Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 16
 17/* # of pages to perform synchronous readahead before building free nids */
 18#define FREE_NID_PAGES	8
 19#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* vector size for gang look-up from nat cache that consists of radix tree */
 35#define NATVEC_SIZE	64
 36#define SETVEC_SIZE	32
 37
 38/* return value for read_node_page */
 39#define LOCKED_PAGE	1
 40
 41/* For flag in struct node_info */
 42enum {
 43	IS_CHECKPOINTED,	/* is it checkpointed before? */
 44	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 45	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 46	IS_DIRTY,		/* this nat entry is dirty? */
 47	IS_PREALLOC,		/* nat entry is preallocated */
 48};
 49
 50/*
 51 * For node information
 52 */
 53struct node_info {
 54	nid_t nid;		/* node id */
 55	nid_t ino;		/* inode number of the node's owner */
 56	block_t	blk_addr;	/* block address of the node */
 57	unsigned char version;	/* version of the node */
 58	unsigned char flag;	/* for node information bits */
 59};
 60
 61struct nat_entry {
 62	struct list_head list;	/* for clean or dirty nat list */
 
 
 63	struct node_info ni;	/* in-memory node information */
 64};
 65
 66#define nat_get_nid(nat)		((nat)->ni.nid)
 67#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 68#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 69#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 70#define nat_get_ino(nat)		((nat)->ni.ino)
 71#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 72#define nat_get_version(nat)		((nat)->ni.version)
 73#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 74
 75#define inc_node_version(version)	(++(version))
 76
 77static inline void copy_node_info(struct node_info *dst,
 78						struct node_info *src)
 79{
 80	dst->nid = src->nid;
 81	dst->ino = src->ino;
 82	dst->blk_addr = src->blk_addr;
 83	dst->version = src->version;
 84	/* should not copy flag here */
 85}
 86
 87static inline void set_nat_flag(struct nat_entry *ne,
 88				unsigned int type, bool set)
 89{
 90	unsigned char mask = 0x01 << type;
 91	if (set)
 92		ne->ni.flag |= mask;
 93	else
 94		ne->ni.flag &= ~mask;
 95}
 96
 97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 98{
 99	unsigned char mask = 0x01 << type;
100	return ne->ni.flag & mask;
101}
102
103static inline void nat_reset_flag(struct nat_entry *ne)
104{
105	/* these states can be set only after checkpoint was done */
106	set_nat_flag(ne, IS_CHECKPOINTED, true);
107	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108	set_nat_flag(ne, HAS_LAST_FSYNC, true);
109}
110
111static inline void node_info_from_raw_nat(struct node_info *ni,
112						struct f2fs_nat_entry *raw_ne)
113{
114	ni->ino = le32_to_cpu(raw_ne->ino);
115	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116	ni->version = raw_ne->version;
117}
118
119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120						struct node_info *ni)
121{
122	raw_ne->ino = cpu_to_le32(ni->ino);
123	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124	raw_ne->version = ni->version;
125}
126
127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128{
129	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
130					NM_I(sbi)->dirty_nats_ratio / 100;
131}
132
133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134{
135	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
136}
137
138enum mem_type {
139	FREE_NIDS,	/* indicates the free nid list */
140	NAT_ENTRIES,	/* indicates the cached nat entry */
141	DIRTY_DENTS,	/* indicates dirty dentry pages */
142	INO_ENTRIES,	/* indicates inode entries */
143	EXTENT_CACHE,	/* indicates extent cache */
144	INMEM_PAGES,	/* indicates inmemory pages */
145	BASE_CHECK,	/* check kernel status */
146};
147
148struct nat_entry_set {
149	struct list_head set_list;	/* link with other nat sets */
150	struct list_head entry_list;	/* link with dirty nat entries */
151	nid_t set;			/* set number*/
152	unsigned int entry_cnt;		/* the # of nat entries in set */
 
153};
154
155struct free_nid {
156	struct list_head list;	/* for free node id list */
157	nid_t nid;		/* node id */
158	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
159};
160
161static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
162{
163	struct f2fs_nm_info *nm_i = NM_I(sbi);
164	struct free_nid *fnid;
165
166	spin_lock(&nm_i->nid_list_lock);
167	if (nm_i->nid_cnt[FREE_NID] <= 0) {
168		spin_unlock(&nm_i->nid_list_lock);
169		return;
170	}
171	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
172	*nid = fnid->nid;
173	spin_unlock(&nm_i->nid_list_lock);
 
174}
175
176/*
177 * inline functions
178 */
179static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
180{
181	struct f2fs_nm_info *nm_i = NM_I(sbi);
182
183#ifdef CONFIG_F2FS_CHECK_FS
184	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
185						nm_i->bitmap_size))
186		f2fs_bug_on(sbi, 1);
187#endif
188	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
189}
190
191static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
192{
193	struct f2fs_nm_info *nm_i = NM_I(sbi);
194	pgoff_t block_off;
195	pgoff_t block_addr;
 
196
197	/*
198	 * block_off = segment_off * 512 + off_in_segment
199	 * OLD = (segment_off * 512) * 2 + off_in_segment
200	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
201	 */
202	block_off = NAT_BLOCK_OFFSET(start);
 
203
204	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
205		(block_off << 1) -
206		(block_off & (sbi->blocks_per_seg - 1)));
207
208	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
209		block_addr += sbi->blocks_per_seg;
210
211	return block_addr;
212}
213
214static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
215						pgoff_t block_addr)
216{
217	struct f2fs_nm_info *nm_i = NM_I(sbi);
218
219	block_addr -= nm_i->nat_blkaddr;
220	block_addr ^= 1 << sbi->log_blocks_per_seg;
 
 
 
 
221	return block_addr + nm_i->nat_blkaddr;
222}
223
224static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
225{
226	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
227
228	f2fs_change_bit(block_off, nm_i->nat_bitmap);
229#ifdef CONFIG_F2FS_CHECK_FS
230	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
231#endif
232}
233
234static inline nid_t ino_of_node(struct page *node_page)
235{
236	struct f2fs_node *rn = F2FS_NODE(node_page);
237	return le32_to_cpu(rn->footer.ino);
238}
239
240static inline nid_t nid_of_node(struct page *node_page)
241{
242	struct f2fs_node *rn = F2FS_NODE(node_page);
243	return le32_to_cpu(rn->footer.nid);
244}
245
246static inline unsigned int ofs_of_node(struct page *node_page)
247{
248	struct f2fs_node *rn = F2FS_NODE(node_page);
249	unsigned flag = le32_to_cpu(rn->footer.flag);
250	return flag >> OFFSET_BIT_SHIFT;
251}
252
253static inline __u64 cpver_of_node(struct page *node_page)
254{
255	struct f2fs_node *rn = F2FS_NODE(node_page);
256	return le64_to_cpu(rn->footer.cp_ver);
257}
258
259static inline block_t next_blkaddr_of_node(struct page *node_page)
260{
261	struct f2fs_node *rn = F2FS_NODE(node_page);
262	return le32_to_cpu(rn->footer.next_blkaddr);
263}
264
265static inline void fill_node_footer(struct page *page, nid_t nid,
266				nid_t ino, unsigned int ofs, bool reset)
267{
268	struct f2fs_node *rn = F2FS_NODE(page);
269	unsigned int old_flag = 0;
270
271	if (reset)
272		memset(rn, 0, sizeof(*rn));
273	else
274		old_flag = le32_to_cpu(rn->footer.flag);
275
276	rn->footer.nid = cpu_to_le32(nid);
277	rn->footer.ino = cpu_to_le32(ino);
278
279	/* should remain old flag bits such as COLD_BIT_SHIFT */
280	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
281					(old_flag & OFFSET_BIT_MASK));
282}
283
284static inline void copy_node_footer(struct page *dst, struct page *src)
285{
286	struct f2fs_node *src_rn = F2FS_NODE(src);
287	struct f2fs_node *dst_rn = F2FS_NODE(dst);
288	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
289}
290
291static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
292{
293	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 
294	struct f2fs_node *rn = F2FS_NODE(page);
295	__u64 cp_ver = cur_cp_version(ckpt);
296
297	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
298		cp_ver |= (cur_cp_crc(ckpt) << 32);
299
300	rn->footer.cp_ver = cpu_to_le64(cp_ver);
301	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
302}
303
304static inline bool is_recoverable_dnode(struct page *page)
 
 
 
 
 
 
305{
306	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
307	__u64 cp_ver = cur_cp_version(ckpt);
 
308
309	/* Don't care crc part, if fsck.f2fs sets it. */
310	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
311		return (cp_ver << 32) == (cpver_of_node(page) << 32);
 
 
 
312
313	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
314		cp_ver |= (cur_cp_crc(ckpt) << 32);
 
 
 
315
316	return cp_ver == cpver_of_node(page);
 
 
 
317}
318
319/*
320 * f2fs assigns the following node offsets described as (num).
321 * N = NIDS_PER_BLOCK
322 *
323 *  Inode block (0)
324 *    |- direct node (1)
325 *    |- direct node (2)
326 *    |- indirect node (3)
327 *    |            `- direct node (4 => 4 + N - 1)
328 *    |- indirect node (4 + N)
329 *    |            `- direct node (5 + N => 5 + 2N - 1)
330 *    `- double indirect node (5 + 2N)
331 *                 `- indirect node (6 + 2N)
332 *                       `- direct node
333 *                 ......
334 *                 `- indirect node ((6 + 2N) + x(N + 1))
335 *                       `- direct node
336 *                 ......
337 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
338 *                       `- direct node
339 */
340static inline bool IS_DNODE(struct page *node_page)
341{
342	unsigned int ofs = ofs_of_node(node_page);
343
344	if (f2fs_has_xattr_block(ofs))
345		return true;
346
347	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
348			ofs == 5 + 2 * NIDS_PER_BLOCK)
349		return false;
350	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
351		ofs -= 6 + 2 * NIDS_PER_BLOCK;
352		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
353			return false;
354	}
355	return true;
356}
357
358static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
359{
360	struct f2fs_node *rn = F2FS_NODE(p);
361
362	f2fs_wait_on_page_writeback(p, NODE, true);
363
364	if (i)
365		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
366	else
367		rn->in.nid[off] = cpu_to_le32(nid);
368	return set_page_dirty(p);
369}
370
371static inline nid_t get_nid(struct page *p, int off, bool i)
372{
373	struct f2fs_node *rn = F2FS_NODE(p);
374
375	if (i)
376		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
377	return le32_to_cpu(rn->in.nid[off]);
378}
379
380/*
381 * Coldness identification:
382 *  - Mark cold files in f2fs_inode_info
383 *  - Mark cold node blocks in their node footer
384 *  - Mark cold data pages in page cache
385 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386static inline int is_cold_data(struct page *page)
387{
388	return PageChecked(page);
389}
390
391static inline void set_cold_data(struct page *page)
392{
393	SetPageChecked(page);
394}
395
396static inline void clear_cold_data(struct page *page)
397{
398	ClearPageChecked(page);
399}
400
401static inline int is_node(struct page *page, int type)
402{
403	struct f2fs_node *rn = F2FS_NODE(page);
404	return le32_to_cpu(rn->footer.flag) & (1 << type);
405}
406
407#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
408#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
409#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
410
411static inline int is_inline_node(struct page *page)
412{
413	return PageChecked(page);
414}
415
416static inline void set_inline_node(struct page *page)
417{
418	SetPageChecked(page);
419}
420
421static inline void clear_inline_node(struct page *page)
422{
423	ClearPageChecked(page);
424}
425
426static inline void set_cold_node(struct page *page, bool is_dir)
427{
428	struct f2fs_node *rn = F2FS_NODE(page);
429	unsigned int flag = le32_to_cpu(rn->footer.flag);
430
431	if (is_dir)
432		flag &= ~(0x1 << COLD_BIT_SHIFT);
433	else
434		flag |= (0x1 << COLD_BIT_SHIFT);
435	rn->footer.flag = cpu_to_le32(flag);
436}
437
438static inline void set_mark(struct page *page, int mark, int type)
439{
440	struct f2fs_node *rn = F2FS_NODE(page);
441	unsigned int flag = le32_to_cpu(rn->footer.flag);
442	if (mark)
443		flag |= (0x1 << type);
444	else
445		flag &= ~(0x1 << type);
446	rn->footer.flag = cpu_to_le32(flag);
447}
448#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
449#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v3.15
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
 16
 17/* # of pages to perform readahead before building free nids */
 18#define FREE_NID_PAGES 4
 
 
 
 19
 20/* maximum readahead size for node during getting data blocks */
 21#define MAX_RA_NODE		128
 22
 23/* control the memory footprint threshold (10MB per 1GB ram) */
 24#define DEF_RAM_THRESHOLD	10
 
 
 
 
 
 25
 26/* vector size for gang look-up from nat cache that consists of radix tree */
 27#define NATVEC_SIZE	64
 
 28
 29/* return value for read_node_page */
 30#define LOCKED_PAGE	1
 31
 
 
 
 
 
 
 
 
 
 32/*
 33 * For node information
 34 */
 35struct node_info {
 36	nid_t nid;		/* node id */
 37	nid_t ino;		/* inode number of the node's owner */
 38	block_t	blk_addr;	/* block address of the node */
 39	unsigned char version;	/* version of the node */
 
 40};
 41
 42struct nat_entry {
 43	struct list_head list;	/* for clean or dirty nat list */
 44	bool checkpointed;	/* whether it is checkpointed or not */
 45	bool fsync_done;	/* whether the latest node has fsync mark */
 46	struct node_info ni;	/* in-memory node information */
 47};
 48
 49#define nat_get_nid(nat)		(nat->ni.nid)
 50#define nat_set_nid(nat, n)		(nat->ni.nid = n)
 51#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
 52#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
 53#define nat_get_ino(nat)		(nat->ni.ino)
 54#define nat_set_ino(nat, i)		(nat->ni.ino = i)
 55#define nat_get_version(nat)		(nat->ni.version)
 56#define nat_set_version(nat, v)		(nat->ni.version = v)
 57
 58#define __set_nat_cache_dirty(nm_i, ne)					\
 59	do {								\
 60		ne->checkpointed = false;				\
 61		list_move_tail(&ne->list, &nm_i->dirty_nat_entries);	\
 62	} while (0);
 63#define __clear_nat_cache_dirty(nm_i, ne)				\
 64	do {								\
 65		ne->checkpointed = true;				\
 66		list_move_tail(&ne->list, &nm_i->nat_entries);		\
 67	} while (0);
 68#define inc_node_version(version)	(++version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69
 70static inline void node_info_from_raw_nat(struct node_info *ni,
 71						struct f2fs_nat_entry *raw_ne)
 72{
 73	ni->ino = le32_to_cpu(raw_ne->ino);
 74	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 75	ni->version = raw_ne->version;
 76}
 77
 78enum nid_type {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79	FREE_NIDS,	/* indicates the free nid list */
 80	NAT_ENTRIES	/* indicates the cached nat entry */
 
 
 
 
 
 81};
 82
 83/*
 84 * For free nid mangement
 85 */
 86enum nid_state {
 87	NID_NEW,	/* newly added to free nid list */
 88	NID_ALLOC	/* it is allocated */
 89};
 90
 91struct free_nid {
 92	struct list_head list;	/* for free node id list */
 93	nid_t nid;		/* node id */
 94	int state;		/* in use or not: NID_NEW or NID_ALLOC */
 95};
 96
 97static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 98{
 99	struct f2fs_nm_info *nm_i = NM_I(sbi);
100	struct free_nid *fnid;
101
102	if (nm_i->fcnt <= 0)
103		return -1;
104	spin_lock(&nm_i->free_nid_list_lock);
105	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
 
 
106	*nid = fnid->nid;
107	spin_unlock(&nm_i->free_nid_list_lock);
108	return 0;
109}
110
111/*
112 * inline functions
113 */
114static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
115{
116	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 
 
 
 
 
117	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
118}
119
120static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
121{
122	struct f2fs_nm_info *nm_i = NM_I(sbi);
123	pgoff_t block_off;
124	pgoff_t block_addr;
125	int seg_off;
126
 
 
 
 
 
127	block_off = NAT_BLOCK_OFFSET(start);
128	seg_off = block_off >> sbi->log_blocks_per_seg;
129
130	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
131		(seg_off << sbi->log_blocks_per_seg << 1) +
132		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
133
134	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
135		block_addr += sbi->blocks_per_seg;
136
137	return block_addr;
138}
139
140static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
141						pgoff_t block_addr)
142{
143	struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145	block_addr -= nm_i->nat_blkaddr;
146	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
147		block_addr -= sbi->blocks_per_seg;
148	else
149		block_addr += sbi->blocks_per_seg;
150
151	return block_addr + nm_i->nat_blkaddr;
152}
153
154static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
155{
156	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
157
158	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
159		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
160	else
161		f2fs_set_bit(block_off, nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162}
163
164static inline void fill_node_footer(struct page *page, nid_t nid,
165				nid_t ino, unsigned int ofs, bool reset)
166{
167	struct f2fs_node *rn = F2FS_NODE(page);
 
 
168	if (reset)
169		memset(rn, 0, sizeof(*rn));
 
 
 
170	rn->footer.nid = cpu_to_le32(nid);
171	rn->footer.ino = cpu_to_le32(ino);
172	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
 
 
 
173}
174
175static inline void copy_node_footer(struct page *dst, struct page *src)
176{
177	struct f2fs_node *src_rn = F2FS_NODE(src);
178	struct f2fs_node *dst_rn = F2FS_NODE(dst);
179	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
180}
181
182static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
183{
184	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
185	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
186	struct f2fs_node *rn = F2FS_NODE(page);
 
 
 
 
187
188	rn->footer.cp_ver = ckpt->checkpoint_ver;
189	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
190}
191
192static inline nid_t ino_of_node(struct page *node_page)
193{
194	struct f2fs_node *rn = F2FS_NODE(node_page);
195	return le32_to_cpu(rn->footer.ino);
196}
197
198static inline nid_t nid_of_node(struct page *node_page)
199{
200	struct f2fs_node *rn = F2FS_NODE(node_page);
201	return le32_to_cpu(rn->footer.nid);
202}
203
204static inline unsigned int ofs_of_node(struct page *node_page)
205{
206	struct f2fs_node *rn = F2FS_NODE(node_page);
207	unsigned flag = le32_to_cpu(rn->footer.flag);
208	return flag >> OFFSET_BIT_SHIFT;
209}
210
211static inline unsigned long long cpver_of_node(struct page *node_page)
212{
213	struct f2fs_node *rn = F2FS_NODE(node_page);
214	return le64_to_cpu(rn->footer.cp_ver);
215}
216
217static inline block_t next_blkaddr_of_node(struct page *node_page)
218{
219	struct f2fs_node *rn = F2FS_NODE(node_page);
220	return le32_to_cpu(rn->footer.next_blkaddr);
221}
222
223/*
224 * f2fs assigns the following node offsets described as (num).
225 * N = NIDS_PER_BLOCK
226 *
227 *  Inode block (0)
228 *    |- direct node (1)
229 *    |- direct node (2)
230 *    |- indirect node (3)
231 *    |            `- direct node (4 => 4 + N - 1)
232 *    |- indirect node (4 + N)
233 *    |            `- direct node (5 + N => 5 + 2N - 1)
234 *    `- double indirect node (5 + 2N)
235 *                 `- indirect node (6 + 2N)
236 *                       `- direct node
237 *                 ......
238 *                 `- indirect node ((6 + 2N) + x(N + 1))
239 *                       `- direct node
240 *                 ......
241 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
242 *                       `- direct node
243 */
244static inline bool IS_DNODE(struct page *node_page)
245{
246	unsigned int ofs = ofs_of_node(node_page);
247
248	if (f2fs_has_xattr_block(ofs))
249		return false;
250
251	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
252			ofs == 5 + 2 * NIDS_PER_BLOCK)
253		return false;
254	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
255		ofs -= 6 + 2 * NIDS_PER_BLOCK;
256		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
257			return false;
258	}
259	return true;
260}
261
262static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
263{
264	struct f2fs_node *rn = F2FS_NODE(p);
265
266	wait_on_page_writeback(p);
267
268	if (i)
269		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
270	else
271		rn->in.nid[off] = cpu_to_le32(nid);
272	set_page_dirty(p);
273}
274
275static inline nid_t get_nid(struct page *p, int off, bool i)
276{
277	struct f2fs_node *rn = F2FS_NODE(p);
278
279	if (i)
280		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
281	return le32_to_cpu(rn->in.nid[off]);
282}
283
284/*
285 * Coldness identification:
286 *  - Mark cold files in f2fs_inode_info
287 *  - Mark cold node blocks in their node footer
288 *  - Mark cold data pages in page cache
289 */
290static inline int is_file(struct inode *inode, int type)
291{
292	return F2FS_I(inode)->i_advise & type;
293}
294
295static inline void set_file(struct inode *inode, int type)
296{
297	F2FS_I(inode)->i_advise |= type;
298}
299
300static inline void clear_file(struct inode *inode, int type)
301{
302	F2FS_I(inode)->i_advise &= ~type;
303}
304
305#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
306#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
307#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
308#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
309#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
310#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
311
312static inline int is_cold_data(struct page *page)
313{
314	return PageChecked(page);
315}
316
317static inline void set_cold_data(struct page *page)
318{
319	SetPageChecked(page);
320}
321
322static inline void clear_cold_data(struct page *page)
323{
324	ClearPageChecked(page);
325}
326
327static inline int is_node(struct page *page, int type)
328{
329	struct f2fs_node *rn = F2FS_NODE(page);
330	return le32_to_cpu(rn->footer.flag) & (1 << type);
331}
332
333#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
334#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
335#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
336
337static inline void set_cold_node(struct inode *inode, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338{
339	struct f2fs_node *rn = F2FS_NODE(page);
340	unsigned int flag = le32_to_cpu(rn->footer.flag);
341
342	if (S_ISDIR(inode->i_mode))
343		flag &= ~(0x1 << COLD_BIT_SHIFT);
344	else
345		flag |= (0x1 << COLD_BIT_SHIFT);
346	rn->footer.flag = cpu_to_le32(flag);
347}
348
349static inline void set_mark(struct page *page, int mark, int type)
350{
351	struct f2fs_node *rn = F2FS_NODE(page);
352	unsigned int flag = le32_to_cpu(rn->footer.flag);
353	if (mark)
354		flag |= (0x1 << type);
355	else
356		flag &= ~(0x1 << type);
357	rn->footer.flag = cpu_to_le32(flag);
358}
359#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
360#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)