Loading...
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/swap.h>
18#include <linux/timer.h>
19#include <linux/freezer.h>
20#include <linux/sched/signal.h>
21
22#include "f2fs.h"
23#include "segment.h"
24#include "node.h"
25#include "gc.h"
26#include "trace.h"
27#include <trace/events/f2fs.h>
28
29#define __reverse_ffz(x) __reverse_ffs(~(x))
30
31static struct kmem_cache *discard_entry_slab;
32static struct kmem_cache *discard_cmd_slab;
33static struct kmem_cache *sit_entry_set_slab;
34static struct kmem_cache *inmem_entry_slab;
35
36static unsigned long __reverse_ulong(unsigned char *str)
37{
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41#if BITS_PER_LONG == 64
42 shift = 56;
43#endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49}
50
51/*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
55static inline unsigned long __reverse_ffs(unsigned long word)
56{
57 int num = 0;
58
59#if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64#endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88}
89
90/*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
99static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101{
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131found:
132 return result - size + __reverse_ffs(tmp);
133}
134
135static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137{
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168found:
169 return result - size + __reverse_ffz(tmp);
170}
171
172bool need_SSR(struct f2fs_sb_info *sbi)
173{
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185}
186
187void register_inmem_page(struct inode *inode, struct page *page)
188{
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216}
217
218static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
220{
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
224
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
227
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231 lock_page(page);
232
233 if (recover) {
234 struct dnode_of_data dn;
235 struct node_info ni;
236
237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238retry:
239 set_new_dnode(&dn, inode, NULL, NULL, 0);
240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 if (err) {
242 if (err == -ENOMEM) {
243 congestion_wait(BLK_RW_ASYNC, HZ/50);
244 cond_resched();
245 goto retry;
246 }
247 err = -EAGAIN;
248 goto next;
249 }
250 get_node_info(sbi, dn.nid, &ni);
251 if (cur->old_addr == NEW_ADDR) {
252 invalidate_blocks(sbi, dn.data_blkaddr);
253 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 } else
255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 cur->old_addr, ni.version, true, true);
257 f2fs_put_dnode(&dn);
258 }
259next:
260 /* we don't need to invalidate this in the sccessful status */
261 if (drop || recover)
262 ClearPageUptodate(page);
263 set_page_private(page, 0);
264 ClearPagePrivate(page);
265 f2fs_put_page(page, 1);
266
267 list_del(&cur->list);
268 kmem_cache_free(inmem_entry_slab, cur);
269 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270 }
271 return err;
272}
273
274void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275{
276 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 struct inode *inode;
278 struct f2fs_inode_info *fi;
279next:
280 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 if (list_empty(head)) {
282 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 return;
284 }
285 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 inode = igrab(&fi->vfs_inode);
287 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288
289 if (inode) {
290 drop_inmem_pages(inode);
291 iput(inode);
292 }
293 congestion_wait(BLK_RW_ASYNC, HZ/50);
294 cond_resched();
295 goto next;
296}
297
298void drop_inmem_pages(struct inode *inode)
299{
300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302
303 mutex_lock(&fi->inmem_lock);
304 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 if (!list_empty(&fi->inmem_ilist))
307 list_del_init(&fi->inmem_ilist);
308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 mutex_unlock(&fi->inmem_lock);
310
311 clear_inode_flag(inode, FI_ATOMIC_FILE);
312 clear_inode_flag(inode, FI_HOT_DATA);
313 stat_dec_atomic_write(inode);
314}
315
316void drop_inmem_page(struct inode *inode, struct page *page)
317{
318 struct f2fs_inode_info *fi = F2FS_I(inode);
319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 struct list_head *head = &fi->inmem_pages;
321 struct inmem_pages *cur = NULL;
322
323 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324
325 mutex_lock(&fi->inmem_lock);
326 list_for_each_entry(cur, head, list) {
327 if (cur->page == page)
328 break;
329 }
330
331 f2fs_bug_on(sbi, !cur || cur->page != page);
332 list_del(&cur->list);
333 mutex_unlock(&fi->inmem_lock);
334
335 dec_page_count(sbi, F2FS_INMEM_PAGES);
336 kmem_cache_free(inmem_entry_slab, cur);
337
338 ClearPageUptodate(page);
339 set_page_private(page, 0);
340 ClearPagePrivate(page);
341 f2fs_put_page(page, 0);
342
343 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344}
345
346static int __commit_inmem_pages(struct inode *inode,
347 struct list_head *revoke_list)
348{
349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct inmem_pages *cur, *tmp;
352 struct f2fs_io_info fio = {
353 .sbi = sbi,
354 .ino = inode->i_ino,
355 .type = DATA,
356 .op = REQ_OP_WRITE,
357 .op_flags = REQ_SYNC | REQ_PRIO,
358 .io_type = FS_DATA_IO,
359 };
360 pgoff_t last_idx = ULONG_MAX;
361 int err = 0;
362
363 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 struct page *page = cur->page;
365
366 lock_page(page);
367 if (page->mapping == inode->i_mapping) {
368 trace_f2fs_commit_inmem_page(page, INMEM);
369
370 set_page_dirty(page);
371 f2fs_wait_on_page_writeback(page, DATA, true);
372 if (clear_page_dirty_for_io(page)) {
373 inode_dec_dirty_pages(inode);
374 remove_dirty_inode(inode);
375 }
376retry:
377 fio.page = page;
378 fio.old_blkaddr = NULL_ADDR;
379 fio.encrypted_page = NULL;
380 fio.need_lock = LOCK_DONE;
381 err = do_write_data_page(&fio);
382 if (err) {
383 if (err == -ENOMEM) {
384 congestion_wait(BLK_RW_ASYNC, HZ/50);
385 cond_resched();
386 goto retry;
387 }
388 unlock_page(page);
389 break;
390 }
391 /* record old blkaddr for revoking */
392 cur->old_addr = fio.old_blkaddr;
393 last_idx = page->index;
394 }
395 unlock_page(page);
396 list_move_tail(&cur->list, revoke_list);
397 }
398
399 if (last_idx != ULONG_MAX)
400 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401
402 if (!err)
403 __revoke_inmem_pages(inode, revoke_list, false, false);
404
405 return err;
406}
407
408int commit_inmem_pages(struct inode *inode)
409{
410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 struct f2fs_inode_info *fi = F2FS_I(inode);
412 struct list_head revoke_list;
413 int err;
414
415 INIT_LIST_HEAD(&revoke_list);
416 f2fs_balance_fs(sbi, true);
417 f2fs_lock_op(sbi);
418
419 set_inode_flag(inode, FI_ATOMIC_COMMIT);
420
421 mutex_lock(&fi->inmem_lock);
422 err = __commit_inmem_pages(inode, &revoke_list);
423 if (err) {
424 int ret;
425 /*
426 * try to revoke all committed pages, but still we could fail
427 * due to no memory or other reason, if that happened, EAGAIN
428 * will be returned, which means in such case, transaction is
429 * already not integrity, caller should use journal to do the
430 * recovery or rewrite & commit last transaction. For other
431 * error number, revoking was done by filesystem itself.
432 */
433 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 if (ret)
435 err = ret;
436
437 /* drop all uncommitted pages */
438 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439 }
440 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 if (!list_empty(&fi->inmem_ilist))
442 list_del_init(&fi->inmem_ilist);
443 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 mutex_unlock(&fi->inmem_lock);
445
446 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447
448 f2fs_unlock_op(sbi);
449 return err;
450}
451
452/*
453 * This function balances dirty node and dentry pages.
454 * In addition, it controls garbage collection.
455 */
456void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457{
458#ifdef CONFIG_F2FS_FAULT_INJECTION
459 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 f2fs_show_injection_info(FAULT_CHECKPOINT);
461 f2fs_stop_checkpoint(sbi, false);
462 }
463#endif
464
465 /* balance_fs_bg is able to be pending */
466 if (need && excess_cached_nats(sbi))
467 f2fs_balance_fs_bg(sbi);
468
469 /*
470 * We should do GC or end up with checkpoint, if there are so many dirty
471 * dir/node pages without enough free segments.
472 */
473 if (has_not_enough_free_secs(sbi, 0, 0)) {
474 mutex_lock(&sbi->gc_mutex);
475 f2fs_gc(sbi, false, false, NULL_SEGNO);
476 }
477}
478
479void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480{
481 /* try to shrink extent cache when there is no enough memory */
482 if (!available_free_memory(sbi, EXTENT_CACHE))
483 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
484
485 /* check the # of cached NAT entries */
486 if (!available_free_memory(sbi, NAT_ENTRIES))
487 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
488
489 if (!available_free_memory(sbi, FREE_NIDS))
490 try_to_free_nids(sbi, MAX_FREE_NIDS);
491 else
492 build_free_nids(sbi, false, false);
493
494 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
495 return;
496
497 /* checkpoint is the only way to shrink partial cached entries */
498 if (!available_free_memory(sbi, NAT_ENTRIES) ||
499 !available_free_memory(sbi, INO_ENTRIES) ||
500 excess_prefree_segs(sbi) ||
501 excess_dirty_nats(sbi) ||
502 f2fs_time_over(sbi, CP_TIME)) {
503 if (test_opt(sbi, DATA_FLUSH)) {
504 struct blk_plug plug;
505
506 blk_start_plug(&plug);
507 sync_dirty_inodes(sbi, FILE_INODE);
508 blk_finish_plug(&plug);
509 }
510 f2fs_sync_fs(sbi->sb, true);
511 stat_inc_bg_cp_count(sbi->stat_info);
512 }
513}
514
515static int __submit_flush_wait(struct f2fs_sb_info *sbi,
516 struct block_device *bdev)
517{
518 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
519 int ret;
520
521 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
522 bio_set_dev(bio, bdev);
523 ret = submit_bio_wait(bio);
524 bio_put(bio);
525
526 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
527 test_opt(sbi, FLUSH_MERGE), ret);
528 return ret;
529}
530
531static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
532{
533 int ret = 0;
534 int i;
535
536 if (!sbi->s_ndevs)
537 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
538
539 for (i = 0; i < sbi->s_ndevs; i++) {
540 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
541 continue;
542 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543 if (ret)
544 break;
545 }
546 return ret;
547}
548
549static int issue_flush_thread(void *data)
550{
551 struct f2fs_sb_info *sbi = data;
552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 wait_queue_head_t *q = &fcc->flush_wait_queue;
554repeat:
555 if (kthread_should_stop())
556 return 0;
557
558 sb_start_intwrite(sbi->sb);
559
560 if (!llist_empty(&fcc->issue_list)) {
561 struct flush_cmd *cmd, *next;
562 int ret;
563
564 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
565 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
566
567 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
568
569 ret = submit_flush_wait(sbi, cmd->ino);
570 atomic_inc(&fcc->issued_flush);
571
572 llist_for_each_entry_safe(cmd, next,
573 fcc->dispatch_list, llnode) {
574 cmd->ret = ret;
575 complete(&cmd->wait);
576 }
577 fcc->dispatch_list = NULL;
578 }
579
580 sb_end_intwrite(sbi->sb);
581
582 wait_event_interruptible(*q,
583 kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 goto repeat;
585}
586
587int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588{
589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 struct flush_cmd cmd;
591 int ret;
592
593 if (test_opt(sbi, NOBARRIER))
594 return 0;
595
596 if (!test_opt(sbi, FLUSH_MERGE)) {
597 ret = submit_flush_wait(sbi, ino);
598 atomic_inc(&fcc->issued_flush);
599 return ret;
600 }
601
602 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
603 ret = submit_flush_wait(sbi, ino);
604 atomic_dec(&fcc->issing_flush);
605
606 atomic_inc(&fcc->issued_flush);
607 return ret;
608 }
609
610 cmd.ino = ino;
611 init_completion(&cmd.wait);
612
613 llist_add(&cmd.llnode, &fcc->issue_list);
614
615 /* update issue_list before we wake up issue_flush thread */
616 smp_mb();
617
618 if (waitqueue_active(&fcc->flush_wait_queue))
619 wake_up(&fcc->flush_wait_queue);
620
621 if (fcc->f2fs_issue_flush) {
622 wait_for_completion(&cmd.wait);
623 atomic_dec(&fcc->issing_flush);
624 } else {
625 struct llist_node *list;
626
627 list = llist_del_all(&fcc->issue_list);
628 if (!list) {
629 wait_for_completion(&cmd.wait);
630 atomic_dec(&fcc->issing_flush);
631 } else {
632 struct flush_cmd *tmp, *next;
633
634 ret = submit_flush_wait(sbi, ino);
635
636 llist_for_each_entry_safe(tmp, next, list, llnode) {
637 if (tmp == &cmd) {
638 cmd.ret = ret;
639 atomic_dec(&fcc->issing_flush);
640 continue;
641 }
642 tmp->ret = ret;
643 complete(&tmp->wait);
644 }
645 }
646 }
647
648 return cmd.ret;
649}
650
651int create_flush_cmd_control(struct f2fs_sb_info *sbi)
652{
653 dev_t dev = sbi->sb->s_bdev->bd_dev;
654 struct flush_cmd_control *fcc;
655 int err = 0;
656
657 if (SM_I(sbi)->fcc_info) {
658 fcc = SM_I(sbi)->fcc_info;
659 if (fcc->f2fs_issue_flush)
660 return err;
661 goto init_thread;
662 }
663
664 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665 if (!fcc)
666 return -ENOMEM;
667 atomic_set(&fcc->issued_flush, 0);
668 atomic_set(&fcc->issing_flush, 0);
669 init_waitqueue_head(&fcc->flush_wait_queue);
670 init_llist_head(&fcc->issue_list);
671 SM_I(sbi)->fcc_info = fcc;
672 if (!test_opt(sbi, FLUSH_MERGE))
673 return err;
674
675init_thread:
676 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678 if (IS_ERR(fcc->f2fs_issue_flush)) {
679 err = PTR_ERR(fcc->f2fs_issue_flush);
680 kfree(fcc);
681 SM_I(sbi)->fcc_info = NULL;
682 return err;
683 }
684
685 return err;
686}
687
688void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
689{
690 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
691
692 if (fcc && fcc->f2fs_issue_flush) {
693 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
694
695 fcc->f2fs_issue_flush = NULL;
696 kthread_stop(flush_thread);
697 }
698 if (free) {
699 kfree(fcc);
700 SM_I(sbi)->fcc_info = NULL;
701 }
702}
703
704int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
705{
706 int ret = 0, i;
707
708 if (!sbi->s_ndevs)
709 return 0;
710
711 for (i = 1; i < sbi->s_ndevs; i++) {
712 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
713 continue;
714 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715 if (ret)
716 break;
717
718 spin_lock(&sbi->dev_lock);
719 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 spin_unlock(&sbi->dev_lock);
721 }
722
723 return ret;
724}
725
726static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 enum dirty_type dirty_type)
728{
729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730
731 /* need not be added */
732 if (IS_CURSEG(sbi, segno))
733 return;
734
735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 dirty_i->nr_dirty[dirty_type]++;
737
738 if (dirty_type == DIRTY) {
739 struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 enum dirty_type t = sentry->type;
741
742 if (unlikely(t >= DIRTY)) {
743 f2fs_bug_on(sbi, 1);
744 return;
745 }
746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 dirty_i->nr_dirty[t]++;
748 }
749}
750
751static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
752 enum dirty_type dirty_type)
753{
754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
755
756 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
757 dirty_i->nr_dirty[dirty_type]--;
758
759 if (dirty_type == DIRTY) {
760 struct seg_entry *sentry = get_seg_entry(sbi, segno);
761 enum dirty_type t = sentry->type;
762
763 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
764 dirty_i->nr_dirty[t]--;
765
766 if (get_valid_blocks(sbi, segno, true) == 0)
767 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
768 dirty_i->victim_secmap);
769 }
770}
771
772/*
773 * Should not occur error such as -ENOMEM.
774 * Adding dirty entry into seglist is not critical operation.
775 * If a given segment is one of current working segments, it won't be added.
776 */
777static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
778{
779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 unsigned short valid_blocks;
781
782 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
783 return;
784
785 mutex_lock(&dirty_i->seglist_lock);
786
787 valid_blocks = get_valid_blocks(sbi, segno, false);
788
789 if (valid_blocks == 0) {
790 __locate_dirty_segment(sbi, segno, PRE);
791 __remove_dirty_segment(sbi, segno, DIRTY);
792 } else if (valid_blocks < sbi->blocks_per_seg) {
793 __locate_dirty_segment(sbi, segno, DIRTY);
794 } else {
795 /* Recovery routine with SSR needs this */
796 __remove_dirty_segment(sbi, segno, DIRTY);
797 }
798
799 mutex_unlock(&dirty_i->seglist_lock);
800}
801
802static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
803 struct block_device *bdev, block_t lstart,
804 block_t start, block_t len)
805{
806 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
807 struct list_head *pend_list;
808 struct discard_cmd *dc;
809
810 f2fs_bug_on(sbi, !len);
811
812 pend_list = &dcc->pend_list[plist_idx(len)];
813
814 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
815 INIT_LIST_HEAD(&dc->list);
816 dc->bdev = bdev;
817 dc->lstart = lstart;
818 dc->start = start;
819 dc->len = len;
820 dc->ref = 0;
821 dc->state = D_PREP;
822 dc->error = 0;
823 init_completion(&dc->wait);
824 list_add_tail(&dc->list, pend_list);
825 atomic_inc(&dcc->discard_cmd_cnt);
826 dcc->undiscard_blks += len;
827
828 return dc;
829}
830
831static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
832 struct block_device *bdev, block_t lstart,
833 block_t start, block_t len,
834 struct rb_node *parent, struct rb_node **p)
835{
836 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
837 struct discard_cmd *dc;
838
839 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
840
841 rb_link_node(&dc->rb_node, parent, p);
842 rb_insert_color(&dc->rb_node, &dcc->root);
843
844 return dc;
845}
846
847static void __detach_discard_cmd(struct discard_cmd_control *dcc,
848 struct discard_cmd *dc)
849{
850 if (dc->state == D_DONE)
851 atomic_dec(&dcc->issing_discard);
852
853 list_del(&dc->list);
854 rb_erase(&dc->rb_node, &dcc->root);
855 dcc->undiscard_blks -= dc->len;
856
857 kmem_cache_free(discard_cmd_slab, dc);
858
859 atomic_dec(&dcc->discard_cmd_cnt);
860}
861
862static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
863 struct discard_cmd *dc)
864{
865 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
866
867 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
868
869 f2fs_bug_on(sbi, dc->ref);
870
871 if (dc->error == -EOPNOTSUPP)
872 dc->error = 0;
873
874 if (dc->error)
875 f2fs_msg(sbi->sb, KERN_INFO,
876 "Issue discard(%u, %u, %u) failed, ret: %d",
877 dc->lstart, dc->start, dc->len, dc->error);
878 __detach_discard_cmd(dcc, dc);
879}
880
881static void f2fs_submit_discard_endio(struct bio *bio)
882{
883 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
884
885 dc->error = blk_status_to_errno(bio->bi_status);
886 dc->state = D_DONE;
887 complete_all(&dc->wait);
888 bio_put(bio);
889}
890
891static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
892 block_t start, block_t end)
893{
894#ifdef CONFIG_F2FS_CHECK_FS
895 struct seg_entry *sentry;
896 unsigned int segno;
897 block_t blk = start;
898 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
899 unsigned long *map;
900
901 while (blk < end) {
902 segno = GET_SEGNO(sbi, blk);
903 sentry = get_seg_entry(sbi, segno);
904 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
905
906 if (end < START_BLOCK(sbi, segno + 1))
907 size = GET_BLKOFF_FROM_SEG0(sbi, end);
908 else
909 size = max_blocks;
910 map = (unsigned long *)(sentry->cur_valid_map);
911 offset = __find_rev_next_bit(map, size, offset);
912 f2fs_bug_on(sbi, offset != size);
913 blk = START_BLOCK(sbi, segno + 1);
914 }
915#endif
916}
917
918/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
920 struct discard_policy *dpolicy,
921 struct discard_cmd *dc)
922{
923 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
924 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
925 &(dcc->fstrim_list) : &(dcc->wait_list);
926 struct bio *bio = NULL;
927 int flag = dpolicy->sync ? REQ_SYNC : 0;
928
929 if (dc->state != D_PREP)
930 return;
931
932 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
933
934 dc->error = __blkdev_issue_discard(dc->bdev,
935 SECTOR_FROM_BLOCK(dc->start),
936 SECTOR_FROM_BLOCK(dc->len),
937 GFP_NOFS, 0, &bio);
938 if (!dc->error) {
939 /* should keep before submission to avoid D_DONE right away */
940 dc->state = D_SUBMIT;
941 atomic_inc(&dcc->issued_discard);
942 atomic_inc(&dcc->issing_discard);
943 if (bio) {
944 bio->bi_private = dc;
945 bio->bi_end_io = f2fs_submit_discard_endio;
946 bio->bi_opf |= flag;
947 submit_bio(bio);
948 list_move_tail(&dc->list, wait_list);
949 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
950
951 f2fs_update_iostat(sbi, FS_DISCARD, 1);
952 }
953 } else {
954 __remove_discard_cmd(sbi, dc);
955 }
956}
957
958static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
959 struct block_device *bdev, block_t lstart,
960 block_t start, block_t len,
961 struct rb_node **insert_p,
962 struct rb_node *insert_parent)
963{
964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
965 struct rb_node **p;
966 struct rb_node *parent = NULL;
967 struct discard_cmd *dc = NULL;
968
969 if (insert_p && insert_parent) {
970 parent = insert_parent;
971 p = insert_p;
972 goto do_insert;
973 }
974
975 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
976do_insert:
977 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
978 if (!dc)
979 return NULL;
980
981 return dc;
982}
983
984static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
985 struct discard_cmd *dc)
986{
987 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
988}
989
990static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
991 struct discard_cmd *dc, block_t blkaddr)
992{
993 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994 struct discard_info di = dc->di;
995 bool modified = false;
996
997 if (dc->state == D_DONE || dc->len == 1) {
998 __remove_discard_cmd(sbi, dc);
999 return;
1000 }
1001
1002 dcc->undiscard_blks -= di.len;
1003
1004 if (blkaddr > di.lstart) {
1005 dc->len = blkaddr - dc->lstart;
1006 dcc->undiscard_blks += dc->len;
1007 __relocate_discard_cmd(dcc, dc);
1008 modified = true;
1009 }
1010
1011 if (blkaddr < di.lstart + di.len - 1) {
1012 if (modified) {
1013 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1014 di.start + blkaddr + 1 - di.lstart,
1015 di.lstart + di.len - 1 - blkaddr,
1016 NULL, NULL);
1017 } else {
1018 dc->lstart++;
1019 dc->len--;
1020 dc->start++;
1021 dcc->undiscard_blks += dc->len;
1022 __relocate_discard_cmd(dcc, dc);
1023 }
1024 }
1025}
1026
1027static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1028 struct block_device *bdev, block_t lstart,
1029 block_t start, block_t len)
1030{
1031 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1033 struct discard_cmd *dc;
1034 struct discard_info di = {0};
1035 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1036 block_t end = lstart + len;
1037
1038 mutex_lock(&dcc->cmd_lock);
1039
1040 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1041 NULL, lstart,
1042 (struct rb_entry **)&prev_dc,
1043 (struct rb_entry **)&next_dc,
1044 &insert_p, &insert_parent, true);
1045 if (dc)
1046 prev_dc = dc;
1047
1048 if (!prev_dc) {
1049 di.lstart = lstart;
1050 di.len = next_dc ? next_dc->lstart - lstart : len;
1051 di.len = min(di.len, len);
1052 di.start = start;
1053 }
1054
1055 while (1) {
1056 struct rb_node *node;
1057 bool merged = false;
1058 struct discard_cmd *tdc = NULL;
1059
1060 if (prev_dc) {
1061 di.lstart = prev_dc->lstart + prev_dc->len;
1062 if (di.lstart < lstart)
1063 di.lstart = lstart;
1064 if (di.lstart >= end)
1065 break;
1066
1067 if (!next_dc || next_dc->lstart > end)
1068 di.len = end - di.lstart;
1069 else
1070 di.len = next_dc->lstart - di.lstart;
1071 di.start = start + di.lstart - lstart;
1072 }
1073
1074 if (!di.len)
1075 goto next;
1076
1077 if (prev_dc && prev_dc->state == D_PREP &&
1078 prev_dc->bdev == bdev &&
1079 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1080 prev_dc->di.len += di.len;
1081 dcc->undiscard_blks += di.len;
1082 __relocate_discard_cmd(dcc, prev_dc);
1083 di = prev_dc->di;
1084 tdc = prev_dc;
1085 merged = true;
1086 }
1087
1088 if (next_dc && next_dc->state == D_PREP &&
1089 next_dc->bdev == bdev &&
1090 __is_discard_front_mergeable(&di, &next_dc->di)) {
1091 next_dc->di.lstart = di.lstart;
1092 next_dc->di.len += di.len;
1093 next_dc->di.start = di.start;
1094 dcc->undiscard_blks += di.len;
1095 __relocate_discard_cmd(dcc, next_dc);
1096 if (tdc)
1097 __remove_discard_cmd(sbi, tdc);
1098 merged = true;
1099 }
1100
1101 if (!merged) {
1102 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1103 di.len, NULL, NULL);
1104 }
1105 next:
1106 prev_dc = next_dc;
1107 if (!prev_dc)
1108 break;
1109
1110 node = rb_next(&prev_dc->rb_node);
1111 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1112 }
1113
1114 mutex_unlock(&dcc->cmd_lock);
1115}
1116
1117static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1118 struct block_device *bdev, block_t blkstart, block_t blklen)
1119{
1120 block_t lblkstart = blkstart;
1121
1122 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1123
1124 if (sbi->s_ndevs) {
1125 int devi = f2fs_target_device_index(sbi, blkstart);
1126
1127 blkstart -= FDEV(devi).start_blk;
1128 }
1129 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1130 return 0;
1131}
1132
1133static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1134 struct discard_policy *dpolicy,
1135 unsigned int start, unsigned int end)
1136{
1137 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1139 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1140 struct discard_cmd *dc;
1141 struct blk_plug plug;
1142 int issued;
1143
1144next:
1145 issued = 0;
1146
1147 mutex_lock(&dcc->cmd_lock);
1148 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1149
1150 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1151 NULL, start,
1152 (struct rb_entry **)&prev_dc,
1153 (struct rb_entry **)&next_dc,
1154 &insert_p, &insert_parent, true);
1155 if (!dc)
1156 dc = next_dc;
1157
1158 blk_start_plug(&plug);
1159
1160 while (dc && dc->lstart <= end) {
1161 struct rb_node *node;
1162
1163 if (dc->len < dpolicy->granularity)
1164 goto skip;
1165
1166 if (dc->state != D_PREP) {
1167 list_move_tail(&dc->list, &dcc->fstrim_list);
1168 goto skip;
1169 }
1170
1171 __submit_discard_cmd(sbi, dpolicy, dc);
1172
1173 if (++issued >= dpolicy->max_requests) {
1174 start = dc->lstart + dc->len;
1175
1176 blk_finish_plug(&plug);
1177 mutex_unlock(&dcc->cmd_lock);
1178
1179 schedule();
1180
1181 goto next;
1182 }
1183skip:
1184 node = rb_next(&dc->rb_node);
1185 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1186
1187 if (fatal_signal_pending(current))
1188 break;
1189 }
1190
1191 blk_finish_plug(&plug);
1192 mutex_unlock(&dcc->cmd_lock);
1193}
1194
1195static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1196 struct discard_policy *dpolicy)
1197{
1198 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1199 struct list_head *pend_list;
1200 struct discard_cmd *dc, *tmp;
1201 struct blk_plug plug;
1202 int i, iter = 0, issued = 0;
1203 bool io_interrupted = false;
1204
1205 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1206 if (i + 1 < dpolicy->granularity)
1207 break;
1208 pend_list = &dcc->pend_list[i];
1209
1210 mutex_lock(&dcc->cmd_lock);
1211 if (list_empty(pend_list))
1212 goto next;
1213 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1214 blk_start_plug(&plug);
1215 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1216 f2fs_bug_on(sbi, dc->state != D_PREP);
1217
1218 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1219 !is_idle(sbi)) {
1220 io_interrupted = true;
1221 goto skip;
1222 }
1223
1224 __submit_discard_cmd(sbi, dpolicy, dc);
1225 issued++;
1226skip:
1227 if (++iter >= dpolicy->max_requests)
1228 break;
1229 }
1230 blk_finish_plug(&plug);
1231next:
1232 mutex_unlock(&dcc->cmd_lock);
1233
1234 if (iter >= dpolicy->max_requests)
1235 break;
1236 }
1237
1238 if (!issued && io_interrupted)
1239 issued = -1;
1240
1241 return issued;
1242}
1243
1244static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1245{
1246 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247 struct list_head *pend_list;
1248 struct discard_cmd *dc, *tmp;
1249 int i;
1250 bool dropped = false;
1251
1252 mutex_lock(&dcc->cmd_lock);
1253 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1254 pend_list = &dcc->pend_list[i];
1255 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1256 f2fs_bug_on(sbi, dc->state != D_PREP);
1257 __remove_discard_cmd(sbi, dc);
1258 dropped = true;
1259 }
1260 }
1261 mutex_unlock(&dcc->cmd_lock);
1262
1263 return dropped;
1264}
1265
1266void drop_discard_cmd(struct f2fs_sb_info *sbi)
1267{
1268 __drop_discard_cmd(sbi);
1269}
1270
1271static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1272 struct discard_cmd *dc)
1273{
1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275 unsigned int len = 0;
1276
1277 wait_for_completion_io(&dc->wait);
1278 mutex_lock(&dcc->cmd_lock);
1279 f2fs_bug_on(sbi, dc->state != D_DONE);
1280 dc->ref--;
1281 if (!dc->ref) {
1282 if (!dc->error)
1283 len = dc->len;
1284 __remove_discard_cmd(sbi, dc);
1285 }
1286 mutex_unlock(&dcc->cmd_lock);
1287
1288 return len;
1289}
1290
1291static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1292 struct discard_policy *dpolicy,
1293 block_t start, block_t end)
1294{
1295 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1297 &(dcc->fstrim_list) : &(dcc->wait_list);
1298 struct discard_cmd *dc, *tmp;
1299 bool need_wait;
1300 unsigned int trimmed = 0;
1301
1302next:
1303 need_wait = false;
1304
1305 mutex_lock(&dcc->cmd_lock);
1306 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1307 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1308 continue;
1309 if (dc->len < dpolicy->granularity)
1310 continue;
1311 if (dc->state == D_DONE && !dc->ref) {
1312 wait_for_completion_io(&dc->wait);
1313 if (!dc->error)
1314 trimmed += dc->len;
1315 __remove_discard_cmd(sbi, dc);
1316 } else {
1317 dc->ref++;
1318 need_wait = true;
1319 break;
1320 }
1321 }
1322 mutex_unlock(&dcc->cmd_lock);
1323
1324 if (need_wait) {
1325 trimmed += __wait_one_discard_bio(sbi, dc);
1326 goto next;
1327 }
1328
1329 return trimmed;
1330}
1331
1332static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1333 struct discard_policy *dpolicy)
1334{
1335 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1336}
1337
1338/* This should be covered by global mutex, &sit_i->sentry_lock */
1339static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1340{
1341 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1342 struct discard_cmd *dc;
1343 bool need_wait = false;
1344
1345 mutex_lock(&dcc->cmd_lock);
1346 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1347 if (dc) {
1348 if (dc->state == D_PREP) {
1349 __punch_discard_cmd(sbi, dc, blkaddr);
1350 } else {
1351 dc->ref++;
1352 need_wait = true;
1353 }
1354 }
1355 mutex_unlock(&dcc->cmd_lock);
1356
1357 if (need_wait)
1358 __wait_one_discard_bio(sbi, dc);
1359}
1360
1361void stop_discard_thread(struct f2fs_sb_info *sbi)
1362{
1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364
1365 if (dcc && dcc->f2fs_issue_discard) {
1366 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1367
1368 dcc->f2fs_issue_discard = NULL;
1369 kthread_stop(discard_thread);
1370 }
1371}
1372
1373/* This comes from f2fs_put_super */
1374bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1375{
1376 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377 struct discard_policy dpolicy;
1378 bool dropped;
1379
1380 init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1381 __issue_discard_cmd(sbi, &dpolicy);
1382 dropped = __drop_discard_cmd(sbi);
1383 __wait_all_discard_cmd(sbi, &dpolicy);
1384
1385 return dropped;
1386}
1387
1388static int issue_discard_thread(void *data)
1389{
1390 struct f2fs_sb_info *sbi = data;
1391 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392 wait_queue_head_t *q = &dcc->discard_wait_queue;
1393 struct discard_policy dpolicy;
1394 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1395 int issued;
1396
1397 set_freezable();
1398
1399 do {
1400 init_discard_policy(&dpolicy, DPOLICY_BG,
1401 dcc->discard_granularity);
1402
1403 wait_event_interruptible_timeout(*q,
1404 kthread_should_stop() || freezing(current) ||
1405 dcc->discard_wake,
1406 msecs_to_jiffies(wait_ms));
1407 if (try_to_freeze())
1408 continue;
1409 if (f2fs_readonly(sbi->sb))
1410 continue;
1411 if (kthread_should_stop())
1412 return 0;
1413
1414 if (dcc->discard_wake)
1415 dcc->discard_wake = 0;
1416
1417 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1418 init_discard_policy(&dpolicy, DPOLICY_FORCE, 1);
1419
1420 sb_start_intwrite(sbi->sb);
1421
1422 issued = __issue_discard_cmd(sbi, &dpolicy);
1423 if (issued) {
1424 __wait_all_discard_cmd(sbi, &dpolicy);
1425 wait_ms = dpolicy.min_interval;
1426 } else {
1427 wait_ms = dpolicy.max_interval;
1428 }
1429
1430 sb_end_intwrite(sbi->sb);
1431
1432 } while (!kthread_should_stop());
1433 return 0;
1434}
1435
1436#ifdef CONFIG_BLK_DEV_ZONED
1437static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1438 struct block_device *bdev, block_t blkstart, block_t blklen)
1439{
1440 sector_t sector, nr_sects;
1441 block_t lblkstart = blkstart;
1442 int devi = 0;
1443
1444 if (sbi->s_ndevs) {
1445 devi = f2fs_target_device_index(sbi, blkstart);
1446 blkstart -= FDEV(devi).start_blk;
1447 }
1448
1449 /*
1450 * We need to know the type of the zone: for conventional zones,
1451 * use regular discard if the drive supports it. For sequential
1452 * zones, reset the zone write pointer.
1453 */
1454 switch (get_blkz_type(sbi, bdev, blkstart)) {
1455
1456 case BLK_ZONE_TYPE_CONVENTIONAL:
1457 if (!blk_queue_discard(bdev_get_queue(bdev)))
1458 return 0;
1459 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1460 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1461 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1462 sector = SECTOR_FROM_BLOCK(blkstart);
1463 nr_sects = SECTOR_FROM_BLOCK(blklen);
1464
1465 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1466 nr_sects != bdev_zone_sectors(bdev)) {
1467 f2fs_msg(sbi->sb, KERN_INFO,
1468 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1469 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1470 blkstart, blklen);
1471 return -EIO;
1472 }
1473 trace_f2fs_issue_reset_zone(bdev, blkstart);
1474 return blkdev_reset_zones(bdev, sector,
1475 nr_sects, GFP_NOFS);
1476 default:
1477 /* Unknown zone type: broken device ? */
1478 return -EIO;
1479 }
1480}
1481#endif
1482
1483static int __issue_discard_async(struct f2fs_sb_info *sbi,
1484 struct block_device *bdev, block_t blkstart, block_t blklen)
1485{
1486#ifdef CONFIG_BLK_DEV_ZONED
1487 if (f2fs_sb_has_blkzoned(sbi->sb) &&
1488 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1489 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1490#endif
1491 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1492}
1493
1494static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1495 block_t blkstart, block_t blklen)
1496{
1497 sector_t start = blkstart, len = 0;
1498 struct block_device *bdev;
1499 struct seg_entry *se;
1500 unsigned int offset;
1501 block_t i;
1502 int err = 0;
1503
1504 bdev = f2fs_target_device(sbi, blkstart, NULL);
1505
1506 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1507 if (i != start) {
1508 struct block_device *bdev2 =
1509 f2fs_target_device(sbi, i, NULL);
1510
1511 if (bdev2 != bdev) {
1512 err = __issue_discard_async(sbi, bdev,
1513 start, len);
1514 if (err)
1515 return err;
1516 bdev = bdev2;
1517 start = i;
1518 len = 0;
1519 }
1520 }
1521
1522 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1523 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1524
1525 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1526 sbi->discard_blks--;
1527 }
1528
1529 if (len)
1530 err = __issue_discard_async(sbi, bdev, start, len);
1531 return err;
1532}
1533
1534static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1535 bool check_only)
1536{
1537 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1538 int max_blocks = sbi->blocks_per_seg;
1539 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1540 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1541 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1542 unsigned long *discard_map = (unsigned long *)se->discard_map;
1543 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1544 unsigned int start = 0, end = -1;
1545 bool force = (cpc->reason & CP_DISCARD);
1546 struct discard_entry *de = NULL;
1547 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1548 int i;
1549
1550 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1551 return false;
1552
1553 if (!force) {
1554 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1555 SM_I(sbi)->dcc_info->nr_discards >=
1556 SM_I(sbi)->dcc_info->max_discards)
1557 return false;
1558 }
1559
1560 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1561 for (i = 0; i < entries; i++)
1562 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1563 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1564
1565 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1566 SM_I(sbi)->dcc_info->max_discards) {
1567 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1568 if (start >= max_blocks)
1569 break;
1570
1571 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1572 if (force && start && end != max_blocks
1573 && (end - start) < cpc->trim_minlen)
1574 continue;
1575
1576 if (check_only)
1577 return true;
1578
1579 if (!de) {
1580 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1581 GFP_F2FS_ZERO);
1582 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1583 list_add_tail(&de->list, head);
1584 }
1585
1586 for (i = start; i < end; i++)
1587 __set_bit_le(i, (void *)de->discard_map);
1588
1589 SM_I(sbi)->dcc_info->nr_discards += end - start;
1590 }
1591 return false;
1592}
1593
1594void release_discard_addrs(struct f2fs_sb_info *sbi)
1595{
1596 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1597 struct discard_entry *entry, *this;
1598
1599 /* drop caches */
1600 list_for_each_entry_safe(entry, this, head, list) {
1601 list_del(&entry->list);
1602 kmem_cache_free(discard_entry_slab, entry);
1603 }
1604}
1605
1606/*
1607 * Should call clear_prefree_segments after checkpoint is done.
1608 */
1609static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1610{
1611 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1612 unsigned int segno;
1613
1614 mutex_lock(&dirty_i->seglist_lock);
1615 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1616 __set_test_and_free(sbi, segno);
1617 mutex_unlock(&dirty_i->seglist_lock);
1618}
1619
1620void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1621{
1622 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1623 struct list_head *head = &dcc->entry_list;
1624 struct discard_entry *entry, *this;
1625 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1626 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1627 unsigned int start = 0, end = -1;
1628 unsigned int secno, start_segno;
1629 bool force = (cpc->reason & CP_DISCARD);
1630
1631 mutex_lock(&dirty_i->seglist_lock);
1632
1633 while (1) {
1634 int i;
1635 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1636 if (start >= MAIN_SEGS(sbi))
1637 break;
1638 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1639 start + 1);
1640
1641 for (i = start; i < end; i++)
1642 clear_bit(i, prefree_map);
1643
1644 dirty_i->nr_dirty[PRE] -= end - start;
1645
1646 if (!test_opt(sbi, DISCARD))
1647 continue;
1648
1649 if (force && start >= cpc->trim_start &&
1650 (end - 1) <= cpc->trim_end)
1651 continue;
1652
1653 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1654 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1655 (end - start) << sbi->log_blocks_per_seg);
1656 continue;
1657 }
1658next:
1659 secno = GET_SEC_FROM_SEG(sbi, start);
1660 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1661 if (!IS_CURSEC(sbi, secno) &&
1662 !get_valid_blocks(sbi, start, true))
1663 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1664 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1665
1666 start = start_segno + sbi->segs_per_sec;
1667 if (start < end)
1668 goto next;
1669 else
1670 end = start - 1;
1671 }
1672 mutex_unlock(&dirty_i->seglist_lock);
1673
1674 /* send small discards */
1675 list_for_each_entry_safe(entry, this, head, list) {
1676 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1677 bool is_valid = test_bit_le(0, entry->discard_map);
1678
1679find_next:
1680 if (is_valid) {
1681 next_pos = find_next_zero_bit_le(entry->discard_map,
1682 sbi->blocks_per_seg, cur_pos);
1683 len = next_pos - cur_pos;
1684
1685 if (f2fs_sb_has_blkzoned(sbi->sb) ||
1686 (force && len < cpc->trim_minlen))
1687 goto skip;
1688
1689 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1690 len);
1691 total_len += len;
1692 } else {
1693 next_pos = find_next_bit_le(entry->discard_map,
1694 sbi->blocks_per_seg, cur_pos);
1695 }
1696skip:
1697 cur_pos = next_pos;
1698 is_valid = !is_valid;
1699
1700 if (cur_pos < sbi->blocks_per_seg)
1701 goto find_next;
1702
1703 list_del(&entry->list);
1704 dcc->nr_discards -= total_len;
1705 kmem_cache_free(discard_entry_slab, entry);
1706 }
1707
1708 wake_up_discard_thread(sbi, false);
1709}
1710
1711void init_discard_policy(struct discard_policy *dpolicy,
1712 int discard_type, unsigned int granularity)
1713{
1714 /* common policy */
1715 dpolicy->type = discard_type;
1716 dpolicy->sync = true;
1717 dpolicy->granularity = granularity;
1718
1719 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1720 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1721
1722 if (discard_type == DPOLICY_BG) {
1723 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1724 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1725 dpolicy->io_aware = true;
1726 } else if (discard_type == DPOLICY_FORCE) {
1727 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1728 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1729 dpolicy->io_aware = false;
1730 } else if (discard_type == DPOLICY_FSTRIM) {
1731 dpolicy->io_aware = false;
1732 } else if (discard_type == DPOLICY_UMOUNT) {
1733 dpolicy->io_aware = false;
1734 }
1735}
1736
1737static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1738{
1739 dev_t dev = sbi->sb->s_bdev->bd_dev;
1740 struct discard_cmd_control *dcc;
1741 int err = 0, i;
1742
1743 if (SM_I(sbi)->dcc_info) {
1744 dcc = SM_I(sbi)->dcc_info;
1745 goto init_thread;
1746 }
1747
1748 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1749 if (!dcc)
1750 return -ENOMEM;
1751
1752 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1753 INIT_LIST_HEAD(&dcc->entry_list);
1754 for (i = 0; i < MAX_PLIST_NUM; i++)
1755 INIT_LIST_HEAD(&dcc->pend_list[i]);
1756 INIT_LIST_HEAD(&dcc->wait_list);
1757 INIT_LIST_HEAD(&dcc->fstrim_list);
1758 mutex_init(&dcc->cmd_lock);
1759 atomic_set(&dcc->issued_discard, 0);
1760 atomic_set(&dcc->issing_discard, 0);
1761 atomic_set(&dcc->discard_cmd_cnt, 0);
1762 dcc->nr_discards = 0;
1763 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1764 dcc->undiscard_blks = 0;
1765 dcc->root = RB_ROOT;
1766
1767 init_waitqueue_head(&dcc->discard_wait_queue);
1768 SM_I(sbi)->dcc_info = dcc;
1769init_thread:
1770 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1771 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1772 if (IS_ERR(dcc->f2fs_issue_discard)) {
1773 err = PTR_ERR(dcc->f2fs_issue_discard);
1774 kfree(dcc);
1775 SM_I(sbi)->dcc_info = NULL;
1776 return err;
1777 }
1778
1779 return err;
1780}
1781
1782static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1783{
1784 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1785
1786 if (!dcc)
1787 return;
1788
1789 stop_discard_thread(sbi);
1790
1791 kfree(dcc);
1792 SM_I(sbi)->dcc_info = NULL;
1793}
1794
1795static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1796{
1797 struct sit_info *sit_i = SIT_I(sbi);
1798
1799 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1800 sit_i->dirty_sentries++;
1801 return false;
1802 }
1803
1804 return true;
1805}
1806
1807static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1808 unsigned int segno, int modified)
1809{
1810 struct seg_entry *se = get_seg_entry(sbi, segno);
1811 se->type = type;
1812 if (modified)
1813 __mark_sit_entry_dirty(sbi, segno);
1814}
1815
1816static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1817{
1818 struct seg_entry *se;
1819 unsigned int segno, offset;
1820 long int new_vblocks;
1821 bool exist;
1822#ifdef CONFIG_F2FS_CHECK_FS
1823 bool mir_exist;
1824#endif
1825
1826 segno = GET_SEGNO(sbi, blkaddr);
1827
1828 se = get_seg_entry(sbi, segno);
1829 new_vblocks = se->valid_blocks + del;
1830 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1831
1832 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1833 (new_vblocks > sbi->blocks_per_seg)));
1834
1835 se->valid_blocks = new_vblocks;
1836 se->mtime = get_mtime(sbi);
1837 SIT_I(sbi)->max_mtime = se->mtime;
1838
1839 /* Update valid block bitmap */
1840 if (del > 0) {
1841 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1842#ifdef CONFIG_F2FS_CHECK_FS
1843 mir_exist = f2fs_test_and_set_bit(offset,
1844 se->cur_valid_map_mir);
1845 if (unlikely(exist != mir_exist)) {
1846 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1847 "when setting bitmap, blk:%u, old bit:%d",
1848 blkaddr, exist);
1849 f2fs_bug_on(sbi, 1);
1850 }
1851#endif
1852 if (unlikely(exist)) {
1853 f2fs_msg(sbi->sb, KERN_ERR,
1854 "Bitmap was wrongly set, blk:%u", blkaddr);
1855 f2fs_bug_on(sbi, 1);
1856 se->valid_blocks--;
1857 del = 0;
1858 }
1859
1860 if (f2fs_discard_en(sbi) &&
1861 !f2fs_test_and_set_bit(offset, se->discard_map))
1862 sbi->discard_blks--;
1863
1864 /* don't overwrite by SSR to keep node chain */
1865 if (IS_NODESEG(se->type)) {
1866 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1867 se->ckpt_valid_blocks++;
1868 }
1869 } else {
1870 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1871#ifdef CONFIG_F2FS_CHECK_FS
1872 mir_exist = f2fs_test_and_clear_bit(offset,
1873 se->cur_valid_map_mir);
1874 if (unlikely(exist != mir_exist)) {
1875 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1876 "when clearing bitmap, blk:%u, old bit:%d",
1877 blkaddr, exist);
1878 f2fs_bug_on(sbi, 1);
1879 }
1880#endif
1881 if (unlikely(!exist)) {
1882 f2fs_msg(sbi->sb, KERN_ERR,
1883 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1884 f2fs_bug_on(sbi, 1);
1885 se->valid_blocks++;
1886 del = 0;
1887 }
1888
1889 if (f2fs_discard_en(sbi) &&
1890 f2fs_test_and_clear_bit(offset, se->discard_map))
1891 sbi->discard_blks++;
1892 }
1893 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1894 se->ckpt_valid_blocks += del;
1895
1896 __mark_sit_entry_dirty(sbi, segno);
1897
1898 /* update total number of valid blocks to be written in ckpt area */
1899 SIT_I(sbi)->written_valid_blocks += del;
1900
1901 if (sbi->segs_per_sec > 1)
1902 get_sec_entry(sbi, segno)->valid_blocks += del;
1903}
1904
1905void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1906{
1907 unsigned int segno = GET_SEGNO(sbi, addr);
1908 struct sit_info *sit_i = SIT_I(sbi);
1909
1910 f2fs_bug_on(sbi, addr == NULL_ADDR);
1911 if (addr == NEW_ADDR)
1912 return;
1913
1914 /* add it into sit main buffer */
1915 down_write(&sit_i->sentry_lock);
1916
1917 update_sit_entry(sbi, addr, -1);
1918
1919 /* add it into dirty seglist */
1920 locate_dirty_segment(sbi, segno);
1921
1922 up_write(&sit_i->sentry_lock);
1923}
1924
1925bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1926{
1927 struct sit_info *sit_i = SIT_I(sbi);
1928 unsigned int segno, offset;
1929 struct seg_entry *se;
1930 bool is_cp = false;
1931
1932 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1933 return true;
1934
1935 down_read(&sit_i->sentry_lock);
1936
1937 segno = GET_SEGNO(sbi, blkaddr);
1938 se = get_seg_entry(sbi, segno);
1939 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1940
1941 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1942 is_cp = true;
1943
1944 up_read(&sit_i->sentry_lock);
1945
1946 return is_cp;
1947}
1948
1949/*
1950 * This function should be resided under the curseg_mutex lock
1951 */
1952static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1953 struct f2fs_summary *sum)
1954{
1955 struct curseg_info *curseg = CURSEG_I(sbi, type);
1956 void *addr = curseg->sum_blk;
1957 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1958 memcpy(addr, sum, sizeof(struct f2fs_summary));
1959}
1960
1961/*
1962 * Calculate the number of current summary pages for writing
1963 */
1964int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1965{
1966 int valid_sum_count = 0;
1967 int i, sum_in_page;
1968
1969 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1970 if (sbi->ckpt->alloc_type[i] == SSR)
1971 valid_sum_count += sbi->blocks_per_seg;
1972 else {
1973 if (for_ra)
1974 valid_sum_count += le16_to_cpu(
1975 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1976 else
1977 valid_sum_count += curseg_blkoff(sbi, i);
1978 }
1979 }
1980
1981 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1982 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1983 if (valid_sum_count <= sum_in_page)
1984 return 1;
1985 else if ((valid_sum_count - sum_in_page) <=
1986 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1987 return 2;
1988 return 3;
1989}
1990
1991/*
1992 * Caller should put this summary page
1993 */
1994struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1995{
1996 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1997}
1998
1999void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2000{
2001 struct page *page = grab_meta_page(sbi, blk_addr);
2002
2003 memcpy(page_address(page), src, PAGE_SIZE);
2004 set_page_dirty(page);
2005 f2fs_put_page(page, 1);
2006}
2007
2008static void write_sum_page(struct f2fs_sb_info *sbi,
2009 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2010{
2011 update_meta_page(sbi, (void *)sum_blk, blk_addr);
2012}
2013
2014static void write_current_sum_page(struct f2fs_sb_info *sbi,
2015 int type, block_t blk_addr)
2016{
2017 struct curseg_info *curseg = CURSEG_I(sbi, type);
2018 struct page *page = grab_meta_page(sbi, blk_addr);
2019 struct f2fs_summary_block *src = curseg->sum_blk;
2020 struct f2fs_summary_block *dst;
2021
2022 dst = (struct f2fs_summary_block *)page_address(page);
2023
2024 mutex_lock(&curseg->curseg_mutex);
2025
2026 down_read(&curseg->journal_rwsem);
2027 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2028 up_read(&curseg->journal_rwsem);
2029
2030 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2031 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2032
2033 mutex_unlock(&curseg->curseg_mutex);
2034
2035 set_page_dirty(page);
2036 f2fs_put_page(page, 1);
2037}
2038
2039static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2040{
2041 struct curseg_info *curseg = CURSEG_I(sbi, type);
2042 unsigned int segno = curseg->segno + 1;
2043 struct free_segmap_info *free_i = FREE_I(sbi);
2044
2045 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2046 return !test_bit(segno, free_i->free_segmap);
2047 return 0;
2048}
2049
2050/*
2051 * Find a new segment from the free segments bitmap to right order
2052 * This function should be returned with success, otherwise BUG
2053 */
2054static void get_new_segment(struct f2fs_sb_info *sbi,
2055 unsigned int *newseg, bool new_sec, int dir)
2056{
2057 struct free_segmap_info *free_i = FREE_I(sbi);
2058 unsigned int segno, secno, zoneno;
2059 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2060 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2061 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2062 unsigned int left_start = hint;
2063 bool init = true;
2064 int go_left = 0;
2065 int i;
2066
2067 spin_lock(&free_i->segmap_lock);
2068
2069 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2070 segno = find_next_zero_bit(free_i->free_segmap,
2071 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2072 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2073 goto got_it;
2074 }
2075find_other_zone:
2076 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2077 if (secno >= MAIN_SECS(sbi)) {
2078 if (dir == ALLOC_RIGHT) {
2079 secno = find_next_zero_bit(free_i->free_secmap,
2080 MAIN_SECS(sbi), 0);
2081 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2082 } else {
2083 go_left = 1;
2084 left_start = hint - 1;
2085 }
2086 }
2087 if (go_left == 0)
2088 goto skip_left;
2089
2090 while (test_bit(left_start, free_i->free_secmap)) {
2091 if (left_start > 0) {
2092 left_start--;
2093 continue;
2094 }
2095 left_start = find_next_zero_bit(free_i->free_secmap,
2096 MAIN_SECS(sbi), 0);
2097 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2098 break;
2099 }
2100 secno = left_start;
2101skip_left:
2102 segno = GET_SEG_FROM_SEC(sbi, secno);
2103 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2104
2105 /* give up on finding another zone */
2106 if (!init)
2107 goto got_it;
2108 if (sbi->secs_per_zone == 1)
2109 goto got_it;
2110 if (zoneno == old_zoneno)
2111 goto got_it;
2112 if (dir == ALLOC_LEFT) {
2113 if (!go_left && zoneno + 1 >= total_zones)
2114 goto got_it;
2115 if (go_left && zoneno == 0)
2116 goto got_it;
2117 }
2118 for (i = 0; i < NR_CURSEG_TYPE; i++)
2119 if (CURSEG_I(sbi, i)->zone == zoneno)
2120 break;
2121
2122 if (i < NR_CURSEG_TYPE) {
2123 /* zone is in user, try another */
2124 if (go_left)
2125 hint = zoneno * sbi->secs_per_zone - 1;
2126 else if (zoneno + 1 >= total_zones)
2127 hint = 0;
2128 else
2129 hint = (zoneno + 1) * sbi->secs_per_zone;
2130 init = false;
2131 goto find_other_zone;
2132 }
2133got_it:
2134 /* set it as dirty segment in free segmap */
2135 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2136 __set_inuse(sbi, segno);
2137 *newseg = segno;
2138 spin_unlock(&free_i->segmap_lock);
2139}
2140
2141static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2142{
2143 struct curseg_info *curseg = CURSEG_I(sbi, type);
2144 struct summary_footer *sum_footer;
2145
2146 curseg->segno = curseg->next_segno;
2147 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2148 curseg->next_blkoff = 0;
2149 curseg->next_segno = NULL_SEGNO;
2150
2151 sum_footer = &(curseg->sum_blk->footer);
2152 memset(sum_footer, 0, sizeof(struct summary_footer));
2153 if (IS_DATASEG(type))
2154 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2155 if (IS_NODESEG(type))
2156 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2157 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2158}
2159
2160static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2161{
2162 /* if segs_per_sec is large than 1, we need to keep original policy. */
2163 if (sbi->segs_per_sec != 1)
2164 return CURSEG_I(sbi, type)->segno;
2165
2166 if (test_opt(sbi, NOHEAP) &&
2167 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2168 return 0;
2169
2170 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2171 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2172
2173 /* find segments from 0 to reuse freed segments */
2174 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2175 return 0;
2176
2177 return CURSEG_I(sbi, type)->segno;
2178}
2179
2180/*
2181 * Allocate a current working segment.
2182 * This function always allocates a free segment in LFS manner.
2183 */
2184static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2185{
2186 struct curseg_info *curseg = CURSEG_I(sbi, type);
2187 unsigned int segno = curseg->segno;
2188 int dir = ALLOC_LEFT;
2189
2190 write_sum_page(sbi, curseg->sum_blk,
2191 GET_SUM_BLOCK(sbi, segno));
2192 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2193 dir = ALLOC_RIGHT;
2194
2195 if (test_opt(sbi, NOHEAP))
2196 dir = ALLOC_RIGHT;
2197
2198 segno = __get_next_segno(sbi, type);
2199 get_new_segment(sbi, &segno, new_sec, dir);
2200 curseg->next_segno = segno;
2201 reset_curseg(sbi, type, 1);
2202 curseg->alloc_type = LFS;
2203}
2204
2205static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2206 struct curseg_info *seg, block_t start)
2207{
2208 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2209 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2210 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2211 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2212 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2213 int i, pos;
2214
2215 for (i = 0; i < entries; i++)
2216 target_map[i] = ckpt_map[i] | cur_map[i];
2217
2218 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2219
2220 seg->next_blkoff = pos;
2221}
2222
2223/*
2224 * If a segment is written by LFS manner, next block offset is just obtained
2225 * by increasing the current block offset. However, if a segment is written by
2226 * SSR manner, next block offset obtained by calling __next_free_blkoff
2227 */
2228static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2229 struct curseg_info *seg)
2230{
2231 if (seg->alloc_type == SSR)
2232 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2233 else
2234 seg->next_blkoff++;
2235}
2236
2237/*
2238 * This function always allocates a used segment(from dirty seglist) by SSR
2239 * manner, so it should recover the existing segment information of valid blocks
2240 */
2241static void change_curseg(struct f2fs_sb_info *sbi, int type)
2242{
2243 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2244 struct curseg_info *curseg = CURSEG_I(sbi, type);
2245 unsigned int new_segno = curseg->next_segno;
2246 struct f2fs_summary_block *sum_node;
2247 struct page *sum_page;
2248
2249 write_sum_page(sbi, curseg->sum_blk,
2250 GET_SUM_BLOCK(sbi, curseg->segno));
2251 __set_test_and_inuse(sbi, new_segno);
2252
2253 mutex_lock(&dirty_i->seglist_lock);
2254 __remove_dirty_segment(sbi, new_segno, PRE);
2255 __remove_dirty_segment(sbi, new_segno, DIRTY);
2256 mutex_unlock(&dirty_i->seglist_lock);
2257
2258 reset_curseg(sbi, type, 1);
2259 curseg->alloc_type = SSR;
2260 __next_free_blkoff(sbi, curseg, 0);
2261
2262 sum_page = get_sum_page(sbi, new_segno);
2263 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2264 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2265 f2fs_put_page(sum_page, 1);
2266}
2267
2268static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2269{
2270 struct curseg_info *curseg = CURSEG_I(sbi, type);
2271 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2272 unsigned segno = NULL_SEGNO;
2273 int i, cnt;
2274 bool reversed = false;
2275
2276 /* need_SSR() already forces to do this */
2277 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2278 curseg->next_segno = segno;
2279 return 1;
2280 }
2281
2282 /* For node segments, let's do SSR more intensively */
2283 if (IS_NODESEG(type)) {
2284 if (type >= CURSEG_WARM_NODE) {
2285 reversed = true;
2286 i = CURSEG_COLD_NODE;
2287 } else {
2288 i = CURSEG_HOT_NODE;
2289 }
2290 cnt = NR_CURSEG_NODE_TYPE;
2291 } else {
2292 if (type >= CURSEG_WARM_DATA) {
2293 reversed = true;
2294 i = CURSEG_COLD_DATA;
2295 } else {
2296 i = CURSEG_HOT_DATA;
2297 }
2298 cnt = NR_CURSEG_DATA_TYPE;
2299 }
2300
2301 for (; cnt-- > 0; reversed ? i-- : i++) {
2302 if (i == type)
2303 continue;
2304 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2305 curseg->next_segno = segno;
2306 return 1;
2307 }
2308 }
2309 return 0;
2310}
2311
2312/*
2313 * flush out current segment and replace it with new segment
2314 * This function should be returned with success, otherwise BUG
2315 */
2316static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2317 int type, bool force)
2318{
2319 struct curseg_info *curseg = CURSEG_I(sbi, type);
2320
2321 if (force)
2322 new_curseg(sbi, type, true);
2323 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2324 type == CURSEG_WARM_NODE)
2325 new_curseg(sbi, type, false);
2326 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2327 new_curseg(sbi, type, false);
2328 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2329 change_curseg(sbi, type);
2330 else
2331 new_curseg(sbi, type, false);
2332
2333 stat_inc_seg_type(sbi, curseg);
2334}
2335
2336void allocate_new_segments(struct f2fs_sb_info *sbi)
2337{
2338 struct curseg_info *curseg;
2339 unsigned int old_segno;
2340 int i;
2341
2342 down_write(&SIT_I(sbi)->sentry_lock);
2343
2344 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2345 curseg = CURSEG_I(sbi, i);
2346 old_segno = curseg->segno;
2347 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2348 locate_dirty_segment(sbi, old_segno);
2349 }
2350
2351 up_write(&SIT_I(sbi)->sentry_lock);
2352}
2353
2354static const struct segment_allocation default_salloc_ops = {
2355 .allocate_segment = allocate_segment_by_default,
2356};
2357
2358bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2359{
2360 __u64 trim_start = cpc->trim_start;
2361 bool has_candidate = false;
2362
2363 down_write(&SIT_I(sbi)->sentry_lock);
2364 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2365 if (add_discard_addrs(sbi, cpc, true)) {
2366 has_candidate = true;
2367 break;
2368 }
2369 }
2370 up_write(&SIT_I(sbi)->sentry_lock);
2371
2372 cpc->trim_start = trim_start;
2373 return has_candidate;
2374}
2375
2376int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2377{
2378 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2379 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2380 unsigned int start_segno, end_segno, cur_segno;
2381 block_t start_block, end_block;
2382 struct cp_control cpc;
2383 struct discard_policy dpolicy;
2384 unsigned long long trimmed = 0;
2385 int err = 0;
2386
2387 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2388 return -EINVAL;
2389
2390 if (end <= MAIN_BLKADDR(sbi))
2391 goto out;
2392
2393 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2394 f2fs_msg(sbi->sb, KERN_WARNING,
2395 "Found FS corruption, run fsck to fix.");
2396 goto out;
2397 }
2398
2399 /* start/end segment number in main_area */
2400 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2401 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2402 GET_SEGNO(sbi, end);
2403
2404 cpc.reason = CP_DISCARD;
2405 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2406
2407 /* do checkpoint to issue discard commands safely */
2408 for (cur_segno = start_segno; cur_segno <= end_segno;
2409 cur_segno = cpc.trim_end + 1) {
2410 cpc.trim_start = cur_segno;
2411
2412 if (sbi->discard_blks == 0)
2413 break;
2414 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2415 cpc.trim_end = end_segno;
2416 else
2417 cpc.trim_end = min_t(unsigned int,
2418 rounddown(cur_segno +
2419 BATCHED_TRIM_SEGMENTS(sbi),
2420 sbi->segs_per_sec) - 1, end_segno);
2421
2422 mutex_lock(&sbi->gc_mutex);
2423 err = write_checkpoint(sbi, &cpc);
2424 mutex_unlock(&sbi->gc_mutex);
2425 if (err)
2426 break;
2427
2428 schedule();
2429 }
2430
2431 start_block = START_BLOCK(sbi, start_segno);
2432 end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2433
2434 init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2435 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2436 trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2437 start_block, end_block);
2438out:
2439 range->len = F2FS_BLK_TO_BYTES(trimmed);
2440 return err;
2441}
2442
2443static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2444{
2445 struct curseg_info *curseg = CURSEG_I(sbi, type);
2446 if (curseg->next_blkoff < sbi->blocks_per_seg)
2447 return true;
2448 return false;
2449}
2450
2451int rw_hint_to_seg_type(enum rw_hint hint)
2452{
2453 switch (hint) {
2454 case WRITE_LIFE_SHORT:
2455 return CURSEG_HOT_DATA;
2456 case WRITE_LIFE_EXTREME:
2457 return CURSEG_COLD_DATA;
2458 default:
2459 return CURSEG_WARM_DATA;
2460 }
2461}
2462
2463/* This returns write hints for each segment type. This hints will be
2464 * passed down to block layer. There are mapping tables which depend on
2465 * the mount option 'whint_mode'.
2466 *
2467 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2468 *
2469 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2470 *
2471 * User F2FS Block
2472 * ---- ---- -----
2473 * META WRITE_LIFE_NOT_SET
2474 * HOT_NODE "
2475 * WARM_NODE "
2476 * COLD_NODE "
2477 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2478 * extension list " "
2479 *
2480 * -- buffered io
2481 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2482 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2483 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2484 * WRITE_LIFE_NONE " "
2485 * WRITE_LIFE_MEDIUM " "
2486 * WRITE_LIFE_LONG " "
2487 *
2488 * -- direct io
2489 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2490 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2491 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2492 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2493 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2494 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2495 *
2496 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2497 *
2498 * User F2FS Block
2499 * ---- ---- -----
2500 * META WRITE_LIFE_MEDIUM;
2501 * HOT_NODE WRITE_LIFE_NOT_SET
2502 * WARM_NODE "
2503 * COLD_NODE WRITE_LIFE_NONE
2504 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2505 * extension list " "
2506 *
2507 * -- buffered io
2508 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2509 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2510 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2511 * WRITE_LIFE_NONE " "
2512 * WRITE_LIFE_MEDIUM " "
2513 * WRITE_LIFE_LONG " "
2514 *
2515 * -- direct io
2516 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2517 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2518 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2519 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2520 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2521 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2522 */
2523
2524enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2525 enum page_type type, enum temp_type temp)
2526{
2527 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2528 if (type == DATA) {
2529 if (temp == WARM)
2530 return WRITE_LIFE_NOT_SET;
2531 else if (temp == HOT)
2532 return WRITE_LIFE_SHORT;
2533 else if (temp == COLD)
2534 return WRITE_LIFE_EXTREME;
2535 } else {
2536 return WRITE_LIFE_NOT_SET;
2537 }
2538 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2539 if (type == DATA) {
2540 if (temp == WARM)
2541 return WRITE_LIFE_LONG;
2542 else if (temp == HOT)
2543 return WRITE_LIFE_SHORT;
2544 else if (temp == COLD)
2545 return WRITE_LIFE_EXTREME;
2546 } else if (type == NODE) {
2547 if (temp == WARM || temp == HOT)
2548 return WRITE_LIFE_NOT_SET;
2549 else if (temp == COLD)
2550 return WRITE_LIFE_NONE;
2551 } else if (type == META) {
2552 return WRITE_LIFE_MEDIUM;
2553 }
2554 }
2555 return WRITE_LIFE_NOT_SET;
2556}
2557
2558static int __get_segment_type_2(struct f2fs_io_info *fio)
2559{
2560 if (fio->type == DATA)
2561 return CURSEG_HOT_DATA;
2562 else
2563 return CURSEG_HOT_NODE;
2564}
2565
2566static int __get_segment_type_4(struct f2fs_io_info *fio)
2567{
2568 if (fio->type == DATA) {
2569 struct inode *inode = fio->page->mapping->host;
2570
2571 if (S_ISDIR(inode->i_mode))
2572 return CURSEG_HOT_DATA;
2573 else
2574 return CURSEG_COLD_DATA;
2575 } else {
2576 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2577 return CURSEG_WARM_NODE;
2578 else
2579 return CURSEG_COLD_NODE;
2580 }
2581}
2582
2583static int __get_segment_type_6(struct f2fs_io_info *fio)
2584{
2585 if (fio->type == DATA) {
2586 struct inode *inode = fio->page->mapping->host;
2587
2588 if (is_cold_data(fio->page) || file_is_cold(inode))
2589 return CURSEG_COLD_DATA;
2590 if (file_is_hot(inode) ||
2591 is_inode_flag_set(inode, FI_HOT_DATA))
2592 return CURSEG_HOT_DATA;
2593 return rw_hint_to_seg_type(inode->i_write_hint);
2594 } else {
2595 if (IS_DNODE(fio->page))
2596 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2597 CURSEG_HOT_NODE;
2598 return CURSEG_COLD_NODE;
2599 }
2600}
2601
2602static int __get_segment_type(struct f2fs_io_info *fio)
2603{
2604 int type = 0;
2605
2606 switch (F2FS_OPTION(fio->sbi).active_logs) {
2607 case 2:
2608 type = __get_segment_type_2(fio);
2609 break;
2610 case 4:
2611 type = __get_segment_type_4(fio);
2612 break;
2613 case 6:
2614 type = __get_segment_type_6(fio);
2615 break;
2616 default:
2617 f2fs_bug_on(fio->sbi, true);
2618 }
2619
2620 if (IS_HOT(type))
2621 fio->temp = HOT;
2622 else if (IS_WARM(type))
2623 fio->temp = WARM;
2624 else
2625 fio->temp = COLD;
2626 return type;
2627}
2628
2629void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2630 block_t old_blkaddr, block_t *new_blkaddr,
2631 struct f2fs_summary *sum, int type,
2632 struct f2fs_io_info *fio, bool add_list)
2633{
2634 struct sit_info *sit_i = SIT_I(sbi);
2635 struct curseg_info *curseg = CURSEG_I(sbi, type);
2636
2637 down_read(&SM_I(sbi)->curseg_lock);
2638
2639 mutex_lock(&curseg->curseg_mutex);
2640 down_write(&sit_i->sentry_lock);
2641
2642 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2643
2644 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2645
2646 /*
2647 * __add_sum_entry should be resided under the curseg_mutex
2648 * because, this function updates a summary entry in the
2649 * current summary block.
2650 */
2651 __add_sum_entry(sbi, type, sum);
2652
2653 __refresh_next_blkoff(sbi, curseg);
2654
2655 stat_inc_block_count(sbi, curseg);
2656
2657 /*
2658 * SIT information should be updated before segment allocation,
2659 * since SSR needs latest valid block information.
2660 */
2661 update_sit_entry(sbi, *new_blkaddr, 1);
2662 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2663 update_sit_entry(sbi, old_blkaddr, -1);
2664
2665 if (!__has_curseg_space(sbi, type))
2666 sit_i->s_ops->allocate_segment(sbi, type, false);
2667
2668 /*
2669 * segment dirty status should be updated after segment allocation,
2670 * so we just need to update status only one time after previous
2671 * segment being closed.
2672 */
2673 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2674 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2675
2676 up_write(&sit_i->sentry_lock);
2677
2678 if (page && IS_NODESEG(type)) {
2679 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2680
2681 f2fs_inode_chksum_set(sbi, page);
2682 }
2683
2684 if (add_list) {
2685 struct f2fs_bio_info *io;
2686
2687 INIT_LIST_HEAD(&fio->list);
2688 fio->in_list = true;
2689 io = sbi->write_io[fio->type] + fio->temp;
2690 spin_lock(&io->io_lock);
2691 list_add_tail(&fio->list, &io->io_list);
2692 spin_unlock(&io->io_lock);
2693 }
2694
2695 mutex_unlock(&curseg->curseg_mutex);
2696
2697 up_read(&SM_I(sbi)->curseg_lock);
2698}
2699
2700static void update_device_state(struct f2fs_io_info *fio)
2701{
2702 struct f2fs_sb_info *sbi = fio->sbi;
2703 unsigned int devidx;
2704
2705 if (!sbi->s_ndevs)
2706 return;
2707
2708 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2709
2710 /* update device state for fsync */
2711 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2712
2713 /* update device state for checkpoint */
2714 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2715 spin_lock(&sbi->dev_lock);
2716 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2717 spin_unlock(&sbi->dev_lock);
2718 }
2719}
2720
2721static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2722{
2723 int type = __get_segment_type(fio);
2724 int err;
2725
2726reallocate:
2727 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2728 &fio->new_blkaddr, sum, type, fio, true);
2729
2730 /* writeout dirty page into bdev */
2731 err = f2fs_submit_page_write(fio);
2732 if (err == -EAGAIN) {
2733 fio->old_blkaddr = fio->new_blkaddr;
2734 goto reallocate;
2735 } else if (!err) {
2736 update_device_state(fio);
2737 }
2738}
2739
2740void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2741 enum iostat_type io_type)
2742{
2743 struct f2fs_io_info fio = {
2744 .sbi = sbi,
2745 .type = META,
2746 .temp = HOT,
2747 .op = REQ_OP_WRITE,
2748 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2749 .old_blkaddr = page->index,
2750 .new_blkaddr = page->index,
2751 .page = page,
2752 .encrypted_page = NULL,
2753 .in_list = false,
2754 };
2755
2756 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2757 fio.op_flags &= ~REQ_META;
2758
2759 set_page_writeback(page);
2760 f2fs_submit_page_write(&fio);
2761
2762 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2763}
2764
2765void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2766{
2767 struct f2fs_summary sum;
2768
2769 set_summary(&sum, nid, 0, 0);
2770 do_write_page(&sum, fio);
2771
2772 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2773}
2774
2775void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2776{
2777 struct f2fs_sb_info *sbi = fio->sbi;
2778 struct f2fs_summary sum;
2779 struct node_info ni;
2780
2781 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2782 get_node_info(sbi, dn->nid, &ni);
2783 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2784 do_write_page(&sum, fio);
2785 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2786
2787 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2788}
2789
2790int rewrite_data_page(struct f2fs_io_info *fio)
2791{
2792 int err;
2793 struct f2fs_sb_info *sbi = fio->sbi;
2794
2795 fio->new_blkaddr = fio->old_blkaddr;
2796 /* i/o temperature is needed for passing down write hints */
2797 __get_segment_type(fio);
2798
2799 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2800 GET_SEGNO(sbi, fio->new_blkaddr))->type));
2801
2802 stat_inc_inplace_blocks(fio->sbi);
2803
2804 err = f2fs_submit_page_bio(fio);
2805 if (!err)
2806 update_device_state(fio);
2807
2808 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2809
2810 return err;
2811}
2812
2813static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2814 unsigned int segno)
2815{
2816 int i;
2817
2818 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2819 if (CURSEG_I(sbi, i)->segno == segno)
2820 break;
2821 }
2822 return i;
2823}
2824
2825void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2826 block_t old_blkaddr, block_t new_blkaddr,
2827 bool recover_curseg, bool recover_newaddr)
2828{
2829 struct sit_info *sit_i = SIT_I(sbi);
2830 struct curseg_info *curseg;
2831 unsigned int segno, old_cursegno;
2832 struct seg_entry *se;
2833 int type;
2834 unsigned short old_blkoff;
2835
2836 segno = GET_SEGNO(sbi, new_blkaddr);
2837 se = get_seg_entry(sbi, segno);
2838 type = se->type;
2839
2840 down_write(&SM_I(sbi)->curseg_lock);
2841
2842 if (!recover_curseg) {
2843 /* for recovery flow */
2844 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2845 if (old_blkaddr == NULL_ADDR)
2846 type = CURSEG_COLD_DATA;
2847 else
2848 type = CURSEG_WARM_DATA;
2849 }
2850 } else {
2851 if (IS_CURSEG(sbi, segno)) {
2852 /* se->type is volatile as SSR allocation */
2853 type = __f2fs_get_curseg(sbi, segno);
2854 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2855 } else {
2856 type = CURSEG_WARM_DATA;
2857 }
2858 }
2859
2860 f2fs_bug_on(sbi, !IS_DATASEG(type));
2861 curseg = CURSEG_I(sbi, type);
2862
2863 mutex_lock(&curseg->curseg_mutex);
2864 down_write(&sit_i->sentry_lock);
2865
2866 old_cursegno = curseg->segno;
2867 old_blkoff = curseg->next_blkoff;
2868
2869 /* change the current segment */
2870 if (segno != curseg->segno) {
2871 curseg->next_segno = segno;
2872 change_curseg(sbi, type);
2873 }
2874
2875 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2876 __add_sum_entry(sbi, type, sum);
2877
2878 if (!recover_curseg || recover_newaddr)
2879 update_sit_entry(sbi, new_blkaddr, 1);
2880 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2881 update_sit_entry(sbi, old_blkaddr, -1);
2882
2883 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2884 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2885
2886 locate_dirty_segment(sbi, old_cursegno);
2887
2888 if (recover_curseg) {
2889 if (old_cursegno != curseg->segno) {
2890 curseg->next_segno = old_cursegno;
2891 change_curseg(sbi, type);
2892 }
2893 curseg->next_blkoff = old_blkoff;
2894 }
2895
2896 up_write(&sit_i->sentry_lock);
2897 mutex_unlock(&curseg->curseg_mutex);
2898 up_write(&SM_I(sbi)->curseg_lock);
2899}
2900
2901void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2902 block_t old_addr, block_t new_addr,
2903 unsigned char version, bool recover_curseg,
2904 bool recover_newaddr)
2905{
2906 struct f2fs_summary sum;
2907
2908 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2909
2910 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2911 recover_curseg, recover_newaddr);
2912
2913 f2fs_update_data_blkaddr(dn, new_addr);
2914}
2915
2916void f2fs_wait_on_page_writeback(struct page *page,
2917 enum page_type type, bool ordered)
2918{
2919 if (PageWriteback(page)) {
2920 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2921
2922 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2923 0, page->index, type);
2924 if (ordered)
2925 wait_on_page_writeback(page);
2926 else
2927 wait_for_stable_page(page);
2928 }
2929}
2930
2931void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2932{
2933 struct page *cpage;
2934
2935 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2936 return;
2937
2938 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2939 if (cpage) {
2940 f2fs_wait_on_page_writeback(cpage, DATA, true);
2941 f2fs_put_page(cpage, 1);
2942 }
2943}
2944
2945static void read_compacted_summaries(struct f2fs_sb_info *sbi)
2946{
2947 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2948 struct curseg_info *seg_i;
2949 unsigned char *kaddr;
2950 struct page *page;
2951 block_t start;
2952 int i, j, offset;
2953
2954 start = start_sum_block(sbi);
2955
2956 page = get_meta_page(sbi, start++);
2957 kaddr = (unsigned char *)page_address(page);
2958
2959 /* Step 1: restore nat cache */
2960 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2961 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2962
2963 /* Step 2: restore sit cache */
2964 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2965 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2966 offset = 2 * SUM_JOURNAL_SIZE;
2967
2968 /* Step 3: restore summary entries */
2969 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2970 unsigned short blk_off;
2971 unsigned int segno;
2972
2973 seg_i = CURSEG_I(sbi, i);
2974 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2975 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2976 seg_i->next_segno = segno;
2977 reset_curseg(sbi, i, 0);
2978 seg_i->alloc_type = ckpt->alloc_type[i];
2979 seg_i->next_blkoff = blk_off;
2980
2981 if (seg_i->alloc_type == SSR)
2982 blk_off = sbi->blocks_per_seg;
2983
2984 for (j = 0; j < blk_off; j++) {
2985 struct f2fs_summary *s;
2986 s = (struct f2fs_summary *)(kaddr + offset);
2987 seg_i->sum_blk->entries[j] = *s;
2988 offset += SUMMARY_SIZE;
2989 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2990 SUM_FOOTER_SIZE)
2991 continue;
2992
2993 f2fs_put_page(page, 1);
2994 page = NULL;
2995
2996 page = get_meta_page(sbi, start++);
2997 kaddr = (unsigned char *)page_address(page);
2998 offset = 0;
2999 }
3000 }
3001 f2fs_put_page(page, 1);
3002}
3003
3004static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3005{
3006 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3007 struct f2fs_summary_block *sum;
3008 struct curseg_info *curseg;
3009 struct page *new;
3010 unsigned short blk_off;
3011 unsigned int segno = 0;
3012 block_t blk_addr = 0;
3013
3014 /* get segment number and block addr */
3015 if (IS_DATASEG(type)) {
3016 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3017 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3018 CURSEG_HOT_DATA]);
3019 if (__exist_node_summaries(sbi))
3020 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3021 else
3022 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3023 } else {
3024 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3025 CURSEG_HOT_NODE]);
3026 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3027 CURSEG_HOT_NODE]);
3028 if (__exist_node_summaries(sbi))
3029 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3030 type - CURSEG_HOT_NODE);
3031 else
3032 blk_addr = GET_SUM_BLOCK(sbi, segno);
3033 }
3034
3035 new = get_meta_page(sbi, blk_addr);
3036 sum = (struct f2fs_summary_block *)page_address(new);
3037
3038 if (IS_NODESEG(type)) {
3039 if (__exist_node_summaries(sbi)) {
3040 struct f2fs_summary *ns = &sum->entries[0];
3041 int i;
3042 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3043 ns->version = 0;
3044 ns->ofs_in_node = 0;
3045 }
3046 } else {
3047 restore_node_summary(sbi, segno, sum);
3048 }
3049 }
3050
3051 /* set uncompleted segment to curseg */
3052 curseg = CURSEG_I(sbi, type);
3053 mutex_lock(&curseg->curseg_mutex);
3054
3055 /* update journal info */
3056 down_write(&curseg->journal_rwsem);
3057 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3058 up_write(&curseg->journal_rwsem);
3059
3060 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3061 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3062 curseg->next_segno = segno;
3063 reset_curseg(sbi, type, 0);
3064 curseg->alloc_type = ckpt->alloc_type[type];
3065 curseg->next_blkoff = blk_off;
3066 mutex_unlock(&curseg->curseg_mutex);
3067 f2fs_put_page(new, 1);
3068 return 0;
3069}
3070
3071static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3072{
3073 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3074 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3075 int type = CURSEG_HOT_DATA;
3076 int err;
3077
3078 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3079 int npages = npages_for_summary_flush(sbi, true);
3080
3081 if (npages >= 2)
3082 ra_meta_pages(sbi, start_sum_block(sbi), npages,
3083 META_CP, true);
3084
3085 /* restore for compacted data summary */
3086 read_compacted_summaries(sbi);
3087 type = CURSEG_HOT_NODE;
3088 }
3089
3090 if (__exist_node_summaries(sbi))
3091 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3092 NR_CURSEG_TYPE - type, META_CP, true);
3093
3094 for (; type <= CURSEG_COLD_NODE; type++) {
3095 err = read_normal_summaries(sbi, type);
3096 if (err)
3097 return err;
3098 }
3099
3100 /* sanity check for summary blocks */
3101 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3102 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3103 return -EINVAL;
3104
3105 return 0;
3106}
3107
3108static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3109{
3110 struct page *page;
3111 unsigned char *kaddr;
3112 struct f2fs_summary *summary;
3113 struct curseg_info *seg_i;
3114 int written_size = 0;
3115 int i, j;
3116
3117 page = grab_meta_page(sbi, blkaddr++);
3118 kaddr = (unsigned char *)page_address(page);
3119
3120 /* Step 1: write nat cache */
3121 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3122 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3123 written_size += SUM_JOURNAL_SIZE;
3124
3125 /* Step 2: write sit cache */
3126 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3127 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3128 written_size += SUM_JOURNAL_SIZE;
3129
3130 /* Step 3: write summary entries */
3131 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3132 unsigned short blkoff;
3133 seg_i = CURSEG_I(sbi, i);
3134 if (sbi->ckpt->alloc_type[i] == SSR)
3135 blkoff = sbi->blocks_per_seg;
3136 else
3137 blkoff = curseg_blkoff(sbi, i);
3138
3139 for (j = 0; j < blkoff; j++) {
3140 if (!page) {
3141 page = grab_meta_page(sbi, blkaddr++);
3142 kaddr = (unsigned char *)page_address(page);
3143 written_size = 0;
3144 }
3145 summary = (struct f2fs_summary *)(kaddr + written_size);
3146 *summary = seg_i->sum_blk->entries[j];
3147 written_size += SUMMARY_SIZE;
3148
3149 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3150 SUM_FOOTER_SIZE)
3151 continue;
3152
3153 set_page_dirty(page);
3154 f2fs_put_page(page, 1);
3155 page = NULL;
3156 }
3157 }
3158 if (page) {
3159 set_page_dirty(page);
3160 f2fs_put_page(page, 1);
3161 }
3162}
3163
3164static void write_normal_summaries(struct f2fs_sb_info *sbi,
3165 block_t blkaddr, int type)
3166{
3167 int i, end;
3168 if (IS_DATASEG(type))
3169 end = type + NR_CURSEG_DATA_TYPE;
3170 else
3171 end = type + NR_CURSEG_NODE_TYPE;
3172
3173 for (i = type; i < end; i++)
3174 write_current_sum_page(sbi, i, blkaddr + (i - type));
3175}
3176
3177void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3178{
3179 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3180 write_compacted_summaries(sbi, start_blk);
3181 else
3182 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3183}
3184
3185void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3186{
3187 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3188}
3189
3190int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3191 unsigned int val, int alloc)
3192{
3193 int i;
3194
3195 if (type == NAT_JOURNAL) {
3196 for (i = 0; i < nats_in_cursum(journal); i++) {
3197 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3198 return i;
3199 }
3200 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3201 return update_nats_in_cursum(journal, 1);
3202 } else if (type == SIT_JOURNAL) {
3203 for (i = 0; i < sits_in_cursum(journal); i++)
3204 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3205 return i;
3206 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3207 return update_sits_in_cursum(journal, 1);
3208 }
3209 return -1;
3210}
3211
3212static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3213 unsigned int segno)
3214{
3215 return get_meta_page(sbi, current_sit_addr(sbi, segno));
3216}
3217
3218static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3219 unsigned int start)
3220{
3221 struct sit_info *sit_i = SIT_I(sbi);
3222 struct page *page;
3223 pgoff_t src_off, dst_off;
3224
3225 src_off = current_sit_addr(sbi, start);
3226 dst_off = next_sit_addr(sbi, src_off);
3227
3228 page = grab_meta_page(sbi, dst_off);
3229 seg_info_to_sit_page(sbi, page, start);
3230
3231 set_page_dirty(page);
3232 set_to_next_sit(sit_i, start);
3233
3234 return page;
3235}
3236
3237static struct sit_entry_set *grab_sit_entry_set(void)
3238{
3239 struct sit_entry_set *ses =
3240 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3241
3242 ses->entry_cnt = 0;
3243 INIT_LIST_HEAD(&ses->set_list);
3244 return ses;
3245}
3246
3247static void release_sit_entry_set(struct sit_entry_set *ses)
3248{
3249 list_del(&ses->set_list);
3250 kmem_cache_free(sit_entry_set_slab, ses);
3251}
3252
3253static void adjust_sit_entry_set(struct sit_entry_set *ses,
3254 struct list_head *head)
3255{
3256 struct sit_entry_set *next = ses;
3257
3258 if (list_is_last(&ses->set_list, head))
3259 return;
3260
3261 list_for_each_entry_continue(next, head, set_list)
3262 if (ses->entry_cnt <= next->entry_cnt)
3263 break;
3264
3265 list_move_tail(&ses->set_list, &next->set_list);
3266}
3267
3268static void add_sit_entry(unsigned int segno, struct list_head *head)
3269{
3270 struct sit_entry_set *ses;
3271 unsigned int start_segno = START_SEGNO(segno);
3272
3273 list_for_each_entry(ses, head, set_list) {
3274 if (ses->start_segno == start_segno) {
3275 ses->entry_cnt++;
3276 adjust_sit_entry_set(ses, head);
3277 return;
3278 }
3279 }
3280
3281 ses = grab_sit_entry_set();
3282
3283 ses->start_segno = start_segno;
3284 ses->entry_cnt++;
3285 list_add(&ses->set_list, head);
3286}
3287
3288static void add_sits_in_set(struct f2fs_sb_info *sbi)
3289{
3290 struct f2fs_sm_info *sm_info = SM_I(sbi);
3291 struct list_head *set_list = &sm_info->sit_entry_set;
3292 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3293 unsigned int segno;
3294
3295 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3296 add_sit_entry(segno, set_list);
3297}
3298
3299static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3300{
3301 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3302 struct f2fs_journal *journal = curseg->journal;
3303 int i;
3304
3305 down_write(&curseg->journal_rwsem);
3306 for (i = 0; i < sits_in_cursum(journal); i++) {
3307 unsigned int segno;
3308 bool dirtied;
3309
3310 segno = le32_to_cpu(segno_in_journal(journal, i));
3311 dirtied = __mark_sit_entry_dirty(sbi, segno);
3312
3313 if (!dirtied)
3314 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3315 }
3316 update_sits_in_cursum(journal, -i);
3317 up_write(&curseg->journal_rwsem);
3318}
3319
3320/*
3321 * CP calls this function, which flushes SIT entries including sit_journal,
3322 * and moves prefree segs to free segs.
3323 */
3324void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3325{
3326 struct sit_info *sit_i = SIT_I(sbi);
3327 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3328 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3329 struct f2fs_journal *journal = curseg->journal;
3330 struct sit_entry_set *ses, *tmp;
3331 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3332 bool to_journal = true;
3333 struct seg_entry *se;
3334
3335 down_write(&sit_i->sentry_lock);
3336
3337 if (!sit_i->dirty_sentries)
3338 goto out;
3339
3340 /*
3341 * add and account sit entries of dirty bitmap in sit entry
3342 * set temporarily
3343 */
3344 add_sits_in_set(sbi);
3345
3346 /*
3347 * if there are no enough space in journal to store dirty sit
3348 * entries, remove all entries from journal and add and account
3349 * them in sit entry set.
3350 */
3351 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3352 remove_sits_in_journal(sbi);
3353
3354 /*
3355 * there are two steps to flush sit entries:
3356 * #1, flush sit entries to journal in current cold data summary block.
3357 * #2, flush sit entries to sit page.
3358 */
3359 list_for_each_entry_safe(ses, tmp, head, set_list) {
3360 struct page *page = NULL;
3361 struct f2fs_sit_block *raw_sit = NULL;
3362 unsigned int start_segno = ses->start_segno;
3363 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3364 (unsigned long)MAIN_SEGS(sbi));
3365 unsigned int segno = start_segno;
3366
3367 if (to_journal &&
3368 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3369 to_journal = false;
3370
3371 if (to_journal) {
3372 down_write(&curseg->journal_rwsem);
3373 } else {
3374 page = get_next_sit_page(sbi, start_segno);
3375 raw_sit = page_address(page);
3376 }
3377
3378 /* flush dirty sit entries in region of current sit set */
3379 for_each_set_bit_from(segno, bitmap, end) {
3380 int offset, sit_offset;
3381
3382 se = get_seg_entry(sbi, segno);
3383
3384 /* add discard candidates */
3385 if (!(cpc->reason & CP_DISCARD)) {
3386 cpc->trim_start = segno;
3387 add_discard_addrs(sbi, cpc, false);
3388 }
3389
3390 if (to_journal) {
3391 offset = lookup_journal_in_cursum(journal,
3392 SIT_JOURNAL, segno, 1);
3393 f2fs_bug_on(sbi, offset < 0);
3394 segno_in_journal(journal, offset) =
3395 cpu_to_le32(segno);
3396 seg_info_to_raw_sit(se,
3397 &sit_in_journal(journal, offset));
3398 } else {
3399 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3400 seg_info_to_raw_sit(se,
3401 &raw_sit->entries[sit_offset]);
3402 }
3403
3404 __clear_bit(segno, bitmap);
3405 sit_i->dirty_sentries--;
3406 ses->entry_cnt--;
3407 }
3408
3409 if (to_journal)
3410 up_write(&curseg->journal_rwsem);
3411 else
3412 f2fs_put_page(page, 1);
3413
3414 f2fs_bug_on(sbi, ses->entry_cnt);
3415 release_sit_entry_set(ses);
3416 }
3417
3418 f2fs_bug_on(sbi, !list_empty(head));
3419 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3420out:
3421 if (cpc->reason & CP_DISCARD) {
3422 __u64 trim_start = cpc->trim_start;
3423
3424 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3425 add_discard_addrs(sbi, cpc, false);
3426
3427 cpc->trim_start = trim_start;
3428 }
3429 up_write(&sit_i->sentry_lock);
3430
3431 set_prefree_as_free_segments(sbi);
3432}
3433
3434static int build_sit_info(struct f2fs_sb_info *sbi)
3435{
3436 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3437 struct sit_info *sit_i;
3438 unsigned int sit_segs, start;
3439 char *src_bitmap;
3440 unsigned int bitmap_size;
3441
3442 /* allocate memory for SIT information */
3443 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3444 if (!sit_i)
3445 return -ENOMEM;
3446
3447 SM_I(sbi)->sit_info = sit_i;
3448
3449 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3450 sizeof(struct seg_entry), GFP_KERNEL);
3451 if (!sit_i->sentries)
3452 return -ENOMEM;
3453
3454 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3455 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3456 GFP_KERNEL);
3457 if (!sit_i->dirty_sentries_bitmap)
3458 return -ENOMEM;
3459
3460 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3461 sit_i->sentries[start].cur_valid_map
3462 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3463 sit_i->sentries[start].ckpt_valid_map
3464 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3465 if (!sit_i->sentries[start].cur_valid_map ||
3466 !sit_i->sentries[start].ckpt_valid_map)
3467 return -ENOMEM;
3468
3469#ifdef CONFIG_F2FS_CHECK_FS
3470 sit_i->sentries[start].cur_valid_map_mir
3471 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3472 if (!sit_i->sentries[start].cur_valid_map_mir)
3473 return -ENOMEM;
3474#endif
3475
3476 if (f2fs_discard_en(sbi)) {
3477 sit_i->sentries[start].discard_map
3478 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3479 GFP_KERNEL);
3480 if (!sit_i->sentries[start].discard_map)
3481 return -ENOMEM;
3482 }
3483 }
3484
3485 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3486 if (!sit_i->tmp_map)
3487 return -ENOMEM;
3488
3489 if (sbi->segs_per_sec > 1) {
3490 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3491 sizeof(struct sec_entry), GFP_KERNEL);
3492 if (!sit_i->sec_entries)
3493 return -ENOMEM;
3494 }
3495
3496 /* get information related with SIT */
3497 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3498
3499 /* setup SIT bitmap from ckeckpoint pack */
3500 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3501 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3502
3503 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3504 if (!sit_i->sit_bitmap)
3505 return -ENOMEM;
3506
3507#ifdef CONFIG_F2FS_CHECK_FS
3508 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3509 if (!sit_i->sit_bitmap_mir)
3510 return -ENOMEM;
3511#endif
3512
3513 /* init SIT information */
3514 sit_i->s_ops = &default_salloc_ops;
3515
3516 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3517 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3518 sit_i->written_valid_blocks = 0;
3519 sit_i->bitmap_size = bitmap_size;
3520 sit_i->dirty_sentries = 0;
3521 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3522 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3523 sit_i->mounted_time = ktime_get_real_seconds();
3524 init_rwsem(&sit_i->sentry_lock);
3525 return 0;
3526}
3527
3528static int build_free_segmap(struct f2fs_sb_info *sbi)
3529{
3530 struct free_segmap_info *free_i;
3531 unsigned int bitmap_size, sec_bitmap_size;
3532
3533 /* allocate memory for free segmap information */
3534 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3535 if (!free_i)
3536 return -ENOMEM;
3537
3538 SM_I(sbi)->free_info = free_i;
3539
3540 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3541 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3542 if (!free_i->free_segmap)
3543 return -ENOMEM;
3544
3545 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3546 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3547 if (!free_i->free_secmap)
3548 return -ENOMEM;
3549
3550 /* set all segments as dirty temporarily */
3551 memset(free_i->free_segmap, 0xff, bitmap_size);
3552 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3553
3554 /* init free segmap information */
3555 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3556 free_i->free_segments = 0;
3557 free_i->free_sections = 0;
3558 spin_lock_init(&free_i->segmap_lock);
3559 return 0;
3560}
3561
3562static int build_curseg(struct f2fs_sb_info *sbi)
3563{
3564 struct curseg_info *array;
3565 int i;
3566
3567 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3568 if (!array)
3569 return -ENOMEM;
3570
3571 SM_I(sbi)->curseg_array = array;
3572
3573 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3574 mutex_init(&array[i].curseg_mutex);
3575 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3576 if (!array[i].sum_blk)
3577 return -ENOMEM;
3578 init_rwsem(&array[i].journal_rwsem);
3579 array[i].journal = f2fs_kzalloc(sbi,
3580 sizeof(struct f2fs_journal), GFP_KERNEL);
3581 if (!array[i].journal)
3582 return -ENOMEM;
3583 array[i].segno = NULL_SEGNO;
3584 array[i].next_blkoff = 0;
3585 }
3586 return restore_curseg_summaries(sbi);
3587}
3588
3589static int build_sit_entries(struct f2fs_sb_info *sbi)
3590{
3591 struct sit_info *sit_i = SIT_I(sbi);
3592 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3593 struct f2fs_journal *journal = curseg->journal;
3594 struct seg_entry *se;
3595 struct f2fs_sit_entry sit;
3596 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3597 unsigned int i, start, end;
3598 unsigned int readed, start_blk = 0;
3599 int err = 0;
3600
3601 do {
3602 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3603 META_SIT, true);
3604
3605 start = start_blk * sit_i->sents_per_block;
3606 end = (start_blk + readed) * sit_i->sents_per_block;
3607
3608 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3609 struct f2fs_sit_block *sit_blk;
3610 struct page *page;
3611
3612 se = &sit_i->sentries[start];
3613 page = get_current_sit_page(sbi, start);
3614 sit_blk = (struct f2fs_sit_block *)page_address(page);
3615 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3616 f2fs_put_page(page, 1);
3617
3618 err = check_block_count(sbi, start, &sit);
3619 if (err)
3620 return err;
3621 seg_info_from_raw_sit(se, &sit);
3622
3623 /* build discard map only one time */
3624 if (f2fs_discard_en(sbi)) {
3625 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3626 memset(se->discard_map, 0xff,
3627 SIT_VBLOCK_MAP_SIZE);
3628 } else {
3629 memcpy(se->discard_map,
3630 se->cur_valid_map,
3631 SIT_VBLOCK_MAP_SIZE);
3632 sbi->discard_blks +=
3633 sbi->blocks_per_seg -
3634 se->valid_blocks;
3635 }
3636 }
3637
3638 if (sbi->segs_per_sec > 1)
3639 get_sec_entry(sbi, start)->valid_blocks +=
3640 se->valid_blocks;
3641 }
3642 start_blk += readed;
3643 } while (start_blk < sit_blk_cnt);
3644
3645 down_read(&curseg->journal_rwsem);
3646 for (i = 0; i < sits_in_cursum(journal); i++) {
3647 unsigned int old_valid_blocks;
3648
3649 start = le32_to_cpu(segno_in_journal(journal, i));
3650 se = &sit_i->sentries[start];
3651 sit = sit_in_journal(journal, i);
3652
3653 old_valid_blocks = se->valid_blocks;
3654
3655 err = check_block_count(sbi, start, &sit);
3656 if (err)
3657 break;
3658 seg_info_from_raw_sit(se, &sit);
3659
3660 if (f2fs_discard_en(sbi)) {
3661 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3662 memset(se->discard_map, 0xff,
3663 SIT_VBLOCK_MAP_SIZE);
3664 } else {
3665 memcpy(se->discard_map, se->cur_valid_map,
3666 SIT_VBLOCK_MAP_SIZE);
3667 sbi->discard_blks += old_valid_blocks -
3668 se->valid_blocks;
3669 }
3670 }
3671
3672 if (sbi->segs_per_sec > 1)
3673 get_sec_entry(sbi, start)->valid_blocks +=
3674 se->valid_blocks - old_valid_blocks;
3675 }
3676 up_read(&curseg->journal_rwsem);
3677 return err;
3678}
3679
3680static void init_free_segmap(struct f2fs_sb_info *sbi)
3681{
3682 unsigned int start;
3683 int type;
3684
3685 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3686 struct seg_entry *sentry = get_seg_entry(sbi, start);
3687 if (!sentry->valid_blocks)
3688 __set_free(sbi, start);
3689 else
3690 SIT_I(sbi)->written_valid_blocks +=
3691 sentry->valid_blocks;
3692 }
3693
3694 /* set use the current segments */
3695 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3696 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3697 __set_test_and_inuse(sbi, curseg_t->segno);
3698 }
3699}
3700
3701static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3702{
3703 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3704 struct free_segmap_info *free_i = FREE_I(sbi);
3705 unsigned int segno = 0, offset = 0;
3706 unsigned short valid_blocks;
3707
3708 while (1) {
3709 /* find dirty segment based on free segmap */
3710 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3711 if (segno >= MAIN_SEGS(sbi))
3712 break;
3713 offset = segno + 1;
3714 valid_blocks = get_valid_blocks(sbi, segno, false);
3715 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3716 continue;
3717 if (valid_blocks > sbi->blocks_per_seg) {
3718 f2fs_bug_on(sbi, 1);
3719 continue;
3720 }
3721 mutex_lock(&dirty_i->seglist_lock);
3722 __locate_dirty_segment(sbi, segno, DIRTY);
3723 mutex_unlock(&dirty_i->seglist_lock);
3724 }
3725}
3726
3727static int init_victim_secmap(struct f2fs_sb_info *sbi)
3728{
3729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3730 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3731
3732 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3733 if (!dirty_i->victim_secmap)
3734 return -ENOMEM;
3735 return 0;
3736}
3737
3738static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3739{
3740 struct dirty_seglist_info *dirty_i;
3741 unsigned int bitmap_size, i;
3742
3743 /* allocate memory for dirty segments list information */
3744 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3745 GFP_KERNEL);
3746 if (!dirty_i)
3747 return -ENOMEM;
3748
3749 SM_I(sbi)->dirty_info = dirty_i;
3750 mutex_init(&dirty_i->seglist_lock);
3751
3752 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3753
3754 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3755 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3756 GFP_KERNEL);
3757 if (!dirty_i->dirty_segmap[i])
3758 return -ENOMEM;
3759 }
3760
3761 init_dirty_segmap(sbi);
3762 return init_victim_secmap(sbi);
3763}
3764
3765/*
3766 * Update min, max modified time for cost-benefit GC algorithm
3767 */
3768static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3769{
3770 struct sit_info *sit_i = SIT_I(sbi);
3771 unsigned int segno;
3772
3773 down_write(&sit_i->sentry_lock);
3774
3775 sit_i->min_mtime = LLONG_MAX;
3776
3777 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3778 unsigned int i;
3779 unsigned long long mtime = 0;
3780
3781 for (i = 0; i < sbi->segs_per_sec; i++)
3782 mtime += get_seg_entry(sbi, segno + i)->mtime;
3783
3784 mtime = div_u64(mtime, sbi->segs_per_sec);
3785
3786 if (sit_i->min_mtime > mtime)
3787 sit_i->min_mtime = mtime;
3788 }
3789 sit_i->max_mtime = get_mtime(sbi);
3790 up_write(&sit_i->sentry_lock);
3791}
3792
3793int build_segment_manager(struct f2fs_sb_info *sbi)
3794{
3795 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3796 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3797 struct f2fs_sm_info *sm_info;
3798 int err;
3799
3800 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3801 if (!sm_info)
3802 return -ENOMEM;
3803
3804 /* init sm info */
3805 sbi->sm_info = sm_info;
3806 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3807 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3808 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3809 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3810 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3811 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3812 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3813 sm_info->rec_prefree_segments = sm_info->main_segments *
3814 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3815 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3816 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3817
3818 if (!test_opt(sbi, LFS))
3819 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3820 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3821 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3822 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3823 sm_info->min_ssr_sections = reserved_sections(sbi);
3824
3825 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3826
3827 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3828
3829 init_rwsem(&sm_info->curseg_lock);
3830
3831 if (!f2fs_readonly(sbi->sb)) {
3832 err = create_flush_cmd_control(sbi);
3833 if (err)
3834 return err;
3835 }
3836
3837 err = create_discard_cmd_control(sbi);
3838 if (err)
3839 return err;
3840
3841 err = build_sit_info(sbi);
3842 if (err)
3843 return err;
3844 err = build_free_segmap(sbi);
3845 if (err)
3846 return err;
3847 err = build_curseg(sbi);
3848 if (err)
3849 return err;
3850
3851 /* reinit free segmap based on SIT */
3852 err = build_sit_entries(sbi);
3853 if (err)
3854 return err;
3855
3856 init_free_segmap(sbi);
3857 err = build_dirty_segmap(sbi);
3858 if (err)
3859 return err;
3860
3861 init_min_max_mtime(sbi);
3862 return 0;
3863}
3864
3865static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3866 enum dirty_type dirty_type)
3867{
3868 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3869
3870 mutex_lock(&dirty_i->seglist_lock);
3871 kvfree(dirty_i->dirty_segmap[dirty_type]);
3872 dirty_i->nr_dirty[dirty_type] = 0;
3873 mutex_unlock(&dirty_i->seglist_lock);
3874}
3875
3876static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3877{
3878 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3879 kvfree(dirty_i->victim_secmap);
3880}
3881
3882static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3883{
3884 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3885 int i;
3886
3887 if (!dirty_i)
3888 return;
3889
3890 /* discard pre-free/dirty segments list */
3891 for (i = 0; i < NR_DIRTY_TYPE; i++)
3892 discard_dirty_segmap(sbi, i);
3893
3894 destroy_victim_secmap(sbi);
3895 SM_I(sbi)->dirty_info = NULL;
3896 kfree(dirty_i);
3897}
3898
3899static void destroy_curseg(struct f2fs_sb_info *sbi)
3900{
3901 struct curseg_info *array = SM_I(sbi)->curseg_array;
3902 int i;
3903
3904 if (!array)
3905 return;
3906 SM_I(sbi)->curseg_array = NULL;
3907 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3908 kfree(array[i].sum_blk);
3909 kfree(array[i].journal);
3910 }
3911 kfree(array);
3912}
3913
3914static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3915{
3916 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3917 if (!free_i)
3918 return;
3919 SM_I(sbi)->free_info = NULL;
3920 kvfree(free_i->free_segmap);
3921 kvfree(free_i->free_secmap);
3922 kfree(free_i);
3923}
3924
3925static void destroy_sit_info(struct f2fs_sb_info *sbi)
3926{
3927 struct sit_info *sit_i = SIT_I(sbi);
3928 unsigned int start;
3929
3930 if (!sit_i)
3931 return;
3932
3933 if (sit_i->sentries) {
3934 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3935 kfree(sit_i->sentries[start].cur_valid_map);
3936#ifdef CONFIG_F2FS_CHECK_FS
3937 kfree(sit_i->sentries[start].cur_valid_map_mir);
3938#endif
3939 kfree(sit_i->sentries[start].ckpt_valid_map);
3940 kfree(sit_i->sentries[start].discard_map);
3941 }
3942 }
3943 kfree(sit_i->tmp_map);
3944
3945 kvfree(sit_i->sentries);
3946 kvfree(sit_i->sec_entries);
3947 kvfree(sit_i->dirty_sentries_bitmap);
3948
3949 SM_I(sbi)->sit_info = NULL;
3950 kfree(sit_i->sit_bitmap);
3951#ifdef CONFIG_F2FS_CHECK_FS
3952 kfree(sit_i->sit_bitmap_mir);
3953#endif
3954 kfree(sit_i);
3955}
3956
3957void destroy_segment_manager(struct f2fs_sb_info *sbi)
3958{
3959 struct f2fs_sm_info *sm_info = SM_I(sbi);
3960
3961 if (!sm_info)
3962 return;
3963 destroy_flush_cmd_control(sbi, true);
3964 destroy_discard_cmd_control(sbi);
3965 destroy_dirty_segmap(sbi);
3966 destroy_curseg(sbi);
3967 destroy_free_segmap(sbi);
3968 destroy_sit_info(sbi);
3969 sbi->sm_info = NULL;
3970 kfree(sm_info);
3971}
3972
3973int __init create_segment_manager_caches(void)
3974{
3975 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3976 sizeof(struct discard_entry));
3977 if (!discard_entry_slab)
3978 goto fail;
3979
3980 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3981 sizeof(struct discard_cmd));
3982 if (!discard_cmd_slab)
3983 goto destroy_discard_entry;
3984
3985 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3986 sizeof(struct sit_entry_set));
3987 if (!sit_entry_set_slab)
3988 goto destroy_discard_cmd;
3989
3990 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3991 sizeof(struct inmem_pages));
3992 if (!inmem_entry_slab)
3993 goto destroy_sit_entry_set;
3994 return 0;
3995
3996destroy_sit_entry_set:
3997 kmem_cache_destroy(sit_entry_set_slab);
3998destroy_discard_cmd:
3999 kmem_cache_destroy(discard_cmd_slab);
4000destroy_discard_entry:
4001 kmem_cache_destroy(discard_entry_slab);
4002fail:
4003 return -ENOMEM;
4004}
4005
4006void destroy_segment_manager_caches(void)
4007{
4008 kmem_cache_destroy(sit_entry_set_slab);
4009 kmem_cache_destroy(discard_cmd_slab);
4010 kmem_cache_destroy(discard_entry_slab);
4011 kmem_cache_destroy(inmem_entry_slab);
4012}
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/vmalloc.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28static struct kmem_cache *flush_cmd_slab;
29
30/*
31 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
32 * MSB and LSB are reversed in a byte by f2fs_set_bit.
33 */
34static inline unsigned long __reverse_ffs(unsigned long word)
35{
36 int num = 0;
37
38#if BITS_PER_LONG == 64
39 if ((word & 0xffffffff) == 0) {
40 num += 32;
41 word >>= 32;
42 }
43#endif
44 if ((word & 0xffff) == 0) {
45 num += 16;
46 word >>= 16;
47 }
48 if ((word & 0xff) == 0) {
49 num += 8;
50 word >>= 8;
51 }
52 if ((word & 0xf0) == 0)
53 num += 4;
54 else
55 word >>= 4;
56 if ((word & 0xc) == 0)
57 num += 2;
58 else
59 word >>= 2;
60 if ((word & 0x2) == 0)
61 num += 1;
62 return num;
63}
64
65/*
66 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
67 * f2fs_set_bit makes MSB and LSB reversed in a byte.
68 * Example:
69 * LSB <--> MSB
70 * f2fs_set_bit(0, bitmap) => 0000 0001
71 * f2fs_set_bit(7, bitmap) => 1000 0000
72 */
73static unsigned long __find_rev_next_bit(const unsigned long *addr,
74 unsigned long size, unsigned long offset)
75{
76 const unsigned long *p = addr + BIT_WORD(offset);
77 unsigned long result = offset & ~(BITS_PER_LONG - 1);
78 unsigned long tmp;
79 unsigned long mask, submask;
80 unsigned long quot, rest;
81
82 if (offset >= size)
83 return size;
84
85 size -= result;
86 offset %= BITS_PER_LONG;
87 if (!offset)
88 goto aligned;
89
90 tmp = *(p++);
91 quot = (offset >> 3) << 3;
92 rest = offset & 0x7;
93 mask = ~0UL << quot;
94 submask = (unsigned char)(0xff << rest) >> rest;
95 submask <<= quot;
96 mask &= submask;
97 tmp &= mask;
98 if (size < BITS_PER_LONG)
99 goto found_first;
100 if (tmp)
101 goto found_middle;
102
103 size -= BITS_PER_LONG;
104 result += BITS_PER_LONG;
105aligned:
106 while (size & ~(BITS_PER_LONG-1)) {
107 tmp = *(p++);
108 if (tmp)
109 goto found_middle;
110 result += BITS_PER_LONG;
111 size -= BITS_PER_LONG;
112 }
113 if (!size)
114 return result;
115 tmp = *p;
116found_first:
117 tmp &= (~0UL >> (BITS_PER_LONG - size));
118 if (tmp == 0UL) /* Are any bits set? */
119 return result + size; /* Nope. */
120found_middle:
121 return result + __reverse_ffs(tmp);
122}
123
124static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
125 unsigned long size, unsigned long offset)
126{
127 const unsigned long *p = addr + BIT_WORD(offset);
128 unsigned long result = offset & ~(BITS_PER_LONG - 1);
129 unsigned long tmp;
130 unsigned long mask, submask;
131 unsigned long quot, rest;
132
133 if (offset >= size)
134 return size;
135
136 size -= result;
137 offset %= BITS_PER_LONG;
138 if (!offset)
139 goto aligned;
140
141 tmp = *(p++);
142 quot = (offset >> 3) << 3;
143 rest = offset & 0x7;
144 mask = ~(~0UL << quot);
145 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
146 submask <<= quot;
147 mask += submask;
148 tmp |= mask;
149 if (size < BITS_PER_LONG)
150 goto found_first;
151 if (~tmp)
152 goto found_middle;
153
154 size -= BITS_PER_LONG;
155 result += BITS_PER_LONG;
156aligned:
157 while (size & ~(BITS_PER_LONG - 1)) {
158 tmp = *(p++);
159 if (~tmp)
160 goto found_middle;
161 result += BITS_PER_LONG;
162 size -= BITS_PER_LONG;
163 }
164 if (!size)
165 return result;
166 tmp = *p;
167
168found_first:
169 tmp |= ~0UL << size;
170 if (tmp == ~0UL) /* Are any bits zero? */
171 return result + size; /* Nope. */
172found_middle:
173 return result + __reverse_ffz(tmp);
174}
175
176/*
177 * This function balances dirty node and dentry pages.
178 * In addition, it controls garbage collection.
179 */
180void f2fs_balance_fs(struct f2fs_sb_info *sbi)
181{
182 /*
183 * We should do GC or end up with checkpoint, if there are so many dirty
184 * dir/node pages without enough free segments.
185 */
186 if (has_not_enough_free_secs(sbi, 0)) {
187 mutex_lock(&sbi->gc_mutex);
188 f2fs_gc(sbi);
189 }
190}
191
192void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
193{
194 /* check the # of cached NAT entries and prefree segments */
195 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
196 excess_prefree_segs(sbi))
197 f2fs_sync_fs(sbi->sb, true);
198}
199
200static int issue_flush_thread(void *data)
201{
202 struct f2fs_sb_info *sbi = data;
203 struct f2fs_sm_info *sm_i = SM_I(sbi);
204 wait_queue_head_t *q = &sm_i->flush_wait_queue;
205repeat:
206 if (kthread_should_stop())
207 return 0;
208
209 spin_lock(&sm_i->issue_lock);
210 if (sm_i->issue_list) {
211 sm_i->dispatch_list = sm_i->issue_list;
212 sm_i->issue_list = sm_i->issue_tail = NULL;
213 }
214 spin_unlock(&sm_i->issue_lock);
215
216 if (sm_i->dispatch_list) {
217 struct bio *bio = bio_alloc(GFP_NOIO, 0);
218 struct flush_cmd *cmd, *next;
219 int ret;
220
221 bio->bi_bdev = sbi->sb->s_bdev;
222 ret = submit_bio_wait(WRITE_FLUSH, bio);
223
224 for (cmd = sm_i->dispatch_list; cmd; cmd = next) {
225 cmd->ret = ret;
226 next = cmd->next;
227 complete(&cmd->wait);
228 }
229 sm_i->dispatch_list = NULL;
230 }
231
232 wait_event_interruptible(*q, kthread_should_stop() || sm_i->issue_list);
233 goto repeat;
234}
235
236int f2fs_issue_flush(struct f2fs_sb_info *sbi)
237{
238 struct f2fs_sm_info *sm_i = SM_I(sbi);
239 struct flush_cmd *cmd;
240 int ret;
241
242 if (!test_opt(sbi, FLUSH_MERGE))
243 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
244
245 cmd = f2fs_kmem_cache_alloc(flush_cmd_slab, GFP_ATOMIC);
246 cmd->next = NULL;
247 cmd->ret = 0;
248 init_completion(&cmd->wait);
249
250 spin_lock(&sm_i->issue_lock);
251 if (sm_i->issue_list)
252 sm_i->issue_tail->next = cmd;
253 else
254 sm_i->issue_list = cmd;
255 sm_i->issue_tail = cmd;
256 spin_unlock(&sm_i->issue_lock);
257
258 if (!sm_i->dispatch_list)
259 wake_up(&sm_i->flush_wait_queue);
260
261 wait_for_completion(&cmd->wait);
262 ret = cmd->ret;
263 kmem_cache_free(flush_cmd_slab, cmd);
264 return ret;
265}
266
267static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
268 enum dirty_type dirty_type)
269{
270 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
271
272 /* need not be added */
273 if (IS_CURSEG(sbi, segno))
274 return;
275
276 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
277 dirty_i->nr_dirty[dirty_type]++;
278
279 if (dirty_type == DIRTY) {
280 struct seg_entry *sentry = get_seg_entry(sbi, segno);
281 enum dirty_type t = sentry->type;
282
283 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
284 dirty_i->nr_dirty[t]++;
285 }
286}
287
288static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
289 enum dirty_type dirty_type)
290{
291 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
292
293 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
294 dirty_i->nr_dirty[dirty_type]--;
295
296 if (dirty_type == DIRTY) {
297 struct seg_entry *sentry = get_seg_entry(sbi, segno);
298 enum dirty_type t = sentry->type;
299
300 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
301 dirty_i->nr_dirty[t]--;
302
303 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
304 clear_bit(GET_SECNO(sbi, segno),
305 dirty_i->victim_secmap);
306 }
307}
308
309/*
310 * Should not occur error such as -ENOMEM.
311 * Adding dirty entry into seglist is not critical operation.
312 * If a given segment is one of current working segments, it won't be added.
313 */
314static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
315{
316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
317 unsigned short valid_blocks;
318
319 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
320 return;
321
322 mutex_lock(&dirty_i->seglist_lock);
323
324 valid_blocks = get_valid_blocks(sbi, segno, 0);
325
326 if (valid_blocks == 0) {
327 __locate_dirty_segment(sbi, segno, PRE);
328 __remove_dirty_segment(sbi, segno, DIRTY);
329 } else if (valid_blocks < sbi->blocks_per_seg) {
330 __locate_dirty_segment(sbi, segno, DIRTY);
331 } else {
332 /* Recovery routine with SSR needs this */
333 __remove_dirty_segment(sbi, segno, DIRTY);
334 }
335
336 mutex_unlock(&dirty_i->seglist_lock);
337}
338
339static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
340 block_t blkstart, block_t blklen)
341{
342 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
343 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
344 blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
345 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
346}
347
348static void add_discard_addrs(struct f2fs_sb_info *sbi,
349 unsigned int segno, struct seg_entry *se)
350{
351 struct list_head *head = &SM_I(sbi)->discard_list;
352 struct discard_entry *new;
353 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
354 int max_blocks = sbi->blocks_per_seg;
355 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
356 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
357 unsigned long dmap[entries];
358 unsigned int start = 0, end = -1;
359 int i;
360
361 if (!test_opt(sbi, DISCARD))
362 return;
363
364 /* zero block will be discarded through the prefree list */
365 if (!se->valid_blocks || se->valid_blocks == max_blocks)
366 return;
367
368 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
369 for (i = 0; i < entries; i++)
370 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
371
372 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
373 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
374 if (start >= max_blocks)
375 break;
376
377 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
378
379 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
380 INIT_LIST_HEAD(&new->list);
381 new->blkaddr = START_BLOCK(sbi, segno) + start;
382 new->len = end - start;
383
384 list_add_tail(&new->list, head);
385 SM_I(sbi)->nr_discards += end - start;
386 }
387}
388
389/*
390 * Should call clear_prefree_segments after checkpoint is done.
391 */
392static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
393{
394 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
395 unsigned int segno = -1;
396 unsigned int total_segs = TOTAL_SEGS(sbi);
397
398 mutex_lock(&dirty_i->seglist_lock);
399 while (1) {
400 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
401 segno + 1);
402 if (segno >= total_segs)
403 break;
404 __set_test_and_free(sbi, segno);
405 }
406 mutex_unlock(&dirty_i->seglist_lock);
407}
408
409void clear_prefree_segments(struct f2fs_sb_info *sbi)
410{
411 struct list_head *head = &(SM_I(sbi)->discard_list);
412 struct discard_entry *entry, *this;
413 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
414 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
415 unsigned int total_segs = TOTAL_SEGS(sbi);
416 unsigned int start = 0, end = -1;
417
418 mutex_lock(&dirty_i->seglist_lock);
419
420 while (1) {
421 int i;
422 start = find_next_bit(prefree_map, total_segs, end + 1);
423 if (start >= total_segs)
424 break;
425 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
426
427 for (i = start; i < end; i++)
428 clear_bit(i, prefree_map);
429
430 dirty_i->nr_dirty[PRE] -= end - start;
431
432 if (!test_opt(sbi, DISCARD))
433 continue;
434
435 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
436 (end - start) << sbi->log_blocks_per_seg);
437 }
438 mutex_unlock(&dirty_i->seglist_lock);
439
440 /* send small discards */
441 list_for_each_entry_safe(entry, this, head, list) {
442 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
443 list_del(&entry->list);
444 SM_I(sbi)->nr_discards -= entry->len;
445 kmem_cache_free(discard_entry_slab, entry);
446 }
447}
448
449static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
450{
451 struct sit_info *sit_i = SIT_I(sbi);
452 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
453 sit_i->dirty_sentries++;
454}
455
456static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
457 unsigned int segno, int modified)
458{
459 struct seg_entry *se = get_seg_entry(sbi, segno);
460 se->type = type;
461 if (modified)
462 __mark_sit_entry_dirty(sbi, segno);
463}
464
465static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
466{
467 struct seg_entry *se;
468 unsigned int segno, offset;
469 long int new_vblocks;
470
471 segno = GET_SEGNO(sbi, blkaddr);
472
473 se = get_seg_entry(sbi, segno);
474 new_vblocks = se->valid_blocks + del;
475 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
476
477 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
478 (new_vblocks > sbi->blocks_per_seg)));
479
480 se->valid_blocks = new_vblocks;
481 se->mtime = get_mtime(sbi);
482 SIT_I(sbi)->max_mtime = se->mtime;
483
484 /* Update valid block bitmap */
485 if (del > 0) {
486 if (f2fs_set_bit(offset, se->cur_valid_map))
487 BUG();
488 } else {
489 if (!f2fs_clear_bit(offset, se->cur_valid_map))
490 BUG();
491 }
492 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
493 se->ckpt_valid_blocks += del;
494
495 __mark_sit_entry_dirty(sbi, segno);
496
497 /* update total number of valid blocks to be written in ckpt area */
498 SIT_I(sbi)->written_valid_blocks += del;
499
500 if (sbi->segs_per_sec > 1)
501 get_sec_entry(sbi, segno)->valid_blocks += del;
502}
503
504void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
505{
506 update_sit_entry(sbi, new, 1);
507 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
508 update_sit_entry(sbi, old, -1);
509
510 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
511 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
512}
513
514void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
515{
516 unsigned int segno = GET_SEGNO(sbi, addr);
517 struct sit_info *sit_i = SIT_I(sbi);
518
519 f2fs_bug_on(addr == NULL_ADDR);
520 if (addr == NEW_ADDR)
521 return;
522
523 /* add it into sit main buffer */
524 mutex_lock(&sit_i->sentry_lock);
525
526 update_sit_entry(sbi, addr, -1);
527
528 /* add it into dirty seglist */
529 locate_dirty_segment(sbi, segno);
530
531 mutex_unlock(&sit_i->sentry_lock);
532}
533
534/*
535 * This function should be resided under the curseg_mutex lock
536 */
537static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
538 struct f2fs_summary *sum)
539{
540 struct curseg_info *curseg = CURSEG_I(sbi, type);
541 void *addr = curseg->sum_blk;
542 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
543 memcpy(addr, sum, sizeof(struct f2fs_summary));
544}
545
546/*
547 * Calculate the number of current summary pages for writing
548 */
549int npages_for_summary_flush(struct f2fs_sb_info *sbi)
550{
551 int valid_sum_count = 0;
552 int i, sum_in_page;
553
554 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
555 if (sbi->ckpt->alloc_type[i] == SSR)
556 valid_sum_count += sbi->blocks_per_seg;
557 else
558 valid_sum_count += curseg_blkoff(sbi, i);
559 }
560
561 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
562 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
563 if (valid_sum_count <= sum_in_page)
564 return 1;
565 else if ((valid_sum_count - sum_in_page) <=
566 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
567 return 2;
568 return 3;
569}
570
571/*
572 * Caller should put this summary page
573 */
574struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
575{
576 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
577}
578
579static void write_sum_page(struct f2fs_sb_info *sbi,
580 struct f2fs_summary_block *sum_blk, block_t blk_addr)
581{
582 struct page *page = grab_meta_page(sbi, blk_addr);
583 void *kaddr = page_address(page);
584 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
585 set_page_dirty(page);
586 f2fs_put_page(page, 1);
587}
588
589static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
590{
591 struct curseg_info *curseg = CURSEG_I(sbi, type);
592 unsigned int segno = curseg->segno + 1;
593 struct free_segmap_info *free_i = FREE_I(sbi);
594
595 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
596 return !test_bit(segno, free_i->free_segmap);
597 return 0;
598}
599
600/*
601 * Find a new segment from the free segments bitmap to right order
602 * This function should be returned with success, otherwise BUG
603 */
604static void get_new_segment(struct f2fs_sb_info *sbi,
605 unsigned int *newseg, bool new_sec, int dir)
606{
607 struct free_segmap_info *free_i = FREE_I(sbi);
608 unsigned int segno, secno, zoneno;
609 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
610 unsigned int hint = *newseg / sbi->segs_per_sec;
611 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
612 unsigned int left_start = hint;
613 bool init = true;
614 int go_left = 0;
615 int i;
616
617 write_lock(&free_i->segmap_lock);
618
619 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
620 segno = find_next_zero_bit(free_i->free_segmap,
621 TOTAL_SEGS(sbi), *newseg + 1);
622 if (segno - *newseg < sbi->segs_per_sec -
623 (*newseg % sbi->segs_per_sec))
624 goto got_it;
625 }
626find_other_zone:
627 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
628 if (secno >= TOTAL_SECS(sbi)) {
629 if (dir == ALLOC_RIGHT) {
630 secno = find_next_zero_bit(free_i->free_secmap,
631 TOTAL_SECS(sbi), 0);
632 f2fs_bug_on(secno >= TOTAL_SECS(sbi));
633 } else {
634 go_left = 1;
635 left_start = hint - 1;
636 }
637 }
638 if (go_left == 0)
639 goto skip_left;
640
641 while (test_bit(left_start, free_i->free_secmap)) {
642 if (left_start > 0) {
643 left_start--;
644 continue;
645 }
646 left_start = find_next_zero_bit(free_i->free_secmap,
647 TOTAL_SECS(sbi), 0);
648 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
649 break;
650 }
651 secno = left_start;
652skip_left:
653 hint = secno;
654 segno = secno * sbi->segs_per_sec;
655 zoneno = secno / sbi->secs_per_zone;
656
657 /* give up on finding another zone */
658 if (!init)
659 goto got_it;
660 if (sbi->secs_per_zone == 1)
661 goto got_it;
662 if (zoneno == old_zoneno)
663 goto got_it;
664 if (dir == ALLOC_LEFT) {
665 if (!go_left && zoneno + 1 >= total_zones)
666 goto got_it;
667 if (go_left && zoneno == 0)
668 goto got_it;
669 }
670 for (i = 0; i < NR_CURSEG_TYPE; i++)
671 if (CURSEG_I(sbi, i)->zone == zoneno)
672 break;
673
674 if (i < NR_CURSEG_TYPE) {
675 /* zone is in user, try another */
676 if (go_left)
677 hint = zoneno * sbi->secs_per_zone - 1;
678 else if (zoneno + 1 >= total_zones)
679 hint = 0;
680 else
681 hint = (zoneno + 1) * sbi->secs_per_zone;
682 init = false;
683 goto find_other_zone;
684 }
685got_it:
686 /* set it as dirty segment in free segmap */
687 f2fs_bug_on(test_bit(segno, free_i->free_segmap));
688 __set_inuse(sbi, segno);
689 *newseg = segno;
690 write_unlock(&free_i->segmap_lock);
691}
692
693static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
694{
695 struct curseg_info *curseg = CURSEG_I(sbi, type);
696 struct summary_footer *sum_footer;
697
698 curseg->segno = curseg->next_segno;
699 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
700 curseg->next_blkoff = 0;
701 curseg->next_segno = NULL_SEGNO;
702
703 sum_footer = &(curseg->sum_blk->footer);
704 memset(sum_footer, 0, sizeof(struct summary_footer));
705 if (IS_DATASEG(type))
706 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
707 if (IS_NODESEG(type))
708 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
709 __set_sit_entry_type(sbi, type, curseg->segno, modified);
710}
711
712/*
713 * Allocate a current working segment.
714 * This function always allocates a free segment in LFS manner.
715 */
716static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
717{
718 struct curseg_info *curseg = CURSEG_I(sbi, type);
719 unsigned int segno = curseg->segno;
720 int dir = ALLOC_LEFT;
721
722 write_sum_page(sbi, curseg->sum_blk,
723 GET_SUM_BLOCK(sbi, segno));
724 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
725 dir = ALLOC_RIGHT;
726
727 if (test_opt(sbi, NOHEAP))
728 dir = ALLOC_RIGHT;
729
730 get_new_segment(sbi, &segno, new_sec, dir);
731 curseg->next_segno = segno;
732 reset_curseg(sbi, type, 1);
733 curseg->alloc_type = LFS;
734}
735
736static void __next_free_blkoff(struct f2fs_sb_info *sbi,
737 struct curseg_info *seg, block_t start)
738{
739 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
740 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
741 unsigned long target_map[entries];
742 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
743 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
744 int i, pos;
745
746 for (i = 0; i < entries; i++)
747 target_map[i] = ckpt_map[i] | cur_map[i];
748
749 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
750
751 seg->next_blkoff = pos;
752}
753
754/*
755 * If a segment is written by LFS manner, next block offset is just obtained
756 * by increasing the current block offset. However, if a segment is written by
757 * SSR manner, next block offset obtained by calling __next_free_blkoff
758 */
759static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
760 struct curseg_info *seg)
761{
762 if (seg->alloc_type == SSR)
763 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
764 else
765 seg->next_blkoff++;
766}
767
768/*
769 * This function always allocates a used segment (from dirty seglist) by SSR
770 * manner, so it should recover the existing segment information of valid blocks
771 */
772static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
773{
774 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
775 struct curseg_info *curseg = CURSEG_I(sbi, type);
776 unsigned int new_segno = curseg->next_segno;
777 struct f2fs_summary_block *sum_node;
778 struct page *sum_page;
779
780 write_sum_page(sbi, curseg->sum_blk,
781 GET_SUM_BLOCK(sbi, curseg->segno));
782 __set_test_and_inuse(sbi, new_segno);
783
784 mutex_lock(&dirty_i->seglist_lock);
785 __remove_dirty_segment(sbi, new_segno, PRE);
786 __remove_dirty_segment(sbi, new_segno, DIRTY);
787 mutex_unlock(&dirty_i->seglist_lock);
788
789 reset_curseg(sbi, type, 1);
790 curseg->alloc_type = SSR;
791 __next_free_blkoff(sbi, curseg, 0);
792
793 if (reuse) {
794 sum_page = get_sum_page(sbi, new_segno);
795 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
796 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
797 f2fs_put_page(sum_page, 1);
798 }
799}
800
801static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
802{
803 struct curseg_info *curseg = CURSEG_I(sbi, type);
804 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
805
806 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
807 return v_ops->get_victim(sbi,
808 &(curseg)->next_segno, BG_GC, type, SSR);
809
810 /* For data segments, let's do SSR more intensively */
811 for (; type >= CURSEG_HOT_DATA; type--)
812 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
813 BG_GC, type, SSR))
814 return 1;
815 return 0;
816}
817
818/*
819 * flush out current segment and replace it with new segment
820 * This function should be returned with success, otherwise BUG
821 */
822static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
823 int type, bool force)
824{
825 struct curseg_info *curseg = CURSEG_I(sbi, type);
826
827 if (force)
828 new_curseg(sbi, type, true);
829 else if (type == CURSEG_WARM_NODE)
830 new_curseg(sbi, type, false);
831 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
832 new_curseg(sbi, type, false);
833 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
834 change_curseg(sbi, type, true);
835 else
836 new_curseg(sbi, type, false);
837
838 stat_inc_seg_type(sbi, curseg);
839}
840
841void allocate_new_segments(struct f2fs_sb_info *sbi)
842{
843 struct curseg_info *curseg;
844 unsigned int old_curseg;
845 int i;
846
847 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
848 curseg = CURSEG_I(sbi, i);
849 old_curseg = curseg->segno;
850 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
851 locate_dirty_segment(sbi, old_curseg);
852 }
853}
854
855static const struct segment_allocation default_salloc_ops = {
856 .allocate_segment = allocate_segment_by_default,
857};
858
859static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
860{
861 struct curseg_info *curseg = CURSEG_I(sbi, type);
862 if (curseg->next_blkoff < sbi->blocks_per_seg)
863 return true;
864 return false;
865}
866
867static int __get_segment_type_2(struct page *page, enum page_type p_type)
868{
869 if (p_type == DATA)
870 return CURSEG_HOT_DATA;
871 else
872 return CURSEG_HOT_NODE;
873}
874
875static int __get_segment_type_4(struct page *page, enum page_type p_type)
876{
877 if (p_type == DATA) {
878 struct inode *inode = page->mapping->host;
879
880 if (S_ISDIR(inode->i_mode))
881 return CURSEG_HOT_DATA;
882 else
883 return CURSEG_COLD_DATA;
884 } else {
885 if (IS_DNODE(page) && !is_cold_node(page))
886 return CURSEG_HOT_NODE;
887 else
888 return CURSEG_COLD_NODE;
889 }
890}
891
892static int __get_segment_type_6(struct page *page, enum page_type p_type)
893{
894 if (p_type == DATA) {
895 struct inode *inode = page->mapping->host;
896
897 if (S_ISDIR(inode->i_mode))
898 return CURSEG_HOT_DATA;
899 else if (is_cold_data(page) || file_is_cold(inode))
900 return CURSEG_COLD_DATA;
901 else
902 return CURSEG_WARM_DATA;
903 } else {
904 if (IS_DNODE(page))
905 return is_cold_node(page) ? CURSEG_WARM_NODE :
906 CURSEG_HOT_NODE;
907 else
908 return CURSEG_COLD_NODE;
909 }
910}
911
912static int __get_segment_type(struct page *page, enum page_type p_type)
913{
914 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
915 switch (sbi->active_logs) {
916 case 2:
917 return __get_segment_type_2(page, p_type);
918 case 4:
919 return __get_segment_type_4(page, p_type);
920 }
921 /* NR_CURSEG_TYPE(6) logs by default */
922 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
923 return __get_segment_type_6(page, p_type);
924}
925
926void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
927 block_t old_blkaddr, block_t *new_blkaddr,
928 struct f2fs_summary *sum, int type)
929{
930 struct sit_info *sit_i = SIT_I(sbi);
931 struct curseg_info *curseg;
932 unsigned int old_cursegno;
933
934 curseg = CURSEG_I(sbi, type);
935
936 mutex_lock(&curseg->curseg_mutex);
937
938 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
939 old_cursegno = curseg->segno;
940
941 /*
942 * __add_sum_entry should be resided under the curseg_mutex
943 * because, this function updates a summary entry in the
944 * current summary block.
945 */
946 __add_sum_entry(sbi, type, sum);
947
948 mutex_lock(&sit_i->sentry_lock);
949 __refresh_next_blkoff(sbi, curseg);
950
951 stat_inc_block_count(sbi, curseg);
952
953 if (!__has_curseg_space(sbi, type))
954 sit_i->s_ops->allocate_segment(sbi, type, false);
955 /*
956 * SIT information should be updated before segment allocation,
957 * since SSR needs latest valid block information.
958 */
959 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
960 locate_dirty_segment(sbi, old_cursegno);
961
962 mutex_unlock(&sit_i->sentry_lock);
963
964 if (page && IS_NODESEG(type))
965 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
966
967 mutex_unlock(&curseg->curseg_mutex);
968}
969
970static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
971 block_t old_blkaddr, block_t *new_blkaddr,
972 struct f2fs_summary *sum, struct f2fs_io_info *fio)
973{
974 int type = __get_segment_type(page, fio->type);
975
976 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
977
978 /* writeout dirty page into bdev */
979 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
980}
981
982void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
983{
984 struct f2fs_io_info fio = {
985 .type = META,
986 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
987 };
988
989 set_page_writeback(page);
990 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
991}
992
993void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
994 struct f2fs_io_info *fio,
995 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
996{
997 struct f2fs_summary sum;
998 set_summary(&sum, nid, 0, 0);
999 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1000}
1001
1002void write_data_page(struct page *page, struct dnode_of_data *dn,
1003 block_t *new_blkaddr, struct f2fs_io_info *fio)
1004{
1005 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1006 struct f2fs_summary sum;
1007 struct node_info ni;
1008
1009 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1010 get_node_info(sbi, dn->nid, &ni);
1011 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1012
1013 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1014}
1015
1016void rewrite_data_page(struct page *page, block_t old_blkaddr,
1017 struct f2fs_io_info *fio)
1018{
1019 struct inode *inode = page->mapping->host;
1020 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1021 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1022}
1023
1024void recover_data_page(struct f2fs_sb_info *sbi,
1025 struct page *page, struct f2fs_summary *sum,
1026 block_t old_blkaddr, block_t new_blkaddr)
1027{
1028 struct sit_info *sit_i = SIT_I(sbi);
1029 struct curseg_info *curseg;
1030 unsigned int segno, old_cursegno;
1031 struct seg_entry *se;
1032 int type;
1033
1034 segno = GET_SEGNO(sbi, new_blkaddr);
1035 se = get_seg_entry(sbi, segno);
1036 type = se->type;
1037
1038 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1039 if (old_blkaddr == NULL_ADDR)
1040 type = CURSEG_COLD_DATA;
1041 else
1042 type = CURSEG_WARM_DATA;
1043 }
1044 curseg = CURSEG_I(sbi, type);
1045
1046 mutex_lock(&curseg->curseg_mutex);
1047 mutex_lock(&sit_i->sentry_lock);
1048
1049 old_cursegno = curseg->segno;
1050
1051 /* change the current segment */
1052 if (segno != curseg->segno) {
1053 curseg->next_segno = segno;
1054 change_curseg(sbi, type, true);
1055 }
1056
1057 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1058 __add_sum_entry(sbi, type, sum);
1059
1060 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1061 locate_dirty_segment(sbi, old_cursegno);
1062
1063 mutex_unlock(&sit_i->sentry_lock);
1064 mutex_unlock(&curseg->curseg_mutex);
1065}
1066
1067void rewrite_node_page(struct f2fs_sb_info *sbi,
1068 struct page *page, struct f2fs_summary *sum,
1069 block_t old_blkaddr, block_t new_blkaddr)
1070{
1071 struct sit_info *sit_i = SIT_I(sbi);
1072 int type = CURSEG_WARM_NODE;
1073 struct curseg_info *curseg;
1074 unsigned int segno, old_cursegno;
1075 block_t next_blkaddr = next_blkaddr_of_node(page);
1076 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1077 struct f2fs_io_info fio = {
1078 .type = NODE,
1079 .rw = WRITE_SYNC,
1080 };
1081
1082 curseg = CURSEG_I(sbi, type);
1083
1084 mutex_lock(&curseg->curseg_mutex);
1085 mutex_lock(&sit_i->sentry_lock);
1086
1087 segno = GET_SEGNO(sbi, new_blkaddr);
1088 old_cursegno = curseg->segno;
1089
1090 /* change the current segment */
1091 if (segno != curseg->segno) {
1092 curseg->next_segno = segno;
1093 change_curseg(sbi, type, true);
1094 }
1095 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1096 __add_sum_entry(sbi, type, sum);
1097
1098 /* change the current log to the next block addr in advance */
1099 if (next_segno != segno) {
1100 curseg->next_segno = next_segno;
1101 change_curseg(sbi, type, true);
1102 }
1103 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1104
1105 /* rewrite node page */
1106 set_page_writeback(page);
1107 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1108 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1109 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1110 locate_dirty_segment(sbi, old_cursegno);
1111
1112 mutex_unlock(&sit_i->sentry_lock);
1113 mutex_unlock(&curseg->curseg_mutex);
1114}
1115
1116static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1117 struct page *page, enum page_type type)
1118{
1119 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1120 struct f2fs_bio_info *io = &sbi->write_io[btype];
1121 struct bio_vec *bvec;
1122 int i;
1123
1124 down_read(&io->io_rwsem);
1125 if (!io->bio)
1126 goto out;
1127
1128 bio_for_each_segment_all(bvec, io->bio, i) {
1129 if (page == bvec->bv_page) {
1130 up_read(&io->io_rwsem);
1131 return true;
1132 }
1133 }
1134
1135out:
1136 up_read(&io->io_rwsem);
1137 return false;
1138}
1139
1140void f2fs_wait_on_page_writeback(struct page *page,
1141 enum page_type type)
1142{
1143 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1144 if (PageWriteback(page)) {
1145 if (is_merged_page(sbi, page, type))
1146 f2fs_submit_merged_bio(sbi, type, WRITE);
1147 wait_on_page_writeback(page);
1148 }
1149}
1150
1151static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1152{
1153 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1154 struct curseg_info *seg_i;
1155 unsigned char *kaddr;
1156 struct page *page;
1157 block_t start;
1158 int i, j, offset;
1159
1160 start = start_sum_block(sbi);
1161
1162 page = get_meta_page(sbi, start++);
1163 kaddr = (unsigned char *)page_address(page);
1164
1165 /* Step 1: restore nat cache */
1166 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1167 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1168
1169 /* Step 2: restore sit cache */
1170 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1171 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1172 SUM_JOURNAL_SIZE);
1173 offset = 2 * SUM_JOURNAL_SIZE;
1174
1175 /* Step 3: restore summary entries */
1176 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1177 unsigned short blk_off;
1178 unsigned int segno;
1179
1180 seg_i = CURSEG_I(sbi, i);
1181 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1182 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1183 seg_i->next_segno = segno;
1184 reset_curseg(sbi, i, 0);
1185 seg_i->alloc_type = ckpt->alloc_type[i];
1186 seg_i->next_blkoff = blk_off;
1187
1188 if (seg_i->alloc_type == SSR)
1189 blk_off = sbi->blocks_per_seg;
1190
1191 for (j = 0; j < blk_off; j++) {
1192 struct f2fs_summary *s;
1193 s = (struct f2fs_summary *)(kaddr + offset);
1194 seg_i->sum_blk->entries[j] = *s;
1195 offset += SUMMARY_SIZE;
1196 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1197 SUM_FOOTER_SIZE)
1198 continue;
1199
1200 f2fs_put_page(page, 1);
1201 page = NULL;
1202
1203 page = get_meta_page(sbi, start++);
1204 kaddr = (unsigned char *)page_address(page);
1205 offset = 0;
1206 }
1207 }
1208 f2fs_put_page(page, 1);
1209 return 0;
1210}
1211
1212static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1213{
1214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1215 struct f2fs_summary_block *sum;
1216 struct curseg_info *curseg;
1217 struct page *new;
1218 unsigned short blk_off;
1219 unsigned int segno = 0;
1220 block_t blk_addr = 0;
1221
1222 /* get segment number and block addr */
1223 if (IS_DATASEG(type)) {
1224 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1225 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1226 CURSEG_HOT_DATA]);
1227 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1228 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1229 else
1230 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1231 } else {
1232 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1233 CURSEG_HOT_NODE]);
1234 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1235 CURSEG_HOT_NODE]);
1236 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1237 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1238 type - CURSEG_HOT_NODE);
1239 else
1240 blk_addr = GET_SUM_BLOCK(sbi, segno);
1241 }
1242
1243 new = get_meta_page(sbi, blk_addr);
1244 sum = (struct f2fs_summary_block *)page_address(new);
1245
1246 if (IS_NODESEG(type)) {
1247 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1248 struct f2fs_summary *ns = &sum->entries[0];
1249 int i;
1250 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1251 ns->version = 0;
1252 ns->ofs_in_node = 0;
1253 }
1254 } else {
1255 int err;
1256
1257 err = restore_node_summary(sbi, segno, sum);
1258 if (err) {
1259 f2fs_put_page(new, 1);
1260 return err;
1261 }
1262 }
1263 }
1264
1265 /* set uncompleted segment to curseg */
1266 curseg = CURSEG_I(sbi, type);
1267 mutex_lock(&curseg->curseg_mutex);
1268 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1269 curseg->next_segno = segno;
1270 reset_curseg(sbi, type, 0);
1271 curseg->alloc_type = ckpt->alloc_type[type];
1272 curseg->next_blkoff = blk_off;
1273 mutex_unlock(&curseg->curseg_mutex);
1274 f2fs_put_page(new, 1);
1275 return 0;
1276}
1277
1278static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1279{
1280 int type = CURSEG_HOT_DATA;
1281 int err;
1282
1283 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1284 /* restore for compacted data summary */
1285 if (read_compacted_summaries(sbi))
1286 return -EINVAL;
1287 type = CURSEG_HOT_NODE;
1288 }
1289
1290 for (; type <= CURSEG_COLD_NODE; type++) {
1291 err = read_normal_summaries(sbi, type);
1292 if (err)
1293 return err;
1294 }
1295
1296 return 0;
1297}
1298
1299static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1300{
1301 struct page *page;
1302 unsigned char *kaddr;
1303 struct f2fs_summary *summary;
1304 struct curseg_info *seg_i;
1305 int written_size = 0;
1306 int i, j;
1307
1308 page = grab_meta_page(sbi, blkaddr++);
1309 kaddr = (unsigned char *)page_address(page);
1310
1311 /* Step 1: write nat cache */
1312 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1313 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1314 written_size += SUM_JOURNAL_SIZE;
1315
1316 /* Step 2: write sit cache */
1317 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1318 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1319 SUM_JOURNAL_SIZE);
1320 written_size += SUM_JOURNAL_SIZE;
1321
1322 /* Step 3: write summary entries */
1323 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1324 unsigned short blkoff;
1325 seg_i = CURSEG_I(sbi, i);
1326 if (sbi->ckpt->alloc_type[i] == SSR)
1327 blkoff = sbi->blocks_per_seg;
1328 else
1329 blkoff = curseg_blkoff(sbi, i);
1330
1331 for (j = 0; j < blkoff; j++) {
1332 if (!page) {
1333 page = grab_meta_page(sbi, blkaddr++);
1334 kaddr = (unsigned char *)page_address(page);
1335 written_size = 0;
1336 }
1337 summary = (struct f2fs_summary *)(kaddr + written_size);
1338 *summary = seg_i->sum_blk->entries[j];
1339 written_size += SUMMARY_SIZE;
1340
1341 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1342 SUM_FOOTER_SIZE)
1343 continue;
1344
1345 set_page_dirty(page);
1346 f2fs_put_page(page, 1);
1347 page = NULL;
1348 }
1349 }
1350 if (page) {
1351 set_page_dirty(page);
1352 f2fs_put_page(page, 1);
1353 }
1354}
1355
1356static void write_normal_summaries(struct f2fs_sb_info *sbi,
1357 block_t blkaddr, int type)
1358{
1359 int i, end;
1360 if (IS_DATASEG(type))
1361 end = type + NR_CURSEG_DATA_TYPE;
1362 else
1363 end = type + NR_CURSEG_NODE_TYPE;
1364
1365 for (i = type; i < end; i++) {
1366 struct curseg_info *sum = CURSEG_I(sbi, i);
1367 mutex_lock(&sum->curseg_mutex);
1368 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1369 mutex_unlock(&sum->curseg_mutex);
1370 }
1371}
1372
1373void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1374{
1375 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1376 write_compacted_summaries(sbi, start_blk);
1377 else
1378 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1379}
1380
1381void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1382{
1383 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1384 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1385}
1386
1387int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1388 unsigned int val, int alloc)
1389{
1390 int i;
1391
1392 if (type == NAT_JOURNAL) {
1393 for (i = 0; i < nats_in_cursum(sum); i++) {
1394 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1395 return i;
1396 }
1397 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1398 return update_nats_in_cursum(sum, 1);
1399 } else if (type == SIT_JOURNAL) {
1400 for (i = 0; i < sits_in_cursum(sum); i++)
1401 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1402 return i;
1403 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1404 return update_sits_in_cursum(sum, 1);
1405 }
1406 return -1;
1407}
1408
1409static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1410 unsigned int segno)
1411{
1412 struct sit_info *sit_i = SIT_I(sbi);
1413 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1414 block_t blk_addr = sit_i->sit_base_addr + offset;
1415
1416 check_seg_range(sbi, segno);
1417
1418 /* calculate sit block address */
1419 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1420 blk_addr += sit_i->sit_blocks;
1421
1422 return get_meta_page(sbi, blk_addr);
1423}
1424
1425static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1426 unsigned int start)
1427{
1428 struct sit_info *sit_i = SIT_I(sbi);
1429 struct page *src_page, *dst_page;
1430 pgoff_t src_off, dst_off;
1431 void *src_addr, *dst_addr;
1432
1433 src_off = current_sit_addr(sbi, start);
1434 dst_off = next_sit_addr(sbi, src_off);
1435
1436 /* get current sit block page without lock */
1437 src_page = get_meta_page(sbi, src_off);
1438 dst_page = grab_meta_page(sbi, dst_off);
1439 f2fs_bug_on(PageDirty(src_page));
1440
1441 src_addr = page_address(src_page);
1442 dst_addr = page_address(dst_page);
1443 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1444
1445 set_page_dirty(dst_page);
1446 f2fs_put_page(src_page, 1);
1447
1448 set_to_next_sit(sit_i, start);
1449
1450 return dst_page;
1451}
1452
1453static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1454{
1455 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1456 struct f2fs_summary_block *sum = curseg->sum_blk;
1457 int i;
1458
1459 /*
1460 * If the journal area in the current summary is full of sit entries,
1461 * all the sit entries will be flushed. Otherwise the sit entries
1462 * are not able to replace with newly hot sit entries.
1463 */
1464 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1465 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1466 unsigned int segno;
1467 segno = le32_to_cpu(segno_in_journal(sum, i));
1468 __mark_sit_entry_dirty(sbi, segno);
1469 }
1470 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1471 return true;
1472 }
1473 return false;
1474}
1475
1476/*
1477 * CP calls this function, which flushes SIT entries including sit_journal,
1478 * and moves prefree segs to free segs.
1479 */
1480void flush_sit_entries(struct f2fs_sb_info *sbi)
1481{
1482 struct sit_info *sit_i = SIT_I(sbi);
1483 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1484 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1485 struct f2fs_summary_block *sum = curseg->sum_blk;
1486 unsigned long nsegs = TOTAL_SEGS(sbi);
1487 struct page *page = NULL;
1488 struct f2fs_sit_block *raw_sit = NULL;
1489 unsigned int start = 0, end = 0;
1490 unsigned int segno = -1;
1491 bool flushed;
1492
1493 mutex_lock(&curseg->curseg_mutex);
1494 mutex_lock(&sit_i->sentry_lock);
1495
1496 /*
1497 * "flushed" indicates whether sit entries in journal are flushed
1498 * to the SIT area or not.
1499 */
1500 flushed = flush_sits_in_journal(sbi);
1501
1502 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1503 struct seg_entry *se = get_seg_entry(sbi, segno);
1504 int sit_offset, offset;
1505
1506 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1507
1508 /* add discard candidates */
1509 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1510 add_discard_addrs(sbi, segno, se);
1511
1512 if (flushed)
1513 goto to_sit_page;
1514
1515 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1516 if (offset >= 0) {
1517 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1518 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1519 goto flush_done;
1520 }
1521to_sit_page:
1522 if (!page || (start > segno) || (segno > end)) {
1523 if (page) {
1524 f2fs_put_page(page, 1);
1525 page = NULL;
1526 }
1527
1528 start = START_SEGNO(sit_i, segno);
1529 end = start + SIT_ENTRY_PER_BLOCK - 1;
1530
1531 /* read sit block that will be updated */
1532 page = get_next_sit_page(sbi, start);
1533 raw_sit = page_address(page);
1534 }
1535
1536 /* udpate entry in SIT block */
1537 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1538flush_done:
1539 __clear_bit(segno, bitmap);
1540 sit_i->dirty_sentries--;
1541 }
1542 mutex_unlock(&sit_i->sentry_lock);
1543 mutex_unlock(&curseg->curseg_mutex);
1544
1545 /* writeout last modified SIT block */
1546 f2fs_put_page(page, 1);
1547
1548 set_prefree_as_free_segments(sbi);
1549}
1550
1551static int build_sit_info(struct f2fs_sb_info *sbi)
1552{
1553 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1554 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1555 struct sit_info *sit_i;
1556 unsigned int sit_segs, start;
1557 char *src_bitmap, *dst_bitmap;
1558 unsigned int bitmap_size;
1559
1560 /* allocate memory for SIT information */
1561 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1562 if (!sit_i)
1563 return -ENOMEM;
1564
1565 SM_I(sbi)->sit_info = sit_i;
1566
1567 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1568 if (!sit_i->sentries)
1569 return -ENOMEM;
1570
1571 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1572 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1573 if (!sit_i->dirty_sentries_bitmap)
1574 return -ENOMEM;
1575
1576 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1577 sit_i->sentries[start].cur_valid_map
1578 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1579 sit_i->sentries[start].ckpt_valid_map
1580 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1581 if (!sit_i->sentries[start].cur_valid_map
1582 || !sit_i->sentries[start].ckpt_valid_map)
1583 return -ENOMEM;
1584 }
1585
1586 if (sbi->segs_per_sec > 1) {
1587 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1588 sizeof(struct sec_entry));
1589 if (!sit_i->sec_entries)
1590 return -ENOMEM;
1591 }
1592
1593 /* get information related with SIT */
1594 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1595
1596 /* setup SIT bitmap from ckeckpoint pack */
1597 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1598 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1599
1600 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1601 if (!dst_bitmap)
1602 return -ENOMEM;
1603
1604 /* init SIT information */
1605 sit_i->s_ops = &default_salloc_ops;
1606
1607 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1608 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1609 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1610 sit_i->sit_bitmap = dst_bitmap;
1611 sit_i->bitmap_size = bitmap_size;
1612 sit_i->dirty_sentries = 0;
1613 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1614 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1615 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1616 mutex_init(&sit_i->sentry_lock);
1617 return 0;
1618}
1619
1620static int build_free_segmap(struct f2fs_sb_info *sbi)
1621{
1622 struct f2fs_sm_info *sm_info = SM_I(sbi);
1623 struct free_segmap_info *free_i;
1624 unsigned int bitmap_size, sec_bitmap_size;
1625
1626 /* allocate memory for free segmap information */
1627 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1628 if (!free_i)
1629 return -ENOMEM;
1630
1631 SM_I(sbi)->free_info = free_i;
1632
1633 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1634 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1635 if (!free_i->free_segmap)
1636 return -ENOMEM;
1637
1638 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1639 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1640 if (!free_i->free_secmap)
1641 return -ENOMEM;
1642
1643 /* set all segments as dirty temporarily */
1644 memset(free_i->free_segmap, 0xff, bitmap_size);
1645 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1646
1647 /* init free segmap information */
1648 free_i->start_segno =
1649 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1650 free_i->free_segments = 0;
1651 free_i->free_sections = 0;
1652 rwlock_init(&free_i->segmap_lock);
1653 return 0;
1654}
1655
1656static int build_curseg(struct f2fs_sb_info *sbi)
1657{
1658 struct curseg_info *array;
1659 int i;
1660
1661 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1662 if (!array)
1663 return -ENOMEM;
1664
1665 SM_I(sbi)->curseg_array = array;
1666
1667 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1668 mutex_init(&array[i].curseg_mutex);
1669 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1670 if (!array[i].sum_blk)
1671 return -ENOMEM;
1672 array[i].segno = NULL_SEGNO;
1673 array[i].next_blkoff = 0;
1674 }
1675 return restore_curseg_summaries(sbi);
1676}
1677
1678static void build_sit_entries(struct f2fs_sb_info *sbi)
1679{
1680 struct sit_info *sit_i = SIT_I(sbi);
1681 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1682 struct f2fs_summary_block *sum = curseg->sum_blk;
1683 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1684 unsigned int i, start, end;
1685 unsigned int readed, start_blk = 0;
1686 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1687
1688 do {
1689 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1690
1691 start = start_blk * sit_i->sents_per_block;
1692 end = (start_blk + readed) * sit_i->sents_per_block;
1693
1694 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1695 struct seg_entry *se = &sit_i->sentries[start];
1696 struct f2fs_sit_block *sit_blk;
1697 struct f2fs_sit_entry sit;
1698 struct page *page;
1699
1700 mutex_lock(&curseg->curseg_mutex);
1701 for (i = 0; i < sits_in_cursum(sum); i++) {
1702 if (le32_to_cpu(segno_in_journal(sum, i))
1703 == start) {
1704 sit = sit_in_journal(sum, i);
1705 mutex_unlock(&curseg->curseg_mutex);
1706 goto got_it;
1707 }
1708 }
1709 mutex_unlock(&curseg->curseg_mutex);
1710
1711 page = get_current_sit_page(sbi, start);
1712 sit_blk = (struct f2fs_sit_block *)page_address(page);
1713 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1714 f2fs_put_page(page, 1);
1715got_it:
1716 check_block_count(sbi, start, &sit);
1717 seg_info_from_raw_sit(se, &sit);
1718 if (sbi->segs_per_sec > 1) {
1719 struct sec_entry *e = get_sec_entry(sbi, start);
1720 e->valid_blocks += se->valid_blocks;
1721 }
1722 }
1723 start_blk += readed;
1724 } while (start_blk < sit_blk_cnt);
1725}
1726
1727static void init_free_segmap(struct f2fs_sb_info *sbi)
1728{
1729 unsigned int start;
1730 int type;
1731
1732 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1733 struct seg_entry *sentry = get_seg_entry(sbi, start);
1734 if (!sentry->valid_blocks)
1735 __set_free(sbi, start);
1736 }
1737
1738 /* set use the current segments */
1739 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1740 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1741 __set_test_and_inuse(sbi, curseg_t->segno);
1742 }
1743}
1744
1745static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1746{
1747 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1748 struct free_segmap_info *free_i = FREE_I(sbi);
1749 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1750 unsigned short valid_blocks;
1751
1752 while (1) {
1753 /* find dirty segment based on free segmap */
1754 segno = find_next_inuse(free_i, total_segs, offset);
1755 if (segno >= total_segs)
1756 break;
1757 offset = segno + 1;
1758 valid_blocks = get_valid_blocks(sbi, segno, 0);
1759 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1760 continue;
1761 mutex_lock(&dirty_i->seglist_lock);
1762 __locate_dirty_segment(sbi, segno, DIRTY);
1763 mutex_unlock(&dirty_i->seglist_lock);
1764 }
1765}
1766
1767static int init_victim_secmap(struct f2fs_sb_info *sbi)
1768{
1769 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1770 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1771
1772 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1773 if (!dirty_i->victim_secmap)
1774 return -ENOMEM;
1775 return 0;
1776}
1777
1778static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1779{
1780 struct dirty_seglist_info *dirty_i;
1781 unsigned int bitmap_size, i;
1782
1783 /* allocate memory for dirty segments list information */
1784 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1785 if (!dirty_i)
1786 return -ENOMEM;
1787
1788 SM_I(sbi)->dirty_info = dirty_i;
1789 mutex_init(&dirty_i->seglist_lock);
1790
1791 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1792
1793 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1794 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1795 if (!dirty_i->dirty_segmap[i])
1796 return -ENOMEM;
1797 }
1798
1799 init_dirty_segmap(sbi);
1800 return init_victim_secmap(sbi);
1801}
1802
1803/*
1804 * Update min, max modified time for cost-benefit GC algorithm
1805 */
1806static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1807{
1808 struct sit_info *sit_i = SIT_I(sbi);
1809 unsigned int segno;
1810
1811 mutex_lock(&sit_i->sentry_lock);
1812
1813 sit_i->min_mtime = LLONG_MAX;
1814
1815 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1816 unsigned int i;
1817 unsigned long long mtime = 0;
1818
1819 for (i = 0; i < sbi->segs_per_sec; i++)
1820 mtime += get_seg_entry(sbi, segno + i)->mtime;
1821
1822 mtime = div_u64(mtime, sbi->segs_per_sec);
1823
1824 if (sit_i->min_mtime > mtime)
1825 sit_i->min_mtime = mtime;
1826 }
1827 sit_i->max_mtime = get_mtime(sbi);
1828 mutex_unlock(&sit_i->sentry_lock);
1829}
1830
1831int build_segment_manager(struct f2fs_sb_info *sbi)
1832{
1833 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1834 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1835 dev_t dev = sbi->sb->s_bdev->bd_dev;
1836 struct f2fs_sm_info *sm_info;
1837 int err;
1838
1839 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1840 if (!sm_info)
1841 return -ENOMEM;
1842
1843 /* init sm info */
1844 sbi->sm_info = sm_info;
1845 INIT_LIST_HEAD(&sm_info->wblist_head);
1846 spin_lock_init(&sm_info->wblist_lock);
1847 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1848 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1849 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1850 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1851 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1852 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1853 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1854 sm_info->rec_prefree_segments = sm_info->main_segments *
1855 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1856 sm_info->ipu_policy = F2FS_IPU_DISABLE;
1857 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1858
1859 INIT_LIST_HEAD(&sm_info->discard_list);
1860 sm_info->nr_discards = 0;
1861 sm_info->max_discards = 0;
1862
1863 if (test_opt(sbi, FLUSH_MERGE)) {
1864 spin_lock_init(&sm_info->issue_lock);
1865 init_waitqueue_head(&sm_info->flush_wait_queue);
1866
1867 sm_info->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
1868 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
1869 if (IS_ERR(sm_info->f2fs_issue_flush))
1870 return PTR_ERR(sm_info->f2fs_issue_flush);
1871 }
1872
1873 err = build_sit_info(sbi);
1874 if (err)
1875 return err;
1876 err = build_free_segmap(sbi);
1877 if (err)
1878 return err;
1879 err = build_curseg(sbi);
1880 if (err)
1881 return err;
1882
1883 /* reinit free segmap based on SIT */
1884 build_sit_entries(sbi);
1885
1886 init_free_segmap(sbi);
1887 err = build_dirty_segmap(sbi);
1888 if (err)
1889 return err;
1890
1891 init_min_max_mtime(sbi);
1892 return 0;
1893}
1894
1895static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1896 enum dirty_type dirty_type)
1897{
1898 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1899
1900 mutex_lock(&dirty_i->seglist_lock);
1901 kfree(dirty_i->dirty_segmap[dirty_type]);
1902 dirty_i->nr_dirty[dirty_type] = 0;
1903 mutex_unlock(&dirty_i->seglist_lock);
1904}
1905
1906static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1907{
1908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1909 kfree(dirty_i->victim_secmap);
1910}
1911
1912static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1913{
1914 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1915 int i;
1916
1917 if (!dirty_i)
1918 return;
1919
1920 /* discard pre-free/dirty segments list */
1921 for (i = 0; i < NR_DIRTY_TYPE; i++)
1922 discard_dirty_segmap(sbi, i);
1923
1924 destroy_victim_secmap(sbi);
1925 SM_I(sbi)->dirty_info = NULL;
1926 kfree(dirty_i);
1927}
1928
1929static void destroy_curseg(struct f2fs_sb_info *sbi)
1930{
1931 struct curseg_info *array = SM_I(sbi)->curseg_array;
1932 int i;
1933
1934 if (!array)
1935 return;
1936 SM_I(sbi)->curseg_array = NULL;
1937 for (i = 0; i < NR_CURSEG_TYPE; i++)
1938 kfree(array[i].sum_blk);
1939 kfree(array);
1940}
1941
1942static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1943{
1944 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1945 if (!free_i)
1946 return;
1947 SM_I(sbi)->free_info = NULL;
1948 kfree(free_i->free_segmap);
1949 kfree(free_i->free_secmap);
1950 kfree(free_i);
1951}
1952
1953static void destroy_sit_info(struct f2fs_sb_info *sbi)
1954{
1955 struct sit_info *sit_i = SIT_I(sbi);
1956 unsigned int start;
1957
1958 if (!sit_i)
1959 return;
1960
1961 if (sit_i->sentries) {
1962 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1963 kfree(sit_i->sentries[start].cur_valid_map);
1964 kfree(sit_i->sentries[start].ckpt_valid_map);
1965 }
1966 }
1967 vfree(sit_i->sentries);
1968 vfree(sit_i->sec_entries);
1969 kfree(sit_i->dirty_sentries_bitmap);
1970
1971 SM_I(sbi)->sit_info = NULL;
1972 kfree(sit_i->sit_bitmap);
1973 kfree(sit_i);
1974}
1975
1976void destroy_segment_manager(struct f2fs_sb_info *sbi)
1977{
1978 struct f2fs_sm_info *sm_info = SM_I(sbi);
1979 if (!sm_info)
1980 return;
1981 if (sm_info->f2fs_issue_flush)
1982 kthread_stop(sm_info->f2fs_issue_flush);
1983 destroy_dirty_segmap(sbi);
1984 destroy_curseg(sbi);
1985 destroy_free_segmap(sbi);
1986 destroy_sit_info(sbi);
1987 sbi->sm_info = NULL;
1988 kfree(sm_info);
1989}
1990
1991int __init create_segment_manager_caches(void)
1992{
1993 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1994 sizeof(struct discard_entry));
1995 if (!discard_entry_slab)
1996 return -ENOMEM;
1997 flush_cmd_slab = f2fs_kmem_cache_create("flush_command",
1998 sizeof(struct flush_cmd));
1999 if (!flush_cmd_slab) {
2000 kmem_cache_destroy(discard_entry_slab);
2001 return -ENOMEM;
2002 }
2003 return 0;
2004}
2005
2006void destroy_segment_manager_caches(void)
2007{
2008 kmem_cache_destroy(discard_entry_slab);
2009 kmem_cache_destroy(flush_cmd_slab);
2010}