Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/buffer_head.h>
9#include <linux/file.h>
10#include <linux/fs.h>
11#include <linux/fsnotify.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/mount.h>
19#include <linux/mpage.h>
20#include <linux/namei.h>
21#include <linux/swap.h>
22#include <linux/writeback.h>
23#include <linux/compat.h>
24#include <linux/bit_spinlock.h>
25#include <linux/security.h>
26#include <linux/xattr.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/blkdev.h>
30#include <linux/uuid.h>
31#include <linux/btrfs.h>
32#include <linux/uaccess.h>
33#include <linux/iversion.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "print-tree.h"
39#include "volumes.h"
40#include "locking.h"
41#include "inode-map.h"
42#include "backref.h"
43#include "rcu-string.h"
44#include "send.h"
45#include "dev-replace.h"
46#include "props.h"
47#include "sysfs.h"
48#include "qgroup.h"
49#include "tree-log.h"
50#include "compression.h"
51
52#ifdef CONFIG_64BIT
53/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54 * structures are incorrect, as the timespec structure from userspace
55 * is 4 bytes too small. We define these alternatives here to teach
56 * the kernel about the 32-bit struct packing.
57 */
58struct btrfs_ioctl_timespec_32 {
59 __u64 sec;
60 __u32 nsec;
61} __attribute__ ((__packed__));
62
63struct btrfs_ioctl_received_subvol_args_32 {
64 char uuid[BTRFS_UUID_SIZE]; /* in */
65 __u64 stransid; /* in */
66 __u64 rtransid; /* out */
67 struct btrfs_ioctl_timespec_32 stime; /* in */
68 struct btrfs_ioctl_timespec_32 rtime; /* out */
69 __u64 flags; /* in */
70 __u64 reserved[16]; /* in */
71} __attribute__ ((__packed__));
72
73#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 struct btrfs_ioctl_received_subvol_args_32)
75#endif
76
77#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78struct btrfs_ioctl_send_args_32 {
79 __s64 send_fd; /* in */
80 __u64 clone_sources_count; /* in */
81 compat_uptr_t clone_sources; /* in */
82 __u64 parent_root; /* in */
83 __u64 flags; /* in */
84 __u64 reserved[4]; /* in */
85} __attribute__ ((__packed__));
86
87#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 struct btrfs_ioctl_send_args_32)
89#endif
90
91static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95/* Mask out flags that are inappropriate for the given type of inode. */
96static unsigned int btrfs_mask_flags(umode_t mode, unsigned int flags)
97{
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104}
105
106/*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110{
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130 else if (flags & BTRFS_INODE_COMPRESS)
131 iflags |= FS_COMPR_FL;
132
133 return iflags;
134}
135
136/*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139void btrfs_update_iflags(struct inode *inode)
140{
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158}
159
160static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
161{
162 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
163 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
164
165 if (copy_to_user(arg, &flags, sizeof(flags)))
166 return -EFAULT;
167 return 0;
168}
169
170static int check_flags(unsigned int flags)
171{
172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 FS_NOATIME_FL | FS_NODUMP_FL | \
174 FS_SYNC_FL | FS_DIRSYNC_FL | \
175 FS_NOCOMP_FL | FS_COMPR_FL |
176 FS_NOCOW_FL))
177 return -EOPNOTSUPP;
178
179 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
180 return -EINVAL;
181
182 return 0;
183}
184
185static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
186{
187 struct inode *inode = file_inode(file);
188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
189 struct btrfs_inode *ip = BTRFS_I(inode);
190 struct btrfs_root *root = ip->root;
191 struct btrfs_trans_handle *trans;
192 unsigned int flags, oldflags;
193 int ret;
194 u64 ip_oldflags;
195 unsigned int i_oldflags;
196 umode_t mode;
197
198 if (!inode_owner_or_capable(inode))
199 return -EPERM;
200
201 if (btrfs_root_readonly(root))
202 return -EROFS;
203
204 if (copy_from_user(&flags, arg, sizeof(flags)))
205 return -EFAULT;
206
207 ret = check_flags(flags);
208 if (ret)
209 return ret;
210
211 ret = mnt_want_write_file(file);
212 if (ret)
213 return ret;
214
215 inode_lock(inode);
216
217 ip_oldflags = ip->flags;
218 i_oldflags = inode->i_flags;
219 mode = inode->i_mode;
220
221 flags = btrfs_mask_flags(inode->i_mode, flags);
222 oldflags = btrfs_flags_to_ioctl(ip->flags);
223 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
224 if (!capable(CAP_LINUX_IMMUTABLE)) {
225 ret = -EPERM;
226 goto out_unlock;
227 }
228 }
229
230 if (flags & FS_SYNC_FL)
231 ip->flags |= BTRFS_INODE_SYNC;
232 else
233 ip->flags &= ~BTRFS_INODE_SYNC;
234 if (flags & FS_IMMUTABLE_FL)
235 ip->flags |= BTRFS_INODE_IMMUTABLE;
236 else
237 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
238 if (flags & FS_APPEND_FL)
239 ip->flags |= BTRFS_INODE_APPEND;
240 else
241 ip->flags &= ~BTRFS_INODE_APPEND;
242 if (flags & FS_NODUMP_FL)
243 ip->flags |= BTRFS_INODE_NODUMP;
244 else
245 ip->flags &= ~BTRFS_INODE_NODUMP;
246 if (flags & FS_NOATIME_FL)
247 ip->flags |= BTRFS_INODE_NOATIME;
248 else
249 ip->flags &= ~BTRFS_INODE_NOATIME;
250 if (flags & FS_DIRSYNC_FL)
251 ip->flags |= BTRFS_INODE_DIRSYNC;
252 else
253 ip->flags &= ~BTRFS_INODE_DIRSYNC;
254 if (flags & FS_NOCOW_FL) {
255 if (S_ISREG(mode)) {
256 /*
257 * It's safe to turn csums off here, no extents exist.
258 * Otherwise we want the flag to reflect the real COW
259 * status of the file and will not set it.
260 */
261 if (inode->i_size == 0)
262 ip->flags |= BTRFS_INODE_NODATACOW
263 | BTRFS_INODE_NODATASUM;
264 } else {
265 ip->flags |= BTRFS_INODE_NODATACOW;
266 }
267 } else {
268 /*
269 * Revert back under same assumptions as above
270 */
271 if (S_ISREG(mode)) {
272 if (inode->i_size == 0)
273 ip->flags &= ~(BTRFS_INODE_NODATACOW
274 | BTRFS_INODE_NODATASUM);
275 } else {
276 ip->flags &= ~BTRFS_INODE_NODATACOW;
277 }
278 }
279
280 /*
281 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
282 * flag may be changed automatically if compression code won't make
283 * things smaller.
284 */
285 if (flags & FS_NOCOMP_FL) {
286 ip->flags &= ~BTRFS_INODE_COMPRESS;
287 ip->flags |= BTRFS_INODE_NOCOMPRESS;
288
289 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
290 if (ret && ret != -ENODATA)
291 goto out_drop;
292 } else if (flags & FS_COMPR_FL) {
293 const char *comp;
294
295 ip->flags |= BTRFS_INODE_COMPRESS;
296 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
297
298 comp = btrfs_compress_type2str(fs_info->compress_type);
299 if (!comp || comp[0] == 0)
300 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
301
302 ret = btrfs_set_prop(inode, "btrfs.compression",
303 comp, strlen(comp), 0);
304 if (ret)
305 goto out_drop;
306
307 } else {
308 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
309 if (ret && ret != -ENODATA)
310 goto out_drop;
311 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
312 }
313
314 trans = btrfs_start_transaction(root, 1);
315 if (IS_ERR(trans)) {
316 ret = PTR_ERR(trans);
317 goto out_drop;
318 }
319
320 btrfs_update_iflags(inode);
321 inode_inc_iversion(inode);
322 inode->i_ctime = current_time(inode);
323 ret = btrfs_update_inode(trans, root, inode);
324
325 btrfs_end_transaction(trans);
326 out_drop:
327 if (ret) {
328 ip->flags = ip_oldflags;
329 inode->i_flags = i_oldflags;
330 }
331
332 out_unlock:
333 inode_unlock(inode);
334 mnt_drop_write_file(file);
335 return ret;
336}
337
338static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
339{
340 struct inode *inode = file_inode(file);
341
342 return put_user(inode->i_generation, arg);
343}
344
345static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
346{
347 struct inode *inode = file_inode(file);
348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
349 struct btrfs_device *device;
350 struct request_queue *q;
351 struct fstrim_range range;
352 u64 minlen = ULLONG_MAX;
353 u64 num_devices = 0;
354 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
355 int ret;
356
357 if (!capable(CAP_SYS_ADMIN))
358 return -EPERM;
359
360 rcu_read_lock();
361 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
362 dev_list) {
363 if (!device->bdev)
364 continue;
365 q = bdev_get_queue(device->bdev);
366 if (blk_queue_discard(q)) {
367 num_devices++;
368 minlen = min_t(u64, q->limits.discard_granularity,
369 minlen);
370 }
371 }
372 rcu_read_unlock();
373
374 if (!num_devices)
375 return -EOPNOTSUPP;
376 if (copy_from_user(&range, arg, sizeof(range)))
377 return -EFAULT;
378 if (range.start > total_bytes ||
379 range.len < fs_info->sb->s_blocksize)
380 return -EINVAL;
381
382 range.len = min(range.len, total_bytes - range.start);
383 range.minlen = max(range.minlen, minlen);
384 ret = btrfs_trim_fs(fs_info, &range);
385 if (ret < 0)
386 return ret;
387
388 if (copy_to_user(arg, &range, sizeof(range)))
389 return -EFAULT;
390
391 return 0;
392}
393
394int btrfs_is_empty_uuid(u8 *uuid)
395{
396 int i;
397
398 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
399 if (uuid[i])
400 return 0;
401 }
402 return 1;
403}
404
405static noinline int create_subvol(struct inode *dir,
406 struct dentry *dentry,
407 const char *name, int namelen,
408 u64 *async_transid,
409 struct btrfs_qgroup_inherit *inherit)
410{
411 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
412 struct btrfs_trans_handle *trans;
413 struct btrfs_key key;
414 struct btrfs_root_item *root_item;
415 struct btrfs_inode_item *inode_item;
416 struct extent_buffer *leaf;
417 struct btrfs_root *root = BTRFS_I(dir)->root;
418 struct btrfs_root *new_root;
419 struct btrfs_block_rsv block_rsv;
420 struct timespec cur_time = current_time(dir);
421 struct inode *inode;
422 int ret;
423 int err;
424 u64 objectid;
425 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
426 u64 index = 0;
427 u64 qgroup_reserved;
428 uuid_le new_uuid;
429
430 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
431 if (!root_item)
432 return -ENOMEM;
433
434 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
435 if (ret)
436 goto fail_free;
437
438 /*
439 * Don't create subvolume whose level is not zero. Or qgroup will be
440 * screwed up since it assumes subvolume qgroup's level to be 0.
441 */
442 if (btrfs_qgroup_level(objectid)) {
443 ret = -ENOSPC;
444 goto fail_free;
445 }
446
447 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
448 /*
449 * The same as the snapshot creation, please see the comment
450 * of create_snapshot().
451 */
452 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
453 8, &qgroup_reserved, false);
454 if (ret)
455 goto fail_free;
456
457 trans = btrfs_start_transaction(root, 0);
458 if (IS_ERR(trans)) {
459 ret = PTR_ERR(trans);
460 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
461 goto fail_free;
462 }
463 trans->block_rsv = &block_rsv;
464 trans->bytes_reserved = block_rsv.size;
465
466 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
467 if (ret)
468 goto fail;
469
470 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
471 if (IS_ERR(leaf)) {
472 ret = PTR_ERR(leaf);
473 goto fail;
474 }
475
476 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
477 btrfs_set_header_bytenr(leaf, leaf->start);
478 btrfs_set_header_generation(leaf, trans->transid);
479 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
480 btrfs_set_header_owner(leaf, objectid);
481
482 write_extent_buffer_fsid(leaf, fs_info->fsid);
483 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
484 btrfs_mark_buffer_dirty(leaf);
485
486 inode_item = &root_item->inode;
487 btrfs_set_stack_inode_generation(inode_item, 1);
488 btrfs_set_stack_inode_size(inode_item, 3);
489 btrfs_set_stack_inode_nlink(inode_item, 1);
490 btrfs_set_stack_inode_nbytes(inode_item,
491 fs_info->nodesize);
492 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
493
494 btrfs_set_root_flags(root_item, 0);
495 btrfs_set_root_limit(root_item, 0);
496 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
497
498 btrfs_set_root_bytenr(root_item, leaf->start);
499 btrfs_set_root_generation(root_item, trans->transid);
500 btrfs_set_root_level(root_item, 0);
501 btrfs_set_root_refs(root_item, 1);
502 btrfs_set_root_used(root_item, leaf->len);
503 btrfs_set_root_last_snapshot(root_item, 0);
504
505 btrfs_set_root_generation_v2(root_item,
506 btrfs_root_generation(root_item));
507 uuid_le_gen(&new_uuid);
508 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
509 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
510 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
511 root_item->ctime = root_item->otime;
512 btrfs_set_root_ctransid(root_item, trans->transid);
513 btrfs_set_root_otransid(root_item, trans->transid);
514
515 btrfs_tree_unlock(leaf);
516 free_extent_buffer(leaf);
517 leaf = NULL;
518
519 btrfs_set_root_dirid(root_item, new_dirid);
520
521 key.objectid = objectid;
522 key.offset = 0;
523 key.type = BTRFS_ROOT_ITEM_KEY;
524 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
525 root_item);
526 if (ret)
527 goto fail;
528
529 key.offset = (u64)-1;
530 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
531 if (IS_ERR(new_root)) {
532 ret = PTR_ERR(new_root);
533 btrfs_abort_transaction(trans, ret);
534 goto fail;
535 }
536
537 btrfs_record_root_in_trans(trans, new_root);
538
539 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
540 if (ret) {
541 /* We potentially lose an unused inode item here */
542 btrfs_abort_transaction(trans, ret);
543 goto fail;
544 }
545
546 mutex_lock(&new_root->objectid_mutex);
547 new_root->highest_objectid = new_dirid;
548 mutex_unlock(&new_root->objectid_mutex);
549
550 /*
551 * insert the directory item
552 */
553 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
554 if (ret) {
555 btrfs_abort_transaction(trans, ret);
556 goto fail;
557 }
558
559 ret = btrfs_insert_dir_item(trans, root,
560 name, namelen, BTRFS_I(dir), &key,
561 BTRFS_FT_DIR, index);
562 if (ret) {
563 btrfs_abort_transaction(trans, ret);
564 goto fail;
565 }
566
567 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
568 ret = btrfs_update_inode(trans, root, dir);
569 BUG_ON(ret);
570
571 ret = btrfs_add_root_ref(trans, fs_info,
572 objectid, root->root_key.objectid,
573 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
574 BUG_ON(ret);
575
576 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
577 BTRFS_UUID_KEY_SUBVOL, objectid);
578 if (ret)
579 btrfs_abort_transaction(trans, ret);
580
581fail:
582 kfree(root_item);
583 trans->block_rsv = NULL;
584 trans->bytes_reserved = 0;
585 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
586
587 if (async_transid) {
588 *async_transid = trans->transid;
589 err = btrfs_commit_transaction_async(trans, 1);
590 if (err)
591 err = btrfs_commit_transaction(trans);
592 } else {
593 err = btrfs_commit_transaction(trans);
594 }
595 if (err && !ret)
596 ret = err;
597
598 if (!ret) {
599 inode = btrfs_lookup_dentry(dir, dentry);
600 if (IS_ERR(inode))
601 return PTR_ERR(inode);
602 d_instantiate(dentry, inode);
603 }
604 return ret;
605
606fail_free:
607 kfree(root_item);
608 return ret;
609}
610
611static int create_snapshot(struct btrfs_root *root, struct inode *dir,
612 struct dentry *dentry,
613 u64 *async_transid, bool readonly,
614 struct btrfs_qgroup_inherit *inherit)
615{
616 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
617 struct inode *inode;
618 struct btrfs_pending_snapshot *pending_snapshot;
619 struct btrfs_trans_handle *trans;
620 int ret;
621
622 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
623 return -EINVAL;
624
625 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
626 if (!pending_snapshot)
627 return -ENOMEM;
628
629 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
630 GFP_KERNEL);
631 pending_snapshot->path = btrfs_alloc_path();
632 if (!pending_snapshot->root_item || !pending_snapshot->path) {
633 ret = -ENOMEM;
634 goto free_pending;
635 }
636
637 atomic_inc(&root->will_be_snapshotted);
638 smp_mb__after_atomic();
639 /* wait for no snapshot writes */
640 wait_event(root->subv_writers->wait,
641 percpu_counter_sum(&root->subv_writers->counter) == 0);
642
643 ret = btrfs_start_delalloc_inodes(root, 0);
644 if (ret)
645 goto dec_and_free;
646
647 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
648
649 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
650 BTRFS_BLOCK_RSV_TEMP);
651 /*
652 * 1 - parent dir inode
653 * 2 - dir entries
654 * 1 - root item
655 * 2 - root ref/backref
656 * 1 - root of snapshot
657 * 1 - UUID item
658 */
659 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
660 &pending_snapshot->block_rsv, 8,
661 &pending_snapshot->qgroup_reserved,
662 false);
663 if (ret)
664 goto dec_and_free;
665
666 pending_snapshot->dentry = dentry;
667 pending_snapshot->root = root;
668 pending_snapshot->readonly = readonly;
669 pending_snapshot->dir = dir;
670 pending_snapshot->inherit = inherit;
671
672 trans = btrfs_start_transaction(root, 0);
673 if (IS_ERR(trans)) {
674 ret = PTR_ERR(trans);
675 goto fail;
676 }
677
678 spin_lock(&fs_info->trans_lock);
679 list_add(&pending_snapshot->list,
680 &trans->transaction->pending_snapshots);
681 spin_unlock(&fs_info->trans_lock);
682 if (async_transid) {
683 *async_transid = trans->transid;
684 ret = btrfs_commit_transaction_async(trans, 1);
685 if (ret)
686 ret = btrfs_commit_transaction(trans);
687 } else {
688 ret = btrfs_commit_transaction(trans);
689 }
690 if (ret)
691 goto fail;
692
693 ret = pending_snapshot->error;
694 if (ret)
695 goto fail;
696
697 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
698 if (ret)
699 goto fail;
700
701 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
702 if (IS_ERR(inode)) {
703 ret = PTR_ERR(inode);
704 goto fail;
705 }
706
707 d_instantiate(dentry, inode);
708 ret = 0;
709fail:
710 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
711dec_and_free:
712 if (atomic_dec_and_test(&root->will_be_snapshotted))
713 wake_up_var(&root->will_be_snapshotted);
714free_pending:
715 kfree(pending_snapshot->root_item);
716 btrfs_free_path(pending_snapshot->path);
717 kfree(pending_snapshot);
718
719 return ret;
720}
721
722/* copy of may_delete in fs/namei.c()
723 * Check whether we can remove a link victim from directory dir, check
724 * whether the type of victim is right.
725 * 1. We can't do it if dir is read-only (done in permission())
726 * 2. We should have write and exec permissions on dir
727 * 3. We can't remove anything from append-only dir
728 * 4. We can't do anything with immutable dir (done in permission())
729 * 5. If the sticky bit on dir is set we should either
730 * a. be owner of dir, or
731 * b. be owner of victim, or
732 * c. have CAP_FOWNER capability
733 * 6. If the victim is append-only or immutable we can't do anything with
734 * links pointing to it.
735 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
736 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
737 * 9. We can't remove a root or mountpoint.
738 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
739 * nfs_async_unlink().
740 */
741
742static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
743{
744 int error;
745
746 if (d_really_is_negative(victim))
747 return -ENOENT;
748
749 BUG_ON(d_inode(victim->d_parent) != dir);
750 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
751
752 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
753 if (error)
754 return error;
755 if (IS_APPEND(dir))
756 return -EPERM;
757 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
758 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
759 return -EPERM;
760 if (isdir) {
761 if (!d_is_dir(victim))
762 return -ENOTDIR;
763 if (IS_ROOT(victim))
764 return -EBUSY;
765 } else if (d_is_dir(victim))
766 return -EISDIR;
767 if (IS_DEADDIR(dir))
768 return -ENOENT;
769 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
770 return -EBUSY;
771 return 0;
772}
773
774/* copy of may_create in fs/namei.c() */
775static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
776{
777 if (d_really_is_positive(child))
778 return -EEXIST;
779 if (IS_DEADDIR(dir))
780 return -ENOENT;
781 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
782}
783
784/*
785 * Create a new subvolume below @parent. This is largely modeled after
786 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
787 * inside this filesystem so it's quite a bit simpler.
788 */
789static noinline int btrfs_mksubvol(const struct path *parent,
790 const char *name, int namelen,
791 struct btrfs_root *snap_src,
792 u64 *async_transid, bool readonly,
793 struct btrfs_qgroup_inherit *inherit)
794{
795 struct inode *dir = d_inode(parent->dentry);
796 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
797 struct dentry *dentry;
798 int error;
799
800 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
801 if (error == -EINTR)
802 return error;
803
804 dentry = lookup_one_len(name, parent->dentry, namelen);
805 error = PTR_ERR(dentry);
806 if (IS_ERR(dentry))
807 goto out_unlock;
808
809 error = btrfs_may_create(dir, dentry);
810 if (error)
811 goto out_dput;
812
813 /*
814 * even if this name doesn't exist, we may get hash collisions.
815 * check for them now when we can safely fail
816 */
817 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
818 dir->i_ino, name,
819 namelen);
820 if (error)
821 goto out_dput;
822
823 down_read(&fs_info->subvol_sem);
824
825 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
826 goto out_up_read;
827
828 if (snap_src) {
829 error = create_snapshot(snap_src, dir, dentry,
830 async_transid, readonly, inherit);
831 } else {
832 error = create_subvol(dir, dentry, name, namelen,
833 async_transid, inherit);
834 }
835 if (!error)
836 fsnotify_mkdir(dir, dentry);
837out_up_read:
838 up_read(&fs_info->subvol_sem);
839out_dput:
840 dput(dentry);
841out_unlock:
842 inode_unlock(dir);
843 return error;
844}
845
846/*
847 * When we're defragging a range, we don't want to kick it off again
848 * if it is really just waiting for delalloc to send it down.
849 * If we find a nice big extent or delalloc range for the bytes in the
850 * file you want to defrag, we return 0 to let you know to skip this
851 * part of the file
852 */
853static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
854{
855 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
856 struct extent_map *em = NULL;
857 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
858 u64 end;
859
860 read_lock(&em_tree->lock);
861 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
862 read_unlock(&em_tree->lock);
863
864 if (em) {
865 end = extent_map_end(em);
866 free_extent_map(em);
867 if (end - offset > thresh)
868 return 0;
869 }
870 /* if we already have a nice delalloc here, just stop */
871 thresh /= 2;
872 end = count_range_bits(io_tree, &offset, offset + thresh,
873 thresh, EXTENT_DELALLOC, 1);
874 if (end >= thresh)
875 return 0;
876 return 1;
877}
878
879/*
880 * helper function to walk through a file and find extents
881 * newer than a specific transid, and smaller than thresh.
882 *
883 * This is used by the defragging code to find new and small
884 * extents
885 */
886static int find_new_extents(struct btrfs_root *root,
887 struct inode *inode, u64 newer_than,
888 u64 *off, u32 thresh)
889{
890 struct btrfs_path *path;
891 struct btrfs_key min_key;
892 struct extent_buffer *leaf;
893 struct btrfs_file_extent_item *extent;
894 int type;
895 int ret;
896 u64 ino = btrfs_ino(BTRFS_I(inode));
897
898 path = btrfs_alloc_path();
899 if (!path)
900 return -ENOMEM;
901
902 min_key.objectid = ino;
903 min_key.type = BTRFS_EXTENT_DATA_KEY;
904 min_key.offset = *off;
905
906 while (1) {
907 ret = btrfs_search_forward(root, &min_key, path, newer_than);
908 if (ret != 0)
909 goto none;
910process_slot:
911 if (min_key.objectid != ino)
912 goto none;
913 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
914 goto none;
915
916 leaf = path->nodes[0];
917 extent = btrfs_item_ptr(leaf, path->slots[0],
918 struct btrfs_file_extent_item);
919
920 type = btrfs_file_extent_type(leaf, extent);
921 if (type == BTRFS_FILE_EXTENT_REG &&
922 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
923 check_defrag_in_cache(inode, min_key.offset, thresh)) {
924 *off = min_key.offset;
925 btrfs_free_path(path);
926 return 0;
927 }
928
929 path->slots[0]++;
930 if (path->slots[0] < btrfs_header_nritems(leaf)) {
931 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
932 goto process_slot;
933 }
934
935 if (min_key.offset == (u64)-1)
936 goto none;
937
938 min_key.offset++;
939 btrfs_release_path(path);
940 }
941none:
942 btrfs_free_path(path);
943 return -ENOENT;
944}
945
946static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
947{
948 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
950 struct extent_map *em;
951 u64 len = PAGE_SIZE;
952
953 /*
954 * hopefully we have this extent in the tree already, try without
955 * the full extent lock
956 */
957 read_lock(&em_tree->lock);
958 em = lookup_extent_mapping(em_tree, start, len);
959 read_unlock(&em_tree->lock);
960
961 if (!em) {
962 struct extent_state *cached = NULL;
963 u64 end = start + len - 1;
964
965 /* get the big lock and read metadata off disk */
966 lock_extent_bits(io_tree, start, end, &cached);
967 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
968 unlock_extent_cached(io_tree, start, end, &cached);
969
970 if (IS_ERR(em))
971 return NULL;
972 }
973
974 return em;
975}
976
977static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
978{
979 struct extent_map *next;
980 bool ret = true;
981
982 /* this is the last extent */
983 if (em->start + em->len >= i_size_read(inode))
984 return false;
985
986 next = defrag_lookup_extent(inode, em->start + em->len);
987 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
988 ret = false;
989 else if ((em->block_start + em->block_len == next->block_start) &&
990 (em->block_len > SZ_128K && next->block_len > SZ_128K))
991 ret = false;
992
993 free_extent_map(next);
994 return ret;
995}
996
997static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
998 u64 *last_len, u64 *skip, u64 *defrag_end,
999 int compress)
1000{
1001 struct extent_map *em;
1002 int ret = 1;
1003 bool next_mergeable = true;
1004 bool prev_mergeable = true;
1005
1006 /*
1007 * make sure that once we start defragging an extent, we keep on
1008 * defragging it
1009 */
1010 if (start < *defrag_end)
1011 return 1;
1012
1013 *skip = 0;
1014
1015 em = defrag_lookup_extent(inode, start);
1016 if (!em)
1017 return 0;
1018
1019 /* this will cover holes, and inline extents */
1020 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1021 ret = 0;
1022 goto out;
1023 }
1024
1025 if (!*defrag_end)
1026 prev_mergeable = false;
1027
1028 next_mergeable = defrag_check_next_extent(inode, em);
1029 /*
1030 * we hit a real extent, if it is big or the next extent is not a
1031 * real extent, don't bother defragging it
1032 */
1033 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1034 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1035 ret = 0;
1036out:
1037 /*
1038 * last_len ends up being a counter of how many bytes we've defragged.
1039 * every time we choose not to defrag an extent, we reset *last_len
1040 * so that the next tiny extent will force a defrag.
1041 *
1042 * The end result of this is that tiny extents before a single big
1043 * extent will force at least part of that big extent to be defragged.
1044 */
1045 if (ret) {
1046 *defrag_end = extent_map_end(em);
1047 } else {
1048 *last_len = 0;
1049 *skip = extent_map_end(em);
1050 *defrag_end = 0;
1051 }
1052
1053 free_extent_map(em);
1054 return ret;
1055}
1056
1057/*
1058 * it doesn't do much good to defrag one or two pages
1059 * at a time. This pulls in a nice chunk of pages
1060 * to COW and defrag.
1061 *
1062 * It also makes sure the delalloc code has enough
1063 * dirty data to avoid making new small extents as part
1064 * of the defrag
1065 *
1066 * It's a good idea to start RA on this range
1067 * before calling this.
1068 */
1069static int cluster_pages_for_defrag(struct inode *inode,
1070 struct page **pages,
1071 unsigned long start_index,
1072 unsigned long num_pages)
1073{
1074 unsigned long file_end;
1075 u64 isize = i_size_read(inode);
1076 u64 page_start;
1077 u64 page_end;
1078 u64 page_cnt;
1079 int ret;
1080 int i;
1081 int i_done;
1082 struct btrfs_ordered_extent *ordered;
1083 struct extent_state *cached_state = NULL;
1084 struct extent_io_tree *tree;
1085 struct extent_changeset *data_reserved = NULL;
1086 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1087
1088 file_end = (isize - 1) >> PAGE_SHIFT;
1089 if (!isize || start_index > file_end)
1090 return 0;
1091
1092 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1093
1094 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1095 start_index << PAGE_SHIFT,
1096 page_cnt << PAGE_SHIFT);
1097 if (ret)
1098 return ret;
1099 i_done = 0;
1100 tree = &BTRFS_I(inode)->io_tree;
1101
1102 /* step one, lock all the pages */
1103 for (i = 0; i < page_cnt; i++) {
1104 struct page *page;
1105again:
1106 page = find_or_create_page(inode->i_mapping,
1107 start_index + i, mask);
1108 if (!page)
1109 break;
1110
1111 page_start = page_offset(page);
1112 page_end = page_start + PAGE_SIZE - 1;
1113 while (1) {
1114 lock_extent_bits(tree, page_start, page_end,
1115 &cached_state);
1116 ordered = btrfs_lookup_ordered_extent(inode,
1117 page_start);
1118 unlock_extent_cached(tree, page_start, page_end,
1119 &cached_state);
1120 if (!ordered)
1121 break;
1122
1123 unlock_page(page);
1124 btrfs_start_ordered_extent(inode, ordered, 1);
1125 btrfs_put_ordered_extent(ordered);
1126 lock_page(page);
1127 /*
1128 * we unlocked the page above, so we need check if
1129 * it was released or not.
1130 */
1131 if (page->mapping != inode->i_mapping) {
1132 unlock_page(page);
1133 put_page(page);
1134 goto again;
1135 }
1136 }
1137
1138 if (!PageUptodate(page)) {
1139 btrfs_readpage(NULL, page);
1140 lock_page(page);
1141 if (!PageUptodate(page)) {
1142 unlock_page(page);
1143 put_page(page);
1144 ret = -EIO;
1145 break;
1146 }
1147 }
1148
1149 if (page->mapping != inode->i_mapping) {
1150 unlock_page(page);
1151 put_page(page);
1152 goto again;
1153 }
1154
1155 pages[i] = page;
1156 i_done++;
1157 }
1158 if (!i_done || ret)
1159 goto out;
1160
1161 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1162 goto out;
1163
1164 /*
1165 * so now we have a nice long stream of locked
1166 * and up to date pages, lets wait on them
1167 */
1168 for (i = 0; i < i_done; i++)
1169 wait_on_page_writeback(pages[i]);
1170
1171 page_start = page_offset(pages[0]);
1172 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1173
1174 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1175 page_start, page_end - 1, &cached_state);
1176 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1177 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1178 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1179 &cached_state);
1180
1181 if (i_done != page_cnt) {
1182 spin_lock(&BTRFS_I(inode)->lock);
1183 BTRFS_I(inode)->outstanding_extents++;
1184 spin_unlock(&BTRFS_I(inode)->lock);
1185 btrfs_delalloc_release_space(inode, data_reserved,
1186 start_index << PAGE_SHIFT,
1187 (page_cnt - i_done) << PAGE_SHIFT, true);
1188 }
1189
1190
1191 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1192 &cached_state);
1193
1194 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1195 page_start, page_end - 1, &cached_state);
1196
1197 for (i = 0; i < i_done; i++) {
1198 clear_page_dirty_for_io(pages[i]);
1199 ClearPageChecked(pages[i]);
1200 set_page_extent_mapped(pages[i]);
1201 set_page_dirty(pages[i]);
1202 unlock_page(pages[i]);
1203 put_page(pages[i]);
1204 }
1205 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1206 false);
1207 extent_changeset_free(data_reserved);
1208 return i_done;
1209out:
1210 for (i = 0; i < i_done; i++) {
1211 unlock_page(pages[i]);
1212 put_page(pages[i]);
1213 }
1214 btrfs_delalloc_release_space(inode, data_reserved,
1215 start_index << PAGE_SHIFT,
1216 page_cnt << PAGE_SHIFT, true);
1217 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1218 true);
1219 extent_changeset_free(data_reserved);
1220 return ret;
1221
1222}
1223
1224int btrfs_defrag_file(struct inode *inode, struct file *file,
1225 struct btrfs_ioctl_defrag_range_args *range,
1226 u64 newer_than, unsigned long max_to_defrag)
1227{
1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1229 struct btrfs_root *root = BTRFS_I(inode)->root;
1230 struct file_ra_state *ra = NULL;
1231 unsigned long last_index;
1232 u64 isize = i_size_read(inode);
1233 u64 last_len = 0;
1234 u64 skip = 0;
1235 u64 defrag_end = 0;
1236 u64 newer_off = range->start;
1237 unsigned long i;
1238 unsigned long ra_index = 0;
1239 int ret;
1240 int defrag_count = 0;
1241 int compress_type = BTRFS_COMPRESS_ZLIB;
1242 u32 extent_thresh = range->extent_thresh;
1243 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1244 unsigned long cluster = max_cluster;
1245 u64 new_align = ~((u64)SZ_128K - 1);
1246 struct page **pages = NULL;
1247 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1248
1249 if (isize == 0)
1250 return 0;
1251
1252 if (range->start >= isize)
1253 return -EINVAL;
1254
1255 if (do_compress) {
1256 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1257 return -EINVAL;
1258 if (range->compress_type)
1259 compress_type = range->compress_type;
1260 }
1261
1262 if (extent_thresh == 0)
1263 extent_thresh = SZ_256K;
1264
1265 /*
1266 * If we were not given a file, allocate a readahead context. As
1267 * readahead is just an optimization, defrag will work without it so
1268 * we don't error out.
1269 */
1270 if (!file) {
1271 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1272 if (ra)
1273 file_ra_state_init(ra, inode->i_mapping);
1274 } else {
1275 ra = &file->f_ra;
1276 }
1277
1278 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1279 if (!pages) {
1280 ret = -ENOMEM;
1281 goto out_ra;
1282 }
1283
1284 /* find the last page to defrag */
1285 if (range->start + range->len > range->start) {
1286 last_index = min_t(u64, isize - 1,
1287 range->start + range->len - 1) >> PAGE_SHIFT;
1288 } else {
1289 last_index = (isize - 1) >> PAGE_SHIFT;
1290 }
1291
1292 if (newer_than) {
1293 ret = find_new_extents(root, inode, newer_than,
1294 &newer_off, SZ_64K);
1295 if (!ret) {
1296 range->start = newer_off;
1297 /*
1298 * we always align our defrag to help keep
1299 * the extents in the file evenly spaced
1300 */
1301 i = (newer_off & new_align) >> PAGE_SHIFT;
1302 } else
1303 goto out_ra;
1304 } else {
1305 i = range->start >> PAGE_SHIFT;
1306 }
1307 if (!max_to_defrag)
1308 max_to_defrag = last_index - i + 1;
1309
1310 /*
1311 * make writeback starts from i, so the defrag range can be
1312 * written sequentially.
1313 */
1314 if (i < inode->i_mapping->writeback_index)
1315 inode->i_mapping->writeback_index = i;
1316
1317 while (i <= last_index && defrag_count < max_to_defrag &&
1318 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1319 /*
1320 * make sure we stop running if someone unmounts
1321 * the FS
1322 */
1323 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1324 break;
1325
1326 if (btrfs_defrag_cancelled(fs_info)) {
1327 btrfs_debug(fs_info, "defrag_file cancelled");
1328 ret = -EAGAIN;
1329 break;
1330 }
1331
1332 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1333 extent_thresh, &last_len, &skip,
1334 &defrag_end, do_compress)){
1335 unsigned long next;
1336 /*
1337 * the should_defrag function tells us how much to skip
1338 * bump our counter by the suggested amount
1339 */
1340 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1341 i = max(i + 1, next);
1342 continue;
1343 }
1344
1345 if (!newer_than) {
1346 cluster = (PAGE_ALIGN(defrag_end) >>
1347 PAGE_SHIFT) - i;
1348 cluster = min(cluster, max_cluster);
1349 } else {
1350 cluster = max_cluster;
1351 }
1352
1353 if (i + cluster > ra_index) {
1354 ra_index = max(i, ra_index);
1355 if (ra)
1356 page_cache_sync_readahead(inode->i_mapping, ra,
1357 file, ra_index, cluster);
1358 ra_index += cluster;
1359 }
1360
1361 inode_lock(inode);
1362 if (do_compress)
1363 BTRFS_I(inode)->defrag_compress = compress_type;
1364 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1365 if (ret < 0) {
1366 inode_unlock(inode);
1367 goto out_ra;
1368 }
1369
1370 defrag_count += ret;
1371 balance_dirty_pages_ratelimited(inode->i_mapping);
1372 inode_unlock(inode);
1373
1374 if (newer_than) {
1375 if (newer_off == (u64)-1)
1376 break;
1377
1378 if (ret > 0)
1379 i += ret;
1380
1381 newer_off = max(newer_off + 1,
1382 (u64)i << PAGE_SHIFT);
1383
1384 ret = find_new_extents(root, inode, newer_than,
1385 &newer_off, SZ_64K);
1386 if (!ret) {
1387 range->start = newer_off;
1388 i = (newer_off & new_align) >> PAGE_SHIFT;
1389 } else {
1390 break;
1391 }
1392 } else {
1393 if (ret > 0) {
1394 i += ret;
1395 last_len += ret << PAGE_SHIFT;
1396 } else {
1397 i++;
1398 last_len = 0;
1399 }
1400 }
1401 }
1402
1403 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1404 filemap_flush(inode->i_mapping);
1405 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1406 &BTRFS_I(inode)->runtime_flags))
1407 filemap_flush(inode->i_mapping);
1408 }
1409
1410 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1411 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1412 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1413 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1414 }
1415
1416 ret = defrag_count;
1417
1418out_ra:
1419 if (do_compress) {
1420 inode_lock(inode);
1421 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1422 inode_unlock(inode);
1423 }
1424 if (!file)
1425 kfree(ra);
1426 kfree(pages);
1427 return ret;
1428}
1429
1430static noinline int btrfs_ioctl_resize(struct file *file,
1431 void __user *arg)
1432{
1433 struct inode *inode = file_inode(file);
1434 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1435 u64 new_size;
1436 u64 old_size;
1437 u64 devid = 1;
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 struct btrfs_ioctl_vol_args *vol_args;
1440 struct btrfs_trans_handle *trans;
1441 struct btrfs_device *device = NULL;
1442 char *sizestr;
1443 char *retptr;
1444 char *devstr = NULL;
1445 int ret = 0;
1446 int mod = 0;
1447
1448 if (!capable(CAP_SYS_ADMIN))
1449 return -EPERM;
1450
1451 ret = mnt_want_write_file(file);
1452 if (ret)
1453 return ret;
1454
1455 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1456 mnt_drop_write_file(file);
1457 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1458 }
1459
1460 mutex_lock(&fs_info->volume_mutex);
1461 vol_args = memdup_user(arg, sizeof(*vol_args));
1462 if (IS_ERR(vol_args)) {
1463 ret = PTR_ERR(vol_args);
1464 goto out;
1465 }
1466
1467 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1468
1469 sizestr = vol_args->name;
1470 devstr = strchr(sizestr, ':');
1471 if (devstr) {
1472 sizestr = devstr + 1;
1473 *devstr = '\0';
1474 devstr = vol_args->name;
1475 ret = kstrtoull(devstr, 10, &devid);
1476 if (ret)
1477 goto out_free;
1478 if (!devid) {
1479 ret = -EINVAL;
1480 goto out_free;
1481 }
1482 btrfs_info(fs_info, "resizing devid %llu", devid);
1483 }
1484
1485 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1486 if (!device) {
1487 btrfs_info(fs_info, "resizer unable to find device %llu",
1488 devid);
1489 ret = -ENODEV;
1490 goto out_free;
1491 }
1492
1493 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1494 btrfs_info(fs_info,
1495 "resizer unable to apply on readonly device %llu",
1496 devid);
1497 ret = -EPERM;
1498 goto out_free;
1499 }
1500
1501 if (!strcmp(sizestr, "max"))
1502 new_size = device->bdev->bd_inode->i_size;
1503 else {
1504 if (sizestr[0] == '-') {
1505 mod = -1;
1506 sizestr++;
1507 } else if (sizestr[0] == '+') {
1508 mod = 1;
1509 sizestr++;
1510 }
1511 new_size = memparse(sizestr, &retptr);
1512 if (*retptr != '\0' || new_size == 0) {
1513 ret = -EINVAL;
1514 goto out_free;
1515 }
1516 }
1517
1518 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1519 ret = -EPERM;
1520 goto out_free;
1521 }
1522
1523 old_size = btrfs_device_get_total_bytes(device);
1524
1525 if (mod < 0) {
1526 if (new_size > old_size) {
1527 ret = -EINVAL;
1528 goto out_free;
1529 }
1530 new_size = old_size - new_size;
1531 } else if (mod > 0) {
1532 if (new_size > ULLONG_MAX - old_size) {
1533 ret = -ERANGE;
1534 goto out_free;
1535 }
1536 new_size = old_size + new_size;
1537 }
1538
1539 if (new_size < SZ_256M) {
1540 ret = -EINVAL;
1541 goto out_free;
1542 }
1543 if (new_size > device->bdev->bd_inode->i_size) {
1544 ret = -EFBIG;
1545 goto out_free;
1546 }
1547
1548 new_size = round_down(new_size, fs_info->sectorsize);
1549
1550 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1551 rcu_str_deref(device->name), new_size);
1552
1553 if (new_size > old_size) {
1554 trans = btrfs_start_transaction(root, 0);
1555 if (IS_ERR(trans)) {
1556 ret = PTR_ERR(trans);
1557 goto out_free;
1558 }
1559 ret = btrfs_grow_device(trans, device, new_size);
1560 btrfs_commit_transaction(trans);
1561 } else if (new_size < old_size) {
1562 ret = btrfs_shrink_device(device, new_size);
1563 } /* equal, nothing need to do */
1564
1565out_free:
1566 kfree(vol_args);
1567out:
1568 mutex_unlock(&fs_info->volume_mutex);
1569 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1570 mnt_drop_write_file(file);
1571 return ret;
1572}
1573
1574static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1575 const char *name, unsigned long fd, int subvol,
1576 u64 *transid, bool readonly,
1577 struct btrfs_qgroup_inherit *inherit)
1578{
1579 int namelen;
1580 int ret = 0;
1581
1582 if (!S_ISDIR(file_inode(file)->i_mode))
1583 return -ENOTDIR;
1584
1585 ret = mnt_want_write_file(file);
1586 if (ret)
1587 goto out;
1588
1589 namelen = strlen(name);
1590 if (strchr(name, '/')) {
1591 ret = -EINVAL;
1592 goto out_drop_write;
1593 }
1594
1595 if (name[0] == '.' &&
1596 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1597 ret = -EEXIST;
1598 goto out_drop_write;
1599 }
1600
1601 if (subvol) {
1602 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1603 NULL, transid, readonly, inherit);
1604 } else {
1605 struct fd src = fdget(fd);
1606 struct inode *src_inode;
1607 if (!src.file) {
1608 ret = -EINVAL;
1609 goto out_drop_write;
1610 }
1611
1612 src_inode = file_inode(src.file);
1613 if (src_inode->i_sb != file_inode(file)->i_sb) {
1614 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1615 "Snapshot src from another FS");
1616 ret = -EXDEV;
1617 } else if (!inode_owner_or_capable(src_inode)) {
1618 /*
1619 * Subvolume creation is not restricted, but snapshots
1620 * are limited to own subvolumes only
1621 */
1622 ret = -EPERM;
1623 } else {
1624 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1625 BTRFS_I(src_inode)->root,
1626 transid, readonly, inherit);
1627 }
1628 fdput(src);
1629 }
1630out_drop_write:
1631 mnt_drop_write_file(file);
1632out:
1633 return ret;
1634}
1635
1636static noinline int btrfs_ioctl_snap_create(struct file *file,
1637 void __user *arg, int subvol)
1638{
1639 struct btrfs_ioctl_vol_args *vol_args;
1640 int ret;
1641
1642 if (!S_ISDIR(file_inode(file)->i_mode))
1643 return -ENOTDIR;
1644
1645 vol_args = memdup_user(arg, sizeof(*vol_args));
1646 if (IS_ERR(vol_args))
1647 return PTR_ERR(vol_args);
1648 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1649
1650 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1651 vol_args->fd, subvol,
1652 NULL, false, NULL);
1653
1654 kfree(vol_args);
1655 return ret;
1656}
1657
1658static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1659 void __user *arg, int subvol)
1660{
1661 struct btrfs_ioctl_vol_args_v2 *vol_args;
1662 int ret;
1663 u64 transid = 0;
1664 u64 *ptr = NULL;
1665 bool readonly = false;
1666 struct btrfs_qgroup_inherit *inherit = NULL;
1667
1668 if (!S_ISDIR(file_inode(file)->i_mode))
1669 return -ENOTDIR;
1670
1671 vol_args = memdup_user(arg, sizeof(*vol_args));
1672 if (IS_ERR(vol_args))
1673 return PTR_ERR(vol_args);
1674 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1675
1676 if (vol_args->flags &
1677 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1678 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1679 ret = -EOPNOTSUPP;
1680 goto free_args;
1681 }
1682
1683 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1684 ptr = &transid;
1685 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1686 readonly = true;
1687 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1688 if (vol_args->size > PAGE_SIZE) {
1689 ret = -EINVAL;
1690 goto free_args;
1691 }
1692 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1693 if (IS_ERR(inherit)) {
1694 ret = PTR_ERR(inherit);
1695 goto free_args;
1696 }
1697 }
1698
1699 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1700 vol_args->fd, subvol, ptr,
1701 readonly, inherit);
1702 if (ret)
1703 goto free_inherit;
1704
1705 if (ptr && copy_to_user(arg +
1706 offsetof(struct btrfs_ioctl_vol_args_v2,
1707 transid),
1708 ptr, sizeof(*ptr)))
1709 ret = -EFAULT;
1710
1711free_inherit:
1712 kfree(inherit);
1713free_args:
1714 kfree(vol_args);
1715 return ret;
1716}
1717
1718static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1719 void __user *arg)
1720{
1721 struct inode *inode = file_inode(file);
1722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1723 struct btrfs_root *root = BTRFS_I(inode)->root;
1724 int ret = 0;
1725 u64 flags = 0;
1726
1727 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1728 return -EINVAL;
1729
1730 down_read(&fs_info->subvol_sem);
1731 if (btrfs_root_readonly(root))
1732 flags |= BTRFS_SUBVOL_RDONLY;
1733 up_read(&fs_info->subvol_sem);
1734
1735 if (copy_to_user(arg, &flags, sizeof(flags)))
1736 ret = -EFAULT;
1737
1738 return ret;
1739}
1740
1741static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1742 void __user *arg)
1743{
1744 struct inode *inode = file_inode(file);
1745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1746 struct btrfs_root *root = BTRFS_I(inode)->root;
1747 struct btrfs_trans_handle *trans;
1748 u64 root_flags;
1749 u64 flags;
1750 int ret = 0;
1751
1752 if (!inode_owner_or_capable(inode))
1753 return -EPERM;
1754
1755 ret = mnt_want_write_file(file);
1756 if (ret)
1757 goto out;
1758
1759 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1760 ret = -EINVAL;
1761 goto out_drop_write;
1762 }
1763
1764 if (copy_from_user(&flags, arg, sizeof(flags))) {
1765 ret = -EFAULT;
1766 goto out_drop_write;
1767 }
1768
1769 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1770 ret = -EINVAL;
1771 goto out_drop_write;
1772 }
1773
1774 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1775 ret = -EOPNOTSUPP;
1776 goto out_drop_write;
1777 }
1778
1779 down_write(&fs_info->subvol_sem);
1780
1781 /* nothing to do */
1782 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1783 goto out_drop_sem;
1784
1785 root_flags = btrfs_root_flags(&root->root_item);
1786 if (flags & BTRFS_SUBVOL_RDONLY) {
1787 btrfs_set_root_flags(&root->root_item,
1788 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1789 } else {
1790 /*
1791 * Block RO -> RW transition if this subvolume is involved in
1792 * send
1793 */
1794 spin_lock(&root->root_item_lock);
1795 if (root->send_in_progress == 0) {
1796 btrfs_set_root_flags(&root->root_item,
1797 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1798 spin_unlock(&root->root_item_lock);
1799 } else {
1800 spin_unlock(&root->root_item_lock);
1801 btrfs_warn(fs_info,
1802 "Attempt to set subvolume %llu read-write during send",
1803 root->root_key.objectid);
1804 ret = -EPERM;
1805 goto out_drop_sem;
1806 }
1807 }
1808
1809 trans = btrfs_start_transaction(root, 1);
1810 if (IS_ERR(trans)) {
1811 ret = PTR_ERR(trans);
1812 goto out_reset;
1813 }
1814
1815 ret = btrfs_update_root(trans, fs_info->tree_root,
1816 &root->root_key, &root->root_item);
1817 if (ret < 0) {
1818 btrfs_end_transaction(trans);
1819 goto out_reset;
1820 }
1821
1822 ret = btrfs_commit_transaction(trans);
1823
1824out_reset:
1825 if (ret)
1826 btrfs_set_root_flags(&root->root_item, root_flags);
1827out_drop_sem:
1828 up_write(&fs_info->subvol_sem);
1829out_drop_write:
1830 mnt_drop_write_file(file);
1831out:
1832 return ret;
1833}
1834
1835/*
1836 * helper to check if the subvolume references other subvolumes
1837 */
1838static noinline int may_destroy_subvol(struct btrfs_root *root)
1839{
1840 struct btrfs_fs_info *fs_info = root->fs_info;
1841 struct btrfs_path *path;
1842 struct btrfs_dir_item *di;
1843 struct btrfs_key key;
1844 u64 dir_id;
1845 int ret;
1846
1847 path = btrfs_alloc_path();
1848 if (!path)
1849 return -ENOMEM;
1850
1851 /* Make sure this root isn't set as the default subvol */
1852 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1853 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1854 dir_id, "default", 7, 0);
1855 if (di && !IS_ERR(di)) {
1856 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1857 if (key.objectid == root->root_key.objectid) {
1858 ret = -EPERM;
1859 btrfs_err(fs_info,
1860 "deleting default subvolume %llu is not allowed",
1861 key.objectid);
1862 goto out;
1863 }
1864 btrfs_release_path(path);
1865 }
1866
1867 key.objectid = root->root_key.objectid;
1868 key.type = BTRFS_ROOT_REF_KEY;
1869 key.offset = (u64)-1;
1870
1871 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1872 if (ret < 0)
1873 goto out;
1874 BUG_ON(ret == 0);
1875
1876 ret = 0;
1877 if (path->slots[0] > 0) {
1878 path->slots[0]--;
1879 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1880 if (key.objectid == root->root_key.objectid &&
1881 key.type == BTRFS_ROOT_REF_KEY)
1882 ret = -ENOTEMPTY;
1883 }
1884out:
1885 btrfs_free_path(path);
1886 return ret;
1887}
1888
1889static noinline int key_in_sk(struct btrfs_key *key,
1890 struct btrfs_ioctl_search_key *sk)
1891{
1892 struct btrfs_key test;
1893 int ret;
1894
1895 test.objectid = sk->min_objectid;
1896 test.type = sk->min_type;
1897 test.offset = sk->min_offset;
1898
1899 ret = btrfs_comp_cpu_keys(key, &test);
1900 if (ret < 0)
1901 return 0;
1902
1903 test.objectid = sk->max_objectid;
1904 test.type = sk->max_type;
1905 test.offset = sk->max_offset;
1906
1907 ret = btrfs_comp_cpu_keys(key, &test);
1908 if (ret > 0)
1909 return 0;
1910 return 1;
1911}
1912
1913static noinline int copy_to_sk(struct btrfs_path *path,
1914 struct btrfs_key *key,
1915 struct btrfs_ioctl_search_key *sk,
1916 size_t *buf_size,
1917 char __user *ubuf,
1918 unsigned long *sk_offset,
1919 int *num_found)
1920{
1921 u64 found_transid;
1922 struct extent_buffer *leaf;
1923 struct btrfs_ioctl_search_header sh;
1924 struct btrfs_key test;
1925 unsigned long item_off;
1926 unsigned long item_len;
1927 int nritems;
1928 int i;
1929 int slot;
1930 int ret = 0;
1931
1932 leaf = path->nodes[0];
1933 slot = path->slots[0];
1934 nritems = btrfs_header_nritems(leaf);
1935
1936 if (btrfs_header_generation(leaf) > sk->max_transid) {
1937 i = nritems;
1938 goto advance_key;
1939 }
1940 found_transid = btrfs_header_generation(leaf);
1941
1942 for (i = slot; i < nritems; i++) {
1943 item_off = btrfs_item_ptr_offset(leaf, i);
1944 item_len = btrfs_item_size_nr(leaf, i);
1945
1946 btrfs_item_key_to_cpu(leaf, key, i);
1947 if (!key_in_sk(key, sk))
1948 continue;
1949
1950 if (sizeof(sh) + item_len > *buf_size) {
1951 if (*num_found) {
1952 ret = 1;
1953 goto out;
1954 }
1955
1956 /*
1957 * return one empty item back for v1, which does not
1958 * handle -EOVERFLOW
1959 */
1960
1961 *buf_size = sizeof(sh) + item_len;
1962 item_len = 0;
1963 ret = -EOVERFLOW;
1964 }
1965
1966 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1967 ret = 1;
1968 goto out;
1969 }
1970
1971 sh.objectid = key->objectid;
1972 sh.offset = key->offset;
1973 sh.type = key->type;
1974 sh.len = item_len;
1975 sh.transid = found_transid;
1976
1977 /* copy search result header */
1978 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1979 ret = -EFAULT;
1980 goto out;
1981 }
1982
1983 *sk_offset += sizeof(sh);
1984
1985 if (item_len) {
1986 char __user *up = ubuf + *sk_offset;
1987 /* copy the item */
1988 if (read_extent_buffer_to_user(leaf, up,
1989 item_off, item_len)) {
1990 ret = -EFAULT;
1991 goto out;
1992 }
1993
1994 *sk_offset += item_len;
1995 }
1996 (*num_found)++;
1997
1998 if (ret) /* -EOVERFLOW from above */
1999 goto out;
2000
2001 if (*num_found >= sk->nr_items) {
2002 ret = 1;
2003 goto out;
2004 }
2005 }
2006advance_key:
2007 ret = 0;
2008 test.objectid = sk->max_objectid;
2009 test.type = sk->max_type;
2010 test.offset = sk->max_offset;
2011 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2012 ret = 1;
2013 else if (key->offset < (u64)-1)
2014 key->offset++;
2015 else if (key->type < (u8)-1) {
2016 key->offset = 0;
2017 key->type++;
2018 } else if (key->objectid < (u64)-1) {
2019 key->offset = 0;
2020 key->type = 0;
2021 key->objectid++;
2022 } else
2023 ret = 1;
2024out:
2025 /*
2026 * 0: all items from this leaf copied, continue with next
2027 * 1: * more items can be copied, but unused buffer is too small
2028 * * all items were found
2029 * Either way, it will stops the loop which iterates to the next
2030 * leaf
2031 * -EOVERFLOW: item was to large for buffer
2032 * -EFAULT: could not copy extent buffer back to userspace
2033 */
2034 return ret;
2035}
2036
2037static noinline int search_ioctl(struct inode *inode,
2038 struct btrfs_ioctl_search_key *sk,
2039 size_t *buf_size,
2040 char __user *ubuf)
2041{
2042 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2043 struct btrfs_root *root;
2044 struct btrfs_key key;
2045 struct btrfs_path *path;
2046 int ret;
2047 int num_found = 0;
2048 unsigned long sk_offset = 0;
2049
2050 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2051 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2052 return -EOVERFLOW;
2053 }
2054
2055 path = btrfs_alloc_path();
2056 if (!path)
2057 return -ENOMEM;
2058
2059 if (sk->tree_id == 0) {
2060 /* search the root of the inode that was passed */
2061 root = BTRFS_I(inode)->root;
2062 } else {
2063 key.objectid = sk->tree_id;
2064 key.type = BTRFS_ROOT_ITEM_KEY;
2065 key.offset = (u64)-1;
2066 root = btrfs_read_fs_root_no_name(info, &key);
2067 if (IS_ERR(root)) {
2068 btrfs_free_path(path);
2069 return -ENOENT;
2070 }
2071 }
2072
2073 key.objectid = sk->min_objectid;
2074 key.type = sk->min_type;
2075 key.offset = sk->min_offset;
2076
2077 while (1) {
2078 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2079 if (ret != 0) {
2080 if (ret > 0)
2081 ret = 0;
2082 goto err;
2083 }
2084 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2085 &sk_offset, &num_found);
2086 btrfs_release_path(path);
2087 if (ret)
2088 break;
2089
2090 }
2091 if (ret > 0)
2092 ret = 0;
2093err:
2094 sk->nr_items = num_found;
2095 btrfs_free_path(path);
2096 return ret;
2097}
2098
2099static noinline int btrfs_ioctl_tree_search(struct file *file,
2100 void __user *argp)
2101{
2102 struct btrfs_ioctl_search_args __user *uargs;
2103 struct btrfs_ioctl_search_key sk;
2104 struct inode *inode;
2105 int ret;
2106 size_t buf_size;
2107
2108 if (!capable(CAP_SYS_ADMIN))
2109 return -EPERM;
2110
2111 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2112
2113 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2114 return -EFAULT;
2115
2116 buf_size = sizeof(uargs->buf);
2117
2118 inode = file_inode(file);
2119 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2120
2121 /*
2122 * In the origin implementation an overflow is handled by returning a
2123 * search header with a len of zero, so reset ret.
2124 */
2125 if (ret == -EOVERFLOW)
2126 ret = 0;
2127
2128 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2129 ret = -EFAULT;
2130 return ret;
2131}
2132
2133static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2134 void __user *argp)
2135{
2136 struct btrfs_ioctl_search_args_v2 __user *uarg;
2137 struct btrfs_ioctl_search_args_v2 args;
2138 struct inode *inode;
2139 int ret;
2140 size_t buf_size;
2141 const size_t buf_limit = SZ_16M;
2142
2143 if (!capable(CAP_SYS_ADMIN))
2144 return -EPERM;
2145
2146 /* copy search header and buffer size */
2147 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2148 if (copy_from_user(&args, uarg, sizeof(args)))
2149 return -EFAULT;
2150
2151 buf_size = args.buf_size;
2152
2153 /* limit result size to 16MB */
2154 if (buf_size > buf_limit)
2155 buf_size = buf_limit;
2156
2157 inode = file_inode(file);
2158 ret = search_ioctl(inode, &args.key, &buf_size,
2159 (char __user *)(&uarg->buf[0]));
2160 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2161 ret = -EFAULT;
2162 else if (ret == -EOVERFLOW &&
2163 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2164 ret = -EFAULT;
2165
2166 return ret;
2167}
2168
2169/*
2170 * Search INODE_REFs to identify path name of 'dirid' directory
2171 * in a 'tree_id' tree. and sets path name to 'name'.
2172 */
2173static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2174 u64 tree_id, u64 dirid, char *name)
2175{
2176 struct btrfs_root *root;
2177 struct btrfs_key key;
2178 char *ptr;
2179 int ret = -1;
2180 int slot;
2181 int len;
2182 int total_len = 0;
2183 struct btrfs_inode_ref *iref;
2184 struct extent_buffer *l;
2185 struct btrfs_path *path;
2186
2187 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2188 name[0]='\0';
2189 return 0;
2190 }
2191
2192 path = btrfs_alloc_path();
2193 if (!path)
2194 return -ENOMEM;
2195
2196 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2197
2198 key.objectid = tree_id;
2199 key.type = BTRFS_ROOT_ITEM_KEY;
2200 key.offset = (u64)-1;
2201 root = btrfs_read_fs_root_no_name(info, &key);
2202 if (IS_ERR(root)) {
2203 btrfs_err(info, "could not find root %llu", tree_id);
2204 ret = -ENOENT;
2205 goto out;
2206 }
2207
2208 key.objectid = dirid;
2209 key.type = BTRFS_INODE_REF_KEY;
2210 key.offset = (u64)-1;
2211
2212 while (1) {
2213 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2214 if (ret < 0)
2215 goto out;
2216 else if (ret > 0) {
2217 ret = btrfs_previous_item(root, path, dirid,
2218 BTRFS_INODE_REF_KEY);
2219 if (ret < 0)
2220 goto out;
2221 else if (ret > 0) {
2222 ret = -ENOENT;
2223 goto out;
2224 }
2225 }
2226
2227 l = path->nodes[0];
2228 slot = path->slots[0];
2229 btrfs_item_key_to_cpu(l, &key, slot);
2230
2231 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2232 len = btrfs_inode_ref_name_len(l, iref);
2233 ptr -= len + 1;
2234 total_len += len + 1;
2235 if (ptr < name) {
2236 ret = -ENAMETOOLONG;
2237 goto out;
2238 }
2239
2240 *(ptr + len) = '/';
2241 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2242
2243 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2244 break;
2245
2246 btrfs_release_path(path);
2247 key.objectid = key.offset;
2248 key.offset = (u64)-1;
2249 dirid = key.objectid;
2250 }
2251 memmove(name, ptr, total_len);
2252 name[total_len] = '\0';
2253 ret = 0;
2254out:
2255 btrfs_free_path(path);
2256 return ret;
2257}
2258
2259static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2260 void __user *argp)
2261{
2262 struct btrfs_ioctl_ino_lookup_args *args;
2263 struct inode *inode;
2264 int ret = 0;
2265
2266 args = memdup_user(argp, sizeof(*args));
2267 if (IS_ERR(args))
2268 return PTR_ERR(args);
2269
2270 inode = file_inode(file);
2271
2272 /*
2273 * Unprivileged query to obtain the containing subvolume root id. The
2274 * path is reset so it's consistent with btrfs_search_path_in_tree.
2275 */
2276 if (args->treeid == 0)
2277 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2278
2279 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2280 args->name[0] = 0;
2281 goto out;
2282 }
2283
2284 if (!capable(CAP_SYS_ADMIN)) {
2285 ret = -EPERM;
2286 goto out;
2287 }
2288
2289 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2290 args->treeid, args->objectid,
2291 args->name);
2292
2293out:
2294 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2295 ret = -EFAULT;
2296
2297 kfree(args);
2298 return ret;
2299}
2300
2301static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2302 void __user *arg)
2303{
2304 struct dentry *parent = file->f_path.dentry;
2305 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2306 struct dentry *dentry;
2307 struct inode *dir = d_inode(parent);
2308 struct inode *inode;
2309 struct btrfs_root *root = BTRFS_I(dir)->root;
2310 struct btrfs_root *dest = NULL;
2311 struct btrfs_ioctl_vol_args *vol_args;
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_block_rsv block_rsv;
2314 u64 root_flags;
2315 u64 qgroup_reserved;
2316 int namelen;
2317 int ret;
2318 int err = 0;
2319
2320 if (!S_ISDIR(dir->i_mode))
2321 return -ENOTDIR;
2322
2323 vol_args = memdup_user(arg, sizeof(*vol_args));
2324 if (IS_ERR(vol_args))
2325 return PTR_ERR(vol_args);
2326
2327 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2328 namelen = strlen(vol_args->name);
2329 if (strchr(vol_args->name, '/') ||
2330 strncmp(vol_args->name, "..", namelen) == 0) {
2331 err = -EINVAL;
2332 goto out;
2333 }
2334
2335 err = mnt_want_write_file(file);
2336 if (err)
2337 goto out;
2338
2339
2340 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2341 if (err == -EINTR)
2342 goto out_drop_write;
2343 dentry = lookup_one_len(vol_args->name, parent, namelen);
2344 if (IS_ERR(dentry)) {
2345 err = PTR_ERR(dentry);
2346 goto out_unlock_dir;
2347 }
2348
2349 if (d_really_is_negative(dentry)) {
2350 err = -ENOENT;
2351 goto out_dput;
2352 }
2353
2354 inode = d_inode(dentry);
2355 dest = BTRFS_I(inode)->root;
2356 if (!capable(CAP_SYS_ADMIN)) {
2357 /*
2358 * Regular user. Only allow this with a special mount
2359 * option, when the user has write+exec access to the
2360 * subvol root, and when rmdir(2) would have been
2361 * allowed.
2362 *
2363 * Note that this is _not_ check that the subvol is
2364 * empty or doesn't contain data that we wouldn't
2365 * otherwise be able to delete.
2366 *
2367 * Users who want to delete empty subvols should try
2368 * rmdir(2).
2369 */
2370 err = -EPERM;
2371 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2372 goto out_dput;
2373
2374 /*
2375 * Do not allow deletion if the parent dir is the same
2376 * as the dir to be deleted. That means the ioctl
2377 * must be called on the dentry referencing the root
2378 * of the subvol, not a random directory contained
2379 * within it.
2380 */
2381 err = -EINVAL;
2382 if (root == dest)
2383 goto out_dput;
2384
2385 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2386 if (err)
2387 goto out_dput;
2388 }
2389
2390 /* check if subvolume may be deleted by a user */
2391 err = btrfs_may_delete(dir, dentry, 1);
2392 if (err)
2393 goto out_dput;
2394
2395 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2396 err = -EINVAL;
2397 goto out_dput;
2398 }
2399
2400 inode_lock(inode);
2401
2402 /*
2403 * Don't allow to delete a subvolume with send in progress. This is
2404 * inside the i_mutex so the error handling that has to drop the bit
2405 * again is not run concurrently.
2406 */
2407 spin_lock(&dest->root_item_lock);
2408 root_flags = btrfs_root_flags(&dest->root_item);
2409 if (dest->send_in_progress == 0) {
2410 btrfs_set_root_flags(&dest->root_item,
2411 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2412 spin_unlock(&dest->root_item_lock);
2413 } else {
2414 spin_unlock(&dest->root_item_lock);
2415 btrfs_warn(fs_info,
2416 "Attempt to delete subvolume %llu during send",
2417 dest->root_key.objectid);
2418 err = -EPERM;
2419 goto out_unlock_inode;
2420 }
2421
2422 down_write(&fs_info->subvol_sem);
2423
2424 err = may_destroy_subvol(dest);
2425 if (err)
2426 goto out_up_write;
2427
2428 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2429 /*
2430 * One for dir inode, two for dir entries, two for root
2431 * ref/backref.
2432 */
2433 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2434 5, &qgroup_reserved, true);
2435 if (err)
2436 goto out_up_write;
2437
2438 trans = btrfs_start_transaction(root, 0);
2439 if (IS_ERR(trans)) {
2440 err = PTR_ERR(trans);
2441 goto out_release;
2442 }
2443 trans->block_rsv = &block_rsv;
2444 trans->bytes_reserved = block_rsv.size;
2445
2446 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2447
2448 ret = btrfs_unlink_subvol(trans, root, dir,
2449 dest->root_key.objectid,
2450 dentry->d_name.name,
2451 dentry->d_name.len);
2452 if (ret) {
2453 err = ret;
2454 btrfs_abort_transaction(trans, ret);
2455 goto out_end_trans;
2456 }
2457
2458 btrfs_record_root_in_trans(trans, dest);
2459
2460 memset(&dest->root_item.drop_progress, 0,
2461 sizeof(dest->root_item.drop_progress));
2462 dest->root_item.drop_level = 0;
2463 btrfs_set_root_refs(&dest->root_item, 0);
2464
2465 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2466 ret = btrfs_insert_orphan_item(trans,
2467 fs_info->tree_root,
2468 dest->root_key.objectid);
2469 if (ret) {
2470 btrfs_abort_transaction(trans, ret);
2471 err = ret;
2472 goto out_end_trans;
2473 }
2474 }
2475
2476 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2477 BTRFS_UUID_KEY_SUBVOL,
2478 dest->root_key.objectid);
2479 if (ret && ret != -ENOENT) {
2480 btrfs_abort_transaction(trans, ret);
2481 err = ret;
2482 goto out_end_trans;
2483 }
2484 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2485 ret = btrfs_uuid_tree_rem(trans, fs_info,
2486 dest->root_item.received_uuid,
2487 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2488 dest->root_key.objectid);
2489 if (ret && ret != -ENOENT) {
2490 btrfs_abort_transaction(trans, ret);
2491 err = ret;
2492 goto out_end_trans;
2493 }
2494 }
2495
2496out_end_trans:
2497 trans->block_rsv = NULL;
2498 trans->bytes_reserved = 0;
2499 ret = btrfs_end_transaction(trans);
2500 if (ret && !err)
2501 err = ret;
2502 inode->i_flags |= S_DEAD;
2503out_release:
2504 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2505out_up_write:
2506 up_write(&fs_info->subvol_sem);
2507 if (err) {
2508 spin_lock(&dest->root_item_lock);
2509 root_flags = btrfs_root_flags(&dest->root_item);
2510 btrfs_set_root_flags(&dest->root_item,
2511 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2512 spin_unlock(&dest->root_item_lock);
2513 }
2514out_unlock_inode:
2515 inode_unlock(inode);
2516 if (!err) {
2517 d_invalidate(dentry);
2518 btrfs_invalidate_inodes(dest);
2519 d_delete(dentry);
2520 ASSERT(dest->send_in_progress == 0);
2521
2522 /* the last ref */
2523 if (dest->ino_cache_inode) {
2524 iput(dest->ino_cache_inode);
2525 dest->ino_cache_inode = NULL;
2526 }
2527 }
2528out_dput:
2529 dput(dentry);
2530out_unlock_dir:
2531 inode_unlock(dir);
2532out_drop_write:
2533 mnt_drop_write_file(file);
2534out:
2535 kfree(vol_args);
2536 return err;
2537}
2538
2539static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2540{
2541 struct inode *inode = file_inode(file);
2542 struct btrfs_root *root = BTRFS_I(inode)->root;
2543 struct btrfs_ioctl_defrag_range_args *range;
2544 int ret;
2545
2546 ret = mnt_want_write_file(file);
2547 if (ret)
2548 return ret;
2549
2550 if (btrfs_root_readonly(root)) {
2551 ret = -EROFS;
2552 goto out;
2553 }
2554
2555 switch (inode->i_mode & S_IFMT) {
2556 case S_IFDIR:
2557 if (!capable(CAP_SYS_ADMIN)) {
2558 ret = -EPERM;
2559 goto out;
2560 }
2561 ret = btrfs_defrag_root(root);
2562 break;
2563 case S_IFREG:
2564 if (!(file->f_mode & FMODE_WRITE)) {
2565 ret = -EINVAL;
2566 goto out;
2567 }
2568
2569 range = kzalloc(sizeof(*range), GFP_KERNEL);
2570 if (!range) {
2571 ret = -ENOMEM;
2572 goto out;
2573 }
2574
2575 if (argp) {
2576 if (copy_from_user(range, argp,
2577 sizeof(*range))) {
2578 ret = -EFAULT;
2579 kfree(range);
2580 goto out;
2581 }
2582 /* compression requires us to start the IO */
2583 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2584 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2585 range->extent_thresh = (u32)-1;
2586 }
2587 } else {
2588 /* the rest are all set to zero by kzalloc */
2589 range->len = (u64)-1;
2590 }
2591 ret = btrfs_defrag_file(file_inode(file), file,
2592 range, BTRFS_OLDEST_GENERATION, 0);
2593 if (ret > 0)
2594 ret = 0;
2595 kfree(range);
2596 break;
2597 default:
2598 ret = -EINVAL;
2599 }
2600out:
2601 mnt_drop_write_file(file);
2602 return ret;
2603}
2604
2605static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2606{
2607 struct btrfs_ioctl_vol_args *vol_args;
2608 int ret;
2609
2610 if (!capable(CAP_SYS_ADMIN))
2611 return -EPERM;
2612
2613 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2614 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2615
2616 mutex_lock(&fs_info->volume_mutex);
2617 vol_args = memdup_user(arg, sizeof(*vol_args));
2618 if (IS_ERR(vol_args)) {
2619 ret = PTR_ERR(vol_args);
2620 goto out;
2621 }
2622
2623 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2624 ret = btrfs_init_new_device(fs_info, vol_args->name);
2625
2626 if (!ret)
2627 btrfs_info(fs_info, "disk added %s", vol_args->name);
2628
2629 kfree(vol_args);
2630out:
2631 mutex_unlock(&fs_info->volume_mutex);
2632 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2633 return ret;
2634}
2635
2636static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2637{
2638 struct inode *inode = file_inode(file);
2639 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2640 struct btrfs_ioctl_vol_args_v2 *vol_args;
2641 int ret;
2642
2643 if (!capable(CAP_SYS_ADMIN))
2644 return -EPERM;
2645
2646 ret = mnt_want_write_file(file);
2647 if (ret)
2648 return ret;
2649
2650 vol_args = memdup_user(arg, sizeof(*vol_args));
2651 if (IS_ERR(vol_args)) {
2652 ret = PTR_ERR(vol_args);
2653 goto err_drop;
2654 }
2655
2656 /* Check for compatibility reject unknown flags */
2657 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2658 return -EOPNOTSUPP;
2659
2660 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2661 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2662 goto out;
2663 }
2664
2665 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2666 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2667 } else {
2668 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2669 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2670 }
2671 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2672
2673 if (!ret) {
2674 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2675 btrfs_info(fs_info, "device deleted: id %llu",
2676 vol_args->devid);
2677 else
2678 btrfs_info(fs_info, "device deleted: %s",
2679 vol_args->name);
2680 }
2681out:
2682 kfree(vol_args);
2683err_drop:
2684 mnt_drop_write_file(file);
2685 return ret;
2686}
2687
2688static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2689{
2690 struct inode *inode = file_inode(file);
2691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2692 struct btrfs_ioctl_vol_args *vol_args;
2693 int ret;
2694
2695 if (!capable(CAP_SYS_ADMIN))
2696 return -EPERM;
2697
2698 ret = mnt_want_write_file(file);
2699 if (ret)
2700 return ret;
2701
2702 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2703 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2704 goto out_drop_write;
2705 }
2706
2707 vol_args = memdup_user(arg, sizeof(*vol_args));
2708 if (IS_ERR(vol_args)) {
2709 ret = PTR_ERR(vol_args);
2710 goto out;
2711 }
2712
2713 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2714 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2715
2716 if (!ret)
2717 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2718 kfree(vol_args);
2719out:
2720 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2721out_drop_write:
2722 mnt_drop_write_file(file);
2723
2724 return ret;
2725}
2726
2727static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2728 void __user *arg)
2729{
2730 struct btrfs_ioctl_fs_info_args *fi_args;
2731 struct btrfs_device *device;
2732 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2733 int ret = 0;
2734
2735 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2736 if (!fi_args)
2737 return -ENOMEM;
2738
2739 rcu_read_lock();
2740 fi_args->num_devices = fs_devices->num_devices;
2741
2742 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2743 if (device->devid > fi_args->max_id)
2744 fi_args->max_id = device->devid;
2745 }
2746 rcu_read_unlock();
2747
2748 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2749 fi_args->nodesize = fs_info->nodesize;
2750 fi_args->sectorsize = fs_info->sectorsize;
2751 fi_args->clone_alignment = fs_info->sectorsize;
2752
2753 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2754 ret = -EFAULT;
2755
2756 kfree(fi_args);
2757 return ret;
2758}
2759
2760static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2761 void __user *arg)
2762{
2763 struct btrfs_ioctl_dev_info_args *di_args;
2764 struct btrfs_device *dev;
2765 int ret = 0;
2766 char *s_uuid = NULL;
2767
2768 di_args = memdup_user(arg, sizeof(*di_args));
2769 if (IS_ERR(di_args))
2770 return PTR_ERR(di_args);
2771
2772 if (!btrfs_is_empty_uuid(di_args->uuid))
2773 s_uuid = di_args->uuid;
2774
2775 rcu_read_lock();
2776 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2777
2778 if (!dev) {
2779 ret = -ENODEV;
2780 goto out;
2781 }
2782
2783 di_args->devid = dev->devid;
2784 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2785 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2786 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2787 if (dev->name) {
2788 struct rcu_string *name;
2789
2790 name = rcu_dereference(dev->name);
2791 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2792 di_args->path[sizeof(di_args->path) - 1] = 0;
2793 } else {
2794 di_args->path[0] = '\0';
2795 }
2796
2797out:
2798 rcu_read_unlock();
2799 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2800 ret = -EFAULT;
2801
2802 kfree(di_args);
2803 return ret;
2804}
2805
2806static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2807{
2808 struct page *page;
2809
2810 page = grab_cache_page(inode->i_mapping, index);
2811 if (!page)
2812 return ERR_PTR(-ENOMEM);
2813
2814 if (!PageUptodate(page)) {
2815 int ret;
2816
2817 ret = btrfs_readpage(NULL, page);
2818 if (ret)
2819 return ERR_PTR(ret);
2820 lock_page(page);
2821 if (!PageUptodate(page)) {
2822 unlock_page(page);
2823 put_page(page);
2824 return ERR_PTR(-EIO);
2825 }
2826 if (page->mapping != inode->i_mapping) {
2827 unlock_page(page);
2828 put_page(page);
2829 return ERR_PTR(-EAGAIN);
2830 }
2831 }
2832
2833 return page;
2834}
2835
2836static int gather_extent_pages(struct inode *inode, struct page **pages,
2837 int num_pages, u64 off)
2838{
2839 int i;
2840 pgoff_t index = off >> PAGE_SHIFT;
2841
2842 for (i = 0; i < num_pages; i++) {
2843again:
2844 pages[i] = extent_same_get_page(inode, index + i);
2845 if (IS_ERR(pages[i])) {
2846 int err = PTR_ERR(pages[i]);
2847
2848 if (err == -EAGAIN)
2849 goto again;
2850 pages[i] = NULL;
2851 return err;
2852 }
2853 }
2854 return 0;
2855}
2856
2857static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2858 bool retry_range_locking)
2859{
2860 /*
2861 * Do any pending delalloc/csum calculations on inode, one way or
2862 * another, and lock file content.
2863 * The locking order is:
2864 *
2865 * 1) pages
2866 * 2) range in the inode's io tree
2867 */
2868 while (1) {
2869 struct btrfs_ordered_extent *ordered;
2870 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2871 ordered = btrfs_lookup_first_ordered_extent(inode,
2872 off + len - 1);
2873 if ((!ordered ||
2874 ordered->file_offset + ordered->len <= off ||
2875 ordered->file_offset >= off + len) &&
2876 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2877 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2878 if (ordered)
2879 btrfs_put_ordered_extent(ordered);
2880 break;
2881 }
2882 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2883 if (ordered)
2884 btrfs_put_ordered_extent(ordered);
2885 if (!retry_range_locking)
2886 return -EAGAIN;
2887 btrfs_wait_ordered_range(inode, off, len);
2888 }
2889 return 0;
2890}
2891
2892static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2893{
2894 inode_unlock(inode1);
2895 inode_unlock(inode2);
2896}
2897
2898static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2899{
2900 if (inode1 < inode2)
2901 swap(inode1, inode2);
2902
2903 inode_lock_nested(inode1, I_MUTEX_PARENT);
2904 inode_lock_nested(inode2, I_MUTEX_CHILD);
2905}
2906
2907static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2908 struct inode *inode2, u64 loff2, u64 len)
2909{
2910 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2911 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2912}
2913
2914static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2915 struct inode *inode2, u64 loff2, u64 len,
2916 bool retry_range_locking)
2917{
2918 int ret;
2919
2920 if (inode1 < inode2) {
2921 swap(inode1, inode2);
2922 swap(loff1, loff2);
2923 }
2924 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2925 if (ret)
2926 return ret;
2927 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2928 if (ret)
2929 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2930 loff1 + len - 1);
2931 return ret;
2932}
2933
2934struct cmp_pages {
2935 int num_pages;
2936 struct page **src_pages;
2937 struct page **dst_pages;
2938};
2939
2940static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2941{
2942 int i;
2943 struct page *pg;
2944
2945 for (i = 0; i < cmp->num_pages; i++) {
2946 pg = cmp->src_pages[i];
2947 if (pg) {
2948 unlock_page(pg);
2949 put_page(pg);
2950 }
2951 pg = cmp->dst_pages[i];
2952 if (pg) {
2953 unlock_page(pg);
2954 put_page(pg);
2955 }
2956 }
2957 kfree(cmp->src_pages);
2958 kfree(cmp->dst_pages);
2959}
2960
2961static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2962 struct inode *dst, u64 dst_loff,
2963 u64 len, struct cmp_pages *cmp)
2964{
2965 int ret;
2966 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2967 struct page **src_pgarr, **dst_pgarr;
2968
2969 /*
2970 * We must gather up all the pages before we initiate our
2971 * extent locking. We use an array for the page pointers. Size
2972 * of the array is bounded by len, which is in turn bounded by
2973 * BTRFS_MAX_DEDUPE_LEN.
2974 */
2975 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2976 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2977 if (!src_pgarr || !dst_pgarr) {
2978 kfree(src_pgarr);
2979 kfree(dst_pgarr);
2980 return -ENOMEM;
2981 }
2982 cmp->num_pages = num_pages;
2983 cmp->src_pages = src_pgarr;
2984 cmp->dst_pages = dst_pgarr;
2985
2986 /*
2987 * If deduping ranges in the same inode, locking rules make it mandatory
2988 * to always lock pages in ascending order to avoid deadlocks with
2989 * concurrent tasks (such as starting writeback/delalloc).
2990 */
2991 if (src == dst && dst_loff < loff) {
2992 swap(src_pgarr, dst_pgarr);
2993 swap(loff, dst_loff);
2994 }
2995
2996 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
2997 if (ret)
2998 goto out;
2999
3000 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3001
3002out:
3003 if (ret)
3004 btrfs_cmp_data_free(cmp);
3005 return ret;
3006}
3007
3008static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3009{
3010 int ret = 0;
3011 int i;
3012 struct page *src_page, *dst_page;
3013 unsigned int cmp_len = PAGE_SIZE;
3014 void *addr, *dst_addr;
3015
3016 i = 0;
3017 while (len) {
3018 if (len < PAGE_SIZE)
3019 cmp_len = len;
3020
3021 BUG_ON(i >= cmp->num_pages);
3022
3023 src_page = cmp->src_pages[i];
3024 dst_page = cmp->dst_pages[i];
3025 ASSERT(PageLocked(src_page));
3026 ASSERT(PageLocked(dst_page));
3027
3028 addr = kmap_atomic(src_page);
3029 dst_addr = kmap_atomic(dst_page);
3030
3031 flush_dcache_page(src_page);
3032 flush_dcache_page(dst_page);
3033
3034 if (memcmp(addr, dst_addr, cmp_len))
3035 ret = -EBADE;
3036
3037 kunmap_atomic(addr);
3038 kunmap_atomic(dst_addr);
3039
3040 if (ret)
3041 break;
3042
3043 len -= cmp_len;
3044 i++;
3045 }
3046
3047 return ret;
3048}
3049
3050static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3051 u64 olen)
3052{
3053 u64 len = *plen;
3054 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3055
3056 if (off + olen > inode->i_size || off + olen < off)
3057 return -EINVAL;
3058
3059 /* if we extend to eof, continue to block boundary */
3060 if (off + len == inode->i_size)
3061 *plen = len = ALIGN(inode->i_size, bs) - off;
3062
3063 /* Check that we are block aligned - btrfs_clone() requires this */
3064 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3065 return -EINVAL;
3066
3067 return 0;
3068}
3069
3070static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3071 struct inode *dst, u64 dst_loff)
3072{
3073 int ret;
3074 u64 len = olen;
3075 struct cmp_pages cmp;
3076 bool same_inode = (src == dst);
3077 u64 same_lock_start = 0;
3078 u64 same_lock_len = 0;
3079
3080 if (len == 0)
3081 return 0;
3082
3083 if (same_inode)
3084 inode_lock(src);
3085 else
3086 btrfs_double_inode_lock(src, dst);
3087
3088 ret = extent_same_check_offsets(src, loff, &len, olen);
3089 if (ret)
3090 goto out_unlock;
3091
3092 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3093 if (ret)
3094 goto out_unlock;
3095
3096 if (same_inode) {
3097 /*
3098 * Single inode case wants the same checks, except we
3099 * don't want our length pushed out past i_size as
3100 * comparing that data range makes no sense.
3101 *
3102 * extent_same_check_offsets() will do this for an
3103 * unaligned length at i_size, so catch it here and
3104 * reject the request.
3105 *
3106 * This effectively means we require aligned extents
3107 * for the single-inode case, whereas the other cases
3108 * allow an unaligned length so long as it ends at
3109 * i_size.
3110 */
3111 if (len != olen) {
3112 ret = -EINVAL;
3113 goto out_unlock;
3114 }
3115
3116 /* Check for overlapping ranges */
3117 if (dst_loff + len > loff && dst_loff < loff + len) {
3118 ret = -EINVAL;
3119 goto out_unlock;
3120 }
3121
3122 same_lock_start = min_t(u64, loff, dst_loff);
3123 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3124 }
3125
3126 /* don't make the dst file partly checksummed */
3127 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3128 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3129 ret = -EINVAL;
3130 goto out_unlock;
3131 }
3132
3133again:
3134 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3135 if (ret)
3136 goto out_unlock;
3137
3138 if (same_inode)
3139 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3140 false);
3141 else
3142 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3143 false);
3144 /*
3145 * If one of the inodes has dirty pages in the respective range or
3146 * ordered extents, we need to flush dellaloc and wait for all ordered
3147 * extents in the range. We must unlock the pages and the ranges in the
3148 * io trees to avoid deadlocks when flushing delalloc (requires locking
3149 * pages) and when waiting for ordered extents to complete (they require
3150 * range locking).
3151 */
3152 if (ret == -EAGAIN) {
3153 /*
3154 * Ranges in the io trees already unlocked. Now unlock all
3155 * pages before waiting for all IO to complete.
3156 */
3157 btrfs_cmp_data_free(&cmp);
3158 if (same_inode) {
3159 btrfs_wait_ordered_range(src, same_lock_start,
3160 same_lock_len);
3161 } else {
3162 btrfs_wait_ordered_range(src, loff, len);
3163 btrfs_wait_ordered_range(dst, dst_loff, len);
3164 }
3165 goto again;
3166 }
3167 ASSERT(ret == 0);
3168 if (WARN_ON(ret)) {
3169 /* ranges in the io trees already unlocked */
3170 btrfs_cmp_data_free(&cmp);
3171 return ret;
3172 }
3173
3174 /* pass original length for comparison so we stay within i_size */
3175 ret = btrfs_cmp_data(olen, &cmp);
3176 if (ret == 0)
3177 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3178
3179 if (same_inode)
3180 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3181 same_lock_start + same_lock_len - 1);
3182 else
3183 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3184
3185 btrfs_cmp_data_free(&cmp);
3186out_unlock:
3187 if (same_inode)
3188 inode_unlock(src);
3189 else
3190 btrfs_double_inode_unlock(src, dst);
3191
3192 return ret;
3193}
3194
3195#define BTRFS_MAX_DEDUPE_LEN SZ_16M
3196
3197ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3198 struct file *dst_file, u64 dst_loff)
3199{
3200 struct inode *src = file_inode(src_file);
3201 struct inode *dst = file_inode(dst_file);
3202 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3203 ssize_t res;
3204
3205 if (olen > BTRFS_MAX_DEDUPE_LEN)
3206 olen = BTRFS_MAX_DEDUPE_LEN;
3207
3208 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3209 /*
3210 * Btrfs does not support blocksize < page_size. As a
3211 * result, btrfs_cmp_data() won't correctly handle
3212 * this situation without an update.
3213 */
3214 return -EINVAL;
3215 }
3216
3217 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3218 if (res)
3219 return res;
3220 return olen;
3221}
3222
3223static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3224 struct inode *inode,
3225 u64 endoff,
3226 const u64 destoff,
3227 const u64 olen,
3228 int no_time_update)
3229{
3230 struct btrfs_root *root = BTRFS_I(inode)->root;
3231 int ret;
3232
3233 inode_inc_iversion(inode);
3234 if (!no_time_update)
3235 inode->i_mtime = inode->i_ctime = current_time(inode);
3236 /*
3237 * We round up to the block size at eof when determining which
3238 * extents to clone above, but shouldn't round up the file size.
3239 */
3240 if (endoff > destoff + olen)
3241 endoff = destoff + olen;
3242 if (endoff > inode->i_size)
3243 btrfs_i_size_write(BTRFS_I(inode), endoff);
3244
3245 ret = btrfs_update_inode(trans, root, inode);
3246 if (ret) {
3247 btrfs_abort_transaction(trans, ret);
3248 btrfs_end_transaction(trans);
3249 goto out;
3250 }
3251 ret = btrfs_end_transaction(trans);
3252out:
3253 return ret;
3254}
3255
3256static void clone_update_extent_map(struct btrfs_inode *inode,
3257 const struct btrfs_trans_handle *trans,
3258 const struct btrfs_path *path,
3259 const u64 hole_offset,
3260 const u64 hole_len)
3261{
3262 struct extent_map_tree *em_tree = &inode->extent_tree;
3263 struct extent_map *em;
3264 int ret;
3265
3266 em = alloc_extent_map();
3267 if (!em) {
3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3269 return;
3270 }
3271
3272 if (path) {
3273 struct btrfs_file_extent_item *fi;
3274
3275 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3276 struct btrfs_file_extent_item);
3277 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3278 em->generation = -1;
3279 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3280 BTRFS_FILE_EXTENT_INLINE)
3281 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3282 &inode->runtime_flags);
3283 } else {
3284 em->start = hole_offset;
3285 em->len = hole_len;
3286 em->ram_bytes = em->len;
3287 em->orig_start = hole_offset;
3288 em->block_start = EXTENT_MAP_HOLE;
3289 em->block_len = 0;
3290 em->orig_block_len = 0;
3291 em->compress_type = BTRFS_COMPRESS_NONE;
3292 em->generation = trans->transid;
3293 }
3294
3295 while (1) {
3296 write_lock(&em_tree->lock);
3297 ret = add_extent_mapping(em_tree, em, 1);
3298 write_unlock(&em_tree->lock);
3299 if (ret != -EEXIST) {
3300 free_extent_map(em);
3301 break;
3302 }
3303 btrfs_drop_extent_cache(inode, em->start,
3304 em->start + em->len - 1, 0);
3305 }
3306
3307 if (ret)
3308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3309}
3310
3311/*
3312 * Make sure we do not end up inserting an inline extent into a file that has
3313 * already other (non-inline) extents. If a file has an inline extent it can
3314 * not have any other extents and the (single) inline extent must start at the
3315 * file offset 0. Failing to respect these rules will lead to file corruption,
3316 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3317 *
3318 * We can have extents that have been already written to disk or we can have
3319 * dirty ranges still in delalloc, in which case the extent maps and items are
3320 * created only when we run delalloc, and the delalloc ranges might fall outside
3321 * the range we are currently locking in the inode's io tree. So we check the
3322 * inode's i_size because of that (i_size updates are done while holding the
3323 * i_mutex, which we are holding here).
3324 * We also check to see if the inode has a size not greater than "datal" but has
3325 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3326 * protected against such concurrent fallocate calls by the i_mutex).
3327 *
3328 * If the file has no extents but a size greater than datal, do not allow the
3329 * copy because we would need turn the inline extent into a non-inline one (even
3330 * with NO_HOLES enabled). If we find our destination inode only has one inline
3331 * extent, just overwrite it with the source inline extent if its size is less
3332 * than the source extent's size, or we could copy the source inline extent's
3333 * data into the destination inode's inline extent if the later is greater then
3334 * the former.
3335 */
3336static int clone_copy_inline_extent(struct inode *dst,
3337 struct btrfs_trans_handle *trans,
3338 struct btrfs_path *path,
3339 struct btrfs_key *new_key,
3340 const u64 drop_start,
3341 const u64 datal,
3342 const u64 skip,
3343 const u64 size,
3344 char *inline_data)
3345{
3346 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3347 struct btrfs_root *root = BTRFS_I(dst)->root;
3348 const u64 aligned_end = ALIGN(new_key->offset + datal,
3349 fs_info->sectorsize);
3350 int ret;
3351 struct btrfs_key key;
3352
3353 if (new_key->offset > 0)
3354 return -EOPNOTSUPP;
3355
3356 key.objectid = btrfs_ino(BTRFS_I(dst));
3357 key.type = BTRFS_EXTENT_DATA_KEY;
3358 key.offset = 0;
3359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3360 if (ret < 0) {
3361 return ret;
3362 } else if (ret > 0) {
3363 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3364 ret = btrfs_next_leaf(root, path);
3365 if (ret < 0)
3366 return ret;
3367 else if (ret > 0)
3368 goto copy_inline_extent;
3369 }
3370 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3371 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3372 key.type == BTRFS_EXTENT_DATA_KEY) {
3373 ASSERT(key.offset > 0);
3374 return -EOPNOTSUPP;
3375 }
3376 } else if (i_size_read(dst) <= datal) {
3377 struct btrfs_file_extent_item *ei;
3378 u64 ext_len;
3379
3380 /*
3381 * If the file size is <= datal, make sure there are no other
3382 * extents following (can happen do to an fallocate call with
3383 * the flag FALLOC_FL_KEEP_SIZE).
3384 */
3385 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3386 struct btrfs_file_extent_item);
3387 /*
3388 * If it's an inline extent, it can not have other extents
3389 * following it.
3390 */
3391 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3392 BTRFS_FILE_EXTENT_INLINE)
3393 goto copy_inline_extent;
3394
3395 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3396 if (ext_len > aligned_end)
3397 return -EOPNOTSUPP;
3398
3399 ret = btrfs_next_item(root, path);
3400 if (ret < 0) {
3401 return ret;
3402 } else if (ret == 0) {
3403 btrfs_item_key_to_cpu(path->nodes[0], &key,
3404 path->slots[0]);
3405 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3406 key.type == BTRFS_EXTENT_DATA_KEY)
3407 return -EOPNOTSUPP;
3408 }
3409 }
3410
3411copy_inline_extent:
3412 /*
3413 * We have no extent items, or we have an extent at offset 0 which may
3414 * or may not be inlined. All these cases are dealt the same way.
3415 */
3416 if (i_size_read(dst) > datal) {
3417 /*
3418 * If the destination inode has an inline extent...
3419 * This would require copying the data from the source inline
3420 * extent into the beginning of the destination's inline extent.
3421 * But this is really complex, both extents can be compressed
3422 * or just one of them, which would require decompressing and
3423 * re-compressing data (which could increase the new compressed
3424 * size, not allowing the compressed data to fit anymore in an
3425 * inline extent).
3426 * So just don't support this case for now (it should be rare,
3427 * we are not really saving space when cloning inline extents).
3428 */
3429 return -EOPNOTSUPP;
3430 }
3431
3432 btrfs_release_path(path);
3433 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3434 if (ret)
3435 return ret;
3436 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3437 if (ret)
3438 return ret;
3439
3440 if (skip) {
3441 const u32 start = btrfs_file_extent_calc_inline_size(0);
3442
3443 memmove(inline_data + start, inline_data + start + skip, datal);
3444 }
3445
3446 write_extent_buffer(path->nodes[0], inline_data,
3447 btrfs_item_ptr_offset(path->nodes[0],
3448 path->slots[0]),
3449 size);
3450 inode_add_bytes(dst, datal);
3451
3452 return 0;
3453}
3454
3455/**
3456 * btrfs_clone() - clone a range from inode file to another
3457 *
3458 * @src: Inode to clone from
3459 * @inode: Inode to clone to
3460 * @off: Offset within source to start clone from
3461 * @olen: Original length, passed by user, of range to clone
3462 * @olen_aligned: Block-aligned value of olen
3463 * @destoff: Offset within @inode to start clone
3464 * @no_time_update: Whether to update mtime/ctime on the target inode
3465 */
3466static int btrfs_clone(struct inode *src, struct inode *inode,
3467 const u64 off, const u64 olen, const u64 olen_aligned,
3468 const u64 destoff, int no_time_update)
3469{
3470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3471 struct btrfs_root *root = BTRFS_I(inode)->root;
3472 struct btrfs_path *path = NULL;
3473 struct extent_buffer *leaf;
3474 struct btrfs_trans_handle *trans;
3475 char *buf = NULL;
3476 struct btrfs_key key;
3477 u32 nritems;
3478 int slot;
3479 int ret;
3480 const u64 len = olen_aligned;
3481 u64 last_dest_end = destoff;
3482
3483 ret = -ENOMEM;
3484 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3485 if (!buf)
3486 return ret;
3487
3488 path = btrfs_alloc_path();
3489 if (!path) {
3490 kvfree(buf);
3491 return ret;
3492 }
3493
3494 path->reada = READA_FORWARD;
3495 /* clone data */
3496 key.objectid = btrfs_ino(BTRFS_I(src));
3497 key.type = BTRFS_EXTENT_DATA_KEY;
3498 key.offset = off;
3499
3500 while (1) {
3501 u64 next_key_min_offset = key.offset + 1;
3502
3503 /*
3504 * note the key will change type as we walk through the
3505 * tree.
3506 */
3507 path->leave_spinning = 1;
3508 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3509 0, 0);
3510 if (ret < 0)
3511 goto out;
3512 /*
3513 * First search, if no extent item that starts at offset off was
3514 * found but the previous item is an extent item, it's possible
3515 * it might overlap our target range, therefore process it.
3516 */
3517 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3518 btrfs_item_key_to_cpu(path->nodes[0], &key,
3519 path->slots[0] - 1);
3520 if (key.type == BTRFS_EXTENT_DATA_KEY)
3521 path->slots[0]--;
3522 }
3523
3524 nritems = btrfs_header_nritems(path->nodes[0]);
3525process_slot:
3526 if (path->slots[0] >= nritems) {
3527 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3528 if (ret < 0)
3529 goto out;
3530 if (ret > 0)
3531 break;
3532 nritems = btrfs_header_nritems(path->nodes[0]);
3533 }
3534 leaf = path->nodes[0];
3535 slot = path->slots[0];
3536
3537 btrfs_item_key_to_cpu(leaf, &key, slot);
3538 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3539 key.objectid != btrfs_ino(BTRFS_I(src)))
3540 break;
3541
3542 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3543 struct btrfs_file_extent_item *extent;
3544 int type;
3545 u32 size;
3546 struct btrfs_key new_key;
3547 u64 disko = 0, diskl = 0;
3548 u64 datao = 0, datal = 0;
3549 u8 comp;
3550 u64 drop_start;
3551
3552 extent = btrfs_item_ptr(leaf, slot,
3553 struct btrfs_file_extent_item);
3554 comp = btrfs_file_extent_compression(leaf, extent);
3555 type = btrfs_file_extent_type(leaf, extent);
3556 if (type == BTRFS_FILE_EXTENT_REG ||
3557 type == BTRFS_FILE_EXTENT_PREALLOC) {
3558 disko = btrfs_file_extent_disk_bytenr(leaf,
3559 extent);
3560 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3561 extent);
3562 datao = btrfs_file_extent_offset(leaf, extent);
3563 datal = btrfs_file_extent_num_bytes(leaf,
3564 extent);
3565 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3566 /* take upper bound, may be compressed */
3567 datal = btrfs_file_extent_ram_bytes(leaf,
3568 extent);
3569 }
3570
3571 /*
3572 * The first search might have left us at an extent
3573 * item that ends before our target range's start, can
3574 * happen if we have holes and NO_HOLES feature enabled.
3575 */
3576 if (key.offset + datal <= off) {
3577 path->slots[0]++;
3578 goto process_slot;
3579 } else if (key.offset >= off + len) {
3580 break;
3581 }
3582 next_key_min_offset = key.offset + datal;
3583 size = btrfs_item_size_nr(leaf, slot);
3584 read_extent_buffer(leaf, buf,
3585 btrfs_item_ptr_offset(leaf, slot),
3586 size);
3587
3588 btrfs_release_path(path);
3589 path->leave_spinning = 0;
3590
3591 memcpy(&new_key, &key, sizeof(new_key));
3592 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3593 if (off <= key.offset)
3594 new_key.offset = key.offset + destoff - off;
3595 else
3596 new_key.offset = destoff;
3597
3598 /*
3599 * Deal with a hole that doesn't have an extent item
3600 * that represents it (NO_HOLES feature enabled).
3601 * This hole is either in the middle of the cloning
3602 * range or at the beginning (fully overlaps it or
3603 * partially overlaps it).
3604 */
3605 if (new_key.offset != last_dest_end)
3606 drop_start = last_dest_end;
3607 else
3608 drop_start = new_key.offset;
3609
3610 /*
3611 * 1 - adjusting old extent (we may have to split it)
3612 * 1 - add new extent
3613 * 1 - inode update
3614 */
3615 trans = btrfs_start_transaction(root, 3);
3616 if (IS_ERR(trans)) {
3617 ret = PTR_ERR(trans);
3618 goto out;
3619 }
3620
3621 if (type == BTRFS_FILE_EXTENT_REG ||
3622 type == BTRFS_FILE_EXTENT_PREALLOC) {
3623 /*
3624 * a | --- range to clone ---| b
3625 * | ------------- extent ------------- |
3626 */
3627
3628 /* subtract range b */
3629 if (key.offset + datal > off + len)
3630 datal = off + len - key.offset;
3631
3632 /* subtract range a */
3633 if (off > key.offset) {
3634 datao += off - key.offset;
3635 datal -= off - key.offset;
3636 }
3637
3638 ret = btrfs_drop_extents(trans, root, inode,
3639 drop_start,
3640 new_key.offset + datal,
3641 1);
3642 if (ret) {
3643 if (ret != -EOPNOTSUPP)
3644 btrfs_abort_transaction(trans,
3645 ret);
3646 btrfs_end_transaction(trans);
3647 goto out;
3648 }
3649
3650 ret = btrfs_insert_empty_item(trans, root, path,
3651 &new_key, size);
3652 if (ret) {
3653 btrfs_abort_transaction(trans, ret);
3654 btrfs_end_transaction(trans);
3655 goto out;
3656 }
3657
3658 leaf = path->nodes[0];
3659 slot = path->slots[0];
3660 write_extent_buffer(leaf, buf,
3661 btrfs_item_ptr_offset(leaf, slot),
3662 size);
3663
3664 extent = btrfs_item_ptr(leaf, slot,
3665 struct btrfs_file_extent_item);
3666
3667 /* disko == 0 means it's a hole */
3668 if (!disko)
3669 datao = 0;
3670
3671 btrfs_set_file_extent_offset(leaf, extent,
3672 datao);
3673 btrfs_set_file_extent_num_bytes(leaf, extent,
3674 datal);
3675
3676 if (disko) {
3677 inode_add_bytes(inode, datal);
3678 ret = btrfs_inc_extent_ref(trans,
3679 root,
3680 disko, diskl, 0,
3681 root->root_key.objectid,
3682 btrfs_ino(BTRFS_I(inode)),
3683 new_key.offset - datao);
3684 if (ret) {
3685 btrfs_abort_transaction(trans,
3686 ret);
3687 btrfs_end_transaction(trans);
3688 goto out;
3689
3690 }
3691 }
3692 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3693 u64 skip = 0;
3694 u64 trim = 0;
3695
3696 if (off > key.offset) {
3697 skip = off - key.offset;
3698 new_key.offset += skip;
3699 }
3700
3701 if (key.offset + datal > off + len)
3702 trim = key.offset + datal - (off + len);
3703
3704 if (comp && (skip || trim)) {
3705 ret = -EINVAL;
3706 btrfs_end_transaction(trans);
3707 goto out;
3708 }
3709 size -= skip + trim;
3710 datal -= skip + trim;
3711
3712 ret = clone_copy_inline_extent(inode,
3713 trans, path,
3714 &new_key,
3715 drop_start,
3716 datal,
3717 skip, size, buf);
3718 if (ret) {
3719 if (ret != -EOPNOTSUPP)
3720 btrfs_abort_transaction(trans,
3721 ret);
3722 btrfs_end_transaction(trans);
3723 goto out;
3724 }
3725 leaf = path->nodes[0];
3726 slot = path->slots[0];
3727 }
3728
3729 /* If we have an implicit hole (NO_HOLES feature). */
3730 if (drop_start < new_key.offset)
3731 clone_update_extent_map(BTRFS_I(inode), trans,
3732 NULL, drop_start,
3733 new_key.offset - drop_start);
3734
3735 clone_update_extent_map(BTRFS_I(inode), trans,
3736 path, 0, 0);
3737
3738 btrfs_mark_buffer_dirty(leaf);
3739 btrfs_release_path(path);
3740
3741 last_dest_end = ALIGN(new_key.offset + datal,
3742 fs_info->sectorsize);
3743 ret = clone_finish_inode_update(trans, inode,
3744 last_dest_end,
3745 destoff, olen,
3746 no_time_update);
3747 if (ret)
3748 goto out;
3749 if (new_key.offset + datal >= destoff + len)
3750 break;
3751 }
3752 btrfs_release_path(path);
3753 key.offset = next_key_min_offset;
3754
3755 if (fatal_signal_pending(current)) {
3756 ret = -EINTR;
3757 goto out;
3758 }
3759 }
3760 ret = 0;
3761
3762 if (last_dest_end < destoff + len) {
3763 /*
3764 * We have an implicit hole (NO_HOLES feature is enabled) that
3765 * fully or partially overlaps our cloning range at its end.
3766 */
3767 btrfs_release_path(path);
3768
3769 /*
3770 * 1 - remove extent(s)
3771 * 1 - inode update
3772 */
3773 trans = btrfs_start_transaction(root, 2);
3774 if (IS_ERR(trans)) {
3775 ret = PTR_ERR(trans);
3776 goto out;
3777 }
3778 ret = btrfs_drop_extents(trans, root, inode,
3779 last_dest_end, destoff + len, 1);
3780 if (ret) {
3781 if (ret != -EOPNOTSUPP)
3782 btrfs_abort_transaction(trans, ret);
3783 btrfs_end_transaction(trans);
3784 goto out;
3785 }
3786 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3787 last_dest_end,
3788 destoff + len - last_dest_end);
3789 ret = clone_finish_inode_update(trans, inode, destoff + len,
3790 destoff, olen, no_time_update);
3791 }
3792
3793out:
3794 btrfs_free_path(path);
3795 kvfree(buf);
3796 return ret;
3797}
3798
3799static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3800 u64 off, u64 olen, u64 destoff)
3801{
3802 struct inode *inode = file_inode(file);
3803 struct inode *src = file_inode(file_src);
3804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3805 struct btrfs_root *root = BTRFS_I(inode)->root;
3806 int ret;
3807 u64 len = olen;
3808 u64 bs = fs_info->sb->s_blocksize;
3809 int same_inode = src == inode;
3810
3811 /*
3812 * TODO:
3813 * - split compressed inline extents. annoying: we need to
3814 * decompress into destination's address_space (the file offset
3815 * may change, so source mapping won't do), then recompress (or
3816 * otherwise reinsert) a subrange.
3817 *
3818 * - split destination inode's inline extents. The inline extents can
3819 * be either compressed or non-compressed.
3820 */
3821
3822 if (btrfs_root_readonly(root))
3823 return -EROFS;
3824
3825 if (file_src->f_path.mnt != file->f_path.mnt ||
3826 src->i_sb != inode->i_sb)
3827 return -EXDEV;
3828
3829 /* don't make the dst file partly checksummed */
3830 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3831 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3832 return -EINVAL;
3833
3834 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3835 return -EISDIR;
3836
3837 if (!same_inode) {
3838 btrfs_double_inode_lock(src, inode);
3839 } else {
3840 inode_lock(src);
3841 }
3842
3843 /* determine range to clone */
3844 ret = -EINVAL;
3845 if (off + len > src->i_size || off + len < off)
3846 goto out_unlock;
3847 if (len == 0)
3848 olen = len = src->i_size - off;
3849 /* if we extend to eof, continue to block boundary */
3850 if (off + len == src->i_size)
3851 len = ALIGN(src->i_size, bs) - off;
3852
3853 if (len == 0) {
3854 ret = 0;
3855 goto out_unlock;
3856 }
3857
3858 /* verify the end result is block aligned */
3859 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3860 !IS_ALIGNED(destoff, bs))
3861 goto out_unlock;
3862
3863 /* verify if ranges are overlapped within the same file */
3864 if (same_inode) {
3865 if (destoff + len > off && destoff < off + len)
3866 goto out_unlock;
3867 }
3868
3869 if (destoff > inode->i_size) {
3870 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3871 if (ret)
3872 goto out_unlock;
3873 }
3874
3875 /*
3876 * Lock the target range too. Right after we replace the file extent
3877 * items in the fs tree (which now point to the cloned data), we might
3878 * have a worker replace them with extent items relative to a write
3879 * operation that was issued before this clone operation (i.e. confront
3880 * with inode.c:btrfs_finish_ordered_io).
3881 */
3882 if (same_inode) {
3883 u64 lock_start = min_t(u64, off, destoff);
3884 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3885
3886 ret = lock_extent_range(src, lock_start, lock_len, true);
3887 } else {
3888 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3889 true);
3890 }
3891 ASSERT(ret == 0);
3892 if (WARN_ON(ret)) {
3893 /* ranges in the io trees already unlocked */
3894 goto out_unlock;
3895 }
3896
3897 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3898
3899 if (same_inode) {
3900 u64 lock_start = min_t(u64, off, destoff);
3901 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3902
3903 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3904 } else {
3905 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3906 }
3907 /*
3908 * Truncate page cache pages so that future reads will see the cloned
3909 * data immediately and not the previous data.
3910 */
3911 truncate_inode_pages_range(&inode->i_data,
3912 round_down(destoff, PAGE_SIZE),
3913 round_up(destoff + len, PAGE_SIZE) - 1);
3914out_unlock:
3915 if (!same_inode)
3916 btrfs_double_inode_unlock(src, inode);
3917 else
3918 inode_unlock(src);
3919 return ret;
3920}
3921
3922int btrfs_clone_file_range(struct file *src_file, loff_t off,
3923 struct file *dst_file, loff_t destoff, u64 len)
3924{
3925 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3926}
3927
3928static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3929{
3930 struct inode *inode = file_inode(file);
3931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3932 struct btrfs_root *root = BTRFS_I(inode)->root;
3933 struct btrfs_root *new_root;
3934 struct btrfs_dir_item *di;
3935 struct btrfs_trans_handle *trans;
3936 struct btrfs_path *path;
3937 struct btrfs_key location;
3938 struct btrfs_disk_key disk_key;
3939 u64 objectid = 0;
3940 u64 dir_id;
3941 int ret;
3942
3943 if (!capable(CAP_SYS_ADMIN))
3944 return -EPERM;
3945
3946 ret = mnt_want_write_file(file);
3947 if (ret)
3948 return ret;
3949
3950 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3951 ret = -EFAULT;
3952 goto out;
3953 }
3954
3955 if (!objectid)
3956 objectid = BTRFS_FS_TREE_OBJECTID;
3957
3958 location.objectid = objectid;
3959 location.type = BTRFS_ROOT_ITEM_KEY;
3960 location.offset = (u64)-1;
3961
3962 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3963 if (IS_ERR(new_root)) {
3964 ret = PTR_ERR(new_root);
3965 goto out;
3966 }
3967 if (!is_fstree(new_root->objectid)) {
3968 ret = -ENOENT;
3969 goto out;
3970 }
3971
3972 path = btrfs_alloc_path();
3973 if (!path) {
3974 ret = -ENOMEM;
3975 goto out;
3976 }
3977 path->leave_spinning = 1;
3978
3979 trans = btrfs_start_transaction(root, 1);
3980 if (IS_ERR(trans)) {
3981 btrfs_free_path(path);
3982 ret = PTR_ERR(trans);
3983 goto out;
3984 }
3985
3986 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3987 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3988 dir_id, "default", 7, 1);
3989 if (IS_ERR_OR_NULL(di)) {
3990 btrfs_free_path(path);
3991 btrfs_end_transaction(trans);
3992 btrfs_err(fs_info,
3993 "Umm, you don't have the default diritem, this isn't going to work");
3994 ret = -ENOENT;
3995 goto out;
3996 }
3997
3998 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3999 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4000 btrfs_mark_buffer_dirty(path->nodes[0]);
4001 btrfs_free_path(path);
4002
4003 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4004 btrfs_end_transaction(trans);
4005out:
4006 mnt_drop_write_file(file);
4007 return ret;
4008}
4009
4010void btrfs_get_block_group_info(struct list_head *groups_list,
4011 struct btrfs_ioctl_space_info *space)
4012{
4013 struct btrfs_block_group_cache *block_group;
4014
4015 space->total_bytes = 0;
4016 space->used_bytes = 0;
4017 space->flags = 0;
4018 list_for_each_entry(block_group, groups_list, list) {
4019 space->flags = block_group->flags;
4020 space->total_bytes += block_group->key.offset;
4021 space->used_bytes +=
4022 btrfs_block_group_used(&block_group->item);
4023 }
4024}
4025
4026static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4027 void __user *arg)
4028{
4029 struct btrfs_ioctl_space_args space_args;
4030 struct btrfs_ioctl_space_info space;
4031 struct btrfs_ioctl_space_info *dest;
4032 struct btrfs_ioctl_space_info *dest_orig;
4033 struct btrfs_ioctl_space_info __user *user_dest;
4034 struct btrfs_space_info *info;
4035 static const u64 types[] = {
4036 BTRFS_BLOCK_GROUP_DATA,
4037 BTRFS_BLOCK_GROUP_SYSTEM,
4038 BTRFS_BLOCK_GROUP_METADATA,
4039 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4040 };
4041 int num_types = 4;
4042 int alloc_size;
4043 int ret = 0;
4044 u64 slot_count = 0;
4045 int i, c;
4046
4047 if (copy_from_user(&space_args,
4048 (struct btrfs_ioctl_space_args __user *)arg,
4049 sizeof(space_args)))
4050 return -EFAULT;
4051
4052 for (i = 0; i < num_types; i++) {
4053 struct btrfs_space_info *tmp;
4054
4055 info = NULL;
4056 rcu_read_lock();
4057 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4058 list) {
4059 if (tmp->flags == types[i]) {
4060 info = tmp;
4061 break;
4062 }
4063 }
4064 rcu_read_unlock();
4065
4066 if (!info)
4067 continue;
4068
4069 down_read(&info->groups_sem);
4070 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4071 if (!list_empty(&info->block_groups[c]))
4072 slot_count++;
4073 }
4074 up_read(&info->groups_sem);
4075 }
4076
4077 /*
4078 * Global block reserve, exported as a space_info
4079 */
4080 slot_count++;
4081
4082 /* space_slots == 0 means they are asking for a count */
4083 if (space_args.space_slots == 0) {
4084 space_args.total_spaces = slot_count;
4085 goto out;
4086 }
4087
4088 slot_count = min_t(u64, space_args.space_slots, slot_count);
4089
4090 alloc_size = sizeof(*dest) * slot_count;
4091
4092 /* we generally have at most 6 or so space infos, one for each raid
4093 * level. So, a whole page should be more than enough for everyone
4094 */
4095 if (alloc_size > PAGE_SIZE)
4096 return -ENOMEM;
4097
4098 space_args.total_spaces = 0;
4099 dest = kmalloc(alloc_size, GFP_KERNEL);
4100 if (!dest)
4101 return -ENOMEM;
4102 dest_orig = dest;
4103
4104 /* now we have a buffer to copy into */
4105 for (i = 0; i < num_types; i++) {
4106 struct btrfs_space_info *tmp;
4107
4108 if (!slot_count)
4109 break;
4110
4111 info = NULL;
4112 rcu_read_lock();
4113 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4114 list) {
4115 if (tmp->flags == types[i]) {
4116 info = tmp;
4117 break;
4118 }
4119 }
4120 rcu_read_unlock();
4121
4122 if (!info)
4123 continue;
4124 down_read(&info->groups_sem);
4125 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4126 if (!list_empty(&info->block_groups[c])) {
4127 btrfs_get_block_group_info(
4128 &info->block_groups[c], &space);
4129 memcpy(dest, &space, sizeof(space));
4130 dest++;
4131 space_args.total_spaces++;
4132 slot_count--;
4133 }
4134 if (!slot_count)
4135 break;
4136 }
4137 up_read(&info->groups_sem);
4138 }
4139
4140 /*
4141 * Add global block reserve
4142 */
4143 if (slot_count) {
4144 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4145
4146 spin_lock(&block_rsv->lock);
4147 space.total_bytes = block_rsv->size;
4148 space.used_bytes = block_rsv->size - block_rsv->reserved;
4149 spin_unlock(&block_rsv->lock);
4150 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4151 memcpy(dest, &space, sizeof(space));
4152 space_args.total_spaces++;
4153 }
4154
4155 user_dest = (struct btrfs_ioctl_space_info __user *)
4156 (arg + sizeof(struct btrfs_ioctl_space_args));
4157
4158 if (copy_to_user(user_dest, dest_orig, alloc_size))
4159 ret = -EFAULT;
4160
4161 kfree(dest_orig);
4162out:
4163 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4164 ret = -EFAULT;
4165
4166 return ret;
4167}
4168
4169static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4170 void __user *argp)
4171{
4172 struct btrfs_trans_handle *trans;
4173 u64 transid;
4174 int ret;
4175
4176 trans = btrfs_attach_transaction_barrier(root);
4177 if (IS_ERR(trans)) {
4178 if (PTR_ERR(trans) != -ENOENT)
4179 return PTR_ERR(trans);
4180
4181 /* No running transaction, don't bother */
4182 transid = root->fs_info->last_trans_committed;
4183 goto out;
4184 }
4185 transid = trans->transid;
4186 ret = btrfs_commit_transaction_async(trans, 0);
4187 if (ret) {
4188 btrfs_end_transaction(trans);
4189 return ret;
4190 }
4191out:
4192 if (argp)
4193 if (copy_to_user(argp, &transid, sizeof(transid)))
4194 return -EFAULT;
4195 return 0;
4196}
4197
4198static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4199 void __user *argp)
4200{
4201 u64 transid;
4202
4203 if (argp) {
4204 if (copy_from_user(&transid, argp, sizeof(transid)))
4205 return -EFAULT;
4206 } else {
4207 transid = 0; /* current trans */
4208 }
4209 return btrfs_wait_for_commit(fs_info, transid);
4210}
4211
4212static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4213{
4214 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4215 struct btrfs_ioctl_scrub_args *sa;
4216 int ret;
4217
4218 if (!capable(CAP_SYS_ADMIN))
4219 return -EPERM;
4220
4221 sa = memdup_user(arg, sizeof(*sa));
4222 if (IS_ERR(sa))
4223 return PTR_ERR(sa);
4224
4225 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4226 ret = mnt_want_write_file(file);
4227 if (ret)
4228 goto out;
4229 }
4230
4231 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4232 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4233 0);
4234
4235 if (copy_to_user(arg, sa, sizeof(*sa)))
4236 ret = -EFAULT;
4237
4238 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4239 mnt_drop_write_file(file);
4240out:
4241 kfree(sa);
4242 return ret;
4243}
4244
4245static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4246{
4247 if (!capable(CAP_SYS_ADMIN))
4248 return -EPERM;
4249
4250 return btrfs_scrub_cancel(fs_info);
4251}
4252
4253static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4254 void __user *arg)
4255{
4256 struct btrfs_ioctl_scrub_args *sa;
4257 int ret;
4258
4259 if (!capable(CAP_SYS_ADMIN))
4260 return -EPERM;
4261
4262 sa = memdup_user(arg, sizeof(*sa));
4263 if (IS_ERR(sa))
4264 return PTR_ERR(sa);
4265
4266 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4267
4268 if (copy_to_user(arg, sa, sizeof(*sa)))
4269 ret = -EFAULT;
4270
4271 kfree(sa);
4272 return ret;
4273}
4274
4275static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4276 void __user *arg)
4277{
4278 struct btrfs_ioctl_get_dev_stats *sa;
4279 int ret;
4280
4281 sa = memdup_user(arg, sizeof(*sa));
4282 if (IS_ERR(sa))
4283 return PTR_ERR(sa);
4284
4285 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4286 kfree(sa);
4287 return -EPERM;
4288 }
4289
4290 ret = btrfs_get_dev_stats(fs_info, sa);
4291
4292 if (copy_to_user(arg, sa, sizeof(*sa)))
4293 ret = -EFAULT;
4294
4295 kfree(sa);
4296 return ret;
4297}
4298
4299static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4300 void __user *arg)
4301{
4302 struct btrfs_ioctl_dev_replace_args *p;
4303 int ret;
4304
4305 if (!capable(CAP_SYS_ADMIN))
4306 return -EPERM;
4307
4308 p = memdup_user(arg, sizeof(*p));
4309 if (IS_ERR(p))
4310 return PTR_ERR(p);
4311
4312 switch (p->cmd) {
4313 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4314 if (sb_rdonly(fs_info->sb)) {
4315 ret = -EROFS;
4316 goto out;
4317 }
4318 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4319 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4320 } else {
4321 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4322 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4323 }
4324 break;
4325 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4326 btrfs_dev_replace_status(fs_info, p);
4327 ret = 0;
4328 break;
4329 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4330 p->result = btrfs_dev_replace_cancel(fs_info);
4331 ret = 0;
4332 break;
4333 default:
4334 ret = -EINVAL;
4335 break;
4336 }
4337
4338 if (copy_to_user(arg, p, sizeof(*p)))
4339 ret = -EFAULT;
4340out:
4341 kfree(p);
4342 return ret;
4343}
4344
4345static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4346{
4347 int ret = 0;
4348 int i;
4349 u64 rel_ptr;
4350 int size;
4351 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4352 struct inode_fs_paths *ipath = NULL;
4353 struct btrfs_path *path;
4354
4355 if (!capable(CAP_DAC_READ_SEARCH))
4356 return -EPERM;
4357
4358 path = btrfs_alloc_path();
4359 if (!path) {
4360 ret = -ENOMEM;
4361 goto out;
4362 }
4363
4364 ipa = memdup_user(arg, sizeof(*ipa));
4365 if (IS_ERR(ipa)) {
4366 ret = PTR_ERR(ipa);
4367 ipa = NULL;
4368 goto out;
4369 }
4370
4371 size = min_t(u32, ipa->size, 4096);
4372 ipath = init_ipath(size, root, path);
4373 if (IS_ERR(ipath)) {
4374 ret = PTR_ERR(ipath);
4375 ipath = NULL;
4376 goto out;
4377 }
4378
4379 ret = paths_from_inode(ipa->inum, ipath);
4380 if (ret < 0)
4381 goto out;
4382
4383 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4384 rel_ptr = ipath->fspath->val[i] -
4385 (u64)(unsigned long)ipath->fspath->val;
4386 ipath->fspath->val[i] = rel_ptr;
4387 }
4388
4389 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4390 ipath->fspath, size);
4391 if (ret) {
4392 ret = -EFAULT;
4393 goto out;
4394 }
4395
4396out:
4397 btrfs_free_path(path);
4398 free_ipath(ipath);
4399 kfree(ipa);
4400
4401 return ret;
4402}
4403
4404static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4405{
4406 struct btrfs_data_container *inodes = ctx;
4407 const size_t c = 3 * sizeof(u64);
4408
4409 if (inodes->bytes_left >= c) {
4410 inodes->bytes_left -= c;
4411 inodes->val[inodes->elem_cnt] = inum;
4412 inodes->val[inodes->elem_cnt + 1] = offset;
4413 inodes->val[inodes->elem_cnt + 2] = root;
4414 inodes->elem_cnt += 3;
4415 } else {
4416 inodes->bytes_missing += c - inodes->bytes_left;
4417 inodes->bytes_left = 0;
4418 inodes->elem_missed += 3;
4419 }
4420
4421 return 0;
4422}
4423
4424static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4425 void __user *arg, int version)
4426{
4427 int ret = 0;
4428 int size;
4429 struct btrfs_ioctl_logical_ino_args *loi;
4430 struct btrfs_data_container *inodes = NULL;
4431 struct btrfs_path *path = NULL;
4432 bool ignore_offset;
4433
4434 if (!capable(CAP_SYS_ADMIN))
4435 return -EPERM;
4436
4437 loi = memdup_user(arg, sizeof(*loi));
4438 if (IS_ERR(loi))
4439 return PTR_ERR(loi);
4440
4441 if (version == 1) {
4442 ignore_offset = false;
4443 size = min_t(u32, loi->size, SZ_64K);
4444 } else {
4445 /* All reserved bits must be 0 for now */
4446 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4447 ret = -EINVAL;
4448 goto out_loi;
4449 }
4450 /* Only accept flags we have defined so far */
4451 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4452 ret = -EINVAL;
4453 goto out_loi;
4454 }
4455 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4456 size = min_t(u32, loi->size, SZ_16M);
4457 }
4458
4459 path = btrfs_alloc_path();
4460 if (!path) {
4461 ret = -ENOMEM;
4462 goto out;
4463 }
4464
4465 inodes = init_data_container(size);
4466 if (IS_ERR(inodes)) {
4467 ret = PTR_ERR(inodes);
4468 inodes = NULL;
4469 goto out;
4470 }
4471
4472 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4473 build_ino_list, inodes, ignore_offset);
4474 if (ret == -EINVAL)
4475 ret = -ENOENT;
4476 if (ret < 0)
4477 goto out;
4478
4479 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4480 size);
4481 if (ret)
4482 ret = -EFAULT;
4483
4484out:
4485 btrfs_free_path(path);
4486 kvfree(inodes);
4487out_loi:
4488 kfree(loi);
4489
4490 return ret;
4491}
4492
4493void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4494 struct btrfs_ioctl_balance_args *bargs)
4495{
4496 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4497
4498 bargs->flags = bctl->flags;
4499
4500 if (atomic_read(&fs_info->balance_running))
4501 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4502 if (atomic_read(&fs_info->balance_pause_req))
4503 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4504 if (atomic_read(&fs_info->balance_cancel_req))
4505 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4506
4507 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4508 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4509 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4510
4511 if (lock) {
4512 spin_lock(&fs_info->balance_lock);
4513 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4514 spin_unlock(&fs_info->balance_lock);
4515 } else {
4516 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4517 }
4518}
4519
4520static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4521{
4522 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4523 struct btrfs_fs_info *fs_info = root->fs_info;
4524 struct btrfs_ioctl_balance_args *bargs;
4525 struct btrfs_balance_control *bctl;
4526 bool need_unlock; /* for mut. excl. ops lock */
4527 int ret;
4528
4529 if (!capable(CAP_SYS_ADMIN))
4530 return -EPERM;
4531
4532 ret = mnt_want_write_file(file);
4533 if (ret)
4534 return ret;
4535
4536again:
4537 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4538 mutex_lock(&fs_info->volume_mutex);
4539 mutex_lock(&fs_info->balance_mutex);
4540 need_unlock = true;
4541 goto locked;
4542 }
4543
4544 /*
4545 * mut. excl. ops lock is locked. Three possibilities:
4546 * (1) some other op is running
4547 * (2) balance is running
4548 * (3) balance is paused -- special case (think resume)
4549 */
4550 mutex_lock(&fs_info->balance_mutex);
4551 if (fs_info->balance_ctl) {
4552 /* this is either (2) or (3) */
4553 if (!atomic_read(&fs_info->balance_running)) {
4554 mutex_unlock(&fs_info->balance_mutex);
4555 if (!mutex_trylock(&fs_info->volume_mutex))
4556 goto again;
4557 mutex_lock(&fs_info->balance_mutex);
4558
4559 if (fs_info->balance_ctl &&
4560 !atomic_read(&fs_info->balance_running)) {
4561 /* this is (3) */
4562 need_unlock = false;
4563 goto locked;
4564 }
4565
4566 mutex_unlock(&fs_info->balance_mutex);
4567 mutex_unlock(&fs_info->volume_mutex);
4568 goto again;
4569 } else {
4570 /* this is (2) */
4571 mutex_unlock(&fs_info->balance_mutex);
4572 ret = -EINPROGRESS;
4573 goto out;
4574 }
4575 } else {
4576 /* this is (1) */
4577 mutex_unlock(&fs_info->balance_mutex);
4578 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4579 goto out;
4580 }
4581
4582locked:
4583 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4584
4585 if (arg) {
4586 bargs = memdup_user(arg, sizeof(*bargs));
4587 if (IS_ERR(bargs)) {
4588 ret = PTR_ERR(bargs);
4589 goto out_unlock;
4590 }
4591
4592 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4593 if (!fs_info->balance_ctl) {
4594 ret = -ENOTCONN;
4595 goto out_bargs;
4596 }
4597
4598 bctl = fs_info->balance_ctl;
4599 spin_lock(&fs_info->balance_lock);
4600 bctl->flags |= BTRFS_BALANCE_RESUME;
4601 spin_unlock(&fs_info->balance_lock);
4602
4603 goto do_balance;
4604 }
4605 } else {
4606 bargs = NULL;
4607 }
4608
4609 if (fs_info->balance_ctl) {
4610 ret = -EINPROGRESS;
4611 goto out_bargs;
4612 }
4613
4614 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4615 if (!bctl) {
4616 ret = -ENOMEM;
4617 goto out_bargs;
4618 }
4619
4620 bctl->fs_info = fs_info;
4621 if (arg) {
4622 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4623 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4624 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4625
4626 bctl->flags = bargs->flags;
4627 } else {
4628 /* balance everything - no filters */
4629 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4630 }
4631
4632 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4633 ret = -EINVAL;
4634 goto out_bctl;
4635 }
4636
4637do_balance:
4638 /*
4639 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4640 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4641 * or, if restriper was paused all the way until unmount, in
4642 * free_fs_info. The flag is cleared in __cancel_balance.
4643 */
4644 need_unlock = false;
4645
4646 ret = btrfs_balance(bctl, bargs);
4647 bctl = NULL;
4648
4649 if (arg) {
4650 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4651 ret = -EFAULT;
4652 }
4653
4654out_bctl:
4655 kfree(bctl);
4656out_bargs:
4657 kfree(bargs);
4658out_unlock:
4659 mutex_unlock(&fs_info->balance_mutex);
4660 mutex_unlock(&fs_info->volume_mutex);
4661 if (need_unlock)
4662 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4663out:
4664 mnt_drop_write_file(file);
4665 return ret;
4666}
4667
4668static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4669{
4670 if (!capable(CAP_SYS_ADMIN))
4671 return -EPERM;
4672
4673 switch (cmd) {
4674 case BTRFS_BALANCE_CTL_PAUSE:
4675 return btrfs_pause_balance(fs_info);
4676 case BTRFS_BALANCE_CTL_CANCEL:
4677 return btrfs_cancel_balance(fs_info);
4678 }
4679
4680 return -EINVAL;
4681}
4682
4683static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4684 void __user *arg)
4685{
4686 struct btrfs_ioctl_balance_args *bargs;
4687 int ret = 0;
4688
4689 if (!capable(CAP_SYS_ADMIN))
4690 return -EPERM;
4691
4692 mutex_lock(&fs_info->balance_mutex);
4693 if (!fs_info->balance_ctl) {
4694 ret = -ENOTCONN;
4695 goto out;
4696 }
4697
4698 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4699 if (!bargs) {
4700 ret = -ENOMEM;
4701 goto out;
4702 }
4703
4704 update_ioctl_balance_args(fs_info, 1, bargs);
4705
4706 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4707 ret = -EFAULT;
4708
4709 kfree(bargs);
4710out:
4711 mutex_unlock(&fs_info->balance_mutex);
4712 return ret;
4713}
4714
4715static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4716{
4717 struct inode *inode = file_inode(file);
4718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4719 struct btrfs_ioctl_quota_ctl_args *sa;
4720 struct btrfs_trans_handle *trans = NULL;
4721 int ret;
4722 int err;
4723
4724 if (!capable(CAP_SYS_ADMIN))
4725 return -EPERM;
4726
4727 ret = mnt_want_write_file(file);
4728 if (ret)
4729 return ret;
4730
4731 sa = memdup_user(arg, sizeof(*sa));
4732 if (IS_ERR(sa)) {
4733 ret = PTR_ERR(sa);
4734 goto drop_write;
4735 }
4736
4737 down_write(&fs_info->subvol_sem);
4738 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4739 if (IS_ERR(trans)) {
4740 ret = PTR_ERR(trans);
4741 goto out;
4742 }
4743
4744 switch (sa->cmd) {
4745 case BTRFS_QUOTA_CTL_ENABLE:
4746 ret = btrfs_quota_enable(trans, fs_info);
4747 break;
4748 case BTRFS_QUOTA_CTL_DISABLE:
4749 ret = btrfs_quota_disable(trans, fs_info);
4750 break;
4751 default:
4752 ret = -EINVAL;
4753 break;
4754 }
4755
4756 err = btrfs_commit_transaction(trans);
4757 if (err && !ret)
4758 ret = err;
4759out:
4760 kfree(sa);
4761 up_write(&fs_info->subvol_sem);
4762drop_write:
4763 mnt_drop_write_file(file);
4764 return ret;
4765}
4766
4767static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4768{
4769 struct inode *inode = file_inode(file);
4770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4771 struct btrfs_root *root = BTRFS_I(inode)->root;
4772 struct btrfs_ioctl_qgroup_assign_args *sa;
4773 struct btrfs_trans_handle *trans;
4774 int ret;
4775 int err;
4776
4777 if (!capable(CAP_SYS_ADMIN))
4778 return -EPERM;
4779
4780 ret = mnt_want_write_file(file);
4781 if (ret)
4782 return ret;
4783
4784 sa = memdup_user(arg, sizeof(*sa));
4785 if (IS_ERR(sa)) {
4786 ret = PTR_ERR(sa);
4787 goto drop_write;
4788 }
4789
4790 trans = btrfs_join_transaction(root);
4791 if (IS_ERR(trans)) {
4792 ret = PTR_ERR(trans);
4793 goto out;
4794 }
4795
4796 if (sa->assign) {
4797 ret = btrfs_add_qgroup_relation(trans, fs_info,
4798 sa->src, sa->dst);
4799 } else {
4800 ret = btrfs_del_qgroup_relation(trans, fs_info,
4801 sa->src, sa->dst);
4802 }
4803
4804 /* update qgroup status and info */
4805 err = btrfs_run_qgroups(trans, fs_info);
4806 if (err < 0)
4807 btrfs_handle_fs_error(fs_info, err,
4808 "failed to update qgroup status and info");
4809 err = btrfs_end_transaction(trans);
4810 if (err && !ret)
4811 ret = err;
4812
4813out:
4814 kfree(sa);
4815drop_write:
4816 mnt_drop_write_file(file);
4817 return ret;
4818}
4819
4820static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4821{
4822 struct inode *inode = file_inode(file);
4823 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4824 struct btrfs_root *root = BTRFS_I(inode)->root;
4825 struct btrfs_ioctl_qgroup_create_args *sa;
4826 struct btrfs_trans_handle *trans;
4827 int ret;
4828 int err;
4829
4830 if (!capable(CAP_SYS_ADMIN))
4831 return -EPERM;
4832
4833 ret = mnt_want_write_file(file);
4834 if (ret)
4835 return ret;
4836
4837 sa = memdup_user(arg, sizeof(*sa));
4838 if (IS_ERR(sa)) {
4839 ret = PTR_ERR(sa);
4840 goto drop_write;
4841 }
4842
4843 if (!sa->qgroupid) {
4844 ret = -EINVAL;
4845 goto out;
4846 }
4847
4848 trans = btrfs_join_transaction(root);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4851 goto out;
4852 }
4853
4854 if (sa->create) {
4855 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4856 } else {
4857 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4858 }
4859
4860 err = btrfs_end_transaction(trans);
4861 if (err && !ret)
4862 ret = err;
4863
4864out:
4865 kfree(sa);
4866drop_write:
4867 mnt_drop_write_file(file);
4868 return ret;
4869}
4870
4871static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4872{
4873 struct inode *inode = file_inode(file);
4874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4875 struct btrfs_root *root = BTRFS_I(inode)->root;
4876 struct btrfs_ioctl_qgroup_limit_args *sa;
4877 struct btrfs_trans_handle *trans;
4878 int ret;
4879 int err;
4880 u64 qgroupid;
4881
4882 if (!capable(CAP_SYS_ADMIN))
4883 return -EPERM;
4884
4885 ret = mnt_want_write_file(file);
4886 if (ret)
4887 return ret;
4888
4889 sa = memdup_user(arg, sizeof(*sa));
4890 if (IS_ERR(sa)) {
4891 ret = PTR_ERR(sa);
4892 goto drop_write;
4893 }
4894
4895 trans = btrfs_join_transaction(root);
4896 if (IS_ERR(trans)) {
4897 ret = PTR_ERR(trans);
4898 goto out;
4899 }
4900
4901 qgroupid = sa->qgroupid;
4902 if (!qgroupid) {
4903 /* take the current subvol as qgroup */
4904 qgroupid = root->root_key.objectid;
4905 }
4906
4907 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4908
4909 err = btrfs_end_transaction(trans);
4910 if (err && !ret)
4911 ret = err;
4912
4913out:
4914 kfree(sa);
4915drop_write:
4916 mnt_drop_write_file(file);
4917 return ret;
4918}
4919
4920static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4921{
4922 struct inode *inode = file_inode(file);
4923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4924 struct btrfs_ioctl_quota_rescan_args *qsa;
4925 int ret;
4926
4927 if (!capable(CAP_SYS_ADMIN))
4928 return -EPERM;
4929
4930 ret = mnt_want_write_file(file);
4931 if (ret)
4932 return ret;
4933
4934 qsa = memdup_user(arg, sizeof(*qsa));
4935 if (IS_ERR(qsa)) {
4936 ret = PTR_ERR(qsa);
4937 goto drop_write;
4938 }
4939
4940 if (qsa->flags) {
4941 ret = -EINVAL;
4942 goto out;
4943 }
4944
4945 ret = btrfs_qgroup_rescan(fs_info);
4946
4947out:
4948 kfree(qsa);
4949drop_write:
4950 mnt_drop_write_file(file);
4951 return ret;
4952}
4953
4954static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4955{
4956 struct inode *inode = file_inode(file);
4957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4958 struct btrfs_ioctl_quota_rescan_args *qsa;
4959 int ret = 0;
4960
4961 if (!capable(CAP_SYS_ADMIN))
4962 return -EPERM;
4963
4964 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4965 if (!qsa)
4966 return -ENOMEM;
4967
4968 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4969 qsa->flags = 1;
4970 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4971 }
4972
4973 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4974 ret = -EFAULT;
4975
4976 kfree(qsa);
4977 return ret;
4978}
4979
4980static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4981{
4982 struct inode *inode = file_inode(file);
4983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4984
4985 if (!capable(CAP_SYS_ADMIN))
4986 return -EPERM;
4987
4988 return btrfs_qgroup_wait_for_completion(fs_info, true);
4989}
4990
4991static long _btrfs_ioctl_set_received_subvol(struct file *file,
4992 struct btrfs_ioctl_received_subvol_args *sa)
4993{
4994 struct inode *inode = file_inode(file);
4995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4996 struct btrfs_root *root = BTRFS_I(inode)->root;
4997 struct btrfs_root_item *root_item = &root->root_item;
4998 struct btrfs_trans_handle *trans;
4999 struct timespec ct = current_time(inode);
5000 int ret = 0;
5001 int received_uuid_changed;
5002
5003 if (!inode_owner_or_capable(inode))
5004 return -EPERM;
5005
5006 ret = mnt_want_write_file(file);
5007 if (ret < 0)
5008 return ret;
5009
5010 down_write(&fs_info->subvol_sem);
5011
5012 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5013 ret = -EINVAL;
5014 goto out;
5015 }
5016
5017 if (btrfs_root_readonly(root)) {
5018 ret = -EROFS;
5019 goto out;
5020 }
5021
5022 /*
5023 * 1 - root item
5024 * 2 - uuid items (received uuid + subvol uuid)
5025 */
5026 trans = btrfs_start_transaction(root, 3);
5027 if (IS_ERR(trans)) {
5028 ret = PTR_ERR(trans);
5029 trans = NULL;
5030 goto out;
5031 }
5032
5033 sa->rtransid = trans->transid;
5034 sa->rtime.sec = ct.tv_sec;
5035 sa->rtime.nsec = ct.tv_nsec;
5036
5037 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5038 BTRFS_UUID_SIZE);
5039 if (received_uuid_changed &&
5040 !btrfs_is_empty_uuid(root_item->received_uuid)) {
5041 ret = btrfs_uuid_tree_rem(trans, fs_info,
5042 root_item->received_uuid,
5043 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5044 root->root_key.objectid);
5045 if (ret && ret != -ENOENT) {
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5048 goto out;
5049 }
5050 }
5051 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5052 btrfs_set_root_stransid(root_item, sa->stransid);
5053 btrfs_set_root_rtransid(root_item, sa->rtransid);
5054 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5055 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5056 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5057 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5058
5059 ret = btrfs_update_root(trans, fs_info->tree_root,
5060 &root->root_key, &root->root_item);
5061 if (ret < 0) {
5062 btrfs_end_transaction(trans);
5063 goto out;
5064 }
5065 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5066 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5067 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5068 root->root_key.objectid);
5069 if (ret < 0 && ret != -EEXIST) {
5070 btrfs_abort_transaction(trans, ret);
5071 btrfs_end_transaction(trans);
5072 goto out;
5073 }
5074 }
5075 ret = btrfs_commit_transaction(trans);
5076out:
5077 up_write(&fs_info->subvol_sem);
5078 mnt_drop_write_file(file);
5079 return ret;
5080}
5081
5082#ifdef CONFIG_64BIT
5083static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5084 void __user *arg)
5085{
5086 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5087 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5088 int ret = 0;
5089
5090 args32 = memdup_user(arg, sizeof(*args32));
5091 if (IS_ERR(args32))
5092 return PTR_ERR(args32);
5093
5094 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5095 if (!args64) {
5096 ret = -ENOMEM;
5097 goto out;
5098 }
5099
5100 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5101 args64->stransid = args32->stransid;
5102 args64->rtransid = args32->rtransid;
5103 args64->stime.sec = args32->stime.sec;
5104 args64->stime.nsec = args32->stime.nsec;
5105 args64->rtime.sec = args32->rtime.sec;
5106 args64->rtime.nsec = args32->rtime.nsec;
5107 args64->flags = args32->flags;
5108
5109 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5110 if (ret)
5111 goto out;
5112
5113 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5114 args32->stransid = args64->stransid;
5115 args32->rtransid = args64->rtransid;
5116 args32->stime.sec = args64->stime.sec;
5117 args32->stime.nsec = args64->stime.nsec;
5118 args32->rtime.sec = args64->rtime.sec;
5119 args32->rtime.nsec = args64->rtime.nsec;
5120 args32->flags = args64->flags;
5121
5122 ret = copy_to_user(arg, args32, sizeof(*args32));
5123 if (ret)
5124 ret = -EFAULT;
5125
5126out:
5127 kfree(args32);
5128 kfree(args64);
5129 return ret;
5130}
5131#endif
5132
5133static long btrfs_ioctl_set_received_subvol(struct file *file,
5134 void __user *arg)
5135{
5136 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5137 int ret = 0;
5138
5139 sa = memdup_user(arg, sizeof(*sa));
5140 if (IS_ERR(sa))
5141 return PTR_ERR(sa);
5142
5143 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5144
5145 if (ret)
5146 goto out;
5147
5148 ret = copy_to_user(arg, sa, sizeof(*sa));
5149 if (ret)
5150 ret = -EFAULT;
5151
5152out:
5153 kfree(sa);
5154 return ret;
5155}
5156
5157static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5158{
5159 struct inode *inode = file_inode(file);
5160 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5161 size_t len;
5162 int ret;
5163 char label[BTRFS_LABEL_SIZE];
5164
5165 spin_lock(&fs_info->super_lock);
5166 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5167 spin_unlock(&fs_info->super_lock);
5168
5169 len = strnlen(label, BTRFS_LABEL_SIZE);
5170
5171 if (len == BTRFS_LABEL_SIZE) {
5172 btrfs_warn(fs_info,
5173 "label is too long, return the first %zu bytes",
5174 --len);
5175 }
5176
5177 ret = copy_to_user(arg, label, len);
5178
5179 return ret ? -EFAULT : 0;
5180}
5181
5182static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5183{
5184 struct inode *inode = file_inode(file);
5185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5186 struct btrfs_root *root = BTRFS_I(inode)->root;
5187 struct btrfs_super_block *super_block = fs_info->super_copy;
5188 struct btrfs_trans_handle *trans;
5189 char label[BTRFS_LABEL_SIZE];
5190 int ret;
5191
5192 if (!capable(CAP_SYS_ADMIN))
5193 return -EPERM;
5194
5195 if (copy_from_user(label, arg, sizeof(label)))
5196 return -EFAULT;
5197
5198 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5199 btrfs_err(fs_info,
5200 "unable to set label with more than %d bytes",
5201 BTRFS_LABEL_SIZE - 1);
5202 return -EINVAL;
5203 }
5204
5205 ret = mnt_want_write_file(file);
5206 if (ret)
5207 return ret;
5208
5209 trans = btrfs_start_transaction(root, 0);
5210 if (IS_ERR(trans)) {
5211 ret = PTR_ERR(trans);
5212 goto out_unlock;
5213 }
5214
5215 spin_lock(&fs_info->super_lock);
5216 strcpy(super_block->label, label);
5217 spin_unlock(&fs_info->super_lock);
5218 ret = btrfs_commit_transaction(trans);
5219
5220out_unlock:
5221 mnt_drop_write_file(file);
5222 return ret;
5223}
5224
5225#define INIT_FEATURE_FLAGS(suffix) \
5226 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5227 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5228 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5229
5230int btrfs_ioctl_get_supported_features(void __user *arg)
5231{
5232 static const struct btrfs_ioctl_feature_flags features[3] = {
5233 INIT_FEATURE_FLAGS(SUPP),
5234 INIT_FEATURE_FLAGS(SAFE_SET),
5235 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5236 };
5237
5238 if (copy_to_user(arg, &features, sizeof(features)))
5239 return -EFAULT;
5240
5241 return 0;
5242}
5243
5244static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5245{
5246 struct inode *inode = file_inode(file);
5247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5248 struct btrfs_super_block *super_block = fs_info->super_copy;
5249 struct btrfs_ioctl_feature_flags features;
5250
5251 features.compat_flags = btrfs_super_compat_flags(super_block);
5252 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5253 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5254
5255 if (copy_to_user(arg, &features, sizeof(features)))
5256 return -EFAULT;
5257
5258 return 0;
5259}
5260
5261static int check_feature_bits(struct btrfs_fs_info *fs_info,
5262 enum btrfs_feature_set set,
5263 u64 change_mask, u64 flags, u64 supported_flags,
5264 u64 safe_set, u64 safe_clear)
5265{
5266 const char *type = btrfs_feature_set_names[set];
5267 char *names;
5268 u64 disallowed, unsupported;
5269 u64 set_mask = flags & change_mask;
5270 u64 clear_mask = ~flags & change_mask;
5271
5272 unsupported = set_mask & ~supported_flags;
5273 if (unsupported) {
5274 names = btrfs_printable_features(set, unsupported);
5275 if (names) {
5276 btrfs_warn(fs_info,
5277 "this kernel does not support the %s feature bit%s",
5278 names, strchr(names, ',') ? "s" : "");
5279 kfree(names);
5280 } else
5281 btrfs_warn(fs_info,
5282 "this kernel does not support %s bits 0x%llx",
5283 type, unsupported);
5284 return -EOPNOTSUPP;
5285 }
5286
5287 disallowed = set_mask & ~safe_set;
5288 if (disallowed) {
5289 names = btrfs_printable_features(set, disallowed);
5290 if (names) {
5291 btrfs_warn(fs_info,
5292 "can't set the %s feature bit%s while mounted",
5293 names, strchr(names, ',') ? "s" : "");
5294 kfree(names);
5295 } else
5296 btrfs_warn(fs_info,
5297 "can't set %s bits 0x%llx while mounted",
5298 type, disallowed);
5299 return -EPERM;
5300 }
5301
5302 disallowed = clear_mask & ~safe_clear;
5303 if (disallowed) {
5304 names = btrfs_printable_features(set, disallowed);
5305 if (names) {
5306 btrfs_warn(fs_info,
5307 "can't clear the %s feature bit%s while mounted",
5308 names, strchr(names, ',') ? "s" : "");
5309 kfree(names);
5310 } else
5311 btrfs_warn(fs_info,
5312 "can't clear %s bits 0x%llx while mounted",
5313 type, disallowed);
5314 return -EPERM;
5315 }
5316
5317 return 0;
5318}
5319
5320#define check_feature(fs_info, change_mask, flags, mask_base) \
5321check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5322 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5323 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5324 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5325
5326static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5327{
5328 struct inode *inode = file_inode(file);
5329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5330 struct btrfs_root *root = BTRFS_I(inode)->root;
5331 struct btrfs_super_block *super_block = fs_info->super_copy;
5332 struct btrfs_ioctl_feature_flags flags[2];
5333 struct btrfs_trans_handle *trans;
5334 u64 newflags;
5335 int ret;
5336
5337 if (!capable(CAP_SYS_ADMIN))
5338 return -EPERM;
5339
5340 if (copy_from_user(flags, arg, sizeof(flags)))
5341 return -EFAULT;
5342
5343 /* Nothing to do */
5344 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5345 !flags[0].incompat_flags)
5346 return 0;
5347
5348 ret = check_feature(fs_info, flags[0].compat_flags,
5349 flags[1].compat_flags, COMPAT);
5350 if (ret)
5351 return ret;
5352
5353 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5354 flags[1].compat_ro_flags, COMPAT_RO);
5355 if (ret)
5356 return ret;
5357
5358 ret = check_feature(fs_info, flags[0].incompat_flags,
5359 flags[1].incompat_flags, INCOMPAT);
5360 if (ret)
5361 return ret;
5362
5363 ret = mnt_want_write_file(file);
5364 if (ret)
5365 return ret;
5366
5367 trans = btrfs_start_transaction(root, 0);
5368 if (IS_ERR(trans)) {
5369 ret = PTR_ERR(trans);
5370 goto out_drop_write;
5371 }
5372
5373 spin_lock(&fs_info->super_lock);
5374 newflags = btrfs_super_compat_flags(super_block);
5375 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5376 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5377 btrfs_set_super_compat_flags(super_block, newflags);
5378
5379 newflags = btrfs_super_compat_ro_flags(super_block);
5380 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5381 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5382 btrfs_set_super_compat_ro_flags(super_block, newflags);
5383
5384 newflags = btrfs_super_incompat_flags(super_block);
5385 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5386 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5387 btrfs_set_super_incompat_flags(super_block, newflags);
5388 spin_unlock(&fs_info->super_lock);
5389
5390 ret = btrfs_commit_transaction(trans);
5391out_drop_write:
5392 mnt_drop_write_file(file);
5393
5394 return ret;
5395}
5396
5397static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5398{
5399 struct btrfs_ioctl_send_args *arg;
5400 int ret;
5401
5402 if (compat) {
5403#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5404 struct btrfs_ioctl_send_args_32 args32;
5405
5406 ret = copy_from_user(&args32, argp, sizeof(args32));
5407 if (ret)
5408 return -EFAULT;
5409 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5410 if (!arg)
5411 return -ENOMEM;
5412 arg->send_fd = args32.send_fd;
5413 arg->clone_sources_count = args32.clone_sources_count;
5414 arg->clone_sources = compat_ptr(args32.clone_sources);
5415 arg->parent_root = args32.parent_root;
5416 arg->flags = args32.flags;
5417 memcpy(arg->reserved, args32.reserved,
5418 sizeof(args32.reserved));
5419#else
5420 return -ENOTTY;
5421#endif
5422 } else {
5423 arg = memdup_user(argp, sizeof(*arg));
5424 if (IS_ERR(arg))
5425 return PTR_ERR(arg);
5426 }
5427 ret = btrfs_ioctl_send(file, arg);
5428 kfree(arg);
5429 return ret;
5430}
5431
5432long btrfs_ioctl(struct file *file, unsigned int
5433 cmd, unsigned long arg)
5434{
5435 struct inode *inode = file_inode(file);
5436 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5437 struct btrfs_root *root = BTRFS_I(inode)->root;
5438 void __user *argp = (void __user *)arg;
5439
5440 switch (cmd) {
5441 case FS_IOC_GETFLAGS:
5442 return btrfs_ioctl_getflags(file, argp);
5443 case FS_IOC_SETFLAGS:
5444 return btrfs_ioctl_setflags(file, argp);
5445 case FS_IOC_GETVERSION:
5446 return btrfs_ioctl_getversion(file, argp);
5447 case FITRIM:
5448 return btrfs_ioctl_fitrim(file, argp);
5449 case BTRFS_IOC_SNAP_CREATE:
5450 return btrfs_ioctl_snap_create(file, argp, 0);
5451 case BTRFS_IOC_SNAP_CREATE_V2:
5452 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5453 case BTRFS_IOC_SUBVOL_CREATE:
5454 return btrfs_ioctl_snap_create(file, argp, 1);
5455 case BTRFS_IOC_SUBVOL_CREATE_V2:
5456 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5457 case BTRFS_IOC_SNAP_DESTROY:
5458 return btrfs_ioctl_snap_destroy(file, argp);
5459 case BTRFS_IOC_SUBVOL_GETFLAGS:
5460 return btrfs_ioctl_subvol_getflags(file, argp);
5461 case BTRFS_IOC_SUBVOL_SETFLAGS:
5462 return btrfs_ioctl_subvol_setflags(file, argp);
5463 case BTRFS_IOC_DEFAULT_SUBVOL:
5464 return btrfs_ioctl_default_subvol(file, argp);
5465 case BTRFS_IOC_DEFRAG:
5466 return btrfs_ioctl_defrag(file, NULL);
5467 case BTRFS_IOC_DEFRAG_RANGE:
5468 return btrfs_ioctl_defrag(file, argp);
5469 case BTRFS_IOC_RESIZE:
5470 return btrfs_ioctl_resize(file, argp);
5471 case BTRFS_IOC_ADD_DEV:
5472 return btrfs_ioctl_add_dev(fs_info, argp);
5473 case BTRFS_IOC_RM_DEV:
5474 return btrfs_ioctl_rm_dev(file, argp);
5475 case BTRFS_IOC_RM_DEV_V2:
5476 return btrfs_ioctl_rm_dev_v2(file, argp);
5477 case BTRFS_IOC_FS_INFO:
5478 return btrfs_ioctl_fs_info(fs_info, argp);
5479 case BTRFS_IOC_DEV_INFO:
5480 return btrfs_ioctl_dev_info(fs_info, argp);
5481 case BTRFS_IOC_BALANCE:
5482 return btrfs_ioctl_balance(file, NULL);
5483 case BTRFS_IOC_TREE_SEARCH:
5484 return btrfs_ioctl_tree_search(file, argp);
5485 case BTRFS_IOC_TREE_SEARCH_V2:
5486 return btrfs_ioctl_tree_search_v2(file, argp);
5487 case BTRFS_IOC_INO_LOOKUP:
5488 return btrfs_ioctl_ino_lookup(file, argp);
5489 case BTRFS_IOC_INO_PATHS:
5490 return btrfs_ioctl_ino_to_path(root, argp);
5491 case BTRFS_IOC_LOGICAL_INO:
5492 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5493 case BTRFS_IOC_LOGICAL_INO_V2:
5494 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5495 case BTRFS_IOC_SPACE_INFO:
5496 return btrfs_ioctl_space_info(fs_info, argp);
5497 case BTRFS_IOC_SYNC: {
5498 int ret;
5499
5500 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5501 if (ret)
5502 return ret;
5503 ret = btrfs_sync_fs(inode->i_sb, 1);
5504 /*
5505 * The transaction thread may want to do more work,
5506 * namely it pokes the cleaner kthread that will start
5507 * processing uncleaned subvols.
5508 */
5509 wake_up_process(fs_info->transaction_kthread);
5510 return ret;
5511 }
5512 case BTRFS_IOC_START_SYNC:
5513 return btrfs_ioctl_start_sync(root, argp);
5514 case BTRFS_IOC_WAIT_SYNC:
5515 return btrfs_ioctl_wait_sync(fs_info, argp);
5516 case BTRFS_IOC_SCRUB:
5517 return btrfs_ioctl_scrub(file, argp);
5518 case BTRFS_IOC_SCRUB_CANCEL:
5519 return btrfs_ioctl_scrub_cancel(fs_info);
5520 case BTRFS_IOC_SCRUB_PROGRESS:
5521 return btrfs_ioctl_scrub_progress(fs_info, argp);
5522 case BTRFS_IOC_BALANCE_V2:
5523 return btrfs_ioctl_balance(file, argp);
5524 case BTRFS_IOC_BALANCE_CTL:
5525 return btrfs_ioctl_balance_ctl(fs_info, arg);
5526 case BTRFS_IOC_BALANCE_PROGRESS:
5527 return btrfs_ioctl_balance_progress(fs_info, argp);
5528 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5529 return btrfs_ioctl_set_received_subvol(file, argp);
5530#ifdef CONFIG_64BIT
5531 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5532 return btrfs_ioctl_set_received_subvol_32(file, argp);
5533#endif
5534 case BTRFS_IOC_SEND:
5535 return _btrfs_ioctl_send(file, argp, false);
5536#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5537 case BTRFS_IOC_SEND_32:
5538 return _btrfs_ioctl_send(file, argp, true);
5539#endif
5540 case BTRFS_IOC_GET_DEV_STATS:
5541 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5542 case BTRFS_IOC_QUOTA_CTL:
5543 return btrfs_ioctl_quota_ctl(file, argp);
5544 case BTRFS_IOC_QGROUP_ASSIGN:
5545 return btrfs_ioctl_qgroup_assign(file, argp);
5546 case BTRFS_IOC_QGROUP_CREATE:
5547 return btrfs_ioctl_qgroup_create(file, argp);
5548 case BTRFS_IOC_QGROUP_LIMIT:
5549 return btrfs_ioctl_qgroup_limit(file, argp);
5550 case BTRFS_IOC_QUOTA_RESCAN:
5551 return btrfs_ioctl_quota_rescan(file, argp);
5552 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5553 return btrfs_ioctl_quota_rescan_status(file, argp);
5554 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5555 return btrfs_ioctl_quota_rescan_wait(file, argp);
5556 case BTRFS_IOC_DEV_REPLACE:
5557 return btrfs_ioctl_dev_replace(fs_info, argp);
5558 case BTRFS_IOC_GET_FSLABEL:
5559 return btrfs_ioctl_get_fslabel(file, argp);
5560 case BTRFS_IOC_SET_FSLABEL:
5561 return btrfs_ioctl_set_fslabel(file, argp);
5562 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5563 return btrfs_ioctl_get_supported_features(argp);
5564 case BTRFS_IOC_GET_FEATURES:
5565 return btrfs_ioctl_get_features(file, argp);
5566 case BTRFS_IOC_SET_FEATURES:
5567 return btrfs_ioctl_set_features(file, argp);
5568 }
5569
5570 return -ENOTTY;
5571}
5572
5573#ifdef CONFIG_COMPAT
5574long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5575{
5576 /*
5577 * These all access 32-bit values anyway so no further
5578 * handling is necessary.
5579 */
5580 switch (cmd) {
5581 case FS_IOC32_GETFLAGS:
5582 cmd = FS_IOC_GETFLAGS;
5583 break;
5584 case FS_IOC32_SETFLAGS:
5585 cmd = FS_IOC_SETFLAGS;
5586 break;
5587 case FS_IOC32_GETVERSION:
5588 cmd = FS_IOC_GETVERSION;
5589 break;
5590 }
5591
5592 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5593}
5594#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/statfs.h>
37#include <linux/compat.h>
38#include <linux/bit_spinlock.h>
39#include <linux/security.h>
40#include <linux/xattr.h>
41#include <linux/vmalloc.h>
42#include <linux/slab.h>
43#include <linux/blkdev.h>
44#include <linux/uuid.h>
45#include <linux/btrfs.h>
46#include <linux/uaccess.h>
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
51#include "print-tree.h"
52#include "volumes.h"
53#include "locking.h"
54#include "inode-map.h"
55#include "backref.h"
56#include "rcu-string.h"
57#include "send.h"
58#include "dev-replace.h"
59#include "props.h"
60#include "sysfs.h"
61
62#ifdef CONFIG_64BIT
63/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71} __attribute__ ((__packed__));
72
73struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81} __attribute__ ((__packed__));
82
83#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85#endif
86
87
88static int btrfs_clone(struct inode *src, struct inode *inode,
89 u64 off, u64 olen, u64 olen_aligned, u64 destoff);
90
91/* Mask out flags that are inappropriate for the given type of inode. */
92static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
93{
94 if (S_ISDIR(mode))
95 return flags;
96 else if (S_ISREG(mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100}
101
102/*
103 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
104 */
105static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
106{
107 unsigned int iflags = 0;
108
109 if (flags & BTRFS_INODE_SYNC)
110 iflags |= FS_SYNC_FL;
111 if (flags & BTRFS_INODE_IMMUTABLE)
112 iflags |= FS_IMMUTABLE_FL;
113 if (flags & BTRFS_INODE_APPEND)
114 iflags |= FS_APPEND_FL;
115 if (flags & BTRFS_INODE_NODUMP)
116 iflags |= FS_NODUMP_FL;
117 if (flags & BTRFS_INODE_NOATIME)
118 iflags |= FS_NOATIME_FL;
119 if (flags & BTRFS_INODE_DIRSYNC)
120 iflags |= FS_DIRSYNC_FL;
121 if (flags & BTRFS_INODE_NODATACOW)
122 iflags |= FS_NOCOW_FL;
123
124 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
125 iflags |= FS_COMPR_FL;
126 else if (flags & BTRFS_INODE_NOCOMPRESS)
127 iflags |= FS_NOCOMP_FL;
128
129 return iflags;
130}
131
132/*
133 * Update inode->i_flags based on the btrfs internal flags.
134 */
135void btrfs_update_iflags(struct inode *inode)
136{
137 struct btrfs_inode *ip = BTRFS_I(inode);
138
139 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
140
141 if (ip->flags & BTRFS_INODE_SYNC)
142 inode->i_flags |= S_SYNC;
143 if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 inode->i_flags |= S_IMMUTABLE;
145 if (ip->flags & BTRFS_INODE_APPEND)
146 inode->i_flags |= S_APPEND;
147 if (ip->flags & BTRFS_INODE_NOATIME)
148 inode->i_flags |= S_NOATIME;
149 if (ip->flags & BTRFS_INODE_DIRSYNC)
150 inode->i_flags |= S_DIRSYNC;
151}
152
153/*
154 * Inherit flags from the parent inode.
155 *
156 * Currently only the compression flags and the cow flags are inherited.
157 */
158void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
159{
160 unsigned int flags;
161
162 if (!dir)
163 return;
164
165 flags = BTRFS_I(dir)->flags;
166
167 if (flags & BTRFS_INODE_NOCOMPRESS) {
168 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
169 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
170 } else if (flags & BTRFS_INODE_COMPRESS) {
171 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
172 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
173 }
174
175 if (flags & BTRFS_INODE_NODATACOW) {
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
177 if (S_ISREG(inode->i_mode))
178 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
179 }
180
181 btrfs_update_iflags(inode);
182}
183
184static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
185{
186 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
187 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
188
189 if (copy_to_user(arg, &flags, sizeof(flags)))
190 return -EFAULT;
191 return 0;
192}
193
194static int check_flags(unsigned int flags)
195{
196 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
197 FS_NOATIME_FL | FS_NODUMP_FL | \
198 FS_SYNC_FL | FS_DIRSYNC_FL | \
199 FS_NOCOMP_FL | FS_COMPR_FL |
200 FS_NOCOW_FL))
201 return -EOPNOTSUPP;
202
203 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
204 return -EINVAL;
205
206 return 0;
207}
208
209static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
210{
211 struct inode *inode = file_inode(file);
212 struct btrfs_inode *ip = BTRFS_I(inode);
213 struct btrfs_root *root = ip->root;
214 struct btrfs_trans_handle *trans;
215 unsigned int flags, oldflags;
216 int ret;
217 u64 ip_oldflags;
218 unsigned int i_oldflags;
219 umode_t mode;
220
221 if (!inode_owner_or_capable(inode))
222 return -EPERM;
223
224 if (btrfs_root_readonly(root))
225 return -EROFS;
226
227 if (copy_from_user(&flags, arg, sizeof(flags)))
228 return -EFAULT;
229
230 ret = check_flags(flags);
231 if (ret)
232 return ret;
233
234 ret = mnt_want_write_file(file);
235 if (ret)
236 return ret;
237
238 mutex_lock(&inode->i_mutex);
239
240 ip_oldflags = ip->flags;
241 i_oldflags = inode->i_flags;
242 mode = inode->i_mode;
243
244 flags = btrfs_mask_flags(inode->i_mode, flags);
245 oldflags = btrfs_flags_to_ioctl(ip->flags);
246 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
247 if (!capable(CAP_LINUX_IMMUTABLE)) {
248 ret = -EPERM;
249 goto out_unlock;
250 }
251 }
252
253 if (flags & FS_SYNC_FL)
254 ip->flags |= BTRFS_INODE_SYNC;
255 else
256 ip->flags &= ~BTRFS_INODE_SYNC;
257 if (flags & FS_IMMUTABLE_FL)
258 ip->flags |= BTRFS_INODE_IMMUTABLE;
259 else
260 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
261 if (flags & FS_APPEND_FL)
262 ip->flags |= BTRFS_INODE_APPEND;
263 else
264 ip->flags &= ~BTRFS_INODE_APPEND;
265 if (flags & FS_NODUMP_FL)
266 ip->flags |= BTRFS_INODE_NODUMP;
267 else
268 ip->flags &= ~BTRFS_INODE_NODUMP;
269 if (flags & FS_NOATIME_FL)
270 ip->flags |= BTRFS_INODE_NOATIME;
271 else
272 ip->flags &= ~BTRFS_INODE_NOATIME;
273 if (flags & FS_DIRSYNC_FL)
274 ip->flags |= BTRFS_INODE_DIRSYNC;
275 else
276 ip->flags &= ~BTRFS_INODE_DIRSYNC;
277 if (flags & FS_NOCOW_FL) {
278 if (S_ISREG(mode)) {
279 /*
280 * It's safe to turn csums off here, no extents exist.
281 * Otherwise we want the flag to reflect the real COW
282 * status of the file and will not set it.
283 */
284 if (inode->i_size == 0)
285 ip->flags |= BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM;
287 } else {
288 ip->flags |= BTRFS_INODE_NODATACOW;
289 }
290 } else {
291 /*
292 * Revert back under same assuptions as above
293 */
294 if (S_ISREG(mode)) {
295 if (inode->i_size == 0)
296 ip->flags &= ~(BTRFS_INODE_NODATACOW
297 | BTRFS_INODE_NODATASUM);
298 } else {
299 ip->flags &= ~BTRFS_INODE_NODATACOW;
300 }
301 }
302
303 /*
304 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
305 * flag may be changed automatically if compression code won't make
306 * things smaller.
307 */
308 if (flags & FS_NOCOMP_FL) {
309 ip->flags &= ~BTRFS_INODE_COMPRESS;
310 ip->flags |= BTRFS_INODE_NOCOMPRESS;
311
312 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
313 if (ret && ret != -ENODATA)
314 goto out_drop;
315 } else if (flags & FS_COMPR_FL) {
316 const char *comp;
317
318 ip->flags |= BTRFS_INODE_COMPRESS;
319 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
320
321 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
322 comp = "lzo";
323 else
324 comp = "zlib";
325 ret = btrfs_set_prop(inode, "btrfs.compression",
326 comp, strlen(comp), 0);
327 if (ret)
328 goto out_drop;
329
330 } else {
331 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
332 }
333
334 trans = btrfs_start_transaction(root, 1);
335 if (IS_ERR(trans)) {
336 ret = PTR_ERR(trans);
337 goto out_drop;
338 }
339
340 btrfs_update_iflags(inode);
341 inode_inc_iversion(inode);
342 inode->i_ctime = CURRENT_TIME;
343 ret = btrfs_update_inode(trans, root, inode);
344
345 btrfs_end_transaction(trans, root);
346 out_drop:
347 if (ret) {
348 ip->flags = ip_oldflags;
349 inode->i_flags = i_oldflags;
350 }
351
352 out_unlock:
353 mutex_unlock(&inode->i_mutex);
354 mnt_drop_write_file(file);
355 return ret;
356}
357
358static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
359{
360 struct inode *inode = file_inode(file);
361
362 return put_user(inode->i_generation, arg);
363}
364
365static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
366{
367 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
368 struct btrfs_device *device;
369 struct request_queue *q;
370 struct fstrim_range range;
371 u64 minlen = ULLONG_MAX;
372 u64 num_devices = 0;
373 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
374 int ret;
375
376 if (!capable(CAP_SYS_ADMIN))
377 return -EPERM;
378
379 rcu_read_lock();
380 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
381 dev_list) {
382 if (!device->bdev)
383 continue;
384 q = bdev_get_queue(device->bdev);
385 if (blk_queue_discard(q)) {
386 num_devices++;
387 minlen = min((u64)q->limits.discard_granularity,
388 minlen);
389 }
390 }
391 rcu_read_unlock();
392
393 if (!num_devices)
394 return -EOPNOTSUPP;
395 if (copy_from_user(&range, arg, sizeof(range)))
396 return -EFAULT;
397 if (range.start > total_bytes ||
398 range.len < fs_info->sb->s_blocksize)
399 return -EINVAL;
400
401 range.len = min(range.len, total_bytes - range.start);
402 range.minlen = max(range.minlen, minlen);
403 ret = btrfs_trim_fs(fs_info->tree_root, &range);
404 if (ret < 0)
405 return ret;
406
407 if (copy_to_user(arg, &range, sizeof(range)))
408 return -EFAULT;
409
410 return 0;
411}
412
413int btrfs_is_empty_uuid(u8 *uuid)
414{
415 int i;
416
417 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
418 if (uuid[i])
419 return 0;
420 }
421 return 1;
422}
423
424static noinline int create_subvol(struct inode *dir,
425 struct dentry *dentry,
426 char *name, int namelen,
427 u64 *async_transid,
428 struct btrfs_qgroup_inherit *inherit)
429{
430 struct btrfs_trans_handle *trans;
431 struct btrfs_key key;
432 struct btrfs_root_item root_item;
433 struct btrfs_inode_item *inode_item;
434 struct extent_buffer *leaf;
435 struct btrfs_root *root = BTRFS_I(dir)->root;
436 struct btrfs_root *new_root;
437 struct btrfs_block_rsv block_rsv;
438 struct timespec cur_time = CURRENT_TIME;
439 struct inode *inode;
440 int ret;
441 int err;
442 u64 objectid;
443 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
444 u64 index = 0;
445 u64 qgroup_reserved;
446 uuid_le new_uuid;
447
448 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
449 if (ret)
450 return ret;
451
452 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
453 /*
454 * The same as the snapshot creation, please see the comment
455 * of create_snapshot().
456 */
457 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
458 8, &qgroup_reserved, false);
459 if (ret)
460 return ret;
461
462 trans = btrfs_start_transaction(root, 0);
463 if (IS_ERR(trans)) {
464 ret = PTR_ERR(trans);
465 btrfs_subvolume_release_metadata(root, &block_rsv,
466 qgroup_reserved);
467 return ret;
468 }
469 trans->block_rsv = &block_rsv;
470 trans->bytes_reserved = block_rsv.size;
471
472 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
473 if (ret)
474 goto fail;
475
476 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
477 0, objectid, NULL, 0, 0, 0);
478 if (IS_ERR(leaf)) {
479 ret = PTR_ERR(leaf);
480 goto fail;
481 }
482
483 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
484 btrfs_set_header_bytenr(leaf, leaf->start);
485 btrfs_set_header_generation(leaf, trans->transid);
486 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
487 btrfs_set_header_owner(leaf, objectid);
488
489 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
490 BTRFS_FSID_SIZE);
491 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
492 btrfs_header_chunk_tree_uuid(leaf),
493 BTRFS_UUID_SIZE);
494 btrfs_mark_buffer_dirty(leaf);
495
496 memset(&root_item, 0, sizeof(root_item));
497
498 inode_item = &root_item.inode;
499 btrfs_set_stack_inode_generation(inode_item, 1);
500 btrfs_set_stack_inode_size(inode_item, 3);
501 btrfs_set_stack_inode_nlink(inode_item, 1);
502 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
503 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
504
505 btrfs_set_root_flags(&root_item, 0);
506 btrfs_set_root_limit(&root_item, 0);
507 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
508
509 btrfs_set_root_bytenr(&root_item, leaf->start);
510 btrfs_set_root_generation(&root_item, trans->transid);
511 btrfs_set_root_level(&root_item, 0);
512 btrfs_set_root_refs(&root_item, 1);
513 btrfs_set_root_used(&root_item, leaf->len);
514 btrfs_set_root_last_snapshot(&root_item, 0);
515
516 btrfs_set_root_generation_v2(&root_item,
517 btrfs_root_generation(&root_item));
518 uuid_le_gen(&new_uuid);
519 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
520 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
521 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
522 root_item.ctime = root_item.otime;
523 btrfs_set_root_ctransid(&root_item, trans->transid);
524 btrfs_set_root_otransid(&root_item, trans->transid);
525
526 btrfs_tree_unlock(leaf);
527 free_extent_buffer(leaf);
528 leaf = NULL;
529
530 btrfs_set_root_dirid(&root_item, new_dirid);
531
532 key.objectid = objectid;
533 key.offset = 0;
534 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
535 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
536 &root_item);
537 if (ret)
538 goto fail;
539
540 key.offset = (u64)-1;
541 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
542 if (IS_ERR(new_root)) {
543 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
544 ret = PTR_ERR(new_root);
545 goto fail;
546 }
547
548 btrfs_record_root_in_trans(trans, new_root);
549
550 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
551 if (ret) {
552 /* We potentially lose an unused inode item here */
553 btrfs_abort_transaction(trans, root, ret);
554 goto fail;
555 }
556
557 /*
558 * insert the directory item
559 */
560 ret = btrfs_set_inode_index(dir, &index);
561 if (ret) {
562 btrfs_abort_transaction(trans, root, ret);
563 goto fail;
564 }
565
566 ret = btrfs_insert_dir_item(trans, root,
567 name, namelen, dir, &key,
568 BTRFS_FT_DIR, index);
569 if (ret) {
570 btrfs_abort_transaction(trans, root, ret);
571 goto fail;
572 }
573
574 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
575 ret = btrfs_update_inode(trans, root, dir);
576 BUG_ON(ret);
577
578 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
579 objectid, root->root_key.objectid,
580 btrfs_ino(dir), index, name, namelen);
581 BUG_ON(ret);
582
583 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
584 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
585 objectid);
586 if (ret)
587 btrfs_abort_transaction(trans, root, ret);
588
589fail:
590 trans->block_rsv = NULL;
591 trans->bytes_reserved = 0;
592 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
593
594 if (async_transid) {
595 *async_transid = trans->transid;
596 err = btrfs_commit_transaction_async(trans, root, 1);
597 if (err)
598 err = btrfs_commit_transaction(trans, root);
599 } else {
600 err = btrfs_commit_transaction(trans, root);
601 }
602 if (err && !ret)
603 ret = err;
604
605 if (!ret) {
606 inode = btrfs_lookup_dentry(dir, dentry);
607 if (IS_ERR(inode))
608 return PTR_ERR(inode);
609 d_instantiate(dentry, inode);
610 }
611 return ret;
612}
613
614static void btrfs_wait_nocow_write(struct btrfs_root *root)
615{
616 s64 writers;
617 DEFINE_WAIT(wait);
618
619 do {
620 prepare_to_wait(&root->subv_writers->wait, &wait,
621 TASK_UNINTERRUPTIBLE);
622
623 writers = percpu_counter_sum(&root->subv_writers->counter);
624 if (writers)
625 schedule();
626
627 finish_wait(&root->subv_writers->wait, &wait);
628 } while (writers);
629}
630
631static int create_snapshot(struct btrfs_root *root, struct inode *dir,
632 struct dentry *dentry, char *name, int namelen,
633 u64 *async_transid, bool readonly,
634 struct btrfs_qgroup_inherit *inherit)
635{
636 struct inode *inode;
637 struct btrfs_pending_snapshot *pending_snapshot;
638 struct btrfs_trans_handle *trans;
639 int ret;
640
641 if (!root->ref_cows)
642 return -EINVAL;
643
644 atomic_inc(&root->will_be_snapshoted);
645 smp_mb__after_atomic_inc();
646 btrfs_wait_nocow_write(root);
647
648 ret = btrfs_start_delalloc_inodes(root, 0);
649 if (ret)
650 goto out;
651
652 btrfs_wait_ordered_extents(root, -1);
653
654 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
655 if (!pending_snapshot) {
656 ret = -ENOMEM;
657 goto out;
658 }
659
660 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
661 BTRFS_BLOCK_RSV_TEMP);
662 /*
663 * 1 - parent dir inode
664 * 2 - dir entries
665 * 1 - root item
666 * 2 - root ref/backref
667 * 1 - root of snapshot
668 * 1 - UUID item
669 */
670 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
671 &pending_snapshot->block_rsv, 8,
672 &pending_snapshot->qgroup_reserved,
673 false);
674 if (ret)
675 goto free;
676
677 pending_snapshot->dentry = dentry;
678 pending_snapshot->root = root;
679 pending_snapshot->readonly = readonly;
680 pending_snapshot->dir = dir;
681 pending_snapshot->inherit = inherit;
682
683 trans = btrfs_start_transaction(root, 0);
684 if (IS_ERR(trans)) {
685 ret = PTR_ERR(trans);
686 goto fail;
687 }
688
689 spin_lock(&root->fs_info->trans_lock);
690 list_add(&pending_snapshot->list,
691 &trans->transaction->pending_snapshots);
692 spin_unlock(&root->fs_info->trans_lock);
693 if (async_transid) {
694 *async_transid = trans->transid;
695 ret = btrfs_commit_transaction_async(trans,
696 root->fs_info->extent_root, 1);
697 if (ret)
698 ret = btrfs_commit_transaction(trans, root);
699 } else {
700 ret = btrfs_commit_transaction(trans,
701 root->fs_info->extent_root);
702 }
703 if (ret)
704 goto fail;
705
706 ret = pending_snapshot->error;
707 if (ret)
708 goto fail;
709
710 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 if (ret)
712 goto fail;
713
714 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
715 if (IS_ERR(inode)) {
716 ret = PTR_ERR(inode);
717 goto fail;
718 }
719
720 d_instantiate(dentry, inode);
721 ret = 0;
722fail:
723 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
724 &pending_snapshot->block_rsv,
725 pending_snapshot->qgroup_reserved);
726free:
727 kfree(pending_snapshot);
728out:
729 atomic_dec(&root->will_be_snapshoted);
730 return ret;
731}
732
733/* copy of check_sticky in fs/namei.c()
734* It's inline, so penalty for filesystems that don't use sticky bit is
735* minimal.
736*/
737static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
738{
739 kuid_t fsuid = current_fsuid();
740
741 if (!(dir->i_mode & S_ISVTX))
742 return 0;
743 if (uid_eq(inode->i_uid, fsuid))
744 return 0;
745 if (uid_eq(dir->i_uid, fsuid))
746 return 0;
747 return !capable(CAP_FOWNER);
748}
749
750/* copy of may_delete in fs/namei.c()
751 * Check whether we can remove a link victim from directory dir, check
752 * whether the type of victim is right.
753 * 1. We can't do it if dir is read-only (done in permission())
754 * 2. We should have write and exec permissions on dir
755 * 3. We can't remove anything from append-only dir
756 * 4. We can't do anything with immutable dir (done in permission())
757 * 5. If the sticky bit on dir is set we should either
758 * a. be owner of dir, or
759 * b. be owner of victim, or
760 * c. have CAP_FOWNER capability
761 * 6. If the victim is append-only or immutable we can't do antyhing with
762 * links pointing to it.
763 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
764 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
765 * 9. We can't remove a root or mountpoint.
766 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
767 * nfs_async_unlink().
768 */
769
770static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
771{
772 int error;
773
774 if (!victim->d_inode)
775 return -ENOENT;
776
777 BUG_ON(victim->d_parent->d_inode != dir);
778 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
779
780 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
781 if (error)
782 return error;
783 if (IS_APPEND(dir))
784 return -EPERM;
785 if (btrfs_check_sticky(dir, victim->d_inode)||
786 IS_APPEND(victim->d_inode)||
787 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
788 return -EPERM;
789 if (isdir) {
790 if (!S_ISDIR(victim->d_inode->i_mode))
791 return -ENOTDIR;
792 if (IS_ROOT(victim))
793 return -EBUSY;
794 } else if (S_ISDIR(victim->d_inode->i_mode))
795 return -EISDIR;
796 if (IS_DEADDIR(dir))
797 return -ENOENT;
798 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 return -EBUSY;
800 return 0;
801}
802
803/* copy of may_create in fs/namei.c() */
804static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805{
806 if (child->d_inode)
807 return -EEXIST;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811}
812
813/*
814 * Create a new subvolume below @parent. This is largely modeled after
815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816 * inside this filesystem so it's quite a bit simpler.
817 */
818static noinline int btrfs_mksubvol(struct path *parent,
819 char *name, int namelen,
820 struct btrfs_root *snap_src,
821 u64 *async_transid, bool readonly,
822 struct btrfs_qgroup_inherit *inherit)
823{
824 struct inode *dir = parent->dentry->d_inode;
825 struct dentry *dentry;
826 int error;
827
828 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 if (error == -EINTR)
830 return error;
831
832 dentry = lookup_one_len(name, parent->dentry, namelen);
833 error = PTR_ERR(dentry);
834 if (IS_ERR(dentry))
835 goto out_unlock;
836
837 error = -EEXIST;
838 if (dentry->d_inode)
839 goto out_dput;
840
841 error = btrfs_may_create(dir, dentry);
842 if (error)
843 goto out_dput;
844
845 /*
846 * even if this name doesn't exist, we may get hash collisions.
847 * check for them now when we can safely fail
848 */
849 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 dir->i_ino, name,
851 namelen);
852 if (error)
853 goto out_dput;
854
855 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856
857 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 goto out_up_read;
859
860 if (snap_src) {
861 error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 async_transid, readonly, inherit);
863 } else {
864 error = create_subvol(dir, dentry, name, namelen,
865 async_transid, inherit);
866 }
867 if (!error)
868 fsnotify_mkdir(dir, dentry);
869out_up_read:
870 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871out_dput:
872 dput(dentry);
873out_unlock:
874 mutex_unlock(&dir->i_mutex);
875 return error;
876}
877
878/*
879 * When we're defragging a range, we don't want to kick it off again
880 * if it is really just waiting for delalloc to send it down.
881 * If we find a nice big extent or delalloc range for the bytes in the
882 * file you want to defrag, we return 0 to let you know to skip this
883 * part of the file
884 */
885static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
886{
887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 struct extent_map *em = NULL;
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 u64 end;
891
892 read_lock(&em_tree->lock);
893 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 read_unlock(&em_tree->lock);
895
896 if (em) {
897 end = extent_map_end(em);
898 free_extent_map(em);
899 if (end - offset > thresh)
900 return 0;
901 }
902 /* if we already have a nice delalloc here, just stop */
903 thresh /= 2;
904 end = count_range_bits(io_tree, &offset, offset + thresh,
905 thresh, EXTENT_DELALLOC, 1);
906 if (end >= thresh)
907 return 0;
908 return 1;
909}
910
911/*
912 * helper function to walk through a file and find extents
913 * newer than a specific transid, and smaller than thresh.
914 *
915 * This is used by the defragging code to find new and small
916 * extents
917 */
918static int find_new_extents(struct btrfs_root *root,
919 struct inode *inode, u64 newer_than,
920 u64 *off, int thresh)
921{
922 struct btrfs_path *path;
923 struct btrfs_key min_key;
924 struct extent_buffer *leaf;
925 struct btrfs_file_extent_item *extent;
926 int type;
927 int ret;
928 u64 ino = btrfs_ino(inode);
929
930 path = btrfs_alloc_path();
931 if (!path)
932 return -ENOMEM;
933
934 min_key.objectid = ino;
935 min_key.type = BTRFS_EXTENT_DATA_KEY;
936 min_key.offset = *off;
937
938 while (1) {
939 path->keep_locks = 1;
940 ret = btrfs_search_forward(root, &min_key, path, newer_than);
941 if (ret != 0)
942 goto none;
943 path->keep_locks = 0;
944 btrfs_unlock_up_safe(path, 1);
945process_slot:
946 if (min_key.objectid != ino)
947 goto none;
948 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
949 goto none;
950
951 leaf = path->nodes[0];
952 extent = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_file_extent_item);
954
955 type = btrfs_file_extent_type(leaf, extent);
956 if (type == BTRFS_FILE_EXTENT_REG &&
957 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
958 check_defrag_in_cache(inode, min_key.offset, thresh)) {
959 *off = min_key.offset;
960 btrfs_free_path(path);
961 return 0;
962 }
963
964 path->slots[0]++;
965 if (path->slots[0] < btrfs_header_nritems(leaf)) {
966 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
967 goto process_slot;
968 }
969
970 if (min_key.offset == (u64)-1)
971 goto none;
972
973 min_key.offset++;
974 btrfs_release_path(path);
975 }
976none:
977 btrfs_free_path(path);
978 return -ENOENT;
979}
980
981static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
982{
983 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 struct extent_map *em;
986 u64 len = PAGE_CACHE_SIZE;
987
988 /*
989 * hopefully we have this extent in the tree already, try without
990 * the full extent lock
991 */
992 read_lock(&em_tree->lock);
993 em = lookup_extent_mapping(em_tree, start, len);
994 read_unlock(&em_tree->lock);
995
996 if (!em) {
997 struct extent_state *cached = NULL;
998 u64 end = start + len - 1;
999
1000 /* get the big lock and read metadata off disk */
1001 lock_extent_bits(io_tree, start, end, 0, &cached);
1002 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004
1005 if (IS_ERR(em))
1006 return NULL;
1007 }
1008
1009 return em;
1010}
1011
1012static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013{
1014 struct extent_map *next;
1015 bool ret = true;
1016
1017 /* this is the last extent */
1018 if (em->start + em->len >= i_size_read(inode))
1019 return false;
1020
1021 next = defrag_lookup_extent(inode, em->start + em->len);
1022 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023 (em->block_start + em->block_len == next->block_start))
1024 ret = false;
1025
1026 free_extent_map(next);
1027 return ret;
1028}
1029
1030static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031 u64 *last_len, u64 *skip, u64 *defrag_end,
1032 int compress)
1033{
1034 struct extent_map *em;
1035 int ret = 1;
1036 bool next_mergeable = true;
1037
1038 /*
1039 * make sure that once we start defragging an extent, we keep on
1040 * defragging it
1041 */
1042 if (start < *defrag_end)
1043 return 1;
1044
1045 *skip = 0;
1046
1047 em = defrag_lookup_extent(inode, start);
1048 if (!em)
1049 return 0;
1050
1051 /* this will cover holes, and inline extents */
1052 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 next_mergeable = defrag_check_next_extent(inode, em);
1058
1059 /*
1060 * we hit a real extent, if it is big or the next extent is not a
1061 * real extent, don't bother defragging it
1062 */
1063 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064 (em->len >= thresh || !next_mergeable))
1065 ret = 0;
1066out:
1067 /*
1068 * last_len ends up being a counter of how many bytes we've defragged.
1069 * every time we choose not to defrag an extent, we reset *last_len
1070 * so that the next tiny extent will force a defrag.
1071 *
1072 * The end result of this is that tiny extents before a single big
1073 * extent will force at least part of that big extent to be defragged.
1074 */
1075 if (ret) {
1076 *defrag_end = extent_map_end(em);
1077 } else {
1078 *last_len = 0;
1079 *skip = extent_map_end(em);
1080 *defrag_end = 0;
1081 }
1082
1083 free_extent_map(em);
1084 return ret;
1085}
1086
1087/*
1088 * it doesn't do much good to defrag one or two pages
1089 * at a time. This pulls in a nice chunk of pages
1090 * to COW and defrag.
1091 *
1092 * It also makes sure the delalloc code has enough
1093 * dirty data to avoid making new small extents as part
1094 * of the defrag
1095 *
1096 * It's a good idea to start RA on this range
1097 * before calling this.
1098 */
1099static int cluster_pages_for_defrag(struct inode *inode,
1100 struct page **pages,
1101 unsigned long start_index,
1102 unsigned long num_pages)
1103{
1104 unsigned long file_end;
1105 u64 isize = i_size_read(inode);
1106 u64 page_start;
1107 u64 page_end;
1108 u64 page_cnt;
1109 int ret;
1110 int i;
1111 int i_done;
1112 struct btrfs_ordered_extent *ordered;
1113 struct extent_state *cached_state = NULL;
1114 struct extent_io_tree *tree;
1115 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116
1117 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118 if (!isize || start_index > file_end)
1119 return 0;
1120
1121 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122
1123 ret = btrfs_delalloc_reserve_space(inode,
1124 page_cnt << PAGE_CACHE_SHIFT);
1125 if (ret)
1126 return ret;
1127 i_done = 0;
1128 tree = &BTRFS_I(inode)->io_tree;
1129
1130 /* step one, lock all the pages */
1131 for (i = 0; i < page_cnt; i++) {
1132 struct page *page;
1133again:
1134 page = find_or_create_page(inode->i_mapping,
1135 start_index + i, mask);
1136 if (!page)
1137 break;
1138
1139 page_start = page_offset(page);
1140 page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 while (1) {
1142 lock_extent_bits(tree, page_start, page_end,
1143 0, &cached_state);
1144 ordered = btrfs_lookup_ordered_extent(inode,
1145 page_start);
1146 unlock_extent_cached(tree, page_start, page_end,
1147 &cached_state, GFP_NOFS);
1148 if (!ordered)
1149 break;
1150
1151 unlock_page(page);
1152 btrfs_start_ordered_extent(inode, ordered, 1);
1153 btrfs_put_ordered_extent(ordered);
1154 lock_page(page);
1155 /*
1156 * we unlocked the page above, so we need check if
1157 * it was released or not.
1158 */
1159 if (page->mapping != inode->i_mapping) {
1160 unlock_page(page);
1161 page_cache_release(page);
1162 goto again;
1163 }
1164 }
1165
1166 if (!PageUptodate(page)) {
1167 btrfs_readpage(NULL, page);
1168 lock_page(page);
1169 if (!PageUptodate(page)) {
1170 unlock_page(page);
1171 page_cache_release(page);
1172 ret = -EIO;
1173 break;
1174 }
1175 }
1176
1177 if (page->mapping != inode->i_mapping) {
1178 unlock_page(page);
1179 page_cache_release(page);
1180 goto again;
1181 }
1182
1183 pages[i] = page;
1184 i_done++;
1185 }
1186 if (!i_done || ret)
1187 goto out;
1188
1189 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190 goto out;
1191
1192 /*
1193 * so now we have a nice long stream of locked
1194 * and up to date pages, lets wait on them
1195 */
1196 for (i = 0; i < i_done; i++)
1197 wait_on_page_writeback(pages[i]);
1198
1199 page_start = page_offset(pages[0]);
1200 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201
1202 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203 page_start, page_end - 1, 0, &cached_state);
1204 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207 &cached_state, GFP_NOFS);
1208
1209 if (i_done != page_cnt) {
1210 spin_lock(&BTRFS_I(inode)->lock);
1211 BTRFS_I(inode)->outstanding_extents++;
1212 spin_unlock(&BTRFS_I(inode)->lock);
1213 btrfs_delalloc_release_space(inode,
1214 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1215 }
1216
1217
1218 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219 &cached_state, GFP_NOFS);
1220
1221 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222 page_start, page_end - 1, &cached_state,
1223 GFP_NOFS);
1224
1225 for (i = 0; i < i_done; i++) {
1226 clear_page_dirty_for_io(pages[i]);
1227 ClearPageChecked(pages[i]);
1228 set_page_extent_mapped(pages[i]);
1229 set_page_dirty(pages[i]);
1230 unlock_page(pages[i]);
1231 page_cache_release(pages[i]);
1232 }
1233 return i_done;
1234out:
1235 for (i = 0; i < i_done; i++) {
1236 unlock_page(pages[i]);
1237 page_cache_release(pages[i]);
1238 }
1239 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1240 return ret;
1241
1242}
1243
1244int btrfs_defrag_file(struct inode *inode, struct file *file,
1245 struct btrfs_ioctl_defrag_range_args *range,
1246 u64 newer_than, unsigned long max_to_defrag)
1247{
1248 struct btrfs_root *root = BTRFS_I(inode)->root;
1249 struct file_ra_state *ra = NULL;
1250 unsigned long last_index;
1251 u64 isize = i_size_read(inode);
1252 u64 last_len = 0;
1253 u64 skip = 0;
1254 u64 defrag_end = 0;
1255 u64 newer_off = range->start;
1256 unsigned long i;
1257 unsigned long ra_index = 0;
1258 int ret;
1259 int defrag_count = 0;
1260 int compress_type = BTRFS_COMPRESS_ZLIB;
1261 int extent_thresh = range->extent_thresh;
1262 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263 unsigned long cluster = max_cluster;
1264 u64 new_align = ~((u64)128 * 1024 - 1);
1265 struct page **pages = NULL;
1266
1267 if (isize == 0)
1268 return 0;
1269
1270 if (range->start >= isize)
1271 return -EINVAL;
1272
1273 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275 return -EINVAL;
1276 if (range->compress_type)
1277 compress_type = range->compress_type;
1278 }
1279
1280 if (extent_thresh == 0)
1281 extent_thresh = 256 * 1024;
1282
1283 /*
1284 * if we were not given a file, allocate a readahead
1285 * context
1286 */
1287 if (!file) {
1288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289 if (!ra)
1290 return -ENOMEM;
1291 file_ra_state_init(ra, inode->i_mapping);
1292 } else {
1293 ra = &file->f_ra;
1294 }
1295
1296 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297 GFP_NOFS);
1298 if (!pages) {
1299 ret = -ENOMEM;
1300 goto out_ra;
1301 }
1302
1303 /* find the last page to defrag */
1304 if (range->start + range->len > range->start) {
1305 last_index = min_t(u64, isize - 1,
1306 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307 } else {
1308 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309 }
1310
1311 if (newer_than) {
1312 ret = find_new_extents(root, inode, newer_than,
1313 &newer_off, 64 * 1024);
1314 if (!ret) {
1315 range->start = newer_off;
1316 /*
1317 * we always align our defrag to help keep
1318 * the extents in the file evenly spaced
1319 */
1320 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1321 } else
1322 goto out_ra;
1323 } else {
1324 i = range->start >> PAGE_CACHE_SHIFT;
1325 }
1326 if (!max_to_defrag)
1327 max_to_defrag = last_index + 1;
1328
1329 /*
1330 * make writeback starts from i, so the defrag range can be
1331 * written sequentially.
1332 */
1333 if (i < inode->i_mapping->writeback_index)
1334 inode->i_mapping->writeback_index = i;
1335
1336 while (i <= last_index && defrag_count < max_to_defrag &&
1337 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338 PAGE_CACHE_SHIFT)) {
1339 /*
1340 * make sure we stop running if someone unmounts
1341 * the FS
1342 */
1343 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344 break;
1345
1346 if (btrfs_defrag_cancelled(root->fs_info)) {
1347 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348 ret = -EAGAIN;
1349 break;
1350 }
1351
1352 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353 extent_thresh, &last_len, &skip,
1354 &defrag_end, range->flags &
1355 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356 unsigned long next;
1357 /*
1358 * the should_defrag function tells us how much to skip
1359 * bump our counter by the suggested amount
1360 */
1361 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362 i = max(i + 1, next);
1363 continue;
1364 }
1365
1366 if (!newer_than) {
1367 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368 PAGE_CACHE_SHIFT) - i;
1369 cluster = min(cluster, max_cluster);
1370 } else {
1371 cluster = max_cluster;
1372 }
1373
1374 if (i + cluster > ra_index) {
1375 ra_index = max(i, ra_index);
1376 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377 cluster);
1378 ra_index += max_cluster;
1379 }
1380
1381 mutex_lock(&inode->i_mutex);
1382 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383 BTRFS_I(inode)->force_compress = compress_type;
1384 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1385 if (ret < 0) {
1386 mutex_unlock(&inode->i_mutex);
1387 goto out_ra;
1388 }
1389
1390 defrag_count += ret;
1391 balance_dirty_pages_ratelimited(inode->i_mapping);
1392 mutex_unlock(&inode->i_mutex);
1393
1394 if (newer_than) {
1395 if (newer_off == (u64)-1)
1396 break;
1397
1398 if (ret > 0)
1399 i += ret;
1400
1401 newer_off = max(newer_off + 1,
1402 (u64)i << PAGE_CACHE_SHIFT);
1403
1404 ret = find_new_extents(root, inode,
1405 newer_than, &newer_off,
1406 64 * 1024);
1407 if (!ret) {
1408 range->start = newer_off;
1409 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1410 } else {
1411 break;
1412 }
1413 } else {
1414 if (ret > 0) {
1415 i += ret;
1416 last_len += ret << PAGE_CACHE_SHIFT;
1417 } else {
1418 i++;
1419 last_len = 0;
1420 }
1421 }
1422 }
1423
1424 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425 filemap_flush(inode->i_mapping);
1426 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427 &BTRFS_I(inode)->runtime_flags))
1428 filemap_flush(inode->i_mapping);
1429 }
1430
1431 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432 /* the filemap_flush will queue IO into the worker threads, but
1433 * we have to make sure the IO is actually started and that
1434 * ordered extents get created before we return
1435 */
1436 atomic_inc(&root->fs_info->async_submit_draining);
1437 while (atomic_read(&root->fs_info->nr_async_submits) ||
1438 atomic_read(&root->fs_info->async_delalloc_pages)) {
1439 wait_event(root->fs_info->async_submit_wait,
1440 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442 }
1443 atomic_dec(&root->fs_info->async_submit_draining);
1444 }
1445
1446 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1448 }
1449
1450 ret = defrag_count;
1451
1452out_ra:
1453 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454 mutex_lock(&inode->i_mutex);
1455 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456 mutex_unlock(&inode->i_mutex);
1457 }
1458 if (!file)
1459 kfree(ra);
1460 kfree(pages);
1461 return ret;
1462}
1463
1464static noinline int btrfs_ioctl_resize(struct file *file,
1465 void __user *arg)
1466{
1467 u64 new_size;
1468 u64 old_size;
1469 u64 devid = 1;
1470 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471 struct btrfs_ioctl_vol_args *vol_args;
1472 struct btrfs_trans_handle *trans;
1473 struct btrfs_device *device = NULL;
1474 char *sizestr;
1475 char *retptr;
1476 char *devstr = NULL;
1477 int ret = 0;
1478 int mod = 0;
1479
1480 if (!capable(CAP_SYS_ADMIN))
1481 return -EPERM;
1482
1483 ret = mnt_want_write_file(file);
1484 if (ret)
1485 return ret;
1486
1487 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1488 1)) {
1489 mnt_drop_write_file(file);
1490 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491 }
1492
1493 mutex_lock(&root->fs_info->volume_mutex);
1494 vol_args = memdup_user(arg, sizeof(*vol_args));
1495 if (IS_ERR(vol_args)) {
1496 ret = PTR_ERR(vol_args);
1497 goto out;
1498 }
1499
1500 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1501
1502 sizestr = vol_args->name;
1503 devstr = strchr(sizestr, ':');
1504 if (devstr) {
1505 char *end;
1506 sizestr = devstr + 1;
1507 *devstr = '\0';
1508 devstr = vol_args->name;
1509 devid = simple_strtoull(devstr, &end, 10);
1510 if (!devid) {
1511 ret = -EINVAL;
1512 goto out_free;
1513 }
1514 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1515 }
1516
1517 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1518 if (!device) {
1519 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1520 devid);
1521 ret = -ENODEV;
1522 goto out_free;
1523 }
1524
1525 if (!device->writeable) {
1526 btrfs_info(root->fs_info,
1527 "resizer unable to apply on readonly device %llu",
1528 devid);
1529 ret = -EPERM;
1530 goto out_free;
1531 }
1532
1533 if (!strcmp(sizestr, "max"))
1534 new_size = device->bdev->bd_inode->i_size;
1535 else {
1536 if (sizestr[0] == '-') {
1537 mod = -1;
1538 sizestr++;
1539 } else if (sizestr[0] == '+') {
1540 mod = 1;
1541 sizestr++;
1542 }
1543 new_size = memparse(sizestr, &retptr);
1544 if (*retptr != '\0' || new_size == 0) {
1545 ret = -EINVAL;
1546 goto out_free;
1547 }
1548 }
1549
1550 if (device->is_tgtdev_for_dev_replace) {
1551 ret = -EPERM;
1552 goto out_free;
1553 }
1554
1555 old_size = device->total_bytes;
1556
1557 if (mod < 0) {
1558 if (new_size > old_size) {
1559 ret = -EINVAL;
1560 goto out_free;
1561 }
1562 new_size = old_size - new_size;
1563 } else if (mod > 0) {
1564 if (new_size > ULLONG_MAX - old_size) {
1565 ret = -EINVAL;
1566 goto out_free;
1567 }
1568 new_size = old_size + new_size;
1569 }
1570
1571 if (new_size < 256 * 1024 * 1024) {
1572 ret = -EINVAL;
1573 goto out_free;
1574 }
1575 if (new_size > device->bdev->bd_inode->i_size) {
1576 ret = -EFBIG;
1577 goto out_free;
1578 }
1579
1580 do_div(new_size, root->sectorsize);
1581 new_size *= root->sectorsize;
1582
1583 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1584 rcu_str_deref(device->name), new_size);
1585
1586 if (new_size > old_size) {
1587 trans = btrfs_start_transaction(root, 0);
1588 if (IS_ERR(trans)) {
1589 ret = PTR_ERR(trans);
1590 goto out_free;
1591 }
1592 ret = btrfs_grow_device(trans, device, new_size);
1593 btrfs_commit_transaction(trans, root);
1594 } else if (new_size < old_size) {
1595 ret = btrfs_shrink_device(device, new_size);
1596 } /* equal, nothing need to do */
1597
1598out_free:
1599 kfree(vol_args);
1600out:
1601 mutex_unlock(&root->fs_info->volume_mutex);
1602 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1603 mnt_drop_write_file(file);
1604 return ret;
1605}
1606
1607static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1608 char *name, unsigned long fd, int subvol,
1609 u64 *transid, bool readonly,
1610 struct btrfs_qgroup_inherit *inherit)
1611{
1612 int namelen;
1613 int ret = 0;
1614
1615 ret = mnt_want_write_file(file);
1616 if (ret)
1617 goto out;
1618
1619 namelen = strlen(name);
1620 if (strchr(name, '/')) {
1621 ret = -EINVAL;
1622 goto out_drop_write;
1623 }
1624
1625 if (name[0] == '.' &&
1626 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1627 ret = -EEXIST;
1628 goto out_drop_write;
1629 }
1630
1631 if (subvol) {
1632 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1633 NULL, transid, readonly, inherit);
1634 } else {
1635 struct fd src = fdget(fd);
1636 struct inode *src_inode;
1637 if (!src.file) {
1638 ret = -EINVAL;
1639 goto out_drop_write;
1640 }
1641
1642 src_inode = file_inode(src.file);
1643 if (src_inode->i_sb != file_inode(file)->i_sb) {
1644 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1645 "Snapshot src from another FS");
1646 ret = -EXDEV;
1647 } else if (!inode_owner_or_capable(src_inode)) {
1648 /*
1649 * Subvolume creation is not restricted, but snapshots
1650 * are limited to own subvolumes only
1651 */
1652 ret = -EPERM;
1653 } else {
1654 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655 BTRFS_I(src_inode)->root,
1656 transid, readonly, inherit);
1657 }
1658 fdput(src);
1659 }
1660out_drop_write:
1661 mnt_drop_write_file(file);
1662out:
1663 return ret;
1664}
1665
1666static noinline int btrfs_ioctl_snap_create(struct file *file,
1667 void __user *arg, int subvol)
1668{
1669 struct btrfs_ioctl_vol_args *vol_args;
1670 int ret;
1671
1672 vol_args = memdup_user(arg, sizeof(*vol_args));
1673 if (IS_ERR(vol_args))
1674 return PTR_ERR(vol_args);
1675 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1676
1677 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1678 vol_args->fd, subvol,
1679 NULL, false, NULL);
1680
1681 kfree(vol_args);
1682 return ret;
1683}
1684
1685static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1686 void __user *arg, int subvol)
1687{
1688 struct btrfs_ioctl_vol_args_v2 *vol_args;
1689 int ret;
1690 u64 transid = 0;
1691 u64 *ptr = NULL;
1692 bool readonly = false;
1693 struct btrfs_qgroup_inherit *inherit = NULL;
1694
1695 vol_args = memdup_user(arg, sizeof(*vol_args));
1696 if (IS_ERR(vol_args))
1697 return PTR_ERR(vol_args);
1698 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699
1700 if (vol_args->flags &
1701 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703 ret = -EOPNOTSUPP;
1704 goto out;
1705 }
1706
1707 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 ptr = &transid;
1709 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 readonly = true;
1711 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712 if (vol_args->size > PAGE_CACHE_SIZE) {
1713 ret = -EINVAL;
1714 goto out;
1715 }
1716 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717 if (IS_ERR(inherit)) {
1718 ret = PTR_ERR(inherit);
1719 goto out;
1720 }
1721 }
1722
1723 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724 vol_args->fd, subvol, ptr,
1725 readonly, inherit);
1726
1727 if (ret == 0 && ptr &&
1728 copy_to_user(arg +
1729 offsetof(struct btrfs_ioctl_vol_args_v2,
1730 transid), ptr, sizeof(*ptr)))
1731 ret = -EFAULT;
1732out:
1733 kfree(vol_args);
1734 kfree(inherit);
1735 return ret;
1736}
1737
1738static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1739 void __user *arg)
1740{
1741 struct inode *inode = file_inode(file);
1742 struct btrfs_root *root = BTRFS_I(inode)->root;
1743 int ret = 0;
1744 u64 flags = 0;
1745
1746 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1747 return -EINVAL;
1748
1749 down_read(&root->fs_info->subvol_sem);
1750 if (btrfs_root_readonly(root))
1751 flags |= BTRFS_SUBVOL_RDONLY;
1752 up_read(&root->fs_info->subvol_sem);
1753
1754 if (copy_to_user(arg, &flags, sizeof(flags)))
1755 ret = -EFAULT;
1756
1757 return ret;
1758}
1759
1760static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1761 void __user *arg)
1762{
1763 struct inode *inode = file_inode(file);
1764 struct btrfs_root *root = BTRFS_I(inode)->root;
1765 struct btrfs_trans_handle *trans;
1766 u64 root_flags;
1767 u64 flags;
1768 int ret = 0;
1769
1770 if (!inode_owner_or_capable(inode))
1771 return -EPERM;
1772
1773 ret = mnt_want_write_file(file);
1774 if (ret)
1775 goto out;
1776
1777 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1778 ret = -EINVAL;
1779 goto out_drop_write;
1780 }
1781
1782 if (copy_from_user(&flags, arg, sizeof(flags))) {
1783 ret = -EFAULT;
1784 goto out_drop_write;
1785 }
1786
1787 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1788 ret = -EINVAL;
1789 goto out_drop_write;
1790 }
1791
1792 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1793 ret = -EOPNOTSUPP;
1794 goto out_drop_write;
1795 }
1796
1797 down_write(&root->fs_info->subvol_sem);
1798
1799 /* nothing to do */
1800 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1801 goto out_drop_sem;
1802
1803 root_flags = btrfs_root_flags(&root->root_item);
1804 if (flags & BTRFS_SUBVOL_RDONLY) {
1805 btrfs_set_root_flags(&root->root_item,
1806 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1807 } else {
1808 /*
1809 * Block RO -> RW transition if this subvolume is involved in
1810 * send
1811 */
1812 spin_lock(&root->root_item_lock);
1813 if (root->send_in_progress == 0) {
1814 btrfs_set_root_flags(&root->root_item,
1815 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1816 spin_unlock(&root->root_item_lock);
1817 } else {
1818 spin_unlock(&root->root_item_lock);
1819 btrfs_warn(root->fs_info,
1820 "Attempt to set subvolume %llu read-write during send",
1821 root->root_key.objectid);
1822 ret = -EPERM;
1823 goto out_drop_sem;
1824 }
1825 }
1826
1827 trans = btrfs_start_transaction(root, 1);
1828 if (IS_ERR(trans)) {
1829 ret = PTR_ERR(trans);
1830 goto out_reset;
1831 }
1832
1833 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1834 &root->root_key, &root->root_item);
1835
1836 btrfs_commit_transaction(trans, root);
1837out_reset:
1838 if (ret)
1839 btrfs_set_root_flags(&root->root_item, root_flags);
1840out_drop_sem:
1841 up_write(&root->fs_info->subvol_sem);
1842out_drop_write:
1843 mnt_drop_write_file(file);
1844out:
1845 return ret;
1846}
1847
1848/*
1849 * helper to check if the subvolume references other subvolumes
1850 */
1851static noinline int may_destroy_subvol(struct btrfs_root *root)
1852{
1853 struct btrfs_path *path;
1854 struct btrfs_dir_item *di;
1855 struct btrfs_key key;
1856 u64 dir_id;
1857 int ret;
1858
1859 path = btrfs_alloc_path();
1860 if (!path)
1861 return -ENOMEM;
1862
1863 /* Make sure this root isn't set as the default subvol */
1864 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1865 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1866 dir_id, "default", 7, 0);
1867 if (di && !IS_ERR(di)) {
1868 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1869 if (key.objectid == root->root_key.objectid) {
1870 ret = -EPERM;
1871 btrfs_err(root->fs_info, "deleting default subvolume "
1872 "%llu is not allowed", key.objectid);
1873 goto out;
1874 }
1875 btrfs_release_path(path);
1876 }
1877
1878 key.objectid = root->root_key.objectid;
1879 key.type = BTRFS_ROOT_REF_KEY;
1880 key.offset = (u64)-1;
1881
1882 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1883 &key, path, 0, 0);
1884 if (ret < 0)
1885 goto out;
1886 BUG_ON(ret == 0);
1887
1888 ret = 0;
1889 if (path->slots[0] > 0) {
1890 path->slots[0]--;
1891 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1892 if (key.objectid == root->root_key.objectid &&
1893 key.type == BTRFS_ROOT_REF_KEY)
1894 ret = -ENOTEMPTY;
1895 }
1896out:
1897 btrfs_free_path(path);
1898 return ret;
1899}
1900
1901static noinline int key_in_sk(struct btrfs_key *key,
1902 struct btrfs_ioctl_search_key *sk)
1903{
1904 struct btrfs_key test;
1905 int ret;
1906
1907 test.objectid = sk->min_objectid;
1908 test.type = sk->min_type;
1909 test.offset = sk->min_offset;
1910
1911 ret = btrfs_comp_cpu_keys(key, &test);
1912 if (ret < 0)
1913 return 0;
1914
1915 test.objectid = sk->max_objectid;
1916 test.type = sk->max_type;
1917 test.offset = sk->max_offset;
1918
1919 ret = btrfs_comp_cpu_keys(key, &test);
1920 if (ret > 0)
1921 return 0;
1922 return 1;
1923}
1924
1925static noinline int copy_to_sk(struct btrfs_root *root,
1926 struct btrfs_path *path,
1927 struct btrfs_key *key,
1928 struct btrfs_ioctl_search_key *sk,
1929 char *buf,
1930 unsigned long *sk_offset,
1931 int *num_found)
1932{
1933 u64 found_transid;
1934 struct extent_buffer *leaf;
1935 struct btrfs_ioctl_search_header sh;
1936 unsigned long item_off;
1937 unsigned long item_len;
1938 int nritems;
1939 int i;
1940 int slot;
1941 int ret = 0;
1942
1943 leaf = path->nodes[0];
1944 slot = path->slots[0];
1945 nritems = btrfs_header_nritems(leaf);
1946
1947 if (btrfs_header_generation(leaf) > sk->max_transid) {
1948 i = nritems;
1949 goto advance_key;
1950 }
1951 found_transid = btrfs_header_generation(leaf);
1952
1953 for (i = slot; i < nritems; i++) {
1954 item_off = btrfs_item_ptr_offset(leaf, i);
1955 item_len = btrfs_item_size_nr(leaf, i);
1956
1957 btrfs_item_key_to_cpu(leaf, key, i);
1958 if (!key_in_sk(key, sk))
1959 continue;
1960
1961 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1962 item_len = 0;
1963
1964 if (sizeof(sh) + item_len + *sk_offset >
1965 BTRFS_SEARCH_ARGS_BUFSIZE) {
1966 ret = 1;
1967 goto overflow;
1968 }
1969
1970 sh.objectid = key->objectid;
1971 sh.offset = key->offset;
1972 sh.type = key->type;
1973 sh.len = item_len;
1974 sh.transid = found_transid;
1975
1976 /* copy search result header */
1977 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1978 *sk_offset += sizeof(sh);
1979
1980 if (item_len) {
1981 char *p = buf + *sk_offset;
1982 /* copy the item */
1983 read_extent_buffer(leaf, p,
1984 item_off, item_len);
1985 *sk_offset += item_len;
1986 }
1987 (*num_found)++;
1988
1989 if (*num_found >= sk->nr_items)
1990 break;
1991 }
1992advance_key:
1993 ret = 0;
1994 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1995 key->offset++;
1996 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1997 key->offset = 0;
1998 key->type++;
1999 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2000 key->offset = 0;
2001 key->type = 0;
2002 key->objectid++;
2003 } else
2004 ret = 1;
2005overflow:
2006 return ret;
2007}
2008
2009static noinline int search_ioctl(struct inode *inode,
2010 struct btrfs_ioctl_search_args *args)
2011{
2012 struct btrfs_root *root;
2013 struct btrfs_key key;
2014 struct btrfs_path *path;
2015 struct btrfs_ioctl_search_key *sk = &args->key;
2016 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2017 int ret;
2018 int num_found = 0;
2019 unsigned long sk_offset = 0;
2020
2021 path = btrfs_alloc_path();
2022 if (!path)
2023 return -ENOMEM;
2024
2025 if (sk->tree_id == 0) {
2026 /* search the root of the inode that was passed */
2027 root = BTRFS_I(inode)->root;
2028 } else {
2029 key.objectid = sk->tree_id;
2030 key.type = BTRFS_ROOT_ITEM_KEY;
2031 key.offset = (u64)-1;
2032 root = btrfs_read_fs_root_no_name(info, &key);
2033 if (IS_ERR(root)) {
2034 printk(KERN_ERR "BTRFS: could not find root %llu\n",
2035 sk->tree_id);
2036 btrfs_free_path(path);
2037 return -ENOENT;
2038 }
2039 }
2040
2041 key.objectid = sk->min_objectid;
2042 key.type = sk->min_type;
2043 key.offset = sk->min_offset;
2044
2045 path->keep_locks = 1;
2046
2047 while (1) {
2048 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2049 if (ret != 0) {
2050 if (ret > 0)
2051 ret = 0;
2052 goto err;
2053 }
2054 ret = copy_to_sk(root, path, &key, sk, args->buf,
2055 &sk_offset, &num_found);
2056 btrfs_release_path(path);
2057 if (ret || num_found >= sk->nr_items)
2058 break;
2059
2060 }
2061 ret = 0;
2062err:
2063 sk->nr_items = num_found;
2064 btrfs_free_path(path);
2065 return ret;
2066}
2067
2068static noinline int btrfs_ioctl_tree_search(struct file *file,
2069 void __user *argp)
2070{
2071 struct btrfs_ioctl_search_args *args;
2072 struct inode *inode;
2073 int ret;
2074
2075 if (!capable(CAP_SYS_ADMIN))
2076 return -EPERM;
2077
2078 args = memdup_user(argp, sizeof(*args));
2079 if (IS_ERR(args))
2080 return PTR_ERR(args);
2081
2082 inode = file_inode(file);
2083 ret = search_ioctl(inode, args);
2084 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2085 ret = -EFAULT;
2086 kfree(args);
2087 return ret;
2088}
2089
2090/*
2091 * Search INODE_REFs to identify path name of 'dirid' directory
2092 * in a 'tree_id' tree. and sets path name to 'name'.
2093 */
2094static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2095 u64 tree_id, u64 dirid, char *name)
2096{
2097 struct btrfs_root *root;
2098 struct btrfs_key key;
2099 char *ptr;
2100 int ret = -1;
2101 int slot;
2102 int len;
2103 int total_len = 0;
2104 struct btrfs_inode_ref *iref;
2105 struct extent_buffer *l;
2106 struct btrfs_path *path;
2107
2108 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2109 name[0]='\0';
2110 return 0;
2111 }
2112
2113 path = btrfs_alloc_path();
2114 if (!path)
2115 return -ENOMEM;
2116
2117 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2118
2119 key.objectid = tree_id;
2120 key.type = BTRFS_ROOT_ITEM_KEY;
2121 key.offset = (u64)-1;
2122 root = btrfs_read_fs_root_no_name(info, &key);
2123 if (IS_ERR(root)) {
2124 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2125 ret = -ENOENT;
2126 goto out;
2127 }
2128
2129 key.objectid = dirid;
2130 key.type = BTRFS_INODE_REF_KEY;
2131 key.offset = (u64)-1;
2132
2133 while (1) {
2134 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2135 if (ret < 0)
2136 goto out;
2137 else if (ret > 0) {
2138 ret = btrfs_previous_item(root, path, dirid,
2139 BTRFS_INODE_REF_KEY);
2140 if (ret < 0)
2141 goto out;
2142 else if (ret > 0) {
2143 ret = -ENOENT;
2144 goto out;
2145 }
2146 }
2147
2148 l = path->nodes[0];
2149 slot = path->slots[0];
2150 btrfs_item_key_to_cpu(l, &key, slot);
2151
2152 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2153 len = btrfs_inode_ref_name_len(l, iref);
2154 ptr -= len + 1;
2155 total_len += len + 1;
2156 if (ptr < name) {
2157 ret = -ENAMETOOLONG;
2158 goto out;
2159 }
2160
2161 *(ptr + len) = '/';
2162 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2163
2164 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2165 break;
2166
2167 btrfs_release_path(path);
2168 key.objectid = key.offset;
2169 key.offset = (u64)-1;
2170 dirid = key.objectid;
2171 }
2172 memmove(name, ptr, total_len);
2173 name[total_len] = '\0';
2174 ret = 0;
2175out:
2176 btrfs_free_path(path);
2177 return ret;
2178}
2179
2180static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2181 void __user *argp)
2182{
2183 struct btrfs_ioctl_ino_lookup_args *args;
2184 struct inode *inode;
2185 int ret;
2186
2187 if (!capable(CAP_SYS_ADMIN))
2188 return -EPERM;
2189
2190 args = memdup_user(argp, sizeof(*args));
2191 if (IS_ERR(args))
2192 return PTR_ERR(args);
2193
2194 inode = file_inode(file);
2195
2196 if (args->treeid == 0)
2197 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2198
2199 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2200 args->treeid, args->objectid,
2201 args->name);
2202
2203 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2204 ret = -EFAULT;
2205
2206 kfree(args);
2207 return ret;
2208}
2209
2210static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2211 void __user *arg)
2212{
2213 struct dentry *parent = file->f_path.dentry;
2214 struct dentry *dentry;
2215 struct inode *dir = parent->d_inode;
2216 struct inode *inode;
2217 struct btrfs_root *root = BTRFS_I(dir)->root;
2218 struct btrfs_root *dest = NULL;
2219 struct btrfs_ioctl_vol_args *vol_args;
2220 struct btrfs_trans_handle *trans;
2221 struct btrfs_block_rsv block_rsv;
2222 u64 qgroup_reserved;
2223 int namelen;
2224 int ret;
2225 int err = 0;
2226
2227 vol_args = memdup_user(arg, sizeof(*vol_args));
2228 if (IS_ERR(vol_args))
2229 return PTR_ERR(vol_args);
2230
2231 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2232 namelen = strlen(vol_args->name);
2233 if (strchr(vol_args->name, '/') ||
2234 strncmp(vol_args->name, "..", namelen) == 0) {
2235 err = -EINVAL;
2236 goto out;
2237 }
2238
2239 err = mnt_want_write_file(file);
2240 if (err)
2241 goto out;
2242
2243 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2244 if (err == -EINTR)
2245 goto out_drop_write;
2246 dentry = lookup_one_len(vol_args->name, parent, namelen);
2247 if (IS_ERR(dentry)) {
2248 err = PTR_ERR(dentry);
2249 goto out_unlock_dir;
2250 }
2251
2252 if (!dentry->d_inode) {
2253 err = -ENOENT;
2254 goto out_dput;
2255 }
2256
2257 inode = dentry->d_inode;
2258 dest = BTRFS_I(inode)->root;
2259 if (!capable(CAP_SYS_ADMIN)) {
2260 /*
2261 * Regular user. Only allow this with a special mount
2262 * option, when the user has write+exec access to the
2263 * subvol root, and when rmdir(2) would have been
2264 * allowed.
2265 *
2266 * Note that this is _not_ check that the subvol is
2267 * empty or doesn't contain data that we wouldn't
2268 * otherwise be able to delete.
2269 *
2270 * Users who want to delete empty subvols should try
2271 * rmdir(2).
2272 */
2273 err = -EPERM;
2274 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2275 goto out_dput;
2276
2277 /*
2278 * Do not allow deletion if the parent dir is the same
2279 * as the dir to be deleted. That means the ioctl
2280 * must be called on the dentry referencing the root
2281 * of the subvol, not a random directory contained
2282 * within it.
2283 */
2284 err = -EINVAL;
2285 if (root == dest)
2286 goto out_dput;
2287
2288 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2289 if (err)
2290 goto out_dput;
2291 }
2292
2293 /* check if subvolume may be deleted by a user */
2294 err = btrfs_may_delete(dir, dentry, 1);
2295 if (err)
2296 goto out_dput;
2297
2298 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2299 err = -EINVAL;
2300 goto out_dput;
2301 }
2302
2303 mutex_lock(&inode->i_mutex);
2304 err = d_invalidate(dentry);
2305 if (err)
2306 goto out_unlock;
2307
2308 down_write(&root->fs_info->subvol_sem);
2309
2310 err = may_destroy_subvol(dest);
2311 if (err)
2312 goto out_up_write;
2313
2314 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2315 /*
2316 * One for dir inode, two for dir entries, two for root
2317 * ref/backref.
2318 */
2319 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2320 5, &qgroup_reserved, true);
2321 if (err)
2322 goto out_up_write;
2323
2324 trans = btrfs_start_transaction(root, 0);
2325 if (IS_ERR(trans)) {
2326 err = PTR_ERR(trans);
2327 goto out_release;
2328 }
2329 trans->block_rsv = &block_rsv;
2330 trans->bytes_reserved = block_rsv.size;
2331
2332 ret = btrfs_unlink_subvol(trans, root, dir,
2333 dest->root_key.objectid,
2334 dentry->d_name.name,
2335 dentry->d_name.len);
2336 if (ret) {
2337 err = ret;
2338 btrfs_abort_transaction(trans, root, ret);
2339 goto out_end_trans;
2340 }
2341
2342 btrfs_record_root_in_trans(trans, dest);
2343
2344 memset(&dest->root_item.drop_progress, 0,
2345 sizeof(dest->root_item.drop_progress));
2346 dest->root_item.drop_level = 0;
2347 btrfs_set_root_refs(&dest->root_item, 0);
2348
2349 if (!xchg(&dest->orphan_item_inserted, 1)) {
2350 ret = btrfs_insert_orphan_item(trans,
2351 root->fs_info->tree_root,
2352 dest->root_key.objectid);
2353 if (ret) {
2354 btrfs_abort_transaction(trans, root, ret);
2355 err = ret;
2356 goto out_end_trans;
2357 }
2358 }
2359
2360 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2361 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2362 dest->root_key.objectid);
2363 if (ret && ret != -ENOENT) {
2364 btrfs_abort_transaction(trans, root, ret);
2365 err = ret;
2366 goto out_end_trans;
2367 }
2368 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2369 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2370 dest->root_item.received_uuid,
2371 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2372 dest->root_key.objectid);
2373 if (ret && ret != -ENOENT) {
2374 btrfs_abort_transaction(trans, root, ret);
2375 err = ret;
2376 goto out_end_trans;
2377 }
2378 }
2379
2380out_end_trans:
2381 trans->block_rsv = NULL;
2382 trans->bytes_reserved = 0;
2383 ret = btrfs_end_transaction(trans, root);
2384 if (ret && !err)
2385 err = ret;
2386 inode->i_flags |= S_DEAD;
2387out_release:
2388 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2389out_up_write:
2390 up_write(&root->fs_info->subvol_sem);
2391out_unlock:
2392 mutex_unlock(&inode->i_mutex);
2393 if (!err) {
2394 shrink_dcache_sb(root->fs_info->sb);
2395 btrfs_invalidate_inodes(dest);
2396 d_delete(dentry);
2397
2398 /* the last ref */
2399 if (dest->cache_inode) {
2400 iput(dest->cache_inode);
2401 dest->cache_inode = NULL;
2402 }
2403 }
2404out_dput:
2405 dput(dentry);
2406out_unlock_dir:
2407 mutex_unlock(&dir->i_mutex);
2408out_drop_write:
2409 mnt_drop_write_file(file);
2410out:
2411 kfree(vol_args);
2412 return err;
2413}
2414
2415static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2416{
2417 struct inode *inode = file_inode(file);
2418 struct btrfs_root *root = BTRFS_I(inode)->root;
2419 struct btrfs_ioctl_defrag_range_args *range;
2420 int ret;
2421
2422 ret = mnt_want_write_file(file);
2423 if (ret)
2424 return ret;
2425
2426 if (btrfs_root_readonly(root)) {
2427 ret = -EROFS;
2428 goto out;
2429 }
2430
2431 switch (inode->i_mode & S_IFMT) {
2432 case S_IFDIR:
2433 if (!capable(CAP_SYS_ADMIN)) {
2434 ret = -EPERM;
2435 goto out;
2436 }
2437 ret = btrfs_defrag_root(root);
2438 if (ret)
2439 goto out;
2440 ret = btrfs_defrag_root(root->fs_info->extent_root);
2441 break;
2442 case S_IFREG:
2443 if (!(file->f_mode & FMODE_WRITE)) {
2444 ret = -EINVAL;
2445 goto out;
2446 }
2447
2448 range = kzalloc(sizeof(*range), GFP_KERNEL);
2449 if (!range) {
2450 ret = -ENOMEM;
2451 goto out;
2452 }
2453
2454 if (argp) {
2455 if (copy_from_user(range, argp,
2456 sizeof(*range))) {
2457 ret = -EFAULT;
2458 kfree(range);
2459 goto out;
2460 }
2461 /* compression requires us to start the IO */
2462 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2463 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2464 range->extent_thresh = (u32)-1;
2465 }
2466 } else {
2467 /* the rest are all set to zero by kzalloc */
2468 range->len = (u64)-1;
2469 }
2470 ret = btrfs_defrag_file(file_inode(file), file,
2471 range, 0, 0);
2472 if (ret > 0)
2473 ret = 0;
2474 kfree(range);
2475 break;
2476 default:
2477 ret = -EINVAL;
2478 }
2479out:
2480 mnt_drop_write_file(file);
2481 return ret;
2482}
2483
2484static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2485{
2486 struct btrfs_ioctl_vol_args *vol_args;
2487 int ret;
2488
2489 if (!capable(CAP_SYS_ADMIN))
2490 return -EPERM;
2491
2492 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2493 1)) {
2494 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2495 }
2496
2497 mutex_lock(&root->fs_info->volume_mutex);
2498 vol_args = memdup_user(arg, sizeof(*vol_args));
2499 if (IS_ERR(vol_args)) {
2500 ret = PTR_ERR(vol_args);
2501 goto out;
2502 }
2503
2504 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2505 ret = btrfs_init_new_device(root, vol_args->name);
2506
2507 kfree(vol_args);
2508out:
2509 mutex_unlock(&root->fs_info->volume_mutex);
2510 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2511 return ret;
2512}
2513
2514static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2515{
2516 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2517 struct btrfs_ioctl_vol_args *vol_args;
2518 int ret;
2519
2520 if (!capable(CAP_SYS_ADMIN))
2521 return -EPERM;
2522
2523 ret = mnt_want_write_file(file);
2524 if (ret)
2525 return ret;
2526
2527 vol_args = memdup_user(arg, sizeof(*vol_args));
2528 if (IS_ERR(vol_args)) {
2529 ret = PTR_ERR(vol_args);
2530 goto out;
2531 }
2532
2533 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2534
2535 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2536 1)) {
2537 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2538 goto out;
2539 }
2540
2541 mutex_lock(&root->fs_info->volume_mutex);
2542 ret = btrfs_rm_device(root, vol_args->name);
2543 mutex_unlock(&root->fs_info->volume_mutex);
2544 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2545
2546out:
2547 kfree(vol_args);
2548 mnt_drop_write_file(file);
2549 return ret;
2550}
2551
2552static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2553{
2554 struct btrfs_ioctl_fs_info_args *fi_args;
2555 struct btrfs_device *device;
2556 struct btrfs_device *next;
2557 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2558 int ret = 0;
2559
2560 if (!capable(CAP_SYS_ADMIN))
2561 return -EPERM;
2562
2563 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2564 if (!fi_args)
2565 return -ENOMEM;
2566
2567 mutex_lock(&fs_devices->device_list_mutex);
2568 fi_args->num_devices = fs_devices->num_devices;
2569 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2570
2571 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2572 if (device->devid > fi_args->max_id)
2573 fi_args->max_id = device->devid;
2574 }
2575 mutex_unlock(&fs_devices->device_list_mutex);
2576
2577 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2578 ret = -EFAULT;
2579
2580 kfree(fi_args);
2581 return ret;
2582}
2583
2584static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2585{
2586 struct btrfs_ioctl_dev_info_args *di_args;
2587 struct btrfs_device *dev;
2588 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2589 int ret = 0;
2590 char *s_uuid = NULL;
2591
2592 if (!capable(CAP_SYS_ADMIN))
2593 return -EPERM;
2594
2595 di_args = memdup_user(arg, sizeof(*di_args));
2596 if (IS_ERR(di_args))
2597 return PTR_ERR(di_args);
2598
2599 if (!btrfs_is_empty_uuid(di_args->uuid))
2600 s_uuid = di_args->uuid;
2601
2602 mutex_lock(&fs_devices->device_list_mutex);
2603 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2604
2605 if (!dev) {
2606 ret = -ENODEV;
2607 goto out;
2608 }
2609
2610 di_args->devid = dev->devid;
2611 di_args->bytes_used = dev->bytes_used;
2612 di_args->total_bytes = dev->total_bytes;
2613 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2614 if (dev->name) {
2615 struct rcu_string *name;
2616
2617 rcu_read_lock();
2618 name = rcu_dereference(dev->name);
2619 strncpy(di_args->path, name->str, sizeof(di_args->path));
2620 rcu_read_unlock();
2621 di_args->path[sizeof(di_args->path) - 1] = 0;
2622 } else {
2623 di_args->path[0] = '\0';
2624 }
2625
2626out:
2627 mutex_unlock(&fs_devices->device_list_mutex);
2628 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2629 ret = -EFAULT;
2630
2631 kfree(di_args);
2632 return ret;
2633}
2634
2635static struct page *extent_same_get_page(struct inode *inode, u64 off)
2636{
2637 struct page *page;
2638 pgoff_t index;
2639 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2640
2641 index = off >> PAGE_CACHE_SHIFT;
2642
2643 page = grab_cache_page(inode->i_mapping, index);
2644 if (!page)
2645 return NULL;
2646
2647 if (!PageUptodate(page)) {
2648 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2649 0))
2650 return NULL;
2651 lock_page(page);
2652 if (!PageUptodate(page)) {
2653 unlock_page(page);
2654 page_cache_release(page);
2655 return NULL;
2656 }
2657 }
2658 unlock_page(page);
2659
2660 return page;
2661}
2662
2663static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2664{
2665 /* do any pending delalloc/csum calc on src, one way or
2666 another, and lock file content */
2667 while (1) {
2668 struct btrfs_ordered_extent *ordered;
2669 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2670 ordered = btrfs_lookup_first_ordered_extent(inode,
2671 off + len - 1);
2672 if (!ordered &&
2673 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2674 off + len - 1, EXTENT_DELALLOC, 0, NULL))
2675 break;
2676 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2677 if (ordered)
2678 btrfs_put_ordered_extent(ordered);
2679 btrfs_wait_ordered_range(inode, off, len);
2680 }
2681}
2682
2683static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2684 struct inode *inode2, u64 loff2, u64 len)
2685{
2686 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2687 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2688
2689 mutex_unlock(&inode1->i_mutex);
2690 mutex_unlock(&inode2->i_mutex);
2691}
2692
2693static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2694 struct inode *inode2, u64 loff2, u64 len)
2695{
2696 if (inode1 < inode2) {
2697 swap(inode1, inode2);
2698 swap(loff1, loff2);
2699 }
2700
2701 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2702 lock_extent_range(inode1, loff1, len);
2703 if (inode1 != inode2) {
2704 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2705 lock_extent_range(inode2, loff2, len);
2706 }
2707}
2708
2709static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2710 u64 dst_loff, u64 len)
2711{
2712 int ret = 0;
2713 struct page *src_page, *dst_page;
2714 unsigned int cmp_len = PAGE_CACHE_SIZE;
2715 void *addr, *dst_addr;
2716
2717 while (len) {
2718 if (len < PAGE_CACHE_SIZE)
2719 cmp_len = len;
2720
2721 src_page = extent_same_get_page(src, loff);
2722 if (!src_page)
2723 return -EINVAL;
2724 dst_page = extent_same_get_page(dst, dst_loff);
2725 if (!dst_page) {
2726 page_cache_release(src_page);
2727 return -EINVAL;
2728 }
2729 addr = kmap_atomic(src_page);
2730 dst_addr = kmap_atomic(dst_page);
2731
2732 flush_dcache_page(src_page);
2733 flush_dcache_page(dst_page);
2734
2735 if (memcmp(addr, dst_addr, cmp_len))
2736 ret = BTRFS_SAME_DATA_DIFFERS;
2737
2738 kunmap_atomic(addr);
2739 kunmap_atomic(dst_addr);
2740 page_cache_release(src_page);
2741 page_cache_release(dst_page);
2742
2743 if (ret)
2744 break;
2745
2746 loff += cmp_len;
2747 dst_loff += cmp_len;
2748 len -= cmp_len;
2749 }
2750
2751 return ret;
2752}
2753
2754static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2755{
2756 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2757
2758 if (off + len > inode->i_size || off + len < off)
2759 return -EINVAL;
2760 /* Check that we are block aligned - btrfs_clone() requires this */
2761 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2762 return -EINVAL;
2763
2764 return 0;
2765}
2766
2767static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2768 struct inode *dst, u64 dst_loff)
2769{
2770 int ret;
2771
2772 /*
2773 * btrfs_clone() can't handle extents in the same file
2774 * yet. Once that works, we can drop this check and replace it
2775 * with a check for the same inode, but overlapping extents.
2776 */
2777 if (src == dst)
2778 return -EINVAL;
2779
2780 btrfs_double_lock(src, loff, dst, dst_loff, len);
2781
2782 ret = extent_same_check_offsets(src, loff, len);
2783 if (ret)
2784 goto out_unlock;
2785
2786 ret = extent_same_check_offsets(dst, dst_loff, len);
2787 if (ret)
2788 goto out_unlock;
2789
2790 /* don't make the dst file partly checksummed */
2791 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2792 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2793 ret = -EINVAL;
2794 goto out_unlock;
2795 }
2796
2797 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2798 if (ret == 0)
2799 ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2800
2801out_unlock:
2802 btrfs_double_unlock(src, loff, dst, dst_loff, len);
2803
2804 return ret;
2805}
2806
2807#define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2808
2809static long btrfs_ioctl_file_extent_same(struct file *file,
2810 struct btrfs_ioctl_same_args __user *argp)
2811{
2812 struct btrfs_ioctl_same_args *same;
2813 struct btrfs_ioctl_same_extent_info *info;
2814 struct inode *src = file_inode(file);
2815 u64 off;
2816 u64 len;
2817 int i;
2818 int ret;
2819 unsigned long size;
2820 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2821 bool is_admin = capable(CAP_SYS_ADMIN);
2822 u16 count;
2823
2824 if (!(file->f_mode & FMODE_READ))
2825 return -EINVAL;
2826
2827 ret = mnt_want_write_file(file);
2828 if (ret)
2829 return ret;
2830
2831 if (get_user(count, &argp->dest_count)) {
2832 ret = -EFAULT;
2833 goto out;
2834 }
2835
2836 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2837
2838 same = memdup_user(argp, size);
2839
2840 if (IS_ERR(same)) {
2841 ret = PTR_ERR(same);
2842 goto out;
2843 }
2844
2845 off = same->logical_offset;
2846 len = same->length;
2847
2848 /*
2849 * Limit the total length we will dedupe for each operation.
2850 * This is intended to bound the total time spent in this
2851 * ioctl to something sane.
2852 */
2853 if (len > BTRFS_MAX_DEDUPE_LEN)
2854 len = BTRFS_MAX_DEDUPE_LEN;
2855
2856 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2857 /*
2858 * Btrfs does not support blocksize < page_size. As a
2859 * result, btrfs_cmp_data() won't correctly handle
2860 * this situation without an update.
2861 */
2862 ret = -EINVAL;
2863 goto out;
2864 }
2865
2866 ret = -EISDIR;
2867 if (S_ISDIR(src->i_mode))
2868 goto out;
2869
2870 ret = -EACCES;
2871 if (!S_ISREG(src->i_mode))
2872 goto out;
2873
2874 /* pre-format output fields to sane values */
2875 for (i = 0; i < count; i++) {
2876 same->info[i].bytes_deduped = 0ULL;
2877 same->info[i].status = 0;
2878 }
2879
2880 for (i = 0, info = same->info; i < count; i++, info++) {
2881 struct inode *dst;
2882 struct fd dst_file = fdget(info->fd);
2883 if (!dst_file.file) {
2884 info->status = -EBADF;
2885 continue;
2886 }
2887 dst = file_inode(dst_file.file);
2888
2889 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2890 info->status = -EINVAL;
2891 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2892 info->status = -EXDEV;
2893 } else if (S_ISDIR(dst->i_mode)) {
2894 info->status = -EISDIR;
2895 } else if (!S_ISREG(dst->i_mode)) {
2896 info->status = -EACCES;
2897 } else {
2898 info->status = btrfs_extent_same(src, off, len, dst,
2899 info->logical_offset);
2900 if (info->status == 0)
2901 info->bytes_deduped += len;
2902 }
2903 fdput(dst_file);
2904 }
2905
2906 ret = copy_to_user(argp, same, size);
2907 if (ret)
2908 ret = -EFAULT;
2909
2910out:
2911 mnt_drop_write_file(file);
2912 return ret;
2913}
2914
2915/**
2916 * btrfs_clone() - clone a range from inode file to another
2917 *
2918 * @src: Inode to clone from
2919 * @inode: Inode to clone to
2920 * @off: Offset within source to start clone from
2921 * @olen: Original length, passed by user, of range to clone
2922 * @olen_aligned: Block-aligned value of olen, extent_same uses
2923 * identical values here
2924 * @destoff: Offset within @inode to start clone
2925 */
2926static int btrfs_clone(struct inode *src, struct inode *inode,
2927 u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2928{
2929 struct btrfs_root *root = BTRFS_I(inode)->root;
2930 struct btrfs_path *path = NULL;
2931 struct extent_buffer *leaf;
2932 struct btrfs_trans_handle *trans;
2933 char *buf = NULL;
2934 struct btrfs_key key;
2935 u32 nritems;
2936 int slot;
2937 int ret;
2938 u64 len = olen_aligned;
2939
2940 ret = -ENOMEM;
2941 buf = vmalloc(btrfs_level_size(root, 0));
2942 if (!buf)
2943 return ret;
2944
2945 path = btrfs_alloc_path();
2946 if (!path) {
2947 vfree(buf);
2948 return ret;
2949 }
2950
2951 path->reada = 2;
2952 /* clone data */
2953 key.objectid = btrfs_ino(src);
2954 key.type = BTRFS_EXTENT_DATA_KEY;
2955 key.offset = 0;
2956
2957 while (1) {
2958 /*
2959 * note the key will change type as we walk through the
2960 * tree.
2961 */
2962 path->leave_spinning = 1;
2963 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2964 0, 0);
2965 if (ret < 0)
2966 goto out;
2967
2968 nritems = btrfs_header_nritems(path->nodes[0]);
2969process_slot:
2970 if (path->slots[0] >= nritems) {
2971 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2972 if (ret < 0)
2973 goto out;
2974 if (ret > 0)
2975 break;
2976 nritems = btrfs_header_nritems(path->nodes[0]);
2977 }
2978 leaf = path->nodes[0];
2979 slot = path->slots[0];
2980
2981 btrfs_item_key_to_cpu(leaf, &key, slot);
2982 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2983 key.objectid != btrfs_ino(src))
2984 break;
2985
2986 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2987 struct btrfs_file_extent_item *extent;
2988 int type;
2989 u32 size;
2990 struct btrfs_key new_key;
2991 u64 disko = 0, diskl = 0;
2992 u64 datao = 0, datal = 0;
2993 u8 comp;
2994 u64 endoff;
2995
2996 extent = btrfs_item_ptr(leaf, slot,
2997 struct btrfs_file_extent_item);
2998 comp = btrfs_file_extent_compression(leaf, extent);
2999 type = btrfs_file_extent_type(leaf, extent);
3000 if (type == BTRFS_FILE_EXTENT_REG ||
3001 type == BTRFS_FILE_EXTENT_PREALLOC) {
3002 disko = btrfs_file_extent_disk_bytenr(leaf,
3003 extent);
3004 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3005 extent);
3006 datao = btrfs_file_extent_offset(leaf, extent);
3007 datal = btrfs_file_extent_num_bytes(leaf,
3008 extent);
3009 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3010 /* take upper bound, may be compressed */
3011 datal = btrfs_file_extent_ram_bytes(leaf,
3012 extent);
3013 }
3014
3015 if (key.offset + datal <= off ||
3016 key.offset >= off + len - 1) {
3017 path->slots[0]++;
3018 goto process_slot;
3019 }
3020
3021 size = btrfs_item_size_nr(leaf, slot);
3022 read_extent_buffer(leaf, buf,
3023 btrfs_item_ptr_offset(leaf, slot),
3024 size);
3025
3026 btrfs_release_path(path);
3027 path->leave_spinning = 0;
3028
3029 memcpy(&new_key, &key, sizeof(new_key));
3030 new_key.objectid = btrfs_ino(inode);
3031 if (off <= key.offset)
3032 new_key.offset = key.offset + destoff - off;
3033 else
3034 new_key.offset = destoff;
3035
3036 /*
3037 * 1 - adjusting old extent (we may have to split it)
3038 * 1 - add new extent
3039 * 1 - inode update
3040 */
3041 trans = btrfs_start_transaction(root, 3);
3042 if (IS_ERR(trans)) {
3043 ret = PTR_ERR(trans);
3044 goto out;
3045 }
3046
3047 if (type == BTRFS_FILE_EXTENT_REG ||
3048 type == BTRFS_FILE_EXTENT_PREALLOC) {
3049 /*
3050 * a | --- range to clone ---| b
3051 * | ------------- extent ------------- |
3052 */
3053
3054 /* substract range b */
3055 if (key.offset + datal > off + len)
3056 datal = off + len - key.offset;
3057
3058 /* substract range a */
3059 if (off > key.offset) {
3060 datao += off - key.offset;
3061 datal -= off - key.offset;
3062 }
3063
3064 ret = btrfs_drop_extents(trans, root, inode,
3065 new_key.offset,
3066 new_key.offset + datal,
3067 1);
3068 if (ret) {
3069 if (ret != -EOPNOTSUPP)
3070 btrfs_abort_transaction(trans,
3071 root, ret);
3072 btrfs_end_transaction(trans, root);
3073 goto out;
3074 }
3075
3076 ret = btrfs_insert_empty_item(trans, root, path,
3077 &new_key, size);
3078 if (ret) {
3079 btrfs_abort_transaction(trans, root,
3080 ret);
3081 btrfs_end_transaction(trans, root);
3082 goto out;
3083 }
3084
3085 leaf = path->nodes[0];
3086 slot = path->slots[0];
3087 write_extent_buffer(leaf, buf,
3088 btrfs_item_ptr_offset(leaf, slot),
3089 size);
3090
3091 extent = btrfs_item_ptr(leaf, slot,
3092 struct btrfs_file_extent_item);
3093
3094 /* disko == 0 means it's a hole */
3095 if (!disko)
3096 datao = 0;
3097
3098 btrfs_set_file_extent_offset(leaf, extent,
3099 datao);
3100 btrfs_set_file_extent_num_bytes(leaf, extent,
3101 datal);
3102 if (disko) {
3103 inode_add_bytes(inode, datal);
3104 ret = btrfs_inc_extent_ref(trans, root,
3105 disko, diskl, 0,
3106 root->root_key.objectid,
3107 btrfs_ino(inode),
3108 new_key.offset - datao,
3109 0);
3110 if (ret) {
3111 btrfs_abort_transaction(trans,
3112 root,
3113 ret);
3114 btrfs_end_transaction(trans,
3115 root);
3116 goto out;
3117
3118 }
3119 }
3120 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3121 u64 skip = 0;
3122 u64 trim = 0;
3123 u64 aligned_end = 0;
3124
3125 if (off > key.offset) {
3126 skip = off - key.offset;
3127 new_key.offset += skip;
3128 }
3129
3130 if (key.offset + datal > off + len)
3131 trim = key.offset + datal - (off + len);
3132
3133 if (comp && (skip || trim)) {
3134 ret = -EINVAL;
3135 btrfs_end_transaction(trans, root);
3136 goto out;
3137 }
3138 size -= skip + trim;
3139 datal -= skip + trim;
3140
3141 aligned_end = ALIGN(new_key.offset + datal,
3142 root->sectorsize);
3143 ret = btrfs_drop_extents(trans, root, inode,
3144 new_key.offset,
3145 aligned_end,
3146 1);
3147 if (ret) {
3148 if (ret != -EOPNOTSUPP)
3149 btrfs_abort_transaction(trans,
3150 root, ret);
3151 btrfs_end_transaction(trans, root);
3152 goto out;
3153 }
3154
3155 ret = btrfs_insert_empty_item(trans, root, path,
3156 &new_key, size);
3157 if (ret) {
3158 btrfs_abort_transaction(trans, root,
3159 ret);
3160 btrfs_end_transaction(trans, root);
3161 goto out;
3162 }
3163
3164 if (skip) {
3165 u32 start =
3166 btrfs_file_extent_calc_inline_size(0);
3167 memmove(buf+start, buf+start+skip,
3168 datal);
3169 }
3170
3171 leaf = path->nodes[0];
3172 slot = path->slots[0];
3173 write_extent_buffer(leaf, buf,
3174 btrfs_item_ptr_offset(leaf, slot),
3175 size);
3176 inode_add_bytes(inode, datal);
3177 }
3178
3179 btrfs_mark_buffer_dirty(leaf);
3180 btrfs_release_path(path);
3181
3182 inode_inc_iversion(inode);
3183 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3184
3185 /*
3186 * we round up to the block size at eof when
3187 * determining which extents to clone above,
3188 * but shouldn't round up the file size
3189 */
3190 endoff = new_key.offset + datal;
3191 if (endoff > destoff+olen)
3192 endoff = destoff+olen;
3193 if (endoff > inode->i_size)
3194 btrfs_i_size_write(inode, endoff);
3195
3196 ret = btrfs_update_inode(trans, root, inode);
3197 if (ret) {
3198 btrfs_abort_transaction(trans, root, ret);
3199 btrfs_end_transaction(trans, root);
3200 goto out;
3201 }
3202 ret = btrfs_end_transaction(trans, root);
3203 }
3204 btrfs_release_path(path);
3205 key.offset++;
3206 }
3207 ret = 0;
3208
3209out:
3210 btrfs_release_path(path);
3211 btrfs_free_path(path);
3212 vfree(buf);
3213 return ret;
3214}
3215
3216static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3217 u64 off, u64 olen, u64 destoff)
3218{
3219 struct inode *inode = file_inode(file);
3220 struct btrfs_root *root = BTRFS_I(inode)->root;
3221 struct fd src_file;
3222 struct inode *src;
3223 int ret;
3224 u64 len = olen;
3225 u64 bs = root->fs_info->sb->s_blocksize;
3226 int same_inode = 0;
3227
3228 /*
3229 * TODO:
3230 * - split compressed inline extents. annoying: we need to
3231 * decompress into destination's address_space (the file offset
3232 * may change, so source mapping won't do), then recompress (or
3233 * otherwise reinsert) a subrange.
3234 *
3235 * - split destination inode's inline extents. The inline extents can
3236 * be either compressed or non-compressed.
3237 */
3238
3239 /* the destination must be opened for writing */
3240 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3241 return -EINVAL;
3242
3243 if (btrfs_root_readonly(root))
3244 return -EROFS;
3245
3246 ret = mnt_want_write_file(file);
3247 if (ret)
3248 return ret;
3249
3250 src_file = fdget(srcfd);
3251 if (!src_file.file) {
3252 ret = -EBADF;
3253 goto out_drop_write;
3254 }
3255
3256 ret = -EXDEV;
3257 if (src_file.file->f_path.mnt != file->f_path.mnt)
3258 goto out_fput;
3259
3260 src = file_inode(src_file.file);
3261
3262 ret = -EINVAL;
3263 if (src == inode)
3264 same_inode = 1;
3265
3266 /* the src must be open for reading */
3267 if (!(src_file.file->f_mode & FMODE_READ))
3268 goto out_fput;
3269
3270 /* don't make the dst file partly checksummed */
3271 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3272 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3273 goto out_fput;
3274
3275 ret = -EISDIR;
3276 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3277 goto out_fput;
3278
3279 ret = -EXDEV;
3280 if (src->i_sb != inode->i_sb)
3281 goto out_fput;
3282
3283 if (!same_inode) {
3284 if (inode < src) {
3285 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3286 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3287 } else {
3288 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3289 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3290 }
3291 } else {
3292 mutex_lock(&src->i_mutex);
3293 }
3294
3295 /* determine range to clone */
3296 ret = -EINVAL;
3297 if (off + len > src->i_size || off + len < off)
3298 goto out_unlock;
3299 if (len == 0)
3300 olen = len = src->i_size - off;
3301 /* if we extend to eof, continue to block boundary */
3302 if (off + len == src->i_size)
3303 len = ALIGN(src->i_size, bs) - off;
3304
3305 /* verify the end result is block aligned */
3306 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3307 !IS_ALIGNED(destoff, bs))
3308 goto out_unlock;
3309
3310 /* verify if ranges are overlapped within the same file */
3311 if (same_inode) {
3312 if (destoff + len > off && destoff < off + len)
3313 goto out_unlock;
3314 }
3315
3316 if (destoff > inode->i_size) {
3317 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3318 if (ret)
3319 goto out_unlock;
3320 }
3321
3322 /* truncate page cache pages from target inode range */
3323 truncate_inode_pages_range(&inode->i_data, destoff,
3324 PAGE_CACHE_ALIGN(destoff + len) - 1);
3325
3326 lock_extent_range(src, off, len);
3327
3328 ret = btrfs_clone(src, inode, off, olen, len, destoff);
3329
3330 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3331out_unlock:
3332 if (!same_inode) {
3333 if (inode < src) {
3334 mutex_unlock(&src->i_mutex);
3335 mutex_unlock(&inode->i_mutex);
3336 } else {
3337 mutex_unlock(&inode->i_mutex);
3338 mutex_unlock(&src->i_mutex);
3339 }
3340 } else {
3341 mutex_unlock(&src->i_mutex);
3342 }
3343out_fput:
3344 fdput(src_file);
3345out_drop_write:
3346 mnt_drop_write_file(file);
3347 return ret;
3348}
3349
3350static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3351{
3352 struct btrfs_ioctl_clone_range_args args;
3353
3354 if (copy_from_user(&args, argp, sizeof(args)))
3355 return -EFAULT;
3356 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3357 args.src_length, args.dest_offset);
3358}
3359
3360/*
3361 * there are many ways the trans_start and trans_end ioctls can lead
3362 * to deadlocks. They should only be used by applications that
3363 * basically own the machine, and have a very in depth understanding
3364 * of all the possible deadlocks and enospc problems.
3365 */
3366static long btrfs_ioctl_trans_start(struct file *file)
3367{
3368 struct inode *inode = file_inode(file);
3369 struct btrfs_root *root = BTRFS_I(inode)->root;
3370 struct btrfs_trans_handle *trans;
3371 int ret;
3372
3373 ret = -EPERM;
3374 if (!capable(CAP_SYS_ADMIN))
3375 goto out;
3376
3377 ret = -EINPROGRESS;
3378 if (file->private_data)
3379 goto out;
3380
3381 ret = -EROFS;
3382 if (btrfs_root_readonly(root))
3383 goto out;
3384
3385 ret = mnt_want_write_file(file);
3386 if (ret)
3387 goto out;
3388
3389 atomic_inc(&root->fs_info->open_ioctl_trans);
3390
3391 ret = -ENOMEM;
3392 trans = btrfs_start_ioctl_transaction(root);
3393 if (IS_ERR(trans))
3394 goto out_drop;
3395
3396 file->private_data = trans;
3397 return 0;
3398
3399out_drop:
3400 atomic_dec(&root->fs_info->open_ioctl_trans);
3401 mnt_drop_write_file(file);
3402out:
3403 return ret;
3404}
3405
3406static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407{
3408 struct inode *inode = file_inode(file);
3409 struct btrfs_root *root = BTRFS_I(inode)->root;
3410 struct btrfs_root *new_root;
3411 struct btrfs_dir_item *di;
3412 struct btrfs_trans_handle *trans;
3413 struct btrfs_path *path;
3414 struct btrfs_key location;
3415 struct btrfs_disk_key disk_key;
3416 u64 objectid = 0;
3417 u64 dir_id;
3418 int ret;
3419
3420 if (!capable(CAP_SYS_ADMIN))
3421 return -EPERM;
3422
3423 ret = mnt_want_write_file(file);
3424 if (ret)
3425 return ret;
3426
3427 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428 ret = -EFAULT;
3429 goto out;
3430 }
3431
3432 if (!objectid)
3433 objectid = BTRFS_FS_TREE_OBJECTID;
3434
3435 location.objectid = objectid;
3436 location.type = BTRFS_ROOT_ITEM_KEY;
3437 location.offset = (u64)-1;
3438
3439 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3440 if (IS_ERR(new_root)) {
3441 ret = PTR_ERR(new_root);
3442 goto out;
3443 }
3444
3445 path = btrfs_alloc_path();
3446 if (!path) {
3447 ret = -ENOMEM;
3448 goto out;
3449 }
3450 path->leave_spinning = 1;
3451
3452 trans = btrfs_start_transaction(root, 1);
3453 if (IS_ERR(trans)) {
3454 btrfs_free_path(path);
3455 ret = PTR_ERR(trans);
3456 goto out;
3457 }
3458
3459 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3460 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3461 dir_id, "default", 7, 1);
3462 if (IS_ERR_OR_NULL(di)) {
3463 btrfs_free_path(path);
3464 btrfs_end_transaction(trans, root);
3465 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3466 "item, this isn't going to work");
3467 ret = -ENOENT;
3468 goto out;
3469 }
3470
3471 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3472 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3473 btrfs_mark_buffer_dirty(path->nodes[0]);
3474 btrfs_free_path(path);
3475
3476 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3477 btrfs_end_transaction(trans, root);
3478out:
3479 mnt_drop_write_file(file);
3480 return ret;
3481}
3482
3483void btrfs_get_block_group_info(struct list_head *groups_list,
3484 struct btrfs_ioctl_space_info *space)
3485{
3486 struct btrfs_block_group_cache *block_group;
3487
3488 space->total_bytes = 0;
3489 space->used_bytes = 0;
3490 space->flags = 0;
3491 list_for_each_entry(block_group, groups_list, list) {
3492 space->flags = block_group->flags;
3493 space->total_bytes += block_group->key.offset;
3494 space->used_bytes +=
3495 btrfs_block_group_used(&block_group->item);
3496 }
3497}
3498
3499static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3500{
3501 struct btrfs_ioctl_space_args space_args;
3502 struct btrfs_ioctl_space_info space;
3503 struct btrfs_ioctl_space_info *dest;
3504 struct btrfs_ioctl_space_info *dest_orig;
3505 struct btrfs_ioctl_space_info __user *user_dest;
3506 struct btrfs_space_info *info;
3507 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3508 BTRFS_BLOCK_GROUP_SYSTEM,
3509 BTRFS_BLOCK_GROUP_METADATA,
3510 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3511 int num_types = 4;
3512 int alloc_size;
3513 int ret = 0;
3514 u64 slot_count = 0;
3515 int i, c;
3516
3517 if (copy_from_user(&space_args,
3518 (struct btrfs_ioctl_space_args __user *)arg,
3519 sizeof(space_args)))
3520 return -EFAULT;
3521
3522 for (i = 0; i < num_types; i++) {
3523 struct btrfs_space_info *tmp;
3524
3525 info = NULL;
3526 rcu_read_lock();
3527 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3528 list) {
3529 if (tmp->flags == types[i]) {
3530 info = tmp;
3531 break;
3532 }
3533 }
3534 rcu_read_unlock();
3535
3536 if (!info)
3537 continue;
3538
3539 down_read(&info->groups_sem);
3540 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541 if (!list_empty(&info->block_groups[c]))
3542 slot_count++;
3543 }
3544 up_read(&info->groups_sem);
3545 }
3546
3547 /*
3548 * Global block reserve, exported as a space_info
3549 */
3550 slot_count++;
3551
3552 /* space_slots == 0 means they are asking for a count */
3553 if (space_args.space_slots == 0) {
3554 space_args.total_spaces = slot_count;
3555 goto out;
3556 }
3557
3558 slot_count = min_t(u64, space_args.space_slots, slot_count);
3559
3560 alloc_size = sizeof(*dest) * slot_count;
3561
3562 /* we generally have at most 6 or so space infos, one for each raid
3563 * level. So, a whole page should be more than enough for everyone
3564 */
3565 if (alloc_size > PAGE_CACHE_SIZE)
3566 return -ENOMEM;
3567
3568 space_args.total_spaces = 0;
3569 dest = kmalloc(alloc_size, GFP_NOFS);
3570 if (!dest)
3571 return -ENOMEM;
3572 dest_orig = dest;
3573
3574 /* now we have a buffer to copy into */
3575 for (i = 0; i < num_types; i++) {
3576 struct btrfs_space_info *tmp;
3577
3578 if (!slot_count)
3579 break;
3580
3581 info = NULL;
3582 rcu_read_lock();
3583 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3584 list) {
3585 if (tmp->flags == types[i]) {
3586 info = tmp;
3587 break;
3588 }
3589 }
3590 rcu_read_unlock();
3591
3592 if (!info)
3593 continue;
3594 down_read(&info->groups_sem);
3595 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3596 if (!list_empty(&info->block_groups[c])) {
3597 btrfs_get_block_group_info(
3598 &info->block_groups[c], &space);
3599 memcpy(dest, &space, sizeof(space));
3600 dest++;
3601 space_args.total_spaces++;
3602 slot_count--;
3603 }
3604 if (!slot_count)
3605 break;
3606 }
3607 up_read(&info->groups_sem);
3608 }
3609
3610 /*
3611 * Add global block reserve
3612 */
3613 if (slot_count) {
3614 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3615
3616 spin_lock(&block_rsv->lock);
3617 space.total_bytes = block_rsv->size;
3618 space.used_bytes = block_rsv->size - block_rsv->reserved;
3619 spin_unlock(&block_rsv->lock);
3620 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3621 memcpy(dest, &space, sizeof(space));
3622 space_args.total_spaces++;
3623 }
3624
3625 user_dest = (struct btrfs_ioctl_space_info __user *)
3626 (arg + sizeof(struct btrfs_ioctl_space_args));
3627
3628 if (copy_to_user(user_dest, dest_orig, alloc_size))
3629 ret = -EFAULT;
3630
3631 kfree(dest_orig);
3632out:
3633 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3634 ret = -EFAULT;
3635
3636 return ret;
3637}
3638
3639/*
3640 * there are many ways the trans_start and trans_end ioctls can lead
3641 * to deadlocks. They should only be used by applications that
3642 * basically own the machine, and have a very in depth understanding
3643 * of all the possible deadlocks and enospc problems.
3644 */
3645long btrfs_ioctl_trans_end(struct file *file)
3646{
3647 struct inode *inode = file_inode(file);
3648 struct btrfs_root *root = BTRFS_I(inode)->root;
3649 struct btrfs_trans_handle *trans;
3650
3651 trans = file->private_data;
3652 if (!trans)
3653 return -EINVAL;
3654 file->private_data = NULL;
3655
3656 btrfs_end_transaction(trans, root);
3657
3658 atomic_dec(&root->fs_info->open_ioctl_trans);
3659
3660 mnt_drop_write_file(file);
3661 return 0;
3662}
3663
3664static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3665 void __user *argp)
3666{
3667 struct btrfs_trans_handle *trans;
3668 u64 transid;
3669 int ret;
3670
3671 trans = btrfs_attach_transaction_barrier(root);
3672 if (IS_ERR(trans)) {
3673 if (PTR_ERR(trans) != -ENOENT)
3674 return PTR_ERR(trans);
3675
3676 /* No running transaction, don't bother */
3677 transid = root->fs_info->last_trans_committed;
3678 goto out;
3679 }
3680 transid = trans->transid;
3681 ret = btrfs_commit_transaction_async(trans, root, 0);
3682 if (ret) {
3683 btrfs_end_transaction(trans, root);
3684 return ret;
3685 }
3686out:
3687 if (argp)
3688 if (copy_to_user(argp, &transid, sizeof(transid)))
3689 return -EFAULT;
3690 return 0;
3691}
3692
3693static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3694 void __user *argp)
3695{
3696 u64 transid;
3697
3698 if (argp) {
3699 if (copy_from_user(&transid, argp, sizeof(transid)))
3700 return -EFAULT;
3701 } else {
3702 transid = 0; /* current trans */
3703 }
3704 return btrfs_wait_for_commit(root, transid);
3705}
3706
3707static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3708{
3709 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3710 struct btrfs_ioctl_scrub_args *sa;
3711 int ret;
3712
3713 if (!capable(CAP_SYS_ADMIN))
3714 return -EPERM;
3715
3716 sa = memdup_user(arg, sizeof(*sa));
3717 if (IS_ERR(sa))
3718 return PTR_ERR(sa);
3719
3720 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3721 ret = mnt_want_write_file(file);
3722 if (ret)
3723 goto out;
3724 }
3725
3726 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3727 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3728 0);
3729
3730 if (copy_to_user(arg, sa, sizeof(*sa)))
3731 ret = -EFAULT;
3732
3733 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3734 mnt_drop_write_file(file);
3735out:
3736 kfree(sa);
3737 return ret;
3738}
3739
3740static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3741{
3742 if (!capable(CAP_SYS_ADMIN))
3743 return -EPERM;
3744
3745 return btrfs_scrub_cancel(root->fs_info);
3746}
3747
3748static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3749 void __user *arg)
3750{
3751 struct btrfs_ioctl_scrub_args *sa;
3752 int ret;
3753
3754 if (!capable(CAP_SYS_ADMIN))
3755 return -EPERM;
3756
3757 sa = memdup_user(arg, sizeof(*sa));
3758 if (IS_ERR(sa))
3759 return PTR_ERR(sa);
3760
3761 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3762
3763 if (copy_to_user(arg, sa, sizeof(*sa)))
3764 ret = -EFAULT;
3765
3766 kfree(sa);
3767 return ret;
3768}
3769
3770static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3771 void __user *arg)
3772{
3773 struct btrfs_ioctl_get_dev_stats *sa;
3774 int ret;
3775
3776 sa = memdup_user(arg, sizeof(*sa));
3777 if (IS_ERR(sa))
3778 return PTR_ERR(sa);
3779
3780 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3781 kfree(sa);
3782 return -EPERM;
3783 }
3784
3785 ret = btrfs_get_dev_stats(root, sa);
3786
3787 if (copy_to_user(arg, sa, sizeof(*sa)))
3788 ret = -EFAULT;
3789
3790 kfree(sa);
3791 return ret;
3792}
3793
3794static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3795{
3796 struct btrfs_ioctl_dev_replace_args *p;
3797 int ret;
3798
3799 if (!capable(CAP_SYS_ADMIN))
3800 return -EPERM;
3801
3802 p = memdup_user(arg, sizeof(*p));
3803 if (IS_ERR(p))
3804 return PTR_ERR(p);
3805
3806 switch (p->cmd) {
3807 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3808 if (root->fs_info->sb->s_flags & MS_RDONLY) {
3809 ret = -EROFS;
3810 goto out;
3811 }
3812 if (atomic_xchg(
3813 &root->fs_info->mutually_exclusive_operation_running,
3814 1)) {
3815 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3816 } else {
3817 ret = btrfs_dev_replace_start(root, p);
3818 atomic_set(
3819 &root->fs_info->mutually_exclusive_operation_running,
3820 0);
3821 }
3822 break;
3823 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3824 btrfs_dev_replace_status(root->fs_info, p);
3825 ret = 0;
3826 break;
3827 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3828 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3829 break;
3830 default:
3831 ret = -EINVAL;
3832 break;
3833 }
3834
3835 if (copy_to_user(arg, p, sizeof(*p)))
3836 ret = -EFAULT;
3837out:
3838 kfree(p);
3839 return ret;
3840}
3841
3842static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843{
3844 int ret = 0;
3845 int i;
3846 u64 rel_ptr;
3847 int size;
3848 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849 struct inode_fs_paths *ipath = NULL;
3850 struct btrfs_path *path;
3851
3852 if (!capable(CAP_DAC_READ_SEARCH))
3853 return -EPERM;
3854
3855 path = btrfs_alloc_path();
3856 if (!path) {
3857 ret = -ENOMEM;
3858 goto out;
3859 }
3860
3861 ipa = memdup_user(arg, sizeof(*ipa));
3862 if (IS_ERR(ipa)) {
3863 ret = PTR_ERR(ipa);
3864 ipa = NULL;
3865 goto out;
3866 }
3867
3868 size = min_t(u32, ipa->size, 4096);
3869 ipath = init_ipath(size, root, path);
3870 if (IS_ERR(ipath)) {
3871 ret = PTR_ERR(ipath);
3872 ipath = NULL;
3873 goto out;
3874 }
3875
3876 ret = paths_from_inode(ipa->inum, ipath);
3877 if (ret < 0)
3878 goto out;
3879
3880 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881 rel_ptr = ipath->fspath->val[i] -
3882 (u64)(unsigned long)ipath->fspath->val;
3883 ipath->fspath->val[i] = rel_ptr;
3884 }
3885
3886 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3887 (void *)(unsigned long)ipath->fspath, size);
3888 if (ret) {
3889 ret = -EFAULT;
3890 goto out;
3891 }
3892
3893out:
3894 btrfs_free_path(path);
3895 free_ipath(ipath);
3896 kfree(ipa);
3897
3898 return ret;
3899}
3900
3901static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902{
3903 struct btrfs_data_container *inodes = ctx;
3904 const size_t c = 3 * sizeof(u64);
3905
3906 if (inodes->bytes_left >= c) {
3907 inodes->bytes_left -= c;
3908 inodes->val[inodes->elem_cnt] = inum;
3909 inodes->val[inodes->elem_cnt + 1] = offset;
3910 inodes->val[inodes->elem_cnt + 2] = root;
3911 inodes->elem_cnt += 3;
3912 } else {
3913 inodes->bytes_missing += c - inodes->bytes_left;
3914 inodes->bytes_left = 0;
3915 inodes->elem_missed += 3;
3916 }
3917
3918 return 0;
3919}
3920
3921static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3922 void __user *arg)
3923{
3924 int ret = 0;
3925 int size;
3926 struct btrfs_ioctl_logical_ino_args *loi;
3927 struct btrfs_data_container *inodes = NULL;
3928 struct btrfs_path *path = NULL;
3929
3930 if (!capable(CAP_SYS_ADMIN))
3931 return -EPERM;
3932
3933 loi = memdup_user(arg, sizeof(*loi));
3934 if (IS_ERR(loi)) {
3935 ret = PTR_ERR(loi);
3936 loi = NULL;
3937 goto out;
3938 }
3939
3940 path = btrfs_alloc_path();
3941 if (!path) {
3942 ret = -ENOMEM;
3943 goto out;
3944 }
3945
3946 size = min_t(u32, loi->size, 64 * 1024);
3947 inodes = init_data_container(size);
3948 if (IS_ERR(inodes)) {
3949 ret = PTR_ERR(inodes);
3950 inodes = NULL;
3951 goto out;
3952 }
3953
3954 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3955 build_ino_list, inodes);
3956 if (ret == -EINVAL)
3957 ret = -ENOENT;
3958 if (ret < 0)
3959 goto out;
3960
3961 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3962 (void *)(unsigned long)inodes, size);
3963 if (ret)
3964 ret = -EFAULT;
3965
3966out:
3967 btrfs_free_path(path);
3968 vfree(inodes);
3969 kfree(loi);
3970
3971 return ret;
3972}
3973
3974void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3975 struct btrfs_ioctl_balance_args *bargs)
3976{
3977 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3978
3979 bargs->flags = bctl->flags;
3980
3981 if (atomic_read(&fs_info->balance_running))
3982 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3983 if (atomic_read(&fs_info->balance_pause_req))
3984 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3985 if (atomic_read(&fs_info->balance_cancel_req))
3986 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3987
3988 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3989 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3990 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3991
3992 if (lock) {
3993 spin_lock(&fs_info->balance_lock);
3994 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3995 spin_unlock(&fs_info->balance_lock);
3996 } else {
3997 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3998 }
3999}
4000
4001static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4002{
4003 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4004 struct btrfs_fs_info *fs_info = root->fs_info;
4005 struct btrfs_ioctl_balance_args *bargs;
4006 struct btrfs_balance_control *bctl;
4007 bool need_unlock; /* for mut. excl. ops lock */
4008 int ret;
4009
4010 if (!capable(CAP_SYS_ADMIN))
4011 return -EPERM;
4012
4013 ret = mnt_want_write_file(file);
4014 if (ret)
4015 return ret;
4016
4017again:
4018 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4019 mutex_lock(&fs_info->volume_mutex);
4020 mutex_lock(&fs_info->balance_mutex);
4021 need_unlock = true;
4022 goto locked;
4023 }
4024
4025 /*
4026 * mut. excl. ops lock is locked. Three possibilites:
4027 * (1) some other op is running
4028 * (2) balance is running
4029 * (3) balance is paused -- special case (think resume)
4030 */
4031 mutex_lock(&fs_info->balance_mutex);
4032 if (fs_info->balance_ctl) {
4033 /* this is either (2) or (3) */
4034 if (!atomic_read(&fs_info->balance_running)) {
4035 mutex_unlock(&fs_info->balance_mutex);
4036 if (!mutex_trylock(&fs_info->volume_mutex))
4037 goto again;
4038 mutex_lock(&fs_info->balance_mutex);
4039
4040 if (fs_info->balance_ctl &&
4041 !atomic_read(&fs_info->balance_running)) {
4042 /* this is (3) */
4043 need_unlock = false;
4044 goto locked;
4045 }
4046
4047 mutex_unlock(&fs_info->balance_mutex);
4048 mutex_unlock(&fs_info->volume_mutex);
4049 goto again;
4050 } else {
4051 /* this is (2) */
4052 mutex_unlock(&fs_info->balance_mutex);
4053 ret = -EINPROGRESS;
4054 goto out;
4055 }
4056 } else {
4057 /* this is (1) */
4058 mutex_unlock(&fs_info->balance_mutex);
4059 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4060 goto out;
4061 }
4062
4063locked:
4064 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4065
4066 if (arg) {
4067 bargs = memdup_user(arg, sizeof(*bargs));
4068 if (IS_ERR(bargs)) {
4069 ret = PTR_ERR(bargs);
4070 goto out_unlock;
4071 }
4072
4073 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4074 if (!fs_info->balance_ctl) {
4075 ret = -ENOTCONN;
4076 goto out_bargs;
4077 }
4078
4079 bctl = fs_info->balance_ctl;
4080 spin_lock(&fs_info->balance_lock);
4081 bctl->flags |= BTRFS_BALANCE_RESUME;
4082 spin_unlock(&fs_info->balance_lock);
4083
4084 goto do_balance;
4085 }
4086 } else {
4087 bargs = NULL;
4088 }
4089
4090 if (fs_info->balance_ctl) {
4091 ret = -EINPROGRESS;
4092 goto out_bargs;
4093 }
4094
4095 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4096 if (!bctl) {
4097 ret = -ENOMEM;
4098 goto out_bargs;
4099 }
4100
4101 bctl->fs_info = fs_info;
4102 if (arg) {
4103 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4104 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4105 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4106
4107 bctl->flags = bargs->flags;
4108 } else {
4109 /* balance everything - no filters */
4110 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4111 }
4112
4113do_balance:
4114 /*
4115 * Ownership of bctl and mutually_exclusive_operation_running
4116 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4117 * or, if restriper was paused all the way until unmount, in
4118 * free_fs_info. mutually_exclusive_operation_running is
4119 * cleared in __cancel_balance.
4120 */
4121 need_unlock = false;
4122
4123 ret = btrfs_balance(bctl, bargs);
4124
4125 if (arg) {
4126 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4127 ret = -EFAULT;
4128 }
4129
4130out_bargs:
4131 kfree(bargs);
4132out_unlock:
4133 mutex_unlock(&fs_info->balance_mutex);
4134 mutex_unlock(&fs_info->volume_mutex);
4135 if (need_unlock)
4136 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4137out:
4138 mnt_drop_write_file(file);
4139 return ret;
4140}
4141
4142static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4143{
4144 if (!capable(CAP_SYS_ADMIN))
4145 return -EPERM;
4146
4147 switch (cmd) {
4148 case BTRFS_BALANCE_CTL_PAUSE:
4149 return btrfs_pause_balance(root->fs_info);
4150 case BTRFS_BALANCE_CTL_CANCEL:
4151 return btrfs_cancel_balance(root->fs_info);
4152 }
4153
4154 return -EINVAL;
4155}
4156
4157static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4158 void __user *arg)
4159{
4160 struct btrfs_fs_info *fs_info = root->fs_info;
4161 struct btrfs_ioctl_balance_args *bargs;
4162 int ret = 0;
4163
4164 if (!capable(CAP_SYS_ADMIN))
4165 return -EPERM;
4166
4167 mutex_lock(&fs_info->balance_mutex);
4168 if (!fs_info->balance_ctl) {
4169 ret = -ENOTCONN;
4170 goto out;
4171 }
4172
4173 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4174 if (!bargs) {
4175 ret = -ENOMEM;
4176 goto out;
4177 }
4178
4179 update_ioctl_balance_args(fs_info, 1, bargs);
4180
4181 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4182 ret = -EFAULT;
4183
4184 kfree(bargs);
4185out:
4186 mutex_unlock(&fs_info->balance_mutex);
4187 return ret;
4188}
4189
4190static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4191{
4192 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4193 struct btrfs_ioctl_quota_ctl_args *sa;
4194 struct btrfs_trans_handle *trans = NULL;
4195 int ret;
4196 int err;
4197
4198 if (!capable(CAP_SYS_ADMIN))
4199 return -EPERM;
4200
4201 ret = mnt_want_write_file(file);
4202 if (ret)
4203 return ret;
4204
4205 sa = memdup_user(arg, sizeof(*sa));
4206 if (IS_ERR(sa)) {
4207 ret = PTR_ERR(sa);
4208 goto drop_write;
4209 }
4210
4211 down_write(&root->fs_info->subvol_sem);
4212 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4213 if (IS_ERR(trans)) {
4214 ret = PTR_ERR(trans);
4215 goto out;
4216 }
4217
4218 switch (sa->cmd) {
4219 case BTRFS_QUOTA_CTL_ENABLE:
4220 ret = btrfs_quota_enable(trans, root->fs_info);
4221 break;
4222 case BTRFS_QUOTA_CTL_DISABLE:
4223 ret = btrfs_quota_disable(trans, root->fs_info);
4224 break;
4225 default:
4226 ret = -EINVAL;
4227 break;
4228 }
4229
4230 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4231 if (err && !ret)
4232 ret = err;
4233out:
4234 kfree(sa);
4235 up_write(&root->fs_info->subvol_sem);
4236drop_write:
4237 mnt_drop_write_file(file);
4238 return ret;
4239}
4240
4241static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4242{
4243 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4244 struct btrfs_ioctl_qgroup_assign_args *sa;
4245 struct btrfs_trans_handle *trans;
4246 int ret;
4247 int err;
4248
4249 if (!capable(CAP_SYS_ADMIN))
4250 return -EPERM;
4251
4252 ret = mnt_want_write_file(file);
4253 if (ret)
4254 return ret;
4255
4256 sa = memdup_user(arg, sizeof(*sa));
4257 if (IS_ERR(sa)) {
4258 ret = PTR_ERR(sa);
4259 goto drop_write;
4260 }
4261
4262 trans = btrfs_join_transaction(root);
4263 if (IS_ERR(trans)) {
4264 ret = PTR_ERR(trans);
4265 goto out;
4266 }
4267
4268 /* FIXME: check if the IDs really exist */
4269 if (sa->assign) {
4270 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4271 sa->src, sa->dst);
4272 } else {
4273 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4274 sa->src, sa->dst);
4275 }
4276
4277 err = btrfs_end_transaction(trans, root);
4278 if (err && !ret)
4279 ret = err;
4280
4281out:
4282 kfree(sa);
4283drop_write:
4284 mnt_drop_write_file(file);
4285 return ret;
4286}
4287
4288static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4289{
4290 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4291 struct btrfs_ioctl_qgroup_create_args *sa;
4292 struct btrfs_trans_handle *trans;
4293 int ret;
4294 int err;
4295
4296 if (!capable(CAP_SYS_ADMIN))
4297 return -EPERM;
4298
4299 ret = mnt_want_write_file(file);
4300 if (ret)
4301 return ret;
4302
4303 sa = memdup_user(arg, sizeof(*sa));
4304 if (IS_ERR(sa)) {
4305 ret = PTR_ERR(sa);
4306 goto drop_write;
4307 }
4308
4309 if (!sa->qgroupid) {
4310 ret = -EINVAL;
4311 goto out;
4312 }
4313
4314 trans = btrfs_join_transaction(root);
4315 if (IS_ERR(trans)) {
4316 ret = PTR_ERR(trans);
4317 goto out;
4318 }
4319
4320 /* FIXME: check if the IDs really exist */
4321 if (sa->create) {
4322 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4323 NULL);
4324 } else {
4325 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4326 }
4327
4328 err = btrfs_end_transaction(trans, root);
4329 if (err && !ret)
4330 ret = err;
4331
4332out:
4333 kfree(sa);
4334drop_write:
4335 mnt_drop_write_file(file);
4336 return ret;
4337}
4338
4339static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4340{
4341 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4342 struct btrfs_ioctl_qgroup_limit_args *sa;
4343 struct btrfs_trans_handle *trans;
4344 int ret;
4345 int err;
4346 u64 qgroupid;
4347
4348 if (!capable(CAP_SYS_ADMIN))
4349 return -EPERM;
4350
4351 ret = mnt_want_write_file(file);
4352 if (ret)
4353 return ret;
4354
4355 sa = memdup_user(arg, sizeof(*sa));
4356 if (IS_ERR(sa)) {
4357 ret = PTR_ERR(sa);
4358 goto drop_write;
4359 }
4360
4361 trans = btrfs_join_transaction(root);
4362 if (IS_ERR(trans)) {
4363 ret = PTR_ERR(trans);
4364 goto out;
4365 }
4366
4367 qgroupid = sa->qgroupid;
4368 if (!qgroupid) {
4369 /* take the current subvol as qgroup */
4370 qgroupid = root->root_key.objectid;
4371 }
4372
4373 /* FIXME: check if the IDs really exist */
4374 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4375
4376 err = btrfs_end_transaction(trans, root);
4377 if (err && !ret)
4378 ret = err;
4379
4380out:
4381 kfree(sa);
4382drop_write:
4383 mnt_drop_write_file(file);
4384 return ret;
4385}
4386
4387static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4388{
4389 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4390 struct btrfs_ioctl_quota_rescan_args *qsa;
4391 int ret;
4392
4393 if (!capable(CAP_SYS_ADMIN))
4394 return -EPERM;
4395
4396 ret = mnt_want_write_file(file);
4397 if (ret)
4398 return ret;
4399
4400 qsa = memdup_user(arg, sizeof(*qsa));
4401 if (IS_ERR(qsa)) {
4402 ret = PTR_ERR(qsa);
4403 goto drop_write;
4404 }
4405
4406 if (qsa->flags) {
4407 ret = -EINVAL;
4408 goto out;
4409 }
4410
4411 ret = btrfs_qgroup_rescan(root->fs_info);
4412
4413out:
4414 kfree(qsa);
4415drop_write:
4416 mnt_drop_write_file(file);
4417 return ret;
4418}
4419
4420static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4421{
4422 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4423 struct btrfs_ioctl_quota_rescan_args *qsa;
4424 int ret = 0;
4425
4426 if (!capable(CAP_SYS_ADMIN))
4427 return -EPERM;
4428
4429 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4430 if (!qsa)
4431 return -ENOMEM;
4432
4433 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4434 qsa->flags = 1;
4435 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4436 }
4437
4438 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4439 ret = -EFAULT;
4440
4441 kfree(qsa);
4442 return ret;
4443}
4444
4445static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4446{
4447 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4448
4449 if (!capable(CAP_SYS_ADMIN))
4450 return -EPERM;
4451
4452 return btrfs_qgroup_wait_for_completion(root->fs_info);
4453}
4454
4455static long _btrfs_ioctl_set_received_subvol(struct file *file,
4456 struct btrfs_ioctl_received_subvol_args *sa)
4457{
4458 struct inode *inode = file_inode(file);
4459 struct btrfs_root *root = BTRFS_I(inode)->root;
4460 struct btrfs_root_item *root_item = &root->root_item;
4461 struct btrfs_trans_handle *trans;
4462 struct timespec ct = CURRENT_TIME;
4463 int ret = 0;
4464 int received_uuid_changed;
4465
4466 if (!inode_owner_or_capable(inode))
4467 return -EPERM;
4468
4469 ret = mnt_want_write_file(file);
4470 if (ret < 0)
4471 return ret;
4472
4473 down_write(&root->fs_info->subvol_sem);
4474
4475 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4476 ret = -EINVAL;
4477 goto out;
4478 }
4479
4480 if (btrfs_root_readonly(root)) {
4481 ret = -EROFS;
4482 goto out;
4483 }
4484
4485 /*
4486 * 1 - root item
4487 * 2 - uuid items (received uuid + subvol uuid)
4488 */
4489 trans = btrfs_start_transaction(root, 3);
4490 if (IS_ERR(trans)) {
4491 ret = PTR_ERR(trans);
4492 trans = NULL;
4493 goto out;
4494 }
4495
4496 sa->rtransid = trans->transid;
4497 sa->rtime.sec = ct.tv_sec;
4498 sa->rtime.nsec = ct.tv_nsec;
4499
4500 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4501 BTRFS_UUID_SIZE);
4502 if (received_uuid_changed &&
4503 !btrfs_is_empty_uuid(root_item->received_uuid))
4504 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4505 root_item->received_uuid,
4506 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507 root->root_key.objectid);
4508 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4509 btrfs_set_root_stransid(root_item, sa->stransid);
4510 btrfs_set_root_rtransid(root_item, sa->rtransid);
4511 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4512 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4513 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4514 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4515
4516 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4517 &root->root_key, &root->root_item);
4518 if (ret < 0) {
4519 btrfs_end_transaction(trans, root);
4520 goto out;
4521 }
4522 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4523 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4524 sa->uuid,
4525 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4526 root->root_key.objectid);
4527 if (ret < 0 && ret != -EEXIST) {
4528 btrfs_abort_transaction(trans, root, ret);
4529 goto out;
4530 }
4531 }
4532 ret = btrfs_commit_transaction(trans, root);
4533 if (ret < 0) {
4534 btrfs_abort_transaction(trans, root, ret);
4535 goto out;
4536 }
4537
4538out:
4539 up_write(&root->fs_info->subvol_sem);
4540 mnt_drop_write_file(file);
4541 return ret;
4542}
4543
4544#ifdef CONFIG_64BIT
4545static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4546 void __user *arg)
4547{
4548 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4549 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4550 int ret = 0;
4551
4552 args32 = memdup_user(arg, sizeof(*args32));
4553 if (IS_ERR(args32)) {
4554 ret = PTR_ERR(args32);
4555 args32 = NULL;
4556 goto out;
4557 }
4558
4559 args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4560 if (!args64) {
4561 ret = -ENOMEM;
4562 goto out;
4563 }
4564
4565 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4566 args64->stransid = args32->stransid;
4567 args64->rtransid = args32->rtransid;
4568 args64->stime.sec = args32->stime.sec;
4569 args64->stime.nsec = args32->stime.nsec;
4570 args64->rtime.sec = args32->rtime.sec;
4571 args64->rtime.nsec = args32->rtime.nsec;
4572 args64->flags = args32->flags;
4573
4574 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4575 if (ret)
4576 goto out;
4577
4578 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4579 args32->stransid = args64->stransid;
4580 args32->rtransid = args64->rtransid;
4581 args32->stime.sec = args64->stime.sec;
4582 args32->stime.nsec = args64->stime.nsec;
4583 args32->rtime.sec = args64->rtime.sec;
4584 args32->rtime.nsec = args64->rtime.nsec;
4585 args32->flags = args64->flags;
4586
4587 ret = copy_to_user(arg, args32, sizeof(*args32));
4588 if (ret)
4589 ret = -EFAULT;
4590
4591out:
4592 kfree(args32);
4593 kfree(args64);
4594 return ret;
4595}
4596#endif
4597
4598static long btrfs_ioctl_set_received_subvol(struct file *file,
4599 void __user *arg)
4600{
4601 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4602 int ret = 0;
4603
4604 sa = memdup_user(arg, sizeof(*sa));
4605 if (IS_ERR(sa)) {
4606 ret = PTR_ERR(sa);
4607 sa = NULL;
4608 goto out;
4609 }
4610
4611 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4612
4613 if (ret)
4614 goto out;
4615
4616 ret = copy_to_user(arg, sa, sizeof(*sa));
4617 if (ret)
4618 ret = -EFAULT;
4619
4620out:
4621 kfree(sa);
4622 return ret;
4623}
4624
4625static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4626{
4627 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4628 size_t len;
4629 int ret;
4630 char label[BTRFS_LABEL_SIZE];
4631
4632 spin_lock(&root->fs_info->super_lock);
4633 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4634 spin_unlock(&root->fs_info->super_lock);
4635
4636 len = strnlen(label, BTRFS_LABEL_SIZE);
4637
4638 if (len == BTRFS_LABEL_SIZE) {
4639 btrfs_warn(root->fs_info,
4640 "label is too long, return the first %zu bytes", --len);
4641 }
4642
4643 ret = copy_to_user(arg, label, len);
4644
4645 return ret ? -EFAULT : 0;
4646}
4647
4648static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649{
4650 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4651 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4652 struct btrfs_trans_handle *trans;
4653 char label[BTRFS_LABEL_SIZE];
4654 int ret;
4655
4656 if (!capable(CAP_SYS_ADMIN))
4657 return -EPERM;
4658
4659 if (copy_from_user(label, arg, sizeof(label)))
4660 return -EFAULT;
4661
4662 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4663 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4664 BTRFS_LABEL_SIZE - 1);
4665 return -EINVAL;
4666 }
4667
4668 ret = mnt_want_write_file(file);
4669 if (ret)
4670 return ret;
4671
4672 trans = btrfs_start_transaction(root, 0);
4673 if (IS_ERR(trans)) {
4674 ret = PTR_ERR(trans);
4675 goto out_unlock;
4676 }
4677
4678 spin_lock(&root->fs_info->super_lock);
4679 strcpy(super_block->label, label);
4680 spin_unlock(&root->fs_info->super_lock);
4681 ret = btrfs_commit_transaction(trans, root);
4682
4683out_unlock:
4684 mnt_drop_write_file(file);
4685 return ret;
4686}
4687
4688#define INIT_FEATURE_FLAGS(suffix) \
4689 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4690 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4691 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4692
4693static int btrfs_ioctl_get_supported_features(struct file *file,
4694 void __user *arg)
4695{
4696 static struct btrfs_ioctl_feature_flags features[3] = {
4697 INIT_FEATURE_FLAGS(SUPP),
4698 INIT_FEATURE_FLAGS(SAFE_SET),
4699 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4700 };
4701
4702 if (copy_to_user(arg, &features, sizeof(features)))
4703 return -EFAULT;
4704
4705 return 0;
4706}
4707
4708static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4709{
4710 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4711 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4712 struct btrfs_ioctl_feature_flags features;
4713
4714 features.compat_flags = btrfs_super_compat_flags(super_block);
4715 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4716 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4717
4718 if (copy_to_user(arg, &features, sizeof(features)))
4719 return -EFAULT;
4720
4721 return 0;
4722}
4723
4724static int check_feature_bits(struct btrfs_root *root,
4725 enum btrfs_feature_set set,
4726 u64 change_mask, u64 flags, u64 supported_flags,
4727 u64 safe_set, u64 safe_clear)
4728{
4729 const char *type = btrfs_feature_set_names[set];
4730 char *names;
4731 u64 disallowed, unsupported;
4732 u64 set_mask = flags & change_mask;
4733 u64 clear_mask = ~flags & change_mask;
4734
4735 unsupported = set_mask & ~supported_flags;
4736 if (unsupported) {
4737 names = btrfs_printable_features(set, unsupported);
4738 if (names) {
4739 btrfs_warn(root->fs_info,
4740 "this kernel does not support the %s feature bit%s",
4741 names, strchr(names, ',') ? "s" : "");
4742 kfree(names);
4743 } else
4744 btrfs_warn(root->fs_info,
4745 "this kernel does not support %s bits 0x%llx",
4746 type, unsupported);
4747 return -EOPNOTSUPP;
4748 }
4749
4750 disallowed = set_mask & ~safe_set;
4751 if (disallowed) {
4752 names = btrfs_printable_features(set, disallowed);
4753 if (names) {
4754 btrfs_warn(root->fs_info,
4755 "can't set the %s feature bit%s while mounted",
4756 names, strchr(names, ',') ? "s" : "");
4757 kfree(names);
4758 } else
4759 btrfs_warn(root->fs_info,
4760 "can't set %s bits 0x%llx while mounted",
4761 type, disallowed);
4762 return -EPERM;
4763 }
4764
4765 disallowed = clear_mask & ~safe_clear;
4766 if (disallowed) {
4767 names = btrfs_printable_features(set, disallowed);
4768 if (names) {
4769 btrfs_warn(root->fs_info,
4770 "can't clear the %s feature bit%s while mounted",
4771 names, strchr(names, ',') ? "s" : "");
4772 kfree(names);
4773 } else
4774 btrfs_warn(root->fs_info,
4775 "can't clear %s bits 0x%llx while mounted",
4776 type, disallowed);
4777 return -EPERM;
4778 }
4779
4780 return 0;
4781}
4782
4783#define check_feature(root, change_mask, flags, mask_base) \
4784check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
4785 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4786 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4787 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4788
4789static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4790{
4791 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4792 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4793 struct btrfs_ioctl_feature_flags flags[2];
4794 struct btrfs_trans_handle *trans;
4795 u64 newflags;
4796 int ret;
4797
4798 if (!capable(CAP_SYS_ADMIN))
4799 return -EPERM;
4800
4801 if (copy_from_user(flags, arg, sizeof(flags)))
4802 return -EFAULT;
4803
4804 /* Nothing to do */
4805 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4806 !flags[0].incompat_flags)
4807 return 0;
4808
4809 ret = check_feature(root, flags[0].compat_flags,
4810 flags[1].compat_flags, COMPAT);
4811 if (ret)
4812 return ret;
4813
4814 ret = check_feature(root, flags[0].compat_ro_flags,
4815 flags[1].compat_ro_flags, COMPAT_RO);
4816 if (ret)
4817 return ret;
4818
4819 ret = check_feature(root, flags[0].incompat_flags,
4820 flags[1].incompat_flags, INCOMPAT);
4821 if (ret)
4822 return ret;
4823
4824 trans = btrfs_start_transaction(root, 0);
4825 if (IS_ERR(trans))
4826 return PTR_ERR(trans);
4827
4828 spin_lock(&root->fs_info->super_lock);
4829 newflags = btrfs_super_compat_flags(super_block);
4830 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4831 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4832 btrfs_set_super_compat_flags(super_block, newflags);
4833
4834 newflags = btrfs_super_compat_ro_flags(super_block);
4835 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4836 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4837 btrfs_set_super_compat_ro_flags(super_block, newflags);
4838
4839 newflags = btrfs_super_incompat_flags(super_block);
4840 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4841 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4842 btrfs_set_super_incompat_flags(super_block, newflags);
4843 spin_unlock(&root->fs_info->super_lock);
4844
4845 return btrfs_commit_transaction(trans, root);
4846}
4847
4848long btrfs_ioctl(struct file *file, unsigned int
4849 cmd, unsigned long arg)
4850{
4851 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4852 void __user *argp = (void __user *)arg;
4853
4854 switch (cmd) {
4855 case FS_IOC_GETFLAGS:
4856 return btrfs_ioctl_getflags(file, argp);
4857 case FS_IOC_SETFLAGS:
4858 return btrfs_ioctl_setflags(file, argp);
4859 case FS_IOC_GETVERSION:
4860 return btrfs_ioctl_getversion(file, argp);
4861 case FITRIM:
4862 return btrfs_ioctl_fitrim(file, argp);
4863 case BTRFS_IOC_SNAP_CREATE:
4864 return btrfs_ioctl_snap_create(file, argp, 0);
4865 case BTRFS_IOC_SNAP_CREATE_V2:
4866 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4867 case BTRFS_IOC_SUBVOL_CREATE:
4868 return btrfs_ioctl_snap_create(file, argp, 1);
4869 case BTRFS_IOC_SUBVOL_CREATE_V2:
4870 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4871 case BTRFS_IOC_SNAP_DESTROY:
4872 return btrfs_ioctl_snap_destroy(file, argp);
4873 case BTRFS_IOC_SUBVOL_GETFLAGS:
4874 return btrfs_ioctl_subvol_getflags(file, argp);
4875 case BTRFS_IOC_SUBVOL_SETFLAGS:
4876 return btrfs_ioctl_subvol_setflags(file, argp);
4877 case BTRFS_IOC_DEFAULT_SUBVOL:
4878 return btrfs_ioctl_default_subvol(file, argp);
4879 case BTRFS_IOC_DEFRAG:
4880 return btrfs_ioctl_defrag(file, NULL);
4881 case BTRFS_IOC_DEFRAG_RANGE:
4882 return btrfs_ioctl_defrag(file, argp);
4883 case BTRFS_IOC_RESIZE:
4884 return btrfs_ioctl_resize(file, argp);
4885 case BTRFS_IOC_ADD_DEV:
4886 return btrfs_ioctl_add_dev(root, argp);
4887 case BTRFS_IOC_RM_DEV:
4888 return btrfs_ioctl_rm_dev(file, argp);
4889 case BTRFS_IOC_FS_INFO:
4890 return btrfs_ioctl_fs_info(root, argp);
4891 case BTRFS_IOC_DEV_INFO:
4892 return btrfs_ioctl_dev_info(root, argp);
4893 case BTRFS_IOC_BALANCE:
4894 return btrfs_ioctl_balance(file, NULL);
4895 case BTRFS_IOC_CLONE:
4896 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4897 case BTRFS_IOC_CLONE_RANGE:
4898 return btrfs_ioctl_clone_range(file, argp);
4899 case BTRFS_IOC_TRANS_START:
4900 return btrfs_ioctl_trans_start(file);
4901 case BTRFS_IOC_TRANS_END:
4902 return btrfs_ioctl_trans_end(file);
4903 case BTRFS_IOC_TREE_SEARCH:
4904 return btrfs_ioctl_tree_search(file, argp);
4905 case BTRFS_IOC_INO_LOOKUP:
4906 return btrfs_ioctl_ino_lookup(file, argp);
4907 case BTRFS_IOC_INO_PATHS:
4908 return btrfs_ioctl_ino_to_path(root, argp);
4909 case BTRFS_IOC_LOGICAL_INO:
4910 return btrfs_ioctl_logical_to_ino(root, argp);
4911 case BTRFS_IOC_SPACE_INFO:
4912 return btrfs_ioctl_space_info(root, argp);
4913 case BTRFS_IOC_SYNC: {
4914 int ret;
4915
4916 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
4917 if (ret)
4918 return ret;
4919 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4920 return ret;
4921 }
4922 case BTRFS_IOC_START_SYNC:
4923 return btrfs_ioctl_start_sync(root, argp);
4924 case BTRFS_IOC_WAIT_SYNC:
4925 return btrfs_ioctl_wait_sync(root, argp);
4926 case BTRFS_IOC_SCRUB:
4927 return btrfs_ioctl_scrub(file, argp);
4928 case BTRFS_IOC_SCRUB_CANCEL:
4929 return btrfs_ioctl_scrub_cancel(root, argp);
4930 case BTRFS_IOC_SCRUB_PROGRESS:
4931 return btrfs_ioctl_scrub_progress(root, argp);
4932 case BTRFS_IOC_BALANCE_V2:
4933 return btrfs_ioctl_balance(file, argp);
4934 case BTRFS_IOC_BALANCE_CTL:
4935 return btrfs_ioctl_balance_ctl(root, arg);
4936 case BTRFS_IOC_BALANCE_PROGRESS:
4937 return btrfs_ioctl_balance_progress(root, argp);
4938 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4939 return btrfs_ioctl_set_received_subvol(file, argp);
4940#ifdef CONFIG_64BIT
4941 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4942 return btrfs_ioctl_set_received_subvol_32(file, argp);
4943#endif
4944 case BTRFS_IOC_SEND:
4945 return btrfs_ioctl_send(file, argp);
4946 case BTRFS_IOC_GET_DEV_STATS:
4947 return btrfs_ioctl_get_dev_stats(root, argp);
4948 case BTRFS_IOC_QUOTA_CTL:
4949 return btrfs_ioctl_quota_ctl(file, argp);
4950 case BTRFS_IOC_QGROUP_ASSIGN:
4951 return btrfs_ioctl_qgroup_assign(file, argp);
4952 case BTRFS_IOC_QGROUP_CREATE:
4953 return btrfs_ioctl_qgroup_create(file, argp);
4954 case BTRFS_IOC_QGROUP_LIMIT:
4955 return btrfs_ioctl_qgroup_limit(file, argp);
4956 case BTRFS_IOC_QUOTA_RESCAN:
4957 return btrfs_ioctl_quota_rescan(file, argp);
4958 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4959 return btrfs_ioctl_quota_rescan_status(file, argp);
4960 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4961 return btrfs_ioctl_quota_rescan_wait(file, argp);
4962 case BTRFS_IOC_DEV_REPLACE:
4963 return btrfs_ioctl_dev_replace(root, argp);
4964 case BTRFS_IOC_GET_FSLABEL:
4965 return btrfs_ioctl_get_fslabel(file, argp);
4966 case BTRFS_IOC_SET_FSLABEL:
4967 return btrfs_ioctl_set_fslabel(file, argp);
4968 case BTRFS_IOC_FILE_EXTENT_SAME:
4969 return btrfs_ioctl_file_extent_same(file, argp);
4970 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4971 return btrfs_ioctl_get_supported_features(file, argp);
4972 case BTRFS_IOC_GET_FEATURES:
4973 return btrfs_ioctl_get_features(file, argp);
4974 case BTRFS_IOC_SET_FEATURES:
4975 return btrfs_ioctl_set_features(file, argp);
4976 }
4977
4978 return -ENOTTY;
4979}