Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel(R) 82576 Virtual Function Linux driver
5 Copyright(c) 2009 - 2012 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, see <http://www.gnu.org/licenses/>.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47#include <linux/sctp.h>
48
49#include "igbvf.h"
50
51#define DRV_VERSION "2.4.0-k"
52char igbvf_driver_name[] = "igbvf";
53const char igbvf_driver_version[] = DRV_VERSION;
54static const char igbvf_driver_string[] =
55 "Intel(R) Gigabit Virtual Function Network Driver";
56static const char igbvf_copyright[] =
57 "Copyright (c) 2009 - 2012 Intel Corporation.";
58
59#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
60static int debug = -1;
61module_param(debug, int, 0);
62MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63
64static int igbvf_poll(struct napi_struct *napi, int budget);
65static void igbvf_reset(struct igbvf_adapter *);
66static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
67static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
68
69static struct igbvf_info igbvf_vf_info = {
70 .mac = e1000_vfadapt,
71 .flags = 0,
72 .pba = 10,
73 .init_ops = e1000_init_function_pointers_vf,
74};
75
76static struct igbvf_info igbvf_i350_vf_info = {
77 .mac = e1000_vfadapt_i350,
78 .flags = 0,
79 .pba = 10,
80 .init_ops = e1000_init_function_pointers_vf,
81};
82
83static const struct igbvf_info *igbvf_info_tbl[] = {
84 [board_vf] = &igbvf_vf_info,
85 [board_i350_vf] = &igbvf_i350_vf_info,
86};
87
88/**
89 * igbvf_desc_unused - calculate if we have unused descriptors
90 * @rx_ring: address of receive ring structure
91 **/
92static int igbvf_desc_unused(struct igbvf_ring *ring)
93{
94 if (ring->next_to_clean > ring->next_to_use)
95 return ring->next_to_clean - ring->next_to_use - 1;
96
97 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
98}
99
100/**
101 * igbvf_receive_skb - helper function to handle Rx indications
102 * @adapter: board private structure
103 * @status: descriptor status field as written by hardware
104 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
105 * @skb: pointer to sk_buff to be indicated to stack
106 **/
107static void igbvf_receive_skb(struct igbvf_adapter *adapter,
108 struct net_device *netdev,
109 struct sk_buff *skb,
110 u32 status, u16 vlan)
111{
112 u16 vid;
113
114 if (status & E1000_RXD_STAT_VP) {
115 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
116 (status & E1000_RXDEXT_STATERR_LB))
117 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 else
119 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
120 if (test_bit(vid, adapter->active_vlans))
121 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
122 }
123
124 napi_gro_receive(&adapter->rx_ring->napi, skb);
125}
126
127static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
128 u32 status_err, struct sk_buff *skb)
129{
130 skb_checksum_none_assert(skb);
131
132 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
133 if ((status_err & E1000_RXD_STAT_IXSM) ||
134 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
135 return;
136
137 /* TCP/UDP checksum error bit is set */
138 if (status_err &
139 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
140 /* let the stack verify checksum errors */
141 adapter->hw_csum_err++;
142 return;
143 }
144
145 /* It must be a TCP or UDP packet with a valid checksum */
146 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
147 skb->ip_summed = CHECKSUM_UNNECESSARY;
148
149 adapter->hw_csum_good++;
150}
151
152/**
153 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
154 * @rx_ring: address of ring structure to repopulate
155 * @cleaned_count: number of buffers to repopulate
156 **/
157static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
158 int cleaned_count)
159{
160 struct igbvf_adapter *adapter = rx_ring->adapter;
161 struct net_device *netdev = adapter->netdev;
162 struct pci_dev *pdev = adapter->pdev;
163 union e1000_adv_rx_desc *rx_desc;
164 struct igbvf_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 int bufsz;
168
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
171
172 if (adapter->rx_ps_hdr_size)
173 bufsz = adapter->rx_ps_hdr_size;
174 else
175 bufsz = adapter->rx_buffer_len;
176
177 while (cleaned_count--) {
178 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
179
180 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
181 if (!buffer_info->page) {
182 buffer_info->page = alloc_page(GFP_ATOMIC);
183 if (!buffer_info->page) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187 buffer_info->page_offset = 0;
188 } else {
189 buffer_info->page_offset ^= PAGE_SIZE / 2;
190 }
191 buffer_info->page_dma =
192 dma_map_page(&pdev->dev, buffer_info->page,
193 buffer_info->page_offset,
194 PAGE_SIZE / 2,
195 DMA_FROM_DEVICE);
196 if (dma_mapping_error(&pdev->dev,
197 buffer_info->page_dma)) {
198 __free_page(buffer_info->page);
199 buffer_info->page = NULL;
200 dev_err(&pdev->dev, "RX DMA map failed\n");
201 break;
202 }
203 }
204
205 if (!buffer_info->skb) {
206 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
207 if (!skb) {
208 adapter->alloc_rx_buff_failed++;
209 goto no_buffers;
210 }
211
212 buffer_info->skb = skb;
213 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
214 bufsz,
215 DMA_FROM_DEVICE);
216 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
217 dev_kfree_skb(buffer_info->skb);
218 buffer_info->skb = NULL;
219 dev_err(&pdev->dev, "RX DMA map failed\n");
220 goto no_buffers;
221 }
222 }
223 /* Refresh the desc even if buffer_addrs didn't change because
224 * each write-back erases this info.
225 */
226 if (adapter->rx_ps_hdr_size) {
227 rx_desc->read.pkt_addr =
228 cpu_to_le64(buffer_info->page_dma);
229 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
230 } else {
231 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
232 rx_desc->read.hdr_addr = 0;
233 }
234
235 i++;
236 if (i == rx_ring->count)
237 i = 0;
238 buffer_info = &rx_ring->buffer_info[i];
239 }
240
241no_buffers:
242 if (rx_ring->next_to_use != i) {
243 rx_ring->next_to_use = i;
244 if (i == 0)
245 i = (rx_ring->count - 1);
246 else
247 i--;
248
249 /* Force memory writes to complete before letting h/w
250 * know there are new descriptors to fetch. (Only
251 * applicable for weak-ordered memory model archs,
252 * such as IA-64).
253 */
254 wmb();
255 writel(i, adapter->hw.hw_addr + rx_ring->tail);
256 }
257}
258
259/**
260 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
261 * @adapter: board private structure
262 *
263 * the return value indicates whether actual cleaning was done, there
264 * is no guarantee that everything was cleaned
265 **/
266static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
267 int *work_done, int work_to_do)
268{
269 struct igbvf_ring *rx_ring = adapter->rx_ring;
270 struct net_device *netdev = adapter->netdev;
271 struct pci_dev *pdev = adapter->pdev;
272 union e1000_adv_rx_desc *rx_desc, *next_rxd;
273 struct igbvf_buffer *buffer_info, *next_buffer;
274 struct sk_buff *skb;
275 bool cleaned = false;
276 int cleaned_count = 0;
277 unsigned int total_bytes = 0, total_packets = 0;
278 unsigned int i;
279 u32 length, hlen, staterr;
280
281 i = rx_ring->next_to_clean;
282 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
283 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
284
285 while (staterr & E1000_RXD_STAT_DD) {
286 if (*work_done >= work_to_do)
287 break;
288 (*work_done)++;
289 rmb(); /* read descriptor and rx_buffer_info after status DD */
290
291 buffer_info = &rx_ring->buffer_info[i];
292
293 /* HW will not DMA in data larger than the given buffer, even
294 * if it parses the (NFS, of course) header to be larger. In
295 * that case, it fills the header buffer and spills the rest
296 * into the page.
297 */
298 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
299 & E1000_RXDADV_HDRBUFLEN_MASK) >>
300 E1000_RXDADV_HDRBUFLEN_SHIFT;
301 if (hlen > adapter->rx_ps_hdr_size)
302 hlen = adapter->rx_ps_hdr_size;
303
304 length = le16_to_cpu(rx_desc->wb.upper.length);
305 cleaned = true;
306 cleaned_count++;
307
308 skb = buffer_info->skb;
309 prefetch(skb->data - NET_IP_ALIGN);
310 buffer_info->skb = NULL;
311 if (!adapter->rx_ps_hdr_size) {
312 dma_unmap_single(&pdev->dev, buffer_info->dma,
313 adapter->rx_buffer_len,
314 DMA_FROM_DEVICE);
315 buffer_info->dma = 0;
316 skb_put(skb, length);
317 goto send_up;
318 }
319
320 if (!skb_shinfo(skb)->nr_frags) {
321 dma_unmap_single(&pdev->dev, buffer_info->dma,
322 adapter->rx_ps_hdr_size,
323 DMA_FROM_DEVICE);
324 buffer_info->dma = 0;
325 skb_put(skb, hlen);
326 }
327
328 if (length) {
329 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
330 PAGE_SIZE / 2,
331 DMA_FROM_DEVICE);
332 buffer_info->page_dma = 0;
333
334 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
335 buffer_info->page,
336 buffer_info->page_offset,
337 length);
338
339 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
340 (page_count(buffer_info->page) != 1))
341 buffer_info->page = NULL;
342 else
343 get_page(buffer_info->page);
344
345 skb->len += length;
346 skb->data_len += length;
347 skb->truesize += PAGE_SIZE / 2;
348 }
349send_up:
350 i++;
351 if (i == rx_ring->count)
352 i = 0;
353 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
354 prefetch(next_rxd);
355 next_buffer = &rx_ring->buffer_info[i];
356
357 if (!(staterr & E1000_RXD_STAT_EOP)) {
358 buffer_info->skb = next_buffer->skb;
359 buffer_info->dma = next_buffer->dma;
360 next_buffer->skb = skb;
361 next_buffer->dma = 0;
362 goto next_desc;
363 }
364
365 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
366 dev_kfree_skb_irq(skb);
367 goto next_desc;
368 }
369
370 total_bytes += skb->len;
371 total_packets++;
372
373 igbvf_rx_checksum_adv(adapter, staterr, skb);
374
375 skb->protocol = eth_type_trans(skb, netdev);
376
377 igbvf_receive_skb(adapter, netdev, skb, staterr,
378 rx_desc->wb.upper.vlan);
379
380next_desc:
381 rx_desc->wb.upper.status_error = 0;
382
383 /* return some buffers to hardware, one at a time is too slow */
384 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
385 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
386 cleaned_count = 0;
387 }
388
389 /* use prefetched values */
390 rx_desc = next_rxd;
391 buffer_info = next_buffer;
392
393 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
394 }
395
396 rx_ring->next_to_clean = i;
397 cleaned_count = igbvf_desc_unused(rx_ring);
398
399 if (cleaned_count)
400 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
401
402 adapter->total_rx_packets += total_packets;
403 adapter->total_rx_bytes += total_bytes;
404 netdev->stats.rx_bytes += total_bytes;
405 netdev->stats.rx_packets += total_packets;
406 return cleaned;
407}
408
409static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
410 struct igbvf_buffer *buffer_info)
411{
412 if (buffer_info->dma) {
413 if (buffer_info->mapped_as_page)
414 dma_unmap_page(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 else
419 dma_unmap_single(&adapter->pdev->dev,
420 buffer_info->dma,
421 buffer_info->length,
422 DMA_TO_DEVICE);
423 buffer_info->dma = 0;
424 }
425 if (buffer_info->skb) {
426 dev_kfree_skb_any(buffer_info->skb);
427 buffer_info->skb = NULL;
428 }
429 buffer_info->time_stamp = 0;
430}
431
432/**
433 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
434 * @adapter: board private structure
435 *
436 * Return 0 on success, negative on failure
437 **/
438int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
439 struct igbvf_ring *tx_ring)
440{
441 struct pci_dev *pdev = adapter->pdev;
442 int size;
443
444 size = sizeof(struct igbvf_buffer) * tx_ring->count;
445 tx_ring->buffer_info = vzalloc(size);
446 if (!tx_ring->buffer_info)
447 goto err;
448
449 /* round up to nearest 4K */
450 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
451 tx_ring->size = ALIGN(tx_ring->size, 4096);
452
453 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
454 &tx_ring->dma, GFP_KERNEL);
455 if (!tx_ring->desc)
456 goto err;
457
458 tx_ring->adapter = adapter;
459 tx_ring->next_to_use = 0;
460 tx_ring->next_to_clean = 0;
461
462 return 0;
463err:
464 vfree(tx_ring->buffer_info);
465 dev_err(&adapter->pdev->dev,
466 "Unable to allocate memory for the transmit descriptor ring\n");
467 return -ENOMEM;
468}
469
470/**
471 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
472 * @adapter: board private structure
473 *
474 * Returns 0 on success, negative on failure
475 **/
476int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
477 struct igbvf_ring *rx_ring)
478{
479 struct pci_dev *pdev = adapter->pdev;
480 int size, desc_len;
481
482 size = sizeof(struct igbvf_buffer) * rx_ring->count;
483 rx_ring->buffer_info = vzalloc(size);
484 if (!rx_ring->buffer_info)
485 goto err;
486
487 desc_len = sizeof(union e1000_adv_rx_desc);
488
489 /* Round up to nearest 4K */
490 rx_ring->size = rx_ring->count * desc_len;
491 rx_ring->size = ALIGN(rx_ring->size, 4096);
492
493 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
494 &rx_ring->dma, GFP_KERNEL);
495 if (!rx_ring->desc)
496 goto err;
497
498 rx_ring->next_to_clean = 0;
499 rx_ring->next_to_use = 0;
500
501 rx_ring->adapter = adapter;
502
503 return 0;
504
505err:
506 vfree(rx_ring->buffer_info);
507 rx_ring->buffer_info = NULL;
508 dev_err(&adapter->pdev->dev,
509 "Unable to allocate memory for the receive descriptor ring\n");
510 return -ENOMEM;
511}
512
513/**
514 * igbvf_clean_tx_ring - Free Tx Buffers
515 * @tx_ring: ring to be cleaned
516 **/
517static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
518{
519 struct igbvf_adapter *adapter = tx_ring->adapter;
520 struct igbvf_buffer *buffer_info;
521 unsigned long size;
522 unsigned int i;
523
524 if (!tx_ring->buffer_info)
525 return;
526
527 /* Free all the Tx ring sk_buffs */
528 for (i = 0; i < tx_ring->count; i++) {
529 buffer_info = &tx_ring->buffer_info[i];
530 igbvf_put_txbuf(adapter, buffer_info);
531 }
532
533 size = sizeof(struct igbvf_buffer) * tx_ring->count;
534 memset(tx_ring->buffer_info, 0, size);
535
536 /* Zero out the descriptor ring */
537 memset(tx_ring->desc, 0, tx_ring->size);
538
539 tx_ring->next_to_use = 0;
540 tx_ring->next_to_clean = 0;
541
542 writel(0, adapter->hw.hw_addr + tx_ring->head);
543 writel(0, adapter->hw.hw_addr + tx_ring->tail);
544}
545
546/**
547 * igbvf_free_tx_resources - Free Tx Resources per Queue
548 * @tx_ring: ring to free resources from
549 *
550 * Free all transmit software resources
551 **/
552void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
553{
554 struct pci_dev *pdev = tx_ring->adapter->pdev;
555
556 igbvf_clean_tx_ring(tx_ring);
557
558 vfree(tx_ring->buffer_info);
559 tx_ring->buffer_info = NULL;
560
561 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
562 tx_ring->dma);
563
564 tx_ring->desc = NULL;
565}
566
567/**
568 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
569 * @adapter: board private structure
570 **/
571static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
572{
573 struct igbvf_adapter *adapter = rx_ring->adapter;
574 struct igbvf_buffer *buffer_info;
575 struct pci_dev *pdev = adapter->pdev;
576 unsigned long size;
577 unsigned int i;
578
579 if (!rx_ring->buffer_info)
580 return;
581
582 /* Free all the Rx ring sk_buffs */
583 for (i = 0; i < rx_ring->count; i++) {
584 buffer_info = &rx_ring->buffer_info[i];
585 if (buffer_info->dma) {
586 if (adapter->rx_ps_hdr_size) {
587 dma_unmap_single(&pdev->dev, buffer_info->dma,
588 adapter->rx_ps_hdr_size,
589 DMA_FROM_DEVICE);
590 } else {
591 dma_unmap_single(&pdev->dev, buffer_info->dma,
592 adapter->rx_buffer_len,
593 DMA_FROM_DEVICE);
594 }
595 buffer_info->dma = 0;
596 }
597
598 if (buffer_info->skb) {
599 dev_kfree_skb(buffer_info->skb);
600 buffer_info->skb = NULL;
601 }
602
603 if (buffer_info->page) {
604 if (buffer_info->page_dma)
605 dma_unmap_page(&pdev->dev,
606 buffer_info->page_dma,
607 PAGE_SIZE / 2,
608 DMA_FROM_DEVICE);
609 put_page(buffer_info->page);
610 buffer_info->page = NULL;
611 buffer_info->page_dma = 0;
612 buffer_info->page_offset = 0;
613 }
614 }
615
616 size = sizeof(struct igbvf_buffer) * rx_ring->count;
617 memset(rx_ring->buffer_info, 0, size);
618
619 /* Zero out the descriptor ring */
620 memset(rx_ring->desc, 0, rx_ring->size);
621
622 rx_ring->next_to_clean = 0;
623 rx_ring->next_to_use = 0;
624
625 writel(0, adapter->hw.hw_addr + rx_ring->head);
626 writel(0, adapter->hw.hw_addr + rx_ring->tail);
627}
628
629/**
630 * igbvf_free_rx_resources - Free Rx Resources
631 * @rx_ring: ring to clean the resources from
632 *
633 * Free all receive software resources
634 **/
635
636void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
637{
638 struct pci_dev *pdev = rx_ring->adapter->pdev;
639
640 igbvf_clean_rx_ring(rx_ring);
641
642 vfree(rx_ring->buffer_info);
643 rx_ring->buffer_info = NULL;
644
645 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
646 rx_ring->dma);
647 rx_ring->desc = NULL;
648}
649
650/**
651 * igbvf_update_itr - update the dynamic ITR value based on statistics
652 * @adapter: pointer to adapter
653 * @itr_setting: current adapter->itr
654 * @packets: the number of packets during this measurement interval
655 * @bytes: the number of bytes during this measurement interval
656 *
657 * Stores a new ITR value based on packets and byte counts during the last
658 * interrupt. The advantage of per interrupt computation is faster updates
659 * and more accurate ITR for the current traffic pattern. Constants in this
660 * function were computed based on theoretical maximum wire speed and thresholds
661 * were set based on testing data as well as attempting to minimize response
662 * time while increasing bulk throughput.
663 **/
664static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
665 enum latency_range itr_setting,
666 int packets, int bytes)
667{
668 enum latency_range retval = itr_setting;
669
670 if (packets == 0)
671 goto update_itr_done;
672
673 switch (itr_setting) {
674 case lowest_latency:
675 /* handle TSO and jumbo frames */
676 if (bytes/packets > 8000)
677 retval = bulk_latency;
678 else if ((packets < 5) && (bytes > 512))
679 retval = low_latency;
680 break;
681 case low_latency: /* 50 usec aka 20000 ints/s */
682 if (bytes > 10000) {
683 /* this if handles the TSO accounting */
684 if (bytes/packets > 8000)
685 retval = bulk_latency;
686 else if ((packets < 10) || ((bytes/packets) > 1200))
687 retval = bulk_latency;
688 else if ((packets > 35))
689 retval = lowest_latency;
690 } else if (bytes/packets > 2000) {
691 retval = bulk_latency;
692 } else if (packets <= 2 && bytes < 512) {
693 retval = lowest_latency;
694 }
695 break;
696 case bulk_latency: /* 250 usec aka 4000 ints/s */
697 if (bytes > 25000) {
698 if (packets > 35)
699 retval = low_latency;
700 } else if (bytes < 6000) {
701 retval = low_latency;
702 }
703 break;
704 default:
705 break;
706 }
707
708update_itr_done:
709 return retval;
710}
711
712static int igbvf_range_to_itr(enum latency_range current_range)
713{
714 int new_itr;
715
716 switch (current_range) {
717 /* counts and packets in update_itr are dependent on these numbers */
718 case lowest_latency:
719 new_itr = IGBVF_70K_ITR;
720 break;
721 case low_latency:
722 new_itr = IGBVF_20K_ITR;
723 break;
724 case bulk_latency:
725 new_itr = IGBVF_4K_ITR;
726 break;
727 default:
728 new_itr = IGBVF_START_ITR;
729 break;
730 }
731 return new_itr;
732}
733
734static void igbvf_set_itr(struct igbvf_adapter *adapter)
735{
736 u32 new_itr;
737
738 adapter->tx_ring->itr_range =
739 igbvf_update_itr(adapter,
740 adapter->tx_ring->itr_val,
741 adapter->total_tx_packets,
742 adapter->total_tx_bytes);
743
744 /* conservative mode (itr 3) eliminates the lowest_latency setting */
745 if (adapter->requested_itr == 3 &&
746 adapter->tx_ring->itr_range == lowest_latency)
747 adapter->tx_ring->itr_range = low_latency;
748
749 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
750
751 if (new_itr != adapter->tx_ring->itr_val) {
752 u32 current_itr = adapter->tx_ring->itr_val;
753 /* this attempts to bias the interrupt rate towards Bulk
754 * by adding intermediate steps when interrupt rate is
755 * increasing
756 */
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->tx_ring->itr_val = new_itr;
761
762 adapter->tx_ring->set_itr = 1;
763 }
764
765 adapter->rx_ring->itr_range =
766 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
767 adapter->total_rx_packets,
768 adapter->total_rx_bytes);
769 if (adapter->requested_itr == 3 &&
770 adapter->rx_ring->itr_range == lowest_latency)
771 adapter->rx_ring->itr_range = low_latency;
772
773 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774
775 if (new_itr != adapter->rx_ring->itr_val) {
776 u32 current_itr = adapter->rx_ring->itr_val;
777
778 new_itr = new_itr > current_itr ?
779 min(current_itr + (new_itr >> 2), new_itr) :
780 new_itr;
781 adapter->rx_ring->itr_val = new_itr;
782
783 adapter->rx_ring->set_itr = 1;
784 }
785}
786
787/**
788 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
789 * @adapter: board private structure
790 *
791 * returns true if ring is completely cleaned
792 **/
793static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
794{
795 struct igbvf_adapter *adapter = tx_ring->adapter;
796 struct net_device *netdev = adapter->netdev;
797 struct igbvf_buffer *buffer_info;
798 struct sk_buff *skb;
799 union e1000_adv_tx_desc *tx_desc, *eop_desc;
800 unsigned int total_bytes = 0, total_packets = 0;
801 unsigned int i, count = 0;
802 bool cleaned = false;
803
804 i = tx_ring->next_to_clean;
805 buffer_info = &tx_ring->buffer_info[i];
806 eop_desc = buffer_info->next_to_watch;
807
808 do {
809 /* if next_to_watch is not set then there is no work pending */
810 if (!eop_desc)
811 break;
812
813 /* prevent any other reads prior to eop_desc */
814 smp_rmb();
815
816 /* if DD is not set pending work has not been completed */
817 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
818 break;
819
820 /* clear next_to_watch to prevent false hangs */
821 buffer_info->next_to_watch = NULL;
822
823 for (cleaned = false; !cleaned; count++) {
824 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
825 cleaned = (tx_desc == eop_desc);
826 skb = buffer_info->skb;
827
828 if (skb) {
829 unsigned int segs, bytecount;
830
831 /* gso_segs is currently only valid for tcp */
832 segs = skb_shinfo(skb)->gso_segs ?: 1;
833 /* multiply data chunks by size of headers */
834 bytecount = ((segs - 1) * skb_headlen(skb)) +
835 skb->len;
836 total_packets += segs;
837 total_bytes += bytecount;
838 }
839
840 igbvf_put_txbuf(adapter, buffer_info);
841 tx_desc->wb.status = 0;
842
843 i++;
844 if (i == tx_ring->count)
845 i = 0;
846
847 buffer_info = &tx_ring->buffer_info[i];
848 }
849
850 eop_desc = buffer_info->next_to_watch;
851 } while (count < tx_ring->count);
852
853 tx_ring->next_to_clean = i;
854
855 if (unlikely(count && netif_carrier_ok(netdev) &&
856 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
857 /* Make sure that anybody stopping the queue after this
858 * sees the new next_to_clean.
859 */
860 smp_mb();
861 if (netif_queue_stopped(netdev) &&
862 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
863 netif_wake_queue(netdev);
864 ++adapter->restart_queue;
865 }
866 }
867
868 netdev->stats.tx_bytes += total_bytes;
869 netdev->stats.tx_packets += total_packets;
870 return count < tx_ring->count;
871}
872
873static irqreturn_t igbvf_msix_other(int irq, void *data)
874{
875 struct net_device *netdev = data;
876 struct igbvf_adapter *adapter = netdev_priv(netdev);
877 struct e1000_hw *hw = &adapter->hw;
878
879 adapter->int_counter1++;
880
881 hw->mac.get_link_status = 1;
882 if (!test_bit(__IGBVF_DOWN, &adapter->state))
883 mod_timer(&adapter->watchdog_timer, jiffies + 1);
884
885 ew32(EIMS, adapter->eims_other);
886
887 return IRQ_HANDLED;
888}
889
890static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
891{
892 struct net_device *netdev = data;
893 struct igbvf_adapter *adapter = netdev_priv(netdev);
894 struct e1000_hw *hw = &adapter->hw;
895 struct igbvf_ring *tx_ring = adapter->tx_ring;
896
897 if (tx_ring->set_itr) {
898 writel(tx_ring->itr_val,
899 adapter->hw.hw_addr + tx_ring->itr_register);
900 adapter->tx_ring->set_itr = 0;
901 }
902
903 adapter->total_tx_bytes = 0;
904 adapter->total_tx_packets = 0;
905
906 /* auto mask will automatically re-enable the interrupt when we write
907 * EICS
908 */
909 if (!igbvf_clean_tx_irq(tx_ring))
910 /* Ring was not completely cleaned, so fire another interrupt */
911 ew32(EICS, tx_ring->eims_value);
912 else
913 ew32(EIMS, tx_ring->eims_value);
914
915 return IRQ_HANDLED;
916}
917
918static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
919{
920 struct net_device *netdev = data;
921 struct igbvf_adapter *adapter = netdev_priv(netdev);
922
923 adapter->int_counter0++;
924
925 /* Write the ITR value calculated at the end of the
926 * previous interrupt.
927 */
928 if (adapter->rx_ring->set_itr) {
929 writel(adapter->rx_ring->itr_val,
930 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
931 adapter->rx_ring->set_itr = 0;
932 }
933
934 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
935 adapter->total_rx_bytes = 0;
936 adapter->total_rx_packets = 0;
937 __napi_schedule(&adapter->rx_ring->napi);
938 }
939
940 return IRQ_HANDLED;
941}
942
943#define IGBVF_NO_QUEUE -1
944
945static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
946 int tx_queue, int msix_vector)
947{
948 struct e1000_hw *hw = &adapter->hw;
949 u32 ivar, index;
950
951 /* 82576 uses a table-based method for assigning vectors.
952 * Each queue has a single entry in the table to which we write
953 * a vector number along with a "valid" bit. Sadly, the layout
954 * of the table is somewhat counterintuitive.
955 */
956 if (rx_queue > IGBVF_NO_QUEUE) {
957 index = (rx_queue >> 1);
958 ivar = array_er32(IVAR0, index);
959 if (rx_queue & 0x1) {
960 /* vector goes into third byte of register */
961 ivar = ivar & 0xFF00FFFF;
962 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
963 } else {
964 /* vector goes into low byte of register */
965 ivar = ivar & 0xFFFFFF00;
966 ivar |= msix_vector | E1000_IVAR_VALID;
967 }
968 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
969 array_ew32(IVAR0, index, ivar);
970 }
971 if (tx_queue > IGBVF_NO_QUEUE) {
972 index = (tx_queue >> 1);
973 ivar = array_er32(IVAR0, index);
974 if (tx_queue & 0x1) {
975 /* vector goes into high byte of register */
976 ivar = ivar & 0x00FFFFFF;
977 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
978 } else {
979 /* vector goes into second byte of register */
980 ivar = ivar & 0xFFFF00FF;
981 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
982 }
983 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
984 array_ew32(IVAR0, index, ivar);
985 }
986}
987
988/**
989 * igbvf_configure_msix - Configure MSI-X hardware
990 * @adapter: board private structure
991 *
992 * igbvf_configure_msix sets up the hardware to properly
993 * generate MSI-X interrupts.
994 **/
995static void igbvf_configure_msix(struct igbvf_adapter *adapter)
996{
997 u32 tmp;
998 struct e1000_hw *hw = &adapter->hw;
999 struct igbvf_ring *tx_ring = adapter->tx_ring;
1000 struct igbvf_ring *rx_ring = adapter->rx_ring;
1001 int vector = 0;
1002
1003 adapter->eims_enable_mask = 0;
1004
1005 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1006 adapter->eims_enable_mask |= tx_ring->eims_value;
1007 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1008 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1009 adapter->eims_enable_mask |= rx_ring->eims_value;
1010 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1011
1012 /* set vector for other causes, i.e. link changes */
1013
1014 tmp = (vector++ | E1000_IVAR_VALID);
1015
1016 ew32(IVAR_MISC, tmp);
1017
1018 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1019 adapter->eims_other = BIT(vector - 1);
1020 e1e_flush();
1021}
1022
1023static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1024{
1025 if (adapter->msix_entries) {
1026 pci_disable_msix(adapter->pdev);
1027 kfree(adapter->msix_entries);
1028 adapter->msix_entries = NULL;
1029 }
1030}
1031
1032/**
1033 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1034 * @adapter: board private structure
1035 *
1036 * Attempt to configure interrupts using the best available
1037 * capabilities of the hardware and kernel.
1038 **/
1039static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1040{
1041 int err = -ENOMEM;
1042 int i;
1043
1044 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1045 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1046 GFP_KERNEL);
1047 if (adapter->msix_entries) {
1048 for (i = 0; i < 3; i++)
1049 adapter->msix_entries[i].entry = i;
1050
1051 err = pci_enable_msix_range(adapter->pdev,
1052 adapter->msix_entries, 3, 3);
1053 }
1054
1055 if (err < 0) {
1056 /* MSI-X failed */
1057 dev_err(&adapter->pdev->dev,
1058 "Failed to initialize MSI-X interrupts.\n");
1059 igbvf_reset_interrupt_capability(adapter);
1060 }
1061}
1062
1063/**
1064 * igbvf_request_msix - Initialize MSI-X interrupts
1065 * @adapter: board private structure
1066 *
1067 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1068 * kernel.
1069 **/
1070static int igbvf_request_msix(struct igbvf_adapter *adapter)
1071{
1072 struct net_device *netdev = adapter->netdev;
1073 int err = 0, vector = 0;
1074
1075 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1076 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1077 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1078 } else {
1079 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1080 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1081 }
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1085 netdev);
1086 if (err)
1087 goto out;
1088
1089 adapter->tx_ring->itr_register = E1000_EITR(vector);
1090 adapter->tx_ring->itr_val = adapter->current_itr;
1091 vector++;
1092
1093 err = request_irq(adapter->msix_entries[vector].vector,
1094 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1095 netdev);
1096 if (err)
1097 goto out;
1098
1099 adapter->rx_ring->itr_register = E1000_EITR(vector);
1100 adapter->rx_ring->itr_val = adapter->current_itr;
1101 vector++;
1102
1103 err = request_irq(adapter->msix_entries[vector].vector,
1104 igbvf_msix_other, 0, netdev->name, netdev);
1105 if (err)
1106 goto out;
1107
1108 igbvf_configure_msix(adapter);
1109 return 0;
1110out:
1111 return err;
1112}
1113
1114/**
1115 * igbvf_alloc_queues - Allocate memory for all rings
1116 * @adapter: board private structure to initialize
1117 **/
1118static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1119{
1120 struct net_device *netdev = adapter->netdev;
1121
1122 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1123 if (!adapter->tx_ring)
1124 return -ENOMEM;
1125
1126 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1127 if (!adapter->rx_ring) {
1128 kfree(adapter->tx_ring);
1129 return -ENOMEM;
1130 }
1131
1132 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1133
1134 return 0;
1135}
1136
1137/**
1138 * igbvf_request_irq - initialize interrupts
1139 * @adapter: board private structure
1140 *
1141 * Attempts to configure interrupts using the best available
1142 * capabilities of the hardware and kernel.
1143 **/
1144static int igbvf_request_irq(struct igbvf_adapter *adapter)
1145{
1146 int err = -1;
1147
1148 /* igbvf supports msi-x only */
1149 if (adapter->msix_entries)
1150 err = igbvf_request_msix(adapter);
1151
1152 if (!err)
1153 return err;
1154
1155 dev_err(&adapter->pdev->dev,
1156 "Unable to allocate interrupt, Error: %d\n", err);
1157
1158 return err;
1159}
1160
1161static void igbvf_free_irq(struct igbvf_adapter *adapter)
1162{
1163 struct net_device *netdev = adapter->netdev;
1164 int vector;
1165
1166 if (adapter->msix_entries) {
1167 for (vector = 0; vector < 3; vector++)
1168 free_irq(adapter->msix_entries[vector].vector, netdev);
1169 }
1170}
1171
1172/**
1173 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1174 * @adapter: board private structure
1175 **/
1176static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1177{
1178 struct e1000_hw *hw = &adapter->hw;
1179
1180 ew32(EIMC, ~0);
1181
1182 if (adapter->msix_entries)
1183 ew32(EIAC, 0);
1184}
1185
1186/**
1187 * igbvf_irq_enable - Enable default interrupt generation settings
1188 * @adapter: board private structure
1189 **/
1190static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1191{
1192 struct e1000_hw *hw = &adapter->hw;
1193
1194 ew32(EIAC, adapter->eims_enable_mask);
1195 ew32(EIAM, adapter->eims_enable_mask);
1196 ew32(EIMS, adapter->eims_enable_mask);
1197}
1198
1199/**
1200 * igbvf_poll - NAPI Rx polling callback
1201 * @napi: struct associated with this polling callback
1202 * @budget: amount of packets driver is allowed to process this poll
1203 **/
1204static int igbvf_poll(struct napi_struct *napi, int budget)
1205{
1206 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1207 struct igbvf_adapter *adapter = rx_ring->adapter;
1208 struct e1000_hw *hw = &adapter->hw;
1209 int work_done = 0;
1210
1211 igbvf_clean_rx_irq(adapter, &work_done, budget);
1212
1213 /* If not enough Rx work done, exit the polling mode */
1214 if (work_done < budget) {
1215 napi_complete_done(napi, work_done);
1216
1217 if (adapter->requested_itr & 3)
1218 igbvf_set_itr(adapter);
1219
1220 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1221 ew32(EIMS, adapter->rx_ring->eims_value);
1222 }
1223
1224 return work_done;
1225}
1226
1227/**
1228 * igbvf_set_rlpml - set receive large packet maximum length
1229 * @adapter: board private structure
1230 *
1231 * Configure the maximum size of packets that will be received
1232 */
1233static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1234{
1235 int max_frame_size;
1236 struct e1000_hw *hw = &adapter->hw;
1237
1238 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1239
1240 spin_lock_bh(&hw->mbx_lock);
1241
1242 e1000_rlpml_set_vf(hw, max_frame_size);
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245}
1246
1247static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1248 __be16 proto, u16 vid)
1249{
1250 struct igbvf_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252
1253 spin_lock_bh(&hw->mbx_lock);
1254
1255 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1256 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1257 spin_unlock_bh(&hw->mbx_lock);
1258 return -EINVAL;
1259 }
1260
1261 spin_unlock_bh(&hw->mbx_lock);
1262
1263 set_bit(vid, adapter->active_vlans);
1264 return 0;
1265}
1266
1267static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1268 __be16 proto, u16 vid)
1269{
1270 struct igbvf_adapter *adapter = netdev_priv(netdev);
1271 struct e1000_hw *hw = &adapter->hw;
1272
1273 spin_lock_bh(&hw->mbx_lock);
1274
1275 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1276 dev_err(&adapter->pdev->dev,
1277 "Failed to remove vlan id %d\n", vid);
1278 spin_unlock_bh(&hw->mbx_lock);
1279 return -EINVAL;
1280 }
1281
1282 spin_unlock_bh(&hw->mbx_lock);
1283
1284 clear_bit(vid, adapter->active_vlans);
1285 return 0;
1286}
1287
1288static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1289{
1290 u16 vid;
1291
1292 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1293 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1294}
1295
1296/**
1297 * igbvf_configure_tx - Configure Transmit Unit after Reset
1298 * @adapter: board private structure
1299 *
1300 * Configure the Tx unit of the MAC after a reset.
1301 **/
1302static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1303{
1304 struct e1000_hw *hw = &adapter->hw;
1305 struct igbvf_ring *tx_ring = adapter->tx_ring;
1306 u64 tdba;
1307 u32 txdctl, dca_txctrl;
1308
1309 /* disable transmits */
1310 txdctl = er32(TXDCTL(0));
1311 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1312 e1e_flush();
1313 msleep(10);
1314
1315 /* Setup the HW Tx Head and Tail descriptor pointers */
1316 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1317 tdba = tx_ring->dma;
1318 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1319 ew32(TDBAH(0), (tdba >> 32));
1320 ew32(TDH(0), 0);
1321 ew32(TDT(0), 0);
1322 tx_ring->head = E1000_TDH(0);
1323 tx_ring->tail = E1000_TDT(0);
1324
1325 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1326 * MUST be delivered in order or it will completely screw up
1327 * our bookkeeping.
1328 */
1329 dca_txctrl = er32(DCA_TXCTRL(0));
1330 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1331 ew32(DCA_TXCTRL(0), dca_txctrl);
1332
1333 /* enable transmits */
1334 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1335 ew32(TXDCTL(0), txdctl);
1336
1337 /* Setup Transmit Descriptor Settings for eop descriptor */
1338 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1339
1340 /* enable Report Status bit */
1341 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1342}
1343
1344/**
1345 * igbvf_setup_srrctl - configure the receive control registers
1346 * @adapter: Board private structure
1347 **/
1348static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1349{
1350 struct e1000_hw *hw = &adapter->hw;
1351 u32 srrctl = 0;
1352
1353 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1354 E1000_SRRCTL_BSIZEHDR_MASK |
1355 E1000_SRRCTL_BSIZEPKT_MASK);
1356
1357 /* Enable queue drop to avoid head of line blocking */
1358 srrctl |= E1000_SRRCTL_DROP_EN;
1359
1360 /* Setup buffer sizes */
1361 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1362 E1000_SRRCTL_BSIZEPKT_SHIFT;
1363
1364 if (adapter->rx_buffer_len < 2048) {
1365 adapter->rx_ps_hdr_size = 0;
1366 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1367 } else {
1368 adapter->rx_ps_hdr_size = 128;
1369 srrctl |= adapter->rx_ps_hdr_size <<
1370 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1371 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1372 }
1373
1374 ew32(SRRCTL(0), srrctl);
1375}
1376
1377/**
1378 * igbvf_configure_rx - Configure Receive Unit after Reset
1379 * @adapter: board private structure
1380 *
1381 * Configure the Rx unit of the MAC after a reset.
1382 **/
1383static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1384{
1385 struct e1000_hw *hw = &adapter->hw;
1386 struct igbvf_ring *rx_ring = adapter->rx_ring;
1387 u64 rdba;
1388 u32 rxdctl;
1389
1390 /* disable receives */
1391 rxdctl = er32(RXDCTL(0));
1392 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1393 e1e_flush();
1394 msleep(10);
1395
1396 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1397 * the Base and Length of the Rx Descriptor Ring
1398 */
1399 rdba = rx_ring->dma;
1400 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1401 ew32(RDBAH(0), (rdba >> 32));
1402 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1403 rx_ring->head = E1000_RDH(0);
1404 rx_ring->tail = E1000_RDT(0);
1405 ew32(RDH(0), 0);
1406 ew32(RDT(0), 0);
1407
1408 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1409 rxdctl &= 0xFFF00000;
1410 rxdctl |= IGBVF_RX_PTHRESH;
1411 rxdctl |= IGBVF_RX_HTHRESH << 8;
1412 rxdctl |= IGBVF_RX_WTHRESH << 16;
1413
1414 igbvf_set_rlpml(adapter);
1415
1416 /* enable receives */
1417 ew32(RXDCTL(0), rxdctl);
1418}
1419
1420/**
1421 * igbvf_set_multi - Multicast and Promiscuous mode set
1422 * @netdev: network interface device structure
1423 *
1424 * The set_multi entry point is called whenever the multicast address
1425 * list or the network interface flags are updated. This routine is
1426 * responsible for configuring the hardware for proper multicast,
1427 * promiscuous mode, and all-multi behavior.
1428 **/
1429static void igbvf_set_multi(struct net_device *netdev)
1430{
1431 struct igbvf_adapter *adapter = netdev_priv(netdev);
1432 struct e1000_hw *hw = &adapter->hw;
1433 struct netdev_hw_addr *ha;
1434 u8 *mta_list = NULL;
1435 int i;
1436
1437 if (!netdev_mc_empty(netdev)) {
1438 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1439 GFP_ATOMIC);
1440 if (!mta_list)
1441 return;
1442 }
1443
1444 /* prepare a packed array of only addresses. */
1445 i = 0;
1446 netdev_for_each_mc_addr(ha, netdev)
1447 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1448
1449 spin_lock_bh(&hw->mbx_lock);
1450
1451 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1452
1453 spin_unlock_bh(&hw->mbx_lock);
1454 kfree(mta_list);
1455}
1456
1457/**
1458 * igbvf_set_uni - Configure unicast MAC filters
1459 * @netdev: network interface device structure
1460 *
1461 * This routine is responsible for configuring the hardware for proper
1462 * unicast filters.
1463 **/
1464static int igbvf_set_uni(struct net_device *netdev)
1465{
1466 struct igbvf_adapter *adapter = netdev_priv(netdev);
1467 struct e1000_hw *hw = &adapter->hw;
1468
1469 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1470 pr_err("Too many unicast filters - No Space\n");
1471 return -ENOSPC;
1472 }
1473
1474 spin_lock_bh(&hw->mbx_lock);
1475
1476 /* Clear all unicast MAC filters */
1477 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1478
1479 spin_unlock_bh(&hw->mbx_lock);
1480
1481 if (!netdev_uc_empty(netdev)) {
1482 struct netdev_hw_addr *ha;
1483
1484 /* Add MAC filters one by one */
1485 netdev_for_each_uc_addr(ha, netdev) {
1486 spin_lock_bh(&hw->mbx_lock);
1487
1488 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1489 ha->addr);
1490
1491 spin_unlock_bh(&hw->mbx_lock);
1492 udelay(200);
1493 }
1494 }
1495
1496 return 0;
1497}
1498
1499static void igbvf_set_rx_mode(struct net_device *netdev)
1500{
1501 igbvf_set_multi(netdev);
1502 igbvf_set_uni(netdev);
1503}
1504
1505/**
1506 * igbvf_configure - configure the hardware for Rx and Tx
1507 * @adapter: private board structure
1508 **/
1509static void igbvf_configure(struct igbvf_adapter *adapter)
1510{
1511 igbvf_set_rx_mode(adapter->netdev);
1512
1513 igbvf_restore_vlan(adapter);
1514
1515 igbvf_configure_tx(adapter);
1516 igbvf_setup_srrctl(adapter);
1517 igbvf_configure_rx(adapter);
1518 igbvf_alloc_rx_buffers(adapter->rx_ring,
1519 igbvf_desc_unused(adapter->rx_ring));
1520}
1521
1522/* igbvf_reset - bring the hardware into a known good state
1523 * @adapter: private board structure
1524 *
1525 * This function boots the hardware and enables some settings that
1526 * require a configuration cycle of the hardware - those cannot be
1527 * set/changed during runtime. After reset the device needs to be
1528 * properly configured for Rx, Tx etc.
1529 */
1530static void igbvf_reset(struct igbvf_adapter *adapter)
1531{
1532 struct e1000_mac_info *mac = &adapter->hw.mac;
1533 struct net_device *netdev = adapter->netdev;
1534 struct e1000_hw *hw = &adapter->hw;
1535
1536 spin_lock_bh(&hw->mbx_lock);
1537
1538 /* Allow time for pending master requests to run */
1539 if (mac->ops.reset_hw(hw))
1540 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1541
1542 mac->ops.init_hw(hw);
1543
1544 spin_unlock_bh(&hw->mbx_lock);
1545
1546 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1547 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1548 netdev->addr_len);
1549 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1550 netdev->addr_len);
1551 }
1552
1553 adapter->last_reset = jiffies;
1554}
1555
1556int igbvf_up(struct igbvf_adapter *adapter)
1557{
1558 struct e1000_hw *hw = &adapter->hw;
1559
1560 /* hardware has been reset, we need to reload some things */
1561 igbvf_configure(adapter);
1562
1563 clear_bit(__IGBVF_DOWN, &adapter->state);
1564
1565 napi_enable(&adapter->rx_ring->napi);
1566 if (adapter->msix_entries)
1567 igbvf_configure_msix(adapter);
1568
1569 /* Clear any pending interrupts. */
1570 er32(EICR);
1571 igbvf_irq_enable(adapter);
1572
1573 /* start the watchdog */
1574 hw->mac.get_link_status = 1;
1575 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1576
1577 return 0;
1578}
1579
1580void igbvf_down(struct igbvf_adapter *adapter)
1581{
1582 struct net_device *netdev = adapter->netdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584 u32 rxdctl, txdctl;
1585
1586 /* signal that we're down so the interrupt handler does not
1587 * reschedule our watchdog timer
1588 */
1589 set_bit(__IGBVF_DOWN, &adapter->state);
1590
1591 /* disable receives in the hardware */
1592 rxdctl = er32(RXDCTL(0));
1593 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1594
1595 netif_carrier_off(netdev);
1596 netif_stop_queue(netdev);
1597
1598 /* disable transmits in the hardware */
1599 txdctl = er32(TXDCTL(0));
1600 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1601
1602 /* flush both disables and wait for them to finish */
1603 e1e_flush();
1604 msleep(10);
1605
1606 napi_disable(&adapter->rx_ring->napi);
1607
1608 igbvf_irq_disable(adapter);
1609
1610 del_timer_sync(&adapter->watchdog_timer);
1611
1612 /* record the stats before reset*/
1613 igbvf_update_stats(adapter);
1614
1615 adapter->link_speed = 0;
1616 adapter->link_duplex = 0;
1617
1618 igbvf_reset(adapter);
1619 igbvf_clean_tx_ring(adapter->tx_ring);
1620 igbvf_clean_rx_ring(adapter->rx_ring);
1621}
1622
1623void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1624{
1625 might_sleep();
1626 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1627 usleep_range(1000, 2000);
1628 igbvf_down(adapter);
1629 igbvf_up(adapter);
1630 clear_bit(__IGBVF_RESETTING, &adapter->state);
1631}
1632
1633/**
1634 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1635 * @adapter: board private structure to initialize
1636 *
1637 * igbvf_sw_init initializes the Adapter private data structure.
1638 * Fields are initialized based on PCI device information and
1639 * OS network device settings (MTU size).
1640 **/
1641static int igbvf_sw_init(struct igbvf_adapter *adapter)
1642{
1643 struct net_device *netdev = adapter->netdev;
1644 s32 rc;
1645
1646 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1647 adapter->rx_ps_hdr_size = 0;
1648 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1649 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1650
1651 adapter->tx_int_delay = 8;
1652 adapter->tx_abs_int_delay = 32;
1653 adapter->rx_int_delay = 0;
1654 adapter->rx_abs_int_delay = 8;
1655 adapter->requested_itr = 3;
1656 adapter->current_itr = IGBVF_START_ITR;
1657
1658 /* Set various function pointers */
1659 adapter->ei->init_ops(&adapter->hw);
1660
1661 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1662 if (rc)
1663 return rc;
1664
1665 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1666 if (rc)
1667 return rc;
1668
1669 igbvf_set_interrupt_capability(adapter);
1670
1671 if (igbvf_alloc_queues(adapter))
1672 return -ENOMEM;
1673
1674 spin_lock_init(&adapter->tx_queue_lock);
1675
1676 /* Explicitly disable IRQ since the NIC can be in any state. */
1677 igbvf_irq_disable(adapter);
1678
1679 spin_lock_init(&adapter->stats_lock);
1680 spin_lock_init(&adapter->hw.mbx_lock);
1681
1682 set_bit(__IGBVF_DOWN, &adapter->state);
1683 return 0;
1684}
1685
1686static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1687{
1688 struct e1000_hw *hw = &adapter->hw;
1689
1690 adapter->stats.last_gprc = er32(VFGPRC);
1691 adapter->stats.last_gorc = er32(VFGORC);
1692 adapter->stats.last_gptc = er32(VFGPTC);
1693 adapter->stats.last_gotc = er32(VFGOTC);
1694 adapter->stats.last_mprc = er32(VFMPRC);
1695 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1696 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1697 adapter->stats.last_gorlbc = er32(VFGORLBC);
1698 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1699
1700 adapter->stats.base_gprc = er32(VFGPRC);
1701 adapter->stats.base_gorc = er32(VFGORC);
1702 adapter->stats.base_gptc = er32(VFGPTC);
1703 adapter->stats.base_gotc = er32(VFGOTC);
1704 adapter->stats.base_mprc = er32(VFMPRC);
1705 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1706 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1707 adapter->stats.base_gorlbc = er32(VFGORLBC);
1708 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1709}
1710
1711/**
1712 * igbvf_open - Called when a network interface is made active
1713 * @netdev: network interface device structure
1714 *
1715 * Returns 0 on success, negative value on failure
1716 *
1717 * The open entry point is called when a network interface is made
1718 * active by the system (IFF_UP). At this point all resources needed
1719 * for transmit and receive operations are allocated, the interrupt
1720 * handler is registered with the OS, the watchdog timer is started,
1721 * and the stack is notified that the interface is ready.
1722 **/
1723static int igbvf_open(struct net_device *netdev)
1724{
1725 struct igbvf_adapter *adapter = netdev_priv(netdev);
1726 struct e1000_hw *hw = &adapter->hw;
1727 int err;
1728
1729 /* disallow open during test */
1730 if (test_bit(__IGBVF_TESTING, &adapter->state))
1731 return -EBUSY;
1732
1733 /* allocate transmit descriptors */
1734 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1735 if (err)
1736 goto err_setup_tx;
1737
1738 /* allocate receive descriptors */
1739 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1740 if (err)
1741 goto err_setup_rx;
1742
1743 /* before we allocate an interrupt, we must be ready to handle it.
1744 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1745 * as soon as we call pci_request_irq, so we have to setup our
1746 * clean_rx handler before we do so.
1747 */
1748 igbvf_configure(adapter);
1749
1750 err = igbvf_request_irq(adapter);
1751 if (err)
1752 goto err_req_irq;
1753
1754 /* From here on the code is the same as igbvf_up() */
1755 clear_bit(__IGBVF_DOWN, &adapter->state);
1756
1757 napi_enable(&adapter->rx_ring->napi);
1758
1759 /* clear any pending interrupts */
1760 er32(EICR);
1761
1762 igbvf_irq_enable(adapter);
1763
1764 /* start the watchdog */
1765 hw->mac.get_link_status = 1;
1766 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767
1768 return 0;
1769
1770err_req_irq:
1771 igbvf_free_rx_resources(adapter->rx_ring);
1772err_setup_rx:
1773 igbvf_free_tx_resources(adapter->tx_ring);
1774err_setup_tx:
1775 igbvf_reset(adapter);
1776
1777 return err;
1778}
1779
1780/**
1781 * igbvf_close - Disables a network interface
1782 * @netdev: network interface device structure
1783 *
1784 * Returns 0, this is not allowed to fail
1785 *
1786 * The close entry point is called when an interface is de-activated
1787 * by the OS. The hardware is still under the drivers control, but
1788 * needs to be disabled. A global MAC reset is issued to stop the
1789 * hardware, and all transmit and receive resources are freed.
1790 **/
1791static int igbvf_close(struct net_device *netdev)
1792{
1793 struct igbvf_adapter *adapter = netdev_priv(netdev);
1794
1795 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1796 igbvf_down(adapter);
1797
1798 igbvf_free_irq(adapter);
1799
1800 igbvf_free_tx_resources(adapter->tx_ring);
1801 igbvf_free_rx_resources(adapter->rx_ring);
1802
1803 return 0;
1804}
1805
1806/**
1807 * igbvf_set_mac - Change the Ethernet Address of the NIC
1808 * @netdev: network interface device structure
1809 * @p: pointer to an address structure
1810 *
1811 * Returns 0 on success, negative on failure
1812 **/
1813static int igbvf_set_mac(struct net_device *netdev, void *p)
1814{
1815 struct igbvf_adapter *adapter = netdev_priv(netdev);
1816 struct e1000_hw *hw = &adapter->hw;
1817 struct sockaddr *addr = p;
1818
1819 if (!is_valid_ether_addr(addr->sa_data))
1820 return -EADDRNOTAVAIL;
1821
1822 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1823
1824 spin_lock_bh(&hw->mbx_lock);
1825
1826 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1827
1828 spin_unlock_bh(&hw->mbx_lock);
1829
1830 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1831 return -EADDRNOTAVAIL;
1832
1833 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1834
1835 return 0;
1836}
1837
1838#define UPDATE_VF_COUNTER(reg, name) \
1839{ \
1840 u32 current_counter = er32(reg); \
1841 if (current_counter < adapter->stats.last_##name) \
1842 adapter->stats.name += 0x100000000LL; \
1843 adapter->stats.last_##name = current_counter; \
1844 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1845 adapter->stats.name |= current_counter; \
1846}
1847
1848/**
1849 * igbvf_update_stats - Update the board statistics counters
1850 * @adapter: board private structure
1851**/
1852void igbvf_update_stats(struct igbvf_adapter *adapter)
1853{
1854 struct e1000_hw *hw = &adapter->hw;
1855 struct pci_dev *pdev = adapter->pdev;
1856
1857 /* Prevent stats update while adapter is being reset, link is down
1858 * or if the pci connection is down.
1859 */
1860 if (adapter->link_speed == 0)
1861 return;
1862
1863 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1864 return;
1865
1866 if (pci_channel_offline(pdev))
1867 return;
1868
1869 UPDATE_VF_COUNTER(VFGPRC, gprc);
1870 UPDATE_VF_COUNTER(VFGORC, gorc);
1871 UPDATE_VF_COUNTER(VFGPTC, gptc);
1872 UPDATE_VF_COUNTER(VFGOTC, gotc);
1873 UPDATE_VF_COUNTER(VFMPRC, mprc);
1874 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1875 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1876 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1877 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1878
1879 /* Fill out the OS statistics structure */
1880 adapter->netdev->stats.multicast = adapter->stats.mprc;
1881}
1882
1883static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1884{
1885 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1886 adapter->link_speed,
1887 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1888}
1889
1890static bool igbvf_has_link(struct igbvf_adapter *adapter)
1891{
1892 struct e1000_hw *hw = &adapter->hw;
1893 s32 ret_val = E1000_SUCCESS;
1894 bool link_active;
1895
1896 /* If interface is down, stay link down */
1897 if (test_bit(__IGBVF_DOWN, &adapter->state))
1898 return false;
1899
1900 spin_lock_bh(&hw->mbx_lock);
1901
1902 ret_val = hw->mac.ops.check_for_link(hw);
1903
1904 spin_unlock_bh(&hw->mbx_lock);
1905
1906 link_active = !hw->mac.get_link_status;
1907
1908 /* if check for link returns error we will need to reset */
1909 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1910 schedule_work(&adapter->reset_task);
1911
1912 return link_active;
1913}
1914
1915/**
1916 * igbvf_watchdog - Timer Call-back
1917 * @data: pointer to adapter cast into an unsigned long
1918 **/
1919static void igbvf_watchdog(struct timer_list *t)
1920{
1921 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1922
1923 /* Do the rest outside of interrupt context */
1924 schedule_work(&adapter->watchdog_task);
1925}
1926
1927static void igbvf_watchdog_task(struct work_struct *work)
1928{
1929 struct igbvf_adapter *adapter = container_of(work,
1930 struct igbvf_adapter,
1931 watchdog_task);
1932 struct net_device *netdev = adapter->netdev;
1933 struct e1000_mac_info *mac = &adapter->hw.mac;
1934 struct igbvf_ring *tx_ring = adapter->tx_ring;
1935 struct e1000_hw *hw = &adapter->hw;
1936 u32 link;
1937 int tx_pending = 0;
1938
1939 link = igbvf_has_link(adapter);
1940
1941 if (link) {
1942 if (!netif_carrier_ok(netdev)) {
1943 mac->ops.get_link_up_info(&adapter->hw,
1944 &adapter->link_speed,
1945 &adapter->link_duplex);
1946 igbvf_print_link_info(adapter);
1947
1948 netif_carrier_on(netdev);
1949 netif_wake_queue(netdev);
1950 }
1951 } else {
1952 if (netif_carrier_ok(netdev)) {
1953 adapter->link_speed = 0;
1954 adapter->link_duplex = 0;
1955 dev_info(&adapter->pdev->dev, "Link is Down\n");
1956 netif_carrier_off(netdev);
1957 netif_stop_queue(netdev);
1958 }
1959 }
1960
1961 if (netif_carrier_ok(netdev)) {
1962 igbvf_update_stats(adapter);
1963 } else {
1964 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1965 tx_ring->count);
1966 if (tx_pending) {
1967 /* We've lost link, so the controller stops DMA,
1968 * but we've got queued Tx work that's never going
1969 * to get done, so reset controller to flush Tx.
1970 * (Do the reset outside of interrupt context).
1971 */
1972 adapter->tx_timeout_count++;
1973 schedule_work(&adapter->reset_task);
1974 }
1975 }
1976
1977 /* Cause software interrupt to ensure Rx ring is cleaned */
1978 ew32(EICS, adapter->rx_ring->eims_value);
1979
1980 /* Reset the timer */
1981 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1982 mod_timer(&adapter->watchdog_timer,
1983 round_jiffies(jiffies + (2 * HZ)));
1984}
1985
1986#define IGBVF_TX_FLAGS_CSUM 0x00000001
1987#define IGBVF_TX_FLAGS_VLAN 0x00000002
1988#define IGBVF_TX_FLAGS_TSO 0x00000004
1989#define IGBVF_TX_FLAGS_IPV4 0x00000008
1990#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1991#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1992
1993static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1994 u32 type_tucmd, u32 mss_l4len_idx)
1995{
1996 struct e1000_adv_tx_context_desc *context_desc;
1997 struct igbvf_buffer *buffer_info;
1998 u16 i = tx_ring->next_to_use;
1999
2000 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2001 buffer_info = &tx_ring->buffer_info[i];
2002
2003 i++;
2004 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2005
2006 /* set bits to identify this as an advanced context descriptor */
2007 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2008
2009 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2010 context_desc->seqnum_seed = 0;
2011 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
2012 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2013
2014 buffer_info->time_stamp = jiffies;
2015 buffer_info->dma = 0;
2016}
2017
2018static int igbvf_tso(struct igbvf_ring *tx_ring,
2019 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2020{
2021 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2022 union {
2023 struct iphdr *v4;
2024 struct ipv6hdr *v6;
2025 unsigned char *hdr;
2026 } ip;
2027 union {
2028 struct tcphdr *tcp;
2029 unsigned char *hdr;
2030 } l4;
2031 u32 paylen, l4_offset;
2032 int err;
2033
2034 if (skb->ip_summed != CHECKSUM_PARTIAL)
2035 return 0;
2036
2037 if (!skb_is_gso(skb))
2038 return 0;
2039
2040 err = skb_cow_head(skb, 0);
2041 if (err < 0)
2042 return err;
2043
2044 ip.hdr = skb_network_header(skb);
2045 l4.hdr = skb_checksum_start(skb);
2046
2047 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2048 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2049
2050 /* initialize outer IP header fields */
2051 if (ip.v4->version == 4) {
2052 unsigned char *csum_start = skb_checksum_start(skb);
2053 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2054
2055 /* IP header will have to cancel out any data that
2056 * is not a part of the outer IP header
2057 */
2058 ip.v4->check = csum_fold(csum_partial(trans_start,
2059 csum_start - trans_start,
2060 0));
2061 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2062
2063 ip.v4->tot_len = 0;
2064 } else {
2065 ip.v6->payload_len = 0;
2066 }
2067
2068 /* determine offset of inner transport header */
2069 l4_offset = l4.hdr - skb->data;
2070
2071 /* compute length of segmentation header */
2072 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2073
2074 /* remove payload length from inner checksum */
2075 paylen = skb->len - l4_offset;
2076 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2077
2078 /* MSS L4LEN IDX */
2079 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2080 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2081
2082 /* VLAN MACLEN IPLEN */
2083 vlan_macip_lens = l4.hdr - ip.hdr;
2084 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2085 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2086
2087 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2088
2089 return 1;
2090}
2091
2092static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2093{
2094 unsigned int offset = 0;
2095
2096 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2097
2098 return offset == skb_checksum_start_offset(skb);
2099}
2100
2101static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2102 u32 tx_flags, __be16 protocol)
2103{
2104 u32 vlan_macip_lens = 0;
2105 u32 type_tucmd = 0;
2106
2107 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2108csum_failed:
2109 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2110 return false;
2111 goto no_csum;
2112 }
2113
2114 switch (skb->csum_offset) {
2115 case offsetof(struct tcphdr, check):
2116 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2117 /* fall through */
2118 case offsetof(struct udphdr, check):
2119 break;
2120 case offsetof(struct sctphdr, checksum):
2121 /* validate that this is actually an SCTP request */
2122 if (((protocol == htons(ETH_P_IP)) &&
2123 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2124 ((protocol == htons(ETH_P_IPV6)) &&
2125 igbvf_ipv6_csum_is_sctp(skb))) {
2126 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2127 break;
2128 }
2129 default:
2130 skb_checksum_help(skb);
2131 goto csum_failed;
2132 }
2133
2134 vlan_macip_lens = skb_checksum_start_offset(skb) -
2135 skb_network_offset(skb);
2136no_csum:
2137 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2138 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2139
2140 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2141 return true;
2142}
2143
2144static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2145{
2146 struct igbvf_adapter *adapter = netdev_priv(netdev);
2147
2148 /* there is enough descriptors then we don't need to worry */
2149 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2150 return 0;
2151
2152 netif_stop_queue(netdev);
2153
2154 /* Herbert's original patch had:
2155 * smp_mb__after_netif_stop_queue();
2156 * but since that doesn't exist yet, just open code it.
2157 */
2158 smp_mb();
2159
2160 /* We need to check again just in case room has been made available */
2161 if (igbvf_desc_unused(adapter->tx_ring) < size)
2162 return -EBUSY;
2163
2164 netif_wake_queue(netdev);
2165
2166 ++adapter->restart_queue;
2167 return 0;
2168}
2169
2170#define IGBVF_MAX_TXD_PWR 16
2171#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2172
2173static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2174 struct igbvf_ring *tx_ring,
2175 struct sk_buff *skb)
2176{
2177 struct igbvf_buffer *buffer_info;
2178 struct pci_dev *pdev = adapter->pdev;
2179 unsigned int len = skb_headlen(skb);
2180 unsigned int count = 0, i;
2181 unsigned int f;
2182
2183 i = tx_ring->next_to_use;
2184
2185 buffer_info = &tx_ring->buffer_info[i];
2186 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187 buffer_info->length = len;
2188 /* set time_stamp *before* dma to help avoid a possible race */
2189 buffer_info->time_stamp = jiffies;
2190 buffer_info->mapped_as_page = false;
2191 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2192 DMA_TO_DEVICE);
2193 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2194 goto dma_error;
2195
2196 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2197 const struct skb_frag_struct *frag;
2198
2199 count++;
2200 i++;
2201 if (i == tx_ring->count)
2202 i = 0;
2203
2204 frag = &skb_shinfo(skb)->frags[f];
2205 len = skb_frag_size(frag);
2206
2207 buffer_info = &tx_ring->buffer_info[i];
2208 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2209 buffer_info->length = len;
2210 buffer_info->time_stamp = jiffies;
2211 buffer_info->mapped_as_page = true;
2212 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2213 DMA_TO_DEVICE);
2214 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2215 goto dma_error;
2216 }
2217
2218 tx_ring->buffer_info[i].skb = skb;
2219
2220 return ++count;
2221
2222dma_error:
2223 dev_err(&pdev->dev, "TX DMA map failed\n");
2224
2225 /* clear timestamp and dma mappings for failed buffer_info mapping */
2226 buffer_info->dma = 0;
2227 buffer_info->time_stamp = 0;
2228 buffer_info->length = 0;
2229 buffer_info->mapped_as_page = false;
2230 if (count)
2231 count--;
2232
2233 /* clear timestamp and dma mappings for remaining portion of packet */
2234 while (count--) {
2235 if (i == 0)
2236 i += tx_ring->count;
2237 i--;
2238 buffer_info = &tx_ring->buffer_info[i];
2239 igbvf_put_txbuf(adapter, buffer_info);
2240 }
2241
2242 return 0;
2243}
2244
2245static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2246 struct igbvf_ring *tx_ring,
2247 int tx_flags, int count,
2248 unsigned int first, u32 paylen,
2249 u8 hdr_len)
2250{
2251 union e1000_adv_tx_desc *tx_desc = NULL;
2252 struct igbvf_buffer *buffer_info;
2253 u32 olinfo_status = 0, cmd_type_len;
2254 unsigned int i;
2255
2256 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2257 E1000_ADVTXD_DCMD_DEXT);
2258
2259 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2260 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2261
2262 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2263 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2264
2265 /* insert tcp checksum */
2266 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2267
2268 /* insert ip checksum */
2269 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2270 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2271
2272 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2273 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2274 }
2275
2276 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2277
2278 i = tx_ring->next_to_use;
2279 while (count--) {
2280 buffer_info = &tx_ring->buffer_info[i];
2281 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2282 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2283 tx_desc->read.cmd_type_len =
2284 cpu_to_le32(cmd_type_len | buffer_info->length);
2285 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2286 i++;
2287 if (i == tx_ring->count)
2288 i = 0;
2289 }
2290
2291 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2292 /* Force memory writes to complete before letting h/w
2293 * know there are new descriptors to fetch. (Only
2294 * applicable for weak-ordered memory model archs,
2295 * such as IA-64).
2296 */
2297 wmb();
2298
2299 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2300 tx_ring->next_to_use = i;
2301 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2302 /* we need this if more than one processor can write to our tail
2303 * at a time, it synchronizes IO on IA64/Altix systems
2304 */
2305 mmiowb();
2306}
2307
2308static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2309 struct net_device *netdev,
2310 struct igbvf_ring *tx_ring)
2311{
2312 struct igbvf_adapter *adapter = netdev_priv(netdev);
2313 unsigned int first, tx_flags = 0;
2314 u8 hdr_len = 0;
2315 int count = 0;
2316 int tso = 0;
2317 __be16 protocol = vlan_get_protocol(skb);
2318
2319 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2322 }
2323
2324 if (skb->len <= 0) {
2325 dev_kfree_skb_any(skb);
2326 return NETDEV_TX_OK;
2327 }
2328
2329 /* need: count + 4 desc gap to keep tail from touching
2330 * + 2 desc gap to keep tail from touching head,
2331 * + 1 desc for skb->data,
2332 * + 1 desc for context descriptor,
2333 * head, otherwise try next time
2334 */
2335 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2336 /* this is a hard error */
2337 return NETDEV_TX_BUSY;
2338 }
2339
2340 if (skb_vlan_tag_present(skb)) {
2341 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2342 tx_flags |= (skb_vlan_tag_get(skb) <<
2343 IGBVF_TX_FLAGS_VLAN_SHIFT);
2344 }
2345
2346 if (protocol == htons(ETH_P_IP))
2347 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2348
2349 first = tx_ring->next_to_use;
2350
2351 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2352 if (unlikely(tso < 0)) {
2353 dev_kfree_skb_any(skb);
2354 return NETDEV_TX_OK;
2355 }
2356
2357 if (tso)
2358 tx_flags |= IGBVF_TX_FLAGS_TSO;
2359 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2360 (skb->ip_summed == CHECKSUM_PARTIAL))
2361 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2362
2363 /* count reflects descriptors mapped, if 0 then mapping error
2364 * has occurred and we need to rewind the descriptor queue
2365 */
2366 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2367
2368 if (count) {
2369 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2370 first, skb->len, hdr_len);
2371 /* Make sure there is space in the ring for the next send. */
2372 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2373 } else {
2374 dev_kfree_skb_any(skb);
2375 tx_ring->buffer_info[first].time_stamp = 0;
2376 tx_ring->next_to_use = first;
2377 }
2378
2379 return NETDEV_TX_OK;
2380}
2381
2382static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2383 struct net_device *netdev)
2384{
2385 struct igbvf_adapter *adapter = netdev_priv(netdev);
2386 struct igbvf_ring *tx_ring;
2387
2388 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2389 dev_kfree_skb_any(skb);
2390 return NETDEV_TX_OK;
2391 }
2392
2393 tx_ring = &adapter->tx_ring[0];
2394
2395 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2396}
2397
2398/**
2399 * igbvf_tx_timeout - Respond to a Tx Hang
2400 * @netdev: network interface device structure
2401 **/
2402static void igbvf_tx_timeout(struct net_device *netdev)
2403{
2404 struct igbvf_adapter *adapter = netdev_priv(netdev);
2405
2406 /* Do the reset outside of interrupt context */
2407 adapter->tx_timeout_count++;
2408 schedule_work(&adapter->reset_task);
2409}
2410
2411static void igbvf_reset_task(struct work_struct *work)
2412{
2413 struct igbvf_adapter *adapter;
2414
2415 adapter = container_of(work, struct igbvf_adapter, reset_task);
2416
2417 igbvf_reinit_locked(adapter);
2418}
2419
2420/**
2421 * igbvf_change_mtu - Change the Maximum Transfer Unit
2422 * @netdev: network interface device structure
2423 * @new_mtu: new value for maximum frame size
2424 *
2425 * Returns 0 on success, negative on failure
2426 **/
2427static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2428{
2429 struct igbvf_adapter *adapter = netdev_priv(netdev);
2430 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2431
2432 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2433 usleep_range(1000, 2000);
2434 /* igbvf_down has a dependency on max_frame_size */
2435 adapter->max_frame_size = max_frame;
2436 if (netif_running(netdev))
2437 igbvf_down(adapter);
2438
2439 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2440 * means we reserve 2 more, this pushes us to allocate from the next
2441 * larger slab size.
2442 * i.e. RXBUFFER_2048 --> size-4096 slab
2443 * However with the new *_jumbo_rx* routines, jumbo receives will use
2444 * fragmented skbs
2445 */
2446
2447 if (max_frame <= 1024)
2448 adapter->rx_buffer_len = 1024;
2449 else if (max_frame <= 2048)
2450 adapter->rx_buffer_len = 2048;
2451 else
2452#if (PAGE_SIZE / 2) > 16384
2453 adapter->rx_buffer_len = 16384;
2454#else
2455 adapter->rx_buffer_len = PAGE_SIZE / 2;
2456#endif
2457
2458 /* adjust allocation if LPE protects us, and we aren't using SBP */
2459 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2460 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2461 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2462 ETH_FCS_LEN;
2463
2464 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2465 netdev->mtu, new_mtu);
2466 netdev->mtu = new_mtu;
2467
2468 if (netif_running(netdev))
2469 igbvf_up(adapter);
2470 else
2471 igbvf_reset(adapter);
2472
2473 clear_bit(__IGBVF_RESETTING, &adapter->state);
2474
2475 return 0;
2476}
2477
2478static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2479{
2480 switch (cmd) {
2481 default:
2482 return -EOPNOTSUPP;
2483 }
2484}
2485
2486static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2487{
2488 struct net_device *netdev = pci_get_drvdata(pdev);
2489 struct igbvf_adapter *adapter = netdev_priv(netdev);
2490#ifdef CONFIG_PM
2491 int retval = 0;
2492#endif
2493
2494 netif_device_detach(netdev);
2495
2496 if (netif_running(netdev)) {
2497 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2498 igbvf_down(adapter);
2499 igbvf_free_irq(adapter);
2500 }
2501
2502#ifdef CONFIG_PM
2503 retval = pci_save_state(pdev);
2504 if (retval)
2505 return retval;
2506#endif
2507
2508 pci_disable_device(pdev);
2509
2510 return 0;
2511}
2512
2513#ifdef CONFIG_PM
2514static int igbvf_resume(struct pci_dev *pdev)
2515{
2516 struct net_device *netdev = pci_get_drvdata(pdev);
2517 struct igbvf_adapter *adapter = netdev_priv(netdev);
2518 u32 err;
2519
2520 pci_restore_state(pdev);
2521 err = pci_enable_device_mem(pdev);
2522 if (err) {
2523 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2524 return err;
2525 }
2526
2527 pci_set_master(pdev);
2528
2529 if (netif_running(netdev)) {
2530 err = igbvf_request_irq(adapter);
2531 if (err)
2532 return err;
2533 }
2534
2535 igbvf_reset(adapter);
2536
2537 if (netif_running(netdev))
2538 igbvf_up(adapter);
2539
2540 netif_device_attach(netdev);
2541
2542 return 0;
2543}
2544#endif
2545
2546static void igbvf_shutdown(struct pci_dev *pdev)
2547{
2548 igbvf_suspend(pdev, PMSG_SUSPEND);
2549}
2550
2551#ifdef CONFIG_NET_POLL_CONTROLLER
2552/* Polling 'interrupt' - used by things like netconsole to send skbs
2553 * without having to re-enable interrupts. It's not called while
2554 * the interrupt routine is executing.
2555 */
2556static void igbvf_netpoll(struct net_device *netdev)
2557{
2558 struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560 disable_irq(adapter->pdev->irq);
2561
2562 igbvf_clean_tx_irq(adapter->tx_ring);
2563
2564 enable_irq(adapter->pdev->irq);
2565}
2566#endif
2567
2568/**
2569 * igbvf_io_error_detected - called when PCI error is detected
2570 * @pdev: Pointer to PCI device
2571 * @state: The current pci connection state
2572 *
2573 * This function is called after a PCI bus error affecting
2574 * this device has been detected.
2575 */
2576static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2577 pci_channel_state_t state)
2578{
2579 struct net_device *netdev = pci_get_drvdata(pdev);
2580 struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582 netif_device_detach(netdev);
2583
2584 if (state == pci_channel_io_perm_failure)
2585 return PCI_ERS_RESULT_DISCONNECT;
2586
2587 if (netif_running(netdev))
2588 igbvf_down(adapter);
2589 pci_disable_device(pdev);
2590
2591 /* Request a slot slot reset. */
2592 return PCI_ERS_RESULT_NEED_RESET;
2593}
2594
2595/**
2596 * igbvf_io_slot_reset - called after the pci bus has been reset.
2597 * @pdev: Pointer to PCI device
2598 *
2599 * Restart the card from scratch, as if from a cold-boot. Implementation
2600 * resembles the first-half of the igbvf_resume routine.
2601 */
2602static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2603{
2604 struct net_device *netdev = pci_get_drvdata(pdev);
2605 struct igbvf_adapter *adapter = netdev_priv(netdev);
2606
2607 if (pci_enable_device_mem(pdev)) {
2608 dev_err(&pdev->dev,
2609 "Cannot re-enable PCI device after reset.\n");
2610 return PCI_ERS_RESULT_DISCONNECT;
2611 }
2612 pci_set_master(pdev);
2613
2614 igbvf_reset(adapter);
2615
2616 return PCI_ERS_RESULT_RECOVERED;
2617}
2618
2619/**
2620 * igbvf_io_resume - called when traffic can start flowing again.
2621 * @pdev: Pointer to PCI device
2622 *
2623 * This callback is called when the error recovery driver tells us that
2624 * its OK to resume normal operation. Implementation resembles the
2625 * second-half of the igbvf_resume routine.
2626 */
2627static void igbvf_io_resume(struct pci_dev *pdev)
2628{
2629 struct net_device *netdev = pci_get_drvdata(pdev);
2630 struct igbvf_adapter *adapter = netdev_priv(netdev);
2631
2632 if (netif_running(netdev)) {
2633 if (igbvf_up(adapter)) {
2634 dev_err(&pdev->dev,
2635 "can't bring device back up after reset\n");
2636 return;
2637 }
2638 }
2639
2640 netif_device_attach(netdev);
2641}
2642
2643static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2644{
2645 struct e1000_hw *hw = &adapter->hw;
2646 struct net_device *netdev = adapter->netdev;
2647 struct pci_dev *pdev = adapter->pdev;
2648
2649 if (hw->mac.type == e1000_vfadapt_i350)
2650 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2651 else
2652 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2653 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2654}
2655
2656static int igbvf_set_features(struct net_device *netdev,
2657 netdev_features_t features)
2658{
2659 struct igbvf_adapter *adapter = netdev_priv(netdev);
2660
2661 if (features & NETIF_F_RXCSUM)
2662 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2663 else
2664 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2665
2666 return 0;
2667}
2668
2669#define IGBVF_MAX_MAC_HDR_LEN 127
2670#define IGBVF_MAX_NETWORK_HDR_LEN 511
2671
2672static netdev_features_t
2673igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2674 netdev_features_t features)
2675{
2676 unsigned int network_hdr_len, mac_hdr_len;
2677
2678 /* Make certain the headers can be described by a context descriptor */
2679 mac_hdr_len = skb_network_header(skb) - skb->data;
2680 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2681 return features & ~(NETIF_F_HW_CSUM |
2682 NETIF_F_SCTP_CRC |
2683 NETIF_F_HW_VLAN_CTAG_TX |
2684 NETIF_F_TSO |
2685 NETIF_F_TSO6);
2686
2687 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2688 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2689 return features & ~(NETIF_F_HW_CSUM |
2690 NETIF_F_SCTP_CRC |
2691 NETIF_F_TSO |
2692 NETIF_F_TSO6);
2693
2694 /* We can only support IPV4 TSO in tunnels if we can mangle the
2695 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2696 */
2697 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2698 features &= ~NETIF_F_TSO;
2699
2700 return features;
2701}
2702
2703static const struct net_device_ops igbvf_netdev_ops = {
2704 .ndo_open = igbvf_open,
2705 .ndo_stop = igbvf_close,
2706 .ndo_start_xmit = igbvf_xmit_frame,
2707 .ndo_set_rx_mode = igbvf_set_rx_mode,
2708 .ndo_set_mac_address = igbvf_set_mac,
2709 .ndo_change_mtu = igbvf_change_mtu,
2710 .ndo_do_ioctl = igbvf_ioctl,
2711 .ndo_tx_timeout = igbvf_tx_timeout,
2712 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2713 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2714#ifdef CONFIG_NET_POLL_CONTROLLER
2715 .ndo_poll_controller = igbvf_netpoll,
2716#endif
2717 .ndo_set_features = igbvf_set_features,
2718 .ndo_features_check = igbvf_features_check,
2719};
2720
2721/**
2722 * igbvf_probe - Device Initialization Routine
2723 * @pdev: PCI device information struct
2724 * @ent: entry in igbvf_pci_tbl
2725 *
2726 * Returns 0 on success, negative on failure
2727 *
2728 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2729 * The OS initialization, configuring of the adapter private structure,
2730 * and a hardware reset occur.
2731 **/
2732static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2733{
2734 struct net_device *netdev;
2735 struct igbvf_adapter *adapter;
2736 struct e1000_hw *hw;
2737 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2738
2739 static int cards_found;
2740 int err, pci_using_dac;
2741
2742 err = pci_enable_device_mem(pdev);
2743 if (err)
2744 return err;
2745
2746 pci_using_dac = 0;
2747 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2748 if (!err) {
2749 pci_using_dac = 1;
2750 } else {
2751 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2752 if (err) {
2753 dev_err(&pdev->dev,
2754 "No usable DMA configuration, aborting\n");
2755 goto err_dma;
2756 }
2757 }
2758
2759 err = pci_request_regions(pdev, igbvf_driver_name);
2760 if (err)
2761 goto err_pci_reg;
2762
2763 pci_set_master(pdev);
2764
2765 err = -ENOMEM;
2766 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2767 if (!netdev)
2768 goto err_alloc_etherdev;
2769
2770 SET_NETDEV_DEV(netdev, &pdev->dev);
2771
2772 pci_set_drvdata(pdev, netdev);
2773 adapter = netdev_priv(netdev);
2774 hw = &adapter->hw;
2775 adapter->netdev = netdev;
2776 adapter->pdev = pdev;
2777 adapter->ei = ei;
2778 adapter->pba = ei->pba;
2779 adapter->flags = ei->flags;
2780 adapter->hw.back = adapter;
2781 adapter->hw.mac.type = ei->mac;
2782 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2783
2784 /* PCI config space info */
2785
2786 hw->vendor_id = pdev->vendor;
2787 hw->device_id = pdev->device;
2788 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2789 hw->subsystem_device_id = pdev->subsystem_device;
2790 hw->revision_id = pdev->revision;
2791
2792 err = -EIO;
2793 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2794 pci_resource_len(pdev, 0));
2795
2796 if (!adapter->hw.hw_addr)
2797 goto err_ioremap;
2798
2799 if (ei->get_variants) {
2800 err = ei->get_variants(adapter);
2801 if (err)
2802 goto err_get_variants;
2803 }
2804
2805 /* setup adapter struct */
2806 err = igbvf_sw_init(adapter);
2807 if (err)
2808 goto err_sw_init;
2809
2810 /* construct the net_device struct */
2811 netdev->netdev_ops = &igbvf_netdev_ops;
2812
2813 igbvf_set_ethtool_ops(netdev);
2814 netdev->watchdog_timeo = 5 * HZ;
2815 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2816
2817 adapter->bd_number = cards_found++;
2818
2819 netdev->hw_features = NETIF_F_SG |
2820 NETIF_F_TSO |
2821 NETIF_F_TSO6 |
2822 NETIF_F_RXCSUM |
2823 NETIF_F_HW_CSUM |
2824 NETIF_F_SCTP_CRC;
2825
2826#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2827 NETIF_F_GSO_GRE_CSUM | \
2828 NETIF_F_GSO_IPXIP4 | \
2829 NETIF_F_GSO_IPXIP6 | \
2830 NETIF_F_GSO_UDP_TUNNEL | \
2831 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2832
2833 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2834 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2835 IGBVF_GSO_PARTIAL_FEATURES;
2836
2837 netdev->features = netdev->hw_features;
2838
2839 if (pci_using_dac)
2840 netdev->features |= NETIF_F_HIGHDMA;
2841
2842 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2843 netdev->mpls_features |= NETIF_F_HW_CSUM;
2844 netdev->hw_enc_features |= netdev->vlan_features;
2845
2846 /* set this bit last since it cannot be part of vlan_features */
2847 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2848 NETIF_F_HW_VLAN_CTAG_RX |
2849 NETIF_F_HW_VLAN_CTAG_TX;
2850
2851 /* MTU range: 68 - 9216 */
2852 netdev->min_mtu = ETH_MIN_MTU;
2853 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2854
2855 spin_lock_bh(&hw->mbx_lock);
2856
2857 /*reset the controller to put the device in a known good state */
2858 err = hw->mac.ops.reset_hw(hw);
2859 if (err) {
2860 dev_info(&pdev->dev,
2861 "PF still in reset state. Is the PF interface up?\n");
2862 } else {
2863 err = hw->mac.ops.read_mac_addr(hw);
2864 if (err)
2865 dev_info(&pdev->dev, "Error reading MAC address.\n");
2866 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2867 dev_info(&pdev->dev,
2868 "MAC address not assigned by administrator.\n");
2869 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2870 netdev->addr_len);
2871 }
2872
2873 spin_unlock_bh(&hw->mbx_lock);
2874
2875 if (!is_valid_ether_addr(netdev->dev_addr)) {
2876 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2877 eth_hw_addr_random(netdev);
2878 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2879 netdev->addr_len);
2880 }
2881
2882 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2883
2884 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2885 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2886
2887 /* ring size defaults */
2888 adapter->rx_ring->count = 1024;
2889 adapter->tx_ring->count = 1024;
2890
2891 /* reset the hardware with the new settings */
2892 igbvf_reset(adapter);
2893
2894 /* set hardware-specific flags */
2895 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2896 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2897
2898 strcpy(netdev->name, "eth%d");
2899 err = register_netdev(netdev);
2900 if (err)
2901 goto err_hw_init;
2902
2903 /* tell the stack to leave us alone until igbvf_open() is called */
2904 netif_carrier_off(netdev);
2905 netif_stop_queue(netdev);
2906
2907 igbvf_print_device_info(adapter);
2908
2909 igbvf_initialize_last_counter_stats(adapter);
2910
2911 return 0;
2912
2913err_hw_init:
2914 kfree(adapter->tx_ring);
2915 kfree(adapter->rx_ring);
2916err_sw_init:
2917 igbvf_reset_interrupt_capability(adapter);
2918err_get_variants:
2919 iounmap(adapter->hw.hw_addr);
2920err_ioremap:
2921 free_netdev(netdev);
2922err_alloc_etherdev:
2923 pci_release_regions(pdev);
2924err_pci_reg:
2925err_dma:
2926 pci_disable_device(pdev);
2927 return err;
2928}
2929
2930/**
2931 * igbvf_remove - Device Removal Routine
2932 * @pdev: PCI device information struct
2933 *
2934 * igbvf_remove is called by the PCI subsystem to alert the driver
2935 * that it should release a PCI device. The could be caused by a
2936 * Hot-Plug event, or because the driver is going to be removed from
2937 * memory.
2938 **/
2939static void igbvf_remove(struct pci_dev *pdev)
2940{
2941 struct net_device *netdev = pci_get_drvdata(pdev);
2942 struct igbvf_adapter *adapter = netdev_priv(netdev);
2943 struct e1000_hw *hw = &adapter->hw;
2944
2945 /* The watchdog timer may be rescheduled, so explicitly
2946 * disable it from being rescheduled.
2947 */
2948 set_bit(__IGBVF_DOWN, &adapter->state);
2949 del_timer_sync(&adapter->watchdog_timer);
2950
2951 cancel_work_sync(&adapter->reset_task);
2952 cancel_work_sync(&adapter->watchdog_task);
2953
2954 unregister_netdev(netdev);
2955
2956 igbvf_reset_interrupt_capability(adapter);
2957
2958 /* it is important to delete the NAPI struct prior to freeing the
2959 * Rx ring so that you do not end up with null pointer refs
2960 */
2961 netif_napi_del(&adapter->rx_ring->napi);
2962 kfree(adapter->tx_ring);
2963 kfree(adapter->rx_ring);
2964
2965 iounmap(hw->hw_addr);
2966 if (hw->flash_address)
2967 iounmap(hw->flash_address);
2968 pci_release_regions(pdev);
2969
2970 free_netdev(netdev);
2971
2972 pci_disable_device(pdev);
2973}
2974
2975/* PCI Error Recovery (ERS) */
2976static const struct pci_error_handlers igbvf_err_handler = {
2977 .error_detected = igbvf_io_error_detected,
2978 .slot_reset = igbvf_io_slot_reset,
2979 .resume = igbvf_io_resume,
2980};
2981
2982static const struct pci_device_id igbvf_pci_tbl[] = {
2983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2984 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2985 { } /* terminate list */
2986};
2987MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2988
2989/* PCI Device API Driver */
2990static struct pci_driver igbvf_driver = {
2991 .name = igbvf_driver_name,
2992 .id_table = igbvf_pci_tbl,
2993 .probe = igbvf_probe,
2994 .remove = igbvf_remove,
2995#ifdef CONFIG_PM
2996 /* Power Management Hooks */
2997 .suspend = igbvf_suspend,
2998 .resume = igbvf_resume,
2999#endif
3000 .shutdown = igbvf_shutdown,
3001 .err_handler = &igbvf_err_handler
3002};
3003
3004/**
3005 * igbvf_init_module - Driver Registration Routine
3006 *
3007 * igbvf_init_module is the first routine called when the driver is
3008 * loaded. All it does is register with the PCI subsystem.
3009 **/
3010static int __init igbvf_init_module(void)
3011{
3012 int ret;
3013
3014 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3015 pr_info("%s\n", igbvf_copyright);
3016
3017 ret = pci_register_driver(&igbvf_driver);
3018
3019 return ret;
3020}
3021module_init(igbvf_init_module);
3022
3023/**
3024 * igbvf_exit_module - Driver Exit Cleanup Routine
3025 *
3026 * igbvf_exit_module is called just before the driver is removed
3027 * from memory.
3028 **/
3029static void __exit igbvf_exit_module(void)
3030{
3031 pci_unregister_driver(&igbvf_driver);
3032}
3033module_exit(igbvf_exit_module);
3034
3035MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3036MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3037MODULE_LICENSE("GPL");
3038MODULE_VERSION(DRV_VERSION);
3039
3040/* netdev.c */
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47
48#include "igbvf.h"
49
50#define DRV_VERSION "2.0.2-k"
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63static int igbvf_poll(struct napi_struct *napi, int budget);
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73};
74
75static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80};
81
82static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109{
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123}
124
125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127{
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148}
149
150/**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157{
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter->rx_ps_hdr_size) {
224 rx_desc->read.pkt_addr =
225 cpu_to_le64(buffer_info->page_dma);
226 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 } else {
228 rx_desc->read.pkt_addr =
229 cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64). */
251 wmb();
252 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 }
254}
255
256/**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264 int *work_done, int work_to_do)
265{
266 struct igbvf_ring *rx_ring = adapter->rx_ring;
267 struct net_device *netdev = adapter->netdev;
268 struct pci_dev *pdev = adapter->pdev;
269 union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 struct igbvf_buffer *buffer_info, *next_buffer;
271 struct sk_buff *skb;
272 bool cleaned = false;
273 int cleaned_count = 0;
274 unsigned int total_bytes = 0, total_packets = 0;
275 unsigned int i;
276 u32 length, hlen, staterr;
277
278 i = rx_ring->next_to_clean;
279 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282 while (staterr & E1000_RXD_STAT_DD) {
283 if (*work_done >= work_to_do)
284 break;
285 (*work_done)++;
286 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288 buffer_info = &rx_ring->buffer_info[i];
289
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
293 * into the page.
294 */
295 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 if (hlen > adapter->rx_ps_hdr_size)
298 hlen = adapter->rx_ps_hdr_size;
299
300 length = le16_to_cpu(rx_desc->wb.upper.length);
301 cleaned = true;
302 cleaned_count++;
303
304 skb = buffer_info->skb;
305 prefetch(skb->data - NET_IP_ALIGN);
306 buffer_info->skb = NULL;
307 if (!adapter->rx_ps_hdr_size) {
308 dma_unmap_single(&pdev->dev, buffer_info->dma,
309 adapter->rx_buffer_len,
310 DMA_FROM_DEVICE);
311 buffer_info->dma = 0;
312 skb_put(skb, length);
313 goto send_up;
314 }
315
316 if (!skb_shinfo(skb)->nr_frags) {
317 dma_unmap_single(&pdev->dev, buffer_info->dma,
318 adapter->rx_ps_hdr_size,
319 DMA_FROM_DEVICE);
320 skb_put(skb, hlen);
321 }
322
323 if (length) {
324 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325 PAGE_SIZE / 2,
326 DMA_FROM_DEVICE);
327 buffer_info->page_dma = 0;
328
329 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330 buffer_info->page,
331 buffer_info->page_offset,
332 length);
333
334 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 (page_count(buffer_info->page) != 1))
336 buffer_info->page = NULL;
337 else
338 get_page(buffer_info->page);
339
340 skb->len += length;
341 skb->data_len += length;
342 skb->truesize += PAGE_SIZE / 2;
343 }
344send_up:
345 i++;
346 if (i == rx_ring->count)
347 i = 0;
348 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 prefetch(next_rxd);
350 next_buffer = &rx_ring->buffer_info[i];
351
352 if (!(staterr & E1000_RXD_STAT_EOP)) {
353 buffer_info->skb = next_buffer->skb;
354 buffer_info->dma = next_buffer->dma;
355 next_buffer->skb = skb;
356 next_buffer->dma = 0;
357 goto next_desc;
358 }
359
360 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 dev_kfree_skb_irq(skb);
362 goto next_desc;
363 }
364
365 total_bytes += skb->len;
366 total_packets++;
367
368 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370 skb->protocol = eth_type_trans(skb, netdev);
371
372 igbvf_receive_skb(adapter, netdev, skb, staterr,
373 rx_desc->wb.upper.vlan);
374
375next_desc:
376 rx_desc->wb.upper.status_error = 0;
377
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 cleaned_count = 0;
382 }
383
384 /* use prefetched values */
385 rx_desc = next_rxd;
386 buffer_info = next_buffer;
387
388 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 }
390
391 rx_ring->next_to_clean = i;
392 cleaned_count = igbvf_desc_unused(rx_ring);
393
394 if (cleaned_count)
395 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397 adapter->total_rx_packets += total_packets;
398 adapter->total_rx_bytes += total_bytes;
399 adapter->net_stats.rx_bytes += total_bytes;
400 adapter->net_stats.rx_packets += total_packets;
401 return cleaned;
402}
403
404static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405 struct igbvf_buffer *buffer_info)
406{
407 if (buffer_info->dma) {
408 if (buffer_info->mapped_as_page)
409 dma_unmap_page(&adapter->pdev->dev,
410 buffer_info->dma,
411 buffer_info->length,
412 DMA_TO_DEVICE);
413 else
414 dma_unmap_single(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 buffer_info->dma = 0;
419 }
420 if (buffer_info->skb) {
421 dev_kfree_skb_any(buffer_info->skb);
422 buffer_info->skb = NULL;
423 }
424 buffer_info->time_stamp = 0;
425}
426
427/**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434 struct igbvf_ring *tx_ring)
435{
436 struct pci_dev *pdev = adapter->pdev;
437 int size;
438
439 size = sizeof(struct igbvf_buffer) * tx_ring->count;
440 tx_ring->buffer_info = vzalloc(size);
441 if (!tx_ring->buffer_info)
442 goto err;
443
444 /* round up to nearest 4K */
445 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 &tx_ring->dma, GFP_KERNEL);
450 if (!tx_ring->desc)
451 goto err;
452
453 tx_ring->adapter = adapter;
454 tx_ring->next_to_use = 0;
455 tx_ring->next_to_clean = 0;
456
457 return 0;
458err:
459 vfree(tx_ring->buffer_info);
460 dev_err(&adapter->pdev->dev,
461 "Unable to allocate memory for the transmit descriptor ring\n");
462 return -ENOMEM;
463}
464
465/**
466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467 * @adapter: board private structure
468 *
469 * Returns 0 on success, negative on failure
470 **/
471int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472 struct igbvf_ring *rx_ring)
473{
474 struct pci_dev *pdev = adapter->pdev;
475 int size, desc_len;
476
477 size = sizeof(struct igbvf_buffer) * rx_ring->count;
478 rx_ring->buffer_info = vzalloc(size);
479 if (!rx_ring->buffer_info)
480 goto err;
481
482 desc_len = sizeof(union e1000_adv_rx_desc);
483
484 /* Round up to nearest 4K */
485 rx_ring->size = rx_ring->count * desc_len;
486 rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489 &rx_ring->dma, GFP_KERNEL);
490 if (!rx_ring->desc)
491 goto err;
492
493 rx_ring->next_to_clean = 0;
494 rx_ring->next_to_use = 0;
495
496 rx_ring->adapter = adapter;
497
498 return 0;
499
500err:
501 vfree(rx_ring->buffer_info);
502 rx_ring->buffer_info = NULL;
503 dev_err(&adapter->pdev->dev,
504 "Unable to allocate memory for the receive descriptor ring\n");
505 return -ENOMEM;
506}
507
508/**
509 * igbvf_clean_tx_ring - Free Tx Buffers
510 * @tx_ring: ring to be cleaned
511 **/
512static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513{
514 struct igbvf_adapter *adapter = tx_ring->adapter;
515 struct igbvf_buffer *buffer_info;
516 unsigned long size;
517 unsigned int i;
518
519 if (!tx_ring->buffer_info)
520 return;
521
522 /* Free all the Tx ring sk_buffs */
523 for (i = 0; i < tx_ring->count; i++) {
524 buffer_info = &tx_ring->buffer_info[i];
525 igbvf_put_txbuf(adapter, buffer_info);
526 }
527
528 size = sizeof(struct igbvf_buffer) * tx_ring->count;
529 memset(tx_ring->buffer_info, 0, size);
530
531 /* Zero out the descriptor ring */
532 memset(tx_ring->desc, 0, tx_ring->size);
533
534 tx_ring->next_to_use = 0;
535 tx_ring->next_to_clean = 0;
536
537 writel(0, adapter->hw.hw_addr + tx_ring->head);
538 writel(0, adapter->hw.hw_addr + tx_ring->tail);
539}
540
541/**
542 * igbvf_free_tx_resources - Free Tx Resources per Queue
543 * @tx_ring: ring to free resources from
544 *
545 * Free all transmit software resources
546 **/
547void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548{
549 struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551 igbvf_clean_tx_ring(tx_ring);
552
553 vfree(tx_ring->buffer_info);
554 tx_ring->buffer_info = NULL;
555
556 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557 tx_ring->dma);
558
559 tx_ring->desc = NULL;
560}
561
562/**
563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564 * @adapter: board private structure
565 **/
566static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567{
568 struct igbvf_adapter *adapter = rx_ring->adapter;
569 struct igbvf_buffer *buffer_info;
570 struct pci_dev *pdev = adapter->pdev;
571 unsigned long size;
572 unsigned int i;
573
574 if (!rx_ring->buffer_info)
575 return;
576
577 /* Free all the Rx ring sk_buffs */
578 for (i = 0; i < rx_ring->count; i++) {
579 buffer_info = &rx_ring->buffer_info[i];
580 if (buffer_info->dma) {
581 if (adapter->rx_ps_hdr_size){
582 dma_unmap_single(&pdev->dev, buffer_info->dma,
583 adapter->rx_ps_hdr_size,
584 DMA_FROM_DEVICE);
585 } else {
586 dma_unmap_single(&pdev->dev, buffer_info->dma,
587 adapter->rx_buffer_len,
588 DMA_FROM_DEVICE);
589 }
590 buffer_info->dma = 0;
591 }
592
593 if (buffer_info->skb) {
594 dev_kfree_skb(buffer_info->skb);
595 buffer_info->skb = NULL;
596 }
597
598 if (buffer_info->page) {
599 if (buffer_info->page_dma)
600 dma_unmap_page(&pdev->dev,
601 buffer_info->page_dma,
602 PAGE_SIZE / 2,
603 DMA_FROM_DEVICE);
604 put_page(buffer_info->page);
605 buffer_info->page = NULL;
606 buffer_info->page_dma = 0;
607 buffer_info->page_offset = 0;
608 }
609 }
610
611 size = sizeof(struct igbvf_buffer) * rx_ring->count;
612 memset(rx_ring->buffer_info, 0, size);
613
614 /* Zero out the descriptor ring */
615 memset(rx_ring->desc, 0, rx_ring->size);
616
617 rx_ring->next_to_clean = 0;
618 rx_ring->next_to_use = 0;
619
620 writel(0, adapter->hw.hw_addr + rx_ring->head);
621 writel(0, adapter->hw.hw_addr + rx_ring->tail);
622}
623
624/**
625 * igbvf_free_rx_resources - Free Rx Resources
626 * @rx_ring: ring to clean the resources from
627 *
628 * Free all receive software resources
629 **/
630
631void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632{
633 struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635 igbvf_clean_rx_ring(rx_ring);
636
637 vfree(rx_ring->buffer_info);
638 rx_ring->buffer_info = NULL;
639
640 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641 rx_ring->dma);
642 rx_ring->desc = NULL;
643}
644
645/**
646 * igbvf_update_itr - update the dynamic ITR value based on statistics
647 * @adapter: pointer to adapter
648 * @itr_setting: current adapter->itr
649 * @packets: the number of packets during this measurement interval
650 * @bytes: the number of bytes during this measurement interval
651 *
652 * Stores a new ITR value based on packets and byte
653 * counts during the last interrupt. The advantage of per interrupt
654 * computation is faster updates and more accurate ITR for the current
655 * traffic pattern. Constants in this function were computed
656 * based on theoretical maximum wire speed and thresholds were set based
657 * on testing data as well as attempting to minimize response time
658 * while increasing bulk throughput.
659 **/
660static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661 enum latency_range itr_setting,
662 int packets, int bytes)
663{
664 enum latency_range retval = itr_setting;
665
666 if (packets == 0)
667 goto update_itr_done;
668
669 switch (itr_setting) {
670 case lowest_latency:
671 /* handle TSO and jumbo frames */
672 if (bytes/packets > 8000)
673 retval = bulk_latency;
674 else if ((packets < 5) && (bytes > 512))
675 retval = low_latency;
676 break;
677 case low_latency: /* 50 usec aka 20000 ints/s */
678 if (bytes > 10000) {
679 /* this if handles the TSO accounting */
680 if (bytes/packets > 8000)
681 retval = bulk_latency;
682 else if ((packets < 10) || ((bytes/packets) > 1200))
683 retval = bulk_latency;
684 else if ((packets > 35))
685 retval = lowest_latency;
686 } else if (bytes/packets > 2000) {
687 retval = bulk_latency;
688 } else if (packets <= 2 && bytes < 512) {
689 retval = lowest_latency;
690 }
691 break;
692 case bulk_latency: /* 250 usec aka 4000 ints/s */
693 if (bytes > 25000) {
694 if (packets > 35)
695 retval = low_latency;
696 } else if (bytes < 6000) {
697 retval = low_latency;
698 }
699 break;
700 default:
701 break;
702 }
703
704update_itr_done:
705 return retval;
706}
707
708static int igbvf_range_to_itr(enum latency_range current_range)
709{
710 int new_itr;
711
712 switch (current_range) {
713 /* counts and packets in update_itr are dependent on these numbers */
714 case lowest_latency:
715 new_itr = IGBVF_70K_ITR;
716 break;
717 case low_latency:
718 new_itr = IGBVF_20K_ITR;
719 break;
720 case bulk_latency:
721 new_itr = IGBVF_4K_ITR;
722 break;
723 default:
724 new_itr = IGBVF_START_ITR;
725 break;
726 }
727 return new_itr;
728}
729
730static void igbvf_set_itr(struct igbvf_adapter *adapter)
731{
732 u32 new_itr;
733
734 adapter->tx_ring->itr_range =
735 igbvf_update_itr(adapter,
736 adapter->tx_ring->itr_val,
737 adapter->total_tx_packets,
738 adapter->total_tx_bytes);
739
740 /* conservative mode (itr 3) eliminates the lowest_latency setting */
741 if (adapter->requested_itr == 3 &&
742 adapter->tx_ring->itr_range == lowest_latency)
743 adapter->tx_ring->itr_range = low_latency;
744
745 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748 if (new_itr != adapter->tx_ring->itr_val) {
749 u32 current_itr = adapter->tx_ring->itr_val;
750 /*
751 * this attempts to bias the interrupt rate towards Bulk
752 * by adding intermediate steps when interrupt rate is
753 * increasing
754 */
755 new_itr = new_itr > current_itr ?
756 min(current_itr + (new_itr >> 2), new_itr) :
757 new_itr;
758 adapter->tx_ring->itr_val = new_itr;
759
760 adapter->tx_ring->set_itr = 1;
761 }
762
763 adapter->rx_ring->itr_range =
764 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765 adapter->total_rx_packets,
766 adapter->total_rx_bytes);
767 if (adapter->requested_itr == 3 &&
768 adapter->rx_ring->itr_range == lowest_latency)
769 adapter->rx_ring->itr_range = low_latency;
770
771 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773 if (new_itr != adapter->rx_ring->itr_val) {
774 u32 current_itr = adapter->rx_ring->itr_val;
775 new_itr = new_itr > current_itr ?
776 min(current_itr + (new_itr >> 2), new_itr) :
777 new_itr;
778 adapter->rx_ring->itr_val = new_itr;
779
780 adapter->rx_ring->set_itr = 1;
781 }
782}
783
784/**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791{
792 struct igbvf_adapter *adapter = tx_ring->adapter;
793 struct net_device *netdev = adapter->netdev;
794 struct igbvf_buffer *buffer_info;
795 struct sk_buff *skb;
796 union e1000_adv_tx_desc *tx_desc, *eop_desc;
797 unsigned int total_bytes = 0, total_packets = 0;
798 unsigned int i, count = 0;
799 bool cleaned = false;
800
801 i = tx_ring->next_to_clean;
802 buffer_info = &tx_ring->buffer_info[i];
803 eop_desc = buffer_info->next_to_watch;
804
805 do {
806 /* if next_to_watch is not set then there is no work pending */
807 if (!eop_desc)
808 break;
809
810 /* prevent any other reads prior to eop_desc */
811 read_barrier_depends();
812
813 /* if DD is not set pending work has not been completed */
814 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815 break;
816
817 /* clear next_to_watch to prevent false hangs */
818 buffer_info->next_to_watch = NULL;
819
820 for (cleaned = false; !cleaned; count++) {
821 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822 cleaned = (tx_desc == eop_desc);
823 skb = buffer_info->skb;
824
825 if (skb) {
826 unsigned int segs, bytecount;
827
828 /* gso_segs is currently only valid for tcp */
829 segs = skb_shinfo(skb)->gso_segs ?: 1;
830 /* multiply data chunks by size of headers */
831 bytecount = ((segs - 1) * skb_headlen(skb)) +
832 skb->len;
833 total_packets += segs;
834 total_bytes += bytecount;
835 }
836
837 igbvf_put_txbuf(adapter, buffer_info);
838 tx_desc->wb.status = 0;
839
840 i++;
841 if (i == tx_ring->count)
842 i = 0;
843
844 buffer_info = &tx_ring->buffer_info[i];
845 }
846
847 eop_desc = buffer_info->next_to_watch;
848 } while (count < tx_ring->count);
849
850 tx_ring->next_to_clean = i;
851
852 if (unlikely(count &&
853 netif_carrier_ok(netdev) &&
854 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855 /* Make sure that anybody stopping the queue after this
856 * sees the new next_to_clean.
857 */
858 smp_mb();
859 if (netif_queue_stopped(netdev) &&
860 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861 netif_wake_queue(netdev);
862 ++adapter->restart_queue;
863 }
864 }
865
866 adapter->net_stats.tx_bytes += total_bytes;
867 adapter->net_stats.tx_packets += total_packets;
868 return count < tx_ring->count;
869}
870
871static irqreturn_t igbvf_msix_other(int irq, void *data)
872{
873 struct net_device *netdev = data;
874 struct igbvf_adapter *adapter = netdev_priv(netdev);
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->int_counter1++;
878
879 netif_carrier_off(netdev);
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887}
888
889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890{
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
905 /* auto mask will automatically reenable the interrupt when we write
906 * EICS */
907 if (!igbvf_clean_tx_irq(tx_ring))
908 /* Ring was not completely cleaned, so fire another interrupt */
909 ew32(EICS, tx_ring->eims_value);
910 else
911 ew32(EIMS, tx_ring->eims_value);
912
913 return IRQ_HANDLED;
914}
915
916static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917{
918 struct net_device *netdev = data;
919 struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921 adapter->int_counter0++;
922
923 /* Write the ITR value calculated at the end of the
924 * previous interrupt.
925 */
926 if (adapter->rx_ring->set_itr) {
927 writel(adapter->rx_ring->itr_val,
928 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929 adapter->rx_ring->set_itr = 0;
930 }
931
932 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933 adapter->total_rx_bytes = 0;
934 adapter->total_rx_packets = 0;
935 __napi_schedule(&adapter->rx_ring->napi);
936 }
937
938 return IRQ_HANDLED;
939}
940
941#define IGBVF_NO_QUEUE -1
942
943static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944 int tx_queue, int msix_vector)
945{
946 struct e1000_hw *hw = &adapter->hw;
947 u32 ivar, index;
948
949 /* 82576 uses a table-based method for assigning vectors.
950 Each queue has a single entry in the table to which we write
951 a vector number along with a "valid" bit. Sadly, the layout
952 of the table is somewhat counterintuitive. */
953 if (rx_queue > IGBVF_NO_QUEUE) {
954 index = (rx_queue >> 1);
955 ivar = array_er32(IVAR0, index);
956 if (rx_queue & 0x1) {
957 /* vector goes into third byte of register */
958 ivar = ivar & 0xFF00FFFF;
959 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960 } else {
961 /* vector goes into low byte of register */
962 ivar = ivar & 0xFFFFFF00;
963 ivar |= msix_vector | E1000_IVAR_VALID;
964 }
965 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966 array_ew32(IVAR0, index, ivar);
967 }
968 if (tx_queue > IGBVF_NO_QUEUE) {
969 index = (tx_queue >> 1);
970 ivar = array_er32(IVAR0, index);
971 if (tx_queue & 0x1) {
972 /* vector goes into high byte of register */
973 ivar = ivar & 0x00FFFFFF;
974 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975 } else {
976 /* vector goes into second byte of register */
977 ivar = ivar & 0xFFFF00FF;
978 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979 }
980 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981 array_ew32(IVAR0, index, ivar);
982 }
983}
984
985/**
986 * igbvf_configure_msix - Configure MSI-X hardware
987 *
988 * igbvf_configure_msix sets up the hardware to properly
989 * generate MSI-X interrupts.
990 **/
991static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992{
993 u32 tmp;
994 struct e1000_hw *hw = &adapter->hw;
995 struct igbvf_ring *tx_ring = adapter->tx_ring;
996 struct igbvf_ring *rx_ring = adapter->rx_ring;
997 int vector = 0;
998
999 adapter->eims_enable_mask = 0;
1000
1001 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002 adapter->eims_enable_mask |= tx_ring->eims_value;
1003 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005 adapter->eims_enable_mask |= rx_ring->eims_value;
1006 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008 /* set vector for other causes, i.e. link changes */
1009
1010 tmp = (vector++ | E1000_IVAR_VALID);
1011
1012 ew32(IVAR_MISC, tmp);
1013
1014 adapter->eims_enable_mask = (1 << (vector)) - 1;
1015 adapter->eims_other = 1 << (vector - 1);
1016 e1e_flush();
1017}
1018
1019static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 if (adapter->msix_entries) {
1022 pci_disable_msix(adapter->pdev);
1023 kfree(adapter->msix_entries);
1024 adapter->msix_entries = NULL;
1025 }
1026}
1027
1028/**
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030 *
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1033 **/
1034static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035{
1036 int err = -ENOMEM;
1037 int i;
1038
1039 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041 GFP_KERNEL);
1042 if (adapter->msix_entries) {
1043 for (i = 0; i < 3; i++)
1044 adapter->msix_entries[i].entry = i;
1045
1046 err = pci_enable_msix_range(adapter->pdev,
1047 adapter->msix_entries, 3, 3);
1048 }
1049
1050 if (err < 0) {
1051 /* MSI-X failed */
1052 dev_err(&adapter->pdev->dev,
1053 "Failed to initialize MSI-X interrupts.\n");
1054 igbvf_reset_interrupt_capability(adapter);
1055 }
1056}
1057
1058/**
1059 * igbvf_request_msix - Initialize MSI-X interrupts
1060 *
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062 * kernel.
1063 **/
1064static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065{
1066 struct net_device *netdev = adapter->netdev;
1067 int err = 0, vector = 0;
1068
1069 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072 } else {
1073 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075 }
1076
1077 err = request_irq(adapter->msix_entries[vector].vector,
1078 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079 netdev);
1080 if (err)
1081 goto out;
1082
1083 adapter->tx_ring->itr_register = E1000_EITR(vector);
1084 adapter->tx_ring->itr_val = adapter->current_itr;
1085 vector++;
1086
1087 err = request_irq(adapter->msix_entries[vector].vector,
1088 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089 netdev);
1090 if (err)
1091 goto out;
1092
1093 adapter->rx_ring->itr_register = E1000_EITR(vector);
1094 adapter->rx_ring->itr_val = adapter->current_itr;
1095 vector++;
1096
1097 err = request_irq(adapter->msix_entries[vector].vector,
1098 igbvf_msix_other, 0, netdev->name, netdev);
1099 if (err)
1100 goto out;
1101
1102 igbvf_configure_msix(adapter);
1103 return 0;
1104out:
1105 return err;
1106}
1107
1108/**
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1111 **/
1112static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113{
1114 struct net_device *netdev = adapter->netdev;
1115
1116 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117 if (!adapter->tx_ring)
1118 return -ENOMEM;
1119
1120 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121 if (!adapter->rx_ring) {
1122 kfree(adapter->tx_ring);
1123 return -ENOMEM;
1124 }
1125
1126 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128 return 0;
1129}
1130
1131/**
1132 * igbvf_request_irq - initialize interrupts
1133 *
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1136 **/
1137static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138{
1139 int err = -1;
1140
1141 /* igbvf supports msi-x only */
1142 if (adapter->msix_entries)
1143 err = igbvf_request_msix(adapter);
1144
1145 if (!err)
1146 return err;
1147
1148 dev_err(&adapter->pdev->dev,
1149 "Unable to allocate interrupt, Error: %d\n", err);
1150
1151 return err;
1152}
1153
1154static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155{
1156 struct net_device *netdev = adapter->netdev;
1157 int vector;
1158
1159 if (adapter->msix_entries) {
1160 for (vector = 0; vector < 3; vector++)
1161 free_irq(adapter->msix_entries[vector].vector, netdev);
1162 }
1163}
1164
1165/**
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167 **/
1168static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169{
1170 struct e1000_hw *hw = &adapter->hw;
1171
1172 ew32(EIMC, ~0);
1173
1174 if (adapter->msix_entries)
1175 ew32(EIAC, 0);
1176}
1177
1178/**
1179 * igbvf_irq_enable - Enable default interrupt generation settings
1180 **/
1181static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182{
1183 struct e1000_hw *hw = &adapter->hw;
1184
1185 ew32(EIAC, adapter->eims_enable_mask);
1186 ew32(EIAM, adapter->eims_enable_mask);
1187 ew32(EIMS, adapter->eims_enable_mask);
1188}
1189
1190/**
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1194 **/
1195static int igbvf_poll(struct napi_struct *napi, int budget)
1196{
1197 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198 struct igbvf_adapter *adapter = rx_ring->adapter;
1199 struct e1000_hw *hw = &adapter->hw;
1200 int work_done = 0;
1201
1202 igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204 /* If not enough Rx work done, exit the polling mode */
1205 if (work_done < budget) {
1206 napi_complete(napi);
1207
1208 if (adapter->requested_itr & 3)
1209 igbvf_set_itr(adapter);
1210
1211 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212 ew32(EIMS, adapter->rx_ring->eims_value);
1213 }
1214
1215 return work_done;
1216}
1217
1218/**
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1221 *
1222 * Configure the maximum size of packets that will be received
1223 */
1224static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225{
1226 int max_frame_size;
1227 struct e1000_hw *hw = &adapter->hw;
1228
1229 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230 e1000_rlpml_set_vf(hw, max_frame_size);
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1235{
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1238
1239 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1241 return -EINVAL;
1242 }
1243 set_bit(vid, adapter->active_vlans);
1244 return 0;
1245}
1246
1247static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248 __be16 proto, u16 vid)
1249{
1250 struct igbvf_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252
1253 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254 dev_err(&adapter->pdev->dev,
1255 "Failed to remove vlan id %d\n", vid);
1256 return -EINVAL;
1257 }
1258 clear_bit(vid, adapter->active_vlans);
1259 return 0;
1260}
1261
1262static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263{
1264 u16 vid;
1265
1266 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268}
1269
1270/**
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1273 *
1274 * Configure the Tx unit of the MAC after a reset.
1275 **/
1276static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277{
1278 struct e1000_hw *hw = &adapter->hw;
1279 struct igbvf_ring *tx_ring = adapter->tx_ring;
1280 u64 tdba;
1281 u32 txdctl, dca_txctrl;
1282
1283 /* disable transmits */
1284 txdctl = er32(TXDCTL(0));
1285 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286 e1e_flush();
1287 msleep(10);
1288
1289 /* Setup the HW Tx Head and Tail descriptor pointers */
1290 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291 tdba = tx_ring->dma;
1292 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293 ew32(TDBAH(0), (tdba >> 32));
1294 ew32(TDH(0), 0);
1295 ew32(TDT(0), 0);
1296 tx_ring->head = E1000_TDH(0);
1297 tx_ring->tail = E1000_TDT(0);
1298
1299 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1300 * MUST be delivered in order or it will completely screw up
1301 * our bookeeping.
1302 */
1303 dca_txctrl = er32(DCA_TXCTRL(0));
1304 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305 ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307 /* enable transmits */
1308 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309 ew32(TXDCTL(0), txdctl);
1310
1311 /* Setup Transmit Descriptor Settings for eop descriptor */
1312 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314 /* enable Report Status bit */
1315 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316}
1317
1318/**
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1321 **/
1322static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 srrctl = 0;
1326
1327 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328 E1000_SRRCTL_BSIZEHDR_MASK |
1329 E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331 /* Enable queue drop to avoid head of line blocking */
1332 srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334 /* Setup buffer sizes */
1335 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336 E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338 if (adapter->rx_buffer_len < 2048) {
1339 adapter->rx_ps_hdr_size = 0;
1340 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341 } else {
1342 adapter->rx_ps_hdr_size = 128;
1343 srrctl |= adapter->rx_ps_hdr_size <<
1344 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346 }
1347
1348 ew32(SRRCTL(0), srrctl);
1349}
1350
1351/**
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1354 *
1355 * Configure the Rx unit of the MAC after a reset.
1356 **/
1357static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358{
1359 struct e1000_hw *hw = &adapter->hw;
1360 struct igbvf_ring *rx_ring = adapter->rx_ring;
1361 u64 rdba;
1362 u32 rdlen, rxdctl;
1363
1364 /* disable receives */
1365 rxdctl = er32(RXDCTL(0));
1366 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367 e1e_flush();
1368 msleep(10);
1369
1370 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372 /*
1373 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374 * the Base and Length of the Rx Descriptor Ring
1375 */
1376 rdba = rx_ring->dma;
1377 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378 ew32(RDBAH(0), (rdba >> 32));
1379 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380 rx_ring->head = E1000_RDH(0);
1381 rx_ring->tail = E1000_RDT(0);
1382 ew32(RDH(0), 0);
1383 ew32(RDT(0), 0);
1384
1385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386 rxdctl &= 0xFFF00000;
1387 rxdctl |= IGBVF_RX_PTHRESH;
1388 rxdctl |= IGBVF_RX_HTHRESH << 8;
1389 rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391 igbvf_set_rlpml(adapter);
1392
1393 /* enable receives */
1394 ew32(RXDCTL(0), rxdctl);
1395}
1396
1397/**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated. This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406static void igbvf_set_multi(struct net_device *netdev)
1407{
1408 struct igbvf_adapter *adapter = netdev_priv(netdev);
1409 struct e1000_hw *hw = &adapter->hw;
1410 struct netdev_hw_addr *ha;
1411 u8 *mta_list = NULL;
1412 int i;
1413
1414 if (!netdev_mc_empty(netdev)) {
1415 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416 GFP_ATOMIC);
1417 if (!mta_list)
1418 return;
1419 }
1420
1421 /* prepare a packed array of only addresses. */
1422 i = 0;
1423 netdev_for_each_mc_addr(ha, netdev)
1424 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427 kfree(mta_list);
1428}
1429
1430/**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434static void igbvf_configure(struct igbvf_adapter *adapter)
1435{
1436 igbvf_set_multi(adapter->netdev);
1437
1438 igbvf_restore_vlan(adapter);
1439
1440 igbvf_configure_tx(adapter);
1441 igbvf_setup_srrctl(adapter);
1442 igbvf_configure_rx(adapter);
1443 igbvf_alloc_rx_buffers(adapter->rx_ring,
1444 igbvf_desc_unused(adapter->rx_ring));
1445}
1446
1447/* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454static void igbvf_reset(struct igbvf_adapter *adapter)
1455{
1456 struct e1000_mac_info *mac = &adapter->hw.mac;
1457 struct net_device *netdev = adapter->netdev;
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Allow time for pending master requests to run */
1461 if (mac->ops.reset_hw(hw))
1462 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464 mac->ops.init_hw(hw);
1465
1466 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470 netdev->addr_len);
1471 }
1472
1473 adapter->last_reset = jiffies;
1474}
1475
1476int igbvf_up(struct igbvf_adapter *adapter)
1477{
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* hardware has been reset, we need to reload some things */
1481 igbvf_configure(adapter);
1482
1483 clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485 napi_enable(&adapter->rx_ring->napi);
1486 if (adapter->msix_entries)
1487 igbvf_configure_msix(adapter);
1488
1489 /* Clear any pending interrupts. */
1490 er32(EICR);
1491 igbvf_irq_enable(adapter);
1492
1493 /* start the watchdog */
1494 hw->mac.get_link_status = 1;
1495 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498 return 0;
1499}
1500
1501void igbvf_down(struct igbvf_adapter *adapter)
1502{
1503 struct net_device *netdev = adapter->netdev;
1504 struct e1000_hw *hw = &adapter->hw;
1505 u32 rxdctl, txdctl;
1506
1507 /*
1508 * signal that we're down so the interrupt handler does not
1509 * reschedule our watchdog timer
1510 */
1511 set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513 /* disable receives in the hardware */
1514 rxdctl = er32(RXDCTL(0));
1515 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517 netif_stop_queue(netdev);
1518
1519 /* disable transmits in the hardware */
1520 txdctl = er32(TXDCTL(0));
1521 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523 /* flush both disables and wait for them to finish */
1524 e1e_flush();
1525 msleep(10);
1526
1527 napi_disable(&adapter->rx_ring->napi);
1528
1529 igbvf_irq_disable(adapter);
1530
1531 del_timer_sync(&adapter->watchdog_timer);
1532
1533 netif_carrier_off(netdev);
1534
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter);
1537
1538 adapter->link_speed = 0;
1539 adapter->link_duplex = 0;
1540
1541 igbvf_reset(adapter);
1542 igbvf_clean_tx_ring(adapter->tx_ring);
1543 igbvf_clean_rx_ring(adapter->rx_ring);
1544}
1545
1546void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547{
1548 might_sleep();
1549 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550 msleep(1);
1551 igbvf_down(adapter);
1552 igbvf_up(adapter);
1553 clear_bit(__IGBVF_RESETTING, &adapter->state);
1554}
1555
1556/**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565{
1566 struct net_device *netdev = adapter->netdev;
1567 s32 rc;
1568
1569 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570 adapter->rx_ps_hdr_size = 0;
1571 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574 adapter->tx_int_delay = 8;
1575 adapter->tx_abs_int_delay = 32;
1576 adapter->rx_int_delay = 0;
1577 adapter->rx_abs_int_delay = 8;
1578 adapter->requested_itr = 3;
1579 adapter->current_itr = IGBVF_START_ITR;
1580
1581 /* Set various function pointers */
1582 adapter->ei->init_ops(&adapter->hw);
1583
1584 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585 if (rc)
1586 return rc;
1587
1588 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589 if (rc)
1590 return rc;
1591
1592 igbvf_set_interrupt_capability(adapter);
1593
1594 if (igbvf_alloc_queues(adapter))
1595 return -ENOMEM;
1596
1597 spin_lock_init(&adapter->tx_queue_lock);
1598
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter);
1601
1602 spin_lock_init(&adapter->stats_lock);
1603
1604 set_bit(__IGBVF_DOWN, &adapter->state);
1605 return 0;
1606}
1607
1608static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609{
1610 struct e1000_hw *hw = &adapter->hw;
1611
1612 adapter->stats.last_gprc = er32(VFGPRC);
1613 adapter->stats.last_gorc = er32(VFGORC);
1614 adapter->stats.last_gptc = er32(VFGPTC);
1615 adapter->stats.last_gotc = er32(VFGOTC);
1616 adapter->stats.last_mprc = er32(VFMPRC);
1617 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619 adapter->stats.last_gorlbc = er32(VFGORLBC);
1620 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622 adapter->stats.base_gprc = er32(VFGPRC);
1623 adapter->stats.base_gorc = er32(VFGORC);
1624 adapter->stats.base_gptc = er32(VFGPTC);
1625 adapter->stats.base_gotc = er32(VFGOTC);
1626 adapter->stats.base_mprc = er32(VFMPRC);
1627 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629 adapter->stats.base_gorlbc = er32(VFGORLBC);
1630 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631}
1632
1633/**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645static int igbvf_open(struct net_device *netdev)
1646{
1647 struct igbvf_adapter *adapter = netdev_priv(netdev);
1648 struct e1000_hw *hw = &adapter->hw;
1649 int err;
1650
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING, &adapter->state))
1653 return -EBUSY;
1654
1655 /* allocate transmit descriptors */
1656 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657 if (err)
1658 goto err_setup_tx;
1659
1660 /* allocate receive descriptors */
1661 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662 if (err)
1663 goto err_setup_rx;
1664
1665 /*
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1670 */
1671 igbvf_configure(adapter);
1672
1673 err = igbvf_request_irq(adapter);
1674 if (err)
1675 goto err_req_irq;
1676
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680 napi_enable(&adapter->rx_ring->napi);
1681
1682 /* clear any pending interrupts */
1683 er32(EICR);
1684
1685 igbvf_irq_enable(adapter);
1686
1687 /* start the watchdog */
1688 hw->mac.get_link_status = 1;
1689 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691 return 0;
1692
1693err_req_irq:
1694 igbvf_free_rx_resources(adapter->rx_ring);
1695err_setup_rx:
1696 igbvf_free_tx_resources(adapter->tx_ring);
1697err_setup_tx:
1698 igbvf_reset(adapter);
1699
1700 return err;
1701}
1702
1703/**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714static int igbvf_close(struct net_device *netdev)
1715{
1716 struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719 igbvf_down(adapter);
1720
1721 igbvf_free_irq(adapter);
1722
1723 igbvf_free_tx_resources(adapter->tx_ring);
1724 igbvf_free_rx_resources(adapter->rx_ring);
1725
1726 return 0;
1727}
1728/**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735static int igbvf_set_mac(struct net_device *netdev, void *p)
1736{
1737 struct igbvf_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 struct sockaddr *addr = p;
1740
1741 if (!is_valid_ether_addr(addr->sa_data))
1742 return -EADDRNOTAVAIL;
1743
1744 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749 return -EADDRNOTAVAIL;
1750
1751 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753 return 0;
1754}
1755
1756#define UPDATE_VF_COUNTER(reg, name) \
1757 { \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1764 }
1765
1766/**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769**/
1770void igbvf_update_stats(struct igbvf_adapter *adapter)
1771{
1772 struct e1000_hw *hw = &adapter->hw;
1773 struct pci_dev *pdev = adapter->pdev;
1774
1775 /*
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1778 */
1779 if (adapter->link_speed == 0)
1780 return;
1781
1782 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783 return;
1784
1785 if (pci_channel_offline(pdev))
1786 return;
1787
1788 UPDATE_VF_COUNTER(VFGPRC, gprc);
1789 UPDATE_VF_COUNTER(VFGORC, gorc);
1790 UPDATE_VF_COUNTER(VFGPTC, gptc);
1791 UPDATE_VF_COUNTER(VFGOTC, gotc);
1792 UPDATE_VF_COUNTER(VFMPRC, mprc);
1793 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798 /* Fill out the OS statistics structure */
1799 adapter->net_stats.multicast = adapter->stats.mprc;
1800}
1801
1802static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803{
1804 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805 adapter->link_speed,
1806 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807}
1808
1809static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810{
1811 struct e1000_hw *hw = &adapter->hw;
1812 s32 ret_val = E1000_SUCCESS;
1813 bool link_active;
1814
1815 /* If interface is down, stay link down */
1816 if (test_bit(__IGBVF_DOWN, &adapter->state))
1817 return false;
1818
1819 ret_val = hw->mac.ops.check_for_link(hw);
1820 link_active = !hw->mac.get_link_status;
1821
1822 /* if check for link returns error we will need to reset */
1823 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824 schedule_work(&adapter->reset_task);
1825
1826 return link_active;
1827}
1828
1829/**
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1832 **/
1833static void igbvf_watchdog(unsigned long data)
1834{
1835 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837 /* Do the rest outside of interrupt context */
1838 schedule_work(&adapter->watchdog_task);
1839}
1840
1841static void igbvf_watchdog_task(struct work_struct *work)
1842{
1843 struct igbvf_adapter *adapter = container_of(work,
1844 struct igbvf_adapter,
1845 watchdog_task);
1846 struct net_device *netdev = adapter->netdev;
1847 struct e1000_mac_info *mac = &adapter->hw.mac;
1848 struct igbvf_ring *tx_ring = adapter->tx_ring;
1849 struct e1000_hw *hw = &adapter->hw;
1850 u32 link;
1851 int tx_pending = 0;
1852
1853 link = igbvf_has_link(adapter);
1854
1855 if (link) {
1856 if (!netif_carrier_ok(netdev)) {
1857 mac->ops.get_link_up_info(&adapter->hw,
1858 &adapter->link_speed,
1859 &adapter->link_duplex);
1860 igbvf_print_link_info(adapter);
1861
1862 netif_carrier_on(netdev);
1863 netif_wake_queue(netdev);
1864 }
1865 } else {
1866 if (netif_carrier_ok(netdev)) {
1867 adapter->link_speed = 0;
1868 adapter->link_duplex = 0;
1869 dev_info(&adapter->pdev->dev, "Link is Down\n");
1870 netif_carrier_off(netdev);
1871 netif_stop_queue(netdev);
1872 }
1873 }
1874
1875 if (netif_carrier_ok(netdev)) {
1876 igbvf_update_stats(adapter);
1877 } else {
1878 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879 tx_ring->count);
1880 if (tx_pending) {
1881 /*
1882 * We've lost link, so the controller stops DMA,
1883 * but we've got queued Tx work that's never going
1884 * to get done, so reset controller to flush Tx.
1885 * (Do the reset outside of interrupt context).
1886 */
1887 adapter->tx_timeout_count++;
1888 schedule_work(&adapter->reset_task);
1889 }
1890 }
1891
1892 /* Cause software interrupt to ensure Rx ring is cleaned */
1893 ew32(EICS, adapter->rx_ring->eims_value);
1894
1895 /* Reset the timer */
1896 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897 mod_timer(&adapter->watchdog_timer,
1898 round_jiffies(jiffies + (2 * HZ)));
1899}
1900
1901#define IGBVF_TX_FLAGS_CSUM 0x00000001
1902#define IGBVF_TX_FLAGS_VLAN 0x00000002
1903#define IGBVF_TX_FLAGS_TSO 0x00000004
1904#define IGBVF_TX_FLAGS_IPV4 0x00000008
1905#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1906#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1907
1908static int igbvf_tso(struct igbvf_adapter *adapter,
1909 struct igbvf_ring *tx_ring,
1910 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1911{
1912 struct e1000_adv_tx_context_desc *context_desc;
1913 struct igbvf_buffer *buffer_info;
1914 u32 info = 0, tu_cmd = 0;
1915 u32 mss_l4len_idx, l4len;
1916 unsigned int i;
1917 int err;
1918
1919 *hdr_len = 0;
1920
1921 err = skb_cow_head(skb, 0);
1922 if (err < 0) {
1923 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1924 return err;
1925 }
1926
1927 l4len = tcp_hdrlen(skb);
1928 *hdr_len += l4len;
1929
1930 if (skb->protocol == htons(ETH_P_IP)) {
1931 struct iphdr *iph = ip_hdr(skb);
1932 iph->tot_len = 0;
1933 iph->check = 0;
1934 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935 iph->daddr, 0,
1936 IPPROTO_TCP,
1937 0);
1938 } else if (skb_is_gso_v6(skb)) {
1939 ipv6_hdr(skb)->payload_len = 0;
1940 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941 &ipv6_hdr(skb)->daddr,
1942 0, IPPROTO_TCP, 0);
1943 }
1944
1945 i = tx_ring->next_to_use;
1946
1947 buffer_info = &tx_ring->buffer_info[i];
1948 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949 /* VLAN MACLEN IPLEN */
1950 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953 *hdr_len += skb_network_offset(skb);
1954 info |= (skb_transport_header(skb) - skb_network_header(skb));
1955 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956 context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961 if (skb->protocol == htons(ETH_P_IP))
1962 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1966
1967 /* MSS L4LEN IDX */
1968 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972 context_desc->seqnum_seed = 0;
1973
1974 buffer_info->time_stamp = jiffies;
1975 buffer_info->dma = 0;
1976 i++;
1977 if (i == tx_ring->count)
1978 i = 0;
1979
1980 tx_ring->next_to_use = i;
1981
1982 return true;
1983}
1984
1985static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986 struct igbvf_ring *tx_ring,
1987 struct sk_buff *skb, u32 tx_flags)
1988{
1989 struct e1000_adv_tx_context_desc *context_desc;
1990 unsigned int i;
1991 struct igbvf_buffer *buffer_info;
1992 u32 info = 0, tu_cmd = 0;
1993
1994 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996 i = tx_ring->next_to_use;
1997 buffer_info = &tx_ring->buffer_info[i];
1998 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004 if (skb->ip_summed == CHECKSUM_PARTIAL)
2005 info |= (skb_transport_header(skb) -
2006 skb_network_header(skb));
2007
2008
2009 context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014 switch (skb->protocol) {
2015 case htons(ETH_P_IP):
2016 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019 break;
2020 case htons(ETH_P_IPV6):
2021 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023 break;
2024 default:
2025 break;
2026 }
2027 }
2028
2029 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030 context_desc->seqnum_seed = 0;
2031 context_desc->mss_l4len_idx = 0;
2032
2033 buffer_info->time_stamp = jiffies;
2034 buffer_info->dma = 0;
2035 i++;
2036 if (i == tx_ring->count)
2037 i = 0;
2038 tx_ring->next_to_use = i;
2039
2040 return true;
2041 }
2042
2043 return false;
2044}
2045
2046static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047{
2048 struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050 /* there is enough descriptors then we don't need to worry */
2051 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052 return 0;
2053
2054 netif_stop_queue(netdev);
2055
2056 smp_mb();
2057
2058 /* We need to check again just in case room has been made available */
2059 if (igbvf_desc_unused(adapter->tx_ring) < size)
2060 return -EBUSY;
2061
2062 netif_wake_queue(netdev);
2063
2064 ++adapter->restart_queue;
2065 return 0;
2066}
2067
2068#define IGBVF_MAX_TXD_PWR 16
2069#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2070
2071static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072 struct igbvf_ring *tx_ring,
2073 struct sk_buff *skb)
2074{
2075 struct igbvf_buffer *buffer_info;
2076 struct pci_dev *pdev = adapter->pdev;
2077 unsigned int len = skb_headlen(skb);
2078 unsigned int count = 0, i;
2079 unsigned int f;
2080
2081 i = tx_ring->next_to_use;
2082
2083 buffer_info = &tx_ring->buffer_info[i];
2084 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085 buffer_info->length = len;
2086 /* set time_stamp *before* dma to help avoid a possible race */
2087 buffer_info->time_stamp = jiffies;
2088 buffer_info->mapped_as_page = false;
2089 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090 DMA_TO_DEVICE);
2091 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092 goto dma_error;
2093
2094
2095 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096 const struct skb_frag_struct *frag;
2097
2098 count++;
2099 i++;
2100 if (i == tx_ring->count)
2101 i = 0;
2102
2103 frag = &skb_shinfo(skb)->frags[f];
2104 len = skb_frag_size(frag);
2105
2106 buffer_info = &tx_ring->buffer_info[i];
2107 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108 buffer_info->length = len;
2109 buffer_info->time_stamp = jiffies;
2110 buffer_info->mapped_as_page = true;
2111 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112 DMA_TO_DEVICE);
2113 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114 goto dma_error;
2115 }
2116
2117 tx_ring->buffer_info[i].skb = skb;
2118
2119 return ++count;
2120
2121dma_error:
2122 dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124 /* clear timestamp and dma mappings for failed buffer_info mapping */
2125 buffer_info->dma = 0;
2126 buffer_info->time_stamp = 0;
2127 buffer_info->length = 0;
2128 buffer_info->mapped_as_page = false;
2129 if (count)
2130 count--;
2131
2132 /* clear timestamp and dma mappings for remaining portion of packet */
2133 while (count--) {
2134 if (i==0)
2135 i += tx_ring->count;
2136 i--;
2137 buffer_info = &tx_ring->buffer_info[i];
2138 igbvf_put_txbuf(adapter, buffer_info);
2139 }
2140
2141 return 0;
2142}
2143
2144static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 int tx_flags, int count,
2147 unsigned int first, u32 paylen,
2148 u8 hdr_len)
2149{
2150 union e1000_adv_tx_desc *tx_desc = NULL;
2151 struct igbvf_buffer *buffer_info;
2152 u32 olinfo_status = 0, cmd_type_len;
2153 unsigned int i;
2154
2155 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156 E1000_ADVTXD_DCMD_DEXT);
2157
2158 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164 /* insert tcp checksum */
2165 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167 /* insert ip checksum */
2168 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173 }
2174
2175 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177 i = tx_ring->next_to_use;
2178 while (count--) {
2179 buffer_info = &tx_ring->buffer_info[i];
2180 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182 tx_desc->read.cmd_type_len =
2183 cpu_to_le32(cmd_type_len | buffer_info->length);
2184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185 i++;
2186 if (i == tx_ring->count)
2187 i = 0;
2188 }
2189
2190 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191 /* Force memory writes to complete before letting h/w
2192 * know there are new descriptors to fetch. (Only
2193 * applicable for weak-ordered memory model archs,
2194 * such as IA-64). */
2195 wmb();
2196
2197 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198 tx_ring->next_to_use = i;
2199 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200 /* we need this if more than one processor can write to our tail
2201 * at a time, it syncronizes IO on IA64/Altix systems */
2202 mmiowb();
2203}
2204
2205static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206 struct net_device *netdev,
2207 struct igbvf_ring *tx_ring)
2208{
2209 struct igbvf_adapter *adapter = netdev_priv(netdev);
2210 unsigned int first, tx_flags = 0;
2211 u8 hdr_len = 0;
2212 int count = 0;
2213 int tso = 0;
2214
2215 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216 dev_kfree_skb_any(skb);
2217 return NETDEV_TX_OK;
2218 }
2219
2220 if (skb->len <= 0) {
2221 dev_kfree_skb_any(skb);
2222 return NETDEV_TX_OK;
2223 }
2224
2225 /*
2226 * need: count + 4 desc gap to keep tail from touching
2227 * + 2 desc gap to keep tail from touching head,
2228 * + 1 desc for skb->data,
2229 * + 1 desc for context descriptor,
2230 * head, otherwise try next time
2231 */
2232 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233 /* this is a hard error */
2234 return NETDEV_TX_BUSY;
2235 }
2236
2237 if (vlan_tx_tag_present(skb)) {
2238 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2240 }
2241
2242 if (skb->protocol == htons(ETH_P_IP))
2243 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2244
2245 first = tx_ring->next_to_use;
2246
2247 tso = skb_is_gso(skb) ?
2248 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2249 if (unlikely(tso < 0)) {
2250 dev_kfree_skb_any(skb);
2251 return NETDEV_TX_OK;
2252 }
2253
2254 if (tso)
2255 tx_flags |= IGBVF_TX_FLAGS_TSO;
2256 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2257 (skb->ip_summed == CHECKSUM_PARTIAL))
2258 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2259
2260 /*
2261 * count reflects descriptors mapped, if 0 then mapping error
2262 * has occurred and we need to rewind the descriptor queue
2263 */
2264 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2265
2266 if (count) {
2267 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2268 first, skb->len, hdr_len);
2269 /* Make sure there is space in the ring for the next send. */
2270 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271 } else {
2272 dev_kfree_skb_any(skb);
2273 tx_ring->buffer_info[first].time_stamp = 0;
2274 tx_ring->next_to_use = first;
2275 }
2276
2277 return NETDEV_TX_OK;
2278}
2279
2280static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2281 struct net_device *netdev)
2282{
2283 struct igbvf_adapter *adapter = netdev_priv(netdev);
2284 struct igbvf_ring *tx_ring;
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 tx_ring = &adapter->tx_ring[0];
2292
2293 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294}
2295
2296/**
2297 * igbvf_tx_timeout - Respond to a Tx Hang
2298 * @netdev: network interface device structure
2299 **/
2300static void igbvf_tx_timeout(struct net_device *netdev)
2301{
2302 struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304 /* Do the reset outside of interrupt context */
2305 adapter->tx_timeout_count++;
2306 schedule_work(&adapter->reset_task);
2307}
2308
2309static void igbvf_reset_task(struct work_struct *work)
2310{
2311 struct igbvf_adapter *adapter;
2312 adapter = container_of(work, struct igbvf_adapter, reset_task);
2313
2314 igbvf_reinit_locked(adapter);
2315}
2316
2317/**
2318 * igbvf_get_stats - Get System Network Statistics
2319 * @netdev: network interface device structure
2320 *
2321 * Returns the address of the device statistics structure.
2322 * The statistics are actually updated from the timer callback.
2323 **/
2324static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2325{
2326 struct igbvf_adapter *adapter = netdev_priv(netdev);
2327
2328 /* only return the current stats */
2329 return &adapter->net_stats;
2330}
2331
2332/**
2333 * igbvf_change_mtu - Change the Maximum Transfer Unit
2334 * @netdev: network interface device structure
2335 * @new_mtu: new value for maximum frame size
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2340{
2341 struct igbvf_adapter *adapter = netdev_priv(netdev);
2342 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2343
2344 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2345 max_frame > MAX_JUMBO_FRAME_SIZE)
2346 return -EINVAL;
2347
2348#define MAX_STD_JUMBO_FRAME_SIZE 9234
2349 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2350 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2351 return -EINVAL;
2352 }
2353
2354 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2355 msleep(1);
2356 /* igbvf_down has a dependency on max_frame_size */
2357 adapter->max_frame_size = max_frame;
2358 if (netif_running(netdev))
2359 igbvf_down(adapter);
2360
2361 /*
2362 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2363 * means we reserve 2 more, this pushes us to allocate from the next
2364 * larger slab size.
2365 * i.e. RXBUFFER_2048 --> size-4096 slab
2366 * However with the new *_jumbo_rx* routines, jumbo receives will use
2367 * fragmented skbs
2368 */
2369
2370 if (max_frame <= 1024)
2371 adapter->rx_buffer_len = 1024;
2372 else if (max_frame <= 2048)
2373 adapter->rx_buffer_len = 2048;
2374 else
2375#if (PAGE_SIZE / 2) > 16384
2376 adapter->rx_buffer_len = 16384;
2377#else
2378 adapter->rx_buffer_len = PAGE_SIZE / 2;
2379#endif
2380
2381
2382 /* adjust allocation if LPE protects us, and we aren't using SBP */
2383 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2384 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2385 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2386 ETH_FCS_LEN;
2387
2388 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2389 netdev->mtu, new_mtu);
2390 netdev->mtu = new_mtu;
2391
2392 if (netif_running(netdev))
2393 igbvf_up(adapter);
2394 else
2395 igbvf_reset(adapter);
2396
2397 clear_bit(__IGBVF_RESETTING, &adapter->state);
2398
2399 return 0;
2400}
2401
2402static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2403{
2404 switch (cmd) {
2405 default:
2406 return -EOPNOTSUPP;
2407 }
2408}
2409
2410static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2411{
2412 struct net_device *netdev = pci_get_drvdata(pdev);
2413 struct igbvf_adapter *adapter = netdev_priv(netdev);
2414#ifdef CONFIG_PM
2415 int retval = 0;
2416#endif
2417
2418 netif_device_detach(netdev);
2419
2420 if (netif_running(netdev)) {
2421 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2422 igbvf_down(adapter);
2423 igbvf_free_irq(adapter);
2424 }
2425
2426#ifdef CONFIG_PM
2427 retval = pci_save_state(pdev);
2428 if (retval)
2429 return retval;
2430#endif
2431
2432 pci_disable_device(pdev);
2433
2434 return 0;
2435}
2436
2437#ifdef CONFIG_PM
2438static int igbvf_resume(struct pci_dev *pdev)
2439{
2440 struct net_device *netdev = pci_get_drvdata(pdev);
2441 struct igbvf_adapter *adapter = netdev_priv(netdev);
2442 u32 err;
2443
2444 pci_restore_state(pdev);
2445 err = pci_enable_device_mem(pdev);
2446 if (err) {
2447 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2448 return err;
2449 }
2450
2451 pci_set_master(pdev);
2452
2453 if (netif_running(netdev)) {
2454 err = igbvf_request_irq(adapter);
2455 if (err)
2456 return err;
2457 }
2458
2459 igbvf_reset(adapter);
2460
2461 if (netif_running(netdev))
2462 igbvf_up(adapter);
2463
2464 netif_device_attach(netdev);
2465
2466 return 0;
2467}
2468#endif
2469
2470static void igbvf_shutdown(struct pci_dev *pdev)
2471{
2472 igbvf_suspend(pdev, PMSG_SUSPEND);
2473}
2474
2475#ifdef CONFIG_NET_POLL_CONTROLLER
2476/*
2477 * Polling 'interrupt' - used by things like netconsole to send skbs
2478 * without having to re-enable interrupts. It's not called while
2479 * the interrupt routine is executing.
2480 */
2481static void igbvf_netpoll(struct net_device *netdev)
2482{
2483 struct igbvf_adapter *adapter = netdev_priv(netdev);
2484
2485 disable_irq(adapter->pdev->irq);
2486
2487 igbvf_clean_tx_irq(adapter->tx_ring);
2488
2489 enable_irq(adapter->pdev->irq);
2490}
2491#endif
2492
2493/**
2494 * igbvf_io_error_detected - called when PCI error is detected
2495 * @pdev: Pointer to PCI device
2496 * @state: The current pci connection state
2497 *
2498 * This function is called after a PCI bus error affecting
2499 * this device has been detected.
2500 */
2501static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2502 pci_channel_state_t state)
2503{
2504 struct net_device *netdev = pci_get_drvdata(pdev);
2505 struct igbvf_adapter *adapter = netdev_priv(netdev);
2506
2507 netif_device_detach(netdev);
2508
2509 if (state == pci_channel_io_perm_failure)
2510 return PCI_ERS_RESULT_DISCONNECT;
2511
2512 if (netif_running(netdev))
2513 igbvf_down(adapter);
2514 pci_disable_device(pdev);
2515
2516 /* Request a slot slot reset. */
2517 return PCI_ERS_RESULT_NEED_RESET;
2518}
2519
2520/**
2521 * igbvf_io_slot_reset - called after the pci bus has been reset.
2522 * @pdev: Pointer to PCI device
2523 *
2524 * Restart the card from scratch, as if from a cold-boot. Implementation
2525 * resembles the first-half of the igbvf_resume routine.
2526 */
2527static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2528{
2529 struct net_device *netdev = pci_get_drvdata(pdev);
2530 struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532 if (pci_enable_device_mem(pdev)) {
2533 dev_err(&pdev->dev,
2534 "Cannot re-enable PCI device after reset.\n");
2535 return PCI_ERS_RESULT_DISCONNECT;
2536 }
2537 pci_set_master(pdev);
2538
2539 igbvf_reset(adapter);
2540
2541 return PCI_ERS_RESULT_RECOVERED;
2542}
2543
2544/**
2545 * igbvf_io_resume - called when traffic can start flowing again.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * This callback is called when the error recovery driver tells us that
2549 * its OK to resume normal operation. Implementation resembles the
2550 * second-half of the igbvf_resume routine.
2551 */
2552static void igbvf_io_resume(struct pci_dev *pdev)
2553{
2554 struct net_device *netdev = pci_get_drvdata(pdev);
2555 struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557 if (netif_running(netdev)) {
2558 if (igbvf_up(adapter)) {
2559 dev_err(&pdev->dev,
2560 "can't bring device back up after reset\n");
2561 return;
2562 }
2563 }
2564
2565 netif_device_attach(netdev);
2566}
2567
2568static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2569{
2570 struct e1000_hw *hw = &adapter->hw;
2571 struct net_device *netdev = adapter->netdev;
2572 struct pci_dev *pdev = adapter->pdev;
2573
2574 if (hw->mac.type == e1000_vfadapt_i350)
2575 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2576 else
2577 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2578 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2579}
2580
2581static int igbvf_set_features(struct net_device *netdev,
2582 netdev_features_t features)
2583{
2584 struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586 if (features & NETIF_F_RXCSUM)
2587 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2588 else
2589 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2590
2591 return 0;
2592}
2593
2594static const struct net_device_ops igbvf_netdev_ops = {
2595 .ndo_open = igbvf_open,
2596 .ndo_stop = igbvf_close,
2597 .ndo_start_xmit = igbvf_xmit_frame,
2598 .ndo_get_stats = igbvf_get_stats,
2599 .ndo_set_rx_mode = igbvf_set_multi,
2600 .ndo_set_mac_address = igbvf_set_mac,
2601 .ndo_change_mtu = igbvf_change_mtu,
2602 .ndo_do_ioctl = igbvf_ioctl,
2603 .ndo_tx_timeout = igbvf_tx_timeout,
2604 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2605 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2606#ifdef CONFIG_NET_POLL_CONTROLLER
2607 .ndo_poll_controller = igbvf_netpoll,
2608#endif
2609 .ndo_set_features = igbvf_set_features,
2610};
2611
2612/**
2613 * igbvf_probe - Device Initialization Routine
2614 * @pdev: PCI device information struct
2615 * @ent: entry in igbvf_pci_tbl
2616 *
2617 * Returns 0 on success, negative on failure
2618 *
2619 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2620 * The OS initialization, configuring of the adapter private structure,
2621 * and a hardware reset occur.
2622 **/
2623static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2624{
2625 struct net_device *netdev;
2626 struct igbvf_adapter *adapter;
2627 struct e1000_hw *hw;
2628 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2629
2630 static int cards_found;
2631 int err, pci_using_dac;
2632
2633 err = pci_enable_device_mem(pdev);
2634 if (err)
2635 return err;
2636
2637 pci_using_dac = 0;
2638 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2639 if (!err) {
2640 pci_using_dac = 1;
2641 } else {
2642 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2643 if (err) {
2644 dev_err(&pdev->dev, "No usable DMA "
2645 "configuration, aborting\n");
2646 goto err_dma;
2647 }
2648 }
2649
2650 err = pci_request_regions(pdev, igbvf_driver_name);
2651 if (err)
2652 goto err_pci_reg;
2653
2654 pci_set_master(pdev);
2655
2656 err = -ENOMEM;
2657 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2658 if (!netdev)
2659 goto err_alloc_etherdev;
2660
2661 SET_NETDEV_DEV(netdev, &pdev->dev);
2662
2663 pci_set_drvdata(pdev, netdev);
2664 adapter = netdev_priv(netdev);
2665 hw = &adapter->hw;
2666 adapter->netdev = netdev;
2667 adapter->pdev = pdev;
2668 adapter->ei = ei;
2669 adapter->pba = ei->pba;
2670 adapter->flags = ei->flags;
2671 adapter->hw.back = adapter;
2672 adapter->hw.mac.type = ei->mac;
2673 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2674
2675 /* PCI config space info */
2676
2677 hw->vendor_id = pdev->vendor;
2678 hw->device_id = pdev->device;
2679 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2680 hw->subsystem_device_id = pdev->subsystem_device;
2681 hw->revision_id = pdev->revision;
2682
2683 err = -EIO;
2684 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2685 pci_resource_len(pdev, 0));
2686
2687 if (!adapter->hw.hw_addr)
2688 goto err_ioremap;
2689
2690 if (ei->get_variants) {
2691 err = ei->get_variants(adapter);
2692 if (err)
2693 goto err_get_variants;
2694 }
2695
2696 /* setup adapter struct */
2697 err = igbvf_sw_init(adapter);
2698 if (err)
2699 goto err_sw_init;
2700
2701 /* construct the net_device struct */
2702 netdev->netdev_ops = &igbvf_netdev_ops;
2703
2704 igbvf_set_ethtool_ops(netdev);
2705 netdev->watchdog_timeo = 5 * HZ;
2706 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2707
2708 adapter->bd_number = cards_found++;
2709
2710 netdev->hw_features = NETIF_F_SG |
2711 NETIF_F_IP_CSUM |
2712 NETIF_F_IPV6_CSUM |
2713 NETIF_F_TSO |
2714 NETIF_F_TSO6 |
2715 NETIF_F_RXCSUM;
2716
2717 netdev->features = netdev->hw_features |
2718 NETIF_F_HW_VLAN_CTAG_TX |
2719 NETIF_F_HW_VLAN_CTAG_RX |
2720 NETIF_F_HW_VLAN_CTAG_FILTER;
2721
2722 if (pci_using_dac)
2723 netdev->features |= NETIF_F_HIGHDMA;
2724
2725 netdev->vlan_features |= NETIF_F_TSO;
2726 netdev->vlan_features |= NETIF_F_TSO6;
2727 netdev->vlan_features |= NETIF_F_IP_CSUM;
2728 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2729 netdev->vlan_features |= NETIF_F_SG;
2730
2731 /*reset the controller to put the device in a known good state */
2732 err = hw->mac.ops.reset_hw(hw);
2733 if (err) {
2734 dev_info(&pdev->dev,
2735 "PF still in reset state. Is the PF interface up?\n");
2736 } else {
2737 err = hw->mac.ops.read_mac_addr(hw);
2738 if (err)
2739 dev_info(&pdev->dev, "Error reading MAC address.\n");
2740 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2741 dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2742 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2743 netdev->addr_len);
2744 }
2745
2746 if (!is_valid_ether_addr(netdev->dev_addr)) {
2747 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2748 eth_hw_addr_random(netdev);
2749 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2750 netdev->addr_len);
2751 }
2752
2753 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2754 (unsigned long) adapter);
2755
2756 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2757 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2758
2759 /* ring size defaults */
2760 adapter->rx_ring->count = 1024;
2761 adapter->tx_ring->count = 1024;
2762
2763 /* reset the hardware with the new settings */
2764 igbvf_reset(adapter);
2765
2766 /* set hardware-specific flags */
2767 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2768 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2769
2770 strcpy(netdev->name, "eth%d");
2771 err = register_netdev(netdev);
2772 if (err)
2773 goto err_hw_init;
2774
2775 /* tell the stack to leave us alone until igbvf_open() is called */
2776 netif_carrier_off(netdev);
2777 netif_stop_queue(netdev);
2778
2779 igbvf_print_device_info(adapter);
2780
2781 igbvf_initialize_last_counter_stats(adapter);
2782
2783 return 0;
2784
2785err_hw_init:
2786 kfree(adapter->tx_ring);
2787 kfree(adapter->rx_ring);
2788err_sw_init:
2789 igbvf_reset_interrupt_capability(adapter);
2790err_get_variants:
2791 iounmap(adapter->hw.hw_addr);
2792err_ioremap:
2793 free_netdev(netdev);
2794err_alloc_etherdev:
2795 pci_release_regions(pdev);
2796err_pci_reg:
2797err_dma:
2798 pci_disable_device(pdev);
2799 return err;
2800}
2801
2802/**
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2805 *
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device. The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2809 * memory.
2810 **/
2811static void igbvf_remove(struct pci_dev *pdev)
2812{
2813 struct net_device *netdev = pci_get_drvdata(pdev);
2814 struct igbvf_adapter *adapter = netdev_priv(netdev);
2815 struct e1000_hw *hw = &adapter->hw;
2816
2817 /*
2818 * The watchdog timer may be rescheduled, so explicitly
2819 * disable it from being rescheduled.
2820 */
2821 set_bit(__IGBVF_DOWN, &adapter->state);
2822 del_timer_sync(&adapter->watchdog_timer);
2823
2824 cancel_work_sync(&adapter->reset_task);
2825 cancel_work_sync(&adapter->watchdog_task);
2826
2827 unregister_netdev(netdev);
2828
2829 igbvf_reset_interrupt_capability(adapter);
2830
2831 /*
2832 * it is important to delete the napi struct prior to freeing the
2833 * rx ring so that you do not end up with null pointer refs
2834 */
2835 netif_napi_del(&adapter->rx_ring->napi);
2836 kfree(adapter->tx_ring);
2837 kfree(adapter->rx_ring);
2838
2839 iounmap(hw->hw_addr);
2840 if (hw->flash_address)
2841 iounmap(hw->flash_address);
2842 pci_release_regions(pdev);
2843
2844 free_netdev(netdev);
2845
2846 pci_disable_device(pdev);
2847}
2848
2849/* PCI Error Recovery (ERS) */
2850static const struct pci_error_handlers igbvf_err_handler = {
2851 .error_detected = igbvf_io_error_detected,
2852 .slot_reset = igbvf_io_slot_reset,
2853 .resume = igbvf_io_resume,
2854};
2855
2856static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2859 { } /* terminate list */
2860};
2861MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2862
2863/* PCI Device API Driver */
2864static struct pci_driver igbvf_driver = {
2865 .name = igbvf_driver_name,
2866 .id_table = igbvf_pci_tbl,
2867 .probe = igbvf_probe,
2868 .remove = igbvf_remove,
2869#ifdef CONFIG_PM
2870 /* Power Management Hooks */
2871 .suspend = igbvf_suspend,
2872 .resume = igbvf_resume,
2873#endif
2874 .shutdown = igbvf_shutdown,
2875 .err_handler = &igbvf_err_handler
2876};
2877
2878/**
2879 * igbvf_init_module - Driver Registration Routine
2880 *
2881 * igbvf_init_module is the first routine called when the driver is
2882 * loaded. All it does is register with the PCI subsystem.
2883 **/
2884static int __init igbvf_init_module(void)
2885{
2886 int ret;
2887 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2888 pr_info("%s\n", igbvf_copyright);
2889
2890 ret = pci_register_driver(&igbvf_driver);
2891
2892 return ret;
2893}
2894module_init(igbvf_init_module);
2895
2896/**
2897 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 *
2899 * igbvf_exit_module is called just before the driver is removed
2900 * from memory.
2901 **/
2902static void __exit igbvf_exit_module(void)
2903{
2904 pci_unregister_driver(&igbvf_driver);
2905}
2906module_exit(igbvf_exit_module);
2907
2908
2909MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2911MODULE_LICENSE("GPL");
2912MODULE_VERSION(DRV_VERSION);
2913
2914/* netdev.c */