @now:	Current time to calculate against
595 */
596static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597{
598	struct alarm *alarm = &timr->it.alarm.alarmtimer;
599
600	return ktime_sub(now, alarm->node.expires);
601}
602
603/**
604 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605 * @timr:	Pointer to the posixtimer data struct
606 */
607static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608{
609	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610}
611
612/**
613 * alarm_timer_arm - Posix timer callback to arm a timer
614 * @timr:	Pointer to the posixtimer data struct
615 * @expires:	The new expiry time
616 * @absolute:	Expiry value is absolute time
617 * @sigev_none:	Posix timer does not deliver signals
618 */
619static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620			    bool absolute, bool sigev_none)
621{
622	struct alarm *alarm = &timr->it.alarm.alarmtimer;
623	struct alarm_base *base = &alarm_bases[alarm->type];
624
625	if (!absolute)
626		expires = ktime_add_safe(expires, base->gettime());
627	if (sigev_none)
628		alarm->node.expires = expires;
629	else
630		alarm_start(&timr->it.alarm.alarmtimer, expires);
631}
632
633/**
634 * alarm_clock_getres - posix getres interface
635 * @which_clock: clockid
636 * @tp: timespec to fill
637 *
638 * Returns the granularity of underlying alarm base clock
639 */
640static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641{
 
 
642	if (!alarmtimer_get_rtcdev())
643		return -EINVAL;
644
645	tp->tv_sec = 0;
646	tp->tv_nsec = hrtimer_resolution;
647	return 0;
648}
649
650/**
651 * alarm_clock_get - posix clock_get interface
652 * @which_clock: clockid
653 * @tp: timespec to fill.
654 *
655 * Provides the underlying alarm base time.
656 */
657static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658{
659	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660
661	if (!alarmtimer_get_rtcdev())
662		return -EINVAL;
663
664	*tp = ktime_to_timespec64(base->gettime());
665	return 0;
666}
667
668/**
669 * alarm_timer_create - posix timer_create interface
670 * @new_timer: k_itimer pointer to manage
671 *
672 * Initializes the k_itimer structure.
673 */
674static int alarm_timer_create(struct k_itimer *new_timer)
675{
676	enum  alarmtimer_type type;
 
677
678	if (!alarmtimer_get_rtcdev())
679		return -ENOTSUPP;
680
681	if (!capable(CAP_WAKE_ALARM))
682		return -EPERM;
683
684	type = clock2alarm(new_timer->it_clock);
 
685	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686	return 0;
687}
688
689/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691 * @alarm: ptr to alarm that fired
692 *
693 * Wakes up the task that set the alarmtimer
694 */
695static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696								ktime_t now)
697{
698	struct task_struct *task = (struct task_struct *)alarm->data;
699
700	alarm->data = NULL;
701	if (task)
702		wake_up_process(task);
703	return ALARMTIMER_NORESTART;
704}
705
706/**
707 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708 * @alarm: ptr to alarmtimer
709 * @absexp: absolute expiration time
710 *
711 * Sets the alarm timer and sleeps until it is fired or interrupted.
712 */
713static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714				enum alarmtimer_type type)
715{
716	struct restart_block *restart;
717	alarm->data = (void *)current;
718	do {
719		set_current_state(TASK_INTERRUPTIBLE);
720		alarm_start(alarm, absexp);
721		if (likely(alarm->data))
722			schedule();
723
724		alarm_cancel(alarm);
725	} while (alarm->data && !signal_pending(current));
726
727	__set_current_state(TASK_RUNNING);
728
729	destroy_hrtimer_on_stack(&alarm->timer);
 
730
731	if (!alarm->data)
732		return 0;
733
734	if (freezing(current))
735		alarmtimer_freezerset(absexp, type);
736	restart = &current->restart_block;
737	if (restart->nanosleep.type != TT_NONE) {
738		struct timespec64 rmt;
739		ktime_t rem;
 
 
 
 
 
 
 
 
740
741		rem = ktime_sub(absexp, alarm_bases[type].gettime());
742
743		if (rem <= 0)
744			return 0;
745		rmt = ktime_to_timespec64(rem);
746
747		return nanosleep_copyout(restart, &rmt);
748	}
749	return -ERESTART_RESTARTBLOCK;
750}
751
752static void
753alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755{
756	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757			      HRTIMER_MODE_ABS);
758	__alarm_init(alarm, type, function);
759}
760
761/**
762 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763 * @restart: ptr to restart block
764 *
765 * Handles restarted clock_nanosleep calls
766 */
767static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768{
769	enum  alarmtimer_type type = restart->nanosleep.clockid;
770	ktime_t exp = restart->nanosleep.expires;
 
771	struct alarm alarm;
 
 
 
 
772
773	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
 
774
775	return alarmtimer_do_nsleep(&alarm, exp, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
776}
777
778/**
779 * alarm_timer_nsleep - alarmtimer nanosleep
780 * @which_clock: clockid
781 * @flags: determins abstime or relative
782 * @tsreq: requested sleep time (abs or rel)
783 * @rmtp: remaining sleep time saved
784 *
785 * Handles clock_nanosleep calls against _ALARM clockids
786 */
787static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788			      const struct timespec64 *tsreq)
789{
790	enum  alarmtimer_type type = clock2alarm(which_clock);
791	struct restart_block *restart = &current->restart_block;
792	struct alarm alarm;
793	ktime_t exp;
794	int ret = 0;
 
795
796	if (!alarmtimer_get_rtcdev())
797		return -ENOTSUPP;
798
799	if (flags & ~TIMER_ABSTIME)
800		return -EINVAL;
801
802	if (!capable(CAP_WAKE_ALARM))
803		return -EPERM;
804
805	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806
807	exp = timespec64_to_ktime(*tsreq);
808	/* Convert (if necessary) to absolute time */
809	if (flags != TIMER_ABSTIME) {
810		ktime_t now = alarm_bases[type].gettime();
811		exp = ktime_add(now, exp);
812	}
813
814	ret = alarmtimer_do_nsleep(&alarm, exp, type);
815	if (ret != -ERESTART_RESTARTBLOCK)
816		return ret;
 
 
817
818	/* abs timers don't set remaining time or restart */
819	if (flags == TIMER_ABSTIME)
820		return -ERESTARTNOHAND;
 
 
 
 
 
 
 
 
821
 
822	restart->fn = alarm_timer_nsleep_restart;
823	restart->nanosleep.clockid = type;
824	restart->nanosleep.expires = exp;
 
 
 
 
825	return ret;
826}
827
828const struct k_clock alarm_clock = {
829	.clock_getres		= alarm_clock_getres,
830	.clock_get		= alarm_clock_get,
831	.timer_create		= alarm_timer_create,
832	.timer_set		= common_timer_set,
833	.timer_del		= common_timer_del,
834	.timer_get		= common_timer_get,
835	.timer_arm		= alarm_timer_arm,
836	.timer_rearm		= alarm_timer_rearm,
837	.timer_forward		= alarm_timer_forward,
838	.timer_remaining	= alarm_timer_remaining,
839	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
840	.nsleep			= alarm_timer_nsleep,
841};
842#endif /* CONFIG_POSIX_TIMERS */
843
844
845/* Suspend hook structures */
846static const struct dev_pm_ops alarmtimer_pm_ops = {
847	.suspend = alarmtimer_suspend,
848	.resume = alarmtimer_resume,
849};
850
851static struct platform_driver alarmtimer_driver = {
852	.driver = {
853		.name = "alarmtimer",
854		.pm = &alarmtimer_pm_ops,
855	}
856};
857
858/**
859 * alarmtimer_init - Initialize alarm timer code
860 *
861 * This function initializes the alarm bases and registers
862 * the posix clock ids.
863 */
864static int __init alarmtimer_init(void)
865{
866	struct platform_device *pdev;
867	int error = 0;
868	int i;
 
 
 
 
 
 
 
 
 
869
870	alarmtimer_rtc_timer_init();
871
 
 
 
872	/* Initialize alarm bases */
873	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
874	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
875	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
876	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
877	for (i = 0; i < ALARM_NUMTYPE; i++) {
878		timerqueue_init_head(&alarm_bases[i].timerqueue);
879		spin_lock_init(&alarm_bases[i].lock);
880	}
881
882	error = alarmtimer_rtc_interface_setup();
883	if (error)
884		return error;
885
886	error = platform_driver_register(&alarmtimer_driver);
887	if (error)
888		goto out_if;
889
890	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
891	if (IS_ERR(pdev)) {
892		error = PTR_ERR(pdev);
893		goto out_drv;
894	}
 
895	return 0;
896
897out_drv:
898	platform_driver_unregister(&alarmtimer_driver);
899out_if:
900	alarmtimer_rtc_interface_remove();
901	return error;
902}
903device_initcall(alarmtimer_init);
v3.15
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 
 
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 
 
 
 
 
 
 
 28
 29/**
 30 * struct alarm_base - Alarm timer bases
 31 * @lock:		Lock for syncrhonized access to the base
 32 * @timerqueue:		Timerqueue head managing the list of events
 33 * @timer: 		hrtimer used to schedule events while running
 34 * @gettime:		Function to read the time correlating to the base
 35 * @base_clockid:	clockid for the base
 36 */
 37static struct alarm_base {
 38	spinlock_t		lock;
 39	struct timerqueue_head	timerqueue;
 40	ktime_t			(*gettime)(void);
 41	clockid_t		base_clockid;
 42} alarm_bases[ALARM_NUMTYPE];
 43
 44/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
 
 
 
 45static ktime_t freezer_delta;
 46static DEFINE_SPINLOCK(freezer_delta_lock);
 
 47
 
 48static struct wakeup_source *ws;
 49
 50#ifdef CONFIG_RTC_CLASS
 51/* rtc timer and device for setting alarm wakeups at suspend */
 52static struct rtc_timer		rtctimer;
 53static struct rtc_device	*rtcdev;
 54static DEFINE_SPINLOCK(rtcdev_lock);
 55
 56/**
 57 * alarmtimer_get_rtcdev - Return selected rtcdevice
 58 *
 59 * This function returns the rtc device to use for wakealarms.
 60 * If one has not already been chosen, it checks to see if a
 61 * functional rtc device is available.
 62 */
 63struct rtc_device *alarmtimer_get_rtcdev(void)
 64{
 65	unsigned long flags;
 66	struct rtc_device *ret;
 67
 68	spin_lock_irqsave(&rtcdev_lock, flags);
 69	ret = rtcdev;
 70	spin_unlock_irqrestore(&rtcdev_lock, flags);
 71
 72	return ret;
 73}
 74
 75
 76static int alarmtimer_rtc_add_device(struct device *dev,
 77				struct class_interface *class_intf)
 78{
 79	unsigned long flags;
 80	struct rtc_device *rtc = to_rtc_device(dev);
 
 81
 82	if (rtcdev)
 83		return -EBUSY;
 84
 85	if (!rtc->ops->set_alarm)
 86		return -1;
 87	if (!device_may_wakeup(rtc->dev.parent))
 88		return -1;
 89
 
 
 90	spin_lock_irqsave(&rtcdev_lock, flags);
 91	if (!rtcdev) {
 
 
 
 
 
 92		rtcdev = rtc;
 93		/* hold a reference so it doesn't go away */
 94		get_device(dev);
 
 
 95	}
 96	spin_unlock_irqrestore(&rtcdev_lock, flags);
 
 
 
 97	return 0;
 98}
 99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102	rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106	.add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111	alarmtimer_rtc_interface.class = rtc_class;
112	return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116	class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121	return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129/**
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
133 *
134 * Adds alarm to a alarm_base timerqueue
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141		timerqueue_del(&base->timerqueue, &alarm->node);
142
143	timerqueue_add(&base->timerqueue, &alarm->node);
144	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147/**
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
151 *
152 * Removes alarm to a alarm_base timerqueue
153 *
154 * Must hold base->lock when calling.
155 */
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159		return;
160
161	timerqueue_del(&base->timerqueue, &alarm->node);
162	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166/**
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
169 *
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
174 */
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177	struct alarm *alarm = container_of(timer, struct alarm, timer);
178	struct alarm_base *base = &alarm_bases[alarm->type];
179	unsigned long flags;
180	int ret = HRTIMER_NORESTART;
181	int restart = ALARMTIMER_NORESTART;
182
183	spin_lock_irqsave(&base->lock, flags);
184	alarmtimer_dequeue(base, alarm);
185	spin_unlock_irqrestore(&base->lock, flags);
186
187	if (alarm->function)
188		restart = alarm->function(alarm, base->gettime());
189
190	spin_lock_irqsave(&base->lock, flags);
191	if (restart != ALARMTIMER_NORESTART) {
192		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193		alarmtimer_enqueue(base, alarm);
194		ret = HRTIMER_RESTART;
195	}
196	spin_unlock_irqrestore(&base->lock, flags);
197
 
198	return ret;
199
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204	struct alarm_base *base = &alarm_bases[alarm->type];
205	return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210/**
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
214 *
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
219 */
220static int alarmtimer_suspend(struct device *dev)
221{
 
 
 
 
222	struct rtc_time tm;
223	ktime_t min, now;
224	unsigned long flags;
225	struct rtc_device *rtc;
226	int i;
227	int ret;
228
229	spin_lock_irqsave(&freezer_delta_lock, flags);
230	min = freezer_delta;
231	freezer_delta = ktime_set(0, 0);
 
 
232	spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234	rtc = alarmtimer_get_rtcdev();
235	/* If we have no rtcdev, just return */
236	if (!rtc)
237		return 0;
238
239	/* Find the soonest timer to expire*/
240	for (i = 0; i < ALARM_NUMTYPE; i++) {
241		struct alarm_base *base = &alarm_bases[i];
242		struct timerqueue_node *next;
243		ktime_t delta;
244
245		spin_lock_irqsave(&base->lock, flags);
246		next = timerqueue_getnext(&base->timerqueue);
247		spin_unlock_irqrestore(&base->lock, flags);
248		if (!next)
249			continue;
250		delta = ktime_sub(next->expires, base->gettime());
251		if (!min.tv64 || (delta.tv64 < min.tv64))
 
252			min = delta;
 
 
253	}
254	if (min.tv64 == 0)
255		return 0;
256
257	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259		return -EBUSY;
260	}
261
 
 
262	/* Setup an rtc timer to fire that far in the future */
263	rtc_timer_cancel(rtc, &rtctimer);
264	rtc_read_time(rtc, &tm);
265	now = rtc_tm_to_ktime(tm);
266	now = ktime_add(now, min);
267
268	/* Set alarm, if in the past reject suspend briefly to handle */
269	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270	if (ret < 0)
271		__pm_wakeup_event(ws, MSEC_PER_SEC);
272	return ret;
273}
 
 
 
 
 
 
 
 
 
 
 
274#else
275static int alarmtimer_suspend(struct device *dev)
276{
277	return 0;
278}
 
 
 
 
 
279#endif
280
281static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
 
 
282{
283	ktime_t delta;
284	unsigned long flags;
285	struct alarm_base *base = &alarm_bases[type];
286
287	delta = ktime_sub(absexp, base->gettime());
288
289	spin_lock_irqsave(&freezer_delta_lock, flags);
290	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291		freezer_delta = delta;
292	spin_unlock_irqrestore(&freezer_delta_lock, flags);
293}
294
295
296/**
297 * alarm_init - Initialize an alarm structure
298 * @alarm: ptr to alarm to be initialized
299 * @type: the type of the alarm
300 * @function: callback that is run when the alarm fires
301 */
302void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304{
305	timerqueue_init(&alarm->node);
306	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307			HRTIMER_MODE_ABS);
308	alarm->timer.function = alarmtimer_fired;
309	alarm->function = function;
310	alarm->type = type;
311	alarm->state = ALARMTIMER_STATE_INACTIVE;
312}
313EXPORT_SYMBOL_GPL(alarm_init);
314
315/**
316 * alarm_start - Sets an absolute alarm to fire
317 * @alarm: ptr to alarm to set
318 * @start: time to run the alarm
319 */
320int alarm_start(struct alarm *alarm, ktime_t start)
321{
322	struct alarm_base *base = &alarm_bases[alarm->type];
323	unsigned long flags;
324	int ret;
325
326	spin_lock_irqsave(&base->lock, flags);
327	alarm->node.expires = start;
328	alarmtimer_enqueue(base, alarm);
329	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
330				HRTIMER_MODE_ABS);
331	spin_unlock_irqrestore(&base->lock, flags);
332	return ret;
 
333}
334EXPORT_SYMBOL_GPL(alarm_start);
335
336/**
337 * alarm_start_relative - Sets a relative alarm to fire
338 * @alarm: ptr to alarm to set
339 * @start: time relative to now to run the alarm
340 */
341int alarm_start_relative(struct alarm *alarm, ktime_t start)
342{
343	struct alarm_base *base = &alarm_bases[alarm->type];
344
345	start = ktime_add(start, base->gettime());
346	return alarm_start(alarm, start);
347}
348EXPORT_SYMBOL_GPL(alarm_start_relative);
349
350void alarm_restart(struct alarm *alarm)
351{
352	struct alarm_base *base = &alarm_bases[alarm->type];
353	unsigned long flags;
354
355	spin_lock_irqsave(&base->lock, flags);
356	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
357	hrtimer_restart(&alarm->timer);
358	alarmtimer_enqueue(base, alarm);
359	spin_unlock_irqrestore(&base->lock, flags);
360}
361EXPORT_SYMBOL_GPL(alarm_restart);
362
363/**
364 * alarm_try_to_cancel - Tries to cancel an alarm timer
365 * @alarm: ptr to alarm to be canceled
366 *
367 * Returns 1 if the timer was canceled, 0 if it was not running,
368 * and -1 if the callback was running
369 */
370int alarm_try_to_cancel(struct alarm *alarm)
371{
372	struct alarm_base *base = &alarm_bases[alarm->type];
373	unsigned long flags;
374	int ret;
375
376	spin_lock_irqsave(&base->lock, flags);
377	ret = hrtimer_try_to_cancel(&alarm->timer);
378	if (ret >= 0)
379		alarmtimer_dequeue(base, alarm);
380	spin_unlock_irqrestore(&base->lock, flags);
 
 
381	return ret;
382}
383EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
384
385
386/**
387 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
388 * @alarm: ptr to alarm to be canceled
389 *
390 * Returns 1 if the timer was canceled, 0 if it was not active.
391 */
392int alarm_cancel(struct alarm *alarm)
393{
394	for (;;) {
395		int ret = alarm_try_to_cancel(alarm);
396		if (ret >= 0)
397			return ret;
398		cpu_relax();
399	}
400}
401EXPORT_SYMBOL_GPL(alarm_cancel);
402
403
404u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
405{
406	u64 overrun = 1;
407	ktime_t delta;
408
409	delta = ktime_sub(now, alarm->node.expires);
410
411	if (delta.tv64 < 0)
412		return 0;
413
414	if (unlikely(delta.tv64 >= interval.tv64)) {
415		s64 incr = ktime_to_ns(interval);
416
417		overrun = ktime_divns(delta, incr);
418
419		alarm->node.expires = ktime_add_ns(alarm->node.expires,
420							incr*overrun);
421
422		if (alarm->node.expires.tv64 > now.tv64)
423			return overrun;
424		/*
425		 * This (and the ktime_add() below) is the
426		 * correction for exact:
427		 */
428		overrun++;
429	}
430
431	alarm->node.expires = ktime_add(alarm->node.expires, interval);
432	return overrun;
433}
434EXPORT_SYMBOL_GPL(alarm_forward);
435
436u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
437{
438	struct alarm_base *base = &alarm_bases[alarm->type];
439
440	return alarm_forward(alarm, base->gettime(), interval);
441}
442EXPORT_SYMBOL_GPL(alarm_forward_now);
443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
445/**
446 * clock2alarm - helper that converts from clockid to alarmtypes
447 * @clockid: clockid.
448 */
449static enum alarmtimer_type clock2alarm(clockid_t clockid)
450{
451	if (clockid == CLOCK_REALTIME_ALARM)
452		return ALARM_REALTIME;
453	if (clockid == CLOCK_BOOTTIME_ALARM)
454		return ALARM_BOOTTIME;
455	return -1;
456}
457
458/**
459 * alarm_handle_timer - Callback for posix timers
460 * @alarm: alarm that fired
461 *
462 * Posix timer callback for expired alarm timers.
463 */
464static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
465							ktime_t now)
466{
467	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
468						it.alarm.alarmtimer);
469	if (posix_timer_event(ptr, 0) != 0)
470		ptr->it_overrun++;
471
472	/* Re-add periodic timers */
473	if (ptr->it.alarm.interval.tv64) {
474		ptr->it_overrun += alarm_forward(alarm, now,
475						ptr->it.alarm.interval);
476		return ALARMTIMER_RESTART;
 
 
 
 
 
 
 
 
 
 
 
477	}
478	return ALARMTIMER_NORESTART;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479}
480
481/**
482 * alarm_clock_getres - posix getres interface
483 * @which_clock: clockid
484 * @tp: timespec to fill
485 *
486 * Returns the granularity of underlying alarm base clock
487 */
488static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
489{
490	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
491
492	if (!alarmtimer_get_rtcdev())
493		return -EINVAL;
494
495	return hrtimer_get_res(baseid, tp);
 
 
496}
497
498/**
499 * alarm_clock_get - posix clock_get interface
500 * @which_clock: clockid
501 * @tp: timespec to fill.
502 *
503 * Provides the underlying alarm base time.
504 */
505static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
506{
507	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
508
509	if (!alarmtimer_get_rtcdev())
510		return -EINVAL;
511
512	*tp = ktime_to_timespec(base->gettime());
513	return 0;
514}
515
516/**
517 * alarm_timer_create - posix timer_create interface
518 * @new_timer: k_itimer pointer to manage
519 *
520 * Initializes the k_itimer structure.
521 */
522static int alarm_timer_create(struct k_itimer *new_timer)
523{
524	enum  alarmtimer_type type;
525	struct alarm_base *base;
526
527	if (!alarmtimer_get_rtcdev())
528		return -ENOTSUPP;
529
530	if (!capable(CAP_WAKE_ALARM))
531		return -EPERM;
532
533	type = clock2alarm(new_timer->it_clock);
534	base = &alarm_bases[type];
535	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
536	return 0;
537}
538
539/**
540 * alarm_timer_get - posix timer_get interface
541 * @new_timer: k_itimer pointer
542 * @cur_setting: itimerspec data to fill
543 *
544 * Copies the itimerspec data out from the k_itimer
545 */
546static void alarm_timer_get(struct k_itimer *timr,
547				struct itimerspec *cur_setting)
548{
549	memset(cur_setting, 0, sizeof(struct itimerspec));
550
551	cur_setting->it_interval =
552			ktime_to_timespec(timr->it.alarm.interval);
553	cur_setting->it_value =
554		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
555	return;
556}
557
558/**
559 * alarm_timer_del - posix timer_del interface
560 * @timr: k_itimer pointer to be deleted
561 *
562 * Cancels any programmed alarms for the given timer.
563 */
564static int alarm_timer_del(struct k_itimer *timr)
565{
566	if (!rtcdev)
567		return -ENOTSUPP;
568
569	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
570		return TIMER_RETRY;
571
572	return 0;
573}
574
575/**
576 * alarm_timer_set - posix timer_set interface
577 * @timr: k_itimer pointer to be deleted
578 * @flags: timer flags
579 * @new_setting: itimerspec to be used
580 * @old_setting: itimerspec being replaced
581 *
582 * Sets the timer to new_setting, and starts the timer.
583 */
584static int alarm_timer_set(struct k_itimer *timr, int flags,
585				struct itimerspec *new_setting,
586				struct itimerspec *old_setting)
587{
588	if (!rtcdev)
589		return -ENOTSUPP;
590
591	if (old_setting)
592		alarm_timer_get(timr, old_setting);
593
594	/* If the timer was already set, cancel it */
595	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
596		return TIMER_RETRY;
597
598	/* start the timer */
599	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
600	alarm_start(&timr->it.alarm.alarmtimer,
601			timespec_to_ktime(new_setting->it_value));
602	return 0;
603}
604
605/**
606 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
607 * @alarm: ptr to alarm that fired
608 *
609 * Wakes up the task that set the alarmtimer
610 */
611static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
612								ktime_t now)
613{
614	struct task_struct *task = (struct task_struct *)alarm->data;
615
616	alarm->data = NULL;
617	if (task)
618		wake_up_process(task);
619	return ALARMTIMER_NORESTART;
620}
621
622/**
623 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
624 * @alarm: ptr to alarmtimer
625 * @absexp: absolute expiration time
626 *
627 * Sets the alarm timer and sleeps until it is fired or interrupted.
628 */
629static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
 
630{
 
631	alarm->data = (void *)current;
632	do {
633		set_current_state(TASK_INTERRUPTIBLE);
634		alarm_start(alarm, absexp);
635		if (likely(alarm->data))
636			schedule();
637
638		alarm_cancel(alarm);
639	} while (alarm->data && !signal_pending(current));
640
641	__set_current_state(TASK_RUNNING);
642
643	return (alarm->data == NULL);
644}
645
 
 
646
647/**
648 * update_rmtp - Update remaining timespec value
649 * @exp: expiration time
650 * @type: timer type
651 * @rmtp: user pointer to remaining timepsec value
652 *
653 * Helper function that fills in rmtp value with time between
654 * now and the exp value
655 */
656static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
657			struct timespec __user *rmtp)
658{
659	struct timespec rmt;
660	ktime_t rem;
661
662	rem = ktime_sub(exp, alarm_bases[type].gettime());
663
664	if (rem.tv64 <= 0)
665		return 0;
666	rmt = ktime_to_timespec(rem);
667
668	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
669		return -EFAULT;
670
671	return 1;
672
 
 
 
 
 
 
 
673}
674
675/**
676 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
677 * @restart: ptr to restart block
678 *
679 * Handles restarted clock_nanosleep calls
680 */
681static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
682{
683	enum  alarmtimer_type type = restart->nanosleep.clockid;
684	ktime_t exp;
685	struct timespec __user  *rmtp;
686	struct alarm alarm;
687	int ret = 0;
688
689	exp.tv64 = restart->nanosleep.expires;
690	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
691
692	if (alarmtimer_do_nsleep(&alarm, exp))
693		goto out;
694
695	if (freezing(current))
696		alarmtimer_freezerset(exp, type);
697
698	rmtp = restart->nanosleep.rmtp;
699	if (rmtp) {
700		ret = update_rmtp(exp, type, rmtp);
701		if (ret <= 0)
702			goto out;
703	}
704
705
706	/* The other values in restart are already filled in */
707	ret = -ERESTART_RESTARTBLOCK;
708out:
709	return ret;
710}
711
712/**
713 * alarm_timer_nsleep - alarmtimer nanosleep
714 * @which_clock: clockid
715 * @flags: determins abstime or relative
716 * @tsreq: requested sleep time (abs or rel)
717 * @rmtp: remaining sleep time saved
718 *
719 * Handles clock_nanosleep calls against _ALARM clockids
720 */
721static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
722		     struct timespec *tsreq, struct timespec __user *rmtp)
723{
724	enum  alarmtimer_type type = clock2alarm(which_clock);
 
725	struct alarm alarm;
726	ktime_t exp;
727	int ret = 0;
728	struct restart_block *restart;
729
730	if (!alarmtimer_get_rtcdev())
731		return -ENOTSUPP;
732
 
 
 
733	if (!capable(CAP_WAKE_ALARM))
734		return -EPERM;
735
736	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
737
738	exp = timespec_to_ktime(*tsreq);
739	/* Convert (if necessary) to absolute time */
740	if (flags != TIMER_ABSTIME) {
741		ktime_t now = alarm_bases[type].gettime();
742		exp = ktime_add(now, exp);
743	}
744
745	if (alarmtimer_do_nsleep(&alarm, exp))
746		goto out;
747
748	if (freezing(current))
749		alarmtimer_freezerset(exp, type);
750
751	/* abs timers don't set remaining time or restart */
752	if (flags == TIMER_ABSTIME) {
753		ret = -ERESTARTNOHAND;
754		goto out;
755	}
756
757	if (rmtp) {
758		ret = update_rmtp(exp, type, rmtp);
759		if (ret <= 0)
760			goto out;
761	}
762
763	restart = &current_thread_info()->restart_block;
764	restart->fn = alarm_timer_nsleep_restart;
765	restart->nanosleep.clockid = type;
766	restart->nanosleep.expires = exp.tv64;
767	restart->nanosleep.rmtp = rmtp;
768	ret = -ERESTART_RESTARTBLOCK;
769
770out:
771	return ret;
772}
773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774
775/* Suspend hook structures */
776static const struct dev_pm_ops alarmtimer_pm_ops = {
777	.suspend = alarmtimer_suspend,
 
778};
779
780static struct platform_driver alarmtimer_driver = {
781	.driver = {
782		.name = "alarmtimer",
783		.pm = &alarmtimer_pm_ops,
784	}
785};
786
787/**
788 * alarmtimer_init - Initialize alarm timer code
789 *
790 * This function initializes the alarm bases and registers
791 * the posix clock ids.
792 */
793static int __init alarmtimer_init(void)
794{
795	struct platform_device *pdev;
796	int error = 0;
797	int i;
798	struct k_clock alarm_clock = {
799		.clock_getres	= alarm_clock_getres,
800		.clock_get	= alarm_clock_get,
801		.timer_create	= alarm_timer_create,
802		.timer_set	= alarm_timer_set,
803		.timer_del	= alarm_timer_del,
804		.timer_get	= alarm_timer_get,
805		.nsleep		= alarm_timer_nsleep,
806	};
807
808	alarmtimer_rtc_timer_init();
809
810	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
811	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
812
813	/* Initialize alarm bases */
814	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
815	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
816	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
817	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
818	for (i = 0; i < ALARM_NUMTYPE; i++) {
819		timerqueue_init_head(&alarm_bases[i].timerqueue);
820		spin_lock_init(&alarm_bases[i].lock);
821	}
822
823	error = alarmtimer_rtc_interface_setup();
824	if (error)
825		return error;
826
827	error = platform_driver_register(&alarmtimer_driver);
828	if (error)
829		goto out_if;
830
831	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
832	if (IS_ERR(pdev)) {
833		error = PTR_ERR(pdev);
834		goto out_drv;
835	}
836	ws = wakeup_source_register("alarmtimer");
837	return 0;
838
839out_drv:
840	platform_driver_unregister(&alarmtimer_driver);
841out_if:
842	alarmtimer_rtc_interface_remove();
843	return error;
844}
845device_initcall(alarmtimer_init);