Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "locking.h"
17#include "tree-log.h"
18#include "inode-map.h"
19#include "volumes.h"
20#include "dev-replace.h"
21#include "qgroup.h"
22
23#define BTRFS_ROOT_TRANS_TAG 0
24
25static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN),
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
33 __TRANS_ATTACH |
34 __TRANS_JOIN |
35 __TRANS_JOIN_NOLOCK),
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
37 __TRANS_ATTACH |
38 __TRANS_JOIN |
39 __TRANS_JOIN_NOLOCK),
40};
41
42void btrfs_put_transaction(struct btrfs_transaction *transaction)
43{
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
48 if (transaction->delayed_refs.pending_csums)
49 btrfs_err(transaction->fs_info,
50 "pending csums is %llu",
51 transaction->delayed_refs.pending_csums);
52 while (!list_empty(&transaction->pending_chunks)) {
53 struct extent_map *em;
54
55 em = list_first_entry(&transaction->pending_chunks,
56 struct extent_map, list);
57 list_del_init(&em->list);
58 free_extent_map(em);
59 }
60 /*
61 * If any block groups are found in ->deleted_bgs then it's
62 * because the transaction was aborted and a commit did not
63 * happen (things failed before writing the new superblock
64 * and calling btrfs_finish_extent_commit()), so we can not
65 * discard the physical locations of the block groups.
66 */
67 while (!list_empty(&transaction->deleted_bgs)) {
68 struct btrfs_block_group_cache *cache;
69
70 cache = list_first_entry(&transaction->deleted_bgs,
71 struct btrfs_block_group_cache,
72 bg_list);
73 list_del_init(&cache->bg_list);
74 btrfs_put_block_group_trimming(cache);
75 btrfs_put_block_group(cache);
76 }
77 kfree(transaction);
78 }
79}
80
81static void clear_btree_io_tree(struct extent_io_tree *tree)
82{
83 spin_lock(&tree->lock);
84 /*
85 * Do a single barrier for the waitqueue_active check here, the state
86 * of the waitqueue should not change once clear_btree_io_tree is
87 * called.
88 */
89 smp_mb();
90 while (!RB_EMPTY_ROOT(&tree->state)) {
91 struct rb_node *node;
92 struct extent_state *state;
93
94 node = rb_first(&tree->state);
95 state = rb_entry(node, struct extent_state, rb_node);
96 rb_erase(&state->rb_node, &tree->state);
97 RB_CLEAR_NODE(&state->rb_node);
98 /*
99 * btree io trees aren't supposed to have tasks waiting for
100 * changes in the flags of extent states ever.
101 */
102 ASSERT(!waitqueue_active(&state->wq));
103 free_extent_state(state);
104
105 cond_resched_lock(&tree->lock);
106 }
107 spin_unlock(&tree->lock);
108}
109
110static noinline void switch_commit_roots(struct btrfs_transaction *trans)
111{
112 struct btrfs_fs_info *fs_info = trans->fs_info;
113 struct btrfs_root *root, *tmp;
114
115 down_write(&fs_info->commit_root_sem);
116 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
117 dirty_list) {
118 list_del_init(&root->dirty_list);
119 free_extent_buffer(root->commit_root);
120 root->commit_root = btrfs_root_node(root);
121 if (is_fstree(root->objectid))
122 btrfs_unpin_free_ino(root);
123 clear_btree_io_tree(&root->dirty_log_pages);
124 }
125
126 /* We can free old roots now. */
127 spin_lock(&trans->dropped_roots_lock);
128 while (!list_empty(&trans->dropped_roots)) {
129 root = list_first_entry(&trans->dropped_roots,
130 struct btrfs_root, root_list);
131 list_del_init(&root->root_list);
132 spin_unlock(&trans->dropped_roots_lock);
133 btrfs_drop_and_free_fs_root(fs_info, root);
134 spin_lock(&trans->dropped_roots_lock);
135 }
136 spin_unlock(&trans->dropped_roots_lock);
137 up_write(&fs_info->commit_root_sem);
138}
139
140static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
141 unsigned int type)
142{
143 if (type & TRANS_EXTWRITERS)
144 atomic_inc(&trans->num_extwriters);
145}
146
147static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
148 unsigned int type)
149{
150 if (type & TRANS_EXTWRITERS)
151 atomic_dec(&trans->num_extwriters);
152}
153
154static inline void extwriter_counter_init(struct btrfs_transaction *trans,
155 unsigned int type)
156{
157 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
158}
159
160static inline int extwriter_counter_read(struct btrfs_transaction *trans)
161{
162 return atomic_read(&trans->num_extwriters);
163}
164
165/*
166 * either allocate a new transaction or hop into the existing one
167 */
168static noinline int join_transaction(struct btrfs_fs_info *fs_info,
169 unsigned int type)
170{
171 struct btrfs_transaction *cur_trans;
172
173 spin_lock(&fs_info->trans_lock);
174loop:
175 /* The file system has been taken offline. No new transactions. */
176 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
177 spin_unlock(&fs_info->trans_lock);
178 return -EROFS;
179 }
180
181 cur_trans = fs_info->running_transaction;
182 if (cur_trans) {
183 if (cur_trans->aborted) {
184 spin_unlock(&fs_info->trans_lock);
185 return cur_trans->aborted;
186 }
187 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
188 spin_unlock(&fs_info->trans_lock);
189 return -EBUSY;
190 }
191 refcount_inc(&cur_trans->use_count);
192 atomic_inc(&cur_trans->num_writers);
193 extwriter_counter_inc(cur_trans, type);
194 spin_unlock(&fs_info->trans_lock);
195 return 0;
196 }
197 spin_unlock(&fs_info->trans_lock);
198
199 /*
200 * If we are ATTACH, we just want to catch the current transaction,
201 * and commit it. If there is no transaction, just return ENOENT.
202 */
203 if (type == TRANS_ATTACH)
204 return -ENOENT;
205
206 /*
207 * JOIN_NOLOCK only happens during the transaction commit, so
208 * it is impossible that ->running_transaction is NULL
209 */
210 BUG_ON(type == TRANS_JOIN_NOLOCK);
211
212 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
213 if (!cur_trans)
214 return -ENOMEM;
215
216 spin_lock(&fs_info->trans_lock);
217 if (fs_info->running_transaction) {
218 /*
219 * someone started a transaction after we unlocked. Make sure
220 * to redo the checks above
221 */
222 kfree(cur_trans);
223 goto loop;
224 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
225 spin_unlock(&fs_info->trans_lock);
226 kfree(cur_trans);
227 return -EROFS;
228 }
229
230 cur_trans->fs_info = fs_info;
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 init_waitqueue_head(&cur_trans->pending_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
237 /*
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
240 */
241 refcount_set(&cur_trans->use_count, 2);
242 atomic_set(&cur_trans->pending_ordered, 0);
243 cur_trans->flags = 0;
244 cur_trans->start_time = get_seconds();
245
246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247
248 cur_trans->delayed_refs.href_root = RB_ROOT;
249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251
252 /*
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
255 */
256 smp_mb();
257 if (!list_empty(&fs_info->tree_mod_seq_list))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
261 atomic64_set(&fs_info->tree_mod_seq, 0);
262
263 spin_lock_init(&cur_trans->delayed_refs.lock);
264
265 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
266 INIT_LIST_HEAD(&cur_trans->pending_chunks);
267 INIT_LIST_HEAD(&cur_trans->switch_commits);
268 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 INIT_LIST_HEAD(&cur_trans->io_bgs);
270 INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 mutex_init(&cur_trans->cache_write_mutex);
272 cur_trans->num_dirty_bgs = 0;
273 spin_lock_init(&cur_trans->dirty_bgs_lock);
274 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 spin_lock_init(&cur_trans->dropped_roots_lock);
276 list_add_tail(&cur_trans->list, &fs_info->trans_list);
277 extent_io_tree_init(&cur_trans->dirty_pages,
278 fs_info->btree_inode);
279 fs_info->generation++;
280 cur_trans->transid = fs_info->generation;
281 fs_info->running_transaction = cur_trans;
282 cur_trans->aborted = 0;
283 spin_unlock(&fs_info->trans_lock);
284
285 return 0;
286}
287
288/*
289 * this does all the record keeping required to make sure that a reference
290 * counted root is properly recorded in a given transaction. This is required
291 * to make sure the old root from before we joined the transaction is deleted
292 * when the transaction commits
293 */
294static int record_root_in_trans(struct btrfs_trans_handle *trans,
295 struct btrfs_root *root,
296 int force)
297{
298 struct btrfs_fs_info *fs_info = root->fs_info;
299
300 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 root->last_trans < trans->transid) || force) {
302 WARN_ON(root == fs_info->extent_root);
303 WARN_ON(!force && root->commit_root != root->node);
304
305 /*
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
309 */
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
314 */
315 smp_wmb();
316
317 spin_lock(&fs_info->fs_roots_radix_lock);
318 if (root->last_trans == trans->transid && !force) {
319 spin_unlock(&fs_info->fs_roots_radix_lock);
320 return 0;
321 }
322 radix_tree_tag_set(&fs_info->fs_roots_radix,
323 (unsigned long)root->root_key.objectid,
324 BTRFS_ROOT_TRANS_TAG);
325 spin_unlock(&fs_info->fs_roots_radix_lock);
326 root->last_trans = trans->transid;
327
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
331 * this transaction.
332 *
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
335 *
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
341 *
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
346 */
347 btrfs_init_reloc_root(trans, root);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 }
351 return 0;
352}
353
354
355void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 struct btrfs_root *root)
357{
358 struct btrfs_fs_info *fs_info = root->fs_info;
359 struct btrfs_transaction *cur_trans = trans->transaction;
360
361 /* Add ourselves to the transaction dropped list */
362 spin_lock(&cur_trans->dropped_roots_lock);
363 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
364 spin_unlock(&cur_trans->dropped_roots_lock);
365
366 /* Make sure we don't try to update the root at commit time */
367 spin_lock(&fs_info->fs_roots_radix_lock);
368 radix_tree_tag_clear(&fs_info->fs_roots_radix,
369 (unsigned long)root->root_key.objectid,
370 BTRFS_ROOT_TRANS_TAG);
371 spin_unlock(&fs_info->fs_roots_radix_lock);
372}
373
374int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376{
377 struct btrfs_fs_info *fs_info = root->fs_info;
378
379 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
380 return 0;
381
382 /*
383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
384 * and barriers
385 */
386 smp_rmb();
387 if (root->last_trans == trans->transid &&
388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
389 return 0;
390
391 mutex_lock(&fs_info->reloc_mutex);
392 record_root_in_trans(trans, root, 0);
393 mutex_unlock(&fs_info->reloc_mutex);
394
395 return 0;
396}
397
398static inline int is_transaction_blocked(struct btrfs_transaction *trans)
399{
400 return (trans->state >= TRANS_STATE_BLOCKED &&
401 trans->state < TRANS_STATE_UNBLOCKED &&
402 !trans->aborted);
403}
404
405/* wait for commit against the current transaction to become unblocked
406 * when this is done, it is safe to start a new transaction, but the current
407 * transaction might not be fully on disk.
408 */
409static void wait_current_trans(struct btrfs_fs_info *fs_info)
410{
411 struct btrfs_transaction *cur_trans;
412
413 spin_lock(&fs_info->trans_lock);
414 cur_trans = fs_info->running_transaction;
415 if (cur_trans && is_transaction_blocked(cur_trans)) {
416 refcount_inc(&cur_trans->use_count);
417 spin_unlock(&fs_info->trans_lock);
418
419 wait_event(fs_info->transaction_wait,
420 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
421 cur_trans->aborted);
422 btrfs_put_transaction(cur_trans);
423 } else {
424 spin_unlock(&fs_info->trans_lock);
425 }
426}
427
428static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
429{
430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
431 return 0;
432
433 if (type == TRANS_START)
434 return 1;
435
436 return 0;
437}
438
439static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440{
441 struct btrfs_fs_info *fs_info = root->fs_info;
442
443 if (!fs_info->reloc_ctl ||
444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
446 root->reloc_root)
447 return false;
448
449 return true;
450}
451
452static struct btrfs_trans_handle *
453start_transaction(struct btrfs_root *root, unsigned int num_items,
454 unsigned int type, enum btrfs_reserve_flush_enum flush,
455 bool enforce_qgroups)
456{
457 struct btrfs_fs_info *fs_info = root->fs_info;
458
459 struct btrfs_trans_handle *h;
460 struct btrfs_transaction *cur_trans;
461 u64 num_bytes = 0;
462 u64 qgroup_reserved = 0;
463 bool reloc_reserved = false;
464 int ret;
465
466 /* Send isn't supposed to start transactions. */
467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468
469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
470 return ERR_PTR(-EROFS);
471
472 if (current->journal_info) {
473 WARN_ON(type & TRANS_EXTWRITERS);
474 h = current->journal_info;
475 refcount_inc(&h->use_count);
476 WARN_ON(refcount_read(&h->use_count) > 2);
477 h->orig_rsv = h->block_rsv;
478 h->block_rsv = NULL;
479 goto got_it;
480 }
481
482 /*
483 * Do the reservation before we join the transaction so we can do all
484 * the appropriate flushing if need be.
485 */
486 if (num_items && root != fs_info->chunk_root) {
487 qgroup_reserved = num_items * fs_info->nodesize;
488 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
489 enforce_qgroups);
490 if (ret)
491 return ERR_PTR(ret);
492
493 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
494 /*
495 * Do the reservation for the relocation root creation
496 */
497 if (need_reserve_reloc_root(root)) {
498 num_bytes += fs_info->nodesize;
499 reloc_reserved = true;
500 }
501
502 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
503 num_bytes, flush);
504 if (ret)
505 goto reserve_fail;
506 }
507again:
508 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
509 if (!h) {
510 ret = -ENOMEM;
511 goto alloc_fail;
512 }
513
514 /*
515 * If we are JOIN_NOLOCK we're already committing a transaction and
516 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 * because we're already holding a ref. We need this because we could
518 * have raced in and did an fsync() on a file which can kick a commit
519 * and then we deadlock with somebody doing a freeze.
520 *
521 * If we are ATTACH, it means we just want to catch the current
522 * transaction and commit it, so we needn't do sb_start_intwrite().
523 */
524 if (type & __TRANS_FREEZABLE)
525 sb_start_intwrite(fs_info->sb);
526
527 if (may_wait_transaction(fs_info, type))
528 wait_current_trans(fs_info);
529
530 do {
531 ret = join_transaction(fs_info, type);
532 if (ret == -EBUSY) {
533 wait_current_trans(fs_info);
534 if (unlikely(type == TRANS_ATTACH))
535 ret = -ENOENT;
536 }
537 } while (ret == -EBUSY);
538
539 if (ret < 0)
540 goto join_fail;
541
542 cur_trans = fs_info->running_transaction;
543
544 h->transid = cur_trans->transid;
545 h->transaction = cur_trans;
546 h->root = root;
547 refcount_set(&h->use_count, 1);
548 h->fs_info = root->fs_info;
549
550 h->type = type;
551 h->can_flush_pending_bgs = true;
552 INIT_LIST_HEAD(&h->new_bgs);
553
554 smp_mb();
555 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 may_wait_transaction(fs_info, type)) {
557 current->journal_info = h;
558 btrfs_commit_transaction(h);
559 goto again;
560 }
561
562 if (num_bytes) {
563 trace_btrfs_space_reservation(fs_info, "transaction",
564 h->transid, num_bytes, 1);
565 h->block_rsv = &fs_info->trans_block_rsv;
566 h->bytes_reserved = num_bytes;
567 h->reloc_reserved = reloc_reserved;
568 }
569
570got_it:
571 btrfs_record_root_in_trans(h, root);
572
573 if (!current->journal_info)
574 current->journal_info = h;
575 return h;
576
577join_fail:
578 if (type & __TRANS_FREEZABLE)
579 sb_end_intwrite(fs_info->sb);
580 kmem_cache_free(btrfs_trans_handle_cachep, h);
581alloc_fail:
582 if (num_bytes)
583 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
584 num_bytes);
585reserve_fail:
586 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
587 return ERR_PTR(ret);
588}
589
590struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 unsigned int num_items)
592{
593 return start_transaction(root, num_items, TRANS_START,
594 BTRFS_RESERVE_FLUSH_ALL, true);
595}
596
597struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
598 struct btrfs_root *root,
599 unsigned int num_items,
600 int min_factor)
601{
602 struct btrfs_fs_info *fs_info = root->fs_info;
603 struct btrfs_trans_handle *trans;
604 u64 num_bytes;
605 int ret;
606
607 /*
608 * We have two callers: unlink and block group removal. The
609 * former should succeed even if we will temporarily exceed
610 * quota and the latter operates on the extent root so
611 * qgroup enforcement is ignored anyway.
612 */
613 trans = start_transaction(root, num_items, TRANS_START,
614 BTRFS_RESERVE_FLUSH_ALL, false);
615 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
616 return trans;
617
618 trans = btrfs_start_transaction(root, 0);
619 if (IS_ERR(trans))
620 return trans;
621
622 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
623 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
624 num_bytes, min_factor);
625 if (ret) {
626 btrfs_end_transaction(trans);
627 return ERR_PTR(ret);
628 }
629
630 trans->block_rsv = &fs_info->trans_block_rsv;
631 trans->bytes_reserved = num_bytes;
632 trace_btrfs_space_reservation(fs_info, "transaction",
633 trans->transid, num_bytes, 1);
634
635 return trans;
636}
637
638struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
639{
640 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
641 true);
642}
643
644struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
645{
646 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
647 BTRFS_RESERVE_NO_FLUSH, true);
648}
649
650/*
651 * btrfs_attach_transaction() - catch the running transaction
652 *
653 * It is used when we want to commit the current the transaction, but
654 * don't want to start a new one.
655 *
656 * Note: If this function return -ENOENT, it just means there is no
657 * running transaction. But it is possible that the inactive transaction
658 * is still in the memory, not fully on disk. If you hope there is no
659 * inactive transaction in the fs when -ENOENT is returned, you should
660 * invoke
661 * btrfs_attach_transaction_barrier()
662 */
663struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664{
665 return start_transaction(root, 0, TRANS_ATTACH,
666 BTRFS_RESERVE_NO_FLUSH, true);
667}
668
669/*
670 * btrfs_attach_transaction_barrier() - catch the running transaction
671 *
672 * It is similar to the above function, the differentia is this one
673 * will wait for all the inactive transactions until they fully
674 * complete.
675 */
676struct btrfs_trans_handle *
677btrfs_attach_transaction_barrier(struct btrfs_root *root)
678{
679 struct btrfs_trans_handle *trans;
680
681 trans = start_transaction(root, 0, TRANS_ATTACH,
682 BTRFS_RESERVE_NO_FLUSH, true);
683 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
684 btrfs_wait_for_commit(root->fs_info, 0);
685
686 return trans;
687}
688
689/* wait for a transaction commit to be fully complete */
690static noinline void wait_for_commit(struct btrfs_transaction *commit)
691{
692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
693}
694
695int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
696{
697 struct btrfs_transaction *cur_trans = NULL, *t;
698 int ret = 0;
699
700 if (transid) {
701 if (transid <= fs_info->last_trans_committed)
702 goto out;
703
704 /* find specified transaction */
705 spin_lock(&fs_info->trans_lock);
706 list_for_each_entry(t, &fs_info->trans_list, list) {
707 if (t->transid == transid) {
708 cur_trans = t;
709 refcount_inc(&cur_trans->use_count);
710 ret = 0;
711 break;
712 }
713 if (t->transid > transid) {
714 ret = 0;
715 break;
716 }
717 }
718 spin_unlock(&fs_info->trans_lock);
719
720 /*
721 * The specified transaction doesn't exist, or we
722 * raced with btrfs_commit_transaction
723 */
724 if (!cur_trans) {
725 if (transid > fs_info->last_trans_committed)
726 ret = -EINVAL;
727 goto out;
728 }
729 } else {
730 /* find newest transaction that is committing | committed */
731 spin_lock(&fs_info->trans_lock);
732 list_for_each_entry_reverse(t, &fs_info->trans_list,
733 list) {
734 if (t->state >= TRANS_STATE_COMMIT_START) {
735 if (t->state == TRANS_STATE_COMPLETED)
736 break;
737 cur_trans = t;
738 refcount_inc(&cur_trans->use_count);
739 break;
740 }
741 }
742 spin_unlock(&fs_info->trans_lock);
743 if (!cur_trans)
744 goto out; /* nothing committing|committed */
745 }
746
747 wait_for_commit(cur_trans);
748 btrfs_put_transaction(cur_trans);
749out:
750 return ret;
751}
752
753void btrfs_throttle(struct btrfs_fs_info *fs_info)
754{
755 wait_current_trans(fs_info);
756}
757
758static int should_end_transaction(struct btrfs_trans_handle *trans)
759{
760 struct btrfs_fs_info *fs_info = trans->fs_info;
761
762 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
763 return 1;
764
765 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
766}
767
768int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
769{
770 struct btrfs_transaction *cur_trans = trans->transaction;
771 int updates;
772 int err;
773
774 smp_mb();
775 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
776 cur_trans->delayed_refs.flushing)
777 return 1;
778
779 updates = trans->delayed_ref_updates;
780 trans->delayed_ref_updates = 0;
781 if (updates) {
782 err = btrfs_run_delayed_refs(trans, updates * 2);
783 if (err) /* Error code will also eval true */
784 return err;
785 }
786
787 return should_end_transaction(trans);
788}
789
790static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
791
792{
793 struct btrfs_fs_info *fs_info = trans->fs_info;
794
795 if (!trans->block_rsv) {
796 ASSERT(!trans->bytes_reserved);
797 return;
798 }
799
800 if (!trans->bytes_reserved)
801 return;
802
803 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
804 trace_btrfs_space_reservation(fs_info, "transaction",
805 trans->transid, trans->bytes_reserved, 0);
806 btrfs_block_rsv_release(fs_info, trans->block_rsv,
807 trans->bytes_reserved);
808 trans->bytes_reserved = 0;
809}
810
811static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
812 int throttle)
813{
814 struct btrfs_fs_info *info = trans->fs_info;
815 struct btrfs_transaction *cur_trans = trans->transaction;
816 u64 transid = trans->transid;
817 unsigned long cur = trans->delayed_ref_updates;
818 int lock = (trans->type != TRANS_JOIN_NOLOCK);
819 int err = 0;
820 int must_run_delayed_refs = 0;
821
822 if (refcount_read(&trans->use_count) > 1) {
823 refcount_dec(&trans->use_count);
824 trans->block_rsv = trans->orig_rsv;
825 return 0;
826 }
827
828 btrfs_trans_release_metadata(trans);
829 trans->block_rsv = NULL;
830
831 if (!list_empty(&trans->new_bgs))
832 btrfs_create_pending_block_groups(trans);
833
834 trans->delayed_ref_updates = 0;
835 if (!trans->sync) {
836 must_run_delayed_refs =
837 btrfs_should_throttle_delayed_refs(trans, info);
838 cur = max_t(unsigned long, cur, 32);
839
840 /*
841 * don't make the caller wait if they are from a NOLOCK
842 * or ATTACH transaction, it will deadlock with commit
843 */
844 if (must_run_delayed_refs == 1 &&
845 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
846 must_run_delayed_refs = 2;
847 }
848
849 btrfs_trans_release_metadata(trans);
850 trans->block_rsv = NULL;
851
852 if (!list_empty(&trans->new_bgs))
853 btrfs_create_pending_block_groups(trans);
854
855 btrfs_trans_release_chunk_metadata(trans);
856
857 if (lock && should_end_transaction(trans) &&
858 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
859 spin_lock(&info->trans_lock);
860 if (cur_trans->state == TRANS_STATE_RUNNING)
861 cur_trans->state = TRANS_STATE_BLOCKED;
862 spin_unlock(&info->trans_lock);
863 }
864
865 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
866 if (throttle)
867 return btrfs_commit_transaction(trans);
868 else
869 wake_up_process(info->transaction_kthread);
870 }
871
872 if (trans->type & __TRANS_FREEZABLE)
873 sb_end_intwrite(info->sb);
874
875 WARN_ON(cur_trans != info->running_transaction);
876 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
877 atomic_dec(&cur_trans->num_writers);
878 extwriter_counter_dec(cur_trans, trans->type);
879
880 /*
881 * Make sure counter is updated before we wake up waiters.
882 */
883 smp_mb();
884 if (waitqueue_active(&cur_trans->writer_wait))
885 wake_up(&cur_trans->writer_wait);
886 btrfs_put_transaction(cur_trans);
887
888 if (current->journal_info == trans)
889 current->journal_info = NULL;
890
891 if (throttle)
892 btrfs_run_delayed_iputs(info);
893
894 if (trans->aborted ||
895 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
896 wake_up_process(info->transaction_kthread);
897 err = -EIO;
898 }
899
900 kmem_cache_free(btrfs_trans_handle_cachep, trans);
901 if (must_run_delayed_refs) {
902 btrfs_async_run_delayed_refs(info, cur, transid,
903 must_run_delayed_refs == 1);
904 }
905 return err;
906}
907
908int btrfs_end_transaction(struct btrfs_trans_handle *trans)
909{
910 return __btrfs_end_transaction(trans, 0);
911}
912
913int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
914{
915 return __btrfs_end_transaction(trans, 1);
916}
917
918/*
919 * when btree blocks are allocated, they have some corresponding bits set for
920 * them in one of two extent_io trees. This is used to make sure all of
921 * those extents are sent to disk but does not wait on them
922 */
923int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
924 struct extent_io_tree *dirty_pages, int mark)
925{
926 int err = 0;
927 int werr = 0;
928 struct address_space *mapping = fs_info->btree_inode->i_mapping;
929 struct extent_state *cached_state = NULL;
930 u64 start = 0;
931 u64 end;
932
933 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
934 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
935 mark, &cached_state)) {
936 bool wait_writeback = false;
937
938 err = convert_extent_bit(dirty_pages, start, end,
939 EXTENT_NEED_WAIT,
940 mark, &cached_state);
941 /*
942 * convert_extent_bit can return -ENOMEM, which is most of the
943 * time a temporary error. So when it happens, ignore the error
944 * and wait for writeback of this range to finish - because we
945 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
946 * to __btrfs_wait_marked_extents() would not know that
947 * writeback for this range started and therefore wouldn't
948 * wait for it to finish - we don't want to commit a
949 * superblock that points to btree nodes/leafs for which
950 * writeback hasn't finished yet (and without errors).
951 * We cleanup any entries left in the io tree when committing
952 * the transaction (through clear_btree_io_tree()).
953 */
954 if (err == -ENOMEM) {
955 err = 0;
956 wait_writeback = true;
957 }
958 if (!err)
959 err = filemap_fdatawrite_range(mapping, start, end);
960 if (err)
961 werr = err;
962 else if (wait_writeback)
963 werr = filemap_fdatawait_range(mapping, start, end);
964 free_extent_state(cached_state);
965 cached_state = NULL;
966 cond_resched();
967 start = end + 1;
968 }
969 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
970 return werr;
971}
972
973/*
974 * when btree blocks are allocated, they have some corresponding bits set for
975 * them in one of two extent_io trees. This is used to make sure all of
976 * those extents are on disk for transaction or log commit. We wait
977 * on all the pages and clear them from the dirty pages state tree
978 */
979static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
980 struct extent_io_tree *dirty_pages)
981{
982 int err = 0;
983 int werr = 0;
984 struct address_space *mapping = fs_info->btree_inode->i_mapping;
985 struct extent_state *cached_state = NULL;
986 u64 start = 0;
987 u64 end;
988
989 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
990 EXTENT_NEED_WAIT, &cached_state)) {
991 /*
992 * Ignore -ENOMEM errors returned by clear_extent_bit().
993 * When committing the transaction, we'll remove any entries
994 * left in the io tree. For a log commit, we don't remove them
995 * after committing the log because the tree can be accessed
996 * concurrently - we do it only at transaction commit time when
997 * it's safe to do it (through clear_btree_io_tree()).
998 */
999 err = clear_extent_bit(dirty_pages, start, end,
1000 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1001 if (err == -ENOMEM)
1002 err = 0;
1003 if (!err)
1004 err = filemap_fdatawait_range(mapping, start, end);
1005 if (err)
1006 werr = err;
1007 free_extent_state(cached_state);
1008 cached_state = NULL;
1009 cond_resched();
1010 start = end + 1;
1011 }
1012 if (err)
1013 werr = err;
1014 return werr;
1015}
1016
1017int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1018 struct extent_io_tree *dirty_pages)
1019{
1020 bool errors = false;
1021 int err;
1022
1023 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1024 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1025 errors = true;
1026
1027 if (errors && !err)
1028 err = -EIO;
1029 return err;
1030}
1031
1032int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1033{
1034 struct btrfs_fs_info *fs_info = log_root->fs_info;
1035 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1036 bool errors = false;
1037 int err;
1038
1039 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1040
1041 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1042 if ((mark & EXTENT_DIRTY) &&
1043 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1044 errors = true;
1045
1046 if ((mark & EXTENT_NEW) &&
1047 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1048 errors = true;
1049
1050 if (errors && !err)
1051 err = -EIO;
1052 return err;
1053}
1054
1055/*
1056 * When btree blocks are allocated the corresponding extents are marked dirty.
1057 * This function ensures such extents are persisted on disk for transaction or
1058 * log commit.
1059 *
1060 * @trans: transaction whose dirty pages we'd like to write
1061 */
1062static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1063{
1064 int ret;
1065 int ret2;
1066 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1067 struct btrfs_fs_info *fs_info = trans->fs_info;
1068 struct blk_plug plug;
1069
1070 blk_start_plug(&plug);
1071 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1072 blk_finish_plug(&plug);
1073 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1074
1075 clear_btree_io_tree(&trans->transaction->dirty_pages);
1076
1077 if (ret)
1078 return ret;
1079 else if (ret2)
1080 return ret2;
1081 else
1082 return 0;
1083}
1084
1085/*
1086 * this is used to update the root pointer in the tree of tree roots.
1087 *
1088 * But, in the case of the extent allocation tree, updating the root
1089 * pointer may allocate blocks which may change the root of the extent
1090 * allocation tree.
1091 *
1092 * So, this loops and repeats and makes sure the cowonly root didn't
1093 * change while the root pointer was being updated in the metadata.
1094 */
1095static int update_cowonly_root(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root)
1097{
1098 int ret;
1099 u64 old_root_bytenr;
1100 u64 old_root_used;
1101 struct btrfs_fs_info *fs_info = root->fs_info;
1102 struct btrfs_root *tree_root = fs_info->tree_root;
1103
1104 old_root_used = btrfs_root_used(&root->root_item);
1105
1106 while (1) {
1107 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1108 if (old_root_bytenr == root->node->start &&
1109 old_root_used == btrfs_root_used(&root->root_item))
1110 break;
1111
1112 btrfs_set_root_node(&root->root_item, root->node);
1113 ret = btrfs_update_root(trans, tree_root,
1114 &root->root_key,
1115 &root->root_item);
1116 if (ret)
1117 return ret;
1118
1119 old_root_used = btrfs_root_used(&root->root_item);
1120 }
1121
1122 return 0;
1123}
1124
1125/*
1126 * update all the cowonly tree roots on disk
1127 *
1128 * The error handling in this function may not be obvious. Any of the
1129 * failures will cause the file system to go offline. We still need
1130 * to clean up the delayed refs.
1131 */
1132static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1133{
1134 struct btrfs_fs_info *fs_info = trans->fs_info;
1135 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1136 struct list_head *io_bgs = &trans->transaction->io_bgs;
1137 struct list_head *next;
1138 struct extent_buffer *eb;
1139 int ret;
1140
1141 eb = btrfs_lock_root_node(fs_info->tree_root);
1142 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1143 0, &eb);
1144 btrfs_tree_unlock(eb);
1145 free_extent_buffer(eb);
1146
1147 if (ret)
1148 return ret;
1149
1150 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1151 if (ret)
1152 return ret;
1153
1154 ret = btrfs_run_dev_stats(trans, fs_info);
1155 if (ret)
1156 return ret;
1157 ret = btrfs_run_dev_replace(trans, fs_info);
1158 if (ret)
1159 return ret;
1160 ret = btrfs_run_qgroups(trans, fs_info);
1161 if (ret)
1162 return ret;
1163
1164 ret = btrfs_setup_space_cache(trans, fs_info);
1165 if (ret)
1166 return ret;
1167
1168 /* run_qgroups might have added some more refs */
1169 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1170 if (ret)
1171 return ret;
1172again:
1173 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1174 struct btrfs_root *root;
1175 next = fs_info->dirty_cowonly_roots.next;
1176 list_del_init(next);
1177 root = list_entry(next, struct btrfs_root, dirty_list);
1178 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1179
1180 if (root != fs_info->extent_root)
1181 list_add_tail(&root->dirty_list,
1182 &trans->transaction->switch_commits);
1183 ret = update_cowonly_root(trans, root);
1184 if (ret)
1185 return ret;
1186 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1187 if (ret)
1188 return ret;
1189 }
1190
1191 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1192 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1193 if (ret)
1194 return ret;
1195 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1196 if (ret)
1197 return ret;
1198 }
1199
1200 if (!list_empty(&fs_info->dirty_cowonly_roots))
1201 goto again;
1202
1203 list_add_tail(&fs_info->extent_root->dirty_list,
1204 &trans->transaction->switch_commits);
1205 btrfs_after_dev_replace_commit(fs_info);
1206
1207 return 0;
1208}
1209
1210/*
1211 * dead roots are old snapshots that need to be deleted. This allocates
1212 * a dirty root struct and adds it into the list of dead roots that need to
1213 * be deleted
1214 */
1215void btrfs_add_dead_root(struct btrfs_root *root)
1216{
1217 struct btrfs_fs_info *fs_info = root->fs_info;
1218
1219 spin_lock(&fs_info->trans_lock);
1220 if (list_empty(&root->root_list))
1221 list_add_tail(&root->root_list, &fs_info->dead_roots);
1222 spin_unlock(&fs_info->trans_lock);
1223}
1224
1225/*
1226 * update all the cowonly tree roots on disk
1227 */
1228static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1229{
1230 struct btrfs_fs_info *fs_info = trans->fs_info;
1231 struct btrfs_root *gang[8];
1232 int i;
1233 int ret;
1234 int err = 0;
1235
1236 spin_lock(&fs_info->fs_roots_radix_lock);
1237 while (1) {
1238 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1239 (void **)gang, 0,
1240 ARRAY_SIZE(gang),
1241 BTRFS_ROOT_TRANS_TAG);
1242 if (ret == 0)
1243 break;
1244 for (i = 0; i < ret; i++) {
1245 struct btrfs_root *root = gang[i];
1246 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1247 (unsigned long)root->root_key.objectid,
1248 BTRFS_ROOT_TRANS_TAG);
1249 spin_unlock(&fs_info->fs_roots_radix_lock);
1250
1251 btrfs_free_log(trans, root);
1252 btrfs_update_reloc_root(trans, root);
1253 btrfs_orphan_commit_root(trans, root);
1254
1255 btrfs_save_ino_cache(root, trans);
1256
1257 /* see comments in should_cow_block() */
1258 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1259 smp_mb__after_atomic();
1260
1261 if (root->commit_root != root->node) {
1262 list_add_tail(&root->dirty_list,
1263 &trans->transaction->switch_commits);
1264 btrfs_set_root_node(&root->root_item,
1265 root->node);
1266 }
1267
1268 err = btrfs_update_root(trans, fs_info->tree_root,
1269 &root->root_key,
1270 &root->root_item);
1271 spin_lock(&fs_info->fs_roots_radix_lock);
1272 if (err)
1273 break;
1274 btrfs_qgroup_free_meta_all_pertrans(root);
1275 }
1276 }
1277 spin_unlock(&fs_info->fs_roots_radix_lock);
1278 return err;
1279}
1280
1281/*
1282 * defrag a given btree.
1283 * Every leaf in the btree is read and defragged.
1284 */
1285int btrfs_defrag_root(struct btrfs_root *root)
1286{
1287 struct btrfs_fs_info *info = root->fs_info;
1288 struct btrfs_trans_handle *trans;
1289 int ret;
1290
1291 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1292 return 0;
1293
1294 while (1) {
1295 trans = btrfs_start_transaction(root, 0);
1296 if (IS_ERR(trans))
1297 return PTR_ERR(trans);
1298
1299 ret = btrfs_defrag_leaves(trans, root);
1300
1301 btrfs_end_transaction(trans);
1302 btrfs_btree_balance_dirty(info);
1303 cond_resched();
1304
1305 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1306 break;
1307
1308 if (btrfs_defrag_cancelled(info)) {
1309 btrfs_debug(info, "defrag_root cancelled");
1310 ret = -EAGAIN;
1311 break;
1312 }
1313 }
1314 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1315 return ret;
1316}
1317
1318/*
1319 * Do all special snapshot related qgroup dirty hack.
1320 *
1321 * Will do all needed qgroup inherit and dirty hack like switch commit
1322 * roots inside one transaction and write all btree into disk, to make
1323 * qgroup works.
1324 */
1325static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *src,
1327 struct btrfs_root *parent,
1328 struct btrfs_qgroup_inherit *inherit,
1329 u64 dst_objectid)
1330{
1331 struct btrfs_fs_info *fs_info = src->fs_info;
1332 int ret;
1333
1334 /*
1335 * Save some performance in the case that qgroups are not
1336 * enabled. If this check races with the ioctl, rescan will
1337 * kick in anyway.
1338 */
1339 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1340 return 0;
1341
1342 /*
1343 * Ensure dirty @src will be commited. Or, after comming
1344 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1345 * recorded root will never be updated again, causing an outdated root
1346 * item.
1347 */
1348 record_root_in_trans(trans, src, 1);
1349
1350 /*
1351 * We are going to commit transaction, see btrfs_commit_transaction()
1352 * comment for reason locking tree_log_mutex
1353 */
1354 mutex_lock(&fs_info->tree_log_mutex);
1355
1356 ret = commit_fs_roots(trans);
1357 if (ret)
1358 goto out;
1359 ret = btrfs_qgroup_account_extents(trans);
1360 if (ret < 0)
1361 goto out;
1362
1363 /* Now qgroup are all updated, we can inherit it to new qgroups */
1364 ret = btrfs_qgroup_inherit(trans, fs_info,
1365 src->root_key.objectid, dst_objectid,
1366 inherit);
1367 if (ret < 0)
1368 goto out;
1369
1370 /*
1371 * Now we do a simplified commit transaction, which will:
1372 * 1) commit all subvolume and extent tree
1373 * To ensure all subvolume and extent tree have a valid
1374 * commit_root to accounting later insert_dir_item()
1375 * 2) write all btree blocks onto disk
1376 * This is to make sure later btree modification will be cowed
1377 * Or commit_root can be populated and cause wrong qgroup numbers
1378 * In this simplified commit, we don't really care about other trees
1379 * like chunk and root tree, as they won't affect qgroup.
1380 * And we don't write super to avoid half committed status.
1381 */
1382 ret = commit_cowonly_roots(trans);
1383 if (ret)
1384 goto out;
1385 switch_commit_roots(trans->transaction);
1386 ret = btrfs_write_and_wait_transaction(trans);
1387 if (ret)
1388 btrfs_handle_fs_error(fs_info, ret,
1389 "Error while writing out transaction for qgroup");
1390
1391out:
1392 mutex_unlock(&fs_info->tree_log_mutex);
1393
1394 /*
1395 * Force parent root to be updated, as we recorded it before so its
1396 * last_trans == cur_transid.
1397 * Or it won't be committed again onto disk after later
1398 * insert_dir_item()
1399 */
1400 if (!ret)
1401 record_root_in_trans(trans, parent, 1);
1402 return ret;
1403}
1404
1405/*
1406 * new snapshots need to be created at a very specific time in the
1407 * transaction commit. This does the actual creation.
1408 *
1409 * Note:
1410 * If the error which may affect the commitment of the current transaction
1411 * happens, we should return the error number. If the error which just affect
1412 * the creation of the pending snapshots, just return 0.
1413 */
1414static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1415 struct btrfs_pending_snapshot *pending)
1416{
1417
1418 struct btrfs_fs_info *fs_info = trans->fs_info;
1419 struct btrfs_key key;
1420 struct btrfs_root_item *new_root_item;
1421 struct btrfs_root *tree_root = fs_info->tree_root;
1422 struct btrfs_root *root = pending->root;
1423 struct btrfs_root *parent_root;
1424 struct btrfs_block_rsv *rsv;
1425 struct inode *parent_inode;
1426 struct btrfs_path *path;
1427 struct btrfs_dir_item *dir_item;
1428 struct dentry *dentry;
1429 struct extent_buffer *tmp;
1430 struct extent_buffer *old;
1431 struct timespec cur_time;
1432 int ret = 0;
1433 u64 to_reserve = 0;
1434 u64 index = 0;
1435 u64 objectid;
1436 u64 root_flags;
1437 uuid_le new_uuid;
1438
1439 ASSERT(pending->path);
1440 path = pending->path;
1441
1442 ASSERT(pending->root_item);
1443 new_root_item = pending->root_item;
1444
1445 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1446 if (pending->error)
1447 goto no_free_objectid;
1448
1449 /*
1450 * Make qgroup to skip current new snapshot's qgroupid, as it is
1451 * accounted by later btrfs_qgroup_inherit().
1452 */
1453 btrfs_set_skip_qgroup(trans, objectid);
1454
1455 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1456
1457 if (to_reserve > 0) {
1458 pending->error = btrfs_block_rsv_add(root,
1459 &pending->block_rsv,
1460 to_reserve,
1461 BTRFS_RESERVE_NO_FLUSH);
1462 if (pending->error)
1463 goto clear_skip_qgroup;
1464 }
1465
1466 key.objectid = objectid;
1467 key.offset = (u64)-1;
1468 key.type = BTRFS_ROOT_ITEM_KEY;
1469
1470 rsv = trans->block_rsv;
1471 trans->block_rsv = &pending->block_rsv;
1472 trans->bytes_reserved = trans->block_rsv->reserved;
1473 trace_btrfs_space_reservation(fs_info, "transaction",
1474 trans->transid,
1475 trans->bytes_reserved, 1);
1476 dentry = pending->dentry;
1477 parent_inode = pending->dir;
1478 parent_root = BTRFS_I(parent_inode)->root;
1479 record_root_in_trans(trans, parent_root, 0);
1480
1481 cur_time = current_time(parent_inode);
1482
1483 /*
1484 * insert the directory item
1485 */
1486 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1487 BUG_ON(ret); /* -ENOMEM */
1488
1489 /* check if there is a file/dir which has the same name. */
1490 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1491 btrfs_ino(BTRFS_I(parent_inode)),
1492 dentry->d_name.name,
1493 dentry->d_name.len, 0);
1494 if (dir_item != NULL && !IS_ERR(dir_item)) {
1495 pending->error = -EEXIST;
1496 goto dir_item_existed;
1497 } else if (IS_ERR(dir_item)) {
1498 ret = PTR_ERR(dir_item);
1499 btrfs_abort_transaction(trans, ret);
1500 goto fail;
1501 }
1502 btrfs_release_path(path);
1503
1504 /*
1505 * pull in the delayed directory update
1506 * and the delayed inode item
1507 * otherwise we corrupt the FS during
1508 * snapshot
1509 */
1510 ret = btrfs_run_delayed_items(trans);
1511 if (ret) { /* Transaction aborted */
1512 btrfs_abort_transaction(trans, ret);
1513 goto fail;
1514 }
1515
1516 record_root_in_trans(trans, root, 0);
1517 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1518 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1519 btrfs_check_and_init_root_item(new_root_item);
1520
1521 root_flags = btrfs_root_flags(new_root_item);
1522 if (pending->readonly)
1523 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1524 else
1525 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1526 btrfs_set_root_flags(new_root_item, root_flags);
1527
1528 btrfs_set_root_generation_v2(new_root_item,
1529 trans->transid);
1530 uuid_le_gen(&new_uuid);
1531 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1532 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1533 BTRFS_UUID_SIZE);
1534 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1535 memset(new_root_item->received_uuid, 0,
1536 sizeof(new_root_item->received_uuid));
1537 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1538 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1539 btrfs_set_root_stransid(new_root_item, 0);
1540 btrfs_set_root_rtransid(new_root_item, 0);
1541 }
1542 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1543 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1544 btrfs_set_root_otransid(new_root_item, trans->transid);
1545
1546 old = btrfs_lock_root_node(root);
1547 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1548 if (ret) {
1549 btrfs_tree_unlock(old);
1550 free_extent_buffer(old);
1551 btrfs_abort_transaction(trans, ret);
1552 goto fail;
1553 }
1554
1555 btrfs_set_lock_blocking(old);
1556
1557 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1558 /* clean up in any case */
1559 btrfs_tree_unlock(old);
1560 free_extent_buffer(old);
1561 if (ret) {
1562 btrfs_abort_transaction(trans, ret);
1563 goto fail;
1564 }
1565 /* see comments in should_cow_block() */
1566 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1567 smp_wmb();
1568
1569 btrfs_set_root_node(new_root_item, tmp);
1570 /* record when the snapshot was created in key.offset */
1571 key.offset = trans->transid;
1572 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1573 btrfs_tree_unlock(tmp);
1574 free_extent_buffer(tmp);
1575 if (ret) {
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1578 }
1579
1580 /*
1581 * insert root back/forward references
1582 */
1583 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1584 parent_root->root_key.objectid,
1585 btrfs_ino(BTRFS_I(parent_inode)), index,
1586 dentry->d_name.name, dentry->d_name.len);
1587 if (ret) {
1588 btrfs_abort_transaction(trans, ret);
1589 goto fail;
1590 }
1591
1592 key.offset = (u64)-1;
1593 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1594 if (IS_ERR(pending->snap)) {
1595 ret = PTR_ERR(pending->snap);
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1598 }
1599
1600 ret = btrfs_reloc_post_snapshot(trans, pending);
1601 if (ret) {
1602 btrfs_abort_transaction(trans, ret);
1603 goto fail;
1604 }
1605
1606 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1607 if (ret) {
1608 btrfs_abort_transaction(trans, ret);
1609 goto fail;
1610 }
1611
1612 /*
1613 * Do special qgroup accounting for snapshot, as we do some qgroup
1614 * snapshot hack to do fast snapshot.
1615 * To co-operate with that hack, we do hack again.
1616 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1617 */
1618 ret = qgroup_account_snapshot(trans, root, parent_root,
1619 pending->inherit, objectid);
1620 if (ret < 0)
1621 goto fail;
1622
1623 ret = btrfs_insert_dir_item(trans, parent_root,
1624 dentry->d_name.name, dentry->d_name.len,
1625 BTRFS_I(parent_inode), &key,
1626 BTRFS_FT_DIR, index);
1627 /* We have check then name at the beginning, so it is impossible. */
1628 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1629 if (ret) {
1630 btrfs_abort_transaction(trans, ret);
1631 goto fail;
1632 }
1633
1634 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1635 dentry->d_name.len * 2);
1636 parent_inode->i_mtime = parent_inode->i_ctime =
1637 current_time(parent_inode);
1638 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1639 if (ret) {
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1644 BTRFS_UUID_KEY_SUBVOL, objectid);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1650 ret = btrfs_uuid_tree_add(trans, fs_info,
1651 new_root_item->received_uuid,
1652 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1653 objectid);
1654 if (ret && ret != -EEXIST) {
1655 btrfs_abort_transaction(trans, ret);
1656 goto fail;
1657 }
1658 }
1659
1660 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665
1666fail:
1667 pending->error = ret;
1668dir_item_existed:
1669 trans->block_rsv = rsv;
1670 trans->bytes_reserved = 0;
1671clear_skip_qgroup:
1672 btrfs_clear_skip_qgroup(trans);
1673no_free_objectid:
1674 kfree(new_root_item);
1675 pending->root_item = NULL;
1676 btrfs_free_path(path);
1677 pending->path = NULL;
1678
1679 return ret;
1680}
1681
1682/*
1683 * create all the snapshots we've scheduled for creation
1684 */
1685static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1686{
1687 struct btrfs_pending_snapshot *pending, *next;
1688 struct list_head *head = &trans->transaction->pending_snapshots;
1689 int ret = 0;
1690
1691 list_for_each_entry_safe(pending, next, head, list) {
1692 list_del(&pending->list);
1693 ret = create_pending_snapshot(trans, pending);
1694 if (ret)
1695 break;
1696 }
1697 return ret;
1698}
1699
1700static void update_super_roots(struct btrfs_fs_info *fs_info)
1701{
1702 struct btrfs_root_item *root_item;
1703 struct btrfs_super_block *super;
1704
1705 super = fs_info->super_copy;
1706
1707 root_item = &fs_info->chunk_root->root_item;
1708 super->chunk_root = root_item->bytenr;
1709 super->chunk_root_generation = root_item->generation;
1710 super->chunk_root_level = root_item->level;
1711
1712 root_item = &fs_info->tree_root->root_item;
1713 super->root = root_item->bytenr;
1714 super->generation = root_item->generation;
1715 super->root_level = root_item->level;
1716 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1717 super->cache_generation = root_item->generation;
1718 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1719 super->uuid_tree_generation = root_item->generation;
1720}
1721
1722int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1723{
1724 struct btrfs_transaction *trans;
1725 int ret = 0;
1726
1727 spin_lock(&info->trans_lock);
1728 trans = info->running_transaction;
1729 if (trans)
1730 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1731 spin_unlock(&info->trans_lock);
1732 return ret;
1733}
1734
1735int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1736{
1737 struct btrfs_transaction *trans;
1738 int ret = 0;
1739
1740 spin_lock(&info->trans_lock);
1741 trans = info->running_transaction;
1742 if (trans)
1743 ret = is_transaction_blocked(trans);
1744 spin_unlock(&info->trans_lock);
1745 return ret;
1746}
1747
1748/*
1749 * wait for the current transaction commit to start and block subsequent
1750 * transaction joins
1751 */
1752static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1753 struct btrfs_transaction *trans)
1754{
1755 wait_event(fs_info->transaction_blocked_wait,
1756 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1757}
1758
1759/*
1760 * wait for the current transaction to start and then become unblocked.
1761 * caller holds ref.
1762 */
1763static void wait_current_trans_commit_start_and_unblock(
1764 struct btrfs_fs_info *fs_info,
1765 struct btrfs_transaction *trans)
1766{
1767 wait_event(fs_info->transaction_wait,
1768 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1769}
1770
1771/*
1772 * commit transactions asynchronously. once btrfs_commit_transaction_async
1773 * returns, any subsequent transaction will not be allowed to join.
1774 */
1775struct btrfs_async_commit {
1776 struct btrfs_trans_handle *newtrans;
1777 struct work_struct work;
1778};
1779
1780static void do_async_commit(struct work_struct *work)
1781{
1782 struct btrfs_async_commit *ac =
1783 container_of(work, struct btrfs_async_commit, work);
1784
1785 /*
1786 * We've got freeze protection passed with the transaction.
1787 * Tell lockdep about it.
1788 */
1789 if (ac->newtrans->type & __TRANS_FREEZABLE)
1790 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1791
1792 current->journal_info = ac->newtrans;
1793
1794 btrfs_commit_transaction(ac->newtrans);
1795 kfree(ac);
1796}
1797
1798int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1799 int wait_for_unblock)
1800{
1801 struct btrfs_fs_info *fs_info = trans->fs_info;
1802 struct btrfs_async_commit *ac;
1803 struct btrfs_transaction *cur_trans;
1804
1805 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1806 if (!ac)
1807 return -ENOMEM;
1808
1809 INIT_WORK(&ac->work, do_async_commit);
1810 ac->newtrans = btrfs_join_transaction(trans->root);
1811 if (IS_ERR(ac->newtrans)) {
1812 int err = PTR_ERR(ac->newtrans);
1813 kfree(ac);
1814 return err;
1815 }
1816
1817 /* take transaction reference */
1818 cur_trans = trans->transaction;
1819 refcount_inc(&cur_trans->use_count);
1820
1821 btrfs_end_transaction(trans);
1822
1823 /*
1824 * Tell lockdep we've released the freeze rwsem, since the
1825 * async commit thread will be the one to unlock it.
1826 */
1827 if (ac->newtrans->type & __TRANS_FREEZABLE)
1828 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1829
1830 schedule_work(&ac->work);
1831
1832 /* wait for transaction to start and unblock */
1833 if (wait_for_unblock)
1834 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1835 else
1836 wait_current_trans_commit_start(fs_info, cur_trans);
1837
1838 if (current->journal_info == trans)
1839 current->journal_info = NULL;
1840
1841 btrfs_put_transaction(cur_trans);
1842 return 0;
1843}
1844
1845
1846static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1847{
1848 struct btrfs_fs_info *fs_info = trans->fs_info;
1849 struct btrfs_transaction *cur_trans = trans->transaction;
1850 DEFINE_WAIT(wait);
1851
1852 WARN_ON(refcount_read(&trans->use_count) > 1);
1853
1854 btrfs_abort_transaction(trans, err);
1855
1856 spin_lock(&fs_info->trans_lock);
1857
1858 /*
1859 * If the transaction is removed from the list, it means this
1860 * transaction has been committed successfully, so it is impossible
1861 * to call the cleanup function.
1862 */
1863 BUG_ON(list_empty(&cur_trans->list));
1864
1865 list_del_init(&cur_trans->list);
1866 if (cur_trans == fs_info->running_transaction) {
1867 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1868 spin_unlock(&fs_info->trans_lock);
1869 wait_event(cur_trans->writer_wait,
1870 atomic_read(&cur_trans->num_writers) == 1);
1871
1872 spin_lock(&fs_info->trans_lock);
1873 }
1874 spin_unlock(&fs_info->trans_lock);
1875
1876 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1877
1878 spin_lock(&fs_info->trans_lock);
1879 if (cur_trans == fs_info->running_transaction)
1880 fs_info->running_transaction = NULL;
1881 spin_unlock(&fs_info->trans_lock);
1882
1883 if (trans->type & __TRANS_FREEZABLE)
1884 sb_end_intwrite(fs_info->sb);
1885 btrfs_put_transaction(cur_trans);
1886 btrfs_put_transaction(cur_trans);
1887
1888 trace_btrfs_transaction_commit(trans->root);
1889
1890 if (current->journal_info == trans)
1891 current->journal_info = NULL;
1892 btrfs_scrub_cancel(fs_info);
1893
1894 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1895}
1896
1897static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1898{
1899 /*
1900 * We use writeback_inodes_sb here because if we used
1901 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1902 * Currently are holding the fs freeze lock, if we do an async flush
1903 * we'll do btrfs_join_transaction() and deadlock because we need to
1904 * wait for the fs freeze lock. Using the direct flushing we benefit
1905 * from already being in a transaction and our join_transaction doesn't
1906 * have to re-take the fs freeze lock.
1907 */
1908 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1909 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1910 return 0;
1911}
1912
1913static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1914{
1915 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1916 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1917}
1918
1919static inline void
1920btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1921{
1922 wait_event(cur_trans->pending_wait,
1923 atomic_read(&cur_trans->pending_ordered) == 0);
1924}
1925
1926int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1927{
1928 struct btrfs_fs_info *fs_info = trans->fs_info;
1929 struct btrfs_transaction *cur_trans = trans->transaction;
1930 struct btrfs_transaction *prev_trans = NULL;
1931 int ret;
1932
1933 /* Stop the commit early if ->aborted is set */
1934 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1935 ret = cur_trans->aborted;
1936 btrfs_end_transaction(trans);
1937 return ret;
1938 }
1939
1940 /* make a pass through all the delayed refs we have so far
1941 * any runnings procs may add more while we are here
1942 */
1943 ret = btrfs_run_delayed_refs(trans, 0);
1944 if (ret) {
1945 btrfs_end_transaction(trans);
1946 return ret;
1947 }
1948
1949 btrfs_trans_release_metadata(trans);
1950 trans->block_rsv = NULL;
1951
1952 cur_trans = trans->transaction;
1953
1954 /*
1955 * set the flushing flag so procs in this transaction have to
1956 * start sending their work down.
1957 */
1958 cur_trans->delayed_refs.flushing = 1;
1959 smp_wmb();
1960
1961 if (!list_empty(&trans->new_bgs))
1962 btrfs_create_pending_block_groups(trans);
1963
1964 ret = btrfs_run_delayed_refs(trans, 0);
1965 if (ret) {
1966 btrfs_end_transaction(trans);
1967 return ret;
1968 }
1969
1970 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1971 int run_it = 0;
1972
1973 /* this mutex is also taken before trying to set
1974 * block groups readonly. We need to make sure
1975 * that nobody has set a block group readonly
1976 * after a extents from that block group have been
1977 * allocated for cache files. btrfs_set_block_group_ro
1978 * will wait for the transaction to commit if it
1979 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1980 *
1981 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1982 * only one process starts all the block group IO. It wouldn't
1983 * hurt to have more than one go through, but there's no
1984 * real advantage to it either.
1985 */
1986 mutex_lock(&fs_info->ro_block_group_mutex);
1987 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1988 &cur_trans->flags))
1989 run_it = 1;
1990 mutex_unlock(&fs_info->ro_block_group_mutex);
1991
1992 if (run_it) {
1993 ret = btrfs_start_dirty_block_groups(trans);
1994 if (ret) {
1995 btrfs_end_transaction(trans);
1996 return ret;
1997 }
1998 }
1999 }
2000
2001 spin_lock(&fs_info->trans_lock);
2002 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2003 spin_unlock(&fs_info->trans_lock);
2004 refcount_inc(&cur_trans->use_count);
2005 ret = btrfs_end_transaction(trans);
2006
2007 wait_for_commit(cur_trans);
2008
2009 if (unlikely(cur_trans->aborted))
2010 ret = cur_trans->aborted;
2011
2012 btrfs_put_transaction(cur_trans);
2013
2014 return ret;
2015 }
2016
2017 cur_trans->state = TRANS_STATE_COMMIT_START;
2018 wake_up(&fs_info->transaction_blocked_wait);
2019
2020 if (cur_trans->list.prev != &fs_info->trans_list) {
2021 prev_trans = list_entry(cur_trans->list.prev,
2022 struct btrfs_transaction, list);
2023 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2024 refcount_inc(&prev_trans->use_count);
2025 spin_unlock(&fs_info->trans_lock);
2026
2027 wait_for_commit(prev_trans);
2028 ret = prev_trans->aborted;
2029
2030 btrfs_put_transaction(prev_trans);
2031 if (ret)
2032 goto cleanup_transaction;
2033 } else {
2034 spin_unlock(&fs_info->trans_lock);
2035 }
2036 } else {
2037 spin_unlock(&fs_info->trans_lock);
2038 }
2039
2040 extwriter_counter_dec(cur_trans, trans->type);
2041
2042 ret = btrfs_start_delalloc_flush(fs_info);
2043 if (ret)
2044 goto cleanup_transaction;
2045
2046 ret = btrfs_run_delayed_items(trans);
2047 if (ret)
2048 goto cleanup_transaction;
2049
2050 wait_event(cur_trans->writer_wait,
2051 extwriter_counter_read(cur_trans) == 0);
2052
2053 /* some pending stuffs might be added after the previous flush. */
2054 ret = btrfs_run_delayed_items(trans);
2055 if (ret)
2056 goto cleanup_transaction;
2057
2058 btrfs_wait_delalloc_flush(fs_info);
2059
2060 btrfs_wait_pending_ordered(cur_trans);
2061
2062 btrfs_scrub_pause(fs_info);
2063 /*
2064 * Ok now we need to make sure to block out any other joins while we
2065 * commit the transaction. We could have started a join before setting
2066 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2067 */
2068 spin_lock(&fs_info->trans_lock);
2069 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2070 spin_unlock(&fs_info->trans_lock);
2071 wait_event(cur_trans->writer_wait,
2072 atomic_read(&cur_trans->num_writers) == 1);
2073
2074 /* ->aborted might be set after the previous check, so check it */
2075 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2076 ret = cur_trans->aborted;
2077 goto scrub_continue;
2078 }
2079 /*
2080 * the reloc mutex makes sure that we stop
2081 * the balancing code from coming in and moving
2082 * extents around in the middle of the commit
2083 */
2084 mutex_lock(&fs_info->reloc_mutex);
2085
2086 /*
2087 * We needn't worry about the delayed items because we will
2088 * deal with them in create_pending_snapshot(), which is the
2089 * core function of the snapshot creation.
2090 */
2091 ret = create_pending_snapshots(trans);
2092 if (ret) {
2093 mutex_unlock(&fs_info->reloc_mutex);
2094 goto scrub_continue;
2095 }
2096
2097 /*
2098 * We insert the dir indexes of the snapshots and update the inode
2099 * of the snapshots' parents after the snapshot creation, so there
2100 * are some delayed items which are not dealt with. Now deal with
2101 * them.
2102 *
2103 * We needn't worry that this operation will corrupt the snapshots,
2104 * because all the tree which are snapshoted will be forced to COW
2105 * the nodes and leaves.
2106 */
2107 ret = btrfs_run_delayed_items(trans);
2108 if (ret) {
2109 mutex_unlock(&fs_info->reloc_mutex);
2110 goto scrub_continue;
2111 }
2112
2113 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2114 if (ret) {
2115 mutex_unlock(&fs_info->reloc_mutex);
2116 goto scrub_continue;
2117 }
2118
2119 /*
2120 * make sure none of the code above managed to slip in a
2121 * delayed item
2122 */
2123 btrfs_assert_delayed_root_empty(fs_info);
2124
2125 WARN_ON(cur_trans != trans->transaction);
2126
2127 /* btrfs_commit_tree_roots is responsible for getting the
2128 * various roots consistent with each other. Every pointer
2129 * in the tree of tree roots has to point to the most up to date
2130 * root for every subvolume and other tree. So, we have to keep
2131 * the tree logging code from jumping in and changing any
2132 * of the trees.
2133 *
2134 * At this point in the commit, there can't be any tree-log
2135 * writers, but a little lower down we drop the trans mutex
2136 * and let new people in. By holding the tree_log_mutex
2137 * from now until after the super is written, we avoid races
2138 * with the tree-log code.
2139 */
2140 mutex_lock(&fs_info->tree_log_mutex);
2141
2142 ret = commit_fs_roots(trans);
2143 if (ret) {
2144 mutex_unlock(&fs_info->tree_log_mutex);
2145 mutex_unlock(&fs_info->reloc_mutex);
2146 goto scrub_continue;
2147 }
2148
2149 /*
2150 * Since the transaction is done, we can apply the pending changes
2151 * before the next transaction.
2152 */
2153 btrfs_apply_pending_changes(fs_info);
2154
2155 /* commit_fs_roots gets rid of all the tree log roots, it is now
2156 * safe to free the root of tree log roots
2157 */
2158 btrfs_free_log_root_tree(trans, fs_info);
2159
2160 /*
2161 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2162 * new delayed refs. Must handle them or qgroup can be wrong.
2163 */
2164 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2165 if (ret) {
2166 mutex_unlock(&fs_info->tree_log_mutex);
2167 mutex_unlock(&fs_info->reloc_mutex);
2168 goto scrub_continue;
2169 }
2170
2171 /*
2172 * Since fs roots are all committed, we can get a quite accurate
2173 * new_roots. So let's do quota accounting.
2174 */
2175 ret = btrfs_qgroup_account_extents(trans);
2176 if (ret < 0) {
2177 mutex_unlock(&fs_info->tree_log_mutex);
2178 mutex_unlock(&fs_info->reloc_mutex);
2179 goto scrub_continue;
2180 }
2181
2182 ret = commit_cowonly_roots(trans);
2183 if (ret) {
2184 mutex_unlock(&fs_info->tree_log_mutex);
2185 mutex_unlock(&fs_info->reloc_mutex);
2186 goto scrub_continue;
2187 }
2188
2189 /*
2190 * The tasks which save the space cache and inode cache may also
2191 * update ->aborted, check it.
2192 */
2193 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2194 ret = cur_trans->aborted;
2195 mutex_unlock(&fs_info->tree_log_mutex);
2196 mutex_unlock(&fs_info->reloc_mutex);
2197 goto scrub_continue;
2198 }
2199
2200 btrfs_prepare_extent_commit(fs_info);
2201
2202 cur_trans = fs_info->running_transaction;
2203
2204 btrfs_set_root_node(&fs_info->tree_root->root_item,
2205 fs_info->tree_root->node);
2206 list_add_tail(&fs_info->tree_root->dirty_list,
2207 &cur_trans->switch_commits);
2208
2209 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2210 fs_info->chunk_root->node);
2211 list_add_tail(&fs_info->chunk_root->dirty_list,
2212 &cur_trans->switch_commits);
2213
2214 switch_commit_roots(cur_trans);
2215
2216 ASSERT(list_empty(&cur_trans->dirty_bgs));
2217 ASSERT(list_empty(&cur_trans->io_bgs));
2218 update_super_roots(fs_info);
2219
2220 btrfs_set_super_log_root(fs_info->super_copy, 0);
2221 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2222 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2223 sizeof(*fs_info->super_copy));
2224
2225 btrfs_update_commit_device_size(fs_info);
2226 btrfs_update_commit_device_bytes_used(cur_trans);
2227
2228 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2229 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2230
2231 btrfs_trans_release_chunk_metadata(trans);
2232
2233 spin_lock(&fs_info->trans_lock);
2234 cur_trans->state = TRANS_STATE_UNBLOCKED;
2235 fs_info->running_transaction = NULL;
2236 spin_unlock(&fs_info->trans_lock);
2237 mutex_unlock(&fs_info->reloc_mutex);
2238
2239 wake_up(&fs_info->transaction_wait);
2240
2241 ret = btrfs_write_and_wait_transaction(trans);
2242 if (ret) {
2243 btrfs_handle_fs_error(fs_info, ret,
2244 "Error while writing out transaction");
2245 mutex_unlock(&fs_info->tree_log_mutex);
2246 goto scrub_continue;
2247 }
2248
2249 ret = write_all_supers(fs_info, 0);
2250 /*
2251 * the super is written, we can safely allow the tree-loggers
2252 * to go about their business
2253 */
2254 mutex_unlock(&fs_info->tree_log_mutex);
2255 if (ret)
2256 goto scrub_continue;
2257
2258 btrfs_finish_extent_commit(trans);
2259
2260 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2261 btrfs_clear_space_info_full(fs_info);
2262
2263 fs_info->last_trans_committed = cur_trans->transid;
2264 /*
2265 * We needn't acquire the lock here because there is no other task
2266 * which can change it.
2267 */
2268 cur_trans->state = TRANS_STATE_COMPLETED;
2269 wake_up(&cur_trans->commit_wait);
2270 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2271
2272 spin_lock(&fs_info->trans_lock);
2273 list_del_init(&cur_trans->list);
2274 spin_unlock(&fs_info->trans_lock);
2275
2276 btrfs_put_transaction(cur_trans);
2277 btrfs_put_transaction(cur_trans);
2278
2279 if (trans->type & __TRANS_FREEZABLE)
2280 sb_end_intwrite(fs_info->sb);
2281
2282 trace_btrfs_transaction_commit(trans->root);
2283
2284 btrfs_scrub_continue(fs_info);
2285
2286 if (current->journal_info == trans)
2287 current->journal_info = NULL;
2288
2289 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2290
2291 /*
2292 * If fs has been frozen, we can not handle delayed iputs, otherwise
2293 * it'll result in deadlock about SB_FREEZE_FS.
2294 */
2295 if (current != fs_info->transaction_kthread &&
2296 current != fs_info->cleaner_kthread &&
2297 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2298 btrfs_run_delayed_iputs(fs_info);
2299
2300 return ret;
2301
2302scrub_continue:
2303 btrfs_scrub_continue(fs_info);
2304cleanup_transaction:
2305 btrfs_trans_release_metadata(trans);
2306 btrfs_trans_release_chunk_metadata(trans);
2307 trans->block_rsv = NULL;
2308 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2309 if (current->journal_info == trans)
2310 current->journal_info = NULL;
2311 cleanup_transaction(trans, ret);
2312
2313 return ret;
2314}
2315
2316/*
2317 * return < 0 if error
2318 * 0 if there are no more dead_roots at the time of call
2319 * 1 there are more to be processed, call me again
2320 *
2321 * The return value indicates there are certainly more snapshots to delete, but
2322 * if there comes a new one during processing, it may return 0. We don't mind,
2323 * because btrfs_commit_super will poke cleaner thread and it will process it a
2324 * few seconds later.
2325 */
2326int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2327{
2328 int ret;
2329 struct btrfs_fs_info *fs_info = root->fs_info;
2330
2331 spin_lock(&fs_info->trans_lock);
2332 if (list_empty(&fs_info->dead_roots)) {
2333 spin_unlock(&fs_info->trans_lock);
2334 return 0;
2335 }
2336 root = list_first_entry(&fs_info->dead_roots,
2337 struct btrfs_root, root_list);
2338 list_del_init(&root->root_list);
2339 spin_unlock(&fs_info->trans_lock);
2340
2341 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2342
2343 btrfs_kill_all_delayed_nodes(root);
2344
2345 if (btrfs_header_backref_rev(root->node) <
2346 BTRFS_MIXED_BACKREF_REV)
2347 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2348 else
2349 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2350
2351 return (ret < 0) ? 0 : 1;
2352}
2353
2354void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2355{
2356 unsigned long prev;
2357 unsigned long bit;
2358
2359 prev = xchg(&fs_info->pending_changes, 0);
2360 if (!prev)
2361 return;
2362
2363 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2364 if (prev & bit)
2365 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2366 prev &= ~bit;
2367
2368 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2369 if (prev & bit)
2370 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2371 prev &= ~bit;
2372
2373 bit = 1 << BTRFS_PENDING_COMMIT;
2374 if (prev & bit)
2375 btrfs_debug(fs_info, "pending commit done");
2376 prev &= ~bit;
2377
2378 if (prev)
2379 btrfs_warn(fs_info,
2380 "unknown pending changes left 0x%lx, ignoring", prev);
2381}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34
35#define BTRFS_ROOT_TRANS_TAG 0
36
37static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58};
59
60void btrfs_put_transaction(struct btrfs_transaction *transaction)
61{
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
68
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
73 }
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
75 }
76}
77
78static noinline void switch_commit_roots(struct btrfs_transaction *trans,
79 struct btrfs_fs_info *fs_info)
80{
81 struct btrfs_root *root, *tmp;
82
83 down_write(&fs_info->commit_root_sem);
84 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
85 dirty_list) {
86 list_del_init(&root->dirty_list);
87 free_extent_buffer(root->commit_root);
88 root->commit_root = btrfs_root_node(root);
89 if (is_fstree(root->objectid))
90 btrfs_unpin_free_ino(root);
91 }
92 up_write(&fs_info->commit_root_sem);
93}
94
95static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
96 unsigned int type)
97{
98 if (type & TRANS_EXTWRITERS)
99 atomic_inc(&trans->num_extwriters);
100}
101
102static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
103 unsigned int type)
104{
105 if (type & TRANS_EXTWRITERS)
106 atomic_dec(&trans->num_extwriters);
107}
108
109static inline void extwriter_counter_init(struct btrfs_transaction *trans,
110 unsigned int type)
111{
112 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
113}
114
115static inline int extwriter_counter_read(struct btrfs_transaction *trans)
116{
117 return atomic_read(&trans->num_extwriters);
118}
119
120/*
121 * either allocate a new transaction or hop into the existing one
122 */
123static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
124{
125 struct btrfs_transaction *cur_trans;
126 struct btrfs_fs_info *fs_info = root->fs_info;
127
128 spin_lock(&fs_info->trans_lock);
129loop:
130 /* The file system has been taken offline. No new transactions. */
131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EROFS;
134 }
135
136 cur_trans = fs_info->running_transaction;
137 if (cur_trans) {
138 if (cur_trans->aborted) {
139 spin_unlock(&fs_info->trans_lock);
140 return cur_trans->aborted;
141 }
142 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
143 spin_unlock(&fs_info->trans_lock);
144 return -EBUSY;
145 }
146 atomic_inc(&cur_trans->use_count);
147 atomic_inc(&cur_trans->num_writers);
148 extwriter_counter_inc(cur_trans, type);
149 spin_unlock(&fs_info->trans_lock);
150 return 0;
151 }
152 spin_unlock(&fs_info->trans_lock);
153
154 /*
155 * If we are ATTACH, we just want to catch the current transaction,
156 * and commit it. If there is no transaction, just return ENOENT.
157 */
158 if (type == TRANS_ATTACH)
159 return -ENOENT;
160
161 /*
162 * JOIN_NOLOCK only happens during the transaction commit, so
163 * it is impossible that ->running_transaction is NULL
164 */
165 BUG_ON(type == TRANS_JOIN_NOLOCK);
166
167 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
168 if (!cur_trans)
169 return -ENOMEM;
170
171 spin_lock(&fs_info->trans_lock);
172 if (fs_info->running_transaction) {
173 /*
174 * someone started a transaction after we unlocked. Make sure
175 * to redo the checks above
176 */
177 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
178 goto loop;
179 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 spin_unlock(&fs_info->trans_lock);
181 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
182 return -EROFS;
183 }
184
185 atomic_set(&cur_trans->num_writers, 1);
186 extwriter_counter_init(cur_trans, type);
187 init_waitqueue_head(&cur_trans->writer_wait);
188 init_waitqueue_head(&cur_trans->commit_wait);
189 cur_trans->state = TRANS_STATE_RUNNING;
190 /*
191 * One for this trans handle, one so it will live on until we
192 * commit the transaction.
193 */
194 atomic_set(&cur_trans->use_count, 2);
195 cur_trans->start_time = get_seconds();
196
197 cur_trans->delayed_refs.href_root = RB_ROOT;
198 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
199 cur_trans->delayed_refs.num_heads_ready = 0;
200 cur_trans->delayed_refs.num_heads = 0;
201 cur_trans->delayed_refs.flushing = 0;
202 cur_trans->delayed_refs.run_delayed_start = 0;
203
204 /*
205 * although the tree mod log is per file system and not per transaction,
206 * the log must never go across transaction boundaries.
207 */
208 smp_mb();
209 if (!list_empty(&fs_info->tree_mod_seq_list))
210 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
211 "creating a fresh transaction\n");
212 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
213 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
214 "creating a fresh transaction\n");
215 atomic64_set(&fs_info->tree_mod_seq, 0);
216
217 spin_lock_init(&cur_trans->delayed_refs.lock);
218
219 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
220 INIT_LIST_HEAD(&cur_trans->ordered_operations);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 extent_io_tree_init(&cur_trans->dirty_pages,
225 fs_info->btree_inode->i_mapping);
226 fs_info->generation++;
227 cur_trans->transid = fs_info->generation;
228 fs_info->running_transaction = cur_trans;
229 cur_trans->aborted = 0;
230 spin_unlock(&fs_info->trans_lock);
231
232 return 0;
233}
234
235/*
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
240 */
241static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 struct btrfs_root *root)
243{
244 if (root->ref_cows && root->last_trans < trans->transid) {
245 WARN_ON(root == root->fs_info->extent_root);
246 WARN_ON(root->commit_root != root->node);
247
248 /*
249 * see below for in_trans_setup usage rules
250 * we have the reloc mutex held now, so there
251 * is only one writer in this function
252 */
253 root->in_trans_setup = 1;
254
255 /* make sure readers find in_trans_setup before
256 * they find our root->last_trans update
257 */
258 smp_wmb();
259
260 spin_lock(&root->fs_info->fs_roots_radix_lock);
261 if (root->last_trans == trans->transid) {
262 spin_unlock(&root->fs_info->fs_roots_radix_lock);
263 return 0;
264 }
265 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
266 (unsigned long)root->root_key.objectid,
267 BTRFS_ROOT_TRANS_TAG);
268 spin_unlock(&root->fs_info->fs_roots_radix_lock);
269 root->last_trans = trans->transid;
270
271 /* this is pretty tricky. We don't want to
272 * take the relocation lock in btrfs_record_root_in_trans
273 * unless we're really doing the first setup for this root in
274 * this transaction.
275 *
276 * Normally we'd use root->last_trans as a flag to decide
277 * if we want to take the expensive mutex.
278 *
279 * But, we have to set root->last_trans before we
280 * init the relocation root, otherwise, we trip over warnings
281 * in ctree.c. The solution used here is to flag ourselves
282 * with root->in_trans_setup. When this is 1, we're still
283 * fixing up the reloc trees and everyone must wait.
284 *
285 * When this is zero, they can trust root->last_trans and fly
286 * through btrfs_record_root_in_trans without having to take the
287 * lock. smp_wmb() makes sure that all the writes above are
288 * done before we pop in the zero below
289 */
290 btrfs_init_reloc_root(trans, root);
291 smp_wmb();
292 root->in_trans_setup = 0;
293 }
294 return 0;
295}
296
297
298int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
299 struct btrfs_root *root)
300{
301 if (!root->ref_cows)
302 return 0;
303
304 /*
305 * see record_root_in_trans for comments about in_trans_setup usage
306 * and barriers
307 */
308 smp_rmb();
309 if (root->last_trans == trans->transid &&
310 !root->in_trans_setup)
311 return 0;
312
313 mutex_lock(&root->fs_info->reloc_mutex);
314 record_root_in_trans(trans, root);
315 mutex_unlock(&root->fs_info->reloc_mutex);
316
317 return 0;
318}
319
320static inline int is_transaction_blocked(struct btrfs_transaction *trans)
321{
322 return (trans->state >= TRANS_STATE_BLOCKED &&
323 trans->state < TRANS_STATE_UNBLOCKED &&
324 !trans->aborted);
325}
326
327/* wait for commit against the current transaction to become unblocked
328 * when this is done, it is safe to start a new transaction, but the current
329 * transaction might not be fully on disk.
330 */
331static void wait_current_trans(struct btrfs_root *root)
332{
333 struct btrfs_transaction *cur_trans;
334
335 spin_lock(&root->fs_info->trans_lock);
336 cur_trans = root->fs_info->running_transaction;
337 if (cur_trans && is_transaction_blocked(cur_trans)) {
338 atomic_inc(&cur_trans->use_count);
339 spin_unlock(&root->fs_info->trans_lock);
340
341 wait_event(root->fs_info->transaction_wait,
342 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
343 cur_trans->aborted);
344 btrfs_put_transaction(cur_trans);
345 } else {
346 spin_unlock(&root->fs_info->trans_lock);
347 }
348}
349
350static int may_wait_transaction(struct btrfs_root *root, int type)
351{
352 if (root->fs_info->log_root_recovering)
353 return 0;
354
355 if (type == TRANS_USERSPACE)
356 return 1;
357
358 if (type == TRANS_START &&
359 !atomic_read(&root->fs_info->open_ioctl_trans))
360 return 1;
361
362 return 0;
363}
364
365static inline bool need_reserve_reloc_root(struct btrfs_root *root)
366{
367 if (!root->fs_info->reloc_ctl ||
368 !root->ref_cows ||
369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
370 root->reloc_root)
371 return false;
372
373 return true;
374}
375
376static struct btrfs_trans_handle *
377start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
378 enum btrfs_reserve_flush_enum flush)
379{
380 struct btrfs_trans_handle *h;
381 struct btrfs_transaction *cur_trans;
382 u64 num_bytes = 0;
383 u64 qgroup_reserved = 0;
384 bool reloc_reserved = false;
385 int ret;
386
387 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
388 return ERR_PTR(-EROFS);
389
390 if (current->journal_info &&
391 current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
392 WARN_ON(type & TRANS_EXTWRITERS);
393 h = current->journal_info;
394 h->use_count++;
395 WARN_ON(h->use_count > 2);
396 h->orig_rsv = h->block_rsv;
397 h->block_rsv = NULL;
398 goto got_it;
399 }
400
401 /*
402 * Do the reservation before we join the transaction so we can do all
403 * the appropriate flushing if need be.
404 */
405 if (num_items > 0 && root != root->fs_info->chunk_root) {
406 if (root->fs_info->quota_enabled &&
407 is_fstree(root->root_key.objectid)) {
408 qgroup_reserved = num_items * root->leafsize;
409 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
410 if (ret)
411 return ERR_PTR(ret);
412 }
413
414 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
415 /*
416 * Do the reservation for the relocation root creation
417 */
418 if (unlikely(need_reserve_reloc_root(root))) {
419 num_bytes += root->nodesize;
420 reloc_reserved = true;
421 }
422
423 ret = btrfs_block_rsv_add(root,
424 &root->fs_info->trans_block_rsv,
425 num_bytes, flush);
426 if (ret)
427 goto reserve_fail;
428 }
429again:
430 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
431 if (!h) {
432 ret = -ENOMEM;
433 goto alloc_fail;
434 }
435
436 /*
437 * If we are JOIN_NOLOCK we're already committing a transaction and
438 * waiting on this guy, so we don't need to do the sb_start_intwrite
439 * because we're already holding a ref. We need this because we could
440 * have raced in and did an fsync() on a file which can kick a commit
441 * and then we deadlock with somebody doing a freeze.
442 *
443 * If we are ATTACH, it means we just want to catch the current
444 * transaction and commit it, so we needn't do sb_start_intwrite().
445 */
446 if (type & __TRANS_FREEZABLE)
447 sb_start_intwrite(root->fs_info->sb);
448
449 if (may_wait_transaction(root, type))
450 wait_current_trans(root);
451
452 do {
453 ret = join_transaction(root, type);
454 if (ret == -EBUSY) {
455 wait_current_trans(root);
456 if (unlikely(type == TRANS_ATTACH))
457 ret = -ENOENT;
458 }
459 } while (ret == -EBUSY);
460
461 if (ret < 0) {
462 /* We must get the transaction if we are JOIN_NOLOCK. */
463 BUG_ON(type == TRANS_JOIN_NOLOCK);
464 goto join_fail;
465 }
466
467 cur_trans = root->fs_info->running_transaction;
468
469 h->transid = cur_trans->transid;
470 h->transaction = cur_trans;
471 h->blocks_used = 0;
472 h->bytes_reserved = 0;
473 h->root = root;
474 h->delayed_ref_updates = 0;
475 h->use_count = 1;
476 h->adding_csums = 0;
477 h->block_rsv = NULL;
478 h->orig_rsv = NULL;
479 h->aborted = 0;
480 h->qgroup_reserved = 0;
481 h->delayed_ref_elem.seq = 0;
482 h->type = type;
483 h->allocating_chunk = false;
484 h->reloc_reserved = false;
485 h->sync = false;
486 INIT_LIST_HEAD(&h->qgroup_ref_list);
487 INIT_LIST_HEAD(&h->new_bgs);
488
489 smp_mb();
490 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
491 may_wait_transaction(root, type)) {
492 btrfs_commit_transaction(h, root);
493 goto again;
494 }
495
496 if (num_bytes) {
497 trace_btrfs_space_reservation(root->fs_info, "transaction",
498 h->transid, num_bytes, 1);
499 h->block_rsv = &root->fs_info->trans_block_rsv;
500 h->bytes_reserved = num_bytes;
501 h->reloc_reserved = reloc_reserved;
502 }
503 h->qgroup_reserved = qgroup_reserved;
504
505got_it:
506 btrfs_record_root_in_trans(h, root);
507
508 if (!current->journal_info && type != TRANS_USERSPACE)
509 current->journal_info = h;
510 return h;
511
512join_fail:
513 if (type & __TRANS_FREEZABLE)
514 sb_end_intwrite(root->fs_info->sb);
515 kmem_cache_free(btrfs_trans_handle_cachep, h);
516alloc_fail:
517 if (num_bytes)
518 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
519 num_bytes);
520reserve_fail:
521 if (qgroup_reserved)
522 btrfs_qgroup_free(root, qgroup_reserved);
523 return ERR_PTR(ret);
524}
525
526struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
527 int num_items)
528{
529 return start_transaction(root, num_items, TRANS_START,
530 BTRFS_RESERVE_FLUSH_ALL);
531}
532
533struct btrfs_trans_handle *btrfs_start_transaction_lflush(
534 struct btrfs_root *root, int num_items)
535{
536 return start_transaction(root, num_items, TRANS_START,
537 BTRFS_RESERVE_FLUSH_LIMIT);
538}
539
540struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
541{
542 return start_transaction(root, 0, TRANS_JOIN, 0);
543}
544
545struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
546{
547 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
548}
549
550struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
551{
552 return start_transaction(root, 0, TRANS_USERSPACE, 0);
553}
554
555/*
556 * btrfs_attach_transaction() - catch the running transaction
557 *
558 * It is used when we want to commit the current the transaction, but
559 * don't want to start a new one.
560 *
561 * Note: If this function return -ENOENT, it just means there is no
562 * running transaction. But it is possible that the inactive transaction
563 * is still in the memory, not fully on disk. If you hope there is no
564 * inactive transaction in the fs when -ENOENT is returned, you should
565 * invoke
566 * btrfs_attach_transaction_barrier()
567 */
568struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
569{
570 return start_transaction(root, 0, TRANS_ATTACH, 0);
571}
572
573/*
574 * btrfs_attach_transaction_barrier() - catch the running transaction
575 *
576 * It is similar to the above function, the differentia is this one
577 * will wait for all the inactive transactions until they fully
578 * complete.
579 */
580struct btrfs_trans_handle *
581btrfs_attach_transaction_barrier(struct btrfs_root *root)
582{
583 struct btrfs_trans_handle *trans;
584
585 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
586 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
587 btrfs_wait_for_commit(root, 0);
588
589 return trans;
590}
591
592/* wait for a transaction commit to be fully complete */
593static noinline void wait_for_commit(struct btrfs_root *root,
594 struct btrfs_transaction *commit)
595{
596 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
597}
598
599int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
600{
601 struct btrfs_transaction *cur_trans = NULL, *t;
602 int ret = 0;
603
604 if (transid) {
605 if (transid <= root->fs_info->last_trans_committed)
606 goto out;
607
608 ret = -EINVAL;
609 /* find specified transaction */
610 spin_lock(&root->fs_info->trans_lock);
611 list_for_each_entry(t, &root->fs_info->trans_list, list) {
612 if (t->transid == transid) {
613 cur_trans = t;
614 atomic_inc(&cur_trans->use_count);
615 ret = 0;
616 break;
617 }
618 if (t->transid > transid) {
619 ret = 0;
620 break;
621 }
622 }
623 spin_unlock(&root->fs_info->trans_lock);
624 /* The specified transaction doesn't exist */
625 if (!cur_trans)
626 goto out;
627 } else {
628 /* find newest transaction that is committing | committed */
629 spin_lock(&root->fs_info->trans_lock);
630 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
631 list) {
632 if (t->state >= TRANS_STATE_COMMIT_START) {
633 if (t->state == TRANS_STATE_COMPLETED)
634 break;
635 cur_trans = t;
636 atomic_inc(&cur_trans->use_count);
637 break;
638 }
639 }
640 spin_unlock(&root->fs_info->trans_lock);
641 if (!cur_trans)
642 goto out; /* nothing committing|committed */
643 }
644
645 wait_for_commit(root, cur_trans);
646 btrfs_put_transaction(cur_trans);
647out:
648 return ret;
649}
650
651void btrfs_throttle(struct btrfs_root *root)
652{
653 if (!atomic_read(&root->fs_info->open_ioctl_trans))
654 wait_current_trans(root);
655}
656
657static int should_end_transaction(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root)
659{
660 if (root->fs_info->global_block_rsv.space_info->full &&
661 btrfs_check_space_for_delayed_refs(trans, root))
662 return 1;
663
664 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
665}
666
667int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
668 struct btrfs_root *root)
669{
670 struct btrfs_transaction *cur_trans = trans->transaction;
671 int updates;
672 int err;
673
674 smp_mb();
675 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
676 cur_trans->delayed_refs.flushing)
677 return 1;
678
679 updates = trans->delayed_ref_updates;
680 trans->delayed_ref_updates = 0;
681 if (updates) {
682 err = btrfs_run_delayed_refs(trans, root, updates);
683 if (err) /* Error code will also eval true */
684 return err;
685 }
686
687 return should_end_transaction(trans, root);
688}
689
690static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
691 struct btrfs_root *root, int throttle)
692{
693 struct btrfs_transaction *cur_trans = trans->transaction;
694 struct btrfs_fs_info *info = root->fs_info;
695 unsigned long cur = trans->delayed_ref_updates;
696 int lock = (trans->type != TRANS_JOIN_NOLOCK);
697 int err = 0;
698
699 if (trans->use_count > 1) {
700 trans->use_count--;
701 trans->block_rsv = trans->orig_rsv;
702 return 0;
703 }
704
705 /*
706 * do the qgroup accounting as early as possible
707 */
708 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
709
710 btrfs_trans_release_metadata(trans, root);
711 trans->block_rsv = NULL;
712
713 if (trans->qgroup_reserved) {
714 /*
715 * the same root has to be passed here between start_transaction
716 * and end_transaction. Subvolume quota depends on this.
717 */
718 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
719 trans->qgroup_reserved = 0;
720 }
721
722 if (!list_empty(&trans->new_bgs))
723 btrfs_create_pending_block_groups(trans, root);
724
725 trans->delayed_ref_updates = 0;
726 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
727 cur = max_t(unsigned long, cur, 32);
728 trans->delayed_ref_updates = 0;
729 btrfs_run_delayed_refs(trans, root, cur);
730 }
731
732 btrfs_trans_release_metadata(trans, root);
733 trans->block_rsv = NULL;
734
735 if (!list_empty(&trans->new_bgs))
736 btrfs_create_pending_block_groups(trans, root);
737
738 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
739 should_end_transaction(trans, root) &&
740 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
741 spin_lock(&info->trans_lock);
742 if (cur_trans->state == TRANS_STATE_RUNNING)
743 cur_trans->state = TRANS_STATE_BLOCKED;
744 spin_unlock(&info->trans_lock);
745 }
746
747 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
748 if (throttle)
749 return btrfs_commit_transaction(trans, root);
750 else
751 wake_up_process(info->transaction_kthread);
752 }
753
754 if (trans->type & __TRANS_FREEZABLE)
755 sb_end_intwrite(root->fs_info->sb);
756
757 WARN_ON(cur_trans != info->running_transaction);
758 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
759 atomic_dec(&cur_trans->num_writers);
760 extwriter_counter_dec(cur_trans, trans->type);
761
762 smp_mb();
763 if (waitqueue_active(&cur_trans->writer_wait))
764 wake_up(&cur_trans->writer_wait);
765 btrfs_put_transaction(cur_trans);
766
767 if (current->journal_info == trans)
768 current->journal_info = NULL;
769
770 if (throttle)
771 btrfs_run_delayed_iputs(root);
772
773 if (trans->aborted ||
774 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
775 wake_up_process(info->transaction_kthread);
776 err = -EIO;
777 }
778 assert_qgroups_uptodate(trans);
779
780 kmem_cache_free(btrfs_trans_handle_cachep, trans);
781 return err;
782}
783
784int btrfs_end_transaction(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
786{
787 return __btrfs_end_transaction(trans, root, 0);
788}
789
790int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root)
792{
793 return __btrfs_end_transaction(trans, root, 1);
794}
795
796/*
797 * when btree blocks are allocated, they have some corresponding bits set for
798 * them in one of two extent_io trees. This is used to make sure all of
799 * those extents are sent to disk but does not wait on them
800 */
801int btrfs_write_marked_extents(struct btrfs_root *root,
802 struct extent_io_tree *dirty_pages, int mark)
803{
804 int err = 0;
805 int werr = 0;
806 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
807 struct extent_state *cached_state = NULL;
808 u64 start = 0;
809 u64 end;
810
811 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
812 mark, &cached_state)) {
813 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
814 mark, &cached_state, GFP_NOFS);
815 cached_state = NULL;
816 err = filemap_fdatawrite_range(mapping, start, end);
817 if (err)
818 werr = err;
819 cond_resched();
820 start = end + 1;
821 }
822 if (err)
823 werr = err;
824 return werr;
825}
826
827/*
828 * when btree blocks are allocated, they have some corresponding bits set for
829 * them in one of two extent_io trees. This is used to make sure all of
830 * those extents are on disk for transaction or log commit. We wait
831 * on all the pages and clear them from the dirty pages state tree
832 */
833int btrfs_wait_marked_extents(struct btrfs_root *root,
834 struct extent_io_tree *dirty_pages, int mark)
835{
836 int err = 0;
837 int werr = 0;
838 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
839 struct extent_state *cached_state = NULL;
840 u64 start = 0;
841 u64 end;
842
843 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
844 EXTENT_NEED_WAIT, &cached_state)) {
845 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
846 0, 0, &cached_state, GFP_NOFS);
847 err = filemap_fdatawait_range(mapping, start, end);
848 if (err)
849 werr = err;
850 cond_resched();
851 start = end + 1;
852 }
853 if (err)
854 werr = err;
855 return werr;
856}
857
858/*
859 * when btree blocks are allocated, they have some corresponding bits set for
860 * them in one of two extent_io trees. This is used to make sure all of
861 * those extents are on disk for transaction or log commit
862 */
863static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
864 struct extent_io_tree *dirty_pages, int mark)
865{
866 int ret;
867 int ret2;
868 struct blk_plug plug;
869
870 blk_start_plug(&plug);
871 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
872 blk_finish_plug(&plug);
873 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
874
875 if (ret)
876 return ret;
877 if (ret2)
878 return ret2;
879 return 0;
880}
881
882int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
883 struct btrfs_root *root)
884{
885 if (!trans || !trans->transaction) {
886 struct inode *btree_inode;
887 btree_inode = root->fs_info->btree_inode;
888 return filemap_write_and_wait(btree_inode->i_mapping);
889 }
890 return btrfs_write_and_wait_marked_extents(root,
891 &trans->transaction->dirty_pages,
892 EXTENT_DIRTY);
893}
894
895/*
896 * this is used to update the root pointer in the tree of tree roots.
897 *
898 * But, in the case of the extent allocation tree, updating the root
899 * pointer may allocate blocks which may change the root of the extent
900 * allocation tree.
901 *
902 * So, this loops and repeats and makes sure the cowonly root didn't
903 * change while the root pointer was being updated in the metadata.
904 */
905static int update_cowonly_root(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root)
907{
908 int ret;
909 u64 old_root_bytenr;
910 u64 old_root_used;
911 struct btrfs_root *tree_root = root->fs_info->tree_root;
912
913 old_root_used = btrfs_root_used(&root->root_item);
914 btrfs_write_dirty_block_groups(trans, root);
915
916 while (1) {
917 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
918 if (old_root_bytenr == root->node->start &&
919 old_root_used == btrfs_root_used(&root->root_item))
920 break;
921
922 btrfs_set_root_node(&root->root_item, root->node);
923 ret = btrfs_update_root(trans, tree_root,
924 &root->root_key,
925 &root->root_item);
926 if (ret)
927 return ret;
928
929 old_root_used = btrfs_root_used(&root->root_item);
930 ret = btrfs_write_dirty_block_groups(trans, root);
931 if (ret)
932 return ret;
933 }
934
935 return 0;
936}
937
938/*
939 * update all the cowonly tree roots on disk
940 *
941 * The error handling in this function may not be obvious. Any of the
942 * failures will cause the file system to go offline. We still need
943 * to clean up the delayed refs.
944 */
945static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root)
947{
948 struct btrfs_fs_info *fs_info = root->fs_info;
949 struct list_head *next;
950 struct extent_buffer *eb;
951 int ret;
952
953 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
954 if (ret)
955 return ret;
956
957 eb = btrfs_lock_root_node(fs_info->tree_root);
958 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
959 0, &eb);
960 btrfs_tree_unlock(eb);
961 free_extent_buffer(eb);
962
963 if (ret)
964 return ret;
965
966 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
967 if (ret)
968 return ret;
969
970 ret = btrfs_run_dev_stats(trans, root->fs_info);
971 if (ret)
972 return ret;
973 ret = btrfs_run_dev_replace(trans, root->fs_info);
974 if (ret)
975 return ret;
976 ret = btrfs_run_qgroups(trans, root->fs_info);
977 if (ret)
978 return ret;
979
980 /* run_qgroups might have added some more refs */
981 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
982 if (ret)
983 return ret;
984
985 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
986 next = fs_info->dirty_cowonly_roots.next;
987 list_del_init(next);
988 root = list_entry(next, struct btrfs_root, dirty_list);
989
990 if (root != fs_info->extent_root)
991 list_add_tail(&root->dirty_list,
992 &trans->transaction->switch_commits);
993 ret = update_cowonly_root(trans, root);
994 if (ret)
995 return ret;
996 }
997
998 list_add_tail(&fs_info->extent_root->dirty_list,
999 &trans->transaction->switch_commits);
1000 btrfs_after_dev_replace_commit(fs_info);
1001
1002 return 0;
1003}
1004
1005/*
1006 * dead roots are old snapshots that need to be deleted. This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1008 * be deleted
1009 */
1010void btrfs_add_dead_root(struct btrfs_root *root)
1011{
1012 spin_lock(&root->fs_info->trans_lock);
1013 if (list_empty(&root->root_list))
1014 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015 spin_unlock(&root->fs_info->trans_lock);
1016}
1017
1018/*
1019 * update all the cowonly tree roots on disk
1020 */
1021static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root)
1023{
1024 struct btrfs_root *gang[8];
1025 struct btrfs_fs_info *fs_info = root->fs_info;
1026 int i;
1027 int ret;
1028 int err = 0;
1029
1030 spin_lock(&fs_info->fs_roots_radix_lock);
1031 while (1) {
1032 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033 (void **)gang, 0,
1034 ARRAY_SIZE(gang),
1035 BTRFS_ROOT_TRANS_TAG);
1036 if (ret == 0)
1037 break;
1038 for (i = 0; i < ret; i++) {
1039 root = gang[i];
1040 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041 (unsigned long)root->root_key.objectid,
1042 BTRFS_ROOT_TRANS_TAG);
1043 spin_unlock(&fs_info->fs_roots_radix_lock);
1044
1045 btrfs_free_log(trans, root);
1046 btrfs_update_reloc_root(trans, root);
1047 btrfs_orphan_commit_root(trans, root);
1048
1049 btrfs_save_ino_cache(root, trans);
1050
1051 /* see comments in should_cow_block() */
1052 root->force_cow = 0;
1053 smp_wmb();
1054
1055 if (root->commit_root != root->node) {
1056 list_add_tail(&root->dirty_list,
1057 &trans->transaction->switch_commits);
1058 btrfs_set_root_node(&root->root_item,
1059 root->node);
1060 }
1061
1062 err = btrfs_update_root(trans, fs_info->tree_root,
1063 &root->root_key,
1064 &root->root_item);
1065 spin_lock(&fs_info->fs_roots_radix_lock);
1066 if (err)
1067 break;
1068 }
1069 }
1070 spin_unlock(&fs_info->fs_roots_radix_lock);
1071 return err;
1072}
1073
1074/*
1075 * defrag a given btree.
1076 * Every leaf in the btree is read and defragged.
1077 */
1078int btrfs_defrag_root(struct btrfs_root *root)
1079{
1080 struct btrfs_fs_info *info = root->fs_info;
1081 struct btrfs_trans_handle *trans;
1082 int ret;
1083
1084 if (xchg(&root->defrag_running, 1))
1085 return 0;
1086
1087 while (1) {
1088 trans = btrfs_start_transaction(root, 0);
1089 if (IS_ERR(trans))
1090 return PTR_ERR(trans);
1091
1092 ret = btrfs_defrag_leaves(trans, root);
1093
1094 btrfs_end_transaction(trans, root);
1095 btrfs_btree_balance_dirty(info->tree_root);
1096 cond_resched();
1097
1098 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1099 break;
1100
1101 if (btrfs_defrag_cancelled(root->fs_info)) {
1102 pr_debug("BTRFS: defrag_root cancelled\n");
1103 ret = -EAGAIN;
1104 break;
1105 }
1106 }
1107 root->defrag_running = 0;
1108 return ret;
1109}
1110
1111/*
1112 * new snapshots need to be created at a very specific time in the
1113 * transaction commit. This does the actual creation.
1114 *
1115 * Note:
1116 * If the error which may affect the commitment of the current transaction
1117 * happens, we should return the error number. If the error which just affect
1118 * the creation of the pending snapshots, just return 0.
1119 */
1120static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1121 struct btrfs_fs_info *fs_info,
1122 struct btrfs_pending_snapshot *pending)
1123{
1124 struct btrfs_key key;
1125 struct btrfs_root_item *new_root_item;
1126 struct btrfs_root *tree_root = fs_info->tree_root;
1127 struct btrfs_root *root = pending->root;
1128 struct btrfs_root *parent_root;
1129 struct btrfs_block_rsv *rsv;
1130 struct inode *parent_inode;
1131 struct btrfs_path *path;
1132 struct btrfs_dir_item *dir_item;
1133 struct dentry *dentry;
1134 struct extent_buffer *tmp;
1135 struct extent_buffer *old;
1136 struct timespec cur_time = CURRENT_TIME;
1137 int ret = 0;
1138 u64 to_reserve = 0;
1139 u64 index = 0;
1140 u64 objectid;
1141 u64 root_flags;
1142 uuid_le new_uuid;
1143
1144 path = btrfs_alloc_path();
1145 if (!path) {
1146 pending->error = -ENOMEM;
1147 return 0;
1148 }
1149
1150 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1151 if (!new_root_item) {
1152 pending->error = -ENOMEM;
1153 goto root_item_alloc_fail;
1154 }
1155
1156 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1157 if (pending->error)
1158 goto no_free_objectid;
1159
1160 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1161
1162 if (to_reserve > 0) {
1163 pending->error = btrfs_block_rsv_add(root,
1164 &pending->block_rsv,
1165 to_reserve,
1166 BTRFS_RESERVE_NO_FLUSH);
1167 if (pending->error)
1168 goto no_free_objectid;
1169 }
1170
1171 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1172 root->root_key.objectid,
1173 objectid, pending->inherit);
1174 if (pending->error)
1175 goto no_free_objectid;
1176
1177 key.objectid = objectid;
1178 key.offset = (u64)-1;
1179 key.type = BTRFS_ROOT_ITEM_KEY;
1180
1181 rsv = trans->block_rsv;
1182 trans->block_rsv = &pending->block_rsv;
1183 trans->bytes_reserved = trans->block_rsv->reserved;
1184
1185 dentry = pending->dentry;
1186 parent_inode = pending->dir;
1187 parent_root = BTRFS_I(parent_inode)->root;
1188 record_root_in_trans(trans, parent_root);
1189
1190 /*
1191 * insert the directory item
1192 */
1193 ret = btrfs_set_inode_index(parent_inode, &index);
1194 BUG_ON(ret); /* -ENOMEM */
1195
1196 /* check if there is a file/dir which has the same name. */
1197 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1198 btrfs_ino(parent_inode),
1199 dentry->d_name.name,
1200 dentry->d_name.len, 0);
1201 if (dir_item != NULL && !IS_ERR(dir_item)) {
1202 pending->error = -EEXIST;
1203 goto dir_item_existed;
1204 } else if (IS_ERR(dir_item)) {
1205 ret = PTR_ERR(dir_item);
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1208 }
1209 btrfs_release_path(path);
1210
1211 /*
1212 * pull in the delayed directory update
1213 * and the delayed inode item
1214 * otherwise we corrupt the FS during
1215 * snapshot
1216 */
1217 ret = btrfs_run_delayed_items(trans, root);
1218 if (ret) { /* Transaction aborted */
1219 btrfs_abort_transaction(trans, root, ret);
1220 goto fail;
1221 }
1222
1223 record_root_in_trans(trans, root);
1224 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1225 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1226 btrfs_check_and_init_root_item(new_root_item);
1227
1228 root_flags = btrfs_root_flags(new_root_item);
1229 if (pending->readonly)
1230 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1231 else
1232 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1233 btrfs_set_root_flags(new_root_item, root_flags);
1234
1235 btrfs_set_root_generation_v2(new_root_item,
1236 trans->transid);
1237 uuid_le_gen(&new_uuid);
1238 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1239 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1240 BTRFS_UUID_SIZE);
1241 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1242 memset(new_root_item->received_uuid, 0,
1243 sizeof(new_root_item->received_uuid));
1244 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1245 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1246 btrfs_set_root_stransid(new_root_item, 0);
1247 btrfs_set_root_rtransid(new_root_item, 0);
1248 }
1249 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1250 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1251 btrfs_set_root_otransid(new_root_item, trans->transid);
1252
1253 old = btrfs_lock_root_node(root);
1254 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1255 if (ret) {
1256 btrfs_tree_unlock(old);
1257 free_extent_buffer(old);
1258 btrfs_abort_transaction(trans, root, ret);
1259 goto fail;
1260 }
1261
1262 btrfs_set_lock_blocking(old);
1263
1264 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1265 /* clean up in any case */
1266 btrfs_tree_unlock(old);
1267 free_extent_buffer(old);
1268 if (ret) {
1269 btrfs_abort_transaction(trans, root, ret);
1270 goto fail;
1271 }
1272
1273 /* see comments in should_cow_block() */
1274 root->force_cow = 1;
1275 smp_wmb();
1276
1277 btrfs_set_root_node(new_root_item, tmp);
1278 /* record when the snapshot was created in key.offset */
1279 key.offset = trans->transid;
1280 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1281 btrfs_tree_unlock(tmp);
1282 free_extent_buffer(tmp);
1283 if (ret) {
1284 btrfs_abort_transaction(trans, root, ret);
1285 goto fail;
1286 }
1287
1288 /*
1289 * insert root back/forward references
1290 */
1291 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1292 parent_root->root_key.objectid,
1293 btrfs_ino(parent_inode), index,
1294 dentry->d_name.name, dentry->d_name.len);
1295 if (ret) {
1296 btrfs_abort_transaction(trans, root, ret);
1297 goto fail;
1298 }
1299
1300 key.offset = (u64)-1;
1301 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1302 if (IS_ERR(pending->snap)) {
1303 ret = PTR_ERR(pending->snap);
1304 btrfs_abort_transaction(trans, root, ret);
1305 goto fail;
1306 }
1307
1308 ret = btrfs_reloc_post_snapshot(trans, pending);
1309 if (ret) {
1310 btrfs_abort_transaction(trans, root, ret);
1311 goto fail;
1312 }
1313
1314 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315 if (ret) {
1316 btrfs_abort_transaction(trans, root, ret);
1317 goto fail;
1318 }
1319
1320 ret = btrfs_insert_dir_item(trans, parent_root,
1321 dentry->d_name.name, dentry->d_name.len,
1322 parent_inode, &key,
1323 BTRFS_FT_DIR, index);
1324 /* We have check then name at the beginning, so it is impossible. */
1325 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1326 if (ret) {
1327 btrfs_abort_transaction(trans, root, ret);
1328 goto fail;
1329 }
1330
1331 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1332 dentry->d_name.len * 2);
1333 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1334 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1335 if (ret) {
1336 btrfs_abort_transaction(trans, root, ret);
1337 goto fail;
1338 }
1339 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1340 BTRFS_UUID_KEY_SUBVOL, objectid);
1341 if (ret) {
1342 btrfs_abort_transaction(trans, root, ret);
1343 goto fail;
1344 }
1345 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1346 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1347 new_root_item->received_uuid,
1348 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1349 objectid);
1350 if (ret && ret != -EEXIST) {
1351 btrfs_abort_transaction(trans, root, ret);
1352 goto fail;
1353 }
1354 }
1355fail:
1356 pending->error = ret;
1357dir_item_existed:
1358 trans->block_rsv = rsv;
1359 trans->bytes_reserved = 0;
1360no_free_objectid:
1361 kfree(new_root_item);
1362root_item_alloc_fail:
1363 btrfs_free_path(path);
1364 return ret;
1365}
1366
1367/*
1368 * create all the snapshots we've scheduled for creation
1369 */
1370static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1372{
1373 struct btrfs_pending_snapshot *pending, *next;
1374 struct list_head *head = &trans->transaction->pending_snapshots;
1375 int ret = 0;
1376
1377 list_for_each_entry_safe(pending, next, head, list) {
1378 list_del(&pending->list);
1379 ret = create_pending_snapshot(trans, fs_info, pending);
1380 if (ret)
1381 break;
1382 }
1383 return ret;
1384}
1385
1386static void update_super_roots(struct btrfs_root *root)
1387{
1388 struct btrfs_root_item *root_item;
1389 struct btrfs_super_block *super;
1390
1391 super = root->fs_info->super_copy;
1392
1393 root_item = &root->fs_info->chunk_root->root_item;
1394 super->chunk_root = root_item->bytenr;
1395 super->chunk_root_generation = root_item->generation;
1396 super->chunk_root_level = root_item->level;
1397
1398 root_item = &root->fs_info->tree_root->root_item;
1399 super->root = root_item->bytenr;
1400 super->generation = root_item->generation;
1401 super->root_level = root_item->level;
1402 if (btrfs_test_opt(root, SPACE_CACHE))
1403 super->cache_generation = root_item->generation;
1404 if (root->fs_info->update_uuid_tree_gen)
1405 super->uuid_tree_generation = root_item->generation;
1406}
1407
1408int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1409{
1410 struct btrfs_transaction *trans;
1411 int ret = 0;
1412
1413 spin_lock(&info->trans_lock);
1414 trans = info->running_transaction;
1415 if (trans)
1416 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1417 spin_unlock(&info->trans_lock);
1418 return ret;
1419}
1420
1421int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1422{
1423 struct btrfs_transaction *trans;
1424 int ret = 0;
1425
1426 spin_lock(&info->trans_lock);
1427 trans = info->running_transaction;
1428 if (trans)
1429 ret = is_transaction_blocked(trans);
1430 spin_unlock(&info->trans_lock);
1431 return ret;
1432}
1433
1434/*
1435 * wait for the current transaction commit to start and block subsequent
1436 * transaction joins
1437 */
1438static void wait_current_trans_commit_start(struct btrfs_root *root,
1439 struct btrfs_transaction *trans)
1440{
1441 wait_event(root->fs_info->transaction_blocked_wait,
1442 trans->state >= TRANS_STATE_COMMIT_START ||
1443 trans->aborted);
1444}
1445
1446/*
1447 * wait for the current transaction to start and then become unblocked.
1448 * caller holds ref.
1449 */
1450static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1451 struct btrfs_transaction *trans)
1452{
1453 wait_event(root->fs_info->transaction_wait,
1454 trans->state >= TRANS_STATE_UNBLOCKED ||
1455 trans->aborted);
1456}
1457
1458/*
1459 * commit transactions asynchronously. once btrfs_commit_transaction_async
1460 * returns, any subsequent transaction will not be allowed to join.
1461 */
1462struct btrfs_async_commit {
1463 struct btrfs_trans_handle *newtrans;
1464 struct btrfs_root *root;
1465 struct work_struct work;
1466};
1467
1468static void do_async_commit(struct work_struct *work)
1469{
1470 struct btrfs_async_commit *ac =
1471 container_of(work, struct btrfs_async_commit, work);
1472
1473 /*
1474 * We've got freeze protection passed with the transaction.
1475 * Tell lockdep about it.
1476 */
1477 if (ac->newtrans->type & __TRANS_FREEZABLE)
1478 rwsem_acquire_read(
1479 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480 0, 1, _THIS_IP_);
1481
1482 current->journal_info = ac->newtrans;
1483
1484 btrfs_commit_transaction(ac->newtrans, ac->root);
1485 kfree(ac);
1486}
1487
1488int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root,
1490 int wait_for_unblock)
1491{
1492 struct btrfs_async_commit *ac;
1493 struct btrfs_transaction *cur_trans;
1494
1495 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1496 if (!ac)
1497 return -ENOMEM;
1498
1499 INIT_WORK(&ac->work, do_async_commit);
1500 ac->root = root;
1501 ac->newtrans = btrfs_join_transaction(root);
1502 if (IS_ERR(ac->newtrans)) {
1503 int err = PTR_ERR(ac->newtrans);
1504 kfree(ac);
1505 return err;
1506 }
1507
1508 /* take transaction reference */
1509 cur_trans = trans->transaction;
1510 atomic_inc(&cur_trans->use_count);
1511
1512 btrfs_end_transaction(trans, root);
1513
1514 /*
1515 * Tell lockdep we've released the freeze rwsem, since the
1516 * async commit thread will be the one to unlock it.
1517 */
1518 if (ac->newtrans->type & __TRANS_FREEZABLE)
1519 rwsem_release(
1520 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1521 1, _THIS_IP_);
1522
1523 schedule_work(&ac->work);
1524
1525 /* wait for transaction to start and unblock */
1526 if (wait_for_unblock)
1527 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1528 else
1529 wait_current_trans_commit_start(root, cur_trans);
1530
1531 if (current->journal_info == trans)
1532 current->journal_info = NULL;
1533
1534 btrfs_put_transaction(cur_trans);
1535 return 0;
1536}
1537
1538
1539static void cleanup_transaction(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, int err)
1541{
1542 struct btrfs_transaction *cur_trans = trans->transaction;
1543 DEFINE_WAIT(wait);
1544
1545 WARN_ON(trans->use_count > 1);
1546
1547 btrfs_abort_transaction(trans, root, err);
1548
1549 spin_lock(&root->fs_info->trans_lock);
1550
1551 /*
1552 * If the transaction is removed from the list, it means this
1553 * transaction has been committed successfully, so it is impossible
1554 * to call the cleanup function.
1555 */
1556 BUG_ON(list_empty(&cur_trans->list));
1557
1558 list_del_init(&cur_trans->list);
1559 if (cur_trans == root->fs_info->running_transaction) {
1560 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1561 spin_unlock(&root->fs_info->trans_lock);
1562 wait_event(cur_trans->writer_wait,
1563 atomic_read(&cur_trans->num_writers) == 1);
1564
1565 spin_lock(&root->fs_info->trans_lock);
1566 }
1567 spin_unlock(&root->fs_info->trans_lock);
1568
1569 btrfs_cleanup_one_transaction(trans->transaction, root);
1570
1571 spin_lock(&root->fs_info->trans_lock);
1572 if (cur_trans == root->fs_info->running_transaction)
1573 root->fs_info->running_transaction = NULL;
1574 spin_unlock(&root->fs_info->trans_lock);
1575
1576 if (trans->type & __TRANS_FREEZABLE)
1577 sb_end_intwrite(root->fs_info->sb);
1578 btrfs_put_transaction(cur_trans);
1579 btrfs_put_transaction(cur_trans);
1580
1581 trace_btrfs_transaction_commit(root);
1582
1583 if (current->journal_info == trans)
1584 current->journal_info = NULL;
1585 btrfs_scrub_cancel(root->fs_info);
1586
1587 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588}
1589
1590static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1591 struct btrfs_root *root)
1592{
1593 int ret;
1594
1595 ret = btrfs_run_delayed_items(trans, root);
1596 /*
1597 * running the delayed items may have added new refs. account
1598 * them now so that they hinder processing of more delayed refs
1599 * as little as possible.
1600 */
1601 if (ret) {
1602 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1603 return ret;
1604 }
1605
1606 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607 if (ret)
1608 return ret;
1609
1610 /*
1611 * rename don't use btrfs_join_transaction, so, once we
1612 * set the transaction to blocked above, we aren't going
1613 * to get any new ordered operations. We can safely run
1614 * it here and no for sure that nothing new will be added
1615 * to the list
1616 */
1617 ret = btrfs_run_ordered_operations(trans, root, 1);
1618
1619 return ret;
1620}
1621
1622static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1623{
1624 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1626 return 0;
1627}
1628
1629static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1630{
1631 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 btrfs_wait_ordered_roots(fs_info, -1);
1633}
1634
1635int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root)
1637{
1638 struct btrfs_transaction *cur_trans = trans->transaction;
1639 struct btrfs_transaction *prev_trans = NULL;
1640 int ret;
1641
1642 ret = btrfs_run_ordered_operations(trans, root, 0);
1643 if (ret) {
1644 btrfs_abort_transaction(trans, root, ret);
1645 btrfs_end_transaction(trans, root);
1646 return ret;
1647 }
1648
1649 /* Stop the commit early if ->aborted is set */
1650 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1651 ret = cur_trans->aborted;
1652 btrfs_end_transaction(trans, root);
1653 return ret;
1654 }
1655
1656 /* make a pass through all the delayed refs we have so far
1657 * any runnings procs may add more while we are here
1658 */
1659 ret = btrfs_run_delayed_refs(trans, root, 0);
1660 if (ret) {
1661 btrfs_end_transaction(trans, root);
1662 return ret;
1663 }
1664
1665 btrfs_trans_release_metadata(trans, root);
1666 trans->block_rsv = NULL;
1667 if (trans->qgroup_reserved) {
1668 btrfs_qgroup_free(root, trans->qgroup_reserved);
1669 trans->qgroup_reserved = 0;
1670 }
1671
1672 cur_trans = trans->transaction;
1673
1674 /*
1675 * set the flushing flag so procs in this transaction have to
1676 * start sending their work down.
1677 */
1678 cur_trans->delayed_refs.flushing = 1;
1679 smp_wmb();
1680
1681 if (!list_empty(&trans->new_bgs))
1682 btrfs_create_pending_block_groups(trans, root);
1683
1684 ret = btrfs_run_delayed_refs(trans, root, 0);
1685 if (ret) {
1686 btrfs_end_transaction(trans, root);
1687 return ret;
1688 }
1689
1690 spin_lock(&root->fs_info->trans_lock);
1691 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1692 spin_unlock(&root->fs_info->trans_lock);
1693 atomic_inc(&cur_trans->use_count);
1694 ret = btrfs_end_transaction(trans, root);
1695
1696 wait_for_commit(root, cur_trans);
1697
1698 btrfs_put_transaction(cur_trans);
1699
1700 return ret;
1701 }
1702
1703 cur_trans->state = TRANS_STATE_COMMIT_START;
1704 wake_up(&root->fs_info->transaction_blocked_wait);
1705
1706 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1707 prev_trans = list_entry(cur_trans->list.prev,
1708 struct btrfs_transaction, list);
1709 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1710 atomic_inc(&prev_trans->use_count);
1711 spin_unlock(&root->fs_info->trans_lock);
1712
1713 wait_for_commit(root, prev_trans);
1714
1715 btrfs_put_transaction(prev_trans);
1716 } else {
1717 spin_unlock(&root->fs_info->trans_lock);
1718 }
1719 } else {
1720 spin_unlock(&root->fs_info->trans_lock);
1721 }
1722
1723 extwriter_counter_dec(cur_trans, trans->type);
1724
1725 ret = btrfs_start_delalloc_flush(root->fs_info);
1726 if (ret)
1727 goto cleanup_transaction;
1728
1729 ret = btrfs_flush_all_pending_stuffs(trans, root);
1730 if (ret)
1731 goto cleanup_transaction;
1732
1733 wait_event(cur_trans->writer_wait,
1734 extwriter_counter_read(cur_trans) == 0);
1735
1736 /* some pending stuffs might be added after the previous flush. */
1737 ret = btrfs_flush_all_pending_stuffs(trans, root);
1738 if (ret)
1739 goto cleanup_transaction;
1740
1741 btrfs_wait_delalloc_flush(root->fs_info);
1742
1743 btrfs_scrub_pause(root);
1744 /*
1745 * Ok now we need to make sure to block out any other joins while we
1746 * commit the transaction. We could have started a join before setting
1747 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748 */
1749 spin_lock(&root->fs_info->trans_lock);
1750 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1751 spin_unlock(&root->fs_info->trans_lock);
1752 wait_event(cur_trans->writer_wait,
1753 atomic_read(&cur_trans->num_writers) == 1);
1754
1755 /* ->aborted might be set after the previous check, so check it */
1756 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1757 ret = cur_trans->aborted;
1758 goto scrub_continue;
1759 }
1760 /*
1761 * the reloc mutex makes sure that we stop
1762 * the balancing code from coming in and moving
1763 * extents around in the middle of the commit
1764 */
1765 mutex_lock(&root->fs_info->reloc_mutex);
1766
1767 /*
1768 * We needn't worry about the delayed items because we will
1769 * deal with them in create_pending_snapshot(), which is the
1770 * core function of the snapshot creation.
1771 */
1772 ret = create_pending_snapshots(trans, root->fs_info);
1773 if (ret) {
1774 mutex_unlock(&root->fs_info->reloc_mutex);
1775 goto scrub_continue;
1776 }
1777
1778 /*
1779 * We insert the dir indexes of the snapshots and update the inode
1780 * of the snapshots' parents after the snapshot creation, so there
1781 * are some delayed items which are not dealt with. Now deal with
1782 * them.
1783 *
1784 * We needn't worry that this operation will corrupt the snapshots,
1785 * because all the tree which are snapshoted will be forced to COW
1786 * the nodes and leaves.
1787 */
1788 ret = btrfs_run_delayed_items(trans, root);
1789 if (ret) {
1790 mutex_unlock(&root->fs_info->reloc_mutex);
1791 goto scrub_continue;
1792 }
1793
1794 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1795 if (ret) {
1796 mutex_unlock(&root->fs_info->reloc_mutex);
1797 goto scrub_continue;
1798 }
1799
1800 /*
1801 * make sure none of the code above managed to slip in a
1802 * delayed item
1803 */
1804 btrfs_assert_delayed_root_empty(root);
1805
1806 WARN_ON(cur_trans != trans->transaction);
1807
1808 /* btrfs_commit_tree_roots is responsible for getting the
1809 * various roots consistent with each other. Every pointer
1810 * in the tree of tree roots has to point to the most up to date
1811 * root for every subvolume and other tree. So, we have to keep
1812 * the tree logging code from jumping in and changing any
1813 * of the trees.
1814 *
1815 * At this point in the commit, there can't be any tree-log
1816 * writers, but a little lower down we drop the trans mutex
1817 * and let new people in. By holding the tree_log_mutex
1818 * from now until after the super is written, we avoid races
1819 * with the tree-log code.
1820 */
1821 mutex_lock(&root->fs_info->tree_log_mutex);
1822
1823 ret = commit_fs_roots(trans, root);
1824 if (ret) {
1825 mutex_unlock(&root->fs_info->tree_log_mutex);
1826 mutex_unlock(&root->fs_info->reloc_mutex);
1827 goto scrub_continue;
1828 }
1829
1830 /*
1831 * Since the transaction is done, we should set the inode map cache flag
1832 * before any other comming transaction.
1833 */
1834 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1835 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1836 else
1837 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1838
1839 /* commit_fs_roots gets rid of all the tree log roots, it is now
1840 * safe to free the root of tree log roots
1841 */
1842 btrfs_free_log_root_tree(trans, root->fs_info);
1843
1844 ret = commit_cowonly_roots(trans, root);
1845 if (ret) {
1846 mutex_unlock(&root->fs_info->tree_log_mutex);
1847 mutex_unlock(&root->fs_info->reloc_mutex);
1848 goto scrub_continue;
1849 }
1850
1851 /*
1852 * The tasks which save the space cache and inode cache may also
1853 * update ->aborted, check it.
1854 */
1855 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856 ret = cur_trans->aborted;
1857 mutex_unlock(&root->fs_info->tree_log_mutex);
1858 mutex_unlock(&root->fs_info->reloc_mutex);
1859 goto scrub_continue;
1860 }
1861
1862 btrfs_prepare_extent_commit(trans, root);
1863
1864 cur_trans = root->fs_info->running_transaction;
1865
1866 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867 root->fs_info->tree_root->node);
1868 list_add_tail(&root->fs_info->tree_root->dirty_list,
1869 &cur_trans->switch_commits);
1870
1871 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1872 root->fs_info->chunk_root->node);
1873 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1874 &cur_trans->switch_commits);
1875
1876 switch_commit_roots(cur_trans, root->fs_info);
1877
1878 assert_qgroups_uptodate(trans);
1879 update_super_roots(root);
1880
1881 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1882 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1883 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1884 sizeof(*root->fs_info->super_copy));
1885
1886 spin_lock(&root->fs_info->trans_lock);
1887 cur_trans->state = TRANS_STATE_UNBLOCKED;
1888 root->fs_info->running_transaction = NULL;
1889 spin_unlock(&root->fs_info->trans_lock);
1890 mutex_unlock(&root->fs_info->reloc_mutex);
1891
1892 wake_up(&root->fs_info->transaction_wait);
1893
1894 ret = btrfs_write_and_wait_transaction(trans, root);
1895 if (ret) {
1896 btrfs_error(root->fs_info, ret,
1897 "Error while writing out transaction");
1898 mutex_unlock(&root->fs_info->tree_log_mutex);
1899 goto scrub_continue;
1900 }
1901
1902 ret = write_ctree_super(trans, root, 0);
1903 if (ret) {
1904 mutex_unlock(&root->fs_info->tree_log_mutex);
1905 goto scrub_continue;
1906 }
1907
1908 /*
1909 * the super is written, we can safely allow the tree-loggers
1910 * to go about their business
1911 */
1912 mutex_unlock(&root->fs_info->tree_log_mutex);
1913
1914 btrfs_finish_extent_commit(trans, root);
1915
1916 root->fs_info->last_trans_committed = cur_trans->transid;
1917 /*
1918 * We needn't acquire the lock here because there is no other task
1919 * which can change it.
1920 */
1921 cur_trans->state = TRANS_STATE_COMPLETED;
1922 wake_up(&cur_trans->commit_wait);
1923
1924 spin_lock(&root->fs_info->trans_lock);
1925 list_del_init(&cur_trans->list);
1926 spin_unlock(&root->fs_info->trans_lock);
1927
1928 btrfs_put_transaction(cur_trans);
1929 btrfs_put_transaction(cur_trans);
1930
1931 if (trans->type & __TRANS_FREEZABLE)
1932 sb_end_intwrite(root->fs_info->sb);
1933
1934 trace_btrfs_transaction_commit(root);
1935
1936 btrfs_scrub_continue(root);
1937
1938 if (current->journal_info == trans)
1939 current->journal_info = NULL;
1940
1941 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942
1943 if (current != root->fs_info->transaction_kthread)
1944 btrfs_run_delayed_iputs(root);
1945
1946 return ret;
1947
1948scrub_continue:
1949 btrfs_scrub_continue(root);
1950cleanup_transaction:
1951 btrfs_trans_release_metadata(trans, root);
1952 trans->block_rsv = NULL;
1953 if (trans->qgroup_reserved) {
1954 btrfs_qgroup_free(root, trans->qgroup_reserved);
1955 trans->qgroup_reserved = 0;
1956 }
1957 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1958 if (current->journal_info == trans)
1959 current->journal_info = NULL;
1960 cleanup_transaction(trans, root, ret);
1961
1962 return ret;
1963}
1964
1965/*
1966 * return < 0 if error
1967 * 0 if there are no more dead_roots at the time of call
1968 * 1 there are more to be processed, call me again
1969 *
1970 * The return value indicates there are certainly more snapshots to delete, but
1971 * if there comes a new one during processing, it may return 0. We don't mind,
1972 * because btrfs_commit_super will poke cleaner thread and it will process it a
1973 * few seconds later.
1974 */
1975int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1976{
1977 int ret;
1978 struct btrfs_fs_info *fs_info = root->fs_info;
1979
1980 spin_lock(&fs_info->trans_lock);
1981 if (list_empty(&fs_info->dead_roots)) {
1982 spin_unlock(&fs_info->trans_lock);
1983 return 0;
1984 }
1985 root = list_first_entry(&fs_info->dead_roots,
1986 struct btrfs_root, root_list);
1987 /*
1988 * Make sure root is not involved in send,
1989 * if we fail with first root, we return
1990 * directly rather than continue.
1991 */
1992 spin_lock(&root->root_item_lock);
1993 if (root->send_in_progress) {
1994 spin_unlock(&fs_info->trans_lock);
1995 spin_unlock(&root->root_item_lock);
1996 return 0;
1997 }
1998 spin_unlock(&root->root_item_lock);
1999
2000 list_del_init(&root->root_list);
2001 spin_unlock(&fs_info->trans_lock);
2002
2003 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004
2005 btrfs_kill_all_delayed_nodes(root);
2006
2007 if (btrfs_header_backref_rev(root->node) <
2008 BTRFS_MIXED_BACKREF_REV)
2009 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010 else
2011 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012 /*
2013 * If we encounter a transaction abort during snapshot cleaning, we
2014 * don't want to crash here
2015 */
2016 return (ret < 0) ? 0 : 1;
2017}