Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3
   4  Intel(R) 82576 Virtual Function Linux driver
   5  Copyright(c) 2009 - 2012 Intel Corporation.
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, see <http://www.gnu.org/licenses/>.
 
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/module.h>
  31#include <linux/types.h>
  32#include <linux/init.h>
  33#include <linux/pci.h>
  34#include <linux/vmalloc.h>
  35#include <linux/pagemap.h>
  36#include <linux/delay.h>
  37#include <linux/netdevice.h>
  38#include <linux/tcp.h>
  39#include <linux/ipv6.h>
  40#include <linux/slab.h>
  41#include <net/checksum.h>
  42#include <net/ip6_checksum.h>
  43#include <linux/mii.h>
  44#include <linux/ethtool.h>
  45#include <linux/if_vlan.h>
  46#include <linux/prefetch.h>
  47#include <linux/sctp.h>
  48
  49#include "igbvf.h"
  50
  51#define DRV_VERSION "2.4.0-k"
  52char igbvf_driver_name[] = "igbvf";
  53const char igbvf_driver_version[] = DRV_VERSION;
  54static const char igbvf_driver_string[] =
  55		  "Intel(R) Gigabit Virtual Function Network Driver";
  56static const char igbvf_copyright[] =
  57		  "Copyright (c) 2009 - 2012 Intel Corporation.";
  58
  59#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  60static int debug = -1;
  61module_param(debug, int, 0);
  62MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63
  64static int igbvf_poll(struct napi_struct *napi, int budget);
  65static void igbvf_reset(struct igbvf_adapter *);
  66static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  67static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  68
  69static struct igbvf_info igbvf_vf_info = {
  70	.mac		= e1000_vfadapt,
  71	.flags		= 0,
  72	.pba		= 10,
  73	.init_ops	= e1000_init_function_pointers_vf,
  74};
  75
  76static struct igbvf_info igbvf_i350_vf_info = {
  77	.mac		= e1000_vfadapt_i350,
  78	.flags		= 0,
  79	.pba		= 10,
  80	.init_ops	= e1000_init_function_pointers_vf,
  81};
  82
  83static const struct igbvf_info *igbvf_info_tbl[] = {
  84	[board_vf]	= &igbvf_vf_info,
  85	[board_i350_vf]	= &igbvf_i350_vf_info,
  86};
  87
  88/**
  89 * igbvf_desc_unused - calculate if we have unused descriptors
  90 * @rx_ring: address of receive ring structure
  91 **/
  92static int igbvf_desc_unused(struct igbvf_ring *ring)
  93{
  94	if (ring->next_to_clean > ring->next_to_use)
  95		return ring->next_to_clean - ring->next_to_use - 1;
  96
  97	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  98}
  99
 100/**
 101 * igbvf_receive_skb - helper function to handle Rx indications
 102 * @adapter: board private structure
 103 * @status: descriptor status field as written by hardware
 104 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 105 * @skb: pointer to sk_buff to be indicated to stack
 106 **/
 107static void igbvf_receive_skb(struct igbvf_adapter *adapter,
 108			      struct net_device *netdev,
 109			      struct sk_buff *skb,
 110			      u32 status, u16 vlan)
 111{
 112	u16 vid;
 113
 114	if (status & E1000_RXD_STAT_VP) {
 115		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
 116		    (status & E1000_RXDEXT_STATERR_LB))
 117			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 118		else
 119			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 120		if (test_bit(vid, adapter->active_vlans))
 121			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 122	}
 123
 124	napi_gro_receive(&adapter->rx_ring->napi, skb);
 125}
 126
 127static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 128					 u32 status_err, struct sk_buff *skb)
 129{
 130	skb_checksum_none_assert(skb);
 131
 132	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
 133	if ((status_err & E1000_RXD_STAT_IXSM) ||
 134	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 135		return;
 136
 137	/* TCP/UDP checksum error bit is set */
 138	if (status_err &
 139	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 140		/* let the stack verify checksum errors */
 141		adapter->hw_csum_err++;
 142		return;
 143	}
 144
 145	/* It must be a TCP or UDP packet with a valid checksum */
 146	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 147		skb->ip_summed = CHECKSUM_UNNECESSARY;
 148
 149	adapter->hw_csum_good++;
 150}
 151
 152/**
 153 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 154 * @rx_ring: address of ring structure to repopulate
 155 * @cleaned_count: number of buffers to repopulate
 156 **/
 157static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 158				   int cleaned_count)
 159{
 160	struct igbvf_adapter *adapter = rx_ring->adapter;
 161	struct net_device *netdev = adapter->netdev;
 162	struct pci_dev *pdev = adapter->pdev;
 163	union e1000_adv_rx_desc *rx_desc;
 164	struct igbvf_buffer *buffer_info;
 165	struct sk_buff *skb;
 166	unsigned int i;
 167	int bufsz;
 168
 169	i = rx_ring->next_to_use;
 170	buffer_info = &rx_ring->buffer_info[i];
 171
 172	if (adapter->rx_ps_hdr_size)
 173		bufsz = adapter->rx_ps_hdr_size;
 174	else
 175		bufsz = adapter->rx_buffer_len;
 176
 177	while (cleaned_count--) {
 178		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 179
 180		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 181			if (!buffer_info->page) {
 182				buffer_info->page = alloc_page(GFP_ATOMIC);
 183				if (!buffer_info->page) {
 184					adapter->alloc_rx_buff_failed++;
 185					goto no_buffers;
 186				}
 187				buffer_info->page_offset = 0;
 188			} else {
 189				buffer_info->page_offset ^= PAGE_SIZE / 2;
 190			}
 191			buffer_info->page_dma =
 192				dma_map_page(&pdev->dev, buffer_info->page,
 193					     buffer_info->page_offset,
 194					     PAGE_SIZE / 2,
 195					     DMA_FROM_DEVICE);
 196			if (dma_mapping_error(&pdev->dev,
 197					      buffer_info->page_dma)) {
 198				__free_page(buffer_info->page);
 199				buffer_info->page = NULL;
 200				dev_err(&pdev->dev, "RX DMA map failed\n");
 201				break;
 202			}
 203		}
 204
 205		if (!buffer_info->skb) {
 206			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 207			if (!skb) {
 208				adapter->alloc_rx_buff_failed++;
 209				goto no_buffers;
 210			}
 211
 212			buffer_info->skb = skb;
 213			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 214							  bufsz,
 215							  DMA_FROM_DEVICE);
 216			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 217				dev_kfree_skb(buffer_info->skb);
 218				buffer_info->skb = NULL;
 219				dev_err(&pdev->dev, "RX DMA map failed\n");
 220				goto no_buffers;
 221			}
 222		}
 223		/* Refresh the desc even if buffer_addrs didn't change because
 224		 * each write-back erases this info.
 225		 */
 226		if (adapter->rx_ps_hdr_size) {
 227			rx_desc->read.pkt_addr =
 228			     cpu_to_le64(buffer_info->page_dma);
 229			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 230		} else {
 231			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 
 232			rx_desc->read.hdr_addr = 0;
 233		}
 234
 235		i++;
 236		if (i == rx_ring->count)
 237			i = 0;
 238		buffer_info = &rx_ring->buffer_info[i];
 239	}
 240
 241no_buffers:
 242	if (rx_ring->next_to_use != i) {
 243		rx_ring->next_to_use = i;
 244		if (i == 0)
 245			i = (rx_ring->count - 1);
 246		else
 247			i--;
 248
 249		/* Force memory writes to complete before letting h/w
 250		 * know there are new descriptors to fetch.  (Only
 251		 * applicable for weak-ordered memory model archs,
 252		 * such as IA-64).
 253		*/
 254		wmb();
 255		writel(i, adapter->hw.hw_addr + rx_ring->tail);
 256	}
 257}
 258
 259/**
 260 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 261 * @adapter: board private structure
 262 *
 263 * the return value indicates whether actual cleaning was done, there
 264 * is no guarantee that everything was cleaned
 265 **/
 266static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 267			       int *work_done, int work_to_do)
 268{
 269	struct igbvf_ring *rx_ring = adapter->rx_ring;
 270	struct net_device *netdev = adapter->netdev;
 271	struct pci_dev *pdev = adapter->pdev;
 272	union e1000_adv_rx_desc *rx_desc, *next_rxd;
 273	struct igbvf_buffer *buffer_info, *next_buffer;
 274	struct sk_buff *skb;
 275	bool cleaned = false;
 276	int cleaned_count = 0;
 277	unsigned int total_bytes = 0, total_packets = 0;
 278	unsigned int i;
 279	u32 length, hlen, staterr;
 280
 281	i = rx_ring->next_to_clean;
 282	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 283	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 284
 285	while (staterr & E1000_RXD_STAT_DD) {
 286		if (*work_done >= work_to_do)
 287			break;
 288		(*work_done)++;
 289		rmb(); /* read descriptor and rx_buffer_info after status DD */
 290
 291		buffer_info = &rx_ring->buffer_info[i];
 292
 293		/* HW will not DMA in data larger than the given buffer, even
 294		 * if it parses the (NFS, of course) header to be larger.  In
 295		 * that case, it fills the header buffer and spills the rest
 296		 * into the page.
 297		 */
 298		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 299		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 300		       E1000_RXDADV_HDRBUFLEN_SHIFT;
 301		if (hlen > adapter->rx_ps_hdr_size)
 302			hlen = adapter->rx_ps_hdr_size;
 303
 304		length = le16_to_cpu(rx_desc->wb.upper.length);
 305		cleaned = true;
 306		cleaned_count++;
 307
 308		skb = buffer_info->skb;
 309		prefetch(skb->data - NET_IP_ALIGN);
 310		buffer_info->skb = NULL;
 311		if (!adapter->rx_ps_hdr_size) {
 312			dma_unmap_single(&pdev->dev, buffer_info->dma,
 313					 adapter->rx_buffer_len,
 314					 DMA_FROM_DEVICE);
 315			buffer_info->dma = 0;
 316			skb_put(skb, length);
 317			goto send_up;
 318		}
 319
 320		if (!skb_shinfo(skb)->nr_frags) {
 321			dma_unmap_single(&pdev->dev, buffer_info->dma,
 322					 adapter->rx_ps_hdr_size,
 323					 DMA_FROM_DEVICE);
 324			buffer_info->dma = 0;
 325			skb_put(skb, hlen);
 326		}
 327
 328		if (length) {
 329			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 330				       PAGE_SIZE / 2,
 331				       DMA_FROM_DEVICE);
 332			buffer_info->page_dma = 0;
 333
 334			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 335					   buffer_info->page,
 336					   buffer_info->page_offset,
 337					   length);
 338
 339			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 340			    (page_count(buffer_info->page) != 1))
 341				buffer_info->page = NULL;
 342			else
 343				get_page(buffer_info->page);
 344
 345			skb->len += length;
 346			skb->data_len += length;
 347			skb->truesize += PAGE_SIZE / 2;
 348		}
 349send_up:
 350		i++;
 351		if (i == rx_ring->count)
 352			i = 0;
 353		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 354		prefetch(next_rxd);
 355		next_buffer = &rx_ring->buffer_info[i];
 356
 357		if (!(staterr & E1000_RXD_STAT_EOP)) {
 358			buffer_info->skb = next_buffer->skb;
 359			buffer_info->dma = next_buffer->dma;
 360			next_buffer->skb = skb;
 361			next_buffer->dma = 0;
 362			goto next_desc;
 363		}
 364
 365		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 366			dev_kfree_skb_irq(skb);
 367			goto next_desc;
 368		}
 369
 370		total_bytes += skb->len;
 371		total_packets++;
 372
 373		igbvf_rx_checksum_adv(adapter, staterr, skb);
 374
 375		skb->protocol = eth_type_trans(skb, netdev);
 376
 377		igbvf_receive_skb(adapter, netdev, skb, staterr,
 378				  rx_desc->wb.upper.vlan);
 379
 380next_desc:
 381		rx_desc->wb.upper.status_error = 0;
 382
 383		/* return some buffers to hardware, one at a time is too slow */
 384		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 385			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 386			cleaned_count = 0;
 387		}
 388
 389		/* use prefetched values */
 390		rx_desc = next_rxd;
 391		buffer_info = next_buffer;
 392
 393		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 394	}
 395
 396	rx_ring->next_to_clean = i;
 397	cleaned_count = igbvf_desc_unused(rx_ring);
 398
 399	if (cleaned_count)
 400		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 401
 402	adapter->total_rx_packets += total_packets;
 403	adapter->total_rx_bytes += total_bytes;
 404	netdev->stats.rx_bytes += total_bytes;
 405	netdev->stats.rx_packets += total_packets;
 406	return cleaned;
 407}
 408
 409static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 410			    struct igbvf_buffer *buffer_info)
 411{
 412	if (buffer_info->dma) {
 413		if (buffer_info->mapped_as_page)
 414			dma_unmap_page(&adapter->pdev->dev,
 415				       buffer_info->dma,
 416				       buffer_info->length,
 417				       DMA_TO_DEVICE);
 418		else
 419			dma_unmap_single(&adapter->pdev->dev,
 420					 buffer_info->dma,
 421					 buffer_info->length,
 422					 DMA_TO_DEVICE);
 423		buffer_info->dma = 0;
 424	}
 425	if (buffer_info->skb) {
 426		dev_kfree_skb_any(buffer_info->skb);
 427		buffer_info->skb = NULL;
 428	}
 429	buffer_info->time_stamp = 0;
 430}
 431
 432/**
 433 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 434 * @adapter: board private structure
 435 *
 436 * Return 0 on success, negative on failure
 437 **/
 438int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 439			     struct igbvf_ring *tx_ring)
 440{
 441	struct pci_dev *pdev = adapter->pdev;
 442	int size;
 443
 444	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 445	tx_ring->buffer_info = vzalloc(size);
 446	if (!tx_ring->buffer_info)
 447		goto err;
 448
 449	/* round up to nearest 4K */
 450	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 451	tx_ring->size = ALIGN(tx_ring->size, 4096);
 452
 453	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 454					   &tx_ring->dma, GFP_KERNEL);
 455	if (!tx_ring->desc)
 456		goto err;
 457
 458	tx_ring->adapter = adapter;
 459	tx_ring->next_to_use = 0;
 460	tx_ring->next_to_clean = 0;
 461
 462	return 0;
 463err:
 464	vfree(tx_ring->buffer_info);
 465	dev_err(&adapter->pdev->dev,
 466		"Unable to allocate memory for the transmit descriptor ring\n");
 467	return -ENOMEM;
 468}
 469
 470/**
 471 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 472 * @adapter: board private structure
 473 *
 474 * Returns 0 on success, negative on failure
 475 **/
 476int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 477			     struct igbvf_ring *rx_ring)
 478{
 479	struct pci_dev *pdev = adapter->pdev;
 480	int size, desc_len;
 481
 482	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 483	rx_ring->buffer_info = vzalloc(size);
 484	if (!rx_ring->buffer_info)
 485		goto err;
 486
 487	desc_len = sizeof(union e1000_adv_rx_desc);
 488
 489	/* Round up to nearest 4K */
 490	rx_ring->size = rx_ring->count * desc_len;
 491	rx_ring->size = ALIGN(rx_ring->size, 4096);
 492
 493	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 494					   &rx_ring->dma, GFP_KERNEL);
 495	if (!rx_ring->desc)
 496		goto err;
 497
 498	rx_ring->next_to_clean = 0;
 499	rx_ring->next_to_use = 0;
 500
 501	rx_ring->adapter = adapter;
 502
 503	return 0;
 504
 505err:
 506	vfree(rx_ring->buffer_info);
 507	rx_ring->buffer_info = NULL;
 508	dev_err(&adapter->pdev->dev,
 509		"Unable to allocate memory for the receive descriptor ring\n");
 510	return -ENOMEM;
 511}
 512
 513/**
 514 * igbvf_clean_tx_ring - Free Tx Buffers
 515 * @tx_ring: ring to be cleaned
 516 **/
 517static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 518{
 519	struct igbvf_adapter *adapter = tx_ring->adapter;
 520	struct igbvf_buffer *buffer_info;
 521	unsigned long size;
 522	unsigned int i;
 523
 524	if (!tx_ring->buffer_info)
 525		return;
 526
 527	/* Free all the Tx ring sk_buffs */
 528	for (i = 0; i < tx_ring->count; i++) {
 529		buffer_info = &tx_ring->buffer_info[i];
 530		igbvf_put_txbuf(adapter, buffer_info);
 531	}
 532
 533	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 534	memset(tx_ring->buffer_info, 0, size);
 535
 536	/* Zero out the descriptor ring */
 537	memset(tx_ring->desc, 0, tx_ring->size);
 538
 539	tx_ring->next_to_use = 0;
 540	tx_ring->next_to_clean = 0;
 541
 542	writel(0, adapter->hw.hw_addr + tx_ring->head);
 543	writel(0, adapter->hw.hw_addr + tx_ring->tail);
 544}
 545
 546/**
 547 * igbvf_free_tx_resources - Free Tx Resources per Queue
 548 * @tx_ring: ring to free resources from
 549 *
 550 * Free all transmit software resources
 551 **/
 552void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 553{
 554	struct pci_dev *pdev = tx_ring->adapter->pdev;
 555
 556	igbvf_clean_tx_ring(tx_ring);
 557
 558	vfree(tx_ring->buffer_info);
 559	tx_ring->buffer_info = NULL;
 560
 561	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 562			  tx_ring->dma);
 563
 564	tx_ring->desc = NULL;
 565}
 566
 567/**
 568 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 569 * @adapter: board private structure
 570 **/
 571static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 572{
 573	struct igbvf_adapter *adapter = rx_ring->adapter;
 574	struct igbvf_buffer *buffer_info;
 575	struct pci_dev *pdev = adapter->pdev;
 576	unsigned long size;
 577	unsigned int i;
 578
 579	if (!rx_ring->buffer_info)
 580		return;
 581
 582	/* Free all the Rx ring sk_buffs */
 583	for (i = 0; i < rx_ring->count; i++) {
 584		buffer_info = &rx_ring->buffer_info[i];
 585		if (buffer_info->dma) {
 586			if (adapter->rx_ps_hdr_size) {
 587				dma_unmap_single(&pdev->dev, buffer_info->dma,
 588						 adapter->rx_ps_hdr_size,
 589						 DMA_FROM_DEVICE);
 590			} else {
 591				dma_unmap_single(&pdev->dev, buffer_info->dma,
 592						 adapter->rx_buffer_len,
 593						 DMA_FROM_DEVICE);
 594			}
 595			buffer_info->dma = 0;
 596		}
 597
 598		if (buffer_info->skb) {
 599			dev_kfree_skb(buffer_info->skb);
 600			buffer_info->skb = NULL;
 601		}
 602
 603		if (buffer_info->page) {
 604			if (buffer_info->page_dma)
 605				dma_unmap_page(&pdev->dev,
 606					       buffer_info->page_dma,
 607					       PAGE_SIZE / 2,
 608					       DMA_FROM_DEVICE);
 609			put_page(buffer_info->page);
 610			buffer_info->page = NULL;
 611			buffer_info->page_dma = 0;
 612			buffer_info->page_offset = 0;
 613		}
 614	}
 615
 616	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 617	memset(rx_ring->buffer_info, 0, size);
 618
 619	/* Zero out the descriptor ring */
 620	memset(rx_ring->desc, 0, rx_ring->size);
 621
 622	rx_ring->next_to_clean = 0;
 623	rx_ring->next_to_use = 0;
 624
 625	writel(0, adapter->hw.hw_addr + rx_ring->head);
 626	writel(0, adapter->hw.hw_addr + rx_ring->tail);
 627}
 628
 629/**
 630 * igbvf_free_rx_resources - Free Rx Resources
 631 * @rx_ring: ring to clean the resources from
 632 *
 633 * Free all receive software resources
 634 **/
 635
 636void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 637{
 638	struct pci_dev *pdev = rx_ring->adapter->pdev;
 639
 640	igbvf_clean_rx_ring(rx_ring);
 641
 642	vfree(rx_ring->buffer_info);
 643	rx_ring->buffer_info = NULL;
 644
 645	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 646			  rx_ring->dma);
 647	rx_ring->desc = NULL;
 648}
 649
 650/**
 651 * igbvf_update_itr - update the dynamic ITR value based on statistics
 652 * @adapter: pointer to adapter
 653 * @itr_setting: current adapter->itr
 654 * @packets: the number of packets during this measurement interval
 655 * @bytes: the number of bytes during this measurement interval
 656 *
 657 * Stores a new ITR value based on packets and byte counts during the last
 658 * interrupt.  The advantage of per interrupt computation is faster updates
 659 * and more accurate ITR for the current traffic pattern.  Constants in this
 660 * function were computed based on theoretical maximum wire speed and thresholds
 661 * were set based on testing data as well as attempting to minimize response
 662 * time while increasing bulk throughput.
 
 663 **/
 664static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 665					   enum latency_range itr_setting,
 666					   int packets, int bytes)
 667{
 668	enum latency_range retval = itr_setting;
 669
 670	if (packets == 0)
 671		goto update_itr_done;
 672
 673	switch (itr_setting) {
 674	case lowest_latency:
 675		/* handle TSO and jumbo frames */
 676		if (bytes/packets > 8000)
 677			retval = bulk_latency;
 678		else if ((packets < 5) && (bytes > 512))
 679			retval = low_latency;
 680		break;
 681	case low_latency:  /* 50 usec aka 20000 ints/s */
 682		if (bytes > 10000) {
 683			/* this if handles the TSO accounting */
 684			if (bytes/packets > 8000)
 685				retval = bulk_latency;
 686			else if ((packets < 10) || ((bytes/packets) > 1200))
 687				retval = bulk_latency;
 688			else if ((packets > 35))
 689				retval = lowest_latency;
 690		} else if (bytes/packets > 2000) {
 691			retval = bulk_latency;
 692		} else if (packets <= 2 && bytes < 512) {
 693			retval = lowest_latency;
 694		}
 695		break;
 696	case bulk_latency: /* 250 usec aka 4000 ints/s */
 697		if (bytes > 25000) {
 698			if (packets > 35)
 699				retval = low_latency;
 700		} else if (bytes < 6000) {
 701			retval = low_latency;
 702		}
 703		break;
 704	default:
 705		break;
 706	}
 707
 708update_itr_done:
 709	return retval;
 710}
 711
 712static int igbvf_range_to_itr(enum latency_range current_range)
 713{
 714	int new_itr;
 715
 716	switch (current_range) {
 717	/* counts and packets in update_itr are dependent on these numbers */
 718	case lowest_latency:
 719		new_itr = IGBVF_70K_ITR;
 720		break;
 721	case low_latency:
 722		new_itr = IGBVF_20K_ITR;
 723		break;
 724	case bulk_latency:
 725		new_itr = IGBVF_4K_ITR;
 726		break;
 727	default:
 728		new_itr = IGBVF_START_ITR;
 729		break;
 730	}
 731	return new_itr;
 732}
 733
 734static void igbvf_set_itr(struct igbvf_adapter *adapter)
 735{
 736	u32 new_itr;
 737
 738	adapter->tx_ring->itr_range =
 739			igbvf_update_itr(adapter,
 740					 adapter->tx_ring->itr_val,
 741					 adapter->total_tx_packets,
 742					 adapter->total_tx_bytes);
 743
 744	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 745	if (adapter->requested_itr == 3 &&
 746	    adapter->tx_ring->itr_range == lowest_latency)
 747		adapter->tx_ring->itr_range = low_latency;
 748
 749	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 750
 
 751	if (new_itr != adapter->tx_ring->itr_val) {
 752		u32 current_itr = adapter->tx_ring->itr_val;
 753		/* this attempts to bias the interrupt rate towards Bulk
 
 754		 * by adding intermediate steps when interrupt rate is
 755		 * increasing
 756		 */
 757		new_itr = new_itr > current_itr ?
 758			  min(current_itr + (new_itr >> 2), new_itr) :
 759			  new_itr;
 760		adapter->tx_ring->itr_val = new_itr;
 761
 762		adapter->tx_ring->set_itr = 1;
 763	}
 764
 765	adapter->rx_ring->itr_range =
 766			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 767					 adapter->total_rx_packets,
 768					 adapter->total_rx_bytes);
 769	if (adapter->requested_itr == 3 &&
 770	    adapter->rx_ring->itr_range == lowest_latency)
 771		adapter->rx_ring->itr_range = low_latency;
 772
 773	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 774
 775	if (new_itr != adapter->rx_ring->itr_val) {
 776		u32 current_itr = adapter->rx_ring->itr_val;
 777
 778		new_itr = new_itr > current_itr ?
 779			  min(current_itr + (new_itr >> 2), new_itr) :
 780			  new_itr;
 781		adapter->rx_ring->itr_val = new_itr;
 782
 783		adapter->rx_ring->set_itr = 1;
 784	}
 785}
 786
 787/**
 788 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 789 * @adapter: board private structure
 790 *
 791 * returns true if ring is completely cleaned
 792 **/
 793static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 794{
 795	struct igbvf_adapter *adapter = tx_ring->adapter;
 796	struct net_device *netdev = adapter->netdev;
 797	struct igbvf_buffer *buffer_info;
 798	struct sk_buff *skb;
 799	union e1000_adv_tx_desc *tx_desc, *eop_desc;
 800	unsigned int total_bytes = 0, total_packets = 0;
 801	unsigned int i, count = 0;
 802	bool cleaned = false;
 803
 804	i = tx_ring->next_to_clean;
 805	buffer_info = &tx_ring->buffer_info[i];
 806	eop_desc = buffer_info->next_to_watch;
 807
 808	do {
 809		/* if next_to_watch is not set then there is no work pending */
 810		if (!eop_desc)
 811			break;
 812
 813		/* prevent any other reads prior to eop_desc */
 814		smp_rmb();
 815
 816		/* if DD is not set pending work has not been completed */
 817		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 818			break;
 819
 820		/* clear next_to_watch to prevent false hangs */
 821		buffer_info->next_to_watch = NULL;
 822
 823		for (cleaned = false; !cleaned; count++) {
 824			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 825			cleaned = (tx_desc == eop_desc);
 826			skb = buffer_info->skb;
 827
 828			if (skb) {
 829				unsigned int segs, bytecount;
 830
 831				/* gso_segs is currently only valid for tcp */
 832				segs = skb_shinfo(skb)->gso_segs ?: 1;
 833				/* multiply data chunks by size of headers */
 834				bytecount = ((segs - 1) * skb_headlen(skb)) +
 835					    skb->len;
 836				total_packets += segs;
 837				total_bytes += bytecount;
 838			}
 839
 840			igbvf_put_txbuf(adapter, buffer_info);
 841			tx_desc->wb.status = 0;
 842
 843			i++;
 844			if (i == tx_ring->count)
 845				i = 0;
 846
 847			buffer_info = &tx_ring->buffer_info[i];
 848		}
 849
 850		eop_desc = buffer_info->next_to_watch;
 851	} while (count < tx_ring->count);
 852
 853	tx_ring->next_to_clean = i;
 854
 855	if (unlikely(count && netif_carrier_ok(netdev) &&
 856	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 
 857		/* Make sure that anybody stopping the queue after this
 858		 * sees the new next_to_clean.
 859		 */
 860		smp_mb();
 861		if (netif_queue_stopped(netdev) &&
 862		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 863			netif_wake_queue(netdev);
 864			++adapter->restart_queue;
 865		}
 866	}
 867
 868	netdev->stats.tx_bytes += total_bytes;
 869	netdev->stats.tx_packets += total_packets;
 870	return count < tx_ring->count;
 871}
 872
 873static irqreturn_t igbvf_msix_other(int irq, void *data)
 874{
 875	struct net_device *netdev = data;
 876	struct igbvf_adapter *adapter = netdev_priv(netdev);
 877	struct e1000_hw *hw = &adapter->hw;
 878
 879	adapter->int_counter1++;
 880
 
 881	hw->mac.get_link_status = 1;
 882	if (!test_bit(__IGBVF_DOWN, &adapter->state))
 883		mod_timer(&adapter->watchdog_timer, jiffies + 1);
 884
 885	ew32(EIMS, adapter->eims_other);
 886
 887	return IRQ_HANDLED;
 888}
 889
 890static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 891{
 892	struct net_device *netdev = data;
 893	struct igbvf_adapter *adapter = netdev_priv(netdev);
 894	struct e1000_hw *hw = &adapter->hw;
 895	struct igbvf_ring *tx_ring = adapter->tx_ring;
 896
 897	if (tx_ring->set_itr) {
 898		writel(tx_ring->itr_val,
 899		       adapter->hw.hw_addr + tx_ring->itr_register);
 900		adapter->tx_ring->set_itr = 0;
 901	}
 902
 903	adapter->total_tx_bytes = 0;
 904	adapter->total_tx_packets = 0;
 905
 906	/* auto mask will automatically re-enable the interrupt when we write
 907	 * EICS
 908	 */
 909	if (!igbvf_clean_tx_irq(tx_ring))
 910		/* Ring was not completely cleaned, so fire another interrupt */
 911		ew32(EICS, tx_ring->eims_value);
 912	else
 913		ew32(EIMS, tx_ring->eims_value);
 914
 915	return IRQ_HANDLED;
 916}
 917
 918static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 919{
 920	struct net_device *netdev = data;
 921	struct igbvf_adapter *adapter = netdev_priv(netdev);
 922
 923	adapter->int_counter0++;
 924
 925	/* Write the ITR value calculated at the end of the
 926	 * previous interrupt.
 927	 */
 928	if (adapter->rx_ring->set_itr) {
 929		writel(adapter->rx_ring->itr_val,
 930		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 931		adapter->rx_ring->set_itr = 0;
 932	}
 933
 934	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 935		adapter->total_rx_bytes = 0;
 936		adapter->total_rx_packets = 0;
 937		__napi_schedule(&adapter->rx_ring->napi);
 938	}
 939
 940	return IRQ_HANDLED;
 941}
 942
 943#define IGBVF_NO_QUEUE -1
 944
 945static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 946				int tx_queue, int msix_vector)
 947{
 948	struct e1000_hw *hw = &adapter->hw;
 949	u32 ivar, index;
 950
 951	/* 82576 uses a table-based method for assigning vectors.
 952	 * Each queue has a single entry in the table to which we write
 953	 * a vector number along with a "valid" bit.  Sadly, the layout
 954	 * of the table is somewhat counterintuitive.
 955	 */
 956	if (rx_queue > IGBVF_NO_QUEUE) {
 957		index = (rx_queue >> 1);
 958		ivar = array_er32(IVAR0, index);
 959		if (rx_queue & 0x1) {
 960			/* vector goes into third byte of register */
 961			ivar = ivar & 0xFF00FFFF;
 962			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 963		} else {
 964			/* vector goes into low byte of register */
 965			ivar = ivar & 0xFFFFFF00;
 966			ivar |= msix_vector | E1000_IVAR_VALID;
 967		}
 968		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
 969		array_ew32(IVAR0, index, ivar);
 970	}
 971	if (tx_queue > IGBVF_NO_QUEUE) {
 972		index = (tx_queue >> 1);
 973		ivar = array_er32(IVAR0, index);
 974		if (tx_queue & 0x1) {
 975			/* vector goes into high byte of register */
 976			ivar = ivar & 0x00FFFFFF;
 977			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 978		} else {
 979			/* vector goes into second byte of register */
 980			ivar = ivar & 0xFFFF00FF;
 981			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 982		}
 983		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
 984		array_ew32(IVAR0, index, ivar);
 985	}
 986}
 987
 988/**
 989 * igbvf_configure_msix - Configure MSI-X hardware
 990 * @adapter: board private structure
 991 *
 992 * igbvf_configure_msix sets up the hardware to properly
 993 * generate MSI-X interrupts.
 994 **/
 995static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 996{
 997	u32 tmp;
 998	struct e1000_hw *hw = &adapter->hw;
 999	struct igbvf_ring *tx_ring = adapter->tx_ring;
1000	struct igbvf_ring *rx_ring = adapter->rx_ring;
1001	int vector = 0;
1002
1003	adapter->eims_enable_mask = 0;
1004
1005	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1006	adapter->eims_enable_mask |= tx_ring->eims_value;
1007	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1008	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1009	adapter->eims_enable_mask |= rx_ring->eims_value;
1010	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1011
1012	/* set vector for other causes, i.e. link changes */
1013
1014	tmp = (vector++ | E1000_IVAR_VALID);
1015
1016	ew32(IVAR_MISC, tmp);
1017
1018	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1019	adapter->eims_other = BIT(vector - 1);
1020	e1e_flush();
1021}
1022
1023static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1024{
1025	if (adapter->msix_entries) {
1026		pci_disable_msix(adapter->pdev);
1027		kfree(adapter->msix_entries);
1028		adapter->msix_entries = NULL;
1029	}
1030}
1031
1032/**
1033 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1034 * @adapter: board private structure
1035 *
1036 * Attempt to configure interrupts using the best available
1037 * capabilities of the hardware and kernel.
1038 **/
1039static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1040{
1041	int err = -ENOMEM;
1042	int i;
1043
1044	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1045	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1046					GFP_KERNEL);
1047	if (adapter->msix_entries) {
1048		for (i = 0; i < 3; i++)
1049			adapter->msix_entries[i].entry = i;
1050
1051		err = pci_enable_msix_range(adapter->pdev,
1052					    adapter->msix_entries, 3, 3);
1053	}
1054
1055	if (err < 0) {
1056		/* MSI-X failed */
1057		dev_err(&adapter->pdev->dev,
1058			"Failed to initialize MSI-X interrupts.\n");
1059		igbvf_reset_interrupt_capability(adapter);
1060	}
1061}
1062
1063/**
1064 * igbvf_request_msix - Initialize MSI-X interrupts
1065 * @adapter: board private structure
1066 *
1067 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1068 * kernel.
1069 **/
1070static int igbvf_request_msix(struct igbvf_adapter *adapter)
1071{
1072	struct net_device *netdev = adapter->netdev;
1073	int err = 0, vector = 0;
1074
1075	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1076		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1077		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1078	} else {
1079		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1080		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1081	}
1082
1083	err = request_irq(adapter->msix_entries[vector].vector,
1084			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1085			  netdev);
1086	if (err)
1087		goto out;
1088
1089	adapter->tx_ring->itr_register = E1000_EITR(vector);
1090	adapter->tx_ring->itr_val = adapter->current_itr;
1091	vector++;
1092
1093	err = request_irq(adapter->msix_entries[vector].vector,
1094			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1095			  netdev);
1096	if (err)
1097		goto out;
1098
1099	adapter->rx_ring->itr_register = E1000_EITR(vector);
1100	adapter->rx_ring->itr_val = adapter->current_itr;
1101	vector++;
1102
1103	err = request_irq(adapter->msix_entries[vector].vector,
1104			  igbvf_msix_other, 0, netdev->name, netdev);
1105	if (err)
1106		goto out;
1107
1108	igbvf_configure_msix(adapter);
1109	return 0;
1110out:
1111	return err;
1112}
1113
1114/**
1115 * igbvf_alloc_queues - Allocate memory for all rings
1116 * @adapter: board private structure to initialize
1117 **/
1118static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1119{
1120	struct net_device *netdev = adapter->netdev;
1121
1122	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1123	if (!adapter->tx_ring)
1124		return -ENOMEM;
1125
1126	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1127	if (!adapter->rx_ring) {
1128		kfree(adapter->tx_ring);
1129		return -ENOMEM;
1130	}
1131
1132	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1133
1134	return 0;
1135}
1136
1137/**
1138 * igbvf_request_irq - initialize interrupts
1139 * @adapter: board private structure
1140 *
1141 * Attempts to configure interrupts using the best available
1142 * capabilities of the hardware and kernel.
1143 **/
1144static int igbvf_request_irq(struct igbvf_adapter *adapter)
1145{
1146	int err = -1;
1147
1148	/* igbvf supports msi-x only */
1149	if (adapter->msix_entries)
1150		err = igbvf_request_msix(adapter);
1151
1152	if (!err)
1153		return err;
1154
1155	dev_err(&adapter->pdev->dev,
1156		"Unable to allocate interrupt, Error: %d\n", err);
1157
1158	return err;
1159}
1160
1161static void igbvf_free_irq(struct igbvf_adapter *adapter)
1162{
1163	struct net_device *netdev = adapter->netdev;
1164	int vector;
1165
1166	if (adapter->msix_entries) {
1167		for (vector = 0; vector < 3; vector++)
1168			free_irq(adapter->msix_entries[vector].vector, netdev);
1169	}
1170}
1171
1172/**
1173 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1174 * @adapter: board private structure
1175 **/
1176static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1177{
1178	struct e1000_hw *hw = &adapter->hw;
1179
1180	ew32(EIMC, ~0);
1181
1182	if (adapter->msix_entries)
1183		ew32(EIAC, 0);
1184}
1185
1186/**
1187 * igbvf_irq_enable - Enable default interrupt generation settings
1188 * @adapter: board private structure
1189 **/
1190static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1191{
1192	struct e1000_hw *hw = &adapter->hw;
1193
1194	ew32(EIAC, adapter->eims_enable_mask);
1195	ew32(EIAM, adapter->eims_enable_mask);
1196	ew32(EIMS, adapter->eims_enable_mask);
1197}
1198
1199/**
1200 * igbvf_poll - NAPI Rx polling callback
1201 * @napi: struct associated with this polling callback
1202 * @budget: amount of packets driver is allowed to process this poll
1203 **/
1204static int igbvf_poll(struct napi_struct *napi, int budget)
1205{
1206	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1207	struct igbvf_adapter *adapter = rx_ring->adapter;
1208	struct e1000_hw *hw = &adapter->hw;
1209	int work_done = 0;
1210
1211	igbvf_clean_rx_irq(adapter, &work_done, budget);
1212
1213	/* If not enough Rx work done, exit the polling mode */
1214	if (work_done < budget) {
1215		napi_complete_done(napi, work_done);
1216
1217		if (adapter->requested_itr & 3)
1218			igbvf_set_itr(adapter);
1219
1220		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1221			ew32(EIMS, adapter->rx_ring->eims_value);
1222	}
1223
1224	return work_done;
1225}
1226
1227/**
1228 * igbvf_set_rlpml - set receive large packet maximum length
1229 * @adapter: board private structure
1230 *
1231 * Configure the maximum size of packets that will be received
1232 */
1233static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1234{
1235	int max_frame_size;
1236	struct e1000_hw *hw = &adapter->hw;
1237
1238	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1239
1240	spin_lock_bh(&hw->mbx_lock);
1241
1242	e1000_rlpml_set_vf(hw, max_frame_size);
1243
1244	spin_unlock_bh(&hw->mbx_lock);
1245}
1246
1247static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1248				 __be16 proto, u16 vid)
1249{
1250	struct igbvf_adapter *adapter = netdev_priv(netdev);
1251	struct e1000_hw *hw = &adapter->hw;
1252
1253	spin_lock_bh(&hw->mbx_lock);
1254
1255	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1256		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1257		spin_unlock_bh(&hw->mbx_lock);
1258		return -EINVAL;
1259	}
1260
1261	spin_unlock_bh(&hw->mbx_lock);
1262
1263	set_bit(vid, adapter->active_vlans);
1264	return 0;
1265}
1266
1267static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1268				  __be16 proto, u16 vid)
1269{
1270	struct igbvf_adapter *adapter = netdev_priv(netdev);
1271	struct e1000_hw *hw = &adapter->hw;
1272
1273	spin_lock_bh(&hw->mbx_lock);
1274
1275	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1276		dev_err(&adapter->pdev->dev,
1277			"Failed to remove vlan id %d\n", vid);
1278		spin_unlock_bh(&hw->mbx_lock);
1279		return -EINVAL;
1280	}
1281
1282	spin_unlock_bh(&hw->mbx_lock);
1283
1284	clear_bit(vid, adapter->active_vlans);
1285	return 0;
1286}
1287
1288static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1289{
1290	u16 vid;
1291
1292	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1293		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1294}
1295
1296/**
1297 * igbvf_configure_tx - Configure Transmit Unit after Reset
1298 * @adapter: board private structure
1299 *
1300 * Configure the Tx unit of the MAC after a reset.
1301 **/
1302static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1303{
1304	struct e1000_hw *hw = &adapter->hw;
1305	struct igbvf_ring *tx_ring = adapter->tx_ring;
1306	u64 tdba;
1307	u32 txdctl, dca_txctrl;
1308
1309	/* disable transmits */
1310	txdctl = er32(TXDCTL(0));
1311	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1312	e1e_flush();
1313	msleep(10);
1314
1315	/* Setup the HW Tx Head and Tail descriptor pointers */
1316	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1317	tdba = tx_ring->dma;
1318	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1319	ew32(TDBAH(0), (tdba >> 32));
1320	ew32(TDH(0), 0);
1321	ew32(TDT(0), 0);
1322	tx_ring->head = E1000_TDH(0);
1323	tx_ring->tail = E1000_TDT(0);
1324
1325	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1326	 * MUST be delivered in order or it will completely screw up
1327	 * our bookkeeping.
1328	 */
1329	dca_txctrl = er32(DCA_TXCTRL(0));
1330	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1331	ew32(DCA_TXCTRL(0), dca_txctrl);
1332
1333	/* enable transmits */
1334	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1335	ew32(TXDCTL(0), txdctl);
1336
1337	/* Setup Transmit Descriptor Settings for eop descriptor */
1338	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1339
1340	/* enable Report Status bit */
1341	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1342}
1343
1344/**
1345 * igbvf_setup_srrctl - configure the receive control registers
1346 * @adapter: Board private structure
1347 **/
1348static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1349{
1350	struct e1000_hw *hw = &adapter->hw;
1351	u32 srrctl = 0;
1352
1353	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1354		    E1000_SRRCTL_BSIZEHDR_MASK |
1355		    E1000_SRRCTL_BSIZEPKT_MASK);
1356
1357	/* Enable queue drop to avoid head of line blocking */
1358	srrctl |= E1000_SRRCTL_DROP_EN;
1359
1360	/* Setup buffer sizes */
1361	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1362		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1363
1364	if (adapter->rx_buffer_len < 2048) {
1365		adapter->rx_ps_hdr_size = 0;
1366		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1367	} else {
1368		adapter->rx_ps_hdr_size = 128;
1369		srrctl |= adapter->rx_ps_hdr_size <<
1370			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1371		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1372	}
1373
1374	ew32(SRRCTL(0), srrctl);
1375}
1376
1377/**
1378 * igbvf_configure_rx - Configure Receive Unit after Reset
1379 * @adapter: board private structure
1380 *
1381 * Configure the Rx unit of the MAC after a reset.
1382 **/
1383static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1384{
1385	struct e1000_hw *hw = &adapter->hw;
1386	struct igbvf_ring *rx_ring = adapter->rx_ring;
1387	u64 rdba;
1388	u32 rxdctl;
1389
1390	/* disable receives */
1391	rxdctl = er32(RXDCTL(0));
1392	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1393	e1e_flush();
1394	msleep(10);
1395
1396	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 
 
 
1397	 * the Base and Length of the Rx Descriptor Ring
1398	 */
1399	rdba = rx_ring->dma;
1400	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1401	ew32(RDBAH(0), (rdba >> 32));
1402	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1403	rx_ring->head = E1000_RDH(0);
1404	rx_ring->tail = E1000_RDT(0);
1405	ew32(RDH(0), 0);
1406	ew32(RDT(0), 0);
1407
1408	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1409	rxdctl &= 0xFFF00000;
1410	rxdctl |= IGBVF_RX_PTHRESH;
1411	rxdctl |= IGBVF_RX_HTHRESH << 8;
1412	rxdctl |= IGBVF_RX_WTHRESH << 16;
1413
1414	igbvf_set_rlpml(adapter);
1415
1416	/* enable receives */
1417	ew32(RXDCTL(0), rxdctl);
1418}
1419
1420/**
1421 * igbvf_set_multi - Multicast and Promiscuous mode set
1422 * @netdev: network interface device structure
1423 *
1424 * The set_multi entry point is called whenever the multicast address
1425 * list or the network interface flags are updated.  This routine is
1426 * responsible for configuring the hardware for proper multicast,
1427 * promiscuous mode, and all-multi behavior.
1428 **/
1429static void igbvf_set_multi(struct net_device *netdev)
1430{
1431	struct igbvf_adapter *adapter = netdev_priv(netdev);
1432	struct e1000_hw *hw = &adapter->hw;
1433	struct netdev_hw_addr *ha;
1434	u8  *mta_list = NULL;
1435	int i;
1436
1437	if (!netdev_mc_empty(netdev)) {
1438		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1439					 GFP_ATOMIC);
1440		if (!mta_list)
1441			return;
1442	}
1443
1444	/* prepare a packed array of only addresses. */
1445	i = 0;
1446	netdev_for_each_mc_addr(ha, netdev)
1447		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1448
1449	spin_lock_bh(&hw->mbx_lock);
1450
1451	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1452
1453	spin_unlock_bh(&hw->mbx_lock);
1454	kfree(mta_list);
1455}
1456
1457/**
1458 * igbvf_set_uni - Configure unicast MAC filters
1459 * @netdev: network interface device structure
1460 *
1461 * This routine is responsible for configuring the hardware for proper
1462 * unicast filters.
1463 **/
1464static int igbvf_set_uni(struct net_device *netdev)
1465{
1466	struct igbvf_adapter *adapter = netdev_priv(netdev);
1467	struct e1000_hw *hw = &adapter->hw;
1468
1469	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1470		pr_err("Too many unicast filters - No Space\n");
1471		return -ENOSPC;
1472	}
1473
1474	spin_lock_bh(&hw->mbx_lock);
1475
1476	/* Clear all unicast MAC filters */
1477	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1478
1479	spin_unlock_bh(&hw->mbx_lock);
1480
1481	if (!netdev_uc_empty(netdev)) {
1482		struct netdev_hw_addr *ha;
1483
1484		/* Add MAC filters one by one */
1485		netdev_for_each_uc_addr(ha, netdev) {
1486			spin_lock_bh(&hw->mbx_lock);
1487
1488			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1489						ha->addr);
1490
1491			spin_unlock_bh(&hw->mbx_lock);
1492			udelay(200);
1493		}
1494	}
1495
1496	return 0;
1497}
1498
1499static void igbvf_set_rx_mode(struct net_device *netdev)
1500{
1501	igbvf_set_multi(netdev);
1502	igbvf_set_uni(netdev);
1503}
1504
1505/**
1506 * igbvf_configure - configure the hardware for Rx and Tx
1507 * @adapter: private board structure
1508 **/
1509static void igbvf_configure(struct igbvf_adapter *adapter)
1510{
1511	igbvf_set_rx_mode(adapter->netdev);
1512
1513	igbvf_restore_vlan(adapter);
1514
1515	igbvf_configure_tx(adapter);
1516	igbvf_setup_srrctl(adapter);
1517	igbvf_configure_rx(adapter);
1518	igbvf_alloc_rx_buffers(adapter->rx_ring,
1519			       igbvf_desc_unused(adapter->rx_ring));
1520}
1521
1522/* igbvf_reset - bring the hardware into a known good state
1523 * @adapter: private board structure
1524 *
1525 * This function boots the hardware and enables some settings that
1526 * require a configuration cycle of the hardware - those cannot be
1527 * set/changed during runtime. After reset the device needs to be
1528 * properly configured for Rx, Tx etc.
1529 */
1530static void igbvf_reset(struct igbvf_adapter *adapter)
1531{
1532	struct e1000_mac_info *mac = &adapter->hw.mac;
1533	struct net_device *netdev = adapter->netdev;
1534	struct e1000_hw *hw = &adapter->hw;
1535
1536	spin_lock_bh(&hw->mbx_lock);
1537
1538	/* Allow time for pending master requests to run */
1539	if (mac->ops.reset_hw(hw))
1540		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1541
1542	mac->ops.init_hw(hw);
1543
1544	spin_unlock_bh(&hw->mbx_lock);
1545
1546	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1547		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1548		       netdev->addr_len);
1549		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1550		       netdev->addr_len);
1551	}
1552
1553	adapter->last_reset = jiffies;
1554}
1555
1556int igbvf_up(struct igbvf_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559
1560	/* hardware has been reset, we need to reload some things */
1561	igbvf_configure(adapter);
1562
1563	clear_bit(__IGBVF_DOWN, &adapter->state);
1564
1565	napi_enable(&adapter->rx_ring->napi);
1566	if (adapter->msix_entries)
1567		igbvf_configure_msix(adapter);
1568
1569	/* Clear any pending interrupts. */
1570	er32(EICR);
1571	igbvf_irq_enable(adapter);
1572
1573	/* start the watchdog */
1574	hw->mac.get_link_status = 1;
1575	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1576
 
1577	return 0;
1578}
1579
1580void igbvf_down(struct igbvf_adapter *adapter)
1581{
1582	struct net_device *netdev = adapter->netdev;
1583	struct e1000_hw *hw = &adapter->hw;
1584	u32 rxdctl, txdctl;
1585
1586	/* signal that we're down so the interrupt handler does not
 
1587	 * reschedule our watchdog timer
1588	 */
1589	set_bit(__IGBVF_DOWN, &adapter->state);
1590
1591	/* disable receives in the hardware */
1592	rxdctl = er32(RXDCTL(0));
1593	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1594
1595	netif_carrier_off(netdev);
1596	netif_stop_queue(netdev);
1597
1598	/* disable transmits in the hardware */
1599	txdctl = er32(TXDCTL(0));
1600	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1601
1602	/* flush both disables and wait for them to finish */
1603	e1e_flush();
1604	msleep(10);
1605
1606	napi_disable(&adapter->rx_ring->napi);
1607
1608	igbvf_irq_disable(adapter);
1609
1610	del_timer_sync(&adapter->watchdog_timer);
1611
 
 
1612	/* record the stats before reset*/
1613	igbvf_update_stats(adapter);
1614
1615	adapter->link_speed = 0;
1616	adapter->link_duplex = 0;
1617
1618	igbvf_reset(adapter);
1619	igbvf_clean_tx_ring(adapter->tx_ring);
1620	igbvf_clean_rx_ring(adapter->rx_ring);
1621}
1622
1623void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1624{
1625	might_sleep();
1626	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1627		usleep_range(1000, 2000);
1628	igbvf_down(adapter);
1629	igbvf_up(adapter);
1630	clear_bit(__IGBVF_RESETTING, &adapter->state);
1631}
1632
1633/**
1634 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1635 * @adapter: board private structure to initialize
1636 *
1637 * igbvf_sw_init initializes the Adapter private data structure.
1638 * Fields are initialized based on PCI device information and
1639 * OS network device settings (MTU size).
1640 **/
1641static int igbvf_sw_init(struct igbvf_adapter *adapter)
1642{
1643	struct net_device *netdev = adapter->netdev;
1644	s32 rc;
1645
1646	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1647	adapter->rx_ps_hdr_size = 0;
1648	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1649	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1650
1651	adapter->tx_int_delay = 8;
1652	adapter->tx_abs_int_delay = 32;
1653	adapter->rx_int_delay = 0;
1654	adapter->rx_abs_int_delay = 8;
1655	adapter->requested_itr = 3;
1656	adapter->current_itr = IGBVF_START_ITR;
1657
1658	/* Set various function pointers */
1659	adapter->ei->init_ops(&adapter->hw);
1660
1661	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1662	if (rc)
1663		return rc;
1664
1665	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1666	if (rc)
1667		return rc;
1668
1669	igbvf_set_interrupt_capability(adapter);
1670
1671	if (igbvf_alloc_queues(adapter))
1672		return -ENOMEM;
1673
1674	spin_lock_init(&adapter->tx_queue_lock);
1675
1676	/* Explicitly disable IRQ since the NIC can be in any state. */
1677	igbvf_irq_disable(adapter);
1678
1679	spin_lock_init(&adapter->stats_lock);
1680	spin_lock_init(&adapter->hw.mbx_lock);
1681
1682	set_bit(__IGBVF_DOWN, &adapter->state);
1683	return 0;
1684}
1685
1686static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1687{
1688	struct e1000_hw *hw = &adapter->hw;
1689
1690	adapter->stats.last_gprc = er32(VFGPRC);
1691	adapter->stats.last_gorc = er32(VFGORC);
1692	adapter->stats.last_gptc = er32(VFGPTC);
1693	adapter->stats.last_gotc = er32(VFGOTC);
1694	adapter->stats.last_mprc = er32(VFMPRC);
1695	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1696	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1697	adapter->stats.last_gorlbc = er32(VFGORLBC);
1698	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1699
1700	adapter->stats.base_gprc = er32(VFGPRC);
1701	adapter->stats.base_gorc = er32(VFGORC);
1702	adapter->stats.base_gptc = er32(VFGPTC);
1703	adapter->stats.base_gotc = er32(VFGOTC);
1704	adapter->stats.base_mprc = er32(VFMPRC);
1705	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1706	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1707	adapter->stats.base_gorlbc = er32(VFGORLBC);
1708	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1709}
1710
1711/**
1712 * igbvf_open - Called when a network interface is made active
1713 * @netdev: network interface device structure
1714 *
1715 * Returns 0 on success, negative value on failure
1716 *
1717 * The open entry point is called when a network interface is made
1718 * active by the system (IFF_UP).  At this point all resources needed
1719 * for transmit and receive operations are allocated, the interrupt
1720 * handler is registered with the OS, the watchdog timer is started,
1721 * and the stack is notified that the interface is ready.
1722 **/
1723static int igbvf_open(struct net_device *netdev)
1724{
1725	struct igbvf_adapter *adapter = netdev_priv(netdev);
1726	struct e1000_hw *hw = &adapter->hw;
1727	int err;
1728
1729	/* disallow open during test */
1730	if (test_bit(__IGBVF_TESTING, &adapter->state))
1731		return -EBUSY;
1732
1733	/* allocate transmit descriptors */
1734	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1735	if (err)
1736		goto err_setup_tx;
1737
1738	/* allocate receive descriptors */
1739	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1740	if (err)
1741		goto err_setup_rx;
1742
1743	/* before we allocate an interrupt, we must be ready to handle it.
 
1744	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1745	 * as soon as we call pci_request_irq, so we have to setup our
1746	 * clean_rx handler before we do so.
1747	 */
1748	igbvf_configure(adapter);
1749
1750	err = igbvf_request_irq(adapter);
1751	if (err)
1752		goto err_req_irq;
1753
1754	/* From here on the code is the same as igbvf_up() */
1755	clear_bit(__IGBVF_DOWN, &adapter->state);
1756
1757	napi_enable(&adapter->rx_ring->napi);
1758
1759	/* clear any pending interrupts */
1760	er32(EICR);
1761
1762	igbvf_irq_enable(adapter);
1763
1764	/* start the watchdog */
1765	hw->mac.get_link_status = 1;
1766	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767
1768	return 0;
1769
1770err_req_irq:
1771	igbvf_free_rx_resources(adapter->rx_ring);
1772err_setup_rx:
1773	igbvf_free_tx_resources(adapter->tx_ring);
1774err_setup_tx:
1775	igbvf_reset(adapter);
1776
1777	return err;
1778}
1779
1780/**
1781 * igbvf_close - Disables a network interface
1782 * @netdev: network interface device structure
1783 *
1784 * Returns 0, this is not allowed to fail
1785 *
1786 * The close entry point is called when an interface is de-activated
1787 * by the OS.  The hardware is still under the drivers control, but
1788 * needs to be disabled.  A global MAC reset is issued to stop the
1789 * hardware, and all transmit and receive resources are freed.
1790 **/
1791static int igbvf_close(struct net_device *netdev)
1792{
1793	struct igbvf_adapter *adapter = netdev_priv(netdev);
1794
1795	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1796	igbvf_down(adapter);
1797
1798	igbvf_free_irq(adapter);
1799
1800	igbvf_free_tx_resources(adapter->tx_ring);
1801	igbvf_free_rx_resources(adapter->rx_ring);
1802
1803	return 0;
1804}
1805
1806/**
1807 * igbvf_set_mac - Change the Ethernet Address of the NIC
1808 * @netdev: network interface device structure
1809 * @p: pointer to an address structure
1810 *
1811 * Returns 0 on success, negative on failure
1812 **/
1813static int igbvf_set_mac(struct net_device *netdev, void *p)
1814{
1815	struct igbvf_adapter *adapter = netdev_priv(netdev);
1816	struct e1000_hw *hw = &adapter->hw;
1817	struct sockaddr *addr = p;
1818
1819	if (!is_valid_ether_addr(addr->sa_data))
1820		return -EADDRNOTAVAIL;
1821
1822	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1823
1824	spin_lock_bh(&hw->mbx_lock);
1825
1826	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1827
1828	spin_unlock_bh(&hw->mbx_lock);
1829
1830	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1831		return -EADDRNOTAVAIL;
1832
1833	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1834
1835	return 0;
1836}
1837
1838#define UPDATE_VF_COUNTER(reg, name) \
1839{ \
1840	u32 current_counter = er32(reg); \
1841	if (current_counter < adapter->stats.last_##name) \
1842		adapter->stats.name += 0x100000000LL; \
1843	adapter->stats.last_##name = current_counter; \
1844	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1845	adapter->stats.name |= current_counter; \
1846}
1847
1848/**
1849 * igbvf_update_stats - Update the board statistics counters
1850 * @adapter: board private structure
1851**/
1852void igbvf_update_stats(struct igbvf_adapter *adapter)
1853{
1854	struct e1000_hw *hw = &adapter->hw;
1855	struct pci_dev *pdev = adapter->pdev;
1856
1857	/* Prevent stats update while adapter is being reset, link is down
 
1858	 * or if the pci connection is down.
1859	 */
1860	if (adapter->link_speed == 0)
1861		return;
1862
1863	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1864		return;
1865
1866	if (pci_channel_offline(pdev))
1867		return;
1868
1869	UPDATE_VF_COUNTER(VFGPRC, gprc);
1870	UPDATE_VF_COUNTER(VFGORC, gorc);
1871	UPDATE_VF_COUNTER(VFGPTC, gptc);
1872	UPDATE_VF_COUNTER(VFGOTC, gotc);
1873	UPDATE_VF_COUNTER(VFMPRC, mprc);
1874	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1875	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1876	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1877	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1878
1879	/* Fill out the OS statistics structure */
1880	adapter->netdev->stats.multicast = adapter->stats.mprc;
1881}
1882
1883static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1884{
1885	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1886		 adapter->link_speed,
1887		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1888}
1889
1890static bool igbvf_has_link(struct igbvf_adapter *adapter)
1891{
1892	struct e1000_hw *hw = &adapter->hw;
1893	s32 ret_val = E1000_SUCCESS;
1894	bool link_active;
1895
1896	/* If interface is down, stay link down */
1897	if (test_bit(__IGBVF_DOWN, &adapter->state))
1898		return false;
1899
1900	spin_lock_bh(&hw->mbx_lock);
1901
1902	ret_val = hw->mac.ops.check_for_link(hw);
1903
1904	spin_unlock_bh(&hw->mbx_lock);
1905
1906	link_active = !hw->mac.get_link_status;
1907
1908	/* if check for link returns error we will need to reset */
1909	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1910		schedule_work(&adapter->reset_task);
1911
1912	return link_active;
1913}
1914
1915/**
1916 * igbvf_watchdog - Timer Call-back
1917 * @data: pointer to adapter cast into an unsigned long
1918 **/
1919static void igbvf_watchdog(struct timer_list *t)
1920{
1921	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1922
1923	/* Do the rest outside of interrupt context */
1924	schedule_work(&adapter->watchdog_task);
1925}
1926
1927static void igbvf_watchdog_task(struct work_struct *work)
1928{
1929	struct igbvf_adapter *adapter = container_of(work,
1930						     struct igbvf_adapter,
1931						     watchdog_task);
1932	struct net_device *netdev = adapter->netdev;
1933	struct e1000_mac_info *mac = &adapter->hw.mac;
1934	struct igbvf_ring *tx_ring = adapter->tx_ring;
1935	struct e1000_hw *hw = &adapter->hw;
1936	u32 link;
1937	int tx_pending = 0;
1938
1939	link = igbvf_has_link(adapter);
1940
1941	if (link) {
1942		if (!netif_carrier_ok(netdev)) {
1943			mac->ops.get_link_up_info(&adapter->hw,
1944						  &adapter->link_speed,
1945						  &adapter->link_duplex);
1946			igbvf_print_link_info(adapter);
1947
1948			netif_carrier_on(netdev);
1949			netif_wake_queue(netdev);
1950		}
1951	} else {
1952		if (netif_carrier_ok(netdev)) {
1953			adapter->link_speed = 0;
1954			adapter->link_duplex = 0;
1955			dev_info(&adapter->pdev->dev, "Link is Down\n");
1956			netif_carrier_off(netdev);
1957			netif_stop_queue(netdev);
1958		}
1959	}
1960
1961	if (netif_carrier_ok(netdev)) {
1962		igbvf_update_stats(adapter);
1963	} else {
1964		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1965			      tx_ring->count);
1966		if (tx_pending) {
1967			/* We've lost link, so the controller stops DMA,
 
1968			 * but we've got queued Tx work that's never going
1969			 * to get done, so reset controller to flush Tx.
1970			 * (Do the reset outside of interrupt context).
1971			 */
1972			adapter->tx_timeout_count++;
1973			schedule_work(&adapter->reset_task);
1974		}
1975	}
1976
1977	/* Cause software interrupt to ensure Rx ring is cleaned */
1978	ew32(EICS, adapter->rx_ring->eims_value);
1979
1980	/* Reset the timer */
1981	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1982		mod_timer(&adapter->watchdog_timer,
1983			  round_jiffies(jiffies + (2 * HZ)));
1984}
1985
1986#define IGBVF_TX_FLAGS_CSUM		0x00000001
1987#define IGBVF_TX_FLAGS_VLAN		0x00000002
1988#define IGBVF_TX_FLAGS_TSO		0x00000004
1989#define IGBVF_TX_FLAGS_IPV4		0x00000008
1990#define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1991#define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1992
1993static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1994			      u32 type_tucmd, u32 mss_l4len_idx)
 
1995{
1996	struct e1000_adv_tx_context_desc *context_desc;
1997	struct igbvf_buffer *buffer_info;
1998	u16 i = tx_ring->next_to_use;
1999
2000	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2001	buffer_info = &tx_ring->buffer_info[i];
2002
2003	i++;
2004	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2005
2006	/* set bits to identify this as an advanced context descriptor */
2007	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2008
2009	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
2010	context_desc->seqnum_seed	= 0;
2011	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
2012	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
2013
2014	buffer_info->time_stamp = jiffies;
2015	buffer_info->dma = 0;
2016}
2017
2018static int igbvf_tso(struct igbvf_ring *tx_ring,
2019		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2020{
2021	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2022	union {
2023		struct iphdr *v4;
2024		struct ipv6hdr *v6;
2025		unsigned char *hdr;
2026	} ip;
2027	union {
2028		struct tcphdr *tcp;
2029		unsigned char *hdr;
2030	} l4;
2031	u32 paylen, l4_offset;
2032	int err;
2033
2034	if (skb->ip_summed != CHECKSUM_PARTIAL)
2035		return 0;
2036
2037	if (!skb_is_gso(skb))
2038		return 0;
2039
2040	err = skb_cow_head(skb, 0);
2041	if (err < 0)
 
2042		return err;
 
2043
2044	ip.hdr = skb_network_header(skb);
2045	l4.hdr = skb_checksum_start(skb);
2046
2047	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2048	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2049
2050	/* initialize outer IP header fields */
2051	if (ip.v4->version == 4) {
2052		unsigned char *csum_start = skb_checksum_start(skb);
2053		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
 
 
 
 
 
 
 
 
 
 
2054
2055		/* IP header will have to cancel out any data that
2056		 * is not a part of the outer IP header
2057		 */
2058		ip.v4->check = csum_fold(csum_partial(trans_start,
2059						      csum_start - trans_start,
2060						      0));
2061		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2062
2063		ip.v4->tot_len = 0;
2064	} else {
2065		ip.v6->payload_len = 0;
2066	}
 
 
 
 
 
 
2067
2068	/* determine offset of inner transport header */
2069	l4_offset = l4.hdr - skb->data;
2070
2071	/* compute length of segmentation header */
2072	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
2073
2074	/* remove payload length from inner checksum */
2075	paylen = skb->len - l4_offset;
2076	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2077
2078	/* MSS L4LEN IDX */
2079	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2080	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2081
2082	/* VLAN MACLEN IPLEN */
2083	vlan_macip_lens = l4.hdr - ip.hdr;
2084	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2085	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2086
2087	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
 
 
 
 
 
 
2088
2089	return 1;
2090}
2091
2092static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
 
 
2093{
2094	unsigned int offset = 0;
 
 
 
2095
2096	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
 
 
 
 
2097
2098	return offset == skb_checksum_start_offset(skb);
2099}
2100
2101static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2102			  u32 tx_flags, __be16 protocol)
2103{
2104	u32 vlan_macip_lens = 0;
2105	u32 type_tucmd = 0;
2106
2107	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2108csum_failed:
2109		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2110			return false;
2111		goto no_csum;
2112	}
2113
2114	switch (skb->csum_offset) {
2115	case offsetof(struct tcphdr, check):
2116		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2117		/* fall through */
2118	case offsetof(struct udphdr, check):
2119		break;
2120	case offsetof(struct sctphdr, checksum):
2121		/* validate that this is actually an SCTP request */
2122		if (((protocol == htons(ETH_P_IP)) &&
2123		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2124		    ((protocol == htons(ETH_P_IPV6)) &&
2125		     igbvf_ipv6_csum_is_sctp(skb))) {
2126			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2127			break;
 
 
 
 
2128		}
2129	default:
2130		skb_checksum_help(skb);
2131		goto csum_failed;
2132	}
2133
2134	vlan_macip_lens = skb_checksum_start_offset(skb) -
2135			  skb_network_offset(skb);
2136no_csum:
2137	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2138	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2139
2140	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2141	return true;
 
 
 
 
 
 
 
 
 
2142}
2143
2144static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2145{
2146	struct igbvf_adapter *adapter = netdev_priv(netdev);
2147
2148	/* there is enough descriptors then we don't need to worry  */
2149	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2150		return 0;
2151
2152	netif_stop_queue(netdev);
2153
2154	/* Herbert's original patch had:
2155	 *  smp_mb__after_netif_stop_queue();
2156	 * but since that doesn't exist yet, just open code it.
2157	 */
2158	smp_mb();
2159
2160	/* We need to check again just in case room has been made available */
2161	if (igbvf_desc_unused(adapter->tx_ring) < size)
2162		return -EBUSY;
2163
2164	netif_wake_queue(netdev);
2165
2166	++adapter->restart_queue;
2167	return 0;
2168}
2169
2170#define IGBVF_MAX_TXD_PWR	16
2171#define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2172
2173static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2174				   struct igbvf_ring *tx_ring,
2175				   struct sk_buff *skb)
2176{
2177	struct igbvf_buffer *buffer_info;
2178	struct pci_dev *pdev = adapter->pdev;
2179	unsigned int len = skb_headlen(skb);
2180	unsigned int count = 0, i;
2181	unsigned int f;
2182
2183	i = tx_ring->next_to_use;
2184
2185	buffer_info = &tx_ring->buffer_info[i];
2186	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187	buffer_info->length = len;
2188	/* set time_stamp *before* dma to help avoid a possible race */
2189	buffer_info->time_stamp = jiffies;
2190	buffer_info->mapped_as_page = false;
2191	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2192					  DMA_TO_DEVICE);
2193	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2194		goto dma_error;
2195
 
2196	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2197		const struct skb_frag_struct *frag;
2198
2199		count++;
2200		i++;
2201		if (i == tx_ring->count)
2202			i = 0;
2203
2204		frag = &skb_shinfo(skb)->frags[f];
2205		len = skb_frag_size(frag);
2206
2207		buffer_info = &tx_ring->buffer_info[i];
2208		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2209		buffer_info->length = len;
2210		buffer_info->time_stamp = jiffies;
2211		buffer_info->mapped_as_page = true;
2212		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2213						    DMA_TO_DEVICE);
2214		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2215			goto dma_error;
2216	}
2217
2218	tx_ring->buffer_info[i].skb = skb;
2219
2220	return ++count;
2221
2222dma_error:
2223	dev_err(&pdev->dev, "TX DMA map failed\n");
2224
2225	/* clear timestamp and dma mappings for failed buffer_info mapping */
2226	buffer_info->dma = 0;
2227	buffer_info->time_stamp = 0;
2228	buffer_info->length = 0;
2229	buffer_info->mapped_as_page = false;
2230	if (count)
2231		count--;
2232
2233	/* clear timestamp and dma mappings for remaining portion of packet */
2234	while (count--) {
2235		if (i == 0)
2236			i += tx_ring->count;
2237		i--;
2238		buffer_info = &tx_ring->buffer_info[i];
2239		igbvf_put_txbuf(adapter, buffer_info);
2240	}
2241
2242	return 0;
2243}
2244
2245static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2246				      struct igbvf_ring *tx_ring,
2247				      int tx_flags, int count,
2248				      unsigned int first, u32 paylen,
2249				      u8 hdr_len)
2250{
2251	union e1000_adv_tx_desc *tx_desc = NULL;
2252	struct igbvf_buffer *buffer_info;
2253	u32 olinfo_status = 0, cmd_type_len;
2254	unsigned int i;
2255
2256	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2257			E1000_ADVTXD_DCMD_DEXT);
2258
2259	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2260		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2261
2262	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2263		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2264
2265		/* insert tcp checksum */
2266		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2267
2268		/* insert ip checksum */
2269		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2270			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2271
2272	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2273		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2274	}
2275
2276	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2277
2278	i = tx_ring->next_to_use;
2279	while (count--) {
2280		buffer_info = &tx_ring->buffer_info[i];
2281		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2282		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2283		tx_desc->read.cmd_type_len =
2284			 cpu_to_le32(cmd_type_len | buffer_info->length);
2285		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2286		i++;
2287		if (i == tx_ring->count)
2288			i = 0;
2289	}
2290
2291	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2292	/* Force memory writes to complete before letting h/w
2293	 * know there are new descriptors to fetch.  (Only
2294	 * applicable for weak-ordered memory model archs,
2295	 * such as IA-64).
2296	 */
2297	wmb();
2298
2299	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2300	tx_ring->next_to_use = i;
2301	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2302	/* we need this if more than one processor can write to our tail
2303	 * at a time, it synchronizes IO on IA64/Altix systems
2304	 */
2305	mmiowb();
2306}
2307
2308static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2309					     struct net_device *netdev,
2310					     struct igbvf_ring *tx_ring)
2311{
2312	struct igbvf_adapter *adapter = netdev_priv(netdev);
2313	unsigned int first, tx_flags = 0;
2314	u8 hdr_len = 0;
2315	int count = 0;
2316	int tso = 0;
2317	__be16 protocol = vlan_get_protocol(skb);
2318
2319	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2320		dev_kfree_skb_any(skb);
2321		return NETDEV_TX_OK;
2322	}
2323
2324	if (skb->len <= 0) {
2325		dev_kfree_skb_any(skb);
2326		return NETDEV_TX_OK;
2327	}
2328
2329	/* need: count + 4 desc gap to keep tail from touching
2330	 *       + 2 desc gap to keep tail from touching head,
2331	 *       + 1 desc for skb->data,
2332	 *       + 1 desc for context descriptor,
 
2333	 * head, otherwise try next time
2334	 */
2335	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2336		/* this is a hard error */
2337		return NETDEV_TX_BUSY;
2338	}
2339
2340	if (skb_vlan_tag_present(skb)) {
2341		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2342		tx_flags |= (skb_vlan_tag_get(skb) <<
2343			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2344	}
2345
2346	if (protocol == htons(ETH_P_IP))
2347		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2348
2349	first = tx_ring->next_to_use;
2350
2351	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
 
2352	if (unlikely(tso < 0)) {
2353		dev_kfree_skb_any(skb);
2354		return NETDEV_TX_OK;
2355	}
2356
2357	if (tso)
2358		tx_flags |= IGBVF_TX_FLAGS_TSO;
2359	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2360		 (skb->ip_summed == CHECKSUM_PARTIAL))
2361		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2362
2363	/* count reflects descriptors mapped, if 0 then mapping error
 
2364	 * has occurred and we need to rewind the descriptor queue
2365	 */
2366	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2367
2368	if (count) {
2369		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2370				   first, skb->len, hdr_len);
2371		/* Make sure there is space in the ring for the next send. */
2372		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2373	} else {
2374		dev_kfree_skb_any(skb);
2375		tx_ring->buffer_info[first].time_stamp = 0;
2376		tx_ring->next_to_use = first;
2377	}
2378
2379	return NETDEV_TX_OK;
2380}
2381
2382static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2383				    struct net_device *netdev)
2384{
2385	struct igbvf_adapter *adapter = netdev_priv(netdev);
2386	struct igbvf_ring *tx_ring;
2387
2388	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2389		dev_kfree_skb_any(skb);
2390		return NETDEV_TX_OK;
2391	}
2392
2393	tx_ring = &adapter->tx_ring[0];
2394
2395	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2396}
2397
2398/**
2399 * igbvf_tx_timeout - Respond to a Tx Hang
2400 * @netdev: network interface device structure
2401 **/
2402static void igbvf_tx_timeout(struct net_device *netdev)
2403{
2404	struct igbvf_adapter *adapter = netdev_priv(netdev);
2405
2406	/* Do the reset outside of interrupt context */
2407	adapter->tx_timeout_count++;
2408	schedule_work(&adapter->reset_task);
2409}
2410
2411static void igbvf_reset_task(struct work_struct *work)
2412{
2413	struct igbvf_adapter *adapter;
2414
2415	adapter = container_of(work, struct igbvf_adapter, reset_task);
2416
2417	igbvf_reinit_locked(adapter);
2418}
2419
2420/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421 * igbvf_change_mtu - Change the Maximum Transfer Unit
2422 * @netdev: network interface device structure
2423 * @new_mtu: new value for maximum frame size
2424 *
2425 * Returns 0 on success, negative on failure
2426 **/
2427static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2428{
2429	struct igbvf_adapter *adapter = netdev_priv(netdev);
2430	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2431
 
 
 
 
 
 
 
 
 
 
2432	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2433		usleep_range(1000, 2000);
2434	/* igbvf_down has a dependency on max_frame_size */
2435	adapter->max_frame_size = max_frame;
2436	if (netif_running(netdev))
2437		igbvf_down(adapter);
2438
2439	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 
2440	 * means we reserve 2 more, this pushes us to allocate from the next
2441	 * larger slab size.
2442	 * i.e. RXBUFFER_2048 --> size-4096 slab
2443	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2444	 * fragmented skbs
2445	 */
2446
2447	if (max_frame <= 1024)
2448		adapter->rx_buffer_len = 1024;
2449	else if (max_frame <= 2048)
2450		adapter->rx_buffer_len = 2048;
2451	else
2452#if (PAGE_SIZE / 2) > 16384
2453		adapter->rx_buffer_len = 16384;
2454#else
2455		adapter->rx_buffer_len = PAGE_SIZE / 2;
2456#endif
2457
 
2458	/* adjust allocation if LPE protects us, and we aren't using SBP */
2459	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2460	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2461		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2462					 ETH_FCS_LEN;
2463
2464	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2465		 netdev->mtu, new_mtu);
2466	netdev->mtu = new_mtu;
2467
2468	if (netif_running(netdev))
2469		igbvf_up(adapter);
2470	else
2471		igbvf_reset(adapter);
2472
2473	clear_bit(__IGBVF_RESETTING, &adapter->state);
2474
2475	return 0;
2476}
2477
2478static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2479{
2480	switch (cmd) {
2481	default:
2482		return -EOPNOTSUPP;
2483	}
2484}
2485
2486static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2487{
2488	struct net_device *netdev = pci_get_drvdata(pdev);
2489	struct igbvf_adapter *adapter = netdev_priv(netdev);
2490#ifdef CONFIG_PM
2491	int retval = 0;
2492#endif
2493
2494	netif_device_detach(netdev);
2495
2496	if (netif_running(netdev)) {
2497		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2498		igbvf_down(adapter);
2499		igbvf_free_irq(adapter);
2500	}
2501
2502#ifdef CONFIG_PM
2503	retval = pci_save_state(pdev);
2504	if (retval)
2505		return retval;
2506#endif
2507
2508	pci_disable_device(pdev);
2509
2510	return 0;
2511}
2512
2513#ifdef CONFIG_PM
2514static int igbvf_resume(struct pci_dev *pdev)
2515{
2516	struct net_device *netdev = pci_get_drvdata(pdev);
2517	struct igbvf_adapter *adapter = netdev_priv(netdev);
2518	u32 err;
2519
2520	pci_restore_state(pdev);
2521	err = pci_enable_device_mem(pdev);
2522	if (err) {
2523		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2524		return err;
2525	}
2526
2527	pci_set_master(pdev);
2528
2529	if (netif_running(netdev)) {
2530		err = igbvf_request_irq(adapter);
2531		if (err)
2532			return err;
2533	}
2534
2535	igbvf_reset(adapter);
2536
2537	if (netif_running(netdev))
2538		igbvf_up(adapter);
2539
2540	netif_device_attach(netdev);
2541
2542	return 0;
2543}
2544#endif
2545
2546static void igbvf_shutdown(struct pci_dev *pdev)
2547{
2548	igbvf_suspend(pdev, PMSG_SUSPEND);
2549}
2550
2551#ifdef CONFIG_NET_POLL_CONTROLLER
2552/* Polling 'interrupt' - used by things like netconsole to send skbs
 
2553 * without having to re-enable interrupts. It's not called while
2554 * the interrupt routine is executing.
2555 */
2556static void igbvf_netpoll(struct net_device *netdev)
2557{
2558	struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560	disable_irq(adapter->pdev->irq);
2561
2562	igbvf_clean_tx_irq(adapter->tx_ring);
2563
2564	enable_irq(adapter->pdev->irq);
2565}
2566#endif
2567
2568/**
2569 * igbvf_io_error_detected - called when PCI error is detected
2570 * @pdev: Pointer to PCI device
2571 * @state: The current pci connection state
2572 *
2573 * This function is called after a PCI bus error affecting
2574 * this device has been detected.
2575 */
2576static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2577						pci_channel_state_t state)
2578{
2579	struct net_device *netdev = pci_get_drvdata(pdev);
2580	struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582	netif_device_detach(netdev);
2583
2584	if (state == pci_channel_io_perm_failure)
2585		return PCI_ERS_RESULT_DISCONNECT;
2586
2587	if (netif_running(netdev))
2588		igbvf_down(adapter);
2589	pci_disable_device(pdev);
2590
2591	/* Request a slot slot reset. */
2592	return PCI_ERS_RESULT_NEED_RESET;
2593}
2594
2595/**
2596 * igbvf_io_slot_reset - called after the pci bus has been reset.
2597 * @pdev: Pointer to PCI device
2598 *
2599 * Restart the card from scratch, as if from a cold-boot. Implementation
2600 * resembles the first-half of the igbvf_resume routine.
2601 */
2602static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2603{
2604	struct net_device *netdev = pci_get_drvdata(pdev);
2605	struct igbvf_adapter *adapter = netdev_priv(netdev);
2606
2607	if (pci_enable_device_mem(pdev)) {
2608		dev_err(&pdev->dev,
2609			"Cannot re-enable PCI device after reset.\n");
2610		return PCI_ERS_RESULT_DISCONNECT;
2611	}
2612	pci_set_master(pdev);
2613
2614	igbvf_reset(adapter);
2615
2616	return PCI_ERS_RESULT_RECOVERED;
2617}
2618
2619/**
2620 * igbvf_io_resume - called when traffic can start flowing again.
2621 * @pdev: Pointer to PCI device
2622 *
2623 * This callback is called when the error recovery driver tells us that
2624 * its OK to resume normal operation. Implementation resembles the
2625 * second-half of the igbvf_resume routine.
2626 */
2627static void igbvf_io_resume(struct pci_dev *pdev)
2628{
2629	struct net_device *netdev = pci_get_drvdata(pdev);
2630	struct igbvf_adapter *adapter = netdev_priv(netdev);
2631
2632	if (netif_running(netdev)) {
2633		if (igbvf_up(adapter)) {
2634			dev_err(&pdev->dev,
2635				"can't bring device back up after reset\n");
2636			return;
2637		}
2638	}
2639
2640	netif_device_attach(netdev);
2641}
2642
2643static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2644{
2645	struct e1000_hw *hw = &adapter->hw;
2646	struct net_device *netdev = adapter->netdev;
2647	struct pci_dev *pdev = adapter->pdev;
2648
2649	if (hw->mac.type == e1000_vfadapt_i350)
2650		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2651	else
2652		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2653	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2654}
2655
2656static int igbvf_set_features(struct net_device *netdev,
2657			      netdev_features_t features)
2658{
2659	struct igbvf_adapter *adapter = netdev_priv(netdev);
2660
2661	if (features & NETIF_F_RXCSUM)
2662		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2663	else
2664		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2665
2666	return 0;
2667}
2668
2669#define IGBVF_MAX_MAC_HDR_LEN		127
2670#define IGBVF_MAX_NETWORK_HDR_LEN	511
2671
2672static netdev_features_t
2673igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2674		     netdev_features_t features)
2675{
2676	unsigned int network_hdr_len, mac_hdr_len;
2677
2678	/* Make certain the headers can be described by a context descriptor */
2679	mac_hdr_len = skb_network_header(skb) - skb->data;
2680	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2681		return features & ~(NETIF_F_HW_CSUM |
2682				    NETIF_F_SCTP_CRC |
2683				    NETIF_F_HW_VLAN_CTAG_TX |
2684				    NETIF_F_TSO |
2685				    NETIF_F_TSO6);
2686
2687	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2688	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2689		return features & ~(NETIF_F_HW_CSUM |
2690				    NETIF_F_SCTP_CRC |
2691				    NETIF_F_TSO |
2692				    NETIF_F_TSO6);
2693
2694	/* We can only support IPV4 TSO in tunnels if we can mangle the
2695	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2696	 */
2697	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2698		features &= ~NETIF_F_TSO;
2699
2700	return features;
2701}
2702
2703static const struct net_device_ops igbvf_netdev_ops = {
2704	.ndo_open		= igbvf_open,
2705	.ndo_stop		= igbvf_close,
2706	.ndo_start_xmit		= igbvf_xmit_frame,
2707	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2708	.ndo_set_mac_address	= igbvf_set_mac,
2709	.ndo_change_mtu		= igbvf_change_mtu,
2710	.ndo_do_ioctl		= igbvf_ioctl,
2711	.ndo_tx_timeout		= igbvf_tx_timeout,
2712	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2713	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
 
2714#ifdef CONFIG_NET_POLL_CONTROLLER
2715	.ndo_poll_controller	= igbvf_netpoll,
2716#endif
2717	.ndo_set_features	= igbvf_set_features,
2718	.ndo_features_check	= igbvf_features_check,
2719};
2720
2721/**
2722 * igbvf_probe - Device Initialization Routine
2723 * @pdev: PCI device information struct
2724 * @ent: entry in igbvf_pci_tbl
2725 *
2726 * Returns 0 on success, negative on failure
2727 *
2728 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2729 * The OS initialization, configuring of the adapter private structure,
2730 * and a hardware reset occur.
2731 **/
2732static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2733{
2734	struct net_device *netdev;
2735	struct igbvf_adapter *adapter;
2736	struct e1000_hw *hw;
2737	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2738
2739	static int cards_found;
2740	int err, pci_using_dac;
2741
2742	err = pci_enable_device_mem(pdev);
2743	if (err)
2744		return err;
2745
2746	pci_using_dac = 0;
2747	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2748	if (!err) {
2749		pci_using_dac = 1;
2750	} else {
2751		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2752		if (err) {
2753			dev_err(&pdev->dev,
2754				"No usable DMA configuration, aborting\n");
2755			goto err_dma;
2756		}
2757	}
2758
2759	err = pci_request_regions(pdev, igbvf_driver_name);
2760	if (err)
2761		goto err_pci_reg;
2762
2763	pci_set_master(pdev);
2764
2765	err = -ENOMEM;
2766	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2767	if (!netdev)
2768		goto err_alloc_etherdev;
2769
2770	SET_NETDEV_DEV(netdev, &pdev->dev);
2771
2772	pci_set_drvdata(pdev, netdev);
2773	adapter = netdev_priv(netdev);
2774	hw = &adapter->hw;
2775	adapter->netdev = netdev;
2776	adapter->pdev = pdev;
2777	adapter->ei = ei;
2778	adapter->pba = ei->pba;
2779	adapter->flags = ei->flags;
2780	adapter->hw.back = adapter;
2781	adapter->hw.mac.type = ei->mac;
2782	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2783
2784	/* PCI config space info */
2785
2786	hw->vendor_id = pdev->vendor;
2787	hw->device_id = pdev->device;
2788	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2789	hw->subsystem_device_id = pdev->subsystem_device;
2790	hw->revision_id = pdev->revision;
2791
2792	err = -EIO;
2793	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2794				      pci_resource_len(pdev, 0));
2795
2796	if (!adapter->hw.hw_addr)
2797		goto err_ioremap;
2798
2799	if (ei->get_variants) {
2800		err = ei->get_variants(adapter);
2801		if (err)
2802			goto err_get_variants;
2803	}
2804
2805	/* setup adapter struct */
2806	err = igbvf_sw_init(adapter);
2807	if (err)
2808		goto err_sw_init;
2809
2810	/* construct the net_device struct */
2811	netdev->netdev_ops = &igbvf_netdev_ops;
2812
2813	igbvf_set_ethtool_ops(netdev);
2814	netdev->watchdog_timeo = 5 * HZ;
2815	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2816
2817	adapter->bd_number = cards_found++;
2818
2819	netdev->hw_features = NETIF_F_SG |
2820			      NETIF_F_TSO |
2821			      NETIF_F_TSO6 |
2822			      NETIF_F_RXCSUM |
2823			      NETIF_F_HW_CSUM |
2824			      NETIF_F_SCTP_CRC;
2825
2826#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2827				    NETIF_F_GSO_GRE_CSUM | \
2828				    NETIF_F_GSO_IPXIP4 | \
2829				    NETIF_F_GSO_IPXIP6 | \
2830				    NETIF_F_GSO_UDP_TUNNEL | \
2831				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2832
2833	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2834	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2835			       IGBVF_GSO_PARTIAL_FEATURES;
2836
2837	netdev->features = netdev->hw_features;
2838
2839	if (pci_using_dac)
2840		netdev->features |= NETIF_F_HIGHDMA;
2841
2842	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2843	netdev->mpls_features |= NETIF_F_HW_CSUM;
2844	netdev->hw_enc_features |= netdev->vlan_features;
2845
2846	/* set this bit last since it cannot be part of vlan_features */
2847	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2848			    NETIF_F_HW_VLAN_CTAG_RX |
2849			    NETIF_F_HW_VLAN_CTAG_TX;
2850
2851	/* MTU range: 68 - 9216 */
2852	netdev->min_mtu = ETH_MIN_MTU;
2853	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2854
2855	spin_lock_bh(&hw->mbx_lock);
2856
2857	/*reset the controller to put the device in a known good state */
2858	err = hw->mac.ops.reset_hw(hw);
2859	if (err) {
2860		dev_info(&pdev->dev,
2861			 "PF still in reset state. Is the PF interface up?\n");
2862	} else {
2863		err = hw->mac.ops.read_mac_addr(hw);
2864		if (err)
2865			dev_info(&pdev->dev, "Error reading MAC address.\n");
2866		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2867			dev_info(&pdev->dev,
2868				 "MAC address not assigned by administrator.\n");
2869		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2870		       netdev->addr_len);
2871	}
2872
2873	spin_unlock_bh(&hw->mbx_lock);
2874
2875	if (!is_valid_ether_addr(netdev->dev_addr)) {
2876		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2877		eth_hw_addr_random(netdev);
2878		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2879		       netdev->addr_len);
2880	}
2881
2882	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
 
2883
2884	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2885	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2886
2887	/* ring size defaults */
2888	adapter->rx_ring->count = 1024;
2889	adapter->tx_ring->count = 1024;
2890
2891	/* reset the hardware with the new settings */
2892	igbvf_reset(adapter);
2893
2894	/* set hardware-specific flags */
2895	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2896		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2897
2898	strcpy(netdev->name, "eth%d");
2899	err = register_netdev(netdev);
2900	if (err)
2901		goto err_hw_init;
2902
2903	/* tell the stack to leave us alone until igbvf_open() is called */
2904	netif_carrier_off(netdev);
2905	netif_stop_queue(netdev);
2906
2907	igbvf_print_device_info(adapter);
2908
2909	igbvf_initialize_last_counter_stats(adapter);
2910
2911	return 0;
2912
2913err_hw_init:
2914	kfree(adapter->tx_ring);
2915	kfree(adapter->rx_ring);
2916err_sw_init:
2917	igbvf_reset_interrupt_capability(adapter);
2918err_get_variants:
2919	iounmap(adapter->hw.hw_addr);
2920err_ioremap:
2921	free_netdev(netdev);
2922err_alloc_etherdev:
2923	pci_release_regions(pdev);
2924err_pci_reg:
2925err_dma:
2926	pci_disable_device(pdev);
2927	return err;
2928}
2929
2930/**
2931 * igbvf_remove - Device Removal Routine
2932 * @pdev: PCI device information struct
2933 *
2934 * igbvf_remove is called by the PCI subsystem to alert the driver
2935 * that it should release a PCI device.  The could be caused by a
2936 * Hot-Plug event, or because the driver is going to be removed from
2937 * memory.
2938 **/
2939static void igbvf_remove(struct pci_dev *pdev)
2940{
2941	struct net_device *netdev = pci_get_drvdata(pdev);
2942	struct igbvf_adapter *adapter = netdev_priv(netdev);
2943	struct e1000_hw *hw = &adapter->hw;
2944
2945	/* The watchdog timer may be rescheduled, so explicitly
 
2946	 * disable it from being rescheduled.
2947	 */
2948	set_bit(__IGBVF_DOWN, &adapter->state);
2949	del_timer_sync(&adapter->watchdog_timer);
2950
2951	cancel_work_sync(&adapter->reset_task);
2952	cancel_work_sync(&adapter->watchdog_task);
2953
2954	unregister_netdev(netdev);
2955
2956	igbvf_reset_interrupt_capability(adapter);
2957
2958	/* it is important to delete the NAPI struct prior to freeing the
2959	 * Rx ring so that you do not end up with null pointer refs
 
2960	 */
2961	netif_napi_del(&adapter->rx_ring->napi);
2962	kfree(adapter->tx_ring);
2963	kfree(adapter->rx_ring);
2964
2965	iounmap(hw->hw_addr);
2966	if (hw->flash_address)
2967		iounmap(hw->flash_address);
2968	pci_release_regions(pdev);
2969
2970	free_netdev(netdev);
2971
2972	pci_disable_device(pdev);
2973}
2974
2975/* PCI Error Recovery (ERS) */
2976static const struct pci_error_handlers igbvf_err_handler = {
2977	.error_detected = igbvf_io_error_detected,
2978	.slot_reset = igbvf_io_slot_reset,
2979	.resume = igbvf_io_resume,
2980};
2981
2982static const struct pci_device_id igbvf_pci_tbl[] = {
2983	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2984	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2985	{ } /* terminate list */
2986};
2987MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2988
2989/* PCI Device API Driver */
2990static struct pci_driver igbvf_driver = {
2991	.name		= igbvf_driver_name,
2992	.id_table	= igbvf_pci_tbl,
2993	.probe		= igbvf_probe,
2994	.remove		= igbvf_remove,
2995#ifdef CONFIG_PM
2996	/* Power Management Hooks */
2997	.suspend	= igbvf_suspend,
2998	.resume		= igbvf_resume,
2999#endif
3000	.shutdown	= igbvf_shutdown,
3001	.err_handler	= &igbvf_err_handler
3002};
3003
3004/**
3005 * igbvf_init_module - Driver Registration Routine
3006 *
3007 * igbvf_init_module is the first routine called when the driver is
3008 * loaded. All it does is register with the PCI subsystem.
3009 **/
3010static int __init igbvf_init_module(void)
3011{
3012	int ret;
3013
3014	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3015	pr_info("%s\n", igbvf_copyright);
3016
3017	ret = pci_register_driver(&igbvf_driver);
3018
3019	return ret;
3020}
3021module_init(igbvf_init_module);
3022
3023/**
3024 * igbvf_exit_module - Driver Exit Cleanup Routine
3025 *
3026 * igbvf_exit_module is called just before the driver is removed
3027 * from memory.
3028 **/
3029static void __exit igbvf_exit_module(void)
3030{
3031	pci_unregister_driver(&igbvf_driver);
3032}
3033module_exit(igbvf_exit_module);
 
3034
3035MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3036MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3037MODULE_LICENSE("GPL");
3038MODULE_VERSION(DRV_VERSION);
3039
3040/* netdev.c */
v3.15
 
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/module.h>
  31#include <linux/types.h>
  32#include <linux/init.h>
  33#include <linux/pci.h>
  34#include <linux/vmalloc.h>
  35#include <linux/pagemap.h>
  36#include <linux/delay.h>
  37#include <linux/netdevice.h>
  38#include <linux/tcp.h>
  39#include <linux/ipv6.h>
  40#include <linux/slab.h>
  41#include <net/checksum.h>
  42#include <net/ip6_checksum.h>
  43#include <linux/mii.h>
  44#include <linux/ethtool.h>
  45#include <linux/if_vlan.h>
  46#include <linux/prefetch.h>
 
  47
  48#include "igbvf.h"
  49
  50#define DRV_VERSION "2.0.2-k"
  51char igbvf_driver_name[] = "igbvf";
  52const char igbvf_driver_version[] = DRV_VERSION;
  53static const char igbvf_driver_string[] =
  54		  "Intel(R) Gigabit Virtual Function Network Driver";
  55static const char igbvf_copyright[] =
  56		  "Copyright (c) 2009 - 2012 Intel Corporation.";
  57
  58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  59static int debug = -1;
  60module_param(debug, int, 0);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static int igbvf_poll(struct napi_struct *napi, int budget);
  64static void igbvf_reset(struct igbvf_adapter *);
  65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  67
  68static struct igbvf_info igbvf_vf_info = {
  69	.mac                    = e1000_vfadapt,
  70	.flags                  = 0,
  71	.pba                    = 10,
  72	.init_ops               = e1000_init_function_pointers_vf,
  73};
  74
  75static struct igbvf_info igbvf_i350_vf_info = {
  76	.mac			= e1000_vfadapt_i350,
  77	.flags			= 0,
  78	.pba			= 10,
  79	.init_ops		= e1000_init_function_pointers_vf,
  80};
  81
  82static const struct igbvf_info *igbvf_info_tbl[] = {
  83	[board_vf]              = &igbvf_vf_info,
  84	[board_i350_vf]		= &igbvf_i350_vf_info,
  85};
  86
  87/**
  88 * igbvf_desc_unused - calculate if we have unused descriptors
 
  89 **/
  90static int igbvf_desc_unused(struct igbvf_ring *ring)
  91{
  92	if (ring->next_to_clean > ring->next_to_use)
  93		return ring->next_to_clean - ring->next_to_use - 1;
  94
  95	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  96}
  97
  98/**
  99 * igbvf_receive_skb - helper function to handle Rx indications
 100 * @adapter: board private structure
 101 * @status: descriptor status field as written by hardware
 102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 103 * @skb: pointer to sk_buff to be indicated to stack
 104 **/
 105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
 106                              struct net_device *netdev,
 107                              struct sk_buff *skb,
 108                              u32 status, u16 vlan)
 109{
 110	u16 vid;
 111
 112	if (status & E1000_RXD_STAT_VP) {
 113		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
 114		    (status & E1000_RXDEXT_STATERR_LB))
 115			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 116		else
 117			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 118		if (test_bit(vid, adapter->active_vlans))
 119			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 120	}
 121
 122	napi_gro_receive(&adapter->rx_ring->napi, skb);
 123}
 124
 125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 126                                         u32 status_err, struct sk_buff *skb)
 127{
 128	skb_checksum_none_assert(skb);
 129
 130	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
 131	if ((status_err & E1000_RXD_STAT_IXSM) ||
 132	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 133		return;
 134
 135	/* TCP/UDP checksum error bit is set */
 136	if (status_err &
 137	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 138		/* let the stack verify checksum errors */
 139		adapter->hw_csum_err++;
 140		return;
 141	}
 142
 143	/* It must be a TCP or UDP packet with a valid checksum */
 144	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 145		skb->ip_summed = CHECKSUM_UNNECESSARY;
 146
 147	adapter->hw_csum_good++;
 148}
 149
 150/**
 151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 152 * @rx_ring: address of ring structure to repopulate
 153 * @cleaned_count: number of buffers to repopulate
 154 **/
 155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 156                                   int cleaned_count)
 157{
 158	struct igbvf_adapter *adapter = rx_ring->adapter;
 159	struct net_device *netdev = adapter->netdev;
 160	struct pci_dev *pdev = adapter->pdev;
 161	union e1000_adv_rx_desc *rx_desc;
 162	struct igbvf_buffer *buffer_info;
 163	struct sk_buff *skb;
 164	unsigned int i;
 165	int bufsz;
 166
 167	i = rx_ring->next_to_use;
 168	buffer_info = &rx_ring->buffer_info[i];
 169
 170	if (adapter->rx_ps_hdr_size)
 171		bufsz = adapter->rx_ps_hdr_size;
 172	else
 173		bufsz = adapter->rx_buffer_len;
 174
 175	while (cleaned_count--) {
 176		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 177
 178		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 179			if (!buffer_info->page) {
 180				buffer_info->page = alloc_page(GFP_ATOMIC);
 181				if (!buffer_info->page) {
 182					adapter->alloc_rx_buff_failed++;
 183					goto no_buffers;
 184				}
 185				buffer_info->page_offset = 0;
 186			} else {
 187				buffer_info->page_offset ^= PAGE_SIZE / 2;
 188			}
 189			buffer_info->page_dma =
 190				dma_map_page(&pdev->dev, buffer_info->page,
 191				             buffer_info->page_offset,
 192				             PAGE_SIZE / 2,
 193					     DMA_FROM_DEVICE);
 194			if (dma_mapping_error(&pdev->dev,
 195					      buffer_info->page_dma)) {
 196				__free_page(buffer_info->page);
 197				buffer_info->page = NULL;
 198				dev_err(&pdev->dev, "RX DMA map failed\n");
 199				break;
 200			}
 201		}
 202
 203		if (!buffer_info->skb) {
 204			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 205			if (!skb) {
 206				adapter->alloc_rx_buff_failed++;
 207				goto no_buffers;
 208			}
 209
 210			buffer_info->skb = skb;
 211			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 212			                                  bufsz,
 213							  DMA_FROM_DEVICE);
 214			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 215				dev_kfree_skb(buffer_info->skb);
 216				buffer_info->skb = NULL;
 217				dev_err(&pdev->dev, "RX DMA map failed\n");
 218				goto no_buffers;
 219			}
 220		}
 221		/* Refresh the desc even if buffer_addrs didn't change because
 222		 * each write-back erases this info. */
 
 223		if (adapter->rx_ps_hdr_size) {
 224			rx_desc->read.pkt_addr =
 225			     cpu_to_le64(buffer_info->page_dma);
 226			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 227		} else {
 228			rx_desc->read.pkt_addr =
 229			     cpu_to_le64(buffer_info->dma);
 230			rx_desc->read.hdr_addr = 0;
 231		}
 232
 233		i++;
 234		if (i == rx_ring->count)
 235			i = 0;
 236		buffer_info = &rx_ring->buffer_info[i];
 237	}
 238
 239no_buffers:
 240	if (rx_ring->next_to_use != i) {
 241		rx_ring->next_to_use = i;
 242		if (i == 0)
 243			i = (rx_ring->count - 1);
 244		else
 245			i--;
 246
 247		/* Force memory writes to complete before letting h/w
 248		 * know there are new descriptors to fetch.  (Only
 249		 * applicable for weak-ordered memory model archs,
 250		 * such as IA-64). */
 
 251		wmb();
 252		writel(i, adapter->hw.hw_addr + rx_ring->tail);
 253	}
 254}
 255
 256/**
 257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 258 * @adapter: board private structure
 259 *
 260 * the return value indicates whether actual cleaning was done, there
 261 * is no guarantee that everything was cleaned
 262 **/
 263static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 264                               int *work_done, int work_to_do)
 265{
 266	struct igbvf_ring *rx_ring = adapter->rx_ring;
 267	struct net_device *netdev = adapter->netdev;
 268	struct pci_dev *pdev = adapter->pdev;
 269	union e1000_adv_rx_desc *rx_desc, *next_rxd;
 270	struct igbvf_buffer *buffer_info, *next_buffer;
 271	struct sk_buff *skb;
 272	bool cleaned = false;
 273	int cleaned_count = 0;
 274	unsigned int total_bytes = 0, total_packets = 0;
 275	unsigned int i;
 276	u32 length, hlen, staterr;
 277
 278	i = rx_ring->next_to_clean;
 279	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 280	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 281
 282	while (staterr & E1000_RXD_STAT_DD) {
 283		if (*work_done >= work_to_do)
 284			break;
 285		(*work_done)++;
 286		rmb(); /* read descriptor and rx_buffer_info after status DD */
 287
 288		buffer_info = &rx_ring->buffer_info[i];
 289
 290		/* HW will not DMA in data larger than the given buffer, even
 291		 * if it parses the (NFS, of course) header to be larger.  In
 292		 * that case, it fills the header buffer and spills the rest
 293		 * into the page.
 294		 */
 295		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
 296		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
 
 297		if (hlen > adapter->rx_ps_hdr_size)
 298			hlen = adapter->rx_ps_hdr_size;
 299
 300		length = le16_to_cpu(rx_desc->wb.upper.length);
 301		cleaned = true;
 302		cleaned_count++;
 303
 304		skb = buffer_info->skb;
 305		prefetch(skb->data - NET_IP_ALIGN);
 306		buffer_info->skb = NULL;
 307		if (!adapter->rx_ps_hdr_size) {
 308			dma_unmap_single(&pdev->dev, buffer_info->dma,
 309			                 adapter->rx_buffer_len,
 310					 DMA_FROM_DEVICE);
 311			buffer_info->dma = 0;
 312			skb_put(skb, length);
 313			goto send_up;
 314		}
 315
 316		if (!skb_shinfo(skb)->nr_frags) {
 317			dma_unmap_single(&pdev->dev, buffer_info->dma,
 318			                 adapter->rx_ps_hdr_size,
 319					 DMA_FROM_DEVICE);
 
 320			skb_put(skb, hlen);
 321		}
 322
 323		if (length) {
 324			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 325			               PAGE_SIZE / 2,
 326				       DMA_FROM_DEVICE);
 327			buffer_info->page_dma = 0;
 328
 329			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 330			                   buffer_info->page,
 331			                   buffer_info->page_offset,
 332			                   length);
 333
 334			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 335			    (page_count(buffer_info->page) != 1))
 336				buffer_info->page = NULL;
 337			else
 338				get_page(buffer_info->page);
 339
 340			skb->len += length;
 341			skb->data_len += length;
 342			skb->truesize += PAGE_SIZE / 2;
 343		}
 344send_up:
 345		i++;
 346		if (i == rx_ring->count)
 347			i = 0;
 348		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 349		prefetch(next_rxd);
 350		next_buffer = &rx_ring->buffer_info[i];
 351
 352		if (!(staterr & E1000_RXD_STAT_EOP)) {
 353			buffer_info->skb = next_buffer->skb;
 354			buffer_info->dma = next_buffer->dma;
 355			next_buffer->skb = skb;
 356			next_buffer->dma = 0;
 357			goto next_desc;
 358		}
 359
 360		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 361			dev_kfree_skb_irq(skb);
 362			goto next_desc;
 363		}
 364
 365		total_bytes += skb->len;
 366		total_packets++;
 367
 368		igbvf_rx_checksum_adv(adapter, staterr, skb);
 369
 370		skb->protocol = eth_type_trans(skb, netdev);
 371
 372		igbvf_receive_skb(adapter, netdev, skb, staterr,
 373		                  rx_desc->wb.upper.vlan);
 374
 375next_desc:
 376		rx_desc->wb.upper.status_error = 0;
 377
 378		/* return some buffers to hardware, one at a time is too slow */
 379		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 380			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 381			cleaned_count = 0;
 382		}
 383
 384		/* use prefetched values */
 385		rx_desc = next_rxd;
 386		buffer_info = next_buffer;
 387
 388		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 389	}
 390
 391	rx_ring->next_to_clean = i;
 392	cleaned_count = igbvf_desc_unused(rx_ring);
 393
 394	if (cleaned_count)
 395		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 396
 397	adapter->total_rx_packets += total_packets;
 398	adapter->total_rx_bytes += total_bytes;
 399	adapter->net_stats.rx_bytes += total_bytes;
 400	adapter->net_stats.rx_packets += total_packets;
 401	return cleaned;
 402}
 403
 404static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 405                            struct igbvf_buffer *buffer_info)
 406{
 407	if (buffer_info->dma) {
 408		if (buffer_info->mapped_as_page)
 409			dma_unmap_page(&adapter->pdev->dev,
 410				       buffer_info->dma,
 411				       buffer_info->length,
 412				       DMA_TO_DEVICE);
 413		else
 414			dma_unmap_single(&adapter->pdev->dev,
 415					 buffer_info->dma,
 416					 buffer_info->length,
 417					 DMA_TO_DEVICE);
 418		buffer_info->dma = 0;
 419	}
 420	if (buffer_info->skb) {
 421		dev_kfree_skb_any(buffer_info->skb);
 422		buffer_info->skb = NULL;
 423	}
 424	buffer_info->time_stamp = 0;
 425}
 426
 427/**
 428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 429 * @adapter: board private structure
 430 *
 431 * Return 0 on success, negative on failure
 432 **/
 433int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 434                             struct igbvf_ring *tx_ring)
 435{
 436	struct pci_dev *pdev = adapter->pdev;
 437	int size;
 438
 439	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 440	tx_ring->buffer_info = vzalloc(size);
 441	if (!tx_ring->buffer_info)
 442		goto err;
 443
 444	/* round up to nearest 4K */
 445	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 446	tx_ring->size = ALIGN(tx_ring->size, 4096);
 447
 448	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 449					   &tx_ring->dma, GFP_KERNEL);
 450	if (!tx_ring->desc)
 451		goto err;
 452
 453	tx_ring->adapter = adapter;
 454	tx_ring->next_to_use = 0;
 455	tx_ring->next_to_clean = 0;
 456
 457	return 0;
 458err:
 459	vfree(tx_ring->buffer_info);
 460	dev_err(&adapter->pdev->dev,
 461	        "Unable to allocate memory for the transmit descriptor ring\n");
 462	return -ENOMEM;
 463}
 464
 465/**
 466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 467 * @adapter: board private structure
 468 *
 469 * Returns 0 on success, negative on failure
 470 **/
 471int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 472			     struct igbvf_ring *rx_ring)
 473{
 474	struct pci_dev *pdev = adapter->pdev;
 475	int size, desc_len;
 476
 477	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 478	rx_ring->buffer_info = vzalloc(size);
 479	if (!rx_ring->buffer_info)
 480		goto err;
 481
 482	desc_len = sizeof(union e1000_adv_rx_desc);
 483
 484	/* Round up to nearest 4K */
 485	rx_ring->size = rx_ring->count * desc_len;
 486	rx_ring->size = ALIGN(rx_ring->size, 4096);
 487
 488	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 489					   &rx_ring->dma, GFP_KERNEL);
 490	if (!rx_ring->desc)
 491		goto err;
 492
 493	rx_ring->next_to_clean = 0;
 494	rx_ring->next_to_use = 0;
 495
 496	rx_ring->adapter = adapter;
 497
 498	return 0;
 499
 500err:
 501	vfree(rx_ring->buffer_info);
 502	rx_ring->buffer_info = NULL;
 503	dev_err(&adapter->pdev->dev,
 504	        "Unable to allocate memory for the receive descriptor ring\n");
 505	return -ENOMEM;
 506}
 507
 508/**
 509 * igbvf_clean_tx_ring - Free Tx Buffers
 510 * @tx_ring: ring to be cleaned
 511 **/
 512static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 513{
 514	struct igbvf_adapter *adapter = tx_ring->adapter;
 515	struct igbvf_buffer *buffer_info;
 516	unsigned long size;
 517	unsigned int i;
 518
 519	if (!tx_ring->buffer_info)
 520		return;
 521
 522	/* Free all the Tx ring sk_buffs */
 523	for (i = 0; i < tx_ring->count; i++) {
 524		buffer_info = &tx_ring->buffer_info[i];
 525		igbvf_put_txbuf(adapter, buffer_info);
 526	}
 527
 528	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 529	memset(tx_ring->buffer_info, 0, size);
 530
 531	/* Zero out the descriptor ring */
 532	memset(tx_ring->desc, 0, tx_ring->size);
 533
 534	tx_ring->next_to_use = 0;
 535	tx_ring->next_to_clean = 0;
 536
 537	writel(0, adapter->hw.hw_addr + tx_ring->head);
 538	writel(0, adapter->hw.hw_addr + tx_ring->tail);
 539}
 540
 541/**
 542 * igbvf_free_tx_resources - Free Tx Resources per Queue
 543 * @tx_ring: ring to free resources from
 544 *
 545 * Free all transmit software resources
 546 **/
 547void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 548{
 549	struct pci_dev *pdev = tx_ring->adapter->pdev;
 550
 551	igbvf_clean_tx_ring(tx_ring);
 552
 553	vfree(tx_ring->buffer_info);
 554	tx_ring->buffer_info = NULL;
 555
 556	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 557			  tx_ring->dma);
 558
 559	tx_ring->desc = NULL;
 560}
 561
 562/**
 563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 564 * @adapter: board private structure
 565 **/
 566static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 567{
 568	struct igbvf_adapter *adapter = rx_ring->adapter;
 569	struct igbvf_buffer *buffer_info;
 570	struct pci_dev *pdev = adapter->pdev;
 571	unsigned long size;
 572	unsigned int i;
 573
 574	if (!rx_ring->buffer_info)
 575		return;
 576
 577	/* Free all the Rx ring sk_buffs */
 578	for (i = 0; i < rx_ring->count; i++) {
 579		buffer_info = &rx_ring->buffer_info[i];
 580		if (buffer_info->dma) {
 581			if (adapter->rx_ps_hdr_size){
 582				dma_unmap_single(&pdev->dev, buffer_info->dma,
 583				                 adapter->rx_ps_hdr_size,
 584						 DMA_FROM_DEVICE);
 585			} else {
 586				dma_unmap_single(&pdev->dev, buffer_info->dma,
 587				                 adapter->rx_buffer_len,
 588						 DMA_FROM_DEVICE);
 589			}
 590			buffer_info->dma = 0;
 591		}
 592
 593		if (buffer_info->skb) {
 594			dev_kfree_skb(buffer_info->skb);
 595			buffer_info->skb = NULL;
 596		}
 597
 598		if (buffer_info->page) {
 599			if (buffer_info->page_dma)
 600				dma_unmap_page(&pdev->dev,
 601					       buffer_info->page_dma,
 602				               PAGE_SIZE / 2,
 603					       DMA_FROM_DEVICE);
 604			put_page(buffer_info->page);
 605			buffer_info->page = NULL;
 606			buffer_info->page_dma = 0;
 607			buffer_info->page_offset = 0;
 608		}
 609	}
 610
 611	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 612	memset(rx_ring->buffer_info, 0, size);
 613
 614	/* Zero out the descriptor ring */
 615	memset(rx_ring->desc, 0, rx_ring->size);
 616
 617	rx_ring->next_to_clean = 0;
 618	rx_ring->next_to_use = 0;
 619
 620	writel(0, adapter->hw.hw_addr + rx_ring->head);
 621	writel(0, adapter->hw.hw_addr + rx_ring->tail);
 622}
 623
 624/**
 625 * igbvf_free_rx_resources - Free Rx Resources
 626 * @rx_ring: ring to clean the resources from
 627 *
 628 * Free all receive software resources
 629 **/
 630
 631void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 632{
 633	struct pci_dev *pdev = rx_ring->adapter->pdev;
 634
 635	igbvf_clean_rx_ring(rx_ring);
 636
 637	vfree(rx_ring->buffer_info);
 638	rx_ring->buffer_info = NULL;
 639
 640	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 641	                  rx_ring->dma);
 642	rx_ring->desc = NULL;
 643}
 644
 645/**
 646 * igbvf_update_itr - update the dynamic ITR value based on statistics
 647 * @adapter: pointer to adapter
 648 * @itr_setting: current adapter->itr
 649 * @packets: the number of packets during this measurement interval
 650 * @bytes: the number of bytes during this measurement interval
 651 *
 652 *      Stores a new ITR value based on packets and byte
 653 *      counts during the last interrupt.  The advantage of per interrupt
 654 *      computation is faster updates and more accurate ITR for the current
 655 *      traffic pattern.  Constants in this function were computed
 656 *      based on theoretical maximum wire speed and thresholds were set based
 657 *      on testing data as well as attempting to minimize response time
 658 *      while increasing bulk throughput.
 659 **/
 660static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 661					   enum latency_range itr_setting,
 662					   int packets, int bytes)
 663{
 664	enum latency_range retval = itr_setting;
 665
 666	if (packets == 0)
 667		goto update_itr_done;
 668
 669	switch (itr_setting) {
 670	case lowest_latency:
 671		/* handle TSO and jumbo frames */
 672		if (bytes/packets > 8000)
 673			retval = bulk_latency;
 674		else if ((packets < 5) && (bytes > 512))
 675			retval = low_latency;
 676		break;
 677	case low_latency:  /* 50 usec aka 20000 ints/s */
 678		if (bytes > 10000) {
 679			/* this if handles the TSO accounting */
 680			if (bytes/packets > 8000)
 681				retval = bulk_latency;
 682			else if ((packets < 10) || ((bytes/packets) > 1200))
 683				retval = bulk_latency;
 684			else if ((packets > 35))
 685				retval = lowest_latency;
 686		} else if (bytes/packets > 2000) {
 687			retval = bulk_latency;
 688		} else if (packets <= 2 && bytes < 512) {
 689			retval = lowest_latency;
 690		}
 691		break;
 692	case bulk_latency: /* 250 usec aka 4000 ints/s */
 693		if (bytes > 25000) {
 694			if (packets > 35)
 695				retval = low_latency;
 696		} else if (bytes < 6000) {
 697			retval = low_latency;
 698		}
 699		break;
 700	default:
 701		break;
 702	}
 703
 704update_itr_done:
 705	return retval;
 706}
 707
 708static int igbvf_range_to_itr(enum latency_range current_range)
 709{
 710	int new_itr;
 711
 712	switch (current_range) {
 713	/* counts and packets in update_itr are dependent on these numbers */
 714	case lowest_latency:
 715		new_itr = IGBVF_70K_ITR;
 716		break;
 717	case low_latency:
 718		new_itr = IGBVF_20K_ITR;
 719		break;
 720	case bulk_latency:
 721		new_itr = IGBVF_4K_ITR;
 722		break;
 723	default:
 724		new_itr = IGBVF_START_ITR;
 725		break;
 726	}
 727	return new_itr;
 728}
 729
 730static void igbvf_set_itr(struct igbvf_adapter *adapter)
 731{
 732	u32 new_itr;
 733
 734	adapter->tx_ring->itr_range =
 735			igbvf_update_itr(adapter,
 736					 adapter->tx_ring->itr_val,
 737					 adapter->total_tx_packets,
 738					 adapter->total_tx_bytes);
 739
 740	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 741	if (adapter->requested_itr == 3 &&
 742	    adapter->tx_ring->itr_range == lowest_latency)
 743		adapter->tx_ring->itr_range = low_latency;
 744
 745	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 746
 747
 748	if (new_itr != adapter->tx_ring->itr_val) {
 749		u32 current_itr = adapter->tx_ring->itr_val;
 750		/*
 751		 * this attempts to bias the interrupt rate towards Bulk
 752		 * by adding intermediate steps when interrupt rate is
 753		 * increasing
 754		 */
 755		new_itr = new_itr > current_itr ?
 756			     min(current_itr + (new_itr >> 2), new_itr) :
 757			     new_itr;
 758		adapter->tx_ring->itr_val = new_itr;
 759
 760		adapter->tx_ring->set_itr = 1;
 761	}
 762
 763	adapter->rx_ring->itr_range =
 764			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 765					 adapter->total_rx_packets,
 766					 adapter->total_rx_bytes);
 767	if (adapter->requested_itr == 3 &&
 768	    adapter->rx_ring->itr_range == lowest_latency)
 769		adapter->rx_ring->itr_range = low_latency;
 770
 771	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 772
 773	if (new_itr != adapter->rx_ring->itr_val) {
 774		u32 current_itr = adapter->rx_ring->itr_val;
 
 775		new_itr = new_itr > current_itr ?
 776			     min(current_itr + (new_itr >> 2), new_itr) :
 777			     new_itr;
 778		adapter->rx_ring->itr_val = new_itr;
 779
 780		adapter->rx_ring->set_itr = 1;
 781	}
 782}
 783
 784/**
 785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 786 * @adapter: board private structure
 787 *
 788 * returns true if ring is completely cleaned
 789 **/
 790static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 791{
 792	struct igbvf_adapter *adapter = tx_ring->adapter;
 793	struct net_device *netdev = adapter->netdev;
 794	struct igbvf_buffer *buffer_info;
 795	struct sk_buff *skb;
 796	union e1000_adv_tx_desc *tx_desc, *eop_desc;
 797	unsigned int total_bytes = 0, total_packets = 0;
 798	unsigned int i, count = 0;
 799	bool cleaned = false;
 800
 801	i = tx_ring->next_to_clean;
 802	buffer_info = &tx_ring->buffer_info[i];
 803	eop_desc = buffer_info->next_to_watch;
 804
 805	do {
 806		/* if next_to_watch is not set then there is no work pending */
 807		if (!eop_desc)
 808			break;
 809
 810		/* prevent any other reads prior to eop_desc */
 811		read_barrier_depends();
 812
 813		/* if DD is not set pending work has not been completed */
 814		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 815			break;
 816
 817		/* clear next_to_watch to prevent false hangs */
 818		buffer_info->next_to_watch = NULL;
 819
 820		for (cleaned = false; !cleaned; count++) {
 821			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 822			cleaned = (tx_desc == eop_desc);
 823			skb = buffer_info->skb;
 824
 825			if (skb) {
 826				unsigned int segs, bytecount;
 827
 828				/* gso_segs is currently only valid for tcp */
 829				segs = skb_shinfo(skb)->gso_segs ?: 1;
 830				/* multiply data chunks by size of headers */
 831				bytecount = ((segs - 1) * skb_headlen(skb)) +
 832				            skb->len;
 833				total_packets += segs;
 834				total_bytes += bytecount;
 835			}
 836
 837			igbvf_put_txbuf(adapter, buffer_info);
 838			tx_desc->wb.status = 0;
 839
 840			i++;
 841			if (i == tx_ring->count)
 842				i = 0;
 843
 844			buffer_info = &tx_ring->buffer_info[i];
 845		}
 846
 847		eop_desc = buffer_info->next_to_watch;
 848	} while (count < tx_ring->count);
 849
 850	tx_ring->next_to_clean = i;
 851
 852	if (unlikely(count &&
 853	             netif_carrier_ok(netdev) &&
 854	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 855		/* Make sure that anybody stopping the queue after this
 856		 * sees the new next_to_clean.
 857		 */
 858		smp_mb();
 859		if (netif_queue_stopped(netdev) &&
 860		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 861			netif_wake_queue(netdev);
 862			++adapter->restart_queue;
 863		}
 864	}
 865
 866	adapter->net_stats.tx_bytes += total_bytes;
 867	adapter->net_stats.tx_packets += total_packets;
 868	return count < tx_ring->count;
 869}
 870
 871static irqreturn_t igbvf_msix_other(int irq, void *data)
 872{
 873	struct net_device *netdev = data;
 874	struct igbvf_adapter *adapter = netdev_priv(netdev);
 875	struct e1000_hw *hw = &adapter->hw;
 876
 877	adapter->int_counter1++;
 878
 879	netif_carrier_off(netdev);
 880	hw->mac.get_link_status = 1;
 881	if (!test_bit(__IGBVF_DOWN, &adapter->state))
 882		mod_timer(&adapter->watchdog_timer, jiffies + 1);
 883
 884	ew32(EIMS, adapter->eims_other);
 885
 886	return IRQ_HANDLED;
 887}
 888
 889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 890{
 891	struct net_device *netdev = data;
 892	struct igbvf_adapter *adapter = netdev_priv(netdev);
 893	struct e1000_hw *hw = &adapter->hw;
 894	struct igbvf_ring *tx_ring = adapter->tx_ring;
 895
 896	if (tx_ring->set_itr) {
 897		writel(tx_ring->itr_val,
 898		       adapter->hw.hw_addr + tx_ring->itr_register);
 899		adapter->tx_ring->set_itr = 0;
 900	}
 901
 902	adapter->total_tx_bytes = 0;
 903	adapter->total_tx_packets = 0;
 904
 905	/* auto mask will automatically reenable the interrupt when we write
 906	 * EICS */
 
 907	if (!igbvf_clean_tx_irq(tx_ring))
 908		/* Ring was not completely cleaned, so fire another interrupt */
 909		ew32(EICS, tx_ring->eims_value);
 910	else
 911		ew32(EIMS, tx_ring->eims_value);
 912
 913	return IRQ_HANDLED;
 914}
 915
 916static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 917{
 918	struct net_device *netdev = data;
 919	struct igbvf_adapter *adapter = netdev_priv(netdev);
 920
 921	adapter->int_counter0++;
 922
 923	/* Write the ITR value calculated at the end of the
 924	 * previous interrupt.
 925	 */
 926	if (adapter->rx_ring->set_itr) {
 927		writel(adapter->rx_ring->itr_val,
 928		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 929		adapter->rx_ring->set_itr = 0;
 930	}
 931
 932	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 933		adapter->total_rx_bytes = 0;
 934		adapter->total_rx_packets = 0;
 935		__napi_schedule(&adapter->rx_ring->napi);
 936	}
 937
 938	return IRQ_HANDLED;
 939}
 940
 941#define IGBVF_NO_QUEUE -1
 942
 943static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 944                                int tx_queue, int msix_vector)
 945{
 946	struct e1000_hw *hw = &adapter->hw;
 947	u32 ivar, index;
 948
 949	/* 82576 uses a table-based method for assigning vectors.
 950	   Each queue has a single entry in the table to which we write
 951	   a vector number along with a "valid" bit.  Sadly, the layout
 952	   of the table is somewhat counterintuitive. */
 
 953	if (rx_queue > IGBVF_NO_QUEUE) {
 954		index = (rx_queue >> 1);
 955		ivar = array_er32(IVAR0, index);
 956		if (rx_queue & 0x1) {
 957			/* vector goes into third byte of register */
 958			ivar = ivar & 0xFF00FFFF;
 959			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 960		} else {
 961			/* vector goes into low byte of register */
 962			ivar = ivar & 0xFFFFFF00;
 963			ivar |= msix_vector | E1000_IVAR_VALID;
 964		}
 965		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 966		array_ew32(IVAR0, index, ivar);
 967	}
 968	if (tx_queue > IGBVF_NO_QUEUE) {
 969		index = (tx_queue >> 1);
 970		ivar = array_er32(IVAR0, index);
 971		if (tx_queue & 0x1) {
 972			/* vector goes into high byte of register */
 973			ivar = ivar & 0x00FFFFFF;
 974			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 975		} else {
 976			/* vector goes into second byte of register */
 977			ivar = ivar & 0xFFFF00FF;
 978			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 979		}
 980		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 981		array_ew32(IVAR0, index, ivar);
 982	}
 983}
 984
 985/**
 986 * igbvf_configure_msix - Configure MSI-X hardware
 
 987 *
 988 * igbvf_configure_msix sets up the hardware to properly
 989 * generate MSI-X interrupts.
 990 **/
 991static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 992{
 993	u32 tmp;
 994	struct e1000_hw *hw = &adapter->hw;
 995	struct igbvf_ring *tx_ring = adapter->tx_ring;
 996	struct igbvf_ring *rx_ring = adapter->rx_ring;
 997	int vector = 0;
 998
 999	adapter->eims_enable_mask = 0;
1000
1001	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002	adapter->eims_enable_mask |= tx_ring->eims_value;
1003	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005	adapter->eims_enable_mask |= rx_ring->eims_value;
1006	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008	/* set vector for other causes, i.e. link changes */
1009
1010	tmp = (vector++ | E1000_IVAR_VALID);
1011
1012	ew32(IVAR_MISC, tmp);
1013
1014	adapter->eims_enable_mask = (1 << (vector)) - 1;
1015	adapter->eims_other = 1 << (vector - 1);
1016	e1e_flush();
1017}
1018
1019static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021	if (adapter->msix_entries) {
1022		pci_disable_msix(adapter->pdev);
1023		kfree(adapter->msix_entries);
1024		adapter->msix_entries = NULL;
1025	}
1026}
1027
1028/**
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
 
1030 *
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1033 **/
1034static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035{
1036	int err = -ENOMEM;
1037	int i;
1038
1039	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041	                                GFP_KERNEL);
1042	if (adapter->msix_entries) {
1043		for (i = 0; i < 3; i++)
1044			adapter->msix_entries[i].entry = i;
1045
1046		err = pci_enable_msix_range(adapter->pdev,
1047		                            adapter->msix_entries, 3, 3);
1048	}
1049
1050	if (err < 0) {
1051		/* MSI-X failed */
1052		dev_err(&adapter->pdev->dev,
1053		        "Failed to initialize MSI-X interrupts.\n");
1054		igbvf_reset_interrupt_capability(adapter);
1055	}
1056}
1057
1058/**
1059 * igbvf_request_msix - Initialize MSI-X interrupts
 
1060 *
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062 * kernel.
1063 **/
1064static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065{
1066	struct net_device *netdev = adapter->netdev;
1067	int err = 0, vector = 0;
1068
1069	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072	} else {
1073		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075	}
1076
1077	err = request_irq(adapter->msix_entries[vector].vector,
1078	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079	                  netdev);
1080	if (err)
1081		goto out;
1082
1083	adapter->tx_ring->itr_register = E1000_EITR(vector);
1084	adapter->tx_ring->itr_val = adapter->current_itr;
1085	vector++;
1086
1087	err = request_irq(adapter->msix_entries[vector].vector,
1088	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089	                  netdev);
1090	if (err)
1091		goto out;
1092
1093	adapter->rx_ring->itr_register = E1000_EITR(vector);
1094	adapter->rx_ring->itr_val = adapter->current_itr;
1095	vector++;
1096
1097	err = request_irq(adapter->msix_entries[vector].vector,
1098	                  igbvf_msix_other, 0, netdev->name, netdev);
1099	if (err)
1100		goto out;
1101
1102	igbvf_configure_msix(adapter);
1103	return 0;
1104out:
1105	return err;
1106}
1107
1108/**
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1111 **/
1112static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113{
1114	struct net_device *netdev = adapter->netdev;
1115
1116	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117	if (!adapter->tx_ring)
1118		return -ENOMEM;
1119
1120	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121	if (!adapter->rx_ring) {
1122		kfree(adapter->tx_ring);
1123		return -ENOMEM;
1124	}
1125
1126	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128	return 0;
1129}
1130
1131/**
1132 * igbvf_request_irq - initialize interrupts
 
1133 *
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1136 **/
1137static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138{
1139	int err = -1;
1140
1141	/* igbvf supports msi-x only */
1142	if (adapter->msix_entries)
1143		err = igbvf_request_msix(adapter);
1144
1145	if (!err)
1146		return err;
1147
1148	dev_err(&adapter->pdev->dev,
1149	        "Unable to allocate interrupt, Error: %d\n", err);
1150
1151	return err;
1152}
1153
1154static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155{
1156	struct net_device *netdev = adapter->netdev;
1157	int vector;
1158
1159	if (adapter->msix_entries) {
1160		for (vector = 0; vector < 3; vector++)
1161			free_irq(adapter->msix_entries[vector].vector, netdev);
1162	}
1163}
1164
1165/**
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
 
1167 **/
1168static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169{
1170	struct e1000_hw *hw = &adapter->hw;
1171
1172	ew32(EIMC, ~0);
1173
1174	if (adapter->msix_entries)
1175		ew32(EIAC, 0);
1176}
1177
1178/**
1179 * igbvf_irq_enable - Enable default interrupt generation settings
 
1180 **/
1181static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182{
1183	struct e1000_hw *hw = &adapter->hw;
1184
1185	ew32(EIAC, adapter->eims_enable_mask);
1186	ew32(EIAM, adapter->eims_enable_mask);
1187	ew32(EIMS, adapter->eims_enable_mask);
1188}
1189
1190/**
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1194 **/
1195static int igbvf_poll(struct napi_struct *napi, int budget)
1196{
1197	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198	struct igbvf_adapter *adapter = rx_ring->adapter;
1199	struct e1000_hw *hw = &adapter->hw;
1200	int work_done = 0;
1201
1202	igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204	/* If not enough Rx work done, exit the polling mode */
1205	if (work_done < budget) {
1206		napi_complete(napi);
1207
1208		if (adapter->requested_itr & 3)
1209			igbvf_set_itr(adapter);
1210
1211		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212			ew32(EIMS, adapter->rx_ring->eims_value);
1213	}
1214
1215	return work_done;
1216}
1217
1218/**
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1221 *
1222 * Configure the maximum size of packets that will be received
1223 */
1224static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225{
1226	int max_frame_size;
1227	struct e1000_hw *hw = &adapter->hw;
1228
1229	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
 
 
 
1230	e1000_rlpml_set_vf(hw, max_frame_size);
 
 
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234				 __be16 proto, u16 vid)
1235{
1236	struct igbvf_adapter *adapter = netdev_priv(netdev);
1237	struct e1000_hw *hw = &adapter->hw;
1238
 
 
1239	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
 
1241		return -EINVAL;
1242	}
 
 
 
1243	set_bit(vid, adapter->active_vlans);
1244	return 0;
1245}
1246
1247static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248				  __be16 proto, u16 vid)
1249{
1250	struct igbvf_adapter *adapter = netdev_priv(netdev);
1251	struct e1000_hw *hw = &adapter->hw;
1252
 
 
1253	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254		dev_err(&adapter->pdev->dev,
1255		        "Failed to remove vlan id %d\n", vid);
 
1256		return -EINVAL;
1257	}
 
 
 
1258	clear_bit(vid, adapter->active_vlans);
1259	return 0;
1260}
1261
1262static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263{
1264	u16 vid;
1265
1266	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268}
1269
1270/**
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1273 *
1274 * Configure the Tx unit of the MAC after a reset.
1275 **/
1276static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277{
1278	struct e1000_hw *hw = &adapter->hw;
1279	struct igbvf_ring *tx_ring = adapter->tx_ring;
1280	u64 tdba;
1281	u32 txdctl, dca_txctrl;
1282
1283	/* disable transmits */
1284	txdctl = er32(TXDCTL(0));
1285	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286	e1e_flush();
1287	msleep(10);
1288
1289	/* Setup the HW Tx Head and Tail descriptor pointers */
1290	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291	tdba = tx_ring->dma;
1292	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293	ew32(TDBAH(0), (tdba >> 32));
1294	ew32(TDH(0), 0);
1295	ew32(TDT(0), 0);
1296	tx_ring->head = E1000_TDH(0);
1297	tx_ring->tail = E1000_TDT(0);
1298
1299	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1300	 * MUST be delivered in order or it will completely screw up
1301	 * our bookeeping.
1302	 */
1303	dca_txctrl = er32(DCA_TXCTRL(0));
1304	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305	ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307	/* enable transmits */
1308	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309	ew32(TXDCTL(0), txdctl);
1310
1311	/* Setup Transmit Descriptor Settings for eop descriptor */
1312	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314	/* enable Report Status bit */
1315	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316}
1317
1318/**
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1321 **/
1322static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323{
1324	struct e1000_hw *hw = &adapter->hw;
1325	u32 srrctl = 0;
1326
1327	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328	            E1000_SRRCTL_BSIZEHDR_MASK |
1329	            E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331	/* Enable queue drop to avoid head of line blocking */
1332	srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334	/* Setup buffer sizes */
1335	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338	if (adapter->rx_buffer_len < 2048) {
1339		adapter->rx_ps_hdr_size = 0;
1340		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341	} else {
1342		adapter->rx_ps_hdr_size = 128;
1343		srrctl |= adapter->rx_ps_hdr_size <<
1344		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346	}
1347
1348	ew32(SRRCTL(0), srrctl);
1349}
1350
1351/**
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1354 *
1355 * Configure the Rx unit of the MAC after a reset.
1356 **/
1357static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358{
1359	struct e1000_hw *hw = &adapter->hw;
1360	struct igbvf_ring *rx_ring = adapter->rx_ring;
1361	u64 rdba;
1362	u32 rdlen, rxdctl;
1363
1364	/* disable receives */
1365	rxdctl = er32(RXDCTL(0));
1366	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367	e1e_flush();
1368	msleep(10);
1369
1370	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372	/*
1373	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374	 * the Base and Length of the Rx Descriptor Ring
1375	 */
1376	rdba = rx_ring->dma;
1377	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378	ew32(RDBAH(0), (rdba >> 32));
1379	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380	rx_ring->head = E1000_RDH(0);
1381	rx_ring->tail = E1000_RDT(0);
1382	ew32(RDH(0), 0);
1383	ew32(RDT(0), 0);
1384
1385	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386	rxdctl &= 0xFFF00000;
1387	rxdctl |= IGBVF_RX_PTHRESH;
1388	rxdctl |= IGBVF_RX_HTHRESH << 8;
1389	rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391	igbvf_set_rlpml(adapter);
1392
1393	/* enable receives */
1394	ew32(RXDCTL(0), rxdctl);
1395}
1396
1397/**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated.  This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406static void igbvf_set_multi(struct net_device *netdev)
1407{
1408	struct igbvf_adapter *adapter = netdev_priv(netdev);
1409	struct e1000_hw *hw = &adapter->hw;
1410	struct netdev_hw_addr *ha;
1411	u8  *mta_list = NULL;
1412	int i;
1413
1414	if (!netdev_mc_empty(netdev)) {
1415		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416					 GFP_ATOMIC);
1417		if (!mta_list)
1418			return;
1419	}
1420
1421	/* prepare a packed array of only addresses. */
1422	i = 0;
1423	netdev_for_each_mc_addr(ha, netdev)
1424		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
 
 
1426	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
 
 
1427	kfree(mta_list);
1428}
1429
1430/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434static void igbvf_configure(struct igbvf_adapter *adapter)
1435{
1436	igbvf_set_multi(adapter->netdev);
1437
1438	igbvf_restore_vlan(adapter);
1439
1440	igbvf_configure_tx(adapter);
1441	igbvf_setup_srrctl(adapter);
1442	igbvf_configure_rx(adapter);
1443	igbvf_alloc_rx_buffers(adapter->rx_ring,
1444	                       igbvf_desc_unused(adapter->rx_ring));
1445}
1446
1447/* igbvf_reset - bring the hardware into a known good state
 
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454static void igbvf_reset(struct igbvf_adapter *adapter)
1455{
1456	struct e1000_mac_info *mac = &adapter->hw.mac;
1457	struct net_device *netdev = adapter->netdev;
1458	struct e1000_hw *hw = &adapter->hw;
1459
 
 
1460	/* Allow time for pending master requests to run */
1461	if (mac->ops.reset_hw(hw))
1462		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464	mac->ops.init_hw(hw);
1465
 
 
1466	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468		       netdev->addr_len);
1469		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470		       netdev->addr_len);
1471	}
1472
1473	adapter->last_reset = jiffies;
1474}
1475
1476int igbvf_up(struct igbvf_adapter *adapter)
1477{
1478	struct e1000_hw *hw = &adapter->hw;
1479
1480	/* hardware has been reset, we need to reload some things */
1481	igbvf_configure(adapter);
1482
1483	clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485	napi_enable(&adapter->rx_ring->napi);
1486	if (adapter->msix_entries)
1487		igbvf_configure_msix(adapter);
1488
1489	/* Clear any pending interrupts. */
1490	er32(EICR);
1491	igbvf_irq_enable(adapter);
1492
1493	/* start the watchdog */
1494	hw->mac.get_link_status = 1;
1495	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498	return 0;
1499}
1500
1501void igbvf_down(struct igbvf_adapter *adapter)
1502{
1503	struct net_device *netdev = adapter->netdev;
1504	struct e1000_hw *hw = &adapter->hw;
1505	u32 rxdctl, txdctl;
1506
1507	/*
1508	 * signal that we're down so the interrupt handler does not
1509	 * reschedule our watchdog timer
1510	 */
1511	set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513	/* disable receives in the hardware */
1514	rxdctl = er32(RXDCTL(0));
1515	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
 
1517	netif_stop_queue(netdev);
1518
1519	/* disable transmits in the hardware */
1520	txdctl = er32(TXDCTL(0));
1521	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523	/* flush both disables and wait for them to finish */
1524	e1e_flush();
1525	msleep(10);
1526
1527	napi_disable(&adapter->rx_ring->napi);
1528
1529	igbvf_irq_disable(adapter);
1530
1531	del_timer_sync(&adapter->watchdog_timer);
1532
1533	netif_carrier_off(netdev);
1534
1535	/* record the stats before reset*/
1536	igbvf_update_stats(adapter);
1537
1538	adapter->link_speed = 0;
1539	adapter->link_duplex = 0;
1540
1541	igbvf_reset(adapter);
1542	igbvf_clean_tx_ring(adapter->tx_ring);
1543	igbvf_clean_rx_ring(adapter->rx_ring);
1544}
1545
1546void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547{
1548	might_sleep();
1549	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550		msleep(1);
1551	igbvf_down(adapter);
1552	igbvf_up(adapter);
1553	clear_bit(__IGBVF_RESETTING, &adapter->state);
1554}
1555
1556/**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565{
1566	struct net_device *netdev = adapter->netdev;
1567	s32 rc;
1568
1569	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570	adapter->rx_ps_hdr_size = 0;
1571	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574	adapter->tx_int_delay = 8;
1575	adapter->tx_abs_int_delay = 32;
1576	adapter->rx_int_delay = 0;
1577	adapter->rx_abs_int_delay = 8;
1578	adapter->requested_itr = 3;
1579	adapter->current_itr = IGBVF_START_ITR;
1580
1581	/* Set various function pointers */
1582	adapter->ei->init_ops(&adapter->hw);
1583
1584	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585	if (rc)
1586		return rc;
1587
1588	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589	if (rc)
1590		return rc;
1591
1592	igbvf_set_interrupt_capability(adapter);
1593
1594	if (igbvf_alloc_queues(adapter))
1595		return -ENOMEM;
1596
1597	spin_lock_init(&adapter->tx_queue_lock);
1598
1599	/* Explicitly disable IRQ since the NIC can be in any state. */
1600	igbvf_irq_disable(adapter);
1601
1602	spin_lock_init(&adapter->stats_lock);
 
1603
1604	set_bit(__IGBVF_DOWN, &adapter->state);
1605	return 0;
1606}
1607
1608static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609{
1610	struct e1000_hw *hw = &adapter->hw;
1611
1612	adapter->stats.last_gprc = er32(VFGPRC);
1613	adapter->stats.last_gorc = er32(VFGORC);
1614	adapter->stats.last_gptc = er32(VFGPTC);
1615	adapter->stats.last_gotc = er32(VFGOTC);
1616	adapter->stats.last_mprc = er32(VFMPRC);
1617	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619	adapter->stats.last_gorlbc = er32(VFGORLBC);
1620	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622	adapter->stats.base_gprc = er32(VFGPRC);
1623	adapter->stats.base_gorc = er32(VFGORC);
1624	adapter->stats.base_gptc = er32(VFGPTC);
1625	adapter->stats.base_gotc = er32(VFGOTC);
1626	adapter->stats.base_mprc = er32(VFMPRC);
1627	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629	adapter->stats.base_gorlbc = er32(VFGORLBC);
1630	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631}
1632
1633/**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP).  At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645static int igbvf_open(struct net_device *netdev)
1646{
1647	struct igbvf_adapter *adapter = netdev_priv(netdev);
1648	struct e1000_hw *hw = &adapter->hw;
1649	int err;
1650
1651	/* disallow open during test */
1652	if (test_bit(__IGBVF_TESTING, &adapter->state))
1653		return -EBUSY;
1654
1655	/* allocate transmit descriptors */
1656	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657	if (err)
1658		goto err_setup_tx;
1659
1660	/* allocate receive descriptors */
1661	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662	if (err)
1663		goto err_setup_rx;
1664
1665	/*
1666	 * before we allocate an interrupt, we must be ready to handle it.
1667	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668	 * as soon as we call pci_request_irq, so we have to setup our
1669	 * clean_rx handler before we do so.
1670	 */
1671	igbvf_configure(adapter);
1672
1673	err = igbvf_request_irq(adapter);
1674	if (err)
1675		goto err_req_irq;
1676
1677	/* From here on the code is the same as igbvf_up() */
1678	clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680	napi_enable(&adapter->rx_ring->napi);
1681
1682	/* clear any pending interrupts */
1683	er32(EICR);
1684
1685	igbvf_irq_enable(adapter);
1686
1687	/* start the watchdog */
1688	hw->mac.get_link_status = 1;
1689	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691	return 0;
1692
1693err_req_irq:
1694	igbvf_free_rx_resources(adapter->rx_ring);
1695err_setup_rx:
1696	igbvf_free_tx_resources(adapter->tx_ring);
1697err_setup_tx:
1698	igbvf_reset(adapter);
1699
1700	return err;
1701}
1702
1703/**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS.  The hardware is still under the drivers control, but
1711 * needs to be disabled.  A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714static int igbvf_close(struct net_device *netdev)
1715{
1716	struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719	igbvf_down(adapter);
1720
1721	igbvf_free_irq(adapter);
1722
1723	igbvf_free_tx_resources(adapter->tx_ring);
1724	igbvf_free_rx_resources(adapter->rx_ring);
1725
1726	return 0;
1727}
 
1728/**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735static int igbvf_set_mac(struct net_device *netdev, void *p)
1736{
1737	struct igbvf_adapter *adapter = netdev_priv(netdev);
1738	struct e1000_hw *hw = &adapter->hw;
1739	struct sockaddr *addr = p;
1740
1741	if (!is_valid_ether_addr(addr->sa_data))
1742		return -EADDRNOTAVAIL;
1743
1744	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
 
 
1746	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
 
 
1748	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749		return -EADDRNOTAVAIL;
1750
1751	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753	return 0;
1754}
1755
1756#define UPDATE_VF_COUNTER(reg, name)                                    \
1757	{                                                               \
1758		u32 current_counter = er32(reg);                        \
1759		if (current_counter < adapter->stats.last_##name)       \
1760			adapter->stats.name += 0x100000000LL;           \
1761		adapter->stats.last_##name = current_counter;           \
1762		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1763		adapter->stats.name |= current_counter;                 \
1764	}
1765
1766/**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769**/
1770void igbvf_update_stats(struct igbvf_adapter *adapter)
1771{
1772	struct e1000_hw *hw = &adapter->hw;
1773	struct pci_dev *pdev = adapter->pdev;
1774
1775	/*
1776	 * Prevent stats update while adapter is being reset, link is down
1777	 * or if the pci connection is down.
1778	 */
1779	if (adapter->link_speed == 0)
1780		return;
1781
1782	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783		return;
1784
1785	if (pci_channel_offline(pdev))
1786		return;
1787
1788	UPDATE_VF_COUNTER(VFGPRC, gprc);
1789	UPDATE_VF_COUNTER(VFGORC, gorc);
1790	UPDATE_VF_COUNTER(VFGPTC, gptc);
1791	UPDATE_VF_COUNTER(VFGOTC, gotc);
1792	UPDATE_VF_COUNTER(VFMPRC, mprc);
1793	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798	/* Fill out the OS statistics structure */
1799	adapter->net_stats.multicast = adapter->stats.mprc;
1800}
1801
1802static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803{
1804	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805		 adapter->link_speed,
1806		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807}
1808
1809static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810{
1811	struct e1000_hw *hw = &adapter->hw;
1812	s32 ret_val = E1000_SUCCESS;
1813	bool link_active;
1814
1815	/* If interface is down, stay link down */
1816	if (test_bit(__IGBVF_DOWN, &adapter->state))
1817		return false;
1818
 
 
1819	ret_val = hw->mac.ops.check_for_link(hw);
 
 
 
1820	link_active = !hw->mac.get_link_status;
1821
1822	/* if check for link returns error we will need to reset */
1823	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824		schedule_work(&adapter->reset_task);
1825
1826	return link_active;
1827}
1828
1829/**
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1832 **/
1833static void igbvf_watchdog(unsigned long data)
1834{
1835	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837	/* Do the rest outside of interrupt context */
1838	schedule_work(&adapter->watchdog_task);
1839}
1840
1841static void igbvf_watchdog_task(struct work_struct *work)
1842{
1843	struct igbvf_adapter *adapter = container_of(work,
1844	                                             struct igbvf_adapter,
1845	                                             watchdog_task);
1846	struct net_device *netdev = adapter->netdev;
1847	struct e1000_mac_info *mac = &adapter->hw.mac;
1848	struct igbvf_ring *tx_ring = adapter->tx_ring;
1849	struct e1000_hw *hw = &adapter->hw;
1850	u32 link;
1851	int tx_pending = 0;
1852
1853	link = igbvf_has_link(adapter);
1854
1855	if (link) {
1856		if (!netif_carrier_ok(netdev)) {
1857			mac->ops.get_link_up_info(&adapter->hw,
1858			                          &adapter->link_speed,
1859			                          &adapter->link_duplex);
1860			igbvf_print_link_info(adapter);
1861
1862			netif_carrier_on(netdev);
1863			netif_wake_queue(netdev);
1864		}
1865	} else {
1866		if (netif_carrier_ok(netdev)) {
1867			adapter->link_speed = 0;
1868			adapter->link_duplex = 0;
1869			dev_info(&adapter->pdev->dev, "Link is Down\n");
1870			netif_carrier_off(netdev);
1871			netif_stop_queue(netdev);
1872		}
1873	}
1874
1875	if (netif_carrier_ok(netdev)) {
1876		igbvf_update_stats(adapter);
1877	} else {
1878		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879		              tx_ring->count);
1880		if (tx_pending) {
1881			/*
1882			 * We've lost link, so the controller stops DMA,
1883			 * but we've got queued Tx work that's never going
1884			 * to get done, so reset controller to flush Tx.
1885			 * (Do the reset outside of interrupt context).
1886			 */
1887			adapter->tx_timeout_count++;
1888			schedule_work(&adapter->reset_task);
1889		}
1890	}
1891
1892	/* Cause software interrupt to ensure Rx ring is cleaned */
1893	ew32(EICS, adapter->rx_ring->eims_value);
1894
1895	/* Reset the timer */
1896	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897		mod_timer(&adapter->watchdog_timer,
1898			  round_jiffies(jiffies + (2 * HZ)));
1899}
1900
1901#define IGBVF_TX_FLAGS_CSUM             0x00000001
1902#define IGBVF_TX_FLAGS_VLAN             0x00000002
1903#define IGBVF_TX_FLAGS_TSO              0x00000004
1904#define IGBVF_TX_FLAGS_IPV4             0x00000008
1905#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1906#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1907
1908static int igbvf_tso(struct igbvf_adapter *adapter,
1909                     struct igbvf_ring *tx_ring,
1910                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1911{
1912	struct e1000_adv_tx_context_desc *context_desc;
1913	struct igbvf_buffer *buffer_info;
1914	u32 info = 0, tu_cmd = 0;
1915	u32 mss_l4len_idx, l4len;
1916	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917	int err;
1918
1919	*hdr_len = 0;
 
 
 
 
1920
1921	err = skb_cow_head(skb, 0);
1922	if (err < 0) {
1923		dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1924		return err;
1925	}
1926
1927	l4len = tcp_hdrlen(skb);
1928	*hdr_len += l4len;
 
 
 
1929
1930	if (skb->protocol == htons(ETH_P_IP)) {
1931		struct iphdr *iph = ip_hdr(skb);
1932		iph->tot_len = 0;
1933		iph->check = 0;
1934		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935		                                         iph->daddr, 0,
1936		                                         IPPROTO_TCP,
1937		                                         0);
1938	} else if (skb_is_gso_v6(skb)) {
1939		ipv6_hdr(skb)->payload_len = 0;
1940		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941		                                       &ipv6_hdr(skb)->daddr,
1942		                                       0, IPPROTO_TCP, 0);
1943	}
1944
1945	i = tx_ring->next_to_use;
 
 
 
 
 
 
1946
1947	buffer_info = &tx_ring->buffer_info[i];
1948	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949	/* VLAN MACLEN IPLEN */
1950	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953	*hdr_len += skb_network_offset(skb);
1954	info |= (skb_transport_header(skb) - skb_network_header(skb));
1955	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956	context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961	if (skb->protocol == htons(ETH_P_IP))
1962		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
 
 
1966
1967	/* MSS L4LEN IDX */
1968	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972	context_desc->seqnum_seed = 0;
 
 
1973
1974	buffer_info->time_stamp = jiffies;
1975	buffer_info->dma = 0;
1976	i++;
1977	if (i == tx_ring->count)
1978		i = 0;
1979
1980	tx_ring->next_to_use = i;
1981
1982	return true;
1983}
1984
1985static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986                                 struct igbvf_ring *tx_ring,
1987                                 struct sk_buff *skb, u32 tx_flags)
1988{
1989	struct e1000_adv_tx_context_desc *context_desc;
1990	unsigned int i;
1991	struct igbvf_buffer *buffer_info;
1992	u32 info = 0, tu_cmd = 0;
1993
1994	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996		i = tx_ring->next_to_use;
1997		buffer_info = &tx_ring->buffer_info[i];
1998		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004		if (skb->ip_summed == CHECKSUM_PARTIAL)
2005			info |= (skb_transport_header(skb) -
2006			         skb_network_header(skb));
 
2007
 
 
 
 
 
 
2008
2009		context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014			switch (skb->protocol) {
2015			case htons(ETH_P_IP):
2016				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019				break;
2020			case htons(ETH_P_IPV6):
2021				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023				break;
2024			default:
2025				break;
2026			}
2027		}
 
 
 
 
2028
2029		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030		context_desc->seqnum_seed = 0;
2031		context_desc->mss_l4len_idx = 0;
 
 
2032
2033		buffer_info->time_stamp = jiffies;
2034		buffer_info->dma = 0;
2035		i++;
2036		if (i == tx_ring->count)
2037			i = 0;
2038		tx_ring->next_to_use = i;
2039
2040		return true;
2041	}
2042
2043	return false;
2044}
2045
2046static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047{
2048	struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050	/* there is enough descriptors then we don't need to worry  */
2051	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052		return 0;
2053
2054	netif_stop_queue(netdev);
2055
 
 
 
 
2056	smp_mb();
2057
2058	/* We need to check again just in case room has been made available */
2059	if (igbvf_desc_unused(adapter->tx_ring) < size)
2060		return -EBUSY;
2061
2062	netif_wake_queue(netdev);
2063
2064	++adapter->restart_queue;
2065	return 0;
2066}
2067
2068#define IGBVF_MAX_TXD_PWR       16
2069#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2070
2071static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072                                   struct igbvf_ring *tx_ring,
2073				   struct sk_buff *skb)
2074{
2075	struct igbvf_buffer *buffer_info;
2076	struct pci_dev *pdev = adapter->pdev;
2077	unsigned int len = skb_headlen(skb);
2078	unsigned int count = 0, i;
2079	unsigned int f;
2080
2081	i = tx_ring->next_to_use;
2082
2083	buffer_info = &tx_ring->buffer_info[i];
2084	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085	buffer_info->length = len;
2086	/* set time_stamp *before* dma to help avoid a possible race */
2087	buffer_info->time_stamp = jiffies;
2088	buffer_info->mapped_as_page = false;
2089	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090					  DMA_TO_DEVICE);
2091	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092		goto dma_error;
2093
2094
2095	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096		const struct skb_frag_struct *frag;
2097
2098		count++;
2099		i++;
2100		if (i == tx_ring->count)
2101			i = 0;
2102
2103		frag = &skb_shinfo(skb)->frags[f];
2104		len = skb_frag_size(frag);
2105
2106		buffer_info = &tx_ring->buffer_info[i];
2107		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108		buffer_info->length = len;
2109		buffer_info->time_stamp = jiffies;
2110		buffer_info->mapped_as_page = true;
2111		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112						DMA_TO_DEVICE);
2113		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114			goto dma_error;
2115	}
2116
2117	tx_ring->buffer_info[i].skb = skb;
2118
2119	return ++count;
2120
2121dma_error:
2122	dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124	/* clear timestamp and dma mappings for failed buffer_info mapping */
2125	buffer_info->dma = 0;
2126	buffer_info->time_stamp = 0;
2127	buffer_info->length = 0;
2128	buffer_info->mapped_as_page = false;
2129	if (count)
2130		count--;
2131
2132	/* clear timestamp and dma mappings for remaining portion of packet */
2133	while (count--) {
2134		if (i==0)
2135			i += tx_ring->count;
2136		i--;
2137		buffer_info = &tx_ring->buffer_info[i];
2138		igbvf_put_txbuf(adapter, buffer_info);
2139	}
2140
2141	return 0;
2142}
2143
2144static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145                                      struct igbvf_ring *tx_ring,
2146				      int tx_flags, int count,
2147				      unsigned int first, u32 paylen,
2148                                      u8 hdr_len)
2149{
2150	union e1000_adv_tx_desc *tx_desc = NULL;
2151	struct igbvf_buffer *buffer_info;
2152	u32 olinfo_status = 0, cmd_type_len;
2153	unsigned int i;
2154
2155	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156	                E1000_ADVTXD_DCMD_DEXT);
2157
2158	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164		/* insert tcp checksum */
2165		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167		/* insert ip checksum */
2168		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173	}
2174
2175	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177	i = tx_ring->next_to_use;
2178	while (count--) {
2179		buffer_info = &tx_ring->buffer_info[i];
2180		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182		tx_desc->read.cmd_type_len =
2183		         cpu_to_le32(cmd_type_len | buffer_info->length);
2184		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185		i++;
2186		if (i == tx_ring->count)
2187			i = 0;
2188	}
2189
2190	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191	/* Force memory writes to complete before letting h/w
2192	 * know there are new descriptors to fetch.  (Only
2193	 * applicable for weak-ordered memory model archs,
2194	 * such as IA-64). */
 
2195	wmb();
2196
2197	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198	tx_ring->next_to_use = i;
2199	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200	/* we need this if more than one processor can write to our tail
2201	 * at a time, it syncronizes IO on IA64/Altix systems */
 
2202	mmiowb();
2203}
2204
2205static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206					     struct net_device *netdev,
2207					     struct igbvf_ring *tx_ring)
2208{
2209	struct igbvf_adapter *adapter = netdev_priv(netdev);
2210	unsigned int first, tx_flags = 0;
2211	u8 hdr_len = 0;
2212	int count = 0;
2213	int tso = 0;
 
2214
2215	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216		dev_kfree_skb_any(skb);
2217		return NETDEV_TX_OK;
2218	}
2219
2220	if (skb->len <= 0) {
2221		dev_kfree_skb_any(skb);
2222		return NETDEV_TX_OK;
2223	}
2224
2225	/*
2226	 * need: count + 4 desc gap to keep tail from touching
2227         *       + 2 desc gap to keep tail from touching head,
2228         *       + 1 desc for skb->data,
2229         *       + 1 desc for context descriptor,
2230	 * head, otherwise try next time
2231	 */
2232	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233		/* this is a hard error */
2234		return NETDEV_TX_BUSY;
2235	}
2236
2237	if (vlan_tx_tag_present(skb)) {
2238		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
 
2240	}
2241
2242	if (skb->protocol == htons(ETH_P_IP))
2243		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2244
2245	first = tx_ring->next_to_use;
2246
2247	tso = skb_is_gso(skb) ?
2248		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2249	if (unlikely(tso < 0)) {
2250		dev_kfree_skb_any(skb);
2251		return NETDEV_TX_OK;
2252	}
2253
2254	if (tso)
2255		tx_flags |= IGBVF_TX_FLAGS_TSO;
2256	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2257	         (skb->ip_summed == CHECKSUM_PARTIAL))
2258		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2259
2260	/*
2261	 * count reflects descriptors mapped, if 0 then mapping error
2262	 * has occurred and we need to rewind the descriptor queue
2263	 */
2264	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2265
2266	if (count) {
2267		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2268				   first, skb->len, hdr_len);
2269		/* Make sure there is space in the ring for the next send. */
2270		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271	} else {
2272		dev_kfree_skb_any(skb);
2273		tx_ring->buffer_info[first].time_stamp = 0;
2274		tx_ring->next_to_use = first;
2275	}
2276
2277	return NETDEV_TX_OK;
2278}
2279
2280static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2281				    struct net_device *netdev)
2282{
2283	struct igbvf_adapter *adapter = netdev_priv(netdev);
2284	struct igbvf_ring *tx_ring;
2285
2286	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287		dev_kfree_skb_any(skb);
2288		return NETDEV_TX_OK;
2289	}
2290
2291	tx_ring = &adapter->tx_ring[0];
2292
2293	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294}
2295
2296/**
2297 * igbvf_tx_timeout - Respond to a Tx Hang
2298 * @netdev: network interface device structure
2299 **/
2300static void igbvf_tx_timeout(struct net_device *netdev)
2301{
2302	struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304	/* Do the reset outside of interrupt context */
2305	adapter->tx_timeout_count++;
2306	schedule_work(&adapter->reset_task);
2307}
2308
2309static void igbvf_reset_task(struct work_struct *work)
2310{
2311	struct igbvf_adapter *adapter;
 
2312	adapter = container_of(work, struct igbvf_adapter, reset_task);
2313
2314	igbvf_reinit_locked(adapter);
2315}
2316
2317/**
2318 * igbvf_get_stats - Get System Network Statistics
2319 * @netdev: network interface device structure
2320 *
2321 * Returns the address of the device statistics structure.
2322 * The statistics are actually updated from the timer callback.
2323 **/
2324static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2325{
2326	struct igbvf_adapter *adapter = netdev_priv(netdev);
2327
2328	/* only return the current stats */
2329	return &adapter->net_stats;
2330}
2331
2332/**
2333 * igbvf_change_mtu - Change the Maximum Transfer Unit
2334 * @netdev: network interface device structure
2335 * @new_mtu: new value for maximum frame size
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2340{
2341	struct igbvf_adapter *adapter = netdev_priv(netdev);
2342	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2343
2344	if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2345	    max_frame > MAX_JUMBO_FRAME_SIZE)
2346		return -EINVAL;
2347
2348#define MAX_STD_JUMBO_FRAME_SIZE 9234
2349	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2350		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2351		return -EINVAL;
2352	}
2353
2354	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2355		msleep(1);
2356	/* igbvf_down has a dependency on max_frame_size */
2357	adapter->max_frame_size = max_frame;
2358	if (netif_running(netdev))
2359		igbvf_down(adapter);
2360
2361	/*
2362	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2363	 * means we reserve 2 more, this pushes us to allocate from the next
2364	 * larger slab size.
2365	 * i.e. RXBUFFER_2048 --> size-4096 slab
2366	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2367	 * fragmented skbs
2368	 */
2369
2370	if (max_frame <= 1024)
2371		adapter->rx_buffer_len = 1024;
2372	else if (max_frame <= 2048)
2373		adapter->rx_buffer_len = 2048;
2374	else
2375#if (PAGE_SIZE / 2) > 16384
2376		adapter->rx_buffer_len = 16384;
2377#else
2378		adapter->rx_buffer_len = PAGE_SIZE / 2;
2379#endif
2380
2381
2382	/* adjust allocation if LPE protects us, and we aren't using SBP */
2383	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2384	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2385		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2386		                         ETH_FCS_LEN;
2387
2388	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2389	         netdev->mtu, new_mtu);
2390	netdev->mtu = new_mtu;
2391
2392	if (netif_running(netdev))
2393		igbvf_up(adapter);
2394	else
2395		igbvf_reset(adapter);
2396
2397	clear_bit(__IGBVF_RESETTING, &adapter->state);
2398
2399	return 0;
2400}
2401
2402static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2403{
2404	switch (cmd) {
2405	default:
2406		return -EOPNOTSUPP;
2407	}
2408}
2409
2410static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2411{
2412	struct net_device *netdev = pci_get_drvdata(pdev);
2413	struct igbvf_adapter *adapter = netdev_priv(netdev);
2414#ifdef CONFIG_PM
2415	int retval = 0;
2416#endif
2417
2418	netif_device_detach(netdev);
2419
2420	if (netif_running(netdev)) {
2421		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2422		igbvf_down(adapter);
2423		igbvf_free_irq(adapter);
2424	}
2425
2426#ifdef CONFIG_PM
2427	retval = pci_save_state(pdev);
2428	if (retval)
2429		return retval;
2430#endif
2431
2432	pci_disable_device(pdev);
2433
2434	return 0;
2435}
2436
2437#ifdef CONFIG_PM
2438static int igbvf_resume(struct pci_dev *pdev)
2439{
2440	struct net_device *netdev = pci_get_drvdata(pdev);
2441	struct igbvf_adapter *adapter = netdev_priv(netdev);
2442	u32 err;
2443
2444	pci_restore_state(pdev);
2445	err = pci_enable_device_mem(pdev);
2446	if (err) {
2447		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2448		return err;
2449	}
2450
2451	pci_set_master(pdev);
2452
2453	if (netif_running(netdev)) {
2454		err = igbvf_request_irq(adapter);
2455		if (err)
2456			return err;
2457	}
2458
2459	igbvf_reset(adapter);
2460
2461	if (netif_running(netdev))
2462		igbvf_up(adapter);
2463
2464	netif_device_attach(netdev);
2465
2466	return 0;
2467}
2468#endif
2469
2470static void igbvf_shutdown(struct pci_dev *pdev)
2471{
2472	igbvf_suspend(pdev, PMSG_SUSPEND);
2473}
2474
2475#ifdef CONFIG_NET_POLL_CONTROLLER
2476/*
2477 * Polling 'interrupt' - used by things like netconsole to send skbs
2478 * without having to re-enable interrupts. It's not called while
2479 * the interrupt routine is executing.
2480 */
2481static void igbvf_netpoll(struct net_device *netdev)
2482{
2483	struct igbvf_adapter *adapter = netdev_priv(netdev);
2484
2485	disable_irq(adapter->pdev->irq);
2486
2487	igbvf_clean_tx_irq(adapter->tx_ring);
2488
2489	enable_irq(adapter->pdev->irq);
2490}
2491#endif
2492
2493/**
2494 * igbvf_io_error_detected - called when PCI error is detected
2495 * @pdev: Pointer to PCI device
2496 * @state: The current pci connection state
2497 *
2498 * This function is called after a PCI bus error affecting
2499 * this device has been detected.
2500 */
2501static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2502                                                pci_channel_state_t state)
2503{
2504	struct net_device *netdev = pci_get_drvdata(pdev);
2505	struct igbvf_adapter *adapter = netdev_priv(netdev);
2506
2507	netif_device_detach(netdev);
2508
2509	if (state == pci_channel_io_perm_failure)
2510		return PCI_ERS_RESULT_DISCONNECT;
2511
2512	if (netif_running(netdev))
2513		igbvf_down(adapter);
2514	pci_disable_device(pdev);
2515
2516	/* Request a slot slot reset. */
2517	return PCI_ERS_RESULT_NEED_RESET;
2518}
2519
2520/**
2521 * igbvf_io_slot_reset - called after the pci bus has been reset.
2522 * @pdev: Pointer to PCI device
2523 *
2524 * Restart the card from scratch, as if from a cold-boot. Implementation
2525 * resembles the first-half of the igbvf_resume routine.
2526 */
2527static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2528{
2529	struct net_device *netdev = pci_get_drvdata(pdev);
2530	struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532	if (pci_enable_device_mem(pdev)) {
2533		dev_err(&pdev->dev,
2534			"Cannot re-enable PCI device after reset.\n");
2535		return PCI_ERS_RESULT_DISCONNECT;
2536	}
2537	pci_set_master(pdev);
2538
2539	igbvf_reset(adapter);
2540
2541	return PCI_ERS_RESULT_RECOVERED;
2542}
2543
2544/**
2545 * igbvf_io_resume - called when traffic can start flowing again.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * This callback is called when the error recovery driver tells us that
2549 * its OK to resume normal operation. Implementation resembles the
2550 * second-half of the igbvf_resume routine.
2551 */
2552static void igbvf_io_resume(struct pci_dev *pdev)
2553{
2554	struct net_device *netdev = pci_get_drvdata(pdev);
2555	struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557	if (netif_running(netdev)) {
2558		if (igbvf_up(adapter)) {
2559			dev_err(&pdev->dev,
2560				"can't bring device back up after reset\n");
2561			return;
2562		}
2563	}
2564
2565	netif_device_attach(netdev);
2566}
2567
2568static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2569{
2570	struct e1000_hw *hw = &adapter->hw;
2571	struct net_device *netdev = adapter->netdev;
2572	struct pci_dev *pdev = adapter->pdev;
2573
2574	if (hw->mac.type == e1000_vfadapt_i350)
2575		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2576	else
2577		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2578	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2579}
2580
2581static int igbvf_set_features(struct net_device *netdev,
2582	netdev_features_t features)
2583{
2584	struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586	if (features & NETIF_F_RXCSUM)
2587		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2588	else
2589		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2590
2591	return 0;
2592}
2593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594static const struct net_device_ops igbvf_netdev_ops = {
2595	.ndo_open                       = igbvf_open,
2596	.ndo_stop                       = igbvf_close,
2597	.ndo_start_xmit                 = igbvf_xmit_frame,
2598	.ndo_get_stats                  = igbvf_get_stats,
2599	.ndo_set_rx_mode		= igbvf_set_multi,
2600	.ndo_set_mac_address            = igbvf_set_mac,
2601	.ndo_change_mtu                 = igbvf_change_mtu,
2602	.ndo_do_ioctl                   = igbvf_ioctl,
2603	.ndo_tx_timeout                 = igbvf_tx_timeout,
2604	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2605	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2606#ifdef CONFIG_NET_POLL_CONTROLLER
2607	.ndo_poll_controller            = igbvf_netpoll,
2608#endif
2609	.ndo_set_features               = igbvf_set_features,
 
2610};
2611
2612/**
2613 * igbvf_probe - Device Initialization Routine
2614 * @pdev: PCI device information struct
2615 * @ent: entry in igbvf_pci_tbl
2616 *
2617 * Returns 0 on success, negative on failure
2618 *
2619 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2620 * The OS initialization, configuring of the adapter private structure,
2621 * and a hardware reset occur.
2622 **/
2623static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2624{
2625	struct net_device *netdev;
2626	struct igbvf_adapter *adapter;
2627	struct e1000_hw *hw;
2628	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2629
2630	static int cards_found;
2631	int err, pci_using_dac;
2632
2633	err = pci_enable_device_mem(pdev);
2634	if (err)
2635		return err;
2636
2637	pci_using_dac = 0;
2638	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2639	if (!err) {
2640		pci_using_dac = 1;
2641	} else {
2642		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2643		if (err) {
2644			dev_err(&pdev->dev, "No usable DMA "
2645			        "configuration, aborting\n");
2646			goto err_dma;
2647		}
2648	}
2649
2650	err = pci_request_regions(pdev, igbvf_driver_name);
2651	if (err)
2652		goto err_pci_reg;
2653
2654	pci_set_master(pdev);
2655
2656	err = -ENOMEM;
2657	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2658	if (!netdev)
2659		goto err_alloc_etherdev;
2660
2661	SET_NETDEV_DEV(netdev, &pdev->dev);
2662
2663	pci_set_drvdata(pdev, netdev);
2664	adapter = netdev_priv(netdev);
2665	hw = &adapter->hw;
2666	adapter->netdev = netdev;
2667	adapter->pdev = pdev;
2668	adapter->ei = ei;
2669	adapter->pba = ei->pba;
2670	adapter->flags = ei->flags;
2671	adapter->hw.back = adapter;
2672	adapter->hw.mac.type = ei->mac;
2673	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2674
2675	/* PCI config space info */
2676
2677	hw->vendor_id = pdev->vendor;
2678	hw->device_id = pdev->device;
2679	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2680	hw->subsystem_device_id = pdev->subsystem_device;
2681	hw->revision_id = pdev->revision;
2682
2683	err = -EIO;
2684	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2685	                              pci_resource_len(pdev, 0));
2686
2687	if (!adapter->hw.hw_addr)
2688		goto err_ioremap;
2689
2690	if (ei->get_variants) {
2691		err = ei->get_variants(adapter);
2692		if (err)
2693			goto err_get_variants;
2694	}
2695
2696	/* setup adapter struct */
2697	err = igbvf_sw_init(adapter);
2698	if (err)
2699		goto err_sw_init;
2700
2701	/* construct the net_device struct */
2702	netdev->netdev_ops = &igbvf_netdev_ops;
2703
2704	igbvf_set_ethtool_ops(netdev);
2705	netdev->watchdog_timeo = 5 * HZ;
2706	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2707
2708	adapter->bd_number = cards_found++;
2709
2710	netdev->hw_features = NETIF_F_SG |
2711	                   NETIF_F_IP_CSUM |
2712			   NETIF_F_IPV6_CSUM |
2713			   NETIF_F_TSO |
2714			   NETIF_F_TSO6 |
2715			   NETIF_F_RXCSUM;
2716
2717	netdev->features = netdev->hw_features |
2718	                   NETIF_F_HW_VLAN_CTAG_TX |
2719	                   NETIF_F_HW_VLAN_CTAG_RX |
2720	                   NETIF_F_HW_VLAN_CTAG_FILTER;
 
 
 
 
 
 
 
 
2721
2722	if (pci_using_dac)
2723		netdev->features |= NETIF_F_HIGHDMA;
2724
2725	netdev->vlan_features |= NETIF_F_TSO;
2726	netdev->vlan_features |= NETIF_F_TSO6;
2727	netdev->vlan_features |= NETIF_F_IP_CSUM;
2728	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2729	netdev->vlan_features |= NETIF_F_SG;
 
 
 
 
 
 
 
 
 
2730
2731	/*reset the controller to put the device in a known good state */
2732	err = hw->mac.ops.reset_hw(hw);
2733	if (err) {
2734		dev_info(&pdev->dev,
2735			 "PF still in reset state. Is the PF interface up?\n");
2736	} else {
2737		err = hw->mac.ops.read_mac_addr(hw);
2738		if (err)
2739			dev_info(&pdev->dev, "Error reading MAC address.\n");
2740		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2741			dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
 
2742		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2743		       netdev->addr_len);
2744	}
2745
 
 
2746	if (!is_valid_ether_addr(netdev->dev_addr)) {
2747		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2748		eth_hw_addr_random(netdev);
2749		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2750			netdev->addr_len);
2751	}
2752
2753	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2754	            (unsigned long) adapter);
2755
2756	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2757	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2758
2759	/* ring size defaults */
2760	adapter->rx_ring->count = 1024;
2761	adapter->tx_ring->count = 1024;
2762
2763	/* reset the hardware with the new settings */
2764	igbvf_reset(adapter);
2765
2766	/* set hardware-specific flags */
2767	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2768		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2769
2770	strcpy(netdev->name, "eth%d");
2771	err = register_netdev(netdev);
2772	if (err)
2773		goto err_hw_init;
2774
2775	/* tell the stack to leave us alone until igbvf_open() is called */
2776	netif_carrier_off(netdev);
2777	netif_stop_queue(netdev);
2778
2779	igbvf_print_device_info(adapter);
2780
2781	igbvf_initialize_last_counter_stats(adapter);
2782
2783	return 0;
2784
2785err_hw_init:
2786	kfree(adapter->tx_ring);
2787	kfree(adapter->rx_ring);
2788err_sw_init:
2789	igbvf_reset_interrupt_capability(adapter);
2790err_get_variants:
2791	iounmap(adapter->hw.hw_addr);
2792err_ioremap:
2793	free_netdev(netdev);
2794err_alloc_etherdev:
2795	pci_release_regions(pdev);
2796err_pci_reg:
2797err_dma:
2798	pci_disable_device(pdev);
2799	return err;
2800}
2801
2802/**
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2805 *
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device.  The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2809 * memory.
2810 **/
2811static void igbvf_remove(struct pci_dev *pdev)
2812{
2813	struct net_device *netdev = pci_get_drvdata(pdev);
2814	struct igbvf_adapter *adapter = netdev_priv(netdev);
2815	struct e1000_hw *hw = &adapter->hw;
2816
2817	/*
2818	 * The watchdog timer may be rescheduled, so explicitly
2819	 * disable it from being rescheduled.
2820	 */
2821	set_bit(__IGBVF_DOWN, &adapter->state);
2822	del_timer_sync(&adapter->watchdog_timer);
2823
2824	cancel_work_sync(&adapter->reset_task);
2825	cancel_work_sync(&adapter->watchdog_task);
2826
2827	unregister_netdev(netdev);
2828
2829	igbvf_reset_interrupt_capability(adapter);
2830
2831	/*
2832	 * it is important to delete the napi struct prior to freeing the
2833	 * rx ring so that you do not end up with null pointer refs
2834	 */
2835	netif_napi_del(&adapter->rx_ring->napi);
2836	kfree(adapter->tx_ring);
2837	kfree(adapter->rx_ring);
2838
2839	iounmap(hw->hw_addr);
2840	if (hw->flash_address)
2841		iounmap(hw->flash_address);
2842	pci_release_regions(pdev);
2843
2844	free_netdev(netdev);
2845
2846	pci_disable_device(pdev);
2847}
2848
2849/* PCI Error Recovery (ERS) */
2850static const struct pci_error_handlers igbvf_err_handler = {
2851	.error_detected = igbvf_io_error_detected,
2852	.slot_reset = igbvf_io_slot_reset,
2853	.resume = igbvf_io_resume,
2854};
2855
2856static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2859	{ } /* terminate list */
2860};
2861MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2862
2863/* PCI Device API Driver */
2864static struct pci_driver igbvf_driver = {
2865	.name     = igbvf_driver_name,
2866	.id_table = igbvf_pci_tbl,
2867	.probe    = igbvf_probe,
2868	.remove   = igbvf_remove,
2869#ifdef CONFIG_PM
2870	/* Power Management Hooks */
2871	.suspend  = igbvf_suspend,
2872	.resume   = igbvf_resume,
2873#endif
2874	.shutdown = igbvf_shutdown,
2875	.err_handler = &igbvf_err_handler
2876};
2877
2878/**
2879 * igbvf_init_module - Driver Registration Routine
2880 *
2881 * igbvf_init_module is the first routine called when the driver is
2882 * loaded. All it does is register with the PCI subsystem.
2883 **/
2884static int __init igbvf_init_module(void)
2885{
2886	int ret;
 
2887	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2888	pr_info("%s\n", igbvf_copyright);
2889
2890	ret = pci_register_driver(&igbvf_driver);
2891
2892	return ret;
2893}
2894module_init(igbvf_init_module);
2895
2896/**
2897 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 *
2899 * igbvf_exit_module is called just before the driver is removed
2900 * from memory.
2901 **/
2902static void __exit igbvf_exit_module(void)
2903{
2904	pci_unregister_driver(&igbvf_driver);
2905}
2906module_exit(igbvf_exit_module);
2907
2908
2909MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2911MODULE_LICENSE("GPL");
2912MODULE_VERSION(DRV_VERSION);
2913
2914/* netdev.c */