Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15
  16/* Max dispatch from a group in 1 round */
  17static int throtl_grp_quantum = 8;
  18
  19/* Total max dispatch from all groups in one round */
  20static int throtl_quantum = 32;
  21
  22/* Throttling is performed over a slice and after that slice is renewed */
  23#define DFL_THROTL_SLICE_HD (HZ / 10)
  24#define DFL_THROTL_SLICE_SSD (HZ / 50)
  25#define MAX_THROTL_SLICE (HZ)
  26#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  27#define MIN_THROTL_BPS (320 * 1024)
  28#define MIN_THROTL_IOPS (10)
  29#define DFL_LATENCY_TARGET (-1L)
  30#define DFL_IDLE_THRESHOLD (0)
  31#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  32#define LATENCY_FILTERED_SSD (0)
  33/*
  34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  35 * help determine if its IO is impacted by others, hence we ignore the IO
  36 */
  37#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  38
  39#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
  40
  41static struct blkcg_policy blkcg_policy_throtl;
  42
  43/* A workqueue to queue throttle related work */
  44static struct workqueue_struct *kthrotld_workqueue;
  45
  46/*
  47 * To implement hierarchical throttling, throtl_grps form a tree and bios
  48 * are dispatched upwards level by level until they reach the top and get
  49 * issued.  When dispatching bios from the children and local group at each
  50 * level, if the bios are dispatched into a single bio_list, there's a risk
  51 * of a local or child group which can queue many bios at once filling up
  52 * the list starving others.
  53 *
  54 * To avoid such starvation, dispatched bios are queued separately
  55 * according to where they came from.  When they are again dispatched to
  56 * the parent, they're popped in round-robin order so that no single source
  57 * hogs the dispatch window.
  58 *
  59 * throtl_qnode is used to keep the queued bios separated by their sources.
  60 * Bios are queued to throtl_qnode which in turn is queued to
  61 * throtl_service_queue and then dispatched in round-robin order.
  62 *
  63 * It's also used to track the reference counts on blkg's.  A qnode always
  64 * belongs to a throtl_grp and gets queued on itself or the parent, so
  65 * incrementing the reference of the associated throtl_grp when a qnode is
  66 * queued and decrementing when dequeued is enough to keep the whole blkg
  67 * tree pinned while bios are in flight.
  68 */
  69struct throtl_qnode {
  70	struct list_head	node;		/* service_queue->queued[] */
  71	struct bio_list		bios;		/* queued bios */
  72	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  73};
  74
  75struct throtl_service_queue {
  76	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  77
  78	/*
  79	 * Bios queued directly to this service_queue or dispatched from
  80	 * children throtl_grp's.
  81	 */
  82	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  83	unsigned int		nr_queued[2];	/* number of queued bios */
  84
  85	/*
  86	 * RB tree of active children throtl_grp's, which are sorted by
  87	 * their ->disptime.
  88	 */
  89	struct rb_root		pending_tree;	/* RB tree of active tgs */
  90	struct rb_node		*first_pending;	/* first node in the tree */
  91	unsigned int		nr_pending;	/* # queued in the tree */
  92	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  93	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  94};
  95
  96enum tg_state_flags {
  97	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  98	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  99};
 100
 101#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
 102
 103enum {
 104	LIMIT_LOW,
 105	LIMIT_MAX,
 106	LIMIT_CNT,
 
 
 107};
 108
 109struct throtl_grp {
 110	/* must be the first member */
 111	struct blkg_policy_data pd;
 112
 113	/* active throtl group service_queue member */
 114	struct rb_node rb_node;
 115
 116	/* throtl_data this group belongs to */
 117	struct throtl_data *td;
 118
 119	/* this group's service queue */
 120	struct throtl_service_queue service_queue;
 121
 122	/*
 123	 * qnode_on_self is used when bios are directly queued to this
 124	 * throtl_grp so that local bios compete fairly with bios
 125	 * dispatched from children.  qnode_on_parent is used when bios are
 126	 * dispatched from this throtl_grp into its parent and will compete
 127	 * with the sibling qnode_on_parents and the parent's
 128	 * qnode_on_self.
 129	 */
 130	struct throtl_qnode qnode_on_self[2];
 131	struct throtl_qnode qnode_on_parent[2];
 132
 133	/*
 134	 * Dispatch time in jiffies. This is the estimated time when group
 135	 * will unthrottle and is ready to dispatch more bio. It is used as
 136	 * key to sort active groups in service tree.
 137	 */
 138	unsigned long disptime;
 139
 140	unsigned int flags;
 141
 142	/* are there any throtl rules between this group and td? */
 143	bool has_rules[2];
 144
 145	/* internally used bytes per second rate limits */
 146	uint64_t bps[2][LIMIT_CNT];
 147	/* user configured bps limits */
 148	uint64_t bps_conf[2][LIMIT_CNT];
 149
 150	/* internally used IOPS limits */
 151	unsigned int iops[2][LIMIT_CNT];
 152	/* user configured IOPS limits */
 153	unsigned int iops_conf[2][LIMIT_CNT];
 154
 155	/* Number of bytes disptached in current slice */
 156	uint64_t bytes_disp[2];
 157	/* Number of bio's dispatched in current slice */
 158	unsigned int io_disp[2];
 159
 160	unsigned long last_low_overflow_time[2];
 161
 162	uint64_t last_bytes_disp[2];
 163	unsigned int last_io_disp[2];
 164
 165	unsigned long last_check_time;
 166
 167	unsigned long latency_target; /* us */
 168	unsigned long latency_target_conf; /* us */
 169	/* When did we start a new slice */
 170	unsigned long slice_start[2];
 171	unsigned long slice_end[2];
 172
 173	unsigned long last_finish_time; /* ns / 1024 */
 174	unsigned long checked_last_finish_time; /* ns / 1024 */
 175	unsigned long avg_idletime; /* ns / 1024 */
 176	unsigned long idletime_threshold; /* us */
 177	unsigned long idletime_threshold_conf; /* us */
 178
 179	unsigned int bio_cnt; /* total bios */
 180	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 181	unsigned long bio_cnt_reset_time;
 182};
 183
 184/* We measure latency for request size from <= 4k to >= 1M */
 185#define LATENCY_BUCKET_SIZE 9
 186
 187struct latency_bucket {
 188	unsigned long total_latency; /* ns / 1024 */
 189	int samples;
 190};
 191
 192struct avg_latency_bucket {
 193	unsigned long latency; /* ns / 1024 */
 194	bool valid;
 195};
 196
 197struct throtl_data
 198{
 199	/* service tree for active throtl groups */
 200	struct throtl_service_queue service_queue;
 201
 202	struct request_queue *queue;
 203
 204	/* Total Number of queued bios on READ and WRITE lists */
 205	unsigned int nr_queued[2];
 206
 207	unsigned int throtl_slice;
 
 
 
 208
 209	/* Work for dispatching throttled bios */
 210	struct work_struct dispatch_work;
 211	unsigned int limit_index;
 212	bool limit_valid[LIMIT_CNT];
 213
 214	unsigned long low_upgrade_time;
 215	unsigned long low_downgrade_time;
 216
 217	unsigned int scale;
 
 
 218
 219	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 220	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 221	struct latency_bucket __percpu *latency_buckets[2];
 222	unsigned long last_calculate_time;
 223	unsigned long filtered_latency;
 224
 225	bool track_bio_latency;
 226};
 227
 228static void throtl_pending_timer_fn(struct timer_list *t);
 229
 230static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 231{
 232	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 233}
 234
 235static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 236{
 237	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 238}
 239
 240static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 241{
 242	return pd_to_blkg(&tg->pd);
 243}
 244
 
 
 
 
 
 245/**
 246 * sq_to_tg - return the throl_grp the specified service queue belongs to
 247 * @sq: the throtl_service_queue of interest
 248 *
 249 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 250 * embedded in throtl_data, %NULL is returned.
 251 */
 252static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 253{
 254	if (sq && sq->parent_sq)
 255		return container_of(sq, struct throtl_grp, service_queue);
 256	else
 257		return NULL;
 258}
 259
 260/**
 261 * sq_to_td - return throtl_data the specified service queue belongs to
 262 * @sq: the throtl_service_queue of interest
 263 *
 264 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 265 * Determine the associated throtl_data accordingly and return it.
 266 */
 267static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 268{
 269	struct throtl_grp *tg = sq_to_tg(sq);
 270
 271	if (tg)
 272		return tg->td;
 273	else
 274		return container_of(sq, struct throtl_data, service_queue);
 275}
 276
 277/*
 278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 279 * make the IO dispatch more smooth.
 280 * Scale up: linearly scale up according to lapsed time since upgrade. For
 281 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 282 *           limit hits .max limit
 283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 284 */
 285static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 286{
 287	/* arbitrary value to avoid too big scale */
 288	if (td->scale < 4096 && time_after_eq(jiffies,
 289	    td->low_upgrade_time + td->scale * td->throtl_slice))
 290		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 291
 292	return low + (low >> 1) * td->scale;
 293}
 294
 295static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 296{
 297	struct blkcg_gq *blkg = tg_to_blkg(tg);
 298	struct throtl_data *td;
 299	uint64_t ret;
 300
 301	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 302		return U64_MAX;
 303
 304	td = tg->td;
 305	ret = tg->bps[rw][td->limit_index];
 306	if (ret == 0 && td->limit_index == LIMIT_LOW) {
 307		/* intermediate node or iops isn't 0 */
 308		if (!list_empty(&blkg->blkcg->css.children) ||
 309		    tg->iops[rw][td->limit_index])
 310			return U64_MAX;
 311		else
 312			return MIN_THROTL_BPS;
 313	}
 314
 315	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 316	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 317		uint64_t adjusted;
 318
 319		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 320		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 321	}
 322	return ret;
 323}
 324
 325static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 326{
 327	struct blkcg_gq *blkg = tg_to_blkg(tg);
 328	struct throtl_data *td;
 329	unsigned int ret;
 330
 331	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 332		return UINT_MAX;
 333
 334	td = tg->td;
 335	ret = tg->iops[rw][td->limit_index];
 336	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 337		/* intermediate node or bps isn't 0 */
 338		if (!list_empty(&blkg->blkcg->css.children) ||
 339		    tg->bps[rw][td->limit_index])
 340			return UINT_MAX;
 341		else
 342			return MIN_THROTL_IOPS;
 343	}
 344
 345	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 346	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 347		uint64_t adjusted;
 348
 349		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 350		if (adjusted > UINT_MAX)
 351			adjusted = UINT_MAX;
 352		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 353	}
 354	return ret;
 355}
 356
 357#define request_bucket_index(sectors) \
 358	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 359
 360/**
 361 * throtl_log - log debug message via blktrace
 362 * @sq: the service_queue being reported
 363 * @fmt: printf format string
 364 * @args: printf args
 365 *
 366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 367 * throtl_grp; otherwise, just "throtl".
 
 
 
 368 */
 369#define throtl_log(sq, fmt, args...)	do {				\
 370	struct throtl_grp *__tg = sq_to_tg((sq));			\
 371	struct throtl_data *__td = sq_to_td((sq));			\
 372									\
 373	(void)__td;							\
 374	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
 375		break;							\
 376	if ((__tg)) {							\
 377		blk_add_cgroup_trace_msg(__td->queue,			\
 378			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 
 
 379	} else {							\
 380		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 381	}								\
 382} while (0)
 383
 384static inline unsigned int throtl_bio_data_size(struct bio *bio)
 385{
 386	/* assume it's one sector */
 387	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 388		return 512;
 389	return bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391
 392static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 393{
 394	INIT_LIST_HEAD(&qn->node);
 395	bio_list_init(&qn->bios);
 396	qn->tg = tg;
 397}
 398
 399/**
 400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 401 * @bio: bio being added
 402 * @qn: qnode to add bio to
 403 * @queued: the service_queue->queued[] list @qn belongs to
 404 *
 405 * Add @bio to @qn and put @qn on @queued if it's not already on.
 406 * @qn->tg's reference count is bumped when @qn is activated.  See the
 407 * comment on top of throtl_qnode definition for details.
 408 */
 409static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 410				 struct list_head *queued)
 411{
 412	bio_list_add(&qn->bios, bio);
 413	if (list_empty(&qn->node)) {
 414		list_add_tail(&qn->node, queued);
 415		blkg_get(tg_to_blkg(qn->tg));
 416	}
 417}
 418
 419/**
 420 * throtl_peek_queued - peek the first bio on a qnode list
 421 * @queued: the qnode list to peek
 422 */
 423static struct bio *throtl_peek_queued(struct list_head *queued)
 424{
 425	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 426	struct bio *bio;
 427
 428	if (list_empty(queued))
 429		return NULL;
 430
 431	bio = bio_list_peek(&qn->bios);
 432	WARN_ON_ONCE(!bio);
 433	return bio;
 434}
 435
 436/**
 437 * throtl_pop_queued - pop the first bio form a qnode list
 438 * @queued: the qnode list to pop a bio from
 439 * @tg_to_put: optional out argument for throtl_grp to put
 440 *
 441 * Pop the first bio from the qnode list @queued.  After popping, the first
 442 * qnode is removed from @queued if empty or moved to the end of @queued so
 443 * that the popping order is round-robin.
 444 *
 445 * When the first qnode is removed, its associated throtl_grp should be put
 446 * too.  If @tg_to_put is NULL, this function automatically puts it;
 447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 448 * responsible for putting it.
 449 */
 450static struct bio *throtl_pop_queued(struct list_head *queued,
 451				     struct throtl_grp **tg_to_put)
 452{
 453	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 454	struct bio *bio;
 455
 456	if (list_empty(queued))
 457		return NULL;
 458
 459	bio = bio_list_pop(&qn->bios);
 460	WARN_ON_ONCE(!bio);
 461
 462	if (bio_list_empty(&qn->bios)) {
 463		list_del_init(&qn->node);
 464		if (tg_to_put)
 465			*tg_to_put = qn->tg;
 466		else
 467			blkg_put(tg_to_blkg(qn->tg));
 468	} else {
 469		list_move_tail(&qn->node, queued);
 470	}
 471
 472	return bio;
 473}
 474
 475/* init a service_queue, assumes the caller zeroed it */
 476static void throtl_service_queue_init(struct throtl_service_queue *sq)
 
 477{
 478	INIT_LIST_HEAD(&sq->queued[0]);
 479	INIT_LIST_HEAD(&sq->queued[1]);
 480	sq->pending_tree = RB_ROOT;
 481	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 
 
 482}
 483
 484static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
 485{
 486	struct throtl_grp *tg;
 487	int rw;
 488
 489	tg = kzalloc_node(sizeof(*tg), gfp, node);
 490	if (!tg)
 491		return NULL;
 492
 493	throtl_service_queue_init(&tg->service_queue);
 494
 495	for (rw = READ; rw <= WRITE; rw++) {
 496		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 497		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 498	}
 499
 500	RB_CLEAR_NODE(&tg->rb_node);
 501	tg->bps[READ][LIMIT_MAX] = U64_MAX;
 502	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 503	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 504	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 505	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 506	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 507	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 508	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 509	/* LIMIT_LOW will have default value 0 */
 510
 511	tg->latency_target = DFL_LATENCY_TARGET;
 512	tg->latency_target_conf = DFL_LATENCY_TARGET;
 513	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 514	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 515
 516	return &tg->pd;
 517}
 518
 519static void throtl_pd_init(struct blkg_policy_data *pd)
 520{
 521	struct throtl_grp *tg = pd_to_tg(pd);
 522	struct blkcg_gq *blkg = tg_to_blkg(tg);
 523	struct throtl_data *td = blkg->q->td;
 524	struct throtl_service_queue *sq = &tg->service_queue;
 
 
 525
 526	/*
 527	 * If on the default hierarchy, we switch to properly hierarchical
 528	 * behavior where limits on a given throtl_grp are applied to the
 529	 * whole subtree rather than just the group itself.  e.g. If 16M
 530	 * read_bps limit is set on the root group, the whole system can't
 531	 * exceed 16M for the device.
 532	 *
 533	 * If not on the default hierarchy, the broken flat hierarchy
 534	 * behavior is retained where all throtl_grps are treated as if
 535	 * they're all separate root groups right below throtl_data.
 536	 * Limits of a group don't interact with limits of other groups
 537	 * regardless of the position of the group in the hierarchy.
 538	 */
 539	sq->parent_sq = &td->service_queue;
 540	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 541		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 
 
 
 
 
 
 
 
 
 
 542	tg->td = td;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543}
 544
 545/*
 546 * Set has_rules[] if @tg or any of its parents have limits configured.
 547 * This doesn't require walking up to the top of the hierarchy as the
 548 * parent's has_rules[] is guaranteed to be correct.
 549 */
 550static void tg_update_has_rules(struct throtl_grp *tg)
 551{
 552	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 553	struct throtl_data *td = tg->td;
 554	int rw;
 555
 556	for (rw = READ; rw <= WRITE; rw++)
 557		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 558			(td->limit_valid[td->limit_index] &&
 559			 (tg_bps_limit(tg, rw) != U64_MAX ||
 560			  tg_iops_limit(tg, rw) != UINT_MAX));
 561}
 562
 563static void throtl_pd_online(struct blkg_policy_data *pd)
 564{
 565	struct throtl_grp *tg = pd_to_tg(pd);
 566	/*
 567	 * We don't want new groups to escape the limits of its ancestors.
 568	 * Update has_rules[] after a new group is brought online.
 569	 */
 570	tg_update_has_rules(tg);
 571}
 572
 573static void blk_throtl_update_limit_valid(struct throtl_data *td)
 574{
 575	struct cgroup_subsys_state *pos_css;
 576	struct blkcg_gq *blkg;
 577	bool low_valid = false;
 578
 579	rcu_read_lock();
 580	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 581		struct throtl_grp *tg = blkg_to_tg(blkg);
 582
 583		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 584		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
 585			low_valid = true;
 586	}
 587	rcu_read_unlock();
 588
 589	td->limit_valid[LIMIT_LOW] = low_valid;
 590}
 591
 592static void throtl_upgrade_state(struct throtl_data *td);
 593static void throtl_pd_offline(struct blkg_policy_data *pd)
 594{
 595	struct throtl_grp *tg = pd_to_tg(pd);
 
 596
 597	tg->bps[READ][LIMIT_LOW] = 0;
 598	tg->bps[WRITE][LIMIT_LOW] = 0;
 599	tg->iops[READ][LIMIT_LOW] = 0;
 600	tg->iops[WRITE][LIMIT_LOW] = 0;
 601
 602	blk_throtl_update_limit_valid(tg->td);
 
 603
 604	if (!tg->td->limit_valid[tg->td->limit_index])
 605		throtl_upgrade_state(tg->td);
 
 606}
 607
 608static void throtl_pd_free(struct blkg_policy_data *pd)
 
 609{
 610	struct throtl_grp *tg = pd_to_tg(pd);
 
 
 
 
 
 611
 612	del_timer_sync(&tg->service_queue.pending_timer);
 613	kfree(tg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614}
 615
 616static struct throtl_grp *
 617throtl_rb_first(struct throtl_service_queue *parent_sq)
 618{
 619	/* Service tree is empty */
 620	if (!parent_sq->nr_pending)
 621		return NULL;
 622
 623	if (!parent_sq->first_pending)
 624		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 625
 626	if (parent_sq->first_pending)
 627		return rb_entry_tg(parent_sq->first_pending);
 628
 629	return NULL;
 630}
 631
 632static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 633{
 634	rb_erase(n, root);
 635	RB_CLEAR_NODE(n);
 636}
 637
 638static void throtl_rb_erase(struct rb_node *n,
 639			    struct throtl_service_queue *parent_sq)
 640{
 641	if (parent_sq->first_pending == n)
 642		parent_sq->first_pending = NULL;
 643	rb_erase_init(n, &parent_sq->pending_tree);
 644	--parent_sq->nr_pending;
 645}
 646
 647static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 648{
 649	struct throtl_grp *tg;
 650
 651	tg = throtl_rb_first(parent_sq);
 652	if (!tg)
 653		return;
 654
 655	parent_sq->first_pending_disptime = tg->disptime;
 656}
 657
 658static void tg_service_queue_add(struct throtl_grp *tg)
 659{
 660	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 661	struct rb_node **node = &parent_sq->pending_tree.rb_node;
 662	struct rb_node *parent = NULL;
 663	struct throtl_grp *__tg;
 664	unsigned long key = tg->disptime;
 665	int left = 1;
 666
 667	while (*node != NULL) {
 668		parent = *node;
 669		__tg = rb_entry_tg(parent);
 670
 671		if (time_before(key, __tg->disptime))
 672			node = &parent->rb_left;
 673		else {
 674			node = &parent->rb_right;
 675			left = 0;
 676		}
 677	}
 678
 679	if (left)
 680		parent_sq->first_pending = &tg->rb_node;
 681
 682	rb_link_node(&tg->rb_node, parent, node);
 683	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 684}
 685
 686static void __throtl_enqueue_tg(struct throtl_grp *tg)
 687{
 688	tg_service_queue_add(tg);
 689	tg->flags |= THROTL_TG_PENDING;
 690	tg->service_queue.parent_sq->nr_pending++;
 691}
 692
 693static void throtl_enqueue_tg(struct throtl_grp *tg)
 694{
 695	if (!(tg->flags & THROTL_TG_PENDING))
 696		__throtl_enqueue_tg(tg);
 697}
 698
 699static void __throtl_dequeue_tg(struct throtl_grp *tg)
 700{
 701	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 702	tg->flags &= ~THROTL_TG_PENDING;
 703}
 704
 705static void throtl_dequeue_tg(struct throtl_grp *tg)
 706{
 707	if (tg->flags & THROTL_TG_PENDING)
 708		__throtl_dequeue_tg(tg);
 709}
 710
 711/* Call with queue lock held */
 712static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 713					  unsigned long expires)
 714{
 715	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 716
 717	/*
 718	 * Since we are adjusting the throttle limit dynamically, the sleep
 719	 * time calculated according to previous limit might be invalid. It's
 720	 * possible the cgroup sleep time is very long and no other cgroups
 721	 * have IO running so notify the limit changes. Make sure the cgroup
 722	 * doesn't sleep too long to avoid the missed notification.
 723	 */
 724	if (time_after(expires, max_expire))
 725		expires = max_expire;
 726	mod_timer(&sq->pending_timer, expires);
 727	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 728		   expires - jiffies, jiffies);
 729}
 730
 731/**
 732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 733 * @sq: the service_queue to schedule dispatch for
 734 * @force: force scheduling
 735 *
 736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 737 * dispatch time of the first pending child.  Returns %true if either timer
 738 * is armed or there's no pending child left.  %false if the current
 739 * dispatch window is still open and the caller should continue
 740 * dispatching.
 741 *
 742 * If @force is %true, the dispatch timer is always scheduled and this
 743 * function is guaranteed to return %true.  This is to be used when the
 744 * caller can't dispatch itself and needs to invoke pending_timer
 745 * unconditionally.  Note that forced scheduling is likely to induce short
 746 * delay before dispatch starts even if @sq->first_pending_disptime is not
 747 * in the future and thus shouldn't be used in hot paths.
 748 */
 749static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 750					  bool force)
 751{
 752	/* any pending children left? */
 753	if (!sq->nr_pending)
 754		return true;
 755
 756	update_min_dispatch_time(sq);
 757
 758	/* is the next dispatch time in the future? */
 759	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 760		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 761		return true;
 762	}
 763
 764	/* tell the caller to continue dispatching */
 765	return false;
 766}
 767
 768static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 769		bool rw, unsigned long start)
 770{
 771	tg->bytes_disp[rw] = 0;
 772	tg->io_disp[rw] = 0;
 773
 774	/*
 775	 * Previous slice has expired. We must have trimmed it after last
 776	 * bio dispatch. That means since start of last slice, we never used
 777	 * that bandwidth. Do try to make use of that bandwidth while giving
 778	 * credit.
 779	 */
 780	if (time_after_eq(start, tg->slice_start[rw]))
 781		tg->slice_start[rw] = start;
 782
 783	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 784	throtl_log(&tg->service_queue,
 785		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 786		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 787		   tg->slice_end[rw], jiffies);
 788}
 789
 790static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 791{
 792	tg->bytes_disp[rw] = 0;
 793	tg->io_disp[rw] = 0;
 794	tg->slice_start[rw] = jiffies;
 795	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 796	throtl_log(&tg->service_queue,
 797		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 798		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 799		   tg->slice_end[rw], jiffies);
 800}
 801
 802static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 803					unsigned long jiffy_end)
 804{
 805	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 806}
 807
 808static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 809				       unsigned long jiffy_end)
 810{
 811	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 812	throtl_log(&tg->service_queue,
 813		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 814		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 815		   tg->slice_end[rw], jiffies);
 816}
 817
 818/* Determine if previously allocated or extended slice is complete or not */
 819static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 820{
 821	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 822		return false;
 823
 824	return 1;
 825}
 826
 827/* Trim the used slices and adjust slice start accordingly */
 828static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 829{
 830	unsigned long nr_slices, time_elapsed, io_trim;
 831	u64 bytes_trim, tmp;
 832
 833	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 834
 835	/*
 836	 * If bps are unlimited (-1), then time slice don't get
 837	 * renewed. Don't try to trim the slice if slice is used. A new
 838	 * slice will start when appropriate.
 839	 */
 840	if (throtl_slice_used(tg, rw))
 841		return;
 842
 843	/*
 844	 * A bio has been dispatched. Also adjust slice_end. It might happen
 845	 * that initially cgroup limit was very low resulting in high
 846	 * slice_end, but later limit was bumped up and bio was dispached
 847	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 848	 * is bad because it does not allow new slice to start.
 849	 */
 850
 851	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 852
 853	time_elapsed = jiffies - tg->slice_start[rw];
 854
 855	nr_slices = time_elapsed / tg->td->throtl_slice;
 856
 857	if (!nr_slices)
 858		return;
 859	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 860	do_div(tmp, HZ);
 861	bytes_trim = tmp;
 862
 863	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 864		HZ;
 865
 866	if (!bytes_trim && !io_trim)
 867		return;
 868
 869	if (tg->bytes_disp[rw] >= bytes_trim)
 870		tg->bytes_disp[rw] -= bytes_trim;
 871	else
 872		tg->bytes_disp[rw] = 0;
 873
 874	if (tg->io_disp[rw] >= io_trim)
 875		tg->io_disp[rw] -= io_trim;
 876	else
 877		tg->io_disp[rw] = 0;
 878
 879	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 880
 881	throtl_log(&tg->service_queue,
 882		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 883		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 884		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 885}
 886
 887static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 888				  unsigned long *wait)
 889{
 890	bool rw = bio_data_dir(bio);
 891	unsigned int io_allowed;
 892	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 893	u64 tmp;
 894
 895	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 896
 897	/* Slice has just started. Consider one slice interval */
 898	if (!jiffy_elapsed)
 899		jiffy_elapsed_rnd = tg->td->throtl_slice;
 900
 901	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 902
 903	/*
 904	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 905	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 906	 * will allow dispatch after 1 second and after that slice should
 907	 * have been trimmed.
 908	 */
 909
 910	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
 911	do_div(tmp, HZ);
 912
 913	if (tmp > UINT_MAX)
 914		io_allowed = UINT_MAX;
 915	else
 916		io_allowed = tmp;
 917
 918	if (tg->io_disp[rw] + 1 <= io_allowed) {
 919		if (wait)
 920			*wait = 0;
 921		return true;
 922	}
 923
 924	/* Calc approx time to dispatch */
 925	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
 926
 927	if (jiffy_wait > jiffy_elapsed)
 928		jiffy_wait = jiffy_wait - jiffy_elapsed;
 929	else
 930		jiffy_wait = 1;
 931
 932	if (wait)
 933		*wait = jiffy_wait;
 934	return 0;
 935}
 936
 937static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 938				 unsigned long *wait)
 939{
 940	bool rw = bio_data_dir(bio);
 941	u64 bytes_allowed, extra_bytes, tmp;
 942	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 943	unsigned int bio_size = throtl_bio_data_size(bio);
 944
 945	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 946
 947	/* Slice has just started. Consider one slice interval */
 948	if (!jiffy_elapsed)
 949		jiffy_elapsed_rnd = tg->td->throtl_slice;
 950
 951	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 952
 953	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
 954	do_div(tmp, HZ);
 955	bytes_allowed = tmp;
 956
 957	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 958		if (wait)
 959			*wait = 0;
 960		return true;
 961	}
 962
 963	/* Calc approx time to dispatch */
 964	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 965	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
 966
 967	if (!jiffy_wait)
 968		jiffy_wait = 1;
 969
 970	/*
 971	 * This wait time is without taking into consideration the rounding
 972	 * up we did. Add that time also.
 973	 */
 974	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 975	if (wait)
 976		*wait = jiffy_wait;
 977	return 0;
 978}
 979
 980/*
 981 * Returns whether one can dispatch a bio or not. Also returns approx number
 982 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 983 */
 984static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 985			    unsigned long *wait)
 986{
 987	bool rw = bio_data_dir(bio);
 988	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 989
 990	/*
 991 	 * Currently whole state machine of group depends on first bio
 992	 * queued in the group bio list. So one should not be calling
 993	 * this function with a different bio if there are other bios
 994	 * queued.
 995	 */
 996	BUG_ON(tg->service_queue.nr_queued[rw] &&
 997	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 998
 999	/* If tg->bps = -1, then BW is unlimited */
1000	if (tg_bps_limit(tg, rw) == U64_MAX &&
1001	    tg_iops_limit(tg, rw) == UINT_MAX) {
1002		if (wait)
1003			*wait = 0;
1004		return true;
1005	}
1006
1007	/*
1008	 * If previous slice expired, start a new one otherwise renew/extend
1009	 * existing slice to make sure it is at least throtl_slice interval
1010	 * long since now. New slice is started only for empty throttle group.
1011	 * If there is queued bio, that means there should be an active
1012	 * slice and it should be extended instead.
1013	 */
1014	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1015		throtl_start_new_slice(tg, rw);
1016	else {
1017		if (time_before(tg->slice_end[rw],
1018		    jiffies + tg->td->throtl_slice))
1019			throtl_extend_slice(tg, rw,
1020				jiffies + tg->td->throtl_slice);
1021	}
1022
1023	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1024	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1025		if (wait)
1026			*wait = 0;
1027		return 1;
1028	}
1029
1030	max_wait = max(bps_wait, iops_wait);
1031
1032	if (wait)
1033		*wait = max_wait;
1034
1035	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1036		throtl_extend_slice(tg, rw, jiffies + max_wait);
1037
1038	return 0;
1039}
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1042{
1043	bool rw = bio_data_dir(bio);
1044	unsigned int bio_size = throtl_bio_data_size(bio);
1045
1046	/* Charge the bio to the group */
1047	tg->bytes_disp[rw] += bio_size;
1048	tg->io_disp[rw]++;
1049	tg->last_bytes_disp[rw] += bio_size;
1050	tg->last_io_disp[rw]++;
1051
1052	/*
1053	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1054	 * more than once as a throttled bio will go through blk-throtl the
1055	 * second time when it eventually gets issued.  Set it when a bio
1056	 * is being charged to a tg.
1057	 */
1058	if (!bio_flagged(bio, BIO_THROTTLED))
1059		bio_set_flag(bio, BIO_THROTTLED);
 
 
 
 
 
 
 
 
1060}
1061
1062/**
1063 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1064 * @bio: bio to add
1065 * @qn: qnode to use
1066 * @tg: the target throtl_grp
1067 *
1068 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1069 * tg->qnode_on_self[] is used.
1070 */
1071static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1072			      struct throtl_grp *tg)
1073{
1074	struct throtl_service_queue *sq = &tg->service_queue;
1075	bool rw = bio_data_dir(bio);
1076
1077	if (!qn)
1078		qn = &tg->qnode_on_self[rw];
1079
1080	/*
1081	 * If @tg doesn't currently have any bios queued in the same
1082	 * direction, queueing @bio can change when @tg should be
1083	 * dispatched.  Mark that @tg was empty.  This is automatically
1084	 * cleaered on the next tg_update_disptime().
1085	 */
1086	if (!sq->nr_queued[rw])
1087		tg->flags |= THROTL_TG_WAS_EMPTY;
1088
1089	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1090
1091	sq->nr_queued[rw]++;
1092	throtl_enqueue_tg(tg);
1093}
1094
1095static void tg_update_disptime(struct throtl_grp *tg)
1096{
1097	struct throtl_service_queue *sq = &tg->service_queue;
1098	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1099	struct bio *bio;
1100
1101	bio = throtl_peek_queued(&sq->queued[READ]);
1102	if (bio)
1103		tg_may_dispatch(tg, bio, &read_wait);
1104
1105	bio = throtl_peek_queued(&sq->queued[WRITE]);
1106	if (bio)
1107		tg_may_dispatch(tg, bio, &write_wait);
1108
1109	min_wait = min(read_wait, write_wait);
1110	disptime = jiffies + min_wait;
1111
1112	/* Update dispatch time */
1113	throtl_dequeue_tg(tg);
1114	tg->disptime = disptime;
1115	throtl_enqueue_tg(tg);
1116
1117	/* see throtl_add_bio_tg() */
1118	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119}
1120
1121static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1122					struct throtl_grp *parent_tg, bool rw)
1123{
1124	if (throtl_slice_used(parent_tg, rw)) {
1125		throtl_start_new_slice_with_credit(parent_tg, rw,
1126				child_tg->slice_start[rw]);
1127	}
1128
1129}
1130
1131static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1132{
1133	struct throtl_service_queue *sq = &tg->service_queue;
1134	struct throtl_service_queue *parent_sq = sq->parent_sq;
1135	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1136	struct throtl_grp *tg_to_put = NULL;
1137	struct bio *bio;
1138
1139	/*
1140	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1141	 * from @tg may put its reference and @parent_sq might end up
1142	 * getting released prematurely.  Remember the tg to put and put it
1143	 * after @bio is transferred to @parent_sq.
1144	 */
1145	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1146	sq->nr_queued[rw]--;
1147
1148	throtl_charge_bio(tg, bio);
1149
1150	/*
1151	 * If our parent is another tg, we just need to transfer @bio to
1152	 * the parent using throtl_add_bio_tg().  If our parent is
1153	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1154	 * bio_lists[] and decrease total number queued.  The caller is
1155	 * responsible for issuing these bios.
1156	 */
1157	if (parent_tg) {
1158		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1159		start_parent_slice_with_credit(tg, parent_tg, rw);
1160	} else {
1161		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1162				     &parent_sq->queued[rw]);
1163		BUG_ON(tg->td->nr_queued[rw] <= 0);
1164		tg->td->nr_queued[rw]--;
1165	}
1166
1167	throtl_trim_slice(tg, rw);
1168
1169	if (tg_to_put)
1170		blkg_put(tg_to_blkg(tg_to_put));
1171}
1172
1173static int throtl_dispatch_tg(struct throtl_grp *tg)
1174{
1175	struct throtl_service_queue *sq = &tg->service_queue;
1176	unsigned int nr_reads = 0, nr_writes = 0;
1177	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1178	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1179	struct bio *bio;
1180
1181	/* Try to dispatch 75% READS and 25% WRITES */
1182
1183	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1184	       tg_may_dispatch(tg, bio, NULL)) {
1185
1186		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1187		nr_reads++;
1188
1189		if (nr_reads >= max_nr_reads)
1190			break;
1191	}
1192
1193	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1194	       tg_may_dispatch(tg, bio, NULL)) {
1195
1196		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1197		nr_writes++;
1198
1199		if (nr_writes >= max_nr_writes)
1200			break;
1201	}
1202
1203	return nr_reads + nr_writes;
1204}
1205
1206static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1207{
1208	unsigned int nr_disp = 0;
1209
1210	while (1) {
1211		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1212		struct throtl_service_queue *sq = &tg->service_queue;
1213
1214		if (!tg)
1215			break;
1216
1217		if (time_before(jiffies, tg->disptime))
1218			break;
1219
1220		throtl_dequeue_tg(tg);
1221
1222		nr_disp += throtl_dispatch_tg(tg);
1223
1224		if (sq->nr_queued[0] || sq->nr_queued[1])
1225			tg_update_disptime(tg);
1226
1227		if (nr_disp >= throtl_quantum)
1228			break;
1229	}
1230
1231	return nr_disp;
1232}
1233
1234static bool throtl_can_upgrade(struct throtl_data *td,
1235	struct throtl_grp *this_tg);
1236/**
1237 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1238 * @arg: the throtl_service_queue being serviced
1239 *
1240 * This timer is armed when a child throtl_grp with active bio's become
1241 * pending and queued on the service_queue's pending_tree and expires when
1242 * the first child throtl_grp should be dispatched.  This function
1243 * dispatches bio's from the children throtl_grps to the parent
1244 * service_queue.
1245 *
1246 * If the parent's parent is another throtl_grp, dispatching is propagated
1247 * by either arming its pending_timer or repeating dispatch directly.  If
1248 * the top-level service_tree is reached, throtl_data->dispatch_work is
1249 * kicked so that the ready bio's are issued.
1250 */
1251static void throtl_pending_timer_fn(struct timer_list *t)
1252{
1253	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1254	struct throtl_grp *tg = sq_to_tg(sq);
1255	struct throtl_data *td = sq_to_td(sq);
1256	struct request_queue *q = td->queue;
1257	struct throtl_service_queue *parent_sq;
1258	bool dispatched;
1259	int ret;
1260
1261	spin_lock_irq(q->queue_lock);
1262	if (throtl_can_upgrade(td, NULL))
1263		throtl_upgrade_state(td);
1264
1265again:
1266	parent_sq = sq->parent_sq;
1267	dispatched = false;
1268
1269	while (true) {
1270		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1271			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1272			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1273
1274		ret = throtl_select_dispatch(sq);
1275		if (ret) {
1276			throtl_log(sq, "bios disp=%u", ret);
1277			dispatched = true;
1278		}
1279
1280		if (throtl_schedule_next_dispatch(sq, false))
1281			break;
1282
1283		/* this dispatch windows is still open, relax and repeat */
1284		spin_unlock_irq(q->queue_lock);
1285		cpu_relax();
1286		spin_lock_irq(q->queue_lock);
1287	}
1288
1289	if (!dispatched)
1290		goto out_unlock;
1291
1292	if (parent_sq) {
1293		/* @parent_sq is another throl_grp, propagate dispatch */
1294		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1295			tg_update_disptime(tg);
1296			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1297				/* window is already open, repeat dispatching */
1298				sq = parent_sq;
1299				tg = sq_to_tg(sq);
1300				goto again;
1301			}
1302		}
1303	} else {
1304		/* reached the top-level, queue issueing */
1305		queue_work(kthrotld_workqueue, &td->dispatch_work);
1306	}
1307out_unlock:
1308	spin_unlock_irq(q->queue_lock);
1309}
1310
1311/**
1312 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1313 * @work: work item being executed
1314 *
1315 * This function is queued for execution when bio's reach the bio_lists[]
1316 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1317 * function.
1318 */
1319static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1320{
1321	struct throtl_data *td = container_of(work, struct throtl_data,
1322					      dispatch_work);
1323	struct throtl_service_queue *td_sq = &td->service_queue;
1324	struct request_queue *q = td->queue;
1325	struct bio_list bio_list_on_stack;
1326	struct bio *bio;
1327	struct blk_plug plug;
1328	int rw;
1329
1330	bio_list_init(&bio_list_on_stack);
1331
1332	spin_lock_irq(q->queue_lock);
1333	for (rw = READ; rw <= WRITE; rw++)
1334		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1335			bio_list_add(&bio_list_on_stack, bio);
1336	spin_unlock_irq(q->queue_lock);
1337
1338	if (!bio_list_empty(&bio_list_on_stack)) {
1339		blk_start_plug(&plug);
1340		while((bio = bio_list_pop(&bio_list_on_stack)))
1341			generic_make_request(bio);
1342		blk_finish_plug(&plug);
1343	}
1344}
1345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1347			      int off)
1348{
1349	struct throtl_grp *tg = pd_to_tg(pd);
1350	u64 v = *(u64 *)((void *)tg + off);
1351
1352	if (v == U64_MAX)
1353		return 0;
1354	return __blkg_prfill_u64(sf, pd, v);
1355}
1356
1357static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1358			       int off)
1359{
1360	struct throtl_grp *tg = pd_to_tg(pd);
1361	unsigned int v = *(unsigned int *)((void *)tg + off);
1362
1363	if (v == UINT_MAX)
1364		return 0;
1365	return __blkg_prfill_u64(sf, pd, v);
1366}
1367
1368static int tg_print_conf_u64(struct seq_file *sf, void *v)
1369{
1370	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1371			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1372	return 0;
1373}
1374
1375static int tg_print_conf_uint(struct seq_file *sf, void *v)
1376{
1377	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1378			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1379	return 0;
1380}
1381
1382static void tg_conf_updated(struct throtl_grp *tg, bool global)
 
1383{
1384	struct throtl_service_queue *sq = &tg->service_queue;
1385	struct cgroup_subsys_state *pos_css;
 
 
1386	struct blkcg_gq *blkg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387
1388	throtl_log(&tg->service_queue,
1389		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1390		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1391		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1392
1393	/*
1394	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1395	 * considered to have rules if either the tg itself or any of its
1396	 * ancestors has rules.  This identifies groups without any
1397	 * restrictions in the whole hierarchy and allows them to bypass
1398	 * blk-throttle.
1399	 */
1400	blkg_for_each_descendant_pre(blkg, pos_css,
1401			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1402		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1403		struct throtl_grp *parent_tg;
1404
1405		tg_update_has_rules(this_tg);
1406		/* ignore root/second level */
1407		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1408		    !blkg->parent->parent)
1409			continue;
1410		parent_tg = blkg_to_tg(blkg->parent);
1411		/*
1412		 * make sure all children has lower idle time threshold and
1413		 * higher latency target
1414		 */
1415		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1416				parent_tg->idletime_threshold);
1417		this_tg->latency_target = max(this_tg->latency_target,
1418				parent_tg->latency_target);
1419	}
1420
1421	/*
1422	 * We're already holding queue_lock and know @tg is valid.  Let's
1423	 * apply the new config directly.
1424	 *
1425	 * Restart the slices for both READ and WRITES. It might happen
1426	 * that a group's limit are dropped suddenly and we don't want to
1427	 * account recently dispatched IO with new low rate.
1428	 */
1429	throtl_start_new_slice(tg, 0);
1430	throtl_start_new_slice(tg, 1);
1431
1432	if (tg->flags & THROTL_TG_PENDING) {
1433		tg_update_disptime(tg);
1434		throtl_schedule_next_dispatch(sq->parent_sq, true);
1435	}
1436}
1437
1438static ssize_t tg_set_conf(struct kernfs_open_file *of,
1439			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1440{
1441	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1442	struct blkg_conf_ctx ctx;
1443	struct throtl_grp *tg;
1444	int ret;
1445	u64 v;
1446
1447	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1448	if (ret)
1449		return ret;
1450
1451	ret = -EINVAL;
1452	if (sscanf(ctx.body, "%llu", &v) != 1)
1453		goto out_finish;
1454	if (!v)
1455		v = U64_MAX;
1456
1457	tg = blkg_to_tg(ctx.blkg);
1458
1459	if (is_u64)
1460		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1461	else
1462		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1463
1464	tg_conf_updated(tg, false);
1465	ret = 0;
1466out_finish:
1467	blkg_conf_finish(&ctx);
1468	return ret ?: nbytes;
1469}
1470
1471static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1472			       char *buf, size_t nbytes, loff_t off)
1473{
1474	return tg_set_conf(of, buf, nbytes, off, true);
1475}
1476
1477static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1478				char *buf, size_t nbytes, loff_t off)
1479{
1480	return tg_set_conf(of, buf, nbytes, off, false);
1481}
1482
1483static struct cftype throtl_legacy_files[] = {
1484	{
1485		.name = "throttle.read_bps_device",
1486		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1487		.seq_show = tg_print_conf_u64,
1488		.write = tg_set_conf_u64,
1489	},
1490	{
1491		.name = "throttle.write_bps_device",
1492		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1493		.seq_show = tg_print_conf_u64,
1494		.write = tg_set_conf_u64,
1495	},
1496	{
1497		.name = "throttle.read_iops_device",
1498		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1499		.seq_show = tg_print_conf_uint,
1500		.write = tg_set_conf_uint,
1501	},
1502	{
1503		.name = "throttle.write_iops_device",
1504		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1505		.seq_show = tg_print_conf_uint,
1506		.write = tg_set_conf_uint,
1507	},
1508	{
1509		.name = "throttle.io_service_bytes",
1510		.private = (unsigned long)&blkcg_policy_throtl,
1511		.seq_show = blkg_print_stat_bytes,
1512	},
1513	{
1514		.name = "throttle.io_service_bytes_recursive",
1515		.private = (unsigned long)&blkcg_policy_throtl,
1516		.seq_show = blkg_print_stat_bytes_recursive,
1517	},
1518	{
1519		.name = "throttle.io_serviced",
1520		.private = (unsigned long)&blkcg_policy_throtl,
1521		.seq_show = blkg_print_stat_ios,
1522	},
1523	{
1524		.name = "throttle.io_serviced_recursive",
1525		.private = (unsigned long)&blkcg_policy_throtl,
1526		.seq_show = blkg_print_stat_ios_recursive,
1527	},
1528	{ }	/* terminate */
1529};
1530
1531static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1532			 int off)
1533{
1534	struct throtl_grp *tg = pd_to_tg(pd);
1535	const char *dname = blkg_dev_name(pd->blkg);
1536	char bufs[4][21] = { "max", "max", "max", "max" };
1537	u64 bps_dft;
1538	unsigned int iops_dft;
1539	char idle_time[26] = "";
1540	char latency_time[26] = "";
1541
1542	if (!dname)
1543		return 0;
1544
1545	if (off == LIMIT_LOW) {
1546		bps_dft = 0;
1547		iops_dft = 0;
1548	} else {
1549		bps_dft = U64_MAX;
1550		iops_dft = UINT_MAX;
1551	}
1552
1553	if (tg->bps_conf[READ][off] == bps_dft &&
1554	    tg->bps_conf[WRITE][off] == bps_dft &&
1555	    tg->iops_conf[READ][off] == iops_dft &&
1556	    tg->iops_conf[WRITE][off] == iops_dft &&
1557	    (off != LIMIT_LOW ||
1558	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1559	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1560		return 0;
1561
1562	if (tg->bps_conf[READ][off] != U64_MAX)
1563		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1564			tg->bps_conf[READ][off]);
1565	if (tg->bps_conf[WRITE][off] != U64_MAX)
1566		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1567			tg->bps_conf[WRITE][off]);
1568	if (tg->iops_conf[READ][off] != UINT_MAX)
1569		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1570			tg->iops_conf[READ][off]);
1571	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1572		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1573			tg->iops_conf[WRITE][off]);
1574	if (off == LIMIT_LOW) {
1575		if (tg->idletime_threshold_conf == ULONG_MAX)
1576			strcpy(idle_time, " idle=max");
1577		else
1578			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1579				tg->idletime_threshold_conf);
1580
1581		if (tg->latency_target_conf == ULONG_MAX)
1582			strcpy(latency_time, " latency=max");
1583		else
1584			snprintf(latency_time, sizeof(latency_time),
1585				" latency=%lu", tg->latency_target_conf);
1586	}
1587
1588	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1589		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1590		   latency_time);
1591	return 0;
1592}
1593
1594static int tg_print_limit(struct seq_file *sf, void *v)
1595{
1596	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1597			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1598	return 0;
1599}
1600
1601static ssize_t tg_set_limit(struct kernfs_open_file *of,
1602			  char *buf, size_t nbytes, loff_t off)
1603{
1604	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1605	struct blkg_conf_ctx ctx;
1606	struct throtl_grp *tg;
1607	u64 v[4];
1608	unsigned long idle_time;
1609	unsigned long latency_time;
1610	int ret;
1611	int index = of_cft(of)->private;
1612
1613	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1614	if (ret)
1615		return ret;
1616
1617	tg = blkg_to_tg(ctx.blkg);
1618
1619	v[0] = tg->bps_conf[READ][index];
1620	v[1] = tg->bps_conf[WRITE][index];
1621	v[2] = tg->iops_conf[READ][index];
1622	v[3] = tg->iops_conf[WRITE][index];
1623
1624	idle_time = tg->idletime_threshold_conf;
1625	latency_time = tg->latency_target_conf;
1626	while (true) {
1627		char tok[27];	/* wiops=18446744073709551616 */
1628		char *p;
1629		u64 val = U64_MAX;
1630		int len;
1631
1632		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1633			break;
1634		if (tok[0] == '\0')
1635			break;
1636		ctx.body += len;
1637
1638		ret = -EINVAL;
1639		p = tok;
1640		strsep(&p, "=");
1641		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1642			goto out_finish;
1643
1644		ret = -ERANGE;
1645		if (!val)
1646			goto out_finish;
1647
1648		ret = -EINVAL;
1649		if (!strcmp(tok, "rbps"))
1650			v[0] = val;
1651		else if (!strcmp(tok, "wbps"))
1652			v[1] = val;
1653		else if (!strcmp(tok, "riops"))
1654			v[2] = min_t(u64, val, UINT_MAX);
1655		else if (!strcmp(tok, "wiops"))
1656			v[3] = min_t(u64, val, UINT_MAX);
1657		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1658			idle_time = val;
1659		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1660			latency_time = val;
1661		else
1662			goto out_finish;
1663	}
1664
1665	tg->bps_conf[READ][index] = v[0];
1666	tg->bps_conf[WRITE][index] = v[1];
1667	tg->iops_conf[READ][index] = v[2];
1668	tg->iops_conf[WRITE][index] = v[3];
1669
1670	if (index == LIMIT_MAX) {
1671		tg->bps[READ][index] = v[0];
1672		tg->bps[WRITE][index] = v[1];
1673		tg->iops[READ][index] = v[2];
1674		tg->iops[WRITE][index] = v[3];
1675	}
1676	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1677		tg->bps_conf[READ][LIMIT_MAX]);
1678	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1679		tg->bps_conf[WRITE][LIMIT_MAX]);
1680	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1681		tg->iops_conf[READ][LIMIT_MAX]);
1682	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1683		tg->iops_conf[WRITE][LIMIT_MAX]);
1684	tg->idletime_threshold_conf = idle_time;
1685	tg->latency_target_conf = latency_time;
1686
1687	/* force user to configure all settings for low limit  */
1688	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1689	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1690	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1691	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1692		tg->bps[READ][LIMIT_LOW] = 0;
1693		tg->bps[WRITE][LIMIT_LOW] = 0;
1694		tg->iops[READ][LIMIT_LOW] = 0;
1695		tg->iops[WRITE][LIMIT_LOW] = 0;
1696		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1697		tg->latency_target = DFL_LATENCY_TARGET;
1698	} else if (index == LIMIT_LOW) {
1699		tg->idletime_threshold = tg->idletime_threshold_conf;
1700		tg->latency_target = tg->latency_target_conf;
1701	}
1702
1703	blk_throtl_update_limit_valid(tg->td);
1704	if (tg->td->limit_valid[LIMIT_LOW]) {
1705		if (index == LIMIT_LOW)
1706			tg->td->limit_index = LIMIT_LOW;
1707	} else
1708		tg->td->limit_index = LIMIT_MAX;
1709	tg_conf_updated(tg, index == LIMIT_LOW &&
1710		tg->td->limit_valid[LIMIT_LOW]);
1711	ret = 0;
1712out_finish:
1713	blkg_conf_finish(&ctx);
1714	return ret ?: nbytes;
1715}
1716
1717static struct cftype throtl_files[] = {
1718#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1719	{
1720		.name = "low",
1721		.flags = CFTYPE_NOT_ON_ROOT,
1722		.seq_show = tg_print_limit,
1723		.write = tg_set_limit,
1724		.private = LIMIT_LOW,
1725	},
1726#endif
1727	{
1728		.name = "max",
1729		.flags = CFTYPE_NOT_ON_ROOT,
1730		.seq_show = tg_print_limit,
1731		.write = tg_set_limit,
1732		.private = LIMIT_MAX,
1733	},
1734	{ }	/* terminate */
1735};
1736
1737static void throtl_shutdown_wq(struct request_queue *q)
1738{
1739	struct throtl_data *td = q->td;
1740
1741	cancel_work_sync(&td->dispatch_work);
1742}
1743
1744static struct blkcg_policy blkcg_policy_throtl = {
1745	.dfl_cftypes		= throtl_files,
1746	.legacy_cftypes		= throtl_legacy_files,
1747
1748	.pd_alloc_fn		= throtl_pd_alloc,
1749	.pd_init_fn		= throtl_pd_init,
1750	.pd_online_fn		= throtl_pd_online,
1751	.pd_offline_fn		= throtl_pd_offline,
1752	.pd_free_fn		= throtl_pd_free,
1753};
1754
1755static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1756{
1757	unsigned long rtime = jiffies, wtime = jiffies;
1758
1759	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1760		rtime = tg->last_low_overflow_time[READ];
1761	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1762		wtime = tg->last_low_overflow_time[WRITE];
1763	return min(rtime, wtime);
1764}
1765
1766/* tg should not be an intermediate node */
1767static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1768{
1769	struct throtl_service_queue *parent_sq;
1770	struct throtl_grp *parent = tg;
1771	unsigned long ret = __tg_last_low_overflow_time(tg);
1772
1773	while (true) {
1774		parent_sq = parent->service_queue.parent_sq;
1775		parent = sq_to_tg(parent_sq);
1776		if (!parent)
1777			break;
1778
1779		/*
1780		 * The parent doesn't have low limit, it always reaches low
1781		 * limit. Its overflow time is useless for children
1782		 */
1783		if (!parent->bps[READ][LIMIT_LOW] &&
1784		    !parent->iops[READ][LIMIT_LOW] &&
1785		    !parent->bps[WRITE][LIMIT_LOW] &&
1786		    !parent->iops[WRITE][LIMIT_LOW])
1787			continue;
1788		if (time_after(__tg_last_low_overflow_time(parent), ret))
1789			ret = __tg_last_low_overflow_time(parent);
1790	}
1791	return ret;
1792}
1793
1794static bool throtl_tg_is_idle(struct throtl_grp *tg)
1795{
1796	/*
1797	 * cgroup is idle if:
1798	 * - single idle is too long, longer than a fixed value (in case user
1799	 *   configure a too big threshold) or 4 times of idletime threshold
1800	 * - average think time is more than threshold
1801	 * - IO latency is largely below threshold
1802	 */
1803	unsigned long time;
1804	bool ret;
1805
1806	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1807	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1808	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1809	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1810	      tg->avg_idletime > tg->idletime_threshold ||
1811	      (tg->latency_target && tg->bio_cnt &&
1812		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1813	throtl_log(&tg->service_queue,
1814		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1815		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1816		tg->bio_cnt, ret, tg->td->scale);
1817	return ret;
1818}
1819
1820static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1821{
1822	struct throtl_service_queue *sq = &tg->service_queue;
1823	bool read_limit, write_limit;
1824
1825	/*
1826	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1827	 * reaches), it's ok to upgrade to next limit
 
1828	 */
1829	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1830	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1831	if (!read_limit && !write_limit)
1832		return true;
1833	if (read_limit && sq->nr_queued[READ] &&
1834	    (!write_limit || sq->nr_queued[WRITE]))
1835		return true;
1836	if (write_limit && sq->nr_queued[WRITE] &&
1837	    (!read_limit || sq->nr_queued[READ]))
1838		return true;
1839
1840	if (time_after_eq(jiffies,
1841		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1842	    throtl_tg_is_idle(tg))
1843		return true;
1844	return false;
1845}
1846
1847static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1848{
1849	while (true) {
1850		if (throtl_tg_can_upgrade(tg))
1851			return true;
1852		tg = sq_to_tg(tg->service_queue.parent_sq);
1853		if (!tg || !tg_to_blkg(tg)->parent)
1854			return false;
1855	}
1856	return false;
1857}
1858
1859static bool throtl_can_upgrade(struct throtl_data *td,
1860	struct throtl_grp *this_tg)
1861{
1862	struct cgroup_subsys_state *pos_css;
1863	struct blkcg_gq *blkg;
1864
1865	if (td->limit_index != LIMIT_LOW)
1866		return false;
1867
1868	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1869		return false;
1870
1871	rcu_read_lock();
1872	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873		struct throtl_grp *tg = blkg_to_tg(blkg);
1874
1875		if (tg == this_tg)
1876			continue;
1877		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1878			continue;
1879		if (!throtl_hierarchy_can_upgrade(tg)) {
1880			rcu_read_unlock();
1881			return false;
1882		}
1883	}
1884	rcu_read_unlock();
1885	return true;
1886}
1887
1888static void throtl_upgrade_check(struct throtl_grp *tg)
1889{
1890	unsigned long now = jiffies;
1891
1892	if (tg->td->limit_index != LIMIT_LOW)
1893		return;
1894
1895	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1896		return;
1897
1898	tg->last_check_time = now;
1899
1900	if (!time_after_eq(now,
1901	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1902		return;
1903
1904	if (throtl_can_upgrade(tg->td, NULL))
1905		throtl_upgrade_state(tg->td);
1906}
1907
1908static void throtl_upgrade_state(struct throtl_data *td)
1909{
1910	struct cgroup_subsys_state *pos_css;
1911	struct blkcg_gq *blkg;
1912
1913	throtl_log(&td->service_queue, "upgrade to max");
1914	td->limit_index = LIMIT_MAX;
1915	td->low_upgrade_time = jiffies;
1916	td->scale = 0;
1917	rcu_read_lock();
1918	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1919		struct throtl_grp *tg = blkg_to_tg(blkg);
1920		struct throtl_service_queue *sq = &tg->service_queue;
1921
1922		tg->disptime = jiffies - 1;
1923		throtl_select_dispatch(sq);
1924		throtl_schedule_next_dispatch(sq, true);
1925	}
1926	rcu_read_unlock();
1927	throtl_select_dispatch(&td->service_queue);
1928	throtl_schedule_next_dispatch(&td->service_queue, true);
1929	queue_work(kthrotld_workqueue, &td->dispatch_work);
1930}
1931
1932static void throtl_downgrade_state(struct throtl_data *td, int new)
1933{
1934	td->scale /= 2;
1935
1936	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1937	if (td->scale) {
1938		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1939		return;
1940	}
1941
1942	td->limit_index = new;
1943	td->low_downgrade_time = jiffies;
1944}
1945
1946static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1947{
1948	struct throtl_data *td = tg->td;
1949	unsigned long now = jiffies;
1950
1951	/*
1952	 * If cgroup is below low limit, consider downgrade and throttle other
1953	 * cgroups
1954	 */
1955	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1956	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1957					td->throtl_slice) &&
1958	    (!throtl_tg_is_idle(tg) ||
1959	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1960		return true;
1961	return false;
1962}
1963
1964static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1965{
1966	while (true) {
1967		if (!throtl_tg_can_downgrade(tg))
1968			return false;
1969		tg = sq_to_tg(tg->service_queue.parent_sq);
1970		if (!tg || !tg_to_blkg(tg)->parent)
1971			break;
1972	}
1973	return true;
1974}
1975
1976static void throtl_downgrade_check(struct throtl_grp *tg)
1977{
1978	uint64_t bps;
1979	unsigned int iops;
1980	unsigned long elapsed_time;
1981	unsigned long now = jiffies;
1982
1983	if (tg->td->limit_index != LIMIT_MAX ||
1984	    !tg->td->limit_valid[LIMIT_LOW])
1985		return;
1986	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1987		return;
1988	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1989		return;
1990
1991	elapsed_time = now - tg->last_check_time;
1992	tg->last_check_time = now;
1993
1994	if (time_before(now, tg_last_low_overflow_time(tg) +
1995			tg->td->throtl_slice))
1996		return;
1997
1998	if (tg->bps[READ][LIMIT_LOW]) {
1999		bps = tg->last_bytes_disp[READ] * HZ;
2000		do_div(bps, elapsed_time);
2001		if (bps >= tg->bps[READ][LIMIT_LOW])
2002			tg->last_low_overflow_time[READ] = now;
2003	}
2004
2005	if (tg->bps[WRITE][LIMIT_LOW]) {
2006		bps = tg->last_bytes_disp[WRITE] * HZ;
2007		do_div(bps, elapsed_time);
2008		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2009			tg->last_low_overflow_time[WRITE] = now;
2010	}
2011
2012	if (tg->iops[READ][LIMIT_LOW]) {
2013		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2014		if (iops >= tg->iops[READ][LIMIT_LOW])
2015			tg->last_low_overflow_time[READ] = now;
2016	}
2017
2018	if (tg->iops[WRITE][LIMIT_LOW]) {
2019		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2020		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2021			tg->last_low_overflow_time[WRITE] = now;
2022	}
2023
2024	/*
2025	 * If cgroup is below low limit, consider downgrade and throttle other
2026	 * cgroups
2027	 */
2028	if (throtl_hierarchy_can_downgrade(tg))
2029		throtl_downgrade_state(tg->td, LIMIT_LOW);
2030
2031	tg->last_bytes_disp[READ] = 0;
2032	tg->last_bytes_disp[WRITE] = 0;
2033	tg->last_io_disp[READ] = 0;
2034	tg->last_io_disp[WRITE] = 0;
2035}
2036
2037static void blk_throtl_update_idletime(struct throtl_grp *tg)
2038{
2039	unsigned long now = ktime_get_ns() >> 10;
2040	unsigned long last_finish_time = tg->last_finish_time;
2041
2042	if (now <= last_finish_time || last_finish_time == 0 ||
2043	    last_finish_time == tg->checked_last_finish_time)
2044		return;
2045
2046	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2047	tg->checked_last_finish_time = last_finish_time;
2048}
2049
2050#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2051static void throtl_update_latency_buckets(struct throtl_data *td)
2052{
2053	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2054	int i, cpu, rw;
2055	unsigned long last_latency[2] = { 0 };
2056	unsigned long latency[2];
2057
2058	if (!blk_queue_nonrot(td->queue))
2059		return;
2060	if (time_before(jiffies, td->last_calculate_time + HZ))
2061		return;
2062	td->last_calculate_time = jiffies;
2063
2064	memset(avg_latency, 0, sizeof(avg_latency));
2065	for (rw = READ; rw <= WRITE; rw++) {
2066		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2067			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2068
2069			for_each_possible_cpu(cpu) {
2070				struct latency_bucket *bucket;
2071
2072				/* this isn't race free, but ok in practice */
2073				bucket = per_cpu_ptr(td->latency_buckets[rw],
2074					cpu);
2075				tmp->total_latency += bucket[i].total_latency;
2076				tmp->samples += bucket[i].samples;
2077				bucket[i].total_latency = 0;
2078				bucket[i].samples = 0;
2079			}
2080
2081			if (tmp->samples >= 32) {
2082				int samples = tmp->samples;
2083
2084				latency[rw] = tmp->total_latency;
2085
2086				tmp->total_latency = 0;
2087				tmp->samples = 0;
2088				latency[rw] /= samples;
2089				if (latency[rw] == 0)
2090					continue;
2091				avg_latency[rw][i].latency = latency[rw];
2092			}
2093		}
2094	}
2095
2096	for (rw = READ; rw <= WRITE; rw++) {
2097		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2098			if (!avg_latency[rw][i].latency) {
2099				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2100					td->avg_buckets[rw][i].latency =
2101						last_latency[rw];
2102				continue;
2103			}
2104
2105			if (!td->avg_buckets[rw][i].valid)
2106				latency[rw] = avg_latency[rw][i].latency;
2107			else
2108				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2109					avg_latency[rw][i].latency) >> 3;
2110
2111			td->avg_buckets[rw][i].latency = max(latency[rw],
2112				last_latency[rw]);
2113			td->avg_buckets[rw][i].valid = true;
2114			last_latency[rw] = td->avg_buckets[rw][i].latency;
2115		}
2116	}
2117
2118	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2119		throtl_log(&td->service_queue,
2120			"Latency bucket %d: read latency=%ld, read valid=%d, "
2121			"write latency=%ld, write valid=%d", i,
2122			td->avg_buckets[READ][i].latency,
2123			td->avg_buckets[READ][i].valid,
2124			td->avg_buckets[WRITE][i].latency,
2125			td->avg_buckets[WRITE][i].valid);
2126}
2127#else
2128static inline void throtl_update_latency_buckets(struct throtl_data *td)
2129{
2130}
2131#endif
2132
2133static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2134{
2135#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2136	if (bio->bi_css) {
2137		if (bio->bi_cg_private)
2138			blkg_put(tg_to_blkg(bio->bi_cg_private));
2139		bio->bi_cg_private = tg;
2140		blkg_get(tg_to_blkg(tg));
2141	}
2142	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2143#endif
2144}
2145
2146bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2147		    struct bio *bio)
2148{
2149	struct throtl_qnode *qn = NULL;
2150	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2151	struct throtl_service_queue *sq;
2152	bool rw = bio_data_dir(bio);
2153	bool throttled = false;
2154	struct throtl_data *td = tg->td;
2155
2156	WARN_ON_ONCE(!rcu_read_lock_held());
2157
2158	/* see throtl_charge_bio() */
2159	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2160		goto out;
2161
2162	spin_lock_irq(q->queue_lock);
2163
2164	throtl_update_latency_buckets(td);
2165
2166	if (unlikely(blk_queue_bypass(q)))
2167		goto out_unlock;
2168
2169	blk_throtl_assoc_bio(tg, bio);
2170	blk_throtl_update_idletime(tg);
2171
2172	sq = &tg->service_queue;
2173
2174again:
2175	while (true) {
2176		if (tg->last_low_overflow_time[rw] == 0)
2177			tg->last_low_overflow_time[rw] = jiffies;
2178		throtl_downgrade_check(tg);
2179		throtl_upgrade_check(tg);
2180		/* throtl is FIFO - if bios are already queued, should queue */
2181		if (sq->nr_queued[rw])
2182			break;
2183
2184		/* if above limits, break to queue */
2185		if (!tg_may_dispatch(tg, bio, NULL)) {
2186			tg->last_low_overflow_time[rw] = jiffies;
2187			if (throtl_can_upgrade(td, tg)) {
2188				throtl_upgrade_state(td);
2189				goto again;
2190			}
2191			break;
2192		}
2193
2194		/* within limits, let's charge and dispatch directly */
2195		throtl_charge_bio(tg, bio);
2196
2197		/*
2198		 * We need to trim slice even when bios are not being queued
2199		 * otherwise it might happen that a bio is not queued for
2200		 * a long time and slice keeps on extending and trim is not
2201		 * called for a long time. Now if limits are reduced suddenly
2202		 * we take into account all the IO dispatched so far at new
2203		 * low rate and * newly queued IO gets a really long dispatch
2204		 * time.
2205		 *
2206		 * So keep on trimming slice even if bio is not queued.
2207		 */
2208		throtl_trim_slice(tg, rw);
2209
2210		/*
2211		 * @bio passed through this layer without being throttled.
2212		 * Climb up the ladder.  If we''re already at the top, it
2213		 * can be executed directly.
2214		 */
2215		qn = &tg->qnode_on_parent[rw];
2216		sq = sq->parent_sq;
2217		tg = sq_to_tg(sq);
2218		if (!tg)
2219			goto out_unlock;
2220	}
2221
2222	/* out-of-limit, queue to @tg */
2223	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2224		   rw == READ ? 'R' : 'W',
2225		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2226		   tg_bps_limit(tg, rw),
2227		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2228		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2229
2230	tg->last_low_overflow_time[rw] = jiffies;
2231
2232	td->nr_queued[rw]++;
2233	throtl_add_bio_tg(bio, qn, tg);
2234	throttled = true;
2235
2236	/*
2237	 * Update @tg's dispatch time and force schedule dispatch if @tg
2238	 * was empty before @bio.  The forced scheduling isn't likely to
2239	 * cause undue delay as @bio is likely to be dispatched directly if
2240	 * its @tg's disptime is not in the future.
2241	 */
2242	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2243		tg_update_disptime(tg);
2244		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2245	}
2246
2247out_unlock:
2248	spin_unlock_irq(q->queue_lock);
 
 
2249out:
2250	bio_set_flag(bio, BIO_THROTTLED);
2251
2252#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2253	if (throttled || !td->track_bio_latency)
2254		bio->bi_issue_stat.stat |= SKIP_LATENCY;
2255#endif
 
2256	return throttled;
2257}
2258
2259#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2260static void throtl_track_latency(struct throtl_data *td, sector_t size,
2261	int op, unsigned long time)
2262{
2263	struct latency_bucket *latency;
2264	int index;
2265
2266	if (!td || td->limit_index != LIMIT_LOW ||
2267	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2268	    !blk_queue_nonrot(td->queue))
2269		return;
2270
2271	index = request_bucket_index(size);
2272
2273	latency = get_cpu_ptr(td->latency_buckets[op]);
2274	latency[index].total_latency += time;
2275	latency[index].samples++;
2276	put_cpu_ptr(td->latency_buckets[op]);
2277}
2278
2279void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2280{
2281	struct request_queue *q = rq->q;
2282	struct throtl_data *td = q->td;
2283
2284	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2285		req_op(rq), time_ns >> 10);
2286}
2287
2288void blk_throtl_bio_endio(struct bio *bio)
2289{
2290	struct throtl_grp *tg;
2291	u64 finish_time_ns;
2292	unsigned long finish_time;
2293	unsigned long start_time;
2294	unsigned long lat;
2295	int rw = bio_data_dir(bio);
2296
2297	tg = bio->bi_cg_private;
2298	if (!tg)
2299		return;
2300	bio->bi_cg_private = NULL;
2301
2302	finish_time_ns = ktime_get_ns();
2303	tg->last_finish_time = finish_time_ns >> 10;
2304
2305	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2306	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2307	if (!start_time || finish_time <= start_time) {
2308		blkg_put(tg_to_blkg(tg));
2309		return;
2310	}
2311
2312	lat = finish_time - start_time;
2313	/* this is only for bio based driver */
2314	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2315		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2316			bio_op(bio), lat);
2317
2318	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2319		int bucket;
2320		unsigned int threshold;
2321
2322		bucket = request_bucket_index(
2323			blk_stat_size(&bio->bi_issue_stat));
2324		threshold = tg->td->avg_buckets[rw][bucket].latency +
2325			tg->latency_target;
2326		if (lat > threshold)
2327			tg->bad_bio_cnt++;
2328		/*
2329		 * Not race free, could get wrong count, which means cgroups
2330		 * will be throttled
2331		 */
2332		tg->bio_cnt++;
2333	}
2334
2335	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2336		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2337		tg->bio_cnt /= 2;
2338		tg->bad_bio_cnt /= 2;
2339	}
2340
2341	blkg_put(tg_to_blkg(tg));
2342}
2343#endif
2344
2345/*
2346 * Dispatch all bios from all children tg's queued on @parent_sq.  On
2347 * return, @parent_sq is guaranteed to not have any active children tg's
2348 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2349 */
2350static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2351{
2352	struct throtl_grp *tg;
2353
2354	while ((tg = throtl_rb_first(parent_sq))) {
2355		struct throtl_service_queue *sq = &tg->service_queue;
2356		struct bio *bio;
2357
2358		throtl_dequeue_tg(tg);
2359
2360		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2361			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2362		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2363			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2364	}
2365}
2366
2367/**
2368 * blk_throtl_drain - drain throttled bios
2369 * @q: request_queue to drain throttled bios for
2370 *
2371 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2372 */
2373void blk_throtl_drain(struct request_queue *q)
2374	__releases(q->queue_lock) __acquires(q->queue_lock)
2375{
2376	struct throtl_data *td = q->td;
2377	struct blkcg_gq *blkg;
2378	struct cgroup_subsys_state *pos_css;
2379	struct bio *bio;
2380	int rw;
2381
2382	queue_lockdep_assert_held(q);
2383	rcu_read_lock();
2384
2385	/*
2386	 * Drain each tg while doing post-order walk on the blkg tree, so
2387	 * that all bios are propagated to td->service_queue.  It'd be
2388	 * better to walk service_queue tree directly but blkg walk is
2389	 * easier.
2390	 */
2391	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2392		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2393
2394	/* finally, transfer bios from top-level tg's into the td */
2395	tg_drain_bios(&td->service_queue);
2396
2397	rcu_read_unlock();
2398	spin_unlock_irq(q->queue_lock);
2399
2400	/* all bios now should be in td->service_queue, issue them */
2401	for (rw = READ; rw <= WRITE; rw++)
2402		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2403						NULL)))
2404			generic_make_request(bio);
2405
2406	spin_lock_irq(q->queue_lock);
2407}
2408
2409int blk_throtl_init(struct request_queue *q)
2410{
2411	struct throtl_data *td;
2412	int ret;
2413
2414	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2415	if (!td)
2416		return -ENOMEM;
2417	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2418		LATENCY_BUCKET_SIZE, __alignof__(u64));
2419	if (!td->latency_buckets[READ]) {
2420		kfree(td);
2421		return -ENOMEM;
2422	}
2423	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2424		LATENCY_BUCKET_SIZE, __alignof__(u64));
2425	if (!td->latency_buckets[WRITE]) {
2426		free_percpu(td->latency_buckets[READ]);
2427		kfree(td);
2428		return -ENOMEM;
2429	}
2430
2431	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2432	throtl_service_queue_init(&td->service_queue);
2433
2434	q->td = td;
2435	td->queue = q;
2436
2437	td->limit_valid[LIMIT_MAX] = true;
2438	td->limit_index = LIMIT_MAX;
2439	td->low_upgrade_time = jiffies;
2440	td->low_downgrade_time = jiffies;
2441
2442	/* activate policy */
2443	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2444	if (ret) {
2445		free_percpu(td->latency_buckets[READ]);
2446		free_percpu(td->latency_buckets[WRITE]);
2447		kfree(td);
2448	}
2449	return ret;
2450}
2451
2452void blk_throtl_exit(struct request_queue *q)
2453{
2454	BUG_ON(!q->td);
2455	throtl_shutdown_wq(q);
2456	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2457	free_percpu(q->td->latency_buckets[READ]);
2458	free_percpu(q->td->latency_buckets[WRITE]);
2459	kfree(q->td);
2460}
2461
2462void blk_throtl_register_queue(struct request_queue *q)
2463{
2464	struct throtl_data *td;
2465	int i;
2466
2467	td = q->td;
2468	BUG_ON(!td);
2469
2470	if (blk_queue_nonrot(q)) {
2471		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2472		td->filtered_latency = LATENCY_FILTERED_SSD;
2473	} else {
2474		td->throtl_slice = DFL_THROTL_SLICE_HD;
2475		td->filtered_latency = LATENCY_FILTERED_HD;
2476		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2477			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2478			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2479		}
2480	}
2481#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2482	/* if no low limit, use previous default */
2483	td->throtl_slice = DFL_THROTL_SLICE_HD;
2484#endif
2485
2486	td->track_bio_latency = !queue_is_rq_based(q);
2487	if (!td->track_bio_latency)
2488		blk_stat_enable_accounting(q);
2489}
2490
2491#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2492ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2493{
2494	if (!q->td)
2495		return -EINVAL;
2496	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2497}
2498
2499ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2500	const char *page, size_t count)
2501{
2502	unsigned long v;
2503	unsigned long t;
2504
2505	if (!q->td)
2506		return -EINVAL;
2507	if (kstrtoul(page, 10, &v))
2508		return -EINVAL;
2509	t = msecs_to_jiffies(v);
2510	if (t == 0 || t > MAX_THROTL_SLICE)
2511		return -EINVAL;
2512	q->td->throtl_slice = t;
2513	return count;
2514}
2515#endif
2516
2517static int __init throtl_init(void)
2518{
2519	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2520	if (!kthrotld_workqueue)
2521		panic("Failed to create kthrotld\n");
2522
2523	return blkcg_policy_register(&blkcg_policy_throtl);
2524}
2525
2526module_init(throtl_init);
v3.15
 
   1/*
   2 * Interface for controlling IO bandwidth on a request queue
   3 *
   4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/blkdev.h>
  10#include <linux/bio.h>
  11#include <linux/blktrace_api.h>
  12#include "blk-cgroup.h"
  13#include "blk.h"
  14
  15/* Max dispatch from a group in 1 round */
  16static int throtl_grp_quantum = 8;
  17
  18/* Total max dispatch from all groups in one round */
  19static int throtl_quantum = 32;
  20
  21/* Throttling is performed over 100ms slice and after that slice is renewed */
  22static unsigned long throtl_slice = HZ/10;	/* 100 ms */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23
  24static struct blkcg_policy blkcg_policy_throtl;
  25
  26/* A workqueue to queue throttle related work */
  27static struct workqueue_struct *kthrotld_workqueue;
  28
  29/*
  30 * To implement hierarchical throttling, throtl_grps form a tree and bios
  31 * are dispatched upwards level by level until they reach the top and get
  32 * issued.  When dispatching bios from the children and local group at each
  33 * level, if the bios are dispatched into a single bio_list, there's a risk
  34 * of a local or child group which can queue many bios at once filling up
  35 * the list starving others.
  36 *
  37 * To avoid such starvation, dispatched bios are queued separately
  38 * according to where they came from.  When they are again dispatched to
  39 * the parent, they're popped in round-robin order so that no single source
  40 * hogs the dispatch window.
  41 *
  42 * throtl_qnode is used to keep the queued bios separated by their sources.
  43 * Bios are queued to throtl_qnode which in turn is queued to
  44 * throtl_service_queue and then dispatched in round-robin order.
  45 *
  46 * It's also used to track the reference counts on blkg's.  A qnode always
  47 * belongs to a throtl_grp and gets queued on itself or the parent, so
  48 * incrementing the reference of the associated throtl_grp when a qnode is
  49 * queued and decrementing when dequeued is enough to keep the whole blkg
  50 * tree pinned while bios are in flight.
  51 */
  52struct throtl_qnode {
  53	struct list_head	node;		/* service_queue->queued[] */
  54	struct bio_list		bios;		/* queued bios */
  55	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  56};
  57
  58struct throtl_service_queue {
  59	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  60
  61	/*
  62	 * Bios queued directly to this service_queue or dispatched from
  63	 * children throtl_grp's.
  64	 */
  65	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  66	unsigned int		nr_queued[2];	/* number of queued bios */
  67
  68	/*
  69	 * RB tree of active children throtl_grp's, which are sorted by
  70	 * their ->disptime.
  71	 */
  72	struct rb_root		pending_tree;	/* RB tree of active tgs */
  73	struct rb_node		*first_pending;	/* first node in the tree */
  74	unsigned int		nr_pending;	/* # queued in the tree */
  75	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  76	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  77};
  78
  79enum tg_state_flags {
  80	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  81	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  82};
  83
  84#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
  85
  86/* Per-cpu group stats */
  87struct tg_stats_cpu {
  88	/* total bytes transferred */
  89	struct blkg_rwstat		service_bytes;
  90	/* total IOs serviced, post merge */
  91	struct blkg_rwstat		serviced;
  92};
  93
  94struct throtl_grp {
  95	/* must be the first member */
  96	struct blkg_policy_data pd;
  97
  98	/* active throtl group service_queue member */
  99	struct rb_node rb_node;
 100
 101	/* throtl_data this group belongs to */
 102	struct throtl_data *td;
 103
 104	/* this group's service queue */
 105	struct throtl_service_queue service_queue;
 106
 107	/*
 108	 * qnode_on_self is used when bios are directly queued to this
 109	 * throtl_grp so that local bios compete fairly with bios
 110	 * dispatched from children.  qnode_on_parent is used when bios are
 111	 * dispatched from this throtl_grp into its parent and will compete
 112	 * with the sibling qnode_on_parents and the parent's
 113	 * qnode_on_self.
 114	 */
 115	struct throtl_qnode qnode_on_self[2];
 116	struct throtl_qnode qnode_on_parent[2];
 117
 118	/*
 119	 * Dispatch time in jiffies. This is the estimated time when group
 120	 * will unthrottle and is ready to dispatch more bio. It is used as
 121	 * key to sort active groups in service tree.
 122	 */
 123	unsigned long disptime;
 124
 125	unsigned int flags;
 126
 127	/* are there any throtl rules between this group and td? */
 128	bool has_rules[2];
 129
 130	/* bytes per second rate limits */
 131	uint64_t bps[2];
 132
 133	/* IOPS limits */
 134	unsigned int iops[2];
 
 
 
 
 135
 136	/* Number of bytes disptached in current slice */
 137	uint64_t bytes_disp[2];
 138	/* Number of bio's dispatched in current slice */
 139	unsigned int io_disp[2];
 140
 
 
 
 
 
 
 
 
 
 141	/* When did we start a new slice */
 142	unsigned long slice_start[2];
 143	unsigned long slice_end[2];
 144
 145	/* Per cpu stats pointer */
 146	struct tg_stats_cpu __percpu *stats_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	/* List of tgs waiting for per cpu stats memory to be allocated */
 149	struct list_head stats_alloc_node;
 
 150};
 151
 152struct throtl_data
 153{
 154	/* service tree for active throtl groups */
 155	struct throtl_service_queue service_queue;
 156
 157	struct request_queue *queue;
 158
 159	/* Total Number of queued bios on READ and WRITE lists */
 160	unsigned int nr_queued[2];
 161
 162	/*
 163	 * number of total undestroyed groups
 164	 */
 165	unsigned int nr_undestroyed_grps;
 166
 167	/* Work for dispatching throttled bios */
 168	struct work_struct dispatch_work;
 169};
 
 
 
 
 170
 171/* list and work item to allocate percpu group stats */
 172static DEFINE_SPINLOCK(tg_stats_alloc_lock);
 173static LIST_HEAD(tg_stats_alloc_list);
 174
 175static void tg_stats_alloc_fn(struct work_struct *);
 176static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
 
 
 
 177
 178static void throtl_pending_timer_fn(unsigned long arg);
 
 
 
 179
 180static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 181{
 182	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 183}
 184
 185static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 186{
 187	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 188}
 189
 190static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 191{
 192	return pd_to_blkg(&tg->pd);
 193}
 194
 195static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
 196{
 197	return blkg_to_tg(td->queue->root_blkg);
 198}
 199
 200/**
 201 * sq_to_tg - return the throl_grp the specified service queue belongs to
 202 * @sq: the throtl_service_queue of interest
 203 *
 204 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 205 * embedded in throtl_data, %NULL is returned.
 206 */
 207static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 208{
 209	if (sq && sq->parent_sq)
 210		return container_of(sq, struct throtl_grp, service_queue);
 211	else
 212		return NULL;
 213}
 214
 215/**
 216 * sq_to_td - return throtl_data the specified service queue belongs to
 217 * @sq: the throtl_service_queue of interest
 218 *
 219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 220 * Determine the associated throtl_data accordingly and return it.
 221 */
 222static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 223{
 224	struct throtl_grp *tg = sq_to_tg(sq);
 225
 226	if (tg)
 227		return tg->td;
 228	else
 229		return container_of(sq, struct throtl_data, service_queue);
 230}
 231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232/**
 233 * throtl_log - log debug message via blktrace
 234 * @sq: the service_queue being reported
 235 * @fmt: printf format string
 236 * @args: printf args
 237 *
 238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 239 * throtl_grp; otherwise, just "throtl".
 240 *
 241 * TODO: this should be made a function and name formatting should happen
 242 * after testing whether blktrace is enabled.
 243 */
 244#define throtl_log(sq, fmt, args...)	do {				\
 245	struct throtl_grp *__tg = sq_to_tg((sq));			\
 246	struct throtl_data *__td = sq_to_td((sq));			\
 247									\
 248	(void)__td;							\
 
 
 249	if ((__tg)) {							\
 250		char __pbuf[128];					\
 251									\
 252		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
 253		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
 254	} else {							\
 255		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 256	}								\
 257} while (0)
 258
 259static void tg_stats_init(struct tg_stats_cpu *tg_stats)
 260{
 261	blkg_rwstat_init(&tg_stats->service_bytes);
 262	blkg_rwstat_init(&tg_stats->serviced);
 263}
 264
 265/*
 266 * Worker for allocating per cpu stat for tgs. This is scheduled on the
 267 * system_wq once there are some groups on the alloc_list waiting for
 268 * allocation.
 269 */
 270static void tg_stats_alloc_fn(struct work_struct *work)
 271{
 272	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
 273	struct delayed_work *dwork = to_delayed_work(work);
 274	bool empty = false;
 275
 276alloc_stats:
 277	if (!stats_cpu) {
 278		int cpu;
 279
 280		stats_cpu = alloc_percpu(struct tg_stats_cpu);
 281		if (!stats_cpu) {
 282			/* allocation failed, try again after some time */
 283			schedule_delayed_work(dwork, msecs_to_jiffies(10));
 284			return;
 285		}
 286		for_each_possible_cpu(cpu)
 287			tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
 288	}
 289
 290	spin_lock_irq(&tg_stats_alloc_lock);
 291
 292	if (!list_empty(&tg_stats_alloc_list)) {
 293		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
 294							 struct throtl_grp,
 295							 stats_alloc_node);
 296		swap(tg->stats_cpu, stats_cpu);
 297		list_del_init(&tg->stats_alloc_node);
 298	}
 299
 300	empty = list_empty(&tg_stats_alloc_list);
 301	spin_unlock_irq(&tg_stats_alloc_lock);
 302	if (!empty)
 303		goto alloc_stats;
 304}
 305
 306static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 307{
 308	INIT_LIST_HEAD(&qn->node);
 309	bio_list_init(&qn->bios);
 310	qn->tg = tg;
 311}
 312
 313/**
 314 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 315 * @bio: bio being added
 316 * @qn: qnode to add bio to
 317 * @queued: the service_queue->queued[] list @qn belongs to
 318 *
 319 * Add @bio to @qn and put @qn on @queued if it's not already on.
 320 * @qn->tg's reference count is bumped when @qn is activated.  See the
 321 * comment on top of throtl_qnode definition for details.
 322 */
 323static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 324				 struct list_head *queued)
 325{
 326	bio_list_add(&qn->bios, bio);
 327	if (list_empty(&qn->node)) {
 328		list_add_tail(&qn->node, queued);
 329		blkg_get(tg_to_blkg(qn->tg));
 330	}
 331}
 332
 333/**
 334 * throtl_peek_queued - peek the first bio on a qnode list
 335 * @queued: the qnode list to peek
 336 */
 337static struct bio *throtl_peek_queued(struct list_head *queued)
 338{
 339	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 340	struct bio *bio;
 341
 342	if (list_empty(queued))
 343		return NULL;
 344
 345	bio = bio_list_peek(&qn->bios);
 346	WARN_ON_ONCE(!bio);
 347	return bio;
 348}
 349
 350/**
 351 * throtl_pop_queued - pop the first bio form a qnode list
 352 * @queued: the qnode list to pop a bio from
 353 * @tg_to_put: optional out argument for throtl_grp to put
 354 *
 355 * Pop the first bio from the qnode list @queued.  After popping, the first
 356 * qnode is removed from @queued if empty or moved to the end of @queued so
 357 * that the popping order is round-robin.
 358 *
 359 * When the first qnode is removed, its associated throtl_grp should be put
 360 * too.  If @tg_to_put is NULL, this function automatically puts it;
 361 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 362 * responsible for putting it.
 363 */
 364static struct bio *throtl_pop_queued(struct list_head *queued,
 365				     struct throtl_grp **tg_to_put)
 366{
 367	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 368	struct bio *bio;
 369
 370	if (list_empty(queued))
 371		return NULL;
 372
 373	bio = bio_list_pop(&qn->bios);
 374	WARN_ON_ONCE(!bio);
 375
 376	if (bio_list_empty(&qn->bios)) {
 377		list_del_init(&qn->node);
 378		if (tg_to_put)
 379			*tg_to_put = qn->tg;
 380		else
 381			blkg_put(tg_to_blkg(qn->tg));
 382	} else {
 383		list_move_tail(&qn->node, queued);
 384	}
 385
 386	return bio;
 387}
 388
 389/* init a service_queue, assumes the caller zeroed it */
 390static void throtl_service_queue_init(struct throtl_service_queue *sq,
 391				      struct throtl_service_queue *parent_sq)
 392{
 393	INIT_LIST_HEAD(&sq->queued[0]);
 394	INIT_LIST_HEAD(&sq->queued[1]);
 395	sq->pending_tree = RB_ROOT;
 396	sq->parent_sq = parent_sq;
 397	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
 398		    (unsigned long)sq);
 399}
 400
 401static void throtl_service_queue_exit(struct throtl_service_queue *sq)
 402{
 403	del_timer_sync(&sq->pending_timer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406static void throtl_pd_init(struct blkcg_gq *blkg)
 407{
 408	struct throtl_grp *tg = blkg_to_tg(blkg);
 
 409	struct throtl_data *td = blkg->q->td;
 410	struct throtl_service_queue *parent_sq;
 411	unsigned long flags;
 412	int rw;
 413
 414	/*
 415	 * If sane_hierarchy is enabled, we switch to properly hierarchical
 416	 * behavior where limits on a given throtl_grp are applied to the
 417	 * whole subtree rather than just the group itself.  e.g. If 16M
 418	 * read_bps limit is set on the root group, the whole system can't
 419	 * exceed 16M for the device.
 420	 *
 421	 * If sane_hierarchy is not enabled, the broken flat hierarchy
 422	 * behavior is retained where all throtl_grps are treated as if
 423	 * they're all separate root groups right below throtl_data.
 424	 * Limits of a group don't interact with limits of other groups
 425	 * regardless of the position of the group in the hierarchy.
 426	 */
 427	parent_sq = &td->service_queue;
 428
 429	if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
 430		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 431
 432	throtl_service_queue_init(&tg->service_queue, parent_sq);
 433
 434	for (rw = READ; rw <= WRITE; rw++) {
 435		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 436		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 437	}
 438
 439	RB_CLEAR_NODE(&tg->rb_node);
 440	tg->td = td;
 441
 442	tg->bps[READ] = -1;
 443	tg->bps[WRITE] = -1;
 444	tg->iops[READ] = -1;
 445	tg->iops[WRITE] = -1;
 446
 447	/*
 448	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
 449	 * but percpu allocator can't be called from IO path.  Queue tg on
 450	 * tg_stats_alloc_list and allocate from work item.
 451	 */
 452	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
 453	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
 454	schedule_delayed_work(&tg_stats_alloc_work, 0);
 455	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
 456}
 457
 458/*
 459 * Set has_rules[] if @tg or any of its parents have limits configured.
 460 * This doesn't require walking up to the top of the hierarchy as the
 461 * parent's has_rules[] is guaranteed to be correct.
 462 */
 463static void tg_update_has_rules(struct throtl_grp *tg)
 464{
 465	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 
 466	int rw;
 467
 468	for (rw = READ; rw <= WRITE; rw++)
 469		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 470				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
 
 
 471}
 472
 473static void throtl_pd_online(struct blkcg_gq *blkg)
 474{
 
 475	/*
 476	 * We don't want new groups to escape the limits of its ancestors.
 477	 * Update has_rules[] after a new group is brought online.
 478	 */
 479	tg_update_has_rules(blkg_to_tg(blkg));
 480}
 481
 482static void throtl_pd_exit(struct blkcg_gq *blkg)
 483{
 484	struct throtl_grp *tg = blkg_to_tg(blkg);
 485	unsigned long flags;
 
 486
 487	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
 488	list_del_init(&tg->stats_alloc_node);
 489	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
 490
 491	free_percpu(tg->stats_cpu);
 
 
 
 
 492
 493	throtl_service_queue_exit(&tg->service_queue);
 494}
 495
 496static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
 
 497{
 498	struct throtl_grp *tg = blkg_to_tg(blkg);
 499	int cpu;
 500
 501	if (tg->stats_cpu == NULL)
 502		return;
 
 
 503
 504	for_each_possible_cpu(cpu) {
 505		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
 506
 507		blkg_rwstat_reset(&sc->service_bytes);
 508		blkg_rwstat_reset(&sc->serviced);
 509	}
 510}
 511
 512static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
 513					   struct blkcg *blkcg)
 514{
 515	/*
 516	 * This is the common case when there are no blkcgs.  Avoid lookup
 517	 * in this case
 518	 */
 519	if (blkcg == &blkcg_root)
 520		return td_root_tg(td);
 521
 522	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
 523}
 524
 525static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
 526						  struct blkcg *blkcg)
 527{
 528	struct request_queue *q = td->queue;
 529	struct throtl_grp *tg = NULL;
 530
 531	/*
 532	 * This is the common case when there are no blkcgs.  Avoid lookup
 533	 * in this case
 534	 */
 535	if (blkcg == &blkcg_root) {
 536		tg = td_root_tg(td);
 537	} else {
 538		struct blkcg_gq *blkg;
 539
 540		blkg = blkg_lookup_create(blkcg, q);
 541
 542		/* if %NULL and @q is alive, fall back to root_tg */
 543		if (!IS_ERR(blkg))
 544			tg = blkg_to_tg(blkg);
 545		else if (!blk_queue_dying(q))
 546			tg = td_root_tg(td);
 547	}
 548
 549	return tg;
 550}
 551
 552static struct throtl_grp *
 553throtl_rb_first(struct throtl_service_queue *parent_sq)
 554{
 555	/* Service tree is empty */
 556	if (!parent_sq->nr_pending)
 557		return NULL;
 558
 559	if (!parent_sq->first_pending)
 560		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 561
 562	if (parent_sq->first_pending)
 563		return rb_entry_tg(parent_sq->first_pending);
 564
 565	return NULL;
 566}
 567
 568static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 569{
 570	rb_erase(n, root);
 571	RB_CLEAR_NODE(n);
 572}
 573
 574static void throtl_rb_erase(struct rb_node *n,
 575			    struct throtl_service_queue *parent_sq)
 576{
 577	if (parent_sq->first_pending == n)
 578		parent_sq->first_pending = NULL;
 579	rb_erase_init(n, &parent_sq->pending_tree);
 580	--parent_sq->nr_pending;
 581}
 582
 583static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 584{
 585	struct throtl_grp *tg;
 586
 587	tg = throtl_rb_first(parent_sq);
 588	if (!tg)
 589		return;
 590
 591	parent_sq->first_pending_disptime = tg->disptime;
 592}
 593
 594static void tg_service_queue_add(struct throtl_grp *tg)
 595{
 596	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 597	struct rb_node **node = &parent_sq->pending_tree.rb_node;
 598	struct rb_node *parent = NULL;
 599	struct throtl_grp *__tg;
 600	unsigned long key = tg->disptime;
 601	int left = 1;
 602
 603	while (*node != NULL) {
 604		parent = *node;
 605		__tg = rb_entry_tg(parent);
 606
 607		if (time_before(key, __tg->disptime))
 608			node = &parent->rb_left;
 609		else {
 610			node = &parent->rb_right;
 611			left = 0;
 612		}
 613	}
 614
 615	if (left)
 616		parent_sq->first_pending = &tg->rb_node;
 617
 618	rb_link_node(&tg->rb_node, parent, node);
 619	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 620}
 621
 622static void __throtl_enqueue_tg(struct throtl_grp *tg)
 623{
 624	tg_service_queue_add(tg);
 625	tg->flags |= THROTL_TG_PENDING;
 626	tg->service_queue.parent_sq->nr_pending++;
 627}
 628
 629static void throtl_enqueue_tg(struct throtl_grp *tg)
 630{
 631	if (!(tg->flags & THROTL_TG_PENDING))
 632		__throtl_enqueue_tg(tg);
 633}
 634
 635static void __throtl_dequeue_tg(struct throtl_grp *tg)
 636{
 637	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 638	tg->flags &= ~THROTL_TG_PENDING;
 639}
 640
 641static void throtl_dequeue_tg(struct throtl_grp *tg)
 642{
 643	if (tg->flags & THROTL_TG_PENDING)
 644		__throtl_dequeue_tg(tg);
 645}
 646
 647/* Call with queue lock held */
 648static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 649					  unsigned long expires)
 650{
 
 
 
 
 
 
 
 
 
 
 
 651	mod_timer(&sq->pending_timer, expires);
 652	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 653		   expires - jiffies, jiffies);
 654}
 655
 656/**
 657 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 658 * @sq: the service_queue to schedule dispatch for
 659 * @force: force scheduling
 660 *
 661 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 662 * dispatch time of the first pending child.  Returns %true if either timer
 663 * is armed or there's no pending child left.  %false if the current
 664 * dispatch window is still open and the caller should continue
 665 * dispatching.
 666 *
 667 * If @force is %true, the dispatch timer is always scheduled and this
 668 * function is guaranteed to return %true.  This is to be used when the
 669 * caller can't dispatch itself and needs to invoke pending_timer
 670 * unconditionally.  Note that forced scheduling is likely to induce short
 671 * delay before dispatch starts even if @sq->first_pending_disptime is not
 672 * in the future and thus shouldn't be used in hot paths.
 673 */
 674static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 675					  bool force)
 676{
 677	/* any pending children left? */
 678	if (!sq->nr_pending)
 679		return true;
 680
 681	update_min_dispatch_time(sq);
 682
 683	/* is the next dispatch time in the future? */
 684	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 685		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 686		return true;
 687	}
 688
 689	/* tell the caller to continue dispatching */
 690	return false;
 691}
 692
 693static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 694		bool rw, unsigned long start)
 695{
 696	tg->bytes_disp[rw] = 0;
 697	tg->io_disp[rw] = 0;
 698
 699	/*
 700	 * Previous slice has expired. We must have trimmed it after last
 701	 * bio dispatch. That means since start of last slice, we never used
 702	 * that bandwidth. Do try to make use of that bandwidth while giving
 703	 * credit.
 704	 */
 705	if (time_after_eq(start, tg->slice_start[rw]))
 706		tg->slice_start[rw] = start;
 707
 708	tg->slice_end[rw] = jiffies + throtl_slice;
 709	throtl_log(&tg->service_queue,
 710		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 711		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 712		   tg->slice_end[rw], jiffies);
 713}
 714
 715static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 716{
 717	tg->bytes_disp[rw] = 0;
 718	tg->io_disp[rw] = 0;
 719	tg->slice_start[rw] = jiffies;
 720	tg->slice_end[rw] = jiffies + throtl_slice;
 721	throtl_log(&tg->service_queue,
 722		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 723		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 724		   tg->slice_end[rw], jiffies);
 725}
 726
 727static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 728					unsigned long jiffy_end)
 729{
 730	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 731}
 732
 733static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 734				       unsigned long jiffy_end)
 735{
 736	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 737	throtl_log(&tg->service_queue,
 738		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 739		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 740		   tg->slice_end[rw], jiffies);
 741}
 742
 743/* Determine if previously allocated or extended slice is complete or not */
 744static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 745{
 746	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 747		return 0;
 748
 749	return 1;
 750}
 751
 752/* Trim the used slices and adjust slice start accordingly */
 753static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 754{
 755	unsigned long nr_slices, time_elapsed, io_trim;
 756	u64 bytes_trim, tmp;
 757
 758	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 759
 760	/*
 761	 * If bps are unlimited (-1), then time slice don't get
 762	 * renewed. Don't try to trim the slice if slice is used. A new
 763	 * slice will start when appropriate.
 764	 */
 765	if (throtl_slice_used(tg, rw))
 766		return;
 767
 768	/*
 769	 * A bio has been dispatched. Also adjust slice_end. It might happen
 770	 * that initially cgroup limit was very low resulting in high
 771	 * slice_end, but later limit was bumped up and bio was dispached
 772	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 773	 * is bad because it does not allow new slice to start.
 774	 */
 775
 776	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
 777
 778	time_elapsed = jiffies - tg->slice_start[rw];
 779
 780	nr_slices = time_elapsed / throtl_slice;
 781
 782	if (!nr_slices)
 783		return;
 784	tmp = tg->bps[rw] * throtl_slice * nr_slices;
 785	do_div(tmp, HZ);
 786	bytes_trim = tmp;
 787
 788	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
 
 789
 790	if (!bytes_trim && !io_trim)
 791		return;
 792
 793	if (tg->bytes_disp[rw] >= bytes_trim)
 794		tg->bytes_disp[rw] -= bytes_trim;
 795	else
 796		tg->bytes_disp[rw] = 0;
 797
 798	if (tg->io_disp[rw] >= io_trim)
 799		tg->io_disp[rw] -= io_trim;
 800	else
 801		tg->io_disp[rw] = 0;
 802
 803	tg->slice_start[rw] += nr_slices * throtl_slice;
 804
 805	throtl_log(&tg->service_queue,
 806		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 807		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 808		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 809}
 810
 811static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 812				  unsigned long *wait)
 813{
 814	bool rw = bio_data_dir(bio);
 815	unsigned int io_allowed;
 816	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 817	u64 tmp;
 818
 819	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 820
 821	/* Slice has just started. Consider one slice interval */
 822	if (!jiffy_elapsed)
 823		jiffy_elapsed_rnd = throtl_slice;
 824
 825	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 826
 827	/*
 828	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 829	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 830	 * will allow dispatch after 1 second and after that slice should
 831	 * have been trimmed.
 832	 */
 833
 834	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
 835	do_div(tmp, HZ);
 836
 837	if (tmp > UINT_MAX)
 838		io_allowed = UINT_MAX;
 839	else
 840		io_allowed = tmp;
 841
 842	if (tg->io_disp[rw] + 1 <= io_allowed) {
 843		if (wait)
 844			*wait = 0;
 845		return 1;
 846	}
 847
 848	/* Calc approx time to dispatch */
 849	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
 850
 851	if (jiffy_wait > jiffy_elapsed)
 852		jiffy_wait = jiffy_wait - jiffy_elapsed;
 853	else
 854		jiffy_wait = 1;
 855
 856	if (wait)
 857		*wait = jiffy_wait;
 858	return 0;
 859}
 860
 861static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 862				 unsigned long *wait)
 863{
 864	bool rw = bio_data_dir(bio);
 865	u64 bytes_allowed, extra_bytes, tmp;
 866	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 
 867
 868	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 869
 870	/* Slice has just started. Consider one slice interval */
 871	if (!jiffy_elapsed)
 872		jiffy_elapsed_rnd = throtl_slice;
 873
 874	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 875
 876	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
 877	do_div(tmp, HZ);
 878	bytes_allowed = tmp;
 879
 880	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
 881		if (wait)
 882			*wait = 0;
 883		return 1;
 884	}
 885
 886	/* Calc approx time to dispatch */
 887	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
 888	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
 889
 890	if (!jiffy_wait)
 891		jiffy_wait = 1;
 892
 893	/*
 894	 * This wait time is without taking into consideration the rounding
 895	 * up we did. Add that time also.
 896	 */
 897	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 898	if (wait)
 899		*wait = jiffy_wait;
 900	return 0;
 901}
 902
 903/*
 904 * Returns whether one can dispatch a bio or not. Also returns approx number
 905 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 906 */
 907static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 908			    unsigned long *wait)
 909{
 910	bool rw = bio_data_dir(bio);
 911	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 912
 913	/*
 914 	 * Currently whole state machine of group depends on first bio
 915	 * queued in the group bio list. So one should not be calling
 916	 * this function with a different bio if there are other bios
 917	 * queued.
 918	 */
 919	BUG_ON(tg->service_queue.nr_queued[rw] &&
 920	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 921
 922	/* If tg->bps = -1, then BW is unlimited */
 923	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
 
 924		if (wait)
 925			*wait = 0;
 926		return 1;
 927	}
 928
 929	/*
 930	 * If previous slice expired, start a new one otherwise renew/extend
 931	 * existing slice to make sure it is at least throtl_slice interval
 932	 * long since now.
 
 
 933	 */
 934	if (throtl_slice_used(tg, rw))
 935		throtl_start_new_slice(tg, rw);
 936	else {
 937		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
 938			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
 
 
 939	}
 940
 941	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
 942	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
 943		if (wait)
 944			*wait = 0;
 945		return 1;
 946	}
 947
 948	max_wait = max(bps_wait, iops_wait);
 949
 950	if (wait)
 951		*wait = max_wait;
 952
 953	if (time_before(tg->slice_end[rw], jiffies + max_wait))
 954		throtl_extend_slice(tg, rw, jiffies + max_wait);
 955
 956	return 0;
 957}
 958
 959static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
 960					 int rw)
 961{
 962	struct throtl_grp *tg = blkg_to_tg(blkg);
 963	struct tg_stats_cpu *stats_cpu;
 964	unsigned long flags;
 965
 966	/* If per cpu stats are not allocated yet, don't do any accounting. */
 967	if (tg->stats_cpu == NULL)
 968		return;
 969
 970	/*
 971	 * Disabling interrupts to provide mutual exclusion between two
 972	 * writes on same cpu. It probably is not needed for 64bit. Not
 973	 * optimizing that case yet.
 974	 */
 975	local_irq_save(flags);
 976
 977	stats_cpu = this_cpu_ptr(tg->stats_cpu);
 978
 979	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
 980	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
 981
 982	local_irq_restore(flags);
 983}
 984
 985static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 986{
 987	bool rw = bio_data_dir(bio);
 
 988
 989	/* Charge the bio to the group */
 990	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
 991	tg->io_disp[rw]++;
 
 
 992
 993	/*
 994	 * REQ_THROTTLED is used to prevent the same bio to be throttled
 995	 * more than once as a throttled bio will go through blk-throtl the
 996	 * second time when it eventually gets issued.  Set it when a bio
 997	 * is being charged to a tg.
 998	 *
 999	 * Dispatch stats aren't recursive and each @bio should only be
1000	 * accounted by the @tg it was originally associated with.  Let's
1001	 * update the stats when setting REQ_THROTTLED for the first time
1002	 * which is guaranteed to be for the @bio's original tg.
1003	 */
1004	if (!(bio->bi_rw & REQ_THROTTLED)) {
1005		bio->bi_rw |= REQ_THROTTLED;
1006		throtl_update_dispatch_stats(tg_to_blkg(tg),
1007					     bio->bi_iter.bi_size, bio->bi_rw);
1008	}
1009}
1010
1011/**
1012 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1013 * @bio: bio to add
1014 * @qn: qnode to use
1015 * @tg: the target throtl_grp
1016 *
1017 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1018 * tg->qnode_on_self[] is used.
1019 */
1020static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1021			      struct throtl_grp *tg)
1022{
1023	struct throtl_service_queue *sq = &tg->service_queue;
1024	bool rw = bio_data_dir(bio);
1025
1026	if (!qn)
1027		qn = &tg->qnode_on_self[rw];
1028
1029	/*
1030	 * If @tg doesn't currently have any bios queued in the same
1031	 * direction, queueing @bio can change when @tg should be
1032	 * dispatched.  Mark that @tg was empty.  This is automatically
1033	 * cleaered on the next tg_update_disptime().
1034	 */
1035	if (!sq->nr_queued[rw])
1036		tg->flags |= THROTL_TG_WAS_EMPTY;
1037
1038	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1039
1040	sq->nr_queued[rw]++;
1041	throtl_enqueue_tg(tg);
1042}
1043
1044static void tg_update_disptime(struct throtl_grp *tg)
1045{
1046	struct throtl_service_queue *sq = &tg->service_queue;
1047	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1048	struct bio *bio;
1049
1050	if ((bio = throtl_peek_queued(&sq->queued[READ])))
 
1051		tg_may_dispatch(tg, bio, &read_wait);
1052
1053	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
 
1054		tg_may_dispatch(tg, bio, &write_wait);
1055
1056	min_wait = min(read_wait, write_wait);
1057	disptime = jiffies + min_wait;
1058
1059	/* Update dispatch time */
1060	throtl_dequeue_tg(tg);
1061	tg->disptime = disptime;
1062	throtl_enqueue_tg(tg);
1063
1064	/* see throtl_add_bio_tg() */
1065	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1066}
1067
1068static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1069					struct throtl_grp *parent_tg, bool rw)
1070{
1071	if (throtl_slice_used(parent_tg, rw)) {
1072		throtl_start_new_slice_with_credit(parent_tg, rw,
1073				child_tg->slice_start[rw]);
1074	}
1075
1076}
1077
1078static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1079{
1080	struct throtl_service_queue *sq = &tg->service_queue;
1081	struct throtl_service_queue *parent_sq = sq->parent_sq;
1082	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1083	struct throtl_grp *tg_to_put = NULL;
1084	struct bio *bio;
1085
1086	/*
1087	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1088	 * from @tg may put its reference and @parent_sq might end up
1089	 * getting released prematurely.  Remember the tg to put and put it
1090	 * after @bio is transferred to @parent_sq.
1091	 */
1092	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1093	sq->nr_queued[rw]--;
1094
1095	throtl_charge_bio(tg, bio);
1096
1097	/*
1098	 * If our parent is another tg, we just need to transfer @bio to
1099	 * the parent using throtl_add_bio_tg().  If our parent is
1100	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1101	 * bio_lists[] and decrease total number queued.  The caller is
1102	 * responsible for issuing these bios.
1103	 */
1104	if (parent_tg) {
1105		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1106		start_parent_slice_with_credit(tg, parent_tg, rw);
1107	} else {
1108		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1109				     &parent_sq->queued[rw]);
1110		BUG_ON(tg->td->nr_queued[rw] <= 0);
1111		tg->td->nr_queued[rw]--;
1112	}
1113
1114	throtl_trim_slice(tg, rw);
1115
1116	if (tg_to_put)
1117		blkg_put(tg_to_blkg(tg_to_put));
1118}
1119
1120static int throtl_dispatch_tg(struct throtl_grp *tg)
1121{
1122	struct throtl_service_queue *sq = &tg->service_queue;
1123	unsigned int nr_reads = 0, nr_writes = 0;
1124	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1125	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1126	struct bio *bio;
1127
1128	/* Try to dispatch 75% READS and 25% WRITES */
1129
1130	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1131	       tg_may_dispatch(tg, bio, NULL)) {
1132
1133		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134		nr_reads++;
1135
1136		if (nr_reads >= max_nr_reads)
1137			break;
1138	}
1139
1140	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1141	       tg_may_dispatch(tg, bio, NULL)) {
1142
1143		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144		nr_writes++;
1145
1146		if (nr_writes >= max_nr_writes)
1147			break;
1148	}
1149
1150	return nr_reads + nr_writes;
1151}
1152
1153static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1154{
1155	unsigned int nr_disp = 0;
1156
1157	while (1) {
1158		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1159		struct throtl_service_queue *sq = &tg->service_queue;
1160
1161		if (!tg)
1162			break;
1163
1164		if (time_before(jiffies, tg->disptime))
1165			break;
1166
1167		throtl_dequeue_tg(tg);
1168
1169		nr_disp += throtl_dispatch_tg(tg);
1170
1171		if (sq->nr_queued[0] || sq->nr_queued[1])
1172			tg_update_disptime(tg);
1173
1174		if (nr_disp >= throtl_quantum)
1175			break;
1176	}
1177
1178	return nr_disp;
1179}
1180
 
 
1181/**
1182 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183 * @arg: the throtl_service_queue being serviced
1184 *
1185 * This timer is armed when a child throtl_grp with active bio's become
1186 * pending and queued on the service_queue's pending_tree and expires when
1187 * the first child throtl_grp should be dispatched.  This function
1188 * dispatches bio's from the children throtl_grps to the parent
1189 * service_queue.
1190 *
1191 * If the parent's parent is another throtl_grp, dispatching is propagated
1192 * by either arming its pending_timer or repeating dispatch directly.  If
1193 * the top-level service_tree is reached, throtl_data->dispatch_work is
1194 * kicked so that the ready bio's are issued.
1195 */
1196static void throtl_pending_timer_fn(unsigned long arg)
1197{
1198	struct throtl_service_queue *sq = (void *)arg;
1199	struct throtl_grp *tg = sq_to_tg(sq);
1200	struct throtl_data *td = sq_to_td(sq);
1201	struct request_queue *q = td->queue;
1202	struct throtl_service_queue *parent_sq;
1203	bool dispatched;
1204	int ret;
1205
1206	spin_lock_irq(q->queue_lock);
 
 
 
1207again:
1208	parent_sq = sq->parent_sq;
1209	dispatched = false;
1210
1211	while (true) {
1212		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1213			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1214			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1215
1216		ret = throtl_select_dispatch(sq);
1217		if (ret) {
1218			throtl_log(sq, "bios disp=%u", ret);
1219			dispatched = true;
1220		}
1221
1222		if (throtl_schedule_next_dispatch(sq, false))
1223			break;
1224
1225		/* this dispatch windows is still open, relax and repeat */
1226		spin_unlock_irq(q->queue_lock);
1227		cpu_relax();
1228		spin_lock_irq(q->queue_lock);
1229	}
1230
1231	if (!dispatched)
1232		goto out_unlock;
1233
1234	if (parent_sq) {
1235		/* @parent_sq is another throl_grp, propagate dispatch */
1236		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1237			tg_update_disptime(tg);
1238			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1239				/* window is already open, repeat dispatching */
1240				sq = parent_sq;
1241				tg = sq_to_tg(sq);
1242				goto again;
1243			}
1244		}
1245	} else {
1246		/* reached the top-level, queue issueing */
1247		queue_work(kthrotld_workqueue, &td->dispatch_work);
1248	}
1249out_unlock:
1250	spin_unlock_irq(q->queue_lock);
1251}
1252
1253/**
1254 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255 * @work: work item being executed
1256 *
1257 * This function is queued for execution when bio's reach the bio_lists[]
1258 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1259 * function.
1260 */
1261void blk_throtl_dispatch_work_fn(struct work_struct *work)
1262{
1263	struct throtl_data *td = container_of(work, struct throtl_data,
1264					      dispatch_work);
1265	struct throtl_service_queue *td_sq = &td->service_queue;
1266	struct request_queue *q = td->queue;
1267	struct bio_list bio_list_on_stack;
1268	struct bio *bio;
1269	struct blk_plug plug;
1270	int rw;
1271
1272	bio_list_init(&bio_list_on_stack);
1273
1274	spin_lock_irq(q->queue_lock);
1275	for (rw = READ; rw <= WRITE; rw++)
1276		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1277			bio_list_add(&bio_list_on_stack, bio);
1278	spin_unlock_irq(q->queue_lock);
1279
1280	if (!bio_list_empty(&bio_list_on_stack)) {
1281		blk_start_plug(&plug);
1282		while((bio = bio_list_pop(&bio_list_on_stack)))
1283			generic_make_request(bio);
1284		blk_finish_plug(&plug);
1285	}
1286}
1287
1288static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1289				struct blkg_policy_data *pd, int off)
1290{
1291	struct throtl_grp *tg = pd_to_tg(pd);
1292	struct blkg_rwstat rwstat = { }, tmp;
1293	int i, cpu;
1294
1295	for_each_possible_cpu(cpu) {
1296		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1297
1298		tmp = blkg_rwstat_read((void *)sc + off);
1299		for (i = 0; i < BLKG_RWSTAT_NR; i++)
1300			rwstat.cnt[i] += tmp.cnt[i];
1301	}
1302
1303	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1304}
1305
1306static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1307{
1308	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1309			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1310	return 0;
1311}
1312
1313static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1314			      int off)
1315{
1316	struct throtl_grp *tg = pd_to_tg(pd);
1317	u64 v = *(u64 *)((void *)tg + off);
1318
1319	if (v == -1)
1320		return 0;
1321	return __blkg_prfill_u64(sf, pd, v);
1322}
1323
1324static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1325			       int off)
1326{
1327	struct throtl_grp *tg = pd_to_tg(pd);
1328	unsigned int v = *(unsigned int *)((void *)tg + off);
1329
1330	if (v == -1)
1331		return 0;
1332	return __blkg_prfill_u64(sf, pd, v);
1333}
1334
1335static int tg_print_conf_u64(struct seq_file *sf, void *v)
1336{
1337	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1338			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1339	return 0;
1340}
1341
1342static int tg_print_conf_uint(struct seq_file *sf, void *v)
1343{
1344	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1345			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1346	return 0;
1347}
1348
1349static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
1350		       const char *buf, bool is_u64)
1351{
1352	struct blkcg *blkcg = css_to_blkcg(css);
1353	struct blkg_conf_ctx ctx;
1354	struct throtl_grp *tg;
1355	struct throtl_service_queue *sq;
1356	struct blkcg_gq *blkg;
1357	struct cgroup_subsys_state *pos_css;
1358	int ret;
1359
1360	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1361	if (ret)
1362		return ret;
1363
1364	tg = blkg_to_tg(ctx.blkg);
1365	sq = &tg->service_queue;
1366
1367	if (!ctx.v)
1368		ctx.v = -1;
1369
1370	if (is_u64)
1371		*(u64 *)((void *)tg + cft->private) = ctx.v;
1372	else
1373		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1374
1375	throtl_log(&tg->service_queue,
1376		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1377		   tg->bps[READ], tg->bps[WRITE],
1378		   tg->iops[READ], tg->iops[WRITE]);
1379
1380	/*
1381	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1382	 * considered to have rules if either the tg itself or any of its
1383	 * ancestors has rules.  This identifies groups without any
1384	 * restrictions in the whole hierarchy and allows them to bypass
1385	 * blk-throttle.
1386	 */
1387	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1388		tg_update_has_rules(blkg_to_tg(blkg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390	/*
1391	 * We're already holding queue_lock and know @tg is valid.  Let's
1392	 * apply the new config directly.
1393	 *
1394	 * Restart the slices for both READ and WRITES. It might happen
1395	 * that a group's limit are dropped suddenly and we don't want to
1396	 * account recently dispatched IO with new low rate.
1397	 */
1398	throtl_start_new_slice(tg, 0);
1399	throtl_start_new_slice(tg, 1);
1400
1401	if (tg->flags & THROTL_TG_PENDING) {
1402		tg_update_disptime(tg);
1403		throtl_schedule_next_dispatch(sq->parent_sq, true);
1404	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406	blkg_conf_finish(&ctx);
1407	return 0;
1408}
1409
1410static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1411			   char *buf)
1412{
1413	return tg_set_conf(css, cft, buf, true);
1414}
1415
1416static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
1417			    char *buf)
1418{
1419	return tg_set_conf(css, cft, buf, false);
1420}
1421
1422static struct cftype throtl_files[] = {
1423	{
1424		.name = "throttle.read_bps_device",
1425		.private = offsetof(struct throtl_grp, bps[READ]),
1426		.seq_show = tg_print_conf_u64,
1427		.write_string = tg_set_conf_u64,
1428	},
1429	{
1430		.name = "throttle.write_bps_device",
1431		.private = offsetof(struct throtl_grp, bps[WRITE]),
1432		.seq_show = tg_print_conf_u64,
1433		.write_string = tg_set_conf_u64,
1434	},
1435	{
1436		.name = "throttle.read_iops_device",
1437		.private = offsetof(struct throtl_grp, iops[READ]),
1438		.seq_show = tg_print_conf_uint,
1439		.write_string = tg_set_conf_uint,
1440	},
1441	{
1442		.name = "throttle.write_iops_device",
1443		.private = offsetof(struct throtl_grp, iops[WRITE]),
1444		.seq_show = tg_print_conf_uint,
1445		.write_string = tg_set_conf_uint,
1446	},
1447	{
1448		.name = "throttle.io_service_bytes",
1449		.private = offsetof(struct tg_stats_cpu, service_bytes),
1450		.seq_show = tg_print_cpu_rwstat,
 
 
 
 
 
1451	},
1452	{
1453		.name = "throttle.io_serviced",
1454		.private = offsetof(struct tg_stats_cpu, serviced),
1455		.seq_show = tg_print_cpu_rwstat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456	},
1457	{ }	/* terminate */
1458};
1459
1460static void throtl_shutdown_wq(struct request_queue *q)
1461{
1462	struct throtl_data *td = q->td;
1463
1464	cancel_work_sync(&td->dispatch_work);
1465}
1466
1467static struct blkcg_policy blkcg_policy_throtl = {
1468	.pd_size		= sizeof(struct throtl_grp),
1469	.cftypes		= throtl_files,
1470
 
1471	.pd_init_fn		= throtl_pd_init,
1472	.pd_online_fn		= throtl_pd_online,
1473	.pd_exit_fn		= throtl_pd_exit,
1474	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1475};
1476
1477bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
1478{
1479	struct throtl_data *td = q->td;
1480	struct throtl_qnode *qn = NULL;
1481	struct throtl_grp *tg;
1482	struct throtl_service_queue *sq;
1483	bool rw = bio_data_dir(bio);
1484	struct blkcg *blkcg;
1485	bool throttled = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486
1487	/* see throtl_charge_bio() */
1488	if (bio->bi_rw & REQ_THROTTLED)
1489		goto out;
 
1490
1491	/*
1492	 * A throtl_grp pointer retrieved under rcu can be used to access
1493	 * basic fields like stats and io rates. If a group has no rules,
1494	 * just update the dispatch stats in lockless manner and return.
1495	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	rcu_read_lock();
1497	blkcg = bio_blkcg(bio);
1498	tg = throtl_lookup_tg(td, blkcg);
1499	if (tg) {
1500		if (!tg->has_rules[rw]) {
1501			throtl_update_dispatch_stats(tg_to_blkg(tg),
1502					bio->bi_iter.bi_size, bio->bi_rw);
1503			goto out_unlock_rcu;
 
 
 
1504		}
1505	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1506
1507	/*
1508	 * Either group has not been allocated yet or it is not an unlimited
1509	 * IO group
1510	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511	spin_lock_irq(q->queue_lock);
1512	tg = throtl_lookup_create_tg(td, blkcg);
1513	if (unlikely(!tg))
 
 
1514		goto out_unlock;
1515
 
 
 
1516	sq = &tg->service_queue;
1517
 
1518	while (true) {
 
 
 
 
1519		/* throtl is FIFO - if bios are already queued, should queue */
1520		if (sq->nr_queued[rw])
1521			break;
1522
1523		/* if above limits, break to queue */
1524		if (!tg_may_dispatch(tg, bio, NULL))
 
 
 
 
 
1525			break;
 
1526
1527		/* within limits, let's charge and dispatch directly */
1528		throtl_charge_bio(tg, bio);
1529
1530		/*
1531		 * We need to trim slice even when bios are not being queued
1532		 * otherwise it might happen that a bio is not queued for
1533		 * a long time and slice keeps on extending and trim is not
1534		 * called for a long time. Now if limits are reduced suddenly
1535		 * we take into account all the IO dispatched so far at new
1536		 * low rate and * newly queued IO gets a really long dispatch
1537		 * time.
1538		 *
1539		 * So keep on trimming slice even if bio is not queued.
1540		 */
1541		throtl_trim_slice(tg, rw);
1542
1543		/*
1544		 * @bio passed through this layer without being throttled.
1545		 * Climb up the ladder.  If we''re already at the top, it
1546		 * can be executed directly.
1547		 */
1548		qn = &tg->qnode_on_parent[rw];
1549		sq = sq->parent_sq;
1550		tg = sq_to_tg(sq);
1551		if (!tg)
1552			goto out_unlock;
1553	}
1554
1555	/* out-of-limit, queue to @tg */
1556	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1557		   rw == READ ? 'R' : 'W',
1558		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1559		   tg->io_disp[rw], tg->iops[rw],
 
1560		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1561
1562	bio_associate_current(bio);
1563	tg->td->nr_queued[rw]++;
 
1564	throtl_add_bio_tg(bio, qn, tg);
1565	throttled = true;
1566
1567	/*
1568	 * Update @tg's dispatch time and force schedule dispatch if @tg
1569	 * was empty before @bio.  The forced scheduling isn't likely to
1570	 * cause undue delay as @bio is likely to be dispatched directly if
1571	 * its @tg's disptime is not in the future.
1572	 */
1573	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1574		tg_update_disptime(tg);
1575		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1576	}
1577
1578out_unlock:
1579	spin_unlock_irq(q->queue_lock);
1580out_unlock_rcu:
1581	rcu_read_unlock();
1582out:
1583	/*
1584	 * As multiple blk-throtls may stack in the same issue path, we
1585	 * don't want bios to leave with the flag set.  Clear the flag if
1586	 * being issued.
1587	 */
1588	if (!throttled)
1589		bio->bi_rw &= ~REQ_THROTTLED;
1590	return throttled;
1591}
1592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593/*
1594 * Dispatch all bios from all children tg's queued on @parent_sq.  On
1595 * return, @parent_sq is guaranteed to not have any active children tg's
1596 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1597 */
1598static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1599{
1600	struct throtl_grp *tg;
1601
1602	while ((tg = throtl_rb_first(parent_sq))) {
1603		struct throtl_service_queue *sq = &tg->service_queue;
1604		struct bio *bio;
1605
1606		throtl_dequeue_tg(tg);
1607
1608		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1609			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1610		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1611			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1612	}
1613}
1614
1615/**
1616 * blk_throtl_drain - drain throttled bios
1617 * @q: request_queue to drain throttled bios for
1618 *
1619 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1620 */
1621void blk_throtl_drain(struct request_queue *q)
1622	__releases(q->queue_lock) __acquires(q->queue_lock)
1623{
1624	struct throtl_data *td = q->td;
1625	struct blkcg_gq *blkg;
1626	struct cgroup_subsys_state *pos_css;
1627	struct bio *bio;
1628	int rw;
1629
1630	queue_lockdep_assert_held(q);
1631	rcu_read_lock();
1632
1633	/*
1634	 * Drain each tg while doing post-order walk on the blkg tree, so
1635	 * that all bios are propagated to td->service_queue.  It'd be
1636	 * better to walk service_queue tree directly but blkg walk is
1637	 * easier.
1638	 */
1639	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1640		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1641
1642	/* finally, transfer bios from top-level tg's into the td */
1643	tg_drain_bios(&td->service_queue);
1644
1645	rcu_read_unlock();
1646	spin_unlock_irq(q->queue_lock);
1647
1648	/* all bios now should be in td->service_queue, issue them */
1649	for (rw = READ; rw <= WRITE; rw++)
1650		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1651						NULL)))
1652			generic_make_request(bio);
1653
1654	spin_lock_irq(q->queue_lock);
1655}
1656
1657int blk_throtl_init(struct request_queue *q)
1658{
1659	struct throtl_data *td;
1660	int ret;
1661
1662	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1663	if (!td)
1664		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
1665
1666	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1667	throtl_service_queue_init(&td->service_queue, NULL);
1668
1669	q->td = td;
1670	td->queue = q;
1671
 
 
 
 
 
1672	/* activate policy */
1673	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1674	if (ret)
 
 
1675		kfree(td);
 
1676	return ret;
1677}
1678
1679void blk_throtl_exit(struct request_queue *q)
1680{
1681	BUG_ON(!q->td);
1682	throtl_shutdown_wq(q);
1683	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
 
 
1684	kfree(q->td);
1685}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686
1687static int __init throtl_init(void)
1688{
1689	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1690	if (!kthrotld_workqueue)
1691		panic("Failed to create kthrotld\n");
1692
1693	return blkcg_policy_register(&blkcg_policy_throtl);
1694}
1695
1696module_init(throtl_init);