Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/module.h>
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/seq_file.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/mount.h>
18#include <linux/mpage.h>
19#include <linux/swap.h>
20#include <linux/writeback.h>
21#include <linux/statfs.h>
22#include <linux/compat.h>
23#include <linux/parser.h>
24#include <linux/ctype.h>
25#include <linux/namei.h>
26#include <linux/miscdevice.h>
27#include <linux/magic.h>
28#include <linux/slab.h>
29#include <linux/cleancache.h>
30#include <linux/ratelimit.h>
31#include <linux/crc32c.h>
32#include <linux/btrfs.h>
33#include "delayed-inode.h"
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "print-tree.h"
39#include "props.h"
40#include "xattr.h"
41#include "volumes.h"
42#include "export.h"
43#include "compression.h"
44#include "rcu-string.h"
45#include "dev-replace.h"
46#include "free-space-cache.h"
47#include "backref.h"
48#include "tests/btrfs-tests.h"
49
50#include "qgroup.h"
51#define CREATE_TRACE_POINTS
52#include <trace/events/btrfs.h>
53
54static const struct super_operations btrfs_super_ops;
55
56/*
57 * Types for mounting the default subvolume and a subvolume explicitly
58 * requested by subvol=/path. That way the callchain is straightforward and we
59 * don't have to play tricks with the mount options and recursive calls to
60 * btrfs_mount.
61 *
62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63 */
64static struct file_system_type btrfs_fs_type;
65static struct file_system_type btrfs_root_fs_type;
66
67static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68
69const char *btrfs_decode_error(int errno)
70{
71 char *errstr = "unknown";
72
73 switch (errno) {
74 case -EIO:
75 errstr = "IO failure";
76 break;
77 case -ENOMEM:
78 errstr = "Out of memory";
79 break;
80 case -EROFS:
81 errstr = "Readonly filesystem";
82 break;
83 case -EEXIST:
84 errstr = "Object already exists";
85 break;
86 case -ENOSPC:
87 errstr = "No space left";
88 break;
89 case -ENOENT:
90 errstr = "No such entry";
91 break;
92 }
93
94 return errstr;
95}
96
97/*
98 * __btrfs_handle_fs_error decodes expected errors from the caller and
99 * invokes the approciate error response.
100 */
101__cold
102void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103 unsigned int line, int errno, const char *fmt, ...)
104{
105 struct super_block *sb = fs_info->sb;
106#ifdef CONFIG_PRINTK
107 const char *errstr;
108#endif
109
110 /*
111 * Special case: if the error is EROFS, and we're already
112 * under SB_RDONLY, then it is safe here.
113 */
114 if (errno == -EROFS && sb_rdonly(sb))
115 return;
116
117#ifdef CONFIG_PRINTK
118 errstr = btrfs_decode_error(errno);
119 if (fmt) {
120 struct va_format vaf;
121 va_list args;
122
123 va_start(args, fmt);
124 vaf.fmt = fmt;
125 vaf.va = &args;
126
127 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 sb->s_id, function, line, errno, errstr, &vaf);
129 va_end(args);
130 } else {
131 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 sb->s_id, function, line, errno, errstr);
133 }
134#endif
135
136 /*
137 * Today we only save the error info to memory. Long term we'll
138 * also send it down to the disk
139 */
140 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141
142 /* Don't go through full error handling during mount */
143 if (!(sb->s_flags & SB_BORN))
144 return;
145
146 if (sb_rdonly(sb))
147 return;
148
149 /* btrfs handle error by forcing the filesystem readonly */
150 sb->s_flags |= SB_RDONLY;
151 btrfs_info(fs_info, "forced readonly");
152 /*
153 * Note that a running device replace operation is not canceled here
154 * although there is no way to update the progress. It would add the
155 * risk of a deadlock, therefore the canceling is omitted. The only
156 * penalty is that some I/O remains active until the procedure
157 * completes. The next time when the filesystem is mounted writeable
158 * again, the device replace operation continues.
159 */
160}
161
162#ifdef CONFIG_PRINTK
163static const char * const logtypes[] = {
164 "emergency",
165 "alert",
166 "critical",
167 "error",
168 "warning",
169 "notice",
170 "info",
171 "debug",
172};
173
174
175/*
176 * Use one ratelimit state per log level so that a flood of less important
177 * messages doesn't cause more important ones to be dropped.
178 */
179static struct ratelimit_state printk_limits[] = {
180 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188};
189
190void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191{
192 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193 struct va_format vaf;
194 va_list args;
195 int kern_level;
196 const char *type = logtypes[4];
197 struct ratelimit_state *ratelimit = &printk_limits[4];
198
199 va_start(args, fmt);
200
201 while ((kern_level = printk_get_level(fmt)) != 0) {
202 size_t size = printk_skip_level(fmt) - fmt;
203
204 if (kern_level >= '0' && kern_level <= '7') {
205 memcpy(lvl, fmt, size);
206 lvl[size] = '\0';
207 type = logtypes[kern_level - '0'];
208 ratelimit = &printk_limits[kern_level - '0'];
209 }
210 fmt += size;
211 }
212
213 vaf.fmt = fmt;
214 vaf.va = &args;
215
216 if (__ratelimit(ratelimit))
217 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219
220 va_end(args);
221}
222#endif
223
224/*
225 * We only mark the transaction aborted and then set the file system read-only.
226 * This will prevent new transactions from starting or trying to join this
227 * one.
228 *
229 * This means that error recovery at the call site is limited to freeing
230 * any local memory allocations and passing the error code up without
231 * further cleanup. The transaction should complete as it normally would
232 * in the call path but will return -EIO.
233 *
234 * We'll complete the cleanup in btrfs_end_transaction and
235 * btrfs_commit_transaction.
236 */
237__cold
238void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239 const char *function,
240 unsigned int line, int errno)
241{
242 struct btrfs_fs_info *fs_info = trans->fs_info;
243
244 trans->aborted = errno;
245 /* Nothing used. The other threads that have joined this
246 * transaction may be able to continue. */
247 if (!trans->dirty && list_empty(&trans->new_bgs)) {
248 const char *errstr;
249
250 errstr = btrfs_decode_error(errno);
251 btrfs_warn(fs_info,
252 "%s:%d: Aborting unused transaction(%s).",
253 function, line, errstr);
254 return;
255 }
256 WRITE_ONCE(trans->transaction->aborted, errno);
257 /* Wake up anybody who may be waiting on this transaction */
258 wake_up(&fs_info->transaction_wait);
259 wake_up(&fs_info->transaction_blocked_wait);
260 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261}
262/*
263 * __btrfs_panic decodes unexpected, fatal errors from the caller,
264 * issues an alert, and either panics or BUGs, depending on mount options.
265 */
266__cold
267void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 unsigned int line, int errno, const char *fmt, ...)
269{
270 char *s_id = "<unknown>";
271 const char *errstr;
272 struct va_format vaf = { .fmt = fmt };
273 va_list args;
274
275 if (fs_info)
276 s_id = fs_info->sb->s_id;
277
278 va_start(args, fmt);
279 vaf.va = &args;
280
281 errstr = btrfs_decode_error(errno);
282 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 s_id, function, line, &vaf, errno, errstr);
285
286 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287 function, line, &vaf, errno, errstr);
288 va_end(args);
289 /* Caller calls BUG() */
290}
291
292static void btrfs_put_super(struct super_block *sb)
293{
294 close_ctree(btrfs_sb(sb));
295}
296
297enum {
298 Opt_acl, Opt_noacl,
299 Opt_clear_cache,
300 Opt_commit_interval,
301 Opt_compress,
302 Opt_compress_force,
303 Opt_compress_force_type,
304 Opt_compress_type,
305 Opt_degraded,
306 Opt_device,
307 Opt_fatal_errors,
308 Opt_flushoncommit, Opt_noflushoncommit,
309 Opt_inode_cache, Opt_noinode_cache,
310 Opt_max_inline,
311 Opt_barrier, Opt_nobarrier,
312 Opt_datacow, Opt_nodatacow,
313 Opt_datasum, Opt_nodatasum,
314 Opt_defrag, Opt_nodefrag,
315 Opt_discard, Opt_nodiscard,
316 Opt_nologreplay,
317 Opt_norecovery,
318 Opt_ratio,
319 Opt_rescan_uuid_tree,
320 Opt_skip_balance,
321 Opt_space_cache, Opt_no_space_cache,
322 Opt_space_cache_version,
323 Opt_ssd, Opt_nossd,
324 Opt_ssd_spread, Opt_nossd_spread,
325 Opt_subvol,
326 Opt_subvolid,
327 Opt_thread_pool,
328 Opt_treelog, Opt_notreelog,
329 Opt_usebackuproot,
330 Opt_user_subvol_rm_allowed,
331
332 /* Deprecated options */
333 Opt_alloc_start,
334 Opt_recovery,
335 Opt_subvolrootid,
336
337 /* Debugging options */
338 Opt_check_integrity,
339 Opt_check_integrity_including_extent_data,
340 Opt_check_integrity_print_mask,
341 Opt_enospc_debug, Opt_noenospc_debug,
342#ifdef CONFIG_BTRFS_DEBUG
343 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
344#endif
345#ifdef CONFIG_BTRFS_FS_REF_VERIFY
346 Opt_ref_verify,
347#endif
348 Opt_err,
349};
350
351static const match_table_t tokens = {
352 {Opt_acl, "acl"},
353 {Opt_noacl, "noacl"},
354 {Opt_clear_cache, "clear_cache"},
355 {Opt_commit_interval, "commit=%u"},
356 {Opt_compress, "compress"},
357 {Opt_compress_type, "compress=%s"},
358 {Opt_compress_force, "compress-force"},
359 {Opt_compress_force_type, "compress-force=%s"},
360 {Opt_degraded, "degraded"},
361 {Opt_device, "device=%s"},
362 {Opt_fatal_errors, "fatal_errors=%s"},
363 {Opt_flushoncommit, "flushoncommit"},
364 {Opt_noflushoncommit, "noflushoncommit"},
365 {Opt_inode_cache, "inode_cache"},
366 {Opt_noinode_cache, "noinode_cache"},
367 {Opt_max_inline, "max_inline=%s"},
368 {Opt_barrier, "barrier"},
369 {Opt_nobarrier, "nobarrier"},
370 {Opt_datacow, "datacow"},
371 {Opt_nodatacow, "nodatacow"},
372 {Opt_datasum, "datasum"},
373 {Opt_nodatasum, "nodatasum"},
374 {Opt_defrag, "autodefrag"},
375 {Opt_nodefrag, "noautodefrag"},
376 {Opt_discard, "discard"},
377 {Opt_nodiscard, "nodiscard"},
378 {Opt_nologreplay, "nologreplay"},
379 {Opt_norecovery, "norecovery"},
380 {Opt_ratio, "metadata_ratio=%u"},
381 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
382 {Opt_skip_balance, "skip_balance"},
383 {Opt_space_cache, "space_cache"},
384 {Opt_no_space_cache, "nospace_cache"},
385 {Opt_space_cache_version, "space_cache=%s"},
386 {Opt_ssd, "ssd"},
387 {Opt_nossd, "nossd"},
388 {Opt_ssd_spread, "ssd_spread"},
389 {Opt_nossd_spread, "nossd_spread"},
390 {Opt_subvol, "subvol=%s"},
391 {Opt_subvolid, "subvolid=%s"},
392 {Opt_thread_pool, "thread_pool=%u"},
393 {Opt_treelog, "treelog"},
394 {Opt_notreelog, "notreelog"},
395 {Opt_usebackuproot, "usebackuproot"},
396 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
397
398 /* Deprecated options */
399 {Opt_alloc_start, "alloc_start=%s"},
400 {Opt_recovery, "recovery"},
401 {Opt_subvolrootid, "subvolrootid=%d"},
402
403 /* Debugging options */
404 {Opt_check_integrity, "check_int"},
405 {Opt_check_integrity_including_extent_data, "check_int_data"},
406 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
407 {Opt_enospc_debug, "enospc_debug"},
408 {Opt_noenospc_debug, "noenospc_debug"},
409#ifdef CONFIG_BTRFS_DEBUG
410 {Opt_fragment_data, "fragment=data"},
411 {Opt_fragment_metadata, "fragment=metadata"},
412 {Opt_fragment_all, "fragment=all"},
413#endif
414#ifdef CONFIG_BTRFS_FS_REF_VERIFY
415 {Opt_ref_verify, "ref_verify"},
416#endif
417 {Opt_err, NULL},
418};
419
420/*
421 * Regular mount options parser. Everything that is needed only when
422 * reading in a new superblock is parsed here.
423 * XXX JDM: This needs to be cleaned up for remount.
424 */
425int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
426 unsigned long new_flags)
427{
428 substring_t args[MAX_OPT_ARGS];
429 char *p, *num;
430 u64 cache_gen;
431 int intarg;
432 int ret = 0;
433 char *compress_type;
434 bool compress_force = false;
435 enum btrfs_compression_type saved_compress_type;
436 bool saved_compress_force;
437 int no_compress = 0;
438
439 cache_gen = btrfs_super_cache_generation(info->super_copy);
440 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
441 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 else if (cache_gen)
443 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
444
445 /*
446 * Even the options are empty, we still need to do extra check
447 * against new flags
448 */
449 if (!options)
450 goto check;
451
452 while ((p = strsep(&options, ",")) != NULL) {
453 int token;
454 if (!*p)
455 continue;
456
457 token = match_token(p, tokens, args);
458 switch (token) {
459 case Opt_degraded:
460 btrfs_info(info, "allowing degraded mounts");
461 btrfs_set_opt(info->mount_opt, DEGRADED);
462 break;
463 case Opt_subvol:
464 case Opt_subvolid:
465 case Opt_subvolrootid:
466 case Opt_device:
467 /*
468 * These are parsed by btrfs_parse_subvol_options
469 * and btrfs_parse_early_options
470 * and can be happily ignored here.
471 */
472 break;
473 case Opt_nodatasum:
474 btrfs_set_and_info(info, NODATASUM,
475 "setting nodatasum");
476 break;
477 case Opt_datasum:
478 if (btrfs_test_opt(info, NODATASUM)) {
479 if (btrfs_test_opt(info, NODATACOW))
480 btrfs_info(info,
481 "setting datasum, datacow enabled");
482 else
483 btrfs_info(info, "setting datasum");
484 }
485 btrfs_clear_opt(info->mount_opt, NODATACOW);
486 btrfs_clear_opt(info->mount_opt, NODATASUM);
487 break;
488 case Opt_nodatacow:
489 if (!btrfs_test_opt(info, NODATACOW)) {
490 if (!btrfs_test_opt(info, COMPRESS) ||
491 !btrfs_test_opt(info, FORCE_COMPRESS)) {
492 btrfs_info(info,
493 "setting nodatacow, compression disabled");
494 } else {
495 btrfs_info(info, "setting nodatacow");
496 }
497 }
498 btrfs_clear_opt(info->mount_opt, COMPRESS);
499 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 btrfs_set_opt(info->mount_opt, NODATACOW);
501 btrfs_set_opt(info->mount_opt, NODATASUM);
502 break;
503 case Opt_datacow:
504 btrfs_clear_and_info(info, NODATACOW,
505 "setting datacow");
506 break;
507 case Opt_compress_force:
508 case Opt_compress_force_type:
509 compress_force = true;
510 /* Fallthrough */
511 case Opt_compress:
512 case Opt_compress_type:
513 saved_compress_type = btrfs_test_opt(info,
514 COMPRESS) ?
515 info->compress_type : BTRFS_COMPRESS_NONE;
516 saved_compress_force =
517 btrfs_test_opt(info, FORCE_COMPRESS);
518 if (token == Opt_compress ||
519 token == Opt_compress_force ||
520 strncmp(args[0].from, "zlib", 4) == 0) {
521 compress_type = "zlib";
522
523 info->compress_type = BTRFS_COMPRESS_ZLIB;
524 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
525 /*
526 * args[0] contains uninitialized data since
527 * for these tokens we don't expect any
528 * parameter.
529 */
530 if (token != Opt_compress &&
531 token != Opt_compress_force)
532 info->compress_level =
533 btrfs_compress_str2level(args[0].from);
534 btrfs_set_opt(info->mount_opt, COMPRESS);
535 btrfs_clear_opt(info->mount_opt, NODATACOW);
536 btrfs_clear_opt(info->mount_opt, NODATASUM);
537 no_compress = 0;
538 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
539 compress_type = "lzo";
540 info->compress_type = BTRFS_COMPRESS_LZO;
541 btrfs_set_opt(info->mount_opt, COMPRESS);
542 btrfs_clear_opt(info->mount_opt, NODATACOW);
543 btrfs_clear_opt(info->mount_opt, NODATASUM);
544 btrfs_set_fs_incompat(info, COMPRESS_LZO);
545 no_compress = 0;
546 } else if (strcmp(args[0].from, "zstd") == 0) {
547 compress_type = "zstd";
548 info->compress_type = BTRFS_COMPRESS_ZSTD;
549 btrfs_set_opt(info->mount_opt, COMPRESS);
550 btrfs_clear_opt(info->mount_opt, NODATACOW);
551 btrfs_clear_opt(info->mount_opt, NODATASUM);
552 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
553 no_compress = 0;
554 } else if (strncmp(args[0].from, "no", 2) == 0) {
555 compress_type = "no";
556 btrfs_clear_opt(info->mount_opt, COMPRESS);
557 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
558 compress_force = false;
559 no_compress++;
560 } else {
561 ret = -EINVAL;
562 goto out;
563 }
564
565 if (compress_force) {
566 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
567 } else {
568 /*
569 * If we remount from compress-force=xxx to
570 * compress=xxx, we need clear FORCE_COMPRESS
571 * flag, otherwise, there is no way for users
572 * to disable forcible compression separately.
573 */
574 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
575 }
576 if ((btrfs_test_opt(info, COMPRESS) &&
577 (info->compress_type != saved_compress_type ||
578 compress_force != saved_compress_force)) ||
579 (!btrfs_test_opt(info, COMPRESS) &&
580 no_compress == 1)) {
581 btrfs_info(info, "%s %s compression, level %d",
582 (compress_force) ? "force" : "use",
583 compress_type, info->compress_level);
584 }
585 compress_force = false;
586 break;
587 case Opt_ssd:
588 btrfs_set_and_info(info, SSD,
589 "enabling ssd optimizations");
590 btrfs_clear_opt(info->mount_opt, NOSSD);
591 break;
592 case Opt_ssd_spread:
593 btrfs_set_and_info(info, SSD,
594 "enabling ssd optimizations");
595 btrfs_set_and_info(info, SSD_SPREAD,
596 "using spread ssd allocation scheme");
597 btrfs_clear_opt(info->mount_opt, NOSSD);
598 break;
599 case Opt_nossd:
600 btrfs_set_opt(info->mount_opt, NOSSD);
601 btrfs_clear_and_info(info, SSD,
602 "not using ssd optimizations");
603 /* Fallthrough */
604 case Opt_nossd_spread:
605 btrfs_clear_and_info(info, SSD_SPREAD,
606 "not using spread ssd allocation scheme");
607 break;
608 case Opt_barrier:
609 btrfs_clear_and_info(info, NOBARRIER,
610 "turning on barriers");
611 break;
612 case Opt_nobarrier:
613 btrfs_set_and_info(info, NOBARRIER,
614 "turning off barriers");
615 break;
616 case Opt_thread_pool:
617 ret = match_int(&args[0], &intarg);
618 if (ret) {
619 goto out;
620 } else if (intarg == 0) {
621 ret = -EINVAL;
622 goto out;
623 }
624 info->thread_pool_size = intarg;
625 break;
626 case Opt_max_inline:
627 num = match_strdup(&args[0]);
628 if (num) {
629 info->max_inline = memparse(num, NULL);
630 kfree(num);
631
632 if (info->max_inline) {
633 info->max_inline = min_t(u64,
634 info->max_inline,
635 info->sectorsize);
636 }
637 btrfs_info(info, "max_inline at %llu",
638 info->max_inline);
639 } else {
640 ret = -ENOMEM;
641 goto out;
642 }
643 break;
644 case Opt_alloc_start:
645 btrfs_info(info,
646 "option alloc_start is obsolete, ignored");
647 break;
648 case Opt_acl:
649#ifdef CONFIG_BTRFS_FS_POSIX_ACL
650 info->sb->s_flags |= SB_POSIXACL;
651 break;
652#else
653 btrfs_err(info, "support for ACL not compiled in!");
654 ret = -EINVAL;
655 goto out;
656#endif
657 case Opt_noacl:
658 info->sb->s_flags &= ~SB_POSIXACL;
659 break;
660 case Opt_notreelog:
661 btrfs_set_and_info(info, NOTREELOG,
662 "disabling tree log");
663 break;
664 case Opt_treelog:
665 btrfs_clear_and_info(info, NOTREELOG,
666 "enabling tree log");
667 break;
668 case Opt_norecovery:
669 case Opt_nologreplay:
670 btrfs_set_and_info(info, NOLOGREPLAY,
671 "disabling log replay at mount time");
672 break;
673 case Opt_flushoncommit:
674 btrfs_set_and_info(info, FLUSHONCOMMIT,
675 "turning on flush-on-commit");
676 break;
677 case Opt_noflushoncommit:
678 btrfs_clear_and_info(info, FLUSHONCOMMIT,
679 "turning off flush-on-commit");
680 break;
681 case Opt_ratio:
682 ret = match_int(&args[0], &intarg);
683 if (ret)
684 goto out;
685 info->metadata_ratio = intarg;
686 btrfs_info(info, "metadata ratio %u",
687 info->metadata_ratio);
688 break;
689 case Opt_discard:
690 btrfs_set_and_info(info, DISCARD,
691 "turning on discard");
692 break;
693 case Opt_nodiscard:
694 btrfs_clear_and_info(info, DISCARD,
695 "turning off discard");
696 break;
697 case Opt_space_cache:
698 case Opt_space_cache_version:
699 if (token == Opt_space_cache ||
700 strcmp(args[0].from, "v1") == 0) {
701 btrfs_clear_opt(info->mount_opt,
702 FREE_SPACE_TREE);
703 btrfs_set_and_info(info, SPACE_CACHE,
704 "enabling disk space caching");
705 } else if (strcmp(args[0].from, "v2") == 0) {
706 btrfs_clear_opt(info->mount_opt,
707 SPACE_CACHE);
708 btrfs_set_and_info(info, FREE_SPACE_TREE,
709 "enabling free space tree");
710 } else {
711 ret = -EINVAL;
712 goto out;
713 }
714 break;
715 case Opt_rescan_uuid_tree:
716 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
717 break;
718 case Opt_no_space_cache:
719 if (btrfs_test_opt(info, SPACE_CACHE)) {
720 btrfs_clear_and_info(info, SPACE_CACHE,
721 "disabling disk space caching");
722 }
723 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
724 btrfs_clear_and_info(info, FREE_SPACE_TREE,
725 "disabling free space tree");
726 }
727 break;
728 case Opt_inode_cache:
729 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
730 "enabling inode map caching");
731 break;
732 case Opt_noinode_cache:
733 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
734 "disabling inode map caching");
735 break;
736 case Opt_clear_cache:
737 btrfs_set_and_info(info, CLEAR_CACHE,
738 "force clearing of disk cache");
739 break;
740 case Opt_user_subvol_rm_allowed:
741 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
742 break;
743 case Opt_enospc_debug:
744 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
745 break;
746 case Opt_noenospc_debug:
747 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
748 break;
749 case Opt_defrag:
750 btrfs_set_and_info(info, AUTO_DEFRAG,
751 "enabling auto defrag");
752 break;
753 case Opt_nodefrag:
754 btrfs_clear_and_info(info, AUTO_DEFRAG,
755 "disabling auto defrag");
756 break;
757 case Opt_recovery:
758 btrfs_warn(info,
759 "'recovery' is deprecated, use 'usebackuproot' instead");
760 case Opt_usebackuproot:
761 btrfs_info(info,
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 break;
765 case Opt_skip_balance:
766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 break;
768#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data:
770 btrfs_info(info,
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info->mount_opt,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 break;
776 case Opt_check_integrity:
777 btrfs_info(info, "enabling check integrity");
778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 break;
780 case Opt_check_integrity_print_mask:
781 ret = match_int(&args[0], &intarg);
782 if (ret)
783 goto out;
784 info->check_integrity_print_mask = intarg;
785 btrfs_info(info, "check_integrity_print_mask 0x%x",
786 info->check_integrity_print_mask);
787 break;
788#else
789 case Opt_check_integrity_including_extent_data:
790 case Opt_check_integrity:
791 case Opt_check_integrity_print_mask:
792 btrfs_err(info,
793 "support for check_integrity* not compiled in!");
794 ret = -EINVAL;
795 goto out;
796#endif
797 case Opt_fatal_errors:
798 if (strcmp(args[0].from, "panic") == 0)
799 btrfs_set_opt(info->mount_opt,
800 PANIC_ON_FATAL_ERROR);
801 else if (strcmp(args[0].from, "bug") == 0)
802 btrfs_clear_opt(info->mount_opt,
803 PANIC_ON_FATAL_ERROR);
804 else {
805 ret = -EINVAL;
806 goto out;
807 }
808 break;
809 case Opt_commit_interval:
810 intarg = 0;
811 ret = match_int(&args[0], &intarg);
812 if (ret)
813 goto out;
814 if (intarg == 0) {
815 btrfs_info(info,
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL);
818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 } else if (intarg > 300) {
820 btrfs_warn(info, "excessive commit interval %d",
821 intarg);
822 }
823 info->commit_interval = intarg;
824 break;
825#ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all:
827 btrfs_info(info, "fragmenting all space");
828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 break;
831 case Opt_fragment_metadata:
832 btrfs_info(info, "fragmenting metadata");
833 btrfs_set_opt(info->mount_opt,
834 FRAGMENT_METADATA);
835 break;
836 case Opt_fragment_data:
837 btrfs_info(info, "fragmenting data");
838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 break;
840#endif
841#ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 case Opt_ref_verify:
843 btrfs_info(info, "doing ref verification");
844 btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 break;
846#endif
847 case Opt_err:
848 btrfs_info(info, "unrecognized mount option '%s'", p);
849 ret = -EINVAL;
850 goto out;
851 default:
852 break;
853 }
854 }
855check:
856 /*
857 * Extra check for current option against current flag
858 */
859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 btrfs_err(info,
861 "nologreplay must be used with ro mount option");
862 ret = -EINVAL;
863 }
864out:
865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 !btrfs_test_opt(info, CLEAR_CACHE)) {
868 btrfs_err(info, "cannot disable free space tree");
869 ret = -EINVAL;
870
871 }
872 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 btrfs_info(info, "disk space caching is enabled");
874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 btrfs_info(info, "using free space tree");
876 return ret;
877}
878
879/*
880 * Parse mount options that are required early in the mount process.
881 *
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
884 */
885static int btrfs_parse_early_options(const char *options, fmode_t flags,
886 void *holder, struct btrfs_fs_devices **fs_devices)
887{
888 substring_t args[MAX_OPT_ARGS];
889 char *device_name, *opts, *orig, *p;
890 int error = 0;
891
892 if (!options)
893 return 0;
894
895 /*
896 * strsep changes the string, duplicate it because btrfs_parse_options
897 * gets called later
898 */
899 opts = kstrdup(options, GFP_KERNEL);
900 if (!opts)
901 return -ENOMEM;
902 orig = opts;
903
904 while ((p = strsep(&opts, ",")) != NULL) {
905 int token;
906
907 if (!*p)
908 continue;
909
910 token = match_token(p, tokens, args);
911 if (token == Opt_device) {
912 device_name = match_strdup(&args[0]);
913 if (!device_name) {
914 error = -ENOMEM;
915 goto out;
916 }
917 error = btrfs_scan_one_device(device_name,
918 flags, holder, fs_devices);
919 kfree(device_name);
920 if (error)
921 goto out;
922 }
923 }
924
925out:
926 kfree(orig);
927 return error;
928}
929
930/*
931 * Parse mount options that are related to subvolume id
932 *
933 * The value is later passed to mount_subvol()
934 */
935static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
936 char **subvol_name, u64 *subvol_objectid)
937{
938 substring_t args[MAX_OPT_ARGS];
939 char *opts, *orig, *p;
940 int error = 0;
941 u64 subvolid;
942
943 if (!options)
944 return 0;
945
946 /*
947 * strsep changes the string, duplicate it because
948 * btrfs_parse_early_options gets called later
949 */
950 opts = kstrdup(options, GFP_KERNEL);
951 if (!opts)
952 return -ENOMEM;
953 orig = opts;
954
955 while ((p = strsep(&opts, ",")) != NULL) {
956 int token;
957 if (!*p)
958 continue;
959
960 token = match_token(p, tokens, args);
961 switch (token) {
962 case Opt_subvol:
963 kfree(*subvol_name);
964 *subvol_name = match_strdup(&args[0]);
965 if (!*subvol_name) {
966 error = -ENOMEM;
967 goto out;
968 }
969 break;
970 case Opt_subvolid:
971 error = match_u64(&args[0], &subvolid);
972 if (error)
973 goto out;
974
975 /* we want the original fs_tree */
976 if (subvolid == 0)
977 subvolid = BTRFS_FS_TREE_OBJECTID;
978
979 *subvol_objectid = subvolid;
980 break;
981 case Opt_subvolrootid:
982 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
983 break;
984 default:
985 break;
986 }
987 }
988
989out:
990 kfree(orig);
991 return error;
992}
993
994static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
995 u64 subvol_objectid)
996{
997 struct btrfs_root *root = fs_info->tree_root;
998 struct btrfs_root *fs_root;
999 struct btrfs_root_ref *root_ref;
1000 struct btrfs_inode_ref *inode_ref;
1001 struct btrfs_key key;
1002 struct btrfs_path *path = NULL;
1003 char *name = NULL, *ptr;
1004 u64 dirid;
1005 int len;
1006 int ret;
1007
1008 path = btrfs_alloc_path();
1009 if (!path) {
1010 ret = -ENOMEM;
1011 goto err;
1012 }
1013 path->leave_spinning = 1;
1014
1015 name = kmalloc(PATH_MAX, GFP_KERNEL);
1016 if (!name) {
1017 ret = -ENOMEM;
1018 goto err;
1019 }
1020 ptr = name + PATH_MAX - 1;
1021 ptr[0] = '\0';
1022
1023 /*
1024 * Walk up the subvolume trees in the tree of tree roots by root
1025 * backrefs until we hit the top-level subvolume.
1026 */
1027 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1028 key.objectid = subvol_objectid;
1029 key.type = BTRFS_ROOT_BACKREF_KEY;
1030 key.offset = (u64)-1;
1031
1032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1033 if (ret < 0) {
1034 goto err;
1035 } else if (ret > 0) {
1036 ret = btrfs_previous_item(root, path, subvol_objectid,
1037 BTRFS_ROOT_BACKREF_KEY);
1038 if (ret < 0) {
1039 goto err;
1040 } else if (ret > 0) {
1041 ret = -ENOENT;
1042 goto err;
1043 }
1044 }
1045
1046 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 subvol_objectid = key.offset;
1048
1049 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1050 struct btrfs_root_ref);
1051 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1052 ptr -= len + 1;
1053 if (ptr < name) {
1054 ret = -ENAMETOOLONG;
1055 goto err;
1056 }
1057 read_extent_buffer(path->nodes[0], ptr + 1,
1058 (unsigned long)(root_ref + 1), len);
1059 ptr[0] = '/';
1060 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1061 btrfs_release_path(path);
1062
1063 key.objectid = subvol_objectid;
1064 key.type = BTRFS_ROOT_ITEM_KEY;
1065 key.offset = (u64)-1;
1066 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1067 if (IS_ERR(fs_root)) {
1068 ret = PTR_ERR(fs_root);
1069 goto err;
1070 }
1071
1072 /*
1073 * Walk up the filesystem tree by inode refs until we hit the
1074 * root directory.
1075 */
1076 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1077 key.objectid = dirid;
1078 key.type = BTRFS_INODE_REF_KEY;
1079 key.offset = (u64)-1;
1080
1081 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1082 if (ret < 0) {
1083 goto err;
1084 } else if (ret > 0) {
1085 ret = btrfs_previous_item(fs_root, path, dirid,
1086 BTRFS_INODE_REF_KEY);
1087 if (ret < 0) {
1088 goto err;
1089 } else if (ret > 0) {
1090 ret = -ENOENT;
1091 goto err;
1092 }
1093 }
1094
1095 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1096 dirid = key.offset;
1097
1098 inode_ref = btrfs_item_ptr(path->nodes[0],
1099 path->slots[0],
1100 struct btrfs_inode_ref);
1101 len = btrfs_inode_ref_name_len(path->nodes[0],
1102 inode_ref);
1103 ptr -= len + 1;
1104 if (ptr < name) {
1105 ret = -ENAMETOOLONG;
1106 goto err;
1107 }
1108 read_extent_buffer(path->nodes[0], ptr + 1,
1109 (unsigned long)(inode_ref + 1), len);
1110 ptr[0] = '/';
1111 btrfs_release_path(path);
1112 }
1113 }
1114
1115 btrfs_free_path(path);
1116 if (ptr == name + PATH_MAX - 1) {
1117 name[0] = '/';
1118 name[1] = '\0';
1119 } else {
1120 memmove(name, ptr, name + PATH_MAX - ptr);
1121 }
1122 return name;
1123
1124err:
1125 btrfs_free_path(path);
1126 kfree(name);
1127 return ERR_PTR(ret);
1128}
1129
1130static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1131{
1132 struct btrfs_root *root = fs_info->tree_root;
1133 struct btrfs_dir_item *di;
1134 struct btrfs_path *path;
1135 struct btrfs_key location;
1136 u64 dir_id;
1137
1138 path = btrfs_alloc_path();
1139 if (!path)
1140 return -ENOMEM;
1141 path->leave_spinning = 1;
1142
1143 /*
1144 * Find the "default" dir item which points to the root item that we
1145 * will mount by default if we haven't been given a specific subvolume
1146 * to mount.
1147 */
1148 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1149 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1150 if (IS_ERR(di)) {
1151 btrfs_free_path(path);
1152 return PTR_ERR(di);
1153 }
1154 if (!di) {
1155 /*
1156 * Ok the default dir item isn't there. This is weird since
1157 * it's always been there, but don't freak out, just try and
1158 * mount the top-level subvolume.
1159 */
1160 btrfs_free_path(path);
1161 *objectid = BTRFS_FS_TREE_OBJECTID;
1162 return 0;
1163 }
1164
1165 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1166 btrfs_free_path(path);
1167 *objectid = location.objectid;
1168 return 0;
1169}
1170
1171static int btrfs_fill_super(struct super_block *sb,
1172 struct btrfs_fs_devices *fs_devices,
1173 void *data)
1174{
1175 struct inode *inode;
1176 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1177 struct btrfs_key key;
1178 int err;
1179
1180 sb->s_maxbytes = MAX_LFS_FILESIZE;
1181 sb->s_magic = BTRFS_SUPER_MAGIC;
1182 sb->s_op = &btrfs_super_ops;
1183 sb->s_d_op = &btrfs_dentry_operations;
1184 sb->s_export_op = &btrfs_export_ops;
1185 sb->s_xattr = btrfs_xattr_handlers;
1186 sb->s_time_gran = 1;
1187#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1188 sb->s_flags |= SB_POSIXACL;
1189#endif
1190 sb->s_flags |= SB_I_VERSION;
1191 sb->s_iflags |= SB_I_CGROUPWB;
1192
1193 err = super_setup_bdi(sb);
1194 if (err) {
1195 btrfs_err(fs_info, "super_setup_bdi failed");
1196 return err;
1197 }
1198
1199 err = open_ctree(sb, fs_devices, (char *)data);
1200 if (err) {
1201 btrfs_err(fs_info, "open_ctree failed");
1202 return err;
1203 }
1204
1205 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1206 key.type = BTRFS_INODE_ITEM_KEY;
1207 key.offset = 0;
1208 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1209 if (IS_ERR(inode)) {
1210 err = PTR_ERR(inode);
1211 goto fail_close;
1212 }
1213
1214 sb->s_root = d_make_root(inode);
1215 if (!sb->s_root) {
1216 err = -ENOMEM;
1217 goto fail_close;
1218 }
1219
1220 cleancache_init_fs(sb);
1221 sb->s_flags |= SB_ACTIVE;
1222 return 0;
1223
1224fail_close:
1225 close_ctree(fs_info);
1226 return err;
1227}
1228
1229int btrfs_sync_fs(struct super_block *sb, int wait)
1230{
1231 struct btrfs_trans_handle *trans;
1232 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1233 struct btrfs_root *root = fs_info->tree_root;
1234
1235 trace_btrfs_sync_fs(fs_info, wait);
1236
1237 if (!wait) {
1238 filemap_flush(fs_info->btree_inode->i_mapping);
1239 return 0;
1240 }
1241
1242 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1243
1244 trans = btrfs_attach_transaction_barrier(root);
1245 if (IS_ERR(trans)) {
1246 /* no transaction, don't bother */
1247 if (PTR_ERR(trans) == -ENOENT) {
1248 /*
1249 * Exit unless we have some pending changes
1250 * that need to go through commit
1251 */
1252 if (fs_info->pending_changes == 0)
1253 return 0;
1254 /*
1255 * A non-blocking test if the fs is frozen. We must not
1256 * start a new transaction here otherwise a deadlock
1257 * happens. The pending operations are delayed to the
1258 * next commit after thawing.
1259 */
1260 if (sb_start_write_trylock(sb))
1261 sb_end_write(sb);
1262 else
1263 return 0;
1264 trans = btrfs_start_transaction(root, 0);
1265 }
1266 if (IS_ERR(trans))
1267 return PTR_ERR(trans);
1268 }
1269 return btrfs_commit_transaction(trans);
1270}
1271
1272static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1273{
1274 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1275 const char *compress_type;
1276
1277 if (btrfs_test_opt(info, DEGRADED))
1278 seq_puts(seq, ",degraded");
1279 if (btrfs_test_opt(info, NODATASUM))
1280 seq_puts(seq, ",nodatasum");
1281 if (btrfs_test_opt(info, NODATACOW))
1282 seq_puts(seq, ",nodatacow");
1283 if (btrfs_test_opt(info, NOBARRIER))
1284 seq_puts(seq, ",nobarrier");
1285 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1286 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1287 if (info->thread_pool_size != min_t(unsigned long,
1288 num_online_cpus() + 2, 8))
1289 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1290 if (btrfs_test_opt(info, COMPRESS)) {
1291 compress_type = btrfs_compress_type2str(info->compress_type);
1292 if (btrfs_test_opt(info, FORCE_COMPRESS))
1293 seq_printf(seq, ",compress-force=%s", compress_type);
1294 else
1295 seq_printf(seq, ",compress=%s", compress_type);
1296 if (info->compress_level)
1297 seq_printf(seq, ":%d", info->compress_level);
1298 }
1299 if (btrfs_test_opt(info, NOSSD))
1300 seq_puts(seq, ",nossd");
1301 if (btrfs_test_opt(info, SSD_SPREAD))
1302 seq_puts(seq, ",ssd_spread");
1303 else if (btrfs_test_opt(info, SSD))
1304 seq_puts(seq, ",ssd");
1305 if (btrfs_test_opt(info, NOTREELOG))
1306 seq_puts(seq, ",notreelog");
1307 if (btrfs_test_opt(info, NOLOGREPLAY))
1308 seq_puts(seq, ",nologreplay");
1309 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1310 seq_puts(seq, ",flushoncommit");
1311 if (btrfs_test_opt(info, DISCARD))
1312 seq_puts(seq, ",discard");
1313 if (!(info->sb->s_flags & SB_POSIXACL))
1314 seq_puts(seq, ",noacl");
1315 if (btrfs_test_opt(info, SPACE_CACHE))
1316 seq_puts(seq, ",space_cache");
1317 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1318 seq_puts(seq, ",space_cache=v2");
1319 else
1320 seq_puts(seq, ",nospace_cache");
1321 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1322 seq_puts(seq, ",rescan_uuid_tree");
1323 if (btrfs_test_opt(info, CLEAR_CACHE))
1324 seq_puts(seq, ",clear_cache");
1325 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1326 seq_puts(seq, ",user_subvol_rm_allowed");
1327 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1328 seq_puts(seq, ",enospc_debug");
1329 if (btrfs_test_opt(info, AUTO_DEFRAG))
1330 seq_puts(seq, ",autodefrag");
1331 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1332 seq_puts(seq, ",inode_cache");
1333 if (btrfs_test_opt(info, SKIP_BALANCE))
1334 seq_puts(seq, ",skip_balance");
1335#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1336 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1337 seq_puts(seq, ",check_int_data");
1338 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1339 seq_puts(seq, ",check_int");
1340 if (info->check_integrity_print_mask)
1341 seq_printf(seq, ",check_int_print_mask=%d",
1342 info->check_integrity_print_mask);
1343#endif
1344 if (info->metadata_ratio)
1345 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1346 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1347 seq_puts(seq, ",fatal_errors=panic");
1348 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1349 seq_printf(seq, ",commit=%u", info->commit_interval);
1350#ifdef CONFIG_BTRFS_DEBUG
1351 if (btrfs_test_opt(info, FRAGMENT_DATA))
1352 seq_puts(seq, ",fragment=data");
1353 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1354 seq_puts(seq, ",fragment=metadata");
1355#endif
1356 if (btrfs_test_opt(info, REF_VERIFY))
1357 seq_puts(seq, ",ref_verify");
1358 seq_printf(seq, ",subvolid=%llu",
1359 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1360 seq_puts(seq, ",subvol=");
1361 seq_dentry(seq, dentry, " \t\n\\");
1362 return 0;
1363}
1364
1365static int btrfs_test_super(struct super_block *s, void *data)
1366{
1367 struct btrfs_fs_info *p = data;
1368 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1369
1370 return fs_info->fs_devices == p->fs_devices;
1371}
1372
1373static int btrfs_set_super(struct super_block *s, void *data)
1374{
1375 int err = set_anon_super(s, data);
1376 if (!err)
1377 s->s_fs_info = data;
1378 return err;
1379}
1380
1381/*
1382 * subvolumes are identified by ino 256
1383 */
1384static inline int is_subvolume_inode(struct inode *inode)
1385{
1386 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1387 return 1;
1388 return 0;
1389}
1390
1391static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1392 const char *device_name, struct vfsmount *mnt)
1393{
1394 struct dentry *root;
1395 int ret;
1396
1397 if (!subvol_name) {
1398 if (!subvol_objectid) {
1399 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1400 &subvol_objectid);
1401 if (ret) {
1402 root = ERR_PTR(ret);
1403 goto out;
1404 }
1405 }
1406 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1407 subvol_objectid);
1408 if (IS_ERR(subvol_name)) {
1409 root = ERR_CAST(subvol_name);
1410 subvol_name = NULL;
1411 goto out;
1412 }
1413
1414 }
1415
1416 root = mount_subtree(mnt, subvol_name);
1417 /* mount_subtree() drops our reference on the vfsmount. */
1418 mnt = NULL;
1419
1420 if (!IS_ERR(root)) {
1421 struct super_block *s = root->d_sb;
1422 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1423 struct inode *root_inode = d_inode(root);
1424 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1425
1426 ret = 0;
1427 if (!is_subvolume_inode(root_inode)) {
1428 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1429 subvol_name);
1430 ret = -EINVAL;
1431 }
1432 if (subvol_objectid && root_objectid != subvol_objectid) {
1433 /*
1434 * This will also catch a race condition where a
1435 * subvolume which was passed by ID is renamed and
1436 * another subvolume is renamed over the old location.
1437 */
1438 btrfs_err(fs_info,
1439 "subvol '%s' does not match subvolid %llu",
1440 subvol_name, subvol_objectid);
1441 ret = -EINVAL;
1442 }
1443 if (ret) {
1444 dput(root);
1445 root = ERR_PTR(ret);
1446 deactivate_locked_super(s);
1447 }
1448 }
1449
1450out:
1451 mntput(mnt);
1452 kfree(subvol_name);
1453 return root;
1454}
1455
1456static int parse_security_options(char *orig_opts,
1457 struct security_mnt_opts *sec_opts)
1458{
1459 char *secdata = NULL;
1460 int ret = 0;
1461
1462 secdata = alloc_secdata();
1463 if (!secdata)
1464 return -ENOMEM;
1465 ret = security_sb_copy_data(orig_opts, secdata);
1466 if (ret) {
1467 free_secdata(secdata);
1468 return ret;
1469 }
1470 ret = security_sb_parse_opts_str(secdata, sec_opts);
1471 free_secdata(secdata);
1472 return ret;
1473}
1474
1475static int setup_security_options(struct btrfs_fs_info *fs_info,
1476 struct super_block *sb,
1477 struct security_mnt_opts *sec_opts)
1478{
1479 int ret = 0;
1480
1481 /*
1482 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1483 * is valid.
1484 */
1485 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1486 if (ret)
1487 return ret;
1488
1489#ifdef CONFIG_SECURITY
1490 if (!fs_info->security_opts.num_mnt_opts) {
1491 /* first time security setup, copy sec_opts to fs_info */
1492 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1493 } else {
1494 /*
1495 * Since SELinux (the only one supporting security_mnt_opts)
1496 * does NOT support changing context during remount/mount of
1497 * the same sb, this must be the same or part of the same
1498 * security options, just free it.
1499 */
1500 security_free_mnt_opts(sec_opts);
1501 }
1502#endif
1503 return ret;
1504}
1505
1506/*
1507 * Find a superblock for the given device / mount point.
1508 *
1509 * Note: This is based on mount_bdev from fs/super.c with a few additions
1510 * for multiple device setup. Make sure to keep it in sync.
1511 */
1512static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1513 int flags, const char *device_name, void *data)
1514{
1515 struct block_device *bdev = NULL;
1516 struct super_block *s;
1517 struct btrfs_fs_devices *fs_devices = NULL;
1518 struct btrfs_fs_info *fs_info = NULL;
1519 struct security_mnt_opts new_sec_opts;
1520 fmode_t mode = FMODE_READ;
1521 int error = 0;
1522
1523 if (!(flags & SB_RDONLY))
1524 mode |= FMODE_WRITE;
1525
1526 error = btrfs_parse_early_options(data, mode, fs_type,
1527 &fs_devices);
1528 if (error) {
1529 return ERR_PTR(error);
1530 }
1531
1532 security_init_mnt_opts(&new_sec_opts);
1533 if (data) {
1534 error = parse_security_options(data, &new_sec_opts);
1535 if (error)
1536 return ERR_PTR(error);
1537 }
1538
1539 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1540 if (error)
1541 goto error_sec_opts;
1542
1543 /*
1544 * Setup a dummy root and fs_info for test/set super. This is because
1545 * we don't actually fill this stuff out until open_ctree, but we need
1546 * it for searching for existing supers, so this lets us do that and
1547 * then open_ctree will properly initialize everything later.
1548 */
1549 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1550 if (!fs_info) {
1551 error = -ENOMEM;
1552 goto error_sec_opts;
1553 }
1554
1555 fs_info->fs_devices = fs_devices;
1556
1557 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1558 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1559 security_init_mnt_opts(&fs_info->security_opts);
1560 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1561 error = -ENOMEM;
1562 goto error_fs_info;
1563 }
1564
1565 error = btrfs_open_devices(fs_devices, mode, fs_type);
1566 if (error)
1567 goto error_fs_info;
1568
1569 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1570 error = -EACCES;
1571 goto error_close_devices;
1572 }
1573
1574 bdev = fs_devices->latest_bdev;
1575 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1576 fs_info);
1577 if (IS_ERR(s)) {
1578 error = PTR_ERR(s);
1579 goto error_close_devices;
1580 }
1581
1582 if (s->s_root) {
1583 btrfs_close_devices(fs_devices);
1584 free_fs_info(fs_info);
1585 if ((flags ^ s->s_flags) & SB_RDONLY)
1586 error = -EBUSY;
1587 } else {
1588 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1589 btrfs_sb(s)->bdev_holder = fs_type;
1590 error = btrfs_fill_super(s, fs_devices, data);
1591 }
1592 if (error) {
1593 deactivate_locked_super(s);
1594 goto error_sec_opts;
1595 }
1596
1597 fs_info = btrfs_sb(s);
1598 error = setup_security_options(fs_info, s, &new_sec_opts);
1599 if (error) {
1600 deactivate_locked_super(s);
1601 goto error_sec_opts;
1602 }
1603
1604 return dget(s->s_root);
1605
1606error_close_devices:
1607 btrfs_close_devices(fs_devices);
1608error_fs_info:
1609 free_fs_info(fs_info);
1610error_sec_opts:
1611 security_free_mnt_opts(&new_sec_opts);
1612 return ERR_PTR(error);
1613}
1614
1615/*
1616 * Mount function which is called by VFS layer.
1617 *
1618 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1619 * which needs vfsmount* of device's root (/). This means device's root has to
1620 * be mounted internally in any case.
1621 *
1622 * Operation flow:
1623 * 1. Parse subvol id related options for later use in mount_subvol().
1624 *
1625 * 2. Mount device's root (/) by calling vfs_kern_mount().
1626 *
1627 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1628 * first place. In order to avoid calling btrfs_mount() again, we use
1629 * different file_system_type which is not registered to VFS by
1630 * register_filesystem() (btrfs_root_fs_type). As a result,
1631 * btrfs_mount_root() is called. The return value will be used by
1632 * mount_subtree() in mount_subvol().
1633 *
1634 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1635 * "btrfs subvolume set-default", mount_subvol() is called always.
1636 */
1637static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1638 const char *device_name, void *data)
1639{
1640 struct vfsmount *mnt_root;
1641 struct dentry *root;
1642 fmode_t mode = FMODE_READ;
1643 char *subvol_name = NULL;
1644 u64 subvol_objectid = 0;
1645 int error = 0;
1646
1647 if (!(flags & SB_RDONLY))
1648 mode |= FMODE_WRITE;
1649
1650 error = btrfs_parse_subvol_options(data, mode,
1651 &subvol_name, &subvol_objectid);
1652 if (error) {
1653 kfree(subvol_name);
1654 return ERR_PTR(error);
1655 }
1656
1657 /* mount device's root (/) */
1658 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1659 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1660 if (flags & SB_RDONLY) {
1661 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1662 flags & ~SB_RDONLY, device_name, data);
1663 } else {
1664 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1665 flags | SB_RDONLY, device_name, data);
1666 if (IS_ERR(mnt_root)) {
1667 root = ERR_CAST(mnt_root);
1668 goto out;
1669 }
1670
1671 down_write(&mnt_root->mnt_sb->s_umount);
1672 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1673 up_write(&mnt_root->mnt_sb->s_umount);
1674 if (error < 0) {
1675 root = ERR_PTR(error);
1676 mntput(mnt_root);
1677 goto out;
1678 }
1679 }
1680 }
1681 if (IS_ERR(mnt_root)) {
1682 root = ERR_CAST(mnt_root);
1683 goto out;
1684 }
1685
1686 /* mount_subvol() will free subvol_name and mnt_root */
1687 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1688
1689out:
1690 return root;
1691}
1692
1693static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1694 u32 new_pool_size, u32 old_pool_size)
1695{
1696 if (new_pool_size == old_pool_size)
1697 return;
1698
1699 fs_info->thread_pool_size = new_pool_size;
1700
1701 btrfs_info(fs_info, "resize thread pool %d -> %d",
1702 old_pool_size, new_pool_size);
1703
1704 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1705 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1706 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1707 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1708 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1709 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1710 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1711 new_pool_size);
1712 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1713 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1714 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1715 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1716 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1717 new_pool_size);
1718}
1719
1720static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1721{
1722 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1723}
1724
1725static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1726 unsigned long old_opts, int flags)
1727{
1728 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1729 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1730 (flags & SB_RDONLY))) {
1731 /* wait for any defraggers to finish */
1732 wait_event(fs_info->transaction_wait,
1733 (atomic_read(&fs_info->defrag_running) == 0));
1734 if (flags & SB_RDONLY)
1735 sync_filesystem(fs_info->sb);
1736 }
1737}
1738
1739static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1740 unsigned long old_opts)
1741{
1742 /*
1743 * We need to cleanup all defragable inodes if the autodefragment is
1744 * close or the filesystem is read only.
1745 */
1746 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1747 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1748 btrfs_cleanup_defrag_inodes(fs_info);
1749 }
1750
1751 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1752}
1753
1754static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1755{
1756 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1757 struct btrfs_root *root = fs_info->tree_root;
1758 unsigned old_flags = sb->s_flags;
1759 unsigned long old_opts = fs_info->mount_opt;
1760 unsigned long old_compress_type = fs_info->compress_type;
1761 u64 old_max_inline = fs_info->max_inline;
1762 u32 old_thread_pool_size = fs_info->thread_pool_size;
1763 u32 old_metadata_ratio = fs_info->metadata_ratio;
1764 int ret;
1765
1766 sync_filesystem(sb);
1767 btrfs_remount_prepare(fs_info);
1768
1769 if (data) {
1770 struct security_mnt_opts new_sec_opts;
1771
1772 security_init_mnt_opts(&new_sec_opts);
1773 ret = parse_security_options(data, &new_sec_opts);
1774 if (ret)
1775 goto restore;
1776 ret = setup_security_options(fs_info, sb,
1777 &new_sec_opts);
1778 if (ret) {
1779 security_free_mnt_opts(&new_sec_opts);
1780 goto restore;
1781 }
1782 }
1783
1784 ret = btrfs_parse_options(fs_info, data, *flags);
1785 if (ret) {
1786 ret = -EINVAL;
1787 goto restore;
1788 }
1789
1790 btrfs_remount_begin(fs_info, old_opts, *flags);
1791 btrfs_resize_thread_pool(fs_info,
1792 fs_info->thread_pool_size, old_thread_pool_size);
1793
1794 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1795 goto out;
1796
1797 if (*flags & SB_RDONLY) {
1798 /*
1799 * this also happens on 'umount -rf' or on shutdown, when
1800 * the filesystem is busy.
1801 */
1802 cancel_work_sync(&fs_info->async_reclaim_work);
1803
1804 /* wait for the uuid_scan task to finish */
1805 down(&fs_info->uuid_tree_rescan_sem);
1806 /* avoid complains from lockdep et al. */
1807 up(&fs_info->uuid_tree_rescan_sem);
1808
1809 sb->s_flags |= SB_RDONLY;
1810
1811 /*
1812 * Setting SB_RDONLY will put the cleaner thread to
1813 * sleep at the next loop if it's already active.
1814 * If it's already asleep, we'll leave unused block
1815 * groups on disk until we're mounted read-write again
1816 * unless we clean them up here.
1817 */
1818 btrfs_delete_unused_bgs(fs_info);
1819
1820 btrfs_dev_replace_suspend_for_unmount(fs_info);
1821 btrfs_scrub_cancel(fs_info);
1822 btrfs_pause_balance(fs_info);
1823
1824 ret = btrfs_commit_super(fs_info);
1825 if (ret)
1826 goto restore;
1827 } else {
1828 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1829 btrfs_err(fs_info,
1830 "Remounting read-write after error is not allowed");
1831 ret = -EINVAL;
1832 goto restore;
1833 }
1834 if (fs_info->fs_devices->rw_devices == 0) {
1835 ret = -EACCES;
1836 goto restore;
1837 }
1838
1839 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1840 btrfs_warn(fs_info,
1841 "too many missing devices, writeable remount is not allowed");
1842 ret = -EACCES;
1843 goto restore;
1844 }
1845
1846 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1847 ret = -EINVAL;
1848 goto restore;
1849 }
1850
1851 ret = btrfs_cleanup_fs_roots(fs_info);
1852 if (ret)
1853 goto restore;
1854
1855 /* recover relocation */
1856 mutex_lock(&fs_info->cleaner_mutex);
1857 ret = btrfs_recover_relocation(root);
1858 mutex_unlock(&fs_info->cleaner_mutex);
1859 if (ret)
1860 goto restore;
1861
1862 ret = btrfs_resume_balance_async(fs_info);
1863 if (ret)
1864 goto restore;
1865
1866 ret = btrfs_resume_dev_replace_async(fs_info);
1867 if (ret) {
1868 btrfs_warn(fs_info, "failed to resume dev_replace");
1869 goto restore;
1870 }
1871
1872 btrfs_qgroup_rescan_resume(fs_info);
1873
1874 if (!fs_info->uuid_root) {
1875 btrfs_info(fs_info, "creating UUID tree");
1876 ret = btrfs_create_uuid_tree(fs_info);
1877 if (ret) {
1878 btrfs_warn(fs_info,
1879 "failed to create the UUID tree %d",
1880 ret);
1881 goto restore;
1882 }
1883 }
1884 sb->s_flags &= ~SB_RDONLY;
1885
1886 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1887 }
1888out:
1889 wake_up_process(fs_info->transaction_kthread);
1890 btrfs_remount_cleanup(fs_info, old_opts);
1891 return 0;
1892
1893restore:
1894 /* We've hit an error - don't reset SB_RDONLY */
1895 if (sb_rdonly(sb))
1896 old_flags |= SB_RDONLY;
1897 sb->s_flags = old_flags;
1898 fs_info->mount_opt = old_opts;
1899 fs_info->compress_type = old_compress_type;
1900 fs_info->max_inline = old_max_inline;
1901 btrfs_resize_thread_pool(fs_info,
1902 old_thread_pool_size, fs_info->thread_pool_size);
1903 fs_info->metadata_ratio = old_metadata_ratio;
1904 btrfs_remount_cleanup(fs_info, old_opts);
1905 return ret;
1906}
1907
1908/* Used to sort the devices by max_avail(descending sort) */
1909static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1910 const void *dev_info2)
1911{
1912 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1913 ((struct btrfs_device_info *)dev_info2)->max_avail)
1914 return -1;
1915 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1916 ((struct btrfs_device_info *)dev_info2)->max_avail)
1917 return 1;
1918 else
1919 return 0;
1920}
1921
1922/*
1923 * sort the devices by max_avail, in which max free extent size of each device
1924 * is stored.(Descending Sort)
1925 */
1926static inline void btrfs_descending_sort_devices(
1927 struct btrfs_device_info *devices,
1928 size_t nr_devices)
1929{
1930 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1931 btrfs_cmp_device_free_bytes, NULL);
1932}
1933
1934/*
1935 * The helper to calc the free space on the devices that can be used to store
1936 * file data.
1937 */
1938static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1939 u64 *free_bytes)
1940{
1941 struct btrfs_device_info *devices_info;
1942 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1943 struct btrfs_device *device;
1944 u64 skip_space;
1945 u64 type;
1946 u64 avail_space;
1947 u64 min_stripe_size;
1948 int min_stripes = 1, num_stripes = 1;
1949 int i = 0, nr_devices;
1950
1951 /*
1952 * We aren't under the device list lock, so this is racy-ish, but good
1953 * enough for our purposes.
1954 */
1955 nr_devices = fs_info->fs_devices->open_devices;
1956 if (!nr_devices) {
1957 smp_mb();
1958 nr_devices = fs_info->fs_devices->open_devices;
1959 ASSERT(nr_devices);
1960 if (!nr_devices) {
1961 *free_bytes = 0;
1962 return 0;
1963 }
1964 }
1965
1966 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1967 GFP_KERNEL);
1968 if (!devices_info)
1969 return -ENOMEM;
1970
1971 /* calc min stripe number for data space allocation */
1972 type = btrfs_data_alloc_profile(fs_info);
1973 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1974 min_stripes = 2;
1975 num_stripes = nr_devices;
1976 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1977 min_stripes = 2;
1978 num_stripes = 2;
1979 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1980 min_stripes = 4;
1981 num_stripes = 4;
1982 }
1983
1984 if (type & BTRFS_BLOCK_GROUP_DUP)
1985 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1986 else
1987 min_stripe_size = BTRFS_STRIPE_LEN;
1988
1989 rcu_read_lock();
1990 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1991 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1992 &device->dev_state) ||
1993 !device->bdev ||
1994 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1995 continue;
1996
1997 if (i >= nr_devices)
1998 break;
1999
2000 avail_space = device->total_bytes - device->bytes_used;
2001
2002 /* align with stripe_len */
2003 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2004 avail_space *= BTRFS_STRIPE_LEN;
2005
2006 /*
2007 * In order to avoid overwriting the superblock on the drive,
2008 * btrfs starts at an offset of at least 1MB when doing chunk
2009 * allocation.
2010 */
2011 skip_space = SZ_1M;
2012
2013 /*
2014 * we can use the free space in [0, skip_space - 1], subtract
2015 * it from the total.
2016 */
2017 if (avail_space && avail_space >= skip_space)
2018 avail_space -= skip_space;
2019 else
2020 avail_space = 0;
2021
2022 if (avail_space < min_stripe_size)
2023 continue;
2024
2025 devices_info[i].dev = device;
2026 devices_info[i].max_avail = avail_space;
2027
2028 i++;
2029 }
2030 rcu_read_unlock();
2031
2032 nr_devices = i;
2033
2034 btrfs_descending_sort_devices(devices_info, nr_devices);
2035
2036 i = nr_devices - 1;
2037 avail_space = 0;
2038 while (nr_devices >= min_stripes) {
2039 if (num_stripes > nr_devices)
2040 num_stripes = nr_devices;
2041
2042 if (devices_info[i].max_avail >= min_stripe_size) {
2043 int j;
2044 u64 alloc_size;
2045
2046 avail_space += devices_info[i].max_avail * num_stripes;
2047 alloc_size = devices_info[i].max_avail;
2048 for (j = i + 1 - num_stripes; j <= i; j++)
2049 devices_info[j].max_avail -= alloc_size;
2050 }
2051 i--;
2052 nr_devices--;
2053 }
2054
2055 kfree(devices_info);
2056 *free_bytes = avail_space;
2057 return 0;
2058}
2059
2060/*
2061 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2062 *
2063 * If there's a redundant raid level at DATA block groups, use the respective
2064 * multiplier to scale the sizes.
2065 *
2066 * Unused device space usage is based on simulating the chunk allocator
2067 * algorithm that respects the device sizes and order of allocations. This is
2068 * a close approximation of the actual use but there are other factors that may
2069 * change the result (like a new metadata chunk).
2070 *
2071 * If metadata is exhausted, f_bavail will be 0.
2072 */
2073static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2074{
2075 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2076 struct btrfs_super_block *disk_super = fs_info->super_copy;
2077 struct list_head *head = &fs_info->space_info;
2078 struct btrfs_space_info *found;
2079 u64 total_used = 0;
2080 u64 total_free_data = 0;
2081 u64 total_free_meta = 0;
2082 int bits = dentry->d_sb->s_blocksize_bits;
2083 __be32 *fsid = (__be32 *)fs_info->fsid;
2084 unsigned factor = 1;
2085 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2086 int ret;
2087 u64 thresh = 0;
2088 int mixed = 0;
2089
2090 rcu_read_lock();
2091 list_for_each_entry_rcu(found, head, list) {
2092 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2093 int i;
2094
2095 total_free_data += found->disk_total - found->disk_used;
2096 total_free_data -=
2097 btrfs_account_ro_block_groups_free_space(found);
2098
2099 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2100 if (!list_empty(&found->block_groups[i])) {
2101 switch (i) {
2102 case BTRFS_RAID_DUP:
2103 case BTRFS_RAID_RAID1:
2104 case BTRFS_RAID_RAID10:
2105 factor = 2;
2106 }
2107 }
2108 }
2109 }
2110
2111 /*
2112 * Metadata in mixed block goup profiles are accounted in data
2113 */
2114 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2115 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2116 mixed = 1;
2117 else
2118 total_free_meta += found->disk_total -
2119 found->disk_used;
2120 }
2121
2122 total_used += found->disk_used;
2123 }
2124
2125 rcu_read_unlock();
2126
2127 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2128 buf->f_blocks >>= bits;
2129 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2130
2131 /* Account global block reserve as used, it's in logical size already */
2132 spin_lock(&block_rsv->lock);
2133 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2134 if (buf->f_bfree >= block_rsv->size >> bits)
2135 buf->f_bfree -= block_rsv->size >> bits;
2136 else
2137 buf->f_bfree = 0;
2138 spin_unlock(&block_rsv->lock);
2139
2140 buf->f_bavail = div_u64(total_free_data, factor);
2141 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2142 if (ret)
2143 return ret;
2144 buf->f_bavail += div_u64(total_free_data, factor);
2145 buf->f_bavail = buf->f_bavail >> bits;
2146
2147 /*
2148 * We calculate the remaining metadata space minus global reserve. If
2149 * this is (supposedly) smaller than zero, there's no space. But this
2150 * does not hold in practice, the exhausted state happens where's still
2151 * some positive delta. So we apply some guesswork and compare the
2152 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2153 *
2154 * We probably cannot calculate the exact threshold value because this
2155 * depends on the internal reservations requested by various
2156 * operations, so some operations that consume a few metadata will
2157 * succeed even if the Avail is zero. But this is better than the other
2158 * way around.
2159 */
2160 thresh = SZ_4M;
2161
2162 if (!mixed && total_free_meta - thresh < block_rsv->size)
2163 buf->f_bavail = 0;
2164
2165 buf->f_type = BTRFS_SUPER_MAGIC;
2166 buf->f_bsize = dentry->d_sb->s_blocksize;
2167 buf->f_namelen = BTRFS_NAME_LEN;
2168
2169 /* We treat it as constant endianness (it doesn't matter _which_)
2170 because we want the fsid to come out the same whether mounted
2171 on a big-endian or little-endian host */
2172 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2173 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2174 /* Mask in the root object ID too, to disambiguate subvols */
2175 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2176 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2177
2178 return 0;
2179}
2180
2181static void btrfs_kill_super(struct super_block *sb)
2182{
2183 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2184 kill_anon_super(sb);
2185 free_fs_info(fs_info);
2186}
2187
2188static struct file_system_type btrfs_fs_type = {
2189 .owner = THIS_MODULE,
2190 .name = "btrfs",
2191 .mount = btrfs_mount,
2192 .kill_sb = btrfs_kill_super,
2193 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2194};
2195
2196static struct file_system_type btrfs_root_fs_type = {
2197 .owner = THIS_MODULE,
2198 .name = "btrfs",
2199 .mount = btrfs_mount_root,
2200 .kill_sb = btrfs_kill_super,
2201 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2202};
2203
2204MODULE_ALIAS_FS("btrfs");
2205
2206static int btrfs_control_open(struct inode *inode, struct file *file)
2207{
2208 /*
2209 * The control file's private_data is used to hold the
2210 * transaction when it is started and is used to keep
2211 * track of whether a transaction is already in progress.
2212 */
2213 file->private_data = NULL;
2214 return 0;
2215}
2216
2217/*
2218 * used by btrfsctl to scan devices when no FS is mounted
2219 */
2220static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2221 unsigned long arg)
2222{
2223 struct btrfs_ioctl_vol_args *vol;
2224 struct btrfs_fs_devices *fs_devices;
2225 int ret = -ENOTTY;
2226
2227 if (!capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229
2230 vol = memdup_user((void __user *)arg, sizeof(*vol));
2231 if (IS_ERR(vol))
2232 return PTR_ERR(vol);
2233
2234 switch (cmd) {
2235 case BTRFS_IOC_SCAN_DEV:
2236 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2237 &btrfs_root_fs_type, &fs_devices);
2238 break;
2239 case BTRFS_IOC_DEVICES_READY:
2240 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2241 &btrfs_root_fs_type, &fs_devices);
2242 if (ret)
2243 break;
2244 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2245 break;
2246 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2247 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2248 break;
2249 }
2250
2251 kfree(vol);
2252 return ret;
2253}
2254
2255static int btrfs_freeze(struct super_block *sb)
2256{
2257 struct btrfs_trans_handle *trans;
2258 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2259 struct btrfs_root *root = fs_info->tree_root;
2260
2261 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2262 /*
2263 * We don't need a barrier here, we'll wait for any transaction that
2264 * could be in progress on other threads (and do delayed iputs that
2265 * we want to avoid on a frozen filesystem), or do the commit
2266 * ourselves.
2267 */
2268 trans = btrfs_attach_transaction_barrier(root);
2269 if (IS_ERR(trans)) {
2270 /* no transaction, don't bother */
2271 if (PTR_ERR(trans) == -ENOENT)
2272 return 0;
2273 return PTR_ERR(trans);
2274 }
2275 return btrfs_commit_transaction(trans);
2276}
2277
2278static int btrfs_unfreeze(struct super_block *sb)
2279{
2280 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2281
2282 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2283 return 0;
2284}
2285
2286static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2287{
2288 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2289 struct btrfs_fs_devices *cur_devices;
2290 struct btrfs_device *dev, *first_dev = NULL;
2291 struct list_head *head;
2292 struct rcu_string *name;
2293
2294 /*
2295 * Lightweight locking of the devices. We should not need
2296 * device_list_mutex here as we only read the device data and the list
2297 * is protected by RCU. Even if a device is deleted during the list
2298 * traversals, we'll get valid data, the freeing callback will wait at
2299 * least until until the rcu_read_unlock.
2300 */
2301 rcu_read_lock();
2302 cur_devices = fs_info->fs_devices;
2303 while (cur_devices) {
2304 head = &cur_devices->devices;
2305 list_for_each_entry_rcu(dev, head, dev_list) {
2306 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2307 continue;
2308 if (!dev->name)
2309 continue;
2310 if (!first_dev || dev->devid < first_dev->devid)
2311 first_dev = dev;
2312 }
2313 cur_devices = cur_devices->seed;
2314 }
2315
2316 if (first_dev) {
2317 name = rcu_dereference(first_dev->name);
2318 seq_escape(m, name->str, " \t\n\\");
2319 } else {
2320 WARN_ON(1);
2321 }
2322 rcu_read_unlock();
2323 return 0;
2324}
2325
2326static const struct super_operations btrfs_super_ops = {
2327 .drop_inode = btrfs_drop_inode,
2328 .evict_inode = btrfs_evict_inode,
2329 .put_super = btrfs_put_super,
2330 .sync_fs = btrfs_sync_fs,
2331 .show_options = btrfs_show_options,
2332 .show_devname = btrfs_show_devname,
2333 .write_inode = btrfs_write_inode,
2334 .alloc_inode = btrfs_alloc_inode,
2335 .destroy_inode = btrfs_destroy_inode,
2336 .statfs = btrfs_statfs,
2337 .remount_fs = btrfs_remount,
2338 .freeze_fs = btrfs_freeze,
2339 .unfreeze_fs = btrfs_unfreeze,
2340};
2341
2342static const struct file_operations btrfs_ctl_fops = {
2343 .open = btrfs_control_open,
2344 .unlocked_ioctl = btrfs_control_ioctl,
2345 .compat_ioctl = btrfs_control_ioctl,
2346 .owner = THIS_MODULE,
2347 .llseek = noop_llseek,
2348};
2349
2350static struct miscdevice btrfs_misc = {
2351 .minor = BTRFS_MINOR,
2352 .name = "btrfs-control",
2353 .fops = &btrfs_ctl_fops
2354};
2355
2356MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2357MODULE_ALIAS("devname:btrfs-control");
2358
2359static int __init btrfs_interface_init(void)
2360{
2361 return misc_register(&btrfs_misc);
2362}
2363
2364static __cold void btrfs_interface_exit(void)
2365{
2366 misc_deregister(&btrfs_misc);
2367}
2368
2369static void __init btrfs_print_mod_info(void)
2370{
2371 pr_info("Btrfs loaded, crc32c=%s"
2372#ifdef CONFIG_BTRFS_DEBUG
2373 ", debug=on"
2374#endif
2375#ifdef CONFIG_BTRFS_ASSERT
2376 ", assert=on"
2377#endif
2378#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2379 ", integrity-checker=on"
2380#endif
2381#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2382 ", ref-verify=on"
2383#endif
2384 "\n",
2385 crc32c_impl());
2386}
2387
2388static int __init init_btrfs_fs(void)
2389{
2390 int err;
2391
2392 btrfs_props_init();
2393
2394 err = btrfs_init_sysfs();
2395 if (err)
2396 return err;
2397
2398 btrfs_init_compress();
2399
2400 err = btrfs_init_cachep();
2401 if (err)
2402 goto free_compress;
2403
2404 err = extent_io_init();
2405 if (err)
2406 goto free_cachep;
2407
2408 err = extent_map_init();
2409 if (err)
2410 goto free_extent_io;
2411
2412 err = ordered_data_init();
2413 if (err)
2414 goto free_extent_map;
2415
2416 err = btrfs_delayed_inode_init();
2417 if (err)
2418 goto free_ordered_data;
2419
2420 err = btrfs_auto_defrag_init();
2421 if (err)
2422 goto free_delayed_inode;
2423
2424 err = btrfs_delayed_ref_init();
2425 if (err)
2426 goto free_auto_defrag;
2427
2428 err = btrfs_prelim_ref_init();
2429 if (err)
2430 goto free_delayed_ref;
2431
2432 err = btrfs_end_io_wq_init();
2433 if (err)
2434 goto free_prelim_ref;
2435
2436 err = btrfs_interface_init();
2437 if (err)
2438 goto free_end_io_wq;
2439
2440 btrfs_init_lockdep();
2441
2442 btrfs_print_mod_info();
2443
2444 err = btrfs_run_sanity_tests();
2445 if (err)
2446 goto unregister_ioctl;
2447
2448 err = register_filesystem(&btrfs_fs_type);
2449 if (err)
2450 goto unregister_ioctl;
2451
2452 return 0;
2453
2454unregister_ioctl:
2455 btrfs_interface_exit();
2456free_end_io_wq:
2457 btrfs_end_io_wq_exit();
2458free_prelim_ref:
2459 btrfs_prelim_ref_exit();
2460free_delayed_ref:
2461 btrfs_delayed_ref_exit();
2462free_auto_defrag:
2463 btrfs_auto_defrag_exit();
2464free_delayed_inode:
2465 btrfs_delayed_inode_exit();
2466free_ordered_data:
2467 ordered_data_exit();
2468free_extent_map:
2469 extent_map_exit();
2470free_extent_io:
2471 extent_io_exit();
2472free_cachep:
2473 btrfs_destroy_cachep();
2474free_compress:
2475 btrfs_exit_compress();
2476 btrfs_exit_sysfs();
2477
2478 return err;
2479}
2480
2481static void __exit exit_btrfs_fs(void)
2482{
2483 btrfs_destroy_cachep();
2484 btrfs_delayed_ref_exit();
2485 btrfs_auto_defrag_exit();
2486 btrfs_delayed_inode_exit();
2487 btrfs_prelim_ref_exit();
2488 ordered_data_exit();
2489 extent_map_exit();
2490 extent_io_exit();
2491 btrfs_interface_exit();
2492 btrfs_end_io_wq_exit();
2493 unregister_filesystem(&btrfs_fs_type);
2494 btrfs_exit_sysfs();
2495 btrfs_cleanup_fs_uuids();
2496 btrfs_exit_compress();
2497}
2498
2499late_initcall(init_btrfs_fs);
2500module_exit(exit_btrfs_fs)
2501
2502MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include <linux/btrfs.h>
45#include "delayed-inode.h"
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "hash.h"
52#include "props.h"
53#include "xattr.h"
54#include "volumes.h"
55#include "export.h"
56#include "compression.h"
57#include "rcu-string.h"
58#include "dev-replace.h"
59#include "free-space-cache.h"
60#include "backref.h"
61#include "tests/btrfs-tests.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/btrfs.h>
65
66static const struct super_operations btrfs_super_ops;
67static struct file_system_type btrfs_fs_type;
68
69static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70
71static const char *btrfs_decode_error(int errno)
72{
73 char *errstr = "unknown";
74
75 switch (errno) {
76 case -EIO:
77 errstr = "IO failure";
78 break;
79 case -ENOMEM:
80 errstr = "Out of memory";
81 break;
82 case -EROFS:
83 errstr = "Readonly filesystem";
84 break;
85 case -EEXIST:
86 errstr = "Object already exists";
87 break;
88 case -ENOSPC:
89 errstr = "No space left";
90 break;
91 case -ENOENT:
92 errstr = "No such entry";
93 break;
94 }
95
96 return errstr;
97}
98
99static void save_error_info(struct btrfs_fs_info *fs_info)
100{
101 /*
102 * today we only save the error info into ram. Long term we'll
103 * also send it down to the disk
104 */
105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106}
107
108/* btrfs handle error by forcing the filesystem readonly */
109static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110{
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 sb->s_flags |= MS_RDONLY;
118 btrfs_info(fs_info, "forced readonly");
119 /*
120 * Note that a running device replace operation is not
121 * canceled here although there is no way to update
122 * the progress. It would add the risk of a deadlock,
123 * therefore the canceling is ommited. The only penalty
124 * is that some I/O remains active until the procedure
125 * completes. The next time when the filesystem is
126 * mounted writeable again, the device replace
127 * operation continues.
128 */
129 }
130}
131
132#ifdef CONFIG_PRINTK
133/*
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
136 */
137void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 unsigned int line, int errno, const char *fmt, ...)
139{
140 struct super_block *sb = fs_info->sb;
141 const char *errstr;
142
143 /*
144 * Special case: if the error is EROFS, and we're already
145 * under MS_RDONLY, then it is safe here.
146 */
147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148 return;
149
150 errstr = btrfs_decode_error(errno);
151 if (fmt) {
152 struct va_format vaf;
153 va_list args;
154
155 va_start(args, fmt);
156 vaf.fmt = fmt;
157 vaf.va = &args;
158
159 printk(KERN_CRIT
160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 sb->s_id, function, line, errno, errstr, &vaf);
162 va_end(args);
163 } else {
164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 sb->s_id, function, line, errno, errstr);
166 }
167
168 /* Don't go through full error handling during mount */
169 save_error_info(fs_info);
170 if (sb->s_flags & MS_BORN)
171 btrfs_handle_error(fs_info);
172}
173
174static const char * const logtypes[] = {
175 "emergency",
176 "alert",
177 "critical",
178 "error",
179 "warning",
180 "notice",
181 "info",
182 "debug",
183};
184
185void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186{
187 struct super_block *sb = fs_info->sb;
188 char lvl[4];
189 struct va_format vaf;
190 va_list args;
191 const char *type = logtypes[4];
192 int kern_level;
193
194 va_start(args, fmt);
195
196 kern_level = printk_get_level(fmt);
197 if (kern_level) {
198 size_t size = printk_skip_level(fmt) - fmt;
199 memcpy(lvl, fmt, size);
200 lvl[size] = '\0';
201 fmt += size;
202 type = logtypes[kern_level - '0'];
203 } else
204 *lvl = '\0';
205
206 vaf.fmt = fmt;
207 vaf.va = &args;
208
209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210
211 va_end(args);
212}
213
214#else
215
216void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 unsigned int line, int errno, const char *fmt, ...)
218{
219 struct super_block *sb = fs_info->sb;
220
221 /*
222 * Special case: if the error is EROFS, and we're already
223 * under MS_RDONLY, then it is safe here.
224 */
225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 return;
227
228 /* Don't go through full error handling during mount */
229 if (sb->s_flags & MS_BORN) {
230 save_error_info(fs_info);
231 btrfs_handle_error(fs_info);
232 }
233}
234#endif
235
236/*
237 * We only mark the transaction aborted and then set the file system read-only.
238 * This will prevent new transactions from starting or trying to join this
239 * one.
240 *
241 * This means that error recovery at the call site is limited to freeing
242 * any local memory allocations and passing the error code up without
243 * further cleanup. The transaction should complete as it normally would
244 * in the call path but will return -EIO.
245 *
246 * We'll complete the cleanup in btrfs_end_transaction and
247 * btrfs_commit_transaction.
248 */
249void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 struct btrfs_root *root, const char *function,
251 unsigned int line, int errno)
252{
253 /*
254 * Report first abort since mount
255 */
256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 &root->fs_info->fs_state)) {
258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 errno);
260 }
261 trans->aborted = errno;
262 /* Nothing used. The other threads that have joined this
263 * transaction may be able to continue. */
264 if (!trans->blocks_used) {
265 const char *errstr;
266
267 errstr = btrfs_decode_error(errno);
268 btrfs_warn(root->fs_info,
269 "%s:%d: Aborting unused transaction(%s).",
270 function, line, errstr);
271 return;
272 }
273 ACCESS_ONCE(trans->transaction->aborted) = errno;
274 /* Wake up anybody who may be waiting on this transaction */
275 wake_up(&root->fs_info->transaction_wait);
276 wake_up(&root->fs_info->transaction_blocked_wait);
277 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
278}
279/*
280 * __btrfs_panic decodes unexpected, fatal errors from the caller,
281 * issues an alert, and either panics or BUGs, depending on mount options.
282 */
283void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 unsigned int line, int errno, const char *fmt, ...)
285{
286 char *s_id = "<unknown>";
287 const char *errstr;
288 struct va_format vaf = { .fmt = fmt };
289 va_list args;
290
291 if (fs_info)
292 s_id = fs_info->sb->s_id;
293
294 va_start(args, fmt);
295 vaf.va = &args;
296
297 errstr = btrfs_decode_error(errno);
298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 s_id, function, line, &vaf, errno, errstr);
301
302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 function, line, &vaf, errno, errstr);
304 va_end(args);
305 /* Caller calls BUG() */
306}
307
308static void btrfs_put_super(struct super_block *sb)
309{
310 (void)close_ctree(btrfs_sb(sb)->tree_root);
311 /* FIXME: need to fix VFS to return error? */
312 /* AV: return it _where_? ->put_super() can be triggered by any number
313 * of async events, up to and including delivery of SIGKILL to the
314 * last process that kept it busy. Or segfault in the aforementioned
315 * process... Whom would you report that to?
316 */
317}
318
319enum {
320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 Opt_err,
334};
335
336static match_table_t tokens = {
337 {Opt_degraded, "degraded"},
338 {Opt_subvol, "subvol=%s"},
339 {Opt_subvolid, "subvolid=%s"},
340 {Opt_device, "device=%s"},
341 {Opt_nodatasum, "nodatasum"},
342 {Opt_datasum, "datasum"},
343 {Opt_nodatacow, "nodatacow"},
344 {Opt_datacow, "datacow"},
345 {Opt_nobarrier, "nobarrier"},
346 {Opt_barrier, "barrier"},
347 {Opt_max_inline, "max_inline=%s"},
348 {Opt_alloc_start, "alloc_start=%s"},
349 {Opt_thread_pool, "thread_pool=%d"},
350 {Opt_compress, "compress"},
351 {Opt_compress_type, "compress=%s"},
352 {Opt_compress_force, "compress-force"},
353 {Opt_compress_force_type, "compress-force=%s"},
354 {Opt_ssd, "ssd"},
355 {Opt_ssd_spread, "ssd_spread"},
356 {Opt_nossd, "nossd"},
357 {Opt_acl, "acl"},
358 {Opt_noacl, "noacl"},
359 {Opt_notreelog, "notreelog"},
360 {Opt_treelog, "treelog"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_ratio, "metadata_ratio=%d"},
364 {Opt_discard, "discard"},
365 {Opt_nodiscard, "nodiscard"},
366 {Opt_space_cache, "space_cache"},
367 {Opt_clear_cache, "clear_cache"},
368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 {Opt_enospc_debug, "enospc_debug"},
370 {Opt_noenospc_debug, "noenospc_debug"},
371 {Opt_subvolrootid, "subvolrootid=%d"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_inode_cache, "inode_cache"},
375 {Opt_noinode_cache, "noinode_cache"},
376 {Opt_no_space_cache, "nospace_cache"},
377 {Opt_recovery, "recovery"},
378 {Opt_skip_balance, "skip_balance"},
379 {Opt_check_integrity, "check_int"},
380 {Opt_check_integrity_including_extent_data, "check_int_data"},
381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 {Opt_fatal_errors, "fatal_errors=%s"},
384 {Opt_commit_interval, "commit=%d"},
385 {Opt_err, NULL},
386};
387
388/*
389 * Regular mount options parser. Everything that is needed only when
390 * reading in a new superblock is parsed here.
391 * XXX JDM: This needs to be cleaned up for remount.
392 */
393int btrfs_parse_options(struct btrfs_root *root, char *options)
394{
395 struct btrfs_fs_info *info = root->fs_info;
396 substring_t args[MAX_OPT_ARGS];
397 char *p, *num, *orig = NULL;
398 u64 cache_gen;
399 int intarg;
400 int ret = 0;
401 char *compress_type;
402 bool compress_force = false;
403 bool compress = false;
404
405 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406 if (cache_gen)
407 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408
409 if (!options)
410 goto out;
411
412 /*
413 * strsep changes the string, duplicate it because parse_options
414 * gets called twice
415 */
416 options = kstrdup(options, GFP_NOFS);
417 if (!options)
418 return -ENOMEM;
419
420 orig = options;
421
422 while ((p = strsep(&options, ",")) != NULL) {
423 int token;
424 if (!*p)
425 continue;
426
427 token = match_token(p, tokens, args);
428 switch (token) {
429 case Opt_degraded:
430 btrfs_info(root->fs_info, "allowing degraded mounts");
431 btrfs_set_opt(info->mount_opt, DEGRADED);
432 break;
433 case Opt_subvol:
434 case Opt_subvolid:
435 case Opt_subvolrootid:
436 case Opt_device:
437 /*
438 * These are parsed by btrfs_parse_early_options
439 * and can be happily ignored here.
440 */
441 break;
442 case Opt_nodatasum:
443 btrfs_set_and_info(root, NODATASUM,
444 "setting nodatasum");
445 break;
446 case Opt_datasum:
447 if (btrfs_test_opt(root, NODATASUM)) {
448 if (btrfs_test_opt(root, NODATACOW))
449 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450 else
451 btrfs_info(root->fs_info, "setting datasum");
452 }
453 btrfs_clear_opt(info->mount_opt, NODATACOW);
454 btrfs_clear_opt(info->mount_opt, NODATASUM);
455 break;
456 case Opt_nodatacow:
457 if (!btrfs_test_opt(root, NODATACOW)) {
458 if (!btrfs_test_opt(root, COMPRESS) ||
459 !btrfs_test_opt(root, FORCE_COMPRESS)) {
460 btrfs_info(root->fs_info,
461 "setting nodatacow, compression disabled");
462 } else {
463 btrfs_info(root->fs_info, "setting nodatacow");
464 }
465 }
466 btrfs_clear_opt(info->mount_opt, COMPRESS);
467 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 btrfs_set_opt(info->mount_opt, NODATACOW);
469 btrfs_set_opt(info->mount_opt, NODATASUM);
470 break;
471 case Opt_datacow:
472 btrfs_clear_and_info(root, NODATACOW,
473 "setting datacow");
474 break;
475 case Opt_compress_force:
476 case Opt_compress_force_type:
477 compress_force = true;
478 /* Fallthrough */
479 case Opt_compress:
480 case Opt_compress_type:
481 compress = true;
482 if (token == Opt_compress ||
483 token == Opt_compress_force ||
484 strcmp(args[0].from, "zlib") == 0) {
485 compress_type = "zlib";
486 info->compress_type = BTRFS_COMPRESS_ZLIB;
487 btrfs_set_opt(info->mount_opt, COMPRESS);
488 btrfs_clear_opt(info->mount_opt, NODATACOW);
489 btrfs_clear_opt(info->mount_opt, NODATASUM);
490 } else if (strcmp(args[0].from, "lzo") == 0) {
491 compress_type = "lzo";
492 info->compress_type = BTRFS_COMPRESS_LZO;
493 btrfs_set_opt(info->mount_opt, COMPRESS);
494 btrfs_clear_opt(info->mount_opt, NODATACOW);
495 btrfs_clear_opt(info->mount_opt, NODATASUM);
496 btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 } else if (strncmp(args[0].from, "no", 2) == 0) {
498 compress_type = "no";
499 btrfs_clear_opt(info->mount_opt, COMPRESS);
500 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501 compress_force = false;
502 } else {
503 ret = -EINVAL;
504 goto out;
505 }
506
507 if (compress_force) {
508 btrfs_set_and_info(root, FORCE_COMPRESS,
509 "force %s compression",
510 compress_type);
511 } else if (compress) {
512 if (!btrfs_test_opt(root, COMPRESS))
513 btrfs_info(root->fs_info,
514 "btrfs: use %s compression\n",
515 compress_type);
516 }
517 break;
518 case Opt_ssd:
519 btrfs_set_and_info(root, SSD,
520 "use ssd allocation scheme");
521 break;
522 case Opt_ssd_spread:
523 btrfs_set_and_info(root, SSD_SPREAD,
524 "use spread ssd allocation scheme");
525 break;
526 case Opt_nossd:
527 btrfs_clear_and_info(root, NOSSD,
528 "not using ssd allocation scheme");
529 btrfs_clear_opt(info->mount_opt, SSD);
530 break;
531 case Opt_barrier:
532 btrfs_clear_and_info(root, NOBARRIER,
533 "turning on barriers");
534 break;
535 case Opt_nobarrier:
536 btrfs_set_and_info(root, NOBARRIER,
537 "turning off barriers");
538 break;
539 case Opt_thread_pool:
540 ret = match_int(&args[0], &intarg);
541 if (ret) {
542 goto out;
543 } else if (intarg > 0) {
544 info->thread_pool_size = intarg;
545 } else {
546 ret = -EINVAL;
547 goto out;
548 }
549 break;
550 case Opt_max_inline:
551 num = match_strdup(&args[0]);
552 if (num) {
553 info->max_inline = memparse(num, NULL);
554 kfree(num);
555
556 if (info->max_inline) {
557 info->max_inline = min_t(u64,
558 info->max_inline,
559 root->sectorsize);
560 }
561 btrfs_info(root->fs_info, "max_inline at %llu",
562 info->max_inline);
563 } else {
564 ret = -ENOMEM;
565 goto out;
566 }
567 break;
568 case Opt_alloc_start:
569 num = match_strdup(&args[0]);
570 if (num) {
571 mutex_lock(&info->chunk_mutex);
572 info->alloc_start = memparse(num, NULL);
573 mutex_unlock(&info->chunk_mutex);
574 kfree(num);
575 btrfs_info(root->fs_info, "allocations start at %llu",
576 info->alloc_start);
577 } else {
578 ret = -ENOMEM;
579 goto out;
580 }
581 break;
582 case Opt_acl:
583 root->fs_info->sb->s_flags |= MS_POSIXACL;
584 break;
585 case Opt_noacl:
586 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
587 break;
588 case Opt_notreelog:
589 btrfs_set_and_info(root, NOTREELOG,
590 "disabling tree log");
591 break;
592 case Opt_treelog:
593 btrfs_clear_and_info(root, NOTREELOG,
594 "enabling tree log");
595 break;
596 case Opt_flushoncommit:
597 btrfs_set_and_info(root, FLUSHONCOMMIT,
598 "turning on flush-on-commit");
599 break;
600 case Opt_noflushoncommit:
601 btrfs_clear_and_info(root, FLUSHONCOMMIT,
602 "turning off flush-on-commit");
603 break;
604 case Opt_ratio:
605 ret = match_int(&args[0], &intarg);
606 if (ret) {
607 goto out;
608 } else if (intarg >= 0) {
609 info->metadata_ratio = intarg;
610 btrfs_info(root->fs_info, "metadata ratio %d",
611 info->metadata_ratio);
612 } else {
613 ret = -EINVAL;
614 goto out;
615 }
616 break;
617 case Opt_discard:
618 btrfs_set_and_info(root, DISCARD,
619 "turning on discard");
620 break;
621 case Opt_nodiscard:
622 btrfs_clear_and_info(root, DISCARD,
623 "turning off discard");
624 break;
625 case Opt_space_cache:
626 btrfs_set_and_info(root, SPACE_CACHE,
627 "enabling disk space caching");
628 break;
629 case Opt_rescan_uuid_tree:
630 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
631 break;
632 case Opt_no_space_cache:
633 btrfs_clear_and_info(root, SPACE_CACHE,
634 "disabling disk space caching");
635 break;
636 case Opt_inode_cache:
637 btrfs_set_and_info(root, CHANGE_INODE_CACHE,
638 "enabling inode map caching");
639 break;
640 case Opt_noinode_cache:
641 btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
642 "disabling inode map caching");
643 break;
644 case Opt_clear_cache:
645 btrfs_set_and_info(root, CLEAR_CACHE,
646 "force clearing of disk cache");
647 break;
648 case Opt_user_subvol_rm_allowed:
649 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
650 break;
651 case Opt_enospc_debug:
652 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
653 break;
654 case Opt_noenospc_debug:
655 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
656 break;
657 case Opt_defrag:
658 btrfs_set_and_info(root, AUTO_DEFRAG,
659 "enabling auto defrag");
660 break;
661 case Opt_nodefrag:
662 btrfs_clear_and_info(root, AUTO_DEFRAG,
663 "disabling auto defrag");
664 break;
665 case Opt_recovery:
666 btrfs_info(root->fs_info, "enabling auto recovery");
667 btrfs_set_opt(info->mount_opt, RECOVERY);
668 break;
669 case Opt_skip_balance:
670 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
671 break;
672#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
673 case Opt_check_integrity_including_extent_data:
674 btrfs_info(root->fs_info,
675 "enabling check integrity including extent data");
676 btrfs_set_opt(info->mount_opt,
677 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
678 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
679 break;
680 case Opt_check_integrity:
681 btrfs_info(root->fs_info, "enabling check integrity");
682 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
683 break;
684 case Opt_check_integrity_print_mask:
685 ret = match_int(&args[0], &intarg);
686 if (ret) {
687 goto out;
688 } else if (intarg >= 0) {
689 info->check_integrity_print_mask = intarg;
690 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
691 info->check_integrity_print_mask);
692 } else {
693 ret = -EINVAL;
694 goto out;
695 }
696 break;
697#else
698 case Opt_check_integrity_including_extent_data:
699 case Opt_check_integrity:
700 case Opt_check_integrity_print_mask:
701 btrfs_err(root->fs_info,
702 "support for check_integrity* not compiled in!");
703 ret = -EINVAL;
704 goto out;
705#endif
706 case Opt_fatal_errors:
707 if (strcmp(args[0].from, "panic") == 0)
708 btrfs_set_opt(info->mount_opt,
709 PANIC_ON_FATAL_ERROR);
710 else if (strcmp(args[0].from, "bug") == 0)
711 btrfs_clear_opt(info->mount_opt,
712 PANIC_ON_FATAL_ERROR);
713 else {
714 ret = -EINVAL;
715 goto out;
716 }
717 break;
718 case Opt_commit_interval:
719 intarg = 0;
720 ret = match_int(&args[0], &intarg);
721 if (ret < 0) {
722 btrfs_err(root->fs_info, "invalid commit interval");
723 ret = -EINVAL;
724 goto out;
725 }
726 if (intarg > 0) {
727 if (intarg > 300) {
728 btrfs_warn(root->fs_info, "excessive commit interval %d",
729 intarg);
730 }
731 info->commit_interval = intarg;
732 } else {
733 btrfs_info(root->fs_info, "using default commit interval %ds",
734 BTRFS_DEFAULT_COMMIT_INTERVAL);
735 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
736 }
737 break;
738 case Opt_err:
739 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
740 ret = -EINVAL;
741 goto out;
742 default:
743 break;
744 }
745 }
746out:
747 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
748 btrfs_info(root->fs_info, "disk space caching is enabled");
749 kfree(orig);
750 return ret;
751}
752
753/*
754 * Parse mount options that are required early in the mount process.
755 *
756 * All other options will be parsed on much later in the mount process and
757 * only when we need to allocate a new super block.
758 */
759static int btrfs_parse_early_options(const char *options, fmode_t flags,
760 void *holder, char **subvol_name, u64 *subvol_objectid,
761 struct btrfs_fs_devices **fs_devices)
762{
763 substring_t args[MAX_OPT_ARGS];
764 char *device_name, *opts, *orig, *p;
765 char *num = NULL;
766 int error = 0;
767
768 if (!options)
769 return 0;
770
771 /*
772 * strsep changes the string, duplicate it because parse_options
773 * gets called twice
774 */
775 opts = kstrdup(options, GFP_KERNEL);
776 if (!opts)
777 return -ENOMEM;
778 orig = opts;
779
780 while ((p = strsep(&opts, ",")) != NULL) {
781 int token;
782 if (!*p)
783 continue;
784
785 token = match_token(p, tokens, args);
786 switch (token) {
787 case Opt_subvol:
788 kfree(*subvol_name);
789 *subvol_name = match_strdup(&args[0]);
790 if (!*subvol_name) {
791 error = -ENOMEM;
792 goto out;
793 }
794 break;
795 case Opt_subvolid:
796 num = match_strdup(&args[0]);
797 if (num) {
798 *subvol_objectid = memparse(num, NULL);
799 kfree(num);
800 /* we want the original fs_tree */
801 if (!*subvol_objectid)
802 *subvol_objectid =
803 BTRFS_FS_TREE_OBJECTID;
804 } else {
805 error = -EINVAL;
806 goto out;
807 }
808 break;
809 case Opt_subvolrootid:
810 printk(KERN_WARNING
811 "BTRFS: 'subvolrootid' mount option is deprecated and has "
812 "no effect\n");
813 break;
814 case Opt_device:
815 device_name = match_strdup(&args[0]);
816 if (!device_name) {
817 error = -ENOMEM;
818 goto out;
819 }
820 error = btrfs_scan_one_device(device_name,
821 flags, holder, fs_devices);
822 kfree(device_name);
823 if (error)
824 goto out;
825 break;
826 default:
827 break;
828 }
829 }
830
831out:
832 kfree(orig);
833 return error;
834}
835
836static struct dentry *get_default_root(struct super_block *sb,
837 u64 subvol_objectid)
838{
839 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
840 struct btrfs_root *root = fs_info->tree_root;
841 struct btrfs_root *new_root;
842 struct btrfs_dir_item *di;
843 struct btrfs_path *path;
844 struct btrfs_key location;
845 struct inode *inode;
846 struct dentry *dentry;
847 u64 dir_id;
848 int new = 0;
849
850 /*
851 * We have a specific subvol we want to mount, just setup location and
852 * go look up the root.
853 */
854 if (subvol_objectid) {
855 location.objectid = subvol_objectid;
856 location.type = BTRFS_ROOT_ITEM_KEY;
857 location.offset = (u64)-1;
858 goto find_root;
859 }
860
861 path = btrfs_alloc_path();
862 if (!path)
863 return ERR_PTR(-ENOMEM);
864 path->leave_spinning = 1;
865
866 /*
867 * Find the "default" dir item which points to the root item that we
868 * will mount by default if we haven't been given a specific subvolume
869 * to mount.
870 */
871 dir_id = btrfs_super_root_dir(fs_info->super_copy);
872 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
873 if (IS_ERR(di)) {
874 btrfs_free_path(path);
875 return ERR_CAST(di);
876 }
877 if (!di) {
878 /*
879 * Ok the default dir item isn't there. This is weird since
880 * it's always been there, but don't freak out, just try and
881 * mount to root most subvolume.
882 */
883 btrfs_free_path(path);
884 dir_id = BTRFS_FIRST_FREE_OBJECTID;
885 new_root = fs_info->fs_root;
886 goto setup_root;
887 }
888
889 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
890 btrfs_free_path(path);
891
892find_root:
893 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
894 if (IS_ERR(new_root))
895 return ERR_CAST(new_root);
896
897 dir_id = btrfs_root_dirid(&new_root->root_item);
898setup_root:
899 location.objectid = dir_id;
900 location.type = BTRFS_INODE_ITEM_KEY;
901 location.offset = 0;
902
903 inode = btrfs_iget(sb, &location, new_root, &new);
904 if (IS_ERR(inode))
905 return ERR_CAST(inode);
906
907 /*
908 * If we're just mounting the root most subvol put the inode and return
909 * a reference to the dentry. We will have already gotten a reference
910 * to the inode in btrfs_fill_super so we're good to go.
911 */
912 if (!new && sb->s_root->d_inode == inode) {
913 iput(inode);
914 return dget(sb->s_root);
915 }
916
917 dentry = d_obtain_alias(inode);
918 if (!IS_ERR(dentry)) {
919 spin_lock(&dentry->d_lock);
920 dentry->d_flags &= ~DCACHE_DISCONNECTED;
921 spin_unlock(&dentry->d_lock);
922 }
923 return dentry;
924}
925
926static int btrfs_fill_super(struct super_block *sb,
927 struct btrfs_fs_devices *fs_devices,
928 void *data, int silent)
929{
930 struct inode *inode;
931 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
932 struct btrfs_key key;
933 int err;
934
935 sb->s_maxbytes = MAX_LFS_FILESIZE;
936 sb->s_magic = BTRFS_SUPER_MAGIC;
937 sb->s_op = &btrfs_super_ops;
938 sb->s_d_op = &btrfs_dentry_operations;
939 sb->s_export_op = &btrfs_export_ops;
940 sb->s_xattr = btrfs_xattr_handlers;
941 sb->s_time_gran = 1;
942#ifdef CONFIG_BTRFS_FS_POSIX_ACL
943 sb->s_flags |= MS_POSIXACL;
944#endif
945 sb->s_flags |= MS_I_VERSION;
946 err = open_ctree(sb, fs_devices, (char *)data);
947 if (err) {
948 printk(KERN_ERR "BTRFS: open_ctree failed\n");
949 return err;
950 }
951
952 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
953 key.type = BTRFS_INODE_ITEM_KEY;
954 key.offset = 0;
955 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
956 if (IS_ERR(inode)) {
957 err = PTR_ERR(inode);
958 goto fail_close;
959 }
960
961 sb->s_root = d_make_root(inode);
962 if (!sb->s_root) {
963 err = -ENOMEM;
964 goto fail_close;
965 }
966
967 save_mount_options(sb, data);
968 cleancache_init_fs(sb);
969 sb->s_flags |= MS_ACTIVE;
970 return 0;
971
972fail_close:
973 close_ctree(fs_info->tree_root);
974 return err;
975}
976
977int btrfs_sync_fs(struct super_block *sb, int wait)
978{
979 struct btrfs_trans_handle *trans;
980 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
981 struct btrfs_root *root = fs_info->tree_root;
982
983 trace_btrfs_sync_fs(wait);
984
985 if (!wait) {
986 filemap_flush(fs_info->btree_inode->i_mapping);
987 return 0;
988 }
989
990 btrfs_wait_ordered_roots(fs_info, -1);
991
992 trans = btrfs_attach_transaction_barrier(root);
993 if (IS_ERR(trans)) {
994 /* no transaction, don't bother */
995 if (PTR_ERR(trans) == -ENOENT)
996 return 0;
997 return PTR_ERR(trans);
998 }
999 return btrfs_commit_transaction(trans, root);
1000}
1001
1002static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1003{
1004 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1005 struct btrfs_root *root = info->tree_root;
1006 char *compress_type;
1007
1008 if (btrfs_test_opt(root, DEGRADED))
1009 seq_puts(seq, ",degraded");
1010 if (btrfs_test_opt(root, NODATASUM))
1011 seq_puts(seq, ",nodatasum");
1012 if (btrfs_test_opt(root, NODATACOW))
1013 seq_puts(seq, ",nodatacow");
1014 if (btrfs_test_opt(root, NOBARRIER))
1015 seq_puts(seq, ",nobarrier");
1016 if (info->max_inline != 8192 * 1024)
1017 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1018 if (info->alloc_start != 0)
1019 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1020 if (info->thread_pool_size != min_t(unsigned long,
1021 num_online_cpus() + 2, 8))
1022 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1023 if (btrfs_test_opt(root, COMPRESS)) {
1024 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1025 compress_type = "zlib";
1026 else
1027 compress_type = "lzo";
1028 if (btrfs_test_opt(root, FORCE_COMPRESS))
1029 seq_printf(seq, ",compress-force=%s", compress_type);
1030 else
1031 seq_printf(seq, ",compress=%s", compress_type);
1032 }
1033 if (btrfs_test_opt(root, NOSSD))
1034 seq_puts(seq, ",nossd");
1035 if (btrfs_test_opt(root, SSD_SPREAD))
1036 seq_puts(seq, ",ssd_spread");
1037 else if (btrfs_test_opt(root, SSD))
1038 seq_puts(seq, ",ssd");
1039 if (btrfs_test_opt(root, NOTREELOG))
1040 seq_puts(seq, ",notreelog");
1041 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1042 seq_puts(seq, ",flushoncommit");
1043 if (btrfs_test_opt(root, DISCARD))
1044 seq_puts(seq, ",discard");
1045 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1046 seq_puts(seq, ",noacl");
1047 if (btrfs_test_opt(root, SPACE_CACHE))
1048 seq_puts(seq, ",space_cache");
1049 else
1050 seq_puts(seq, ",nospace_cache");
1051 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1052 seq_puts(seq, ",rescan_uuid_tree");
1053 if (btrfs_test_opt(root, CLEAR_CACHE))
1054 seq_puts(seq, ",clear_cache");
1055 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1056 seq_puts(seq, ",user_subvol_rm_allowed");
1057 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1058 seq_puts(seq, ",enospc_debug");
1059 if (btrfs_test_opt(root, AUTO_DEFRAG))
1060 seq_puts(seq, ",autodefrag");
1061 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1062 seq_puts(seq, ",inode_cache");
1063 if (btrfs_test_opt(root, SKIP_BALANCE))
1064 seq_puts(seq, ",skip_balance");
1065 if (btrfs_test_opt(root, RECOVERY))
1066 seq_puts(seq, ",recovery");
1067#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1068 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1069 seq_puts(seq, ",check_int_data");
1070 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1071 seq_puts(seq, ",check_int");
1072 if (info->check_integrity_print_mask)
1073 seq_printf(seq, ",check_int_print_mask=%d",
1074 info->check_integrity_print_mask);
1075#endif
1076 if (info->metadata_ratio)
1077 seq_printf(seq, ",metadata_ratio=%d",
1078 info->metadata_ratio);
1079 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1080 seq_puts(seq, ",fatal_errors=panic");
1081 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1082 seq_printf(seq, ",commit=%d", info->commit_interval);
1083 return 0;
1084}
1085
1086static int btrfs_test_super(struct super_block *s, void *data)
1087{
1088 struct btrfs_fs_info *p = data;
1089 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1090
1091 return fs_info->fs_devices == p->fs_devices;
1092}
1093
1094static int btrfs_set_super(struct super_block *s, void *data)
1095{
1096 int err = set_anon_super(s, data);
1097 if (!err)
1098 s->s_fs_info = data;
1099 return err;
1100}
1101
1102/*
1103 * subvolumes are identified by ino 256
1104 */
1105static inline int is_subvolume_inode(struct inode *inode)
1106{
1107 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1108 return 1;
1109 return 0;
1110}
1111
1112/*
1113 * This will strip out the subvol=%s argument for an argument string and add
1114 * subvolid=0 to make sure we get the actual tree root for path walking to the
1115 * subvol we want.
1116 */
1117static char *setup_root_args(char *args)
1118{
1119 unsigned len = strlen(args) + 2 + 1;
1120 char *src, *dst, *buf;
1121
1122 /*
1123 * We need the same args as before, but with this substitution:
1124 * s!subvol=[^,]+!subvolid=0!
1125 *
1126 * Since the replacement string is up to 2 bytes longer than the
1127 * original, allocate strlen(args) + 2 + 1 bytes.
1128 */
1129
1130 src = strstr(args, "subvol=");
1131 /* This shouldn't happen, but just in case.. */
1132 if (!src)
1133 return NULL;
1134
1135 buf = dst = kmalloc(len, GFP_NOFS);
1136 if (!buf)
1137 return NULL;
1138
1139 /*
1140 * If the subvol= arg is not at the start of the string,
1141 * copy whatever precedes it into buf.
1142 */
1143 if (src != args) {
1144 *src++ = '\0';
1145 strcpy(buf, args);
1146 dst += strlen(args);
1147 }
1148
1149 strcpy(dst, "subvolid=0");
1150 dst += strlen("subvolid=0");
1151
1152 /*
1153 * If there is a "," after the original subvol=... string,
1154 * copy that suffix into our buffer. Otherwise, we're done.
1155 */
1156 src = strchr(src, ',');
1157 if (src)
1158 strcpy(dst, src);
1159
1160 return buf;
1161}
1162
1163static struct dentry *mount_subvol(const char *subvol_name, int flags,
1164 const char *device_name, char *data)
1165{
1166 struct dentry *root;
1167 struct vfsmount *mnt;
1168 char *newargs;
1169
1170 newargs = setup_root_args(data);
1171 if (!newargs)
1172 return ERR_PTR(-ENOMEM);
1173 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1174 newargs);
1175
1176 if (PTR_RET(mnt) == -EBUSY) {
1177 if (flags & MS_RDONLY) {
1178 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1179 newargs);
1180 } else {
1181 int r;
1182 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1183 newargs);
1184 if (IS_ERR(mnt)) {
1185 kfree(newargs);
1186 return ERR_CAST(mnt);
1187 }
1188
1189 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1190 if (r < 0) {
1191 /* FIXME: release vfsmount mnt ??*/
1192 kfree(newargs);
1193 return ERR_PTR(r);
1194 }
1195 }
1196 }
1197
1198 kfree(newargs);
1199
1200 if (IS_ERR(mnt))
1201 return ERR_CAST(mnt);
1202
1203 root = mount_subtree(mnt, subvol_name);
1204
1205 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1206 struct super_block *s = root->d_sb;
1207 dput(root);
1208 root = ERR_PTR(-EINVAL);
1209 deactivate_locked_super(s);
1210 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1211 subvol_name);
1212 }
1213
1214 return root;
1215}
1216
1217/*
1218 * Find a superblock for the given device / mount point.
1219 *
1220 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1221 * for multiple device setup. Make sure to keep it in sync.
1222 */
1223static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1224 const char *device_name, void *data)
1225{
1226 struct block_device *bdev = NULL;
1227 struct super_block *s;
1228 struct dentry *root;
1229 struct btrfs_fs_devices *fs_devices = NULL;
1230 struct btrfs_fs_info *fs_info = NULL;
1231 fmode_t mode = FMODE_READ;
1232 char *subvol_name = NULL;
1233 u64 subvol_objectid = 0;
1234 int error = 0;
1235
1236 if (!(flags & MS_RDONLY))
1237 mode |= FMODE_WRITE;
1238
1239 error = btrfs_parse_early_options(data, mode, fs_type,
1240 &subvol_name, &subvol_objectid,
1241 &fs_devices);
1242 if (error) {
1243 kfree(subvol_name);
1244 return ERR_PTR(error);
1245 }
1246
1247 if (subvol_name) {
1248 root = mount_subvol(subvol_name, flags, device_name, data);
1249 kfree(subvol_name);
1250 return root;
1251 }
1252
1253 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1254 if (error)
1255 return ERR_PTR(error);
1256
1257 /*
1258 * Setup a dummy root and fs_info for test/set super. This is because
1259 * we don't actually fill this stuff out until open_ctree, but we need
1260 * it for searching for existing supers, so this lets us do that and
1261 * then open_ctree will properly initialize everything later.
1262 */
1263 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1264 if (!fs_info)
1265 return ERR_PTR(-ENOMEM);
1266
1267 fs_info->fs_devices = fs_devices;
1268
1269 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1270 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1271 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1272 error = -ENOMEM;
1273 goto error_fs_info;
1274 }
1275
1276 error = btrfs_open_devices(fs_devices, mode, fs_type);
1277 if (error)
1278 goto error_fs_info;
1279
1280 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1281 error = -EACCES;
1282 goto error_close_devices;
1283 }
1284
1285 bdev = fs_devices->latest_bdev;
1286 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1287 fs_info);
1288 if (IS_ERR(s)) {
1289 error = PTR_ERR(s);
1290 goto error_close_devices;
1291 }
1292
1293 if (s->s_root) {
1294 btrfs_close_devices(fs_devices);
1295 free_fs_info(fs_info);
1296 if ((flags ^ s->s_flags) & MS_RDONLY)
1297 error = -EBUSY;
1298 } else {
1299 char b[BDEVNAME_SIZE];
1300
1301 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1302 btrfs_sb(s)->bdev_holder = fs_type;
1303 error = btrfs_fill_super(s, fs_devices, data,
1304 flags & MS_SILENT ? 1 : 0);
1305 }
1306
1307 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1308 if (IS_ERR(root))
1309 deactivate_locked_super(s);
1310
1311 return root;
1312
1313error_close_devices:
1314 btrfs_close_devices(fs_devices);
1315error_fs_info:
1316 free_fs_info(fs_info);
1317 return ERR_PTR(error);
1318}
1319
1320static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1321 int new_pool_size, int old_pool_size)
1322{
1323 if (new_pool_size == old_pool_size)
1324 return;
1325
1326 fs_info->thread_pool_size = new_pool_size;
1327
1328 btrfs_info(fs_info, "resize thread pool %d -> %d",
1329 old_pool_size, new_pool_size);
1330
1331 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1332 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1333 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1334 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1335 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1336 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1337 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1338 new_pool_size);
1339 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1340 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1341 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1342 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1343 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1344 new_pool_size);
1345}
1346
1347static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1348{
1349 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1350}
1351
1352static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1353 unsigned long old_opts, int flags)
1354{
1355 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1356 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1357 (flags & MS_RDONLY))) {
1358 /* wait for any defraggers to finish */
1359 wait_event(fs_info->transaction_wait,
1360 (atomic_read(&fs_info->defrag_running) == 0));
1361 if (flags & MS_RDONLY)
1362 sync_filesystem(fs_info->sb);
1363 }
1364}
1365
1366static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1367 unsigned long old_opts)
1368{
1369 /*
1370 * We need cleanup all defragable inodes if the autodefragment is
1371 * close or the fs is R/O.
1372 */
1373 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1374 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1375 (fs_info->sb->s_flags & MS_RDONLY))) {
1376 btrfs_cleanup_defrag_inodes(fs_info);
1377 }
1378
1379 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1380}
1381
1382static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1383{
1384 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1385 struct btrfs_root *root = fs_info->tree_root;
1386 unsigned old_flags = sb->s_flags;
1387 unsigned long old_opts = fs_info->mount_opt;
1388 unsigned long old_compress_type = fs_info->compress_type;
1389 u64 old_max_inline = fs_info->max_inline;
1390 u64 old_alloc_start = fs_info->alloc_start;
1391 int old_thread_pool_size = fs_info->thread_pool_size;
1392 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1393 int ret;
1394
1395 sync_filesystem(sb);
1396 btrfs_remount_prepare(fs_info);
1397
1398 ret = btrfs_parse_options(root, data);
1399 if (ret) {
1400 ret = -EINVAL;
1401 goto restore;
1402 }
1403
1404 btrfs_remount_begin(fs_info, old_opts, *flags);
1405 btrfs_resize_thread_pool(fs_info,
1406 fs_info->thread_pool_size, old_thread_pool_size);
1407
1408 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1409 goto out;
1410
1411 if (*flags & MS_RDONLY) {
1412 /*
1413 * this also happens on 'umount -rf' or on shutdown, when
1414 * the filesystem is busy.
1415 */
1416
1417 /* wait for the uuid_scan task to finish */
1418 down(&fs_info->uuid_tree_rescan_sem);
1419 /* avoid complains from lockdep et al. */
1420 up(&fs_info->uuid_tree_rescan_sem);
1421
1422 sb->s_flags |= MS_RDONLY;
1423
1424 btrfs_dev_replace_suspend_for_unmount(fs_info);
1425 btrfs_scrub_cancel(fs_info);
1426 btrfs_pause_balance(fs_info);
1427
1428 ret = btrfs_commit_super(root);
1429 if (ret)
1430 goto restore;
1431 } else {
1432 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1433 btrfs_err(fs_info,
1434 "Remounting read-write after error is not allowed");
1435 ret = -EINVAL;
1436 goto restore;
1437 }
1438 if (fs_info->fs_devices->rw_devices == 0) {
1439 ret = -EACCES;
1440 goto restore;
1441 }
1442
1443 if (fs_info->fs_devices->missing_devices >
1444 fs_info->num_tolerated_disk_barrier_failures &&
1445 !(*flags & MS_RDONLY)) {
1446 btrfs_warn(fs_info,
1447 "too many missing devices, writeable remount is not allowed");
1448 ret = -EACCES;
1449 goto restore;
1450 }
1451
1452 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1453 ret = -EINVAL;
1454 goto restore;
1455 }
1456
1457 ret = btrfs_cleanup_fs_roots(fs_info);
1458 if (ret)
1459 goto restore;
1460
1461 /* recover relocation */
1462 ret = btrfs_recover_relocation(root);
1463 if (ret)
1464 goto restore;
1465
1466 ret = btrfs_resume_balance_async(fs_info);
1467 if (ret)
1468 goto restore;
1469
1470 ret = btrfs_resume_dev_replace_async(fs_info);
1471 if (ret) {
1472 btrfs_warn(fs_info, "failed to resume dev_replace");
1473 goto restore;
1474 }
1475
1476 if (!fs_info->uuid_root) {
1477 btrfs_info(fs_info, "creating UUID tree");
1478 ret = btrfs_create_uuid_tree(fs_info);
1479 if (ret) {
1480 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1481 goto restore;
1482 }
1483 }
1484 sb->s_flags &= ~MS_RDONLY;
1485 }
1486out:
1487 wake_up_process(fs_info->transaction_kthread);
1488 btrfs_remount_cleanup(fs_info, old_opts);
1489 return 0;
1490
1491restore:
1492 /* We've hit an error - don't reset MS_RDONLY */
1493 if (sb->s_flags & MS_RDONLY)
1494 old_flags |= MS_RDONLY;
1495 sb->s_flags = old_flags;
1496 fs_info->mount_opt = old_opts;
1497 fs_info->compress_type = old_compress_type;
1498 fs_info->max_inline = old_max_inline;
1499 mutex_lock(&fs_info->chunk_mutex);
1500 fs_info->alloc_start = old_alloc_start;
1501 mutex_unlock(&fs_info->chunk_mutex);
1502 btrfs_resize_thread_pool(fs_info,
1503 old_thread_pool_size, fs_info->thread_pool_size);
1504 fs_info->metadata_ratio = old_metadata_ratio;
1505 btrfs_remount_cleanup(fs_info, old_opts);
1506 return ret;
1507}
1508
1509/* Used to sort the devices by max_avail(descending sort) */
1510static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1511 const void *dev_info2)
1512{
1513 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1514 ((struct btrfs_device_info *)dev_info2)->max_avail)
1515 return -1;
1516 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1517 ((struct btrfs_device_info *)dev_info2)->max_avail)
1518 return 1;
1519 else
1520 return 0;
1521}
1522
1523/*
1524 * sort the devices by max_avail, in which max free extent size of each device
1525 * is stored.(Descending Sort)
1526 */
1527static inline void btrfs_descending_sort_devices(
1528 struct btrfs_device_info *devices,
1529 size_t nr_devices)
1530{
1531 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1532 btrfs_cmp_device_free_bytes, NULL);
1533}
1534
1535/*
1536 * The helper to calc the free space on the devices that can be used to store
1537 * file data.
1538 */
1539static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1540{
1541 struct btrfs_fs_info *fs_info = root->fs_info;
1542 struct btrfs_device_info *devices_info;
1543 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1544 struct btrfs_device *device;
1545 u64 skip_space;
1546 u64 type;
1547 u64 avail_space;
1548 u64 used_space;
1549 u64 min_stripe_size;
1550 int min_stripes = 1, num_stripes = 1;
1551 int i = 0, nr_devices;
1552 int ret;
1553
1554 nr_devices = fs_info->fs_devices->open_devices;
1555 BUG_ON(!nr_devices);
1556
1557 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1558 GFP_NOFS);
1559 if (!devices_info)
1560 return -ENOMEM;
1561
1562 /* calc min stripe number for data space alloction */
1563 type = btrfs_get_alloc_profile(root, 1);
1564 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1565 min_stripes = 2;
1566 num_stripes = nr_devices;
1567 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1568 min_stripes = 2;
1569 num_stripes = 2;
1570 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1571 min_stripes = 4;
1572 num_stripes = 4;
1573 }
1574
1575 if (type & BTRFS_BLOCK_GROUP_DUP)
1576 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1577 else
1578 min_stripe_size = BTRFS_STRIPE_LEN;
1579
1580 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1581 if (!device->in_fs_metadata || !device->bdev ||
1582 device->is_tgtdev_for_dev_replace)
1583 continue;
1584
1585 avail_space = device->total_bytes - device->bytes_used;
1586
1587 /* align with stripe_len */
1588 do_div(avail_space, BTRFS_STRIPE_LEN);
1589 avail_space *= BTRFS_STRIPE_LEN;
1590
1591 /*
1592 * In order to avoid overwritting the superblock on the drive,
1593 * btrfs starts at an offset of at least 1MB when doing chunk
1594 * allocation.
1595 */
1596 skip_space = 1024 * 1024;
1597
1598 /* user can set the offset in fs_info->alloc_start. */
1599 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1600 device->total_bytes)
1601 skip_space = max(fs_info->alloc_start, skip_space);
1602
1603 /*
1604 * btrfs can not use the free space in [0, skip_space - 1],
1605 * we must subtract it from the total. In order to implement
1606 * it, we account the used space in this range first.
1607 */
1608 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1609 &used_space);
1610 if (ret) {
1611 kfree(devices_info);
1612 return ret;
1613 }
1614
1615 /* calc the free space in [0, skip_space - 1] */
1616 skip_space -= used_space;
1617
1618 /*
1619 * we can use the free space in [0, skip_space - 1], subtract
1620 * it from the total.
1621 */
1622 if (avail_space && avail_space >= skip_space)
1623 avail_space -= skip_space;
1624 else
1625 avail_space = 0;
1626
1627 if (avail_space < min_stripe_size)
1628 continue;
1629
1630 devices_info[i].dev = device;
1631 devices_info[i].max_avail = avail_space;
1632
1633 i++;
1634 }
1635
1636 nr_devices = i;
1637
1638 btrfs_descending_sort_devices(devices_info, nr_devices);
1639
1640 i = nr_devices - 1;
1641 avail_space = 0;
1642 while (nr_devices >= min_stripes) {
1643 if (num_stripes > nr_devices)
1644 num_stripes = nr_devices;
1645
1646 if (devices_info[i].max_avail >= min_stripe_size) {
1647 int j;
1648 u64 alloc_size;
1649
1650 avail_space += devices_info[i].max_avail * num_stripes;
1651 alloc_size = devices_info[i].max_avail;
1652 for (j = i + 1 - num_stripes; j <= i; j++)
1653 devices_info[j].max_avail -= alloc_size;
1654 }
1655 i--;
1656 nr_devices--;
1657 }
1658
1659 kfree(devices_info);
1660 *free_bytes = avail_space;
1661 return 0;
1662}
1663
1664static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1665{
1666 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1667 struct btrfs_super_block *disk_super = fs_info->super_copy;
1668 struct list_head *head = &fs_info->space_info;
1669 struct btrfs_space_info *found;
1670 u64 total_used = 0;
1671 u64 total_free_data = 0;
1672 int bits = dentry->d_sb->s_blocksize_bits;
1673 __be32 *fsid = (__be32 *)fs_info->fsid;
1674 int ret;
1675
1676 /* holding chunk_muext to avoid allocating new chunks */
1677 mutex_lock(&fs_info->chunk_mutex);
1678 rcu_read_lock();
1679 list_for_each_entry_rcu(found, head, list) {
1680 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1681 total_free_data += found->disk_total - found->disk_used;
1682 total_free_data -=
1683 btrfs_account_ro_block_groups_free_space(found);
1684 }
1685
1686 total_used += found->disk_used;
1687 }
1688 rcu_read_unlock();
1689
1690 buf->f_namelen = BTRFS_NAME_LEN;
1691 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1692 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1693 buf->f_bsize = dentry->d_sb->s_blocksize;
1694 buf->f_type = BTRFS_SUPER_MAGIC;
1695 buf->f_bavail = total_free_data;
1696 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1697 if (ret) {
1698 mutex_unlock(&fs_info->chunk_mutex);
1699 return ret;
1700 }
1701 buf->f_bavail += total_free_data;
1702 buf->f_bavail = buf->f_bavail >> bits;
1703 mutex_unlock(&fs_info->chunk_mutex);
1704
1705 /* We treat it as constant endianness (it doesn't matter _which_)
1706 because we want the fsid to come out the same whether mounted
1707 on a big-endian or little-endian host */
1708 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1709 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1710 /* Mask in the root object ID too, to disambiguate subvols */
1711 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1712 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1713
1714 return 0;
1715}
1716
1717static void btrfs_kill_super(struct super_block *sb)
1718{
1719 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1720 kill_anon_super(sb);
1721 free_fs_info(fs_info);
1722}
1723
1724static struct file_system_type btrfs_fs_type = {
1725 .owner = THIS_MODULE,
1726 .name = "btrfs",
1727 .mount = btrfs_mount,
1728 .kill_sb = btrfs_kill_super,
1729 .fs_flags = FS_REQUIRES_DEV,
1730};
1731MODULE_ALIAS_FS("btrfs");
1732
1733/*
1734 * used by btrfsctl to scan devices when no FS is mounted
1735 */
1736static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1737 unsigned long arg)
1738{
1739 struct btrfs_ioctl_vol_args *vol;
1740 struct btrfs_fs_devices *fs_devices;
1741 int ret = -ENOTTY;
1742
1743 if (!capable(CAP_SYS_ADMIN))
1744 return -EPERM;
1745
1746 vol = memdup_user((void __user *)arg, sizeof(*vol));
1747 if (IS_ERR(vol))
1748 return PTR_ERR(vol);
1749
1750 switch (cmd) {
1751 case BTRFS_IOC_SCAN_DEV:
1752 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1753 &btrfs_fs_type, &fs_devices);
1754 break;
1755 case BTRFS_IOC_DEVICES_READY:
1756 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1757 &btrfs_fs_type, &fs_devices);
1758 if (ret)
1759 break;
1760 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1761 break;
1762 }
1763
1764 kfree(vol);
1765 return ret;
1766}
1767
1768static int btrfs_freeze(struct super_block *sb)
1769{
1770 struct btrfs_trans_handle *trans;
1771 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1772
1773 trans = btrfs_attach_transaction_barrier(root);
1774 if (IS_ERR(trans)) {
1775 /* no transaction, don't bother */
1776 if (PTR_ERR(trans) == -ENOENT)
1777 return 0;
1778 return PTR_ERR(trans);
1779 }
1780 return btrfs_commit_transaction(trans, root);
1781}
1782
1783static int btrfs_unfreeze(struct super_block *sb)
1784{
1785 return 0;
1786}
1787
1788static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1789{
1790 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1791 struct btrfs_fs_devices *cur_devices;
1792 struct btrfs_device *dev, *first_dev = NULL;
1793 struct list_head *head;
1794 struct rcu_string *name;
1795
1796 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1797 cur_devices = fs_info->fs_devices;
1798 while (cur_devices) {
1799 head = &cur_devices->devices;
1800 list_for_each_entry(dev, head, dev_list) {
1801 if (dev->missing)
1802 continue;
1803 if (!first_dev || dev->devid < first_dev->devid)
1804 first_dev = dev;
1805 }
1806 cur_devices = cur_devices->seed;
1807 }
1808
1809 if (first_dev) {
1810 rcu_read_lock();
1811 name = rcu_dereference(first_dev->name);
1812 seq_escape(m, name->str, " \t\n\\");
1813 rcu_read_unlock();
1814 } else {
1815 WARN_ON(1);
1816 }
1817 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1818 return 0;
1819}
1820
1821static const struct super_operations btrfs_super_ops = {
1822 .drop_inode = btrfs_drop_inode,
1823 .evict_inode = btrfs_evict_inode,
1824 .put_super = btrfs_put_super,
1825 .sync_fs = btrfs_sync_fs,
1826 .show_options = btrfs_show_options,
1827 .show_devname = btrfs_show_devname,
1828 .write_inode = btrfs_write_inode,
1829 .alloc_inode = btrfs_alloc_inode,
1830 .destroy_inode = btrfs_destroy_inode,
1831 .statfs = btrfs_statfs,
1832 .remount_fs = btrfs_remount,
1833 .freeze_fs = btrfs_freeze,
1834 .unfreeze_fs = btrfs_unfreeze,
1835};
1836
1837static const struct file_operations btrfs_ctl_fops = {
1838 .unlocked_ioctl = btrfs_control_ioctl,
1839 .compat_ioctl = btrfs_control_ioctl,
1840 .owner = THIS_MODULE,
1841 .llseek = noop_llseek,
1842};
1843
1844static struct miscdevice btrfs_misc = {
1845 .minor = BTRFS_MINOR,
1846 .name = "btrfs-control",
1847 .fops = &btrfs_ctl_fops
1848};
1849
1850MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1851MODULE_ALIAS("devname:btrfs-control");
1852
1853static int btrfs_interface_init(void)
1854{
1855 return misc_register(&btrfs_misc);
1856}
1857
1858static void btrfs_interface_exit(void)
1859{
1860 if (misc_deregister(&btrfs_misc) < 0)
1861 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1862}
1863
1864static void btrfs_print_info(void)
1865{
1866 printk(KERN_INFO "Btrfs loaded"
1867#ifdef CONFIG_BTRFS_DEBUG
1868 ", debug=on"
1869#endif
1870#ifdef CONFIG_BTRFS_ASSERT
1871 ", assert=on"
1872#endif
1873#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1874 ", integrity-checker=on"
1875#endif
1876 "\n");
1877}
1878
1879static int btrfs_run_sanity_tests(void)
1880{
1881 int ret;
1882
1883 ret = btrfs_init_test_fs();
1884 if (ret)
1885 return ret;
1886
1887 ret = btrfs_test_free_space_cache();
1888 if (ret)
1889 goto out;
1890 ret = btrfs_test_extent_buffer_operations();
1891 if (ret)
1892 goto out;
1893 ret = btrfs_test_extent_io();
1894 if (ret)
1895 goto out;
1896 ret = btrfs_test_inodes();
1897out:
1898 btrfs_destroy_test_fs();
1899 return ret;
1900}
1901
1902static int __init init_btrfs_fs(void)
1903{
1904 int err;
1905
1906 err = btrfs_hash_init();
1907 if (err)
1908 return err;
1909
1910 btrfs_props_init();
1911
1912 err = btrfs_init_sysfs();
1913 if (err)
1914 goto free_hash;
1915
1916 btrfs_init_compress();
1917
1918 err = btrfs_init_cachep();
1919 if (err)
1920 goto free_compress;
1921
1922 err = extent_io_init();
1923 if (err)
1924 goto free_cachep;
1925
1926 err = extent_map_init();
1927 if (err)
1928 goto free_extent_io;
1929
1930 err = ordered_data_init();
1931 if (err)
1932 goto free_extent_map;
1933
1934 err = btrfs_delayed_inode_init();
1935 if (err)
1936 goto free_ordered_data;
1937
1938 err = btrfs_auto_defrag_init();
1939 if (err)
1940 goto free_delayed_inode;
1941
1942 err = btrfs_delayed_ref_init();
1943 if (err)
1944 goto free_auto_defrag;
1945
1946 err = btrfs_prelim_ref_init();
1947 if (err)
1948 goto free_prelim_ref;
1949
1950 err = btrfs_interface_init();
1951 if (err)
1952 goto free_delayed_ref;
1953
1954 btrfs_init_lockdep();
1955
1956 btrfs_print_info();
1957
1958 err = btrfs_run_sanity_tests();
1959 if (err)
1960 goto unregister_ioctl;
1961
1962 err = register_filesystem(&btrfs_fs_type);
1963 if (err)
1964 goto unregister_ioctl;
1965
1966 return 0;
1967
1968unregister_ioctl:
1969 btrfs_interface_exit();
1970free_prelim_ref:
1971 btrfs_prelim_ref_exit();
1972free_delayed_ref:
1973 btrfs_delayed_ref_exit();
1974free_auto_defrag:
1975 btrfs_auto_defrag_exit();
1976free_delayed_inode:
1977 btrfs_delayed_inode_exit();
1978free_ordered_data:
1979 ordered_data_exit();
1980free_extent_map:
1981 extent_map_exit();
1982free_extent_io:
1983 extent_io_exit();
1984free_cachep:
1985 btrfs_destroy_cachep();
1986free_compress:
1987 btrfs_exit_compress();
1988 btrfs_exit_sysfs();
1989free_hash:
1990 btrfs_hash_exit();
1991 return err;
1992}
1993
1994static void __exit exit_btrfs_fs(void)
1995{
1996 btrfs_destroy_cachep();
1997 btrfs_delayed_ref_exit();
1998 btrfs_auto_defrag_exit();
1999 btrfs_delayed_inode_exit();
2000 btrfs_prelim_ref_exit();
2001 ordered_data_exit();
2002 extent_map_exit();
2003 extent_io_exit();
2004 btrfs_interface_exit();
2005 unregister_filesystem(&btrfs_fs_type);
2006 btrfs_exit_sysfs();
2007 btrfs_cleanup_fs_uuids();
2008 btrfs_exit_compress();
2009 btrfs_hash_exit();
2010}
2011
2012late_initcall(init_btrfs_fs);
2013module_exit(exit_btrfs_fs)
2014
2015MODULE_LICENSE("GPL");